WorldWideScience

Sample records for electronic quenching rate

  1. Measurement of the electron quenching rate in an electron beam pumped KrF* laser

    International Nuclear Information System (INIS)

    Nishioka, Hajime; Kurashima, Toshio; Kuranishi, Hideaki; Ueda, Kenichi; Takuma, Hiroshi; Sasaki, Akira; Kasuya, Koichi.

    1988-01-01

    The electron quenching rate of KrF * in an electron beam pumped laser has been studied by accurately measuring the saturation intensity in a mixture of Ar/Kr/F 2 = 94/6/0.284. The input intensity of the measurements was widely varied from 100 W cm -2 (small signal region) to 100 MW cm -2 (absorption dominant region) in order to separate laser parameters which are small signal gain coefficient, absorption coefficient, and saturation intensity from the measured net gain coefficients. The gas pressure and the pump rate were varied in the range of 0.5 to 2.5 atm and 0.3 to 1.4 MW cm -3 , respectively. The electron quenching rate constant of 4.5 x 10 -7 cm 3 s -1 was obtained from the pressure and the pump rate dependence of the KrF * saturation intensity with the temperature dependence of the rate gas 3-body quenching rate as a function of gas temperature to the -3rd power. The small signal gain coefficients calculated with the determined quenching rate constants shows excellent agreement with the measurements. (author)

  2. Measurement of the electron quenching rate in an electron beam pumped KrF/sup */ laser

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Hajime; Kurashima, Toshio; Kuranishi, Hideaki; Ueda, Kenichi; Takuma, Hiroshi; Sasaki, Akira; Kasuya, Koichi.

    1988-09-01

    The electron quenching rate of KrF/sup */ in an electron beam pumped laser has been studied by accurately measuring the saturation intensity in a mixture of Ar/Kr/F/sub 2/ = 94/6/0.284. The input intensity of the measurements was widely varied from 100 W cm/sup -2/ (small signal region) to 100 MW cm/sup -2/ (absorption dominant region) in order to separate laser parameters which are small signal gain coefficient, absorption coefficient, and saturation intensity from the measured net gain coefficients. The gas pressure and the pump rate were varied in the range of 0.5 to 2.5 atm and 0.3 to 1.4 MW cm/sup -3/, respectively. The electron quenching rate constant of 4.5 x 10/sup -7/ cm/sup 3/s/sup -1/ was obtained from the pressure and the pump rate dependence of the KrF/sup */ saturation intensity with the temperature dependence of the rate gas 3-body quenching rate as a function of gas temperature to the -3rd power. The small signal gain coefficients calculated with the determined quenching rate constants shows excellent agreement with the measurements.

  3. The electronic quenching rates of NO(A2Σ+, v'=0-2)

    International Nuclear Information System (INIS)

    Nee, J.B.; Juan, C.Y.; Hsu, J.Y.; Yang, J.C.; Chen, W.J.

    2004-01-01

    The electronic quenching rates of NO(A 2 Σ + , v ' =0-2) are measured for the gases He, Ar, Xe, N 2 , O 2 , CO 2 , N 2 O, and SF 6 . The variations of the fluorescence intensity were measured for the (0,0), (1,0), and (2,0) bands of the γ band system when the quencher gases were added. The quenching rates were determined by using the Stern-Volmer plots with the known radiative lifetimes of the excited states. The electronic quenching rate constants are fast for the group of gases of O 2 , CO 2 , N 2 O, and SF 6 , whose quenching rate constants are in the order of 10 -10 cm 3 /s. The quenching rate constants are slow for the group of gases including He, Ar, Xe, and N 2 whose rate constants are in the order of 10 -14 cm 3 /s. For the slow group, the quenching rate constants increase rapidly for v ' =2 compared with those of v ' =0 and 1. The charge transfer model and collision complex model are used to understand the quenching mechanism. For the fast group which mainly consists of gases with positive electron affinities, the charge transfer model adequately describes the mechanism. For the slow quenching group, a theoretical background is provided by consider the coupling of initial and final states in the complex potential surfaces

  4. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  5. The effect of the cooling rate during quenching, electron bombardment and plastic deformation on the kinetics of a solid solution disintegration in iron-copper alloys

    International Nuclear Information System (INIS)

    Fedorov, G.B.; Zhukov, V.P.; Braun, A.G.; Smirnov, E.A.

    1974-01-01

    From the electroresistivity variation at 77 0 K, the influence of nonequilibrium point defect density and of complexes and dislocations on the decay process of the iron-copper solid solution is determined. Owing to high quenching rate of thin foils, isochrones of their electroconductivity curves appear shifted by about 200 0 C to lower temperatures. For quenched and irradiated specimens at 200-250 0 C a sharp retardation of electroconductivity decline is observed due to a zone stage. The plastic deformation (15%) leads to a partial suppression of that stage. Both irradiation and deformation initiate the process of copper separation from the solid solution, the latter being the stronger, the more copper is in the solid solution

  6. Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elgallad, E.M., E-mail: eelgalla@uqac.ca; Zhang, Z.; Chen, X.-G.

    2017-06-01

    Slow quenching of direct chill (DC) cast aluminum ingot plates used in large mold applications is often used to decrease quench-induced residual stresses, which can deteriorate the machining performance of these plates. Slow quenching may negatively affect the mechanical properties of the cast plates when using highly quench-sensitive aluminum alloys because of its negative effect on the precipitation hardening behavior of such alloys. The effect of the quenching rate on precipitation kinetics in AA2219 DC cast alloy was systematically studied under water and air quenching conditions using differential scanning calorimetry (DSC) technique. Transmission electron microscopy (TEM) was also used to characterize the precipitate microstructure. The results showed that the precipitation kinetics of the θ′ phase in the air-quenched condition was mostly slower than that in the water-quenched one. Air quenching continuously increased the precipitation kinetics of the θ phase compared to water quenching. These results revealed the contributions of the inadequate precipitation of the strengthening θ′ phase and the increased precipitation of the equilibrium θ phase to the deterioration of the mechanical properties of air-quenched AA2219 DC cast plates. The preexisting GP zones and quenched-in dislocations affected the kinetics of the θ′ phase, whereas the preceding precipitation of the θ′ phase affected the kinetics of the θ phase by controlling its precipitation mechanism.

  7. Effect of Quenching Rate on Microstructure and Hardness of Al-Zn-Mg-Cu-Cr Alloy Extruded Bar

    Directory of Open Access Journals (Sweden)

    HAN Su-qi

    2017-04-01

    Full Text Available The effect of quenching rate on microstructure and hardness of Al-Zn-Mg-Cu-Cr alloy extruded bar was studied by hardness test, scanning electron microscopy and transmission electron microscopy. The results show that at quenching rate below 100℃/s, during the cooling process, the hardness begins to fall significantly; and it decreases by 43% at the quenching rate of 2℃/s. At quenching rate below 100℃/s, the number and size of equilibrium η phase heterogeneously nucleated at(subgrain boundaries and on dispersoids inside grains increase obviously with the decrease of quenching rate, leading to greatly reduced age-hardening response. At the same quenching rate, the equilibrium η phase inside grains is larger than that at grain boundaries. In the range of the studied quenching rates, a quantitative relationship between hardness and equilibrium η phase area fraction has been established.

  8. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more ...

  9. The effect of composition, electron irradiation and quenching on ...

    Indian Academy of Sciences (India)

    The ionic conductivity at room temperature exhibits a characteristic double peak for the composition = 20 and 70. Both electron beam irradiation and quenching at low temperature have resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is ...

  10. Enhanced diffusion due to electrons, protons and quenching

    International Nuclear Information System (INIS)

    Schuele, W.

    1987-01-01

    Results of investigations of radiation enhanced diffusion in copper -30% zinc alloys using 17.65 MeV protons are reported and compared with results obtained for 2 MeV electrons. The activation energy of diffusion decreases considerably from 0.35 eV to 0.26 eV for displacement rates increasing from 3x10 -12 dpa.s -1 to 1.2x10 -8 dpa.s -1 , i.e. the migration activation energy of interstitials decreases for this dpa.s -1 range from 0.70 eV to 0.52 eV. Results of electron irradiations obtained for 0.050 and 0.10 mm thick specimens are compared. It is found that the diffusion rates increase considerably in the presence of dislocations and that the diffusion rates decrease for very low electron fluxes and high irradiation temperatures in the 0.050 mm thick specimens in comparison to the rates obtained in 0.10 mm thick specimens. A value of 0.95 eV was determined for the activation energy of the ordering rate after quenching from 250 0 C in water. This was attributed to the migration activation energy of vacancies

  11. Non-self-averaging nucleation rate due to quenched disorder

    International Nuclear Information System (INIS)

    Sear, Richard P

    2012-01-01

    We study the nucleation of a new thermodynamic phase in the presence of quenched disorder. The quenched disorder is a generic model of both impurities and disordered porous media; both are known to have large effects on nucleation. We find that the nucleation rate is non-self-averaging. This is in a simple Ising model with clusters of quenched spins. We also show that non-self-averaging behaviour is straightforward to detect in experiments, and may be rather common. (fast track communication)

  12. Quench detection electronics testing protocol for SST-1 magnets

    International Nuclear Information System (INIS)

    Banaudha, Moni; Varmora, Pankaj; Parghi, Bhadresh; Prasad, Upendra

    2017-01-01

    Quench Detection (QD) system consisting 204 signal channels has been successfully installed and working well during plasma experiment of SST-1 Tokamak. QD system requires testing, validation and maintenance in every SST-1 campaign for better reliability and maintainability of the system. Standalone test of each channel of the system is essential for hard-ware validation. The standard Testing Protocol follow in every campaign which validate each section of QD electronics as well as voltage tap signal cables which are routed inside the cryostat and then extended outside of the SST-1 machine up-to the magnet control room. Fiber link for Quench signal transmission to the SST-1 magnet power supply is also test and validate before every plasma campaign. Precise instrument used as a dummy source of quench signal and for manual quench generation to test the each channel and Master Quench Logic. Each signal Integrated with the magnet DAQ system, signal observed at 1Hz and 50Hz configuration to validate the logging data, compare with actual and previous test data. This paper describes the testing protocol follow in every campaign to validate functionality of QD electronics, limitation of testing, test results and overall integration of the quench detection system for SST-1 magnet. (author)

  13. Excited state redox properties of phthalocyanines: influence of the axial ligand on the rates of relaxation and electron-transfer quenching of the lowest /sup 3/. pi pi. /sup */ excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ferraudi, G J; Prasad, D R

    1874-01-01

    Laser flash excitations at 640 nm have been used to generate the transient spectra of the lowest-lying /sup 3/..pi pi../sup */ state of phthalocyaninatoruthenium(II) complexes. The properties of this excited state such as the properties of the maxima, lambda/sub max/ = 500 +/- 30 nm, and lifetimes, t/sub 1/2/ = 70-4500 ns, exhibit a large dependence on the electron-accepting and electron-withdrawing tendencies of the axial ligands. A similar influence was observed upon the rate of electron-transfer quenching of the /sup 3/..pi pi../sup */ state. Values between 10/sup 6/ and 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ for the self-exchange rate constant have been obtained, according to Marcus-Hush theoretical treatments, for (Ru(pc.)LL')/sup +//(/sup 3/..pi pi../sup */)(Ru(pc)LL') (L and L' = neutral axial ligands; pc = phthalocyaninate (2-)) and isoelectronic cobalt(III) and rhodium(III) couples. The redox properties of the ground and excited states are correlated with axial ligand-induced perturbations of the electronic structure.

  14. Comparison of radiation and quenching rate effects on the structure of a sodium borosilicate glass

    International Nuclear Information System (INIS)

    Peuget, Sylvain; Maugeri, Emilio-Andrea; Mendoza, Clement; Fares, Toby; Bouty, Olivier; Jegou, Christophe; Charpentier, Thibault; Moskura, Melanie

    2013-01-01

    The effects of quenching rate and irradiation on the structure of a sodium borosilicate glass were compared using 29 Si, 11 B, and 23 Na nuclear magnetic resonance and Raman spectroscopy. Quenching rate ranging from 0.1 to 3 * 10 4 K min -1 was studied. Various irradiation conditions were performed, i.e. gold-ion irradiation in a multi-energy mode (from 1 to 6.75 MeV), and Kr and Xe ion irradiations with energy of 74 and 92 MeV, respectively. In pile irradiation with thermal neutron flux was performed as well, to study the effect of alpha radiation from the nuclear reaction 10 B(n,α) 7 Li. Both irradiation and high quenching rate induce similar local order modification of the glass structure, mainly a decrease of the mean boron coordination and an increase of Q 3 units. Nevertheless, the variations observed under irradiation are more pronounced than the ones induced by the quenching rate. Moreover, some important modifications of the glass medium range order, i.e. the emergence of the D2 band associated to three members silica rings and a modification of the Si-O-Si angle distribution were only noticed after irradiation. These results suggest that the irradiated structure is certainly not exactly the one obtained by a rapidly quenched equilibrated melt, but rather a more disordered structure that was weakly relaxed during the very rapid quenching phase following the energy deposition step. Raman spectroscopy showed a similar irradiated structure whereas the glass evolutions were controlled by the electronic energy loss in the ion track formation regime for Kr-ion irradiation or by the nuclear energy loss for Au and OSIRIS irradiation. The similar irradiated structure despite different irradiation routes, suggests that the final structural state of this sodium borosilicate glass is mainly controlled by the glass reconstruction after the energy deposition step. (authors)

  15. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-xun, E-mail: zhangyuxun198@163.com; Yi, You-ping, E-mail: yyp@csu.edu.cn; Huang, Shi-quan, E-mail: huangsqcsu@sina.com; Dong, Fei

    2016-09-30

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  16. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    International Nuclear Information System (INIS)

    Zhang, Yu-xun; Yi, You-ping; Huang, Shi-quan; Dong, Fei

    2016-01-01

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  17. The role of quench rate in colloidal gels.

    Science.gov (United States)

    Royall, C Patrick; Malins, Alex

    2012-01-01

    Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.

  18. Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Weihong; Li Tanping; Zhang Luyuan; Yang Yi; Kao Yating; Wang Lijuan [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States); Zhong Dongping [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States)], E-mail: dongping@mps.ohio-state.edu

    2008-06-23

    Quenching of tryptophan fluorescence in proteins has been critical to the understanding of protein dynamics and enzyme reactions using tryptophan as a molecular optical probe. We report here our systematic examinations of potential quenching residues with more than 40 proteins. With site-directed mutation, we placed tryptophan to desired positions or altered its neighboring residues to screen quenching groups among 20 amino acid residues and of peptide backbones. With femtosecond resolution, we observed the ultrafast quenching dynamics within 100 ps and identified two ultrafast quenching groups, the carbonyl- and sulfur-containing residues. The former is glutamine and glutamate residues and the later is disulfide bond and cysteine residue. The quenching by the peptide-bond carbonyl group as well as other potential residues mostly occurs in longer than 100 ps. These ultrafast quenching dynamics occur at van der Waals distances through intraprotein electron transfer with high directionality. Following optimal molecular orbital overlap, electron jumps from the benzene ring of the indole moiety in a vertical orientation to the LUMO of acceptor quenching residues. Molecular dynamics simulations were invoked to elucidate various correlations of quenching dynamics with separation distances, relative orientations, local fluctuations and reaction heterogeneity. These unique ultrafast quenching pairs, as recently found to extensively occur in high-resolution protein structures, may have significant biological implications.

  19. Effect of quench rate on the mechanical properties of U-6 wt % Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1980-03-01

    U-6 wt % Nb conventionally is water quenched from 800 0 C in order to obtain a niobium supersaturated α'' structure having good corrosion resistance and high ductility (125% tensile elongation). The high cooling rate associated with the water quench, however, produces undesirable distortion and residual stress. This study was conducted to determine the extent to which the quench rate could be reduced (in order to minimize the distortion and residual stress problems) without sacrificing properties. The results indicate that quench rate can be reduced by as much as a factor of 10 without any loss of ductility, and that a factor of 100 reduction in quench rate (as is produced by air cooling) still produces material with moderate ductility (> 12% tensile elongation). The results also indicate that supersaturated α'' structures are produced at all of these quench rates. This suggests that these reductions in quench rate should not have drastic adverse effects on corrosion resistance. Hence, it should not be possible to substantially reduce the magnitudes of the distortion and residual stress problems while retaining appreciable ductility and corrosion resistance in U-6 wt % Nb

  20. Quenching rates and fluorescence efficiency in the A 2Σ+ state of OH

    International Nuclear Information System (INIS)

    Selzer, P.M.; Wang, C.C.

    1979-01-01

    Using direct lifetime measurements at pressures up to 25 Torr, the quenching rates for the A 2 Σ + (v=0) state of OH due to N 2 , O 2 , H 2 O, and air have been determined. These values are in general agreement with other direct lifetime measurements obtained in the millitorr range and show that the quenching cross sections are pressure independent. The implications of these values on the previous ambient OH measurements are discussed

  1. Positronium Inhibition and Quenching by Organic Electron Acceptors and Charge Transfer Complexes

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Jensen, Bror Skytte

    1975-01-01

    Positron lifetime measurements were performed on a series of organic electron acceptors and charge-transfer complexes in solution. The acceptors cause both positronium (Ps) inhibition (with maybe one exception) and quenching, but when an acceptor takes part in a charge-transfer complex...... in terms of the spur reaction model of Ps formation. Correlation was also made to gas phase reaction between electron acceptors and free electron, as well as to pulse radiolysis data....

  2. ROVIBRATIONAL QUENCHING RATE COEFFICIENTS OF HD IN COLLISIONS WITH He

    International Nuclear Information System (INIS)

    Nolte, J. L.; Stancil, P. C.; Lee, T.-G.; Balakrishnan, N.; Forrey, R. C.

    2012-01-01

    Along with H 2 , HD has been found to play an important role in the cooling of the primordial gas for the formation of the first stars and galaxies. It has also been observed in a variety of cool molecular astrophysical environments. The rate of cooling by HD molecules requires knowledge of collisional rate coefficients with the primary impactors, H, He, and H 2 . To improve knowledge of the collisional properties of HD, we present rate coefficients for the He-HD collision system over a range of collision energies from 10 –5 to 5 × 10 3 cm –1 . Fully quantum mechanical scattering calculations were performed for initial HD rovibrational states of j = 0 and 1 for v = 0-17 which utilized accurate diatom rovibrational wave functions. Rate coefficients of all Δv = 0, –1, and –2 transitions are reported. Significant discrepancies with previous calculations, which adopted a small basis and harmonic HD wave functions for excited vibrational levels, were found for the highest previously considered vibrational state of v = 3. Applications of the He-HD rate coefficients in various astrophysical environments are briefly discussed.

  3. Role of Fe substitution and quenching rate on the formation of ...

    Indian Academy of Sciences (India)

    Unknown

    (~ 10 m/sec), the alloy (Al65Cu22Cr9Fe6) shows the presence of diffuse scattering of intensities along quasi- periodic direction of the decagonal ... shown that Al–Cu–Fe system exhibits the face-centred icosahedral while Al–Cu–Cr ... system that as the quenching rate increases the icosahedral phase formation increases ...

  4. Quenching mechanisms of porous silicon photoluminescence with an electron beam at different intensity

    CERN Document Server

    Kostishko, B M

    2001-01-01

    The effect of the particles flux density by the electron irradiation of the porous silicon on the kinetics of the surface complexes desorption and correspondingly on the photoluminescence quenching degree is studied. It is shown, that by the electron beam density above 5.5 x 10 sup 1 sup 3 cm sup - sup 2 s sup - sup 1 there occurs the surface charging and decrease in its adsorption ability relative to the donor molecular groups

  5. Core-debris quenching-heat-transfer rates under top- and bottom-reflood conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.; Klages, J.; Schwarz, C.E.; Sanborn, Y.

    1983-02-01

    This paper presents recent experimental data for the quench-heat-transfer characteristics of superheated packed beds of spheres which were cooled, in separate experiments, by top- and bottom-flooding modes. Experiments were carried out with beds of 3-mm steel spheres of 330-mm height. The initial bed temperature was 810 K. The observed heat-transfer rates are strongly dependent on the mode of water injection. The results suggest that top-flood bed quench heat transfer is limited by the rate at which water can penetrate the bed under two-phase countercurrent-flow conditions. With bottom-reflood the heat-transfer rate is an order-of-magnitude greater than under top-flood conditions and appears to be limited by particle-to-fluid film boiling heat transfer

  6. Quenching rate for a nonlocal problem arising in the micro-electro mechanical system

    Science.gov (United States)

    Guo, Jong-Shenq; Hu, Bei

    2018-03-01

    In this paper, we study the quenching rate of the solution for a nonlocal parabolic problem which arises in the study of the micro-electro mechanical system. This question is equivalent to the stabilization of the solution to the transformed problem in self-similar variables. First, some a priori estimates are provided. In order to construct a Lyapunov function, due to the lack of time monotonicity property, we then derive some very useful and challenging estimates by a delicate analysis. Finally, with this Lyapunov function, we prove that the quenching rate is self-similar which is the same as the problem without the nonlocal term, except the constant limit depends on the solution itself.

  7. Change of structure, microstructure and mechanical properties of steels after electron-beam quenching using new technology

    International Nuclear Information System (INIS)

    Tsenker, R.; Yun, V.; Rat'en, D.; Fritshe, G.

    1988-01-01

    Main principles and technological possibilities of a new method for electron-beam treatment are presented. The method lies in local-time high-frequency scanning of electron beam (surface-isothermal energy transfer). The method can be used for quenching of the band with up to 30(50) mm width and up to 1.5(2.0) mm depth of quenched layer. Changes of structure, microstructure and properties were investigated with the use of the following methods: surface sounding, light microscopy, scanning electron microscopy, X-ray phase analysis, X-ray radiographic analysis of internal stresses, macrohardness, microhardness and recording hardness measuring. A study was made on the effect of parameters of electron-beam quenching of steel (S45, 55St1, S100.1, 90MnV8, 100ST6) basic state on quenched layer depth, surface relief, martensite morphology, residual austenite amount, austenite grain system, internal stresses, hardness profiles and determined hardness

  8. Behavior of quenched and tempered steels under high strain rate compression loading

    International Nuclear Information System (INIS)

    Meyer, L.W.; Seifert, K.; Abdel-Malek, S.

    1997-01-01

    Two quenched and tempered steels were tested under compression loading at strain rates of ε = 2.10 2 s -1 and ε = 2.10 3 s -1 . By applying the thermal activation theory, the flow stress at very high strain rates of 10 5 to 10 6 s -1 is derived from low temperature and high strain rate tests. Dynamic true stress - true strain behaviour presents, that stress increases with increasing strain until a maximum, then it decreases. Because of the adiabatic process under dynamic loading the maximum flow stress will occur at a lower strain if the strain rate is increased. Considering strain rate, strain hardening, strain rate hardening and strain softening, a constitutive equation with different additive terms is successfully used to describe the behaviour of material under dynamic compression loading. Results are compared with other models of constitutive equations. (orig.)

  9. Observation of thermal quench induced by runaway electrons in magnetic perturbation

    Science.gov (United States)

    Cheon, MunSeong; Seo, Dongcheol; Kim, Junghee

    2018-04-01

    Experimental observations in Korea Superconducting Tokamak Advanced Research (KSTAR) plasmas show that a loss of pre-disruptive runaway electrons can induce a rapid radiative cooling of the plasma, by generating impurity clouds from the first wall. The synchrotron radiation image shows that the loss of runaway electrons occurs from the edge region when the resonant magnetic perturbation is applied on the plasma. When the impact of the runaway electrons on the wall is strong enough, a sudden drop of the electron cyclotron emission (ECE) signal occurs with the characteristic plasma behaviors such as the positive spike and following decay of the plasma current, Dα spike, big magnetic fluctuation, etc. The visible images at this runaway loss show an evidence of the generation of impurity cloud and the following radiative cooling. When the runaway beam is located on the plasma edge, thermal quenches are expected to occur without global destruction of the magnetic structure up to the core.

  10. Quenching of exciton luminescence due to impact ionization and mechanisms of electron relaxation in cadmium sulphide

    International Nuclear Information System (INIS)

    Kagan, V.D.; Karpenko, S.L.; Katilyus, R.

    1989-01-01

    Quenching of exciton luminescence in the constant electric field in cadmium sulfide at 1.8K, caused by impact ionization of free and delocalization of bound excitons by hot electrons is observed. When the field is increase up to 1 kW/cm continuous transfer from the Taundsen-Shockley law to the Davydov-Wolf one takes place. Among the samples studied pure samples are distinguished by the exciton spectrum, where, as it is shown in the work, the high-energy electrons lose quasipulse, radiating spontaneously piezophonons; in other samples scattering on impurities prevails. Theoretical processing of data on the bound exciton radiation line quenching in the moderate field region presents about 10 -4 values in pure and about 5x10 -6 cm ones in other samples for the 4 MeV energy electron free flight length. So, the optical methods used allowed one to determine high-energy electron relaxation mechanisms, prevailing in CdS at low temperature

  11. Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?

    Science.gov (United States)

    Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.

    2015-01-01

    Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.

  12. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    International Nuclear Information System (INIS)

    Strobel, Katharina; Lay, Matthew D.H.; Easton, Mark A.; Sweet, Lisa; Zhu, Suming; Parson, Nick C.; Hill, Anita J.

    2016-01-01

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  13. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Katharina, E-mail: katharina.strobel@aol.com [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Lay, Matthew D.H., E-mail: mlay@fbrice.com [CSIRO Manufacturing Flagship, Clayton, Victoria 3169 (Australia); Easton, Mark A., E-mail: mark.easton@rmit.edu.au [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sweet, Lisa, E-mail: lisa.sweet@monash.edu [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Zhu, Suming, E-mail: suming.zhu@rmit.edu.au [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Parson, Nick C., E-mail: nick.parson@riotinto.com [Rio Tinto Alcan, Arvida Research and Development Centre, 1955, Mellon Blvd, Jonquière, Québec G7S 4K8 (Canada); Hill, Anita J., E-mail: anita.hill@csiro.au [CSIRO Manufacturing Flagship, Clayton, Victoria 3169 (Australia)

    2016-01-15

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  14. Phase mapping of iron-based rapidly quenched alloys using precession electron diffraction

    International Nuclear Information System (INIS)

    Svec, P.; Janotova, I.; Hosko, J.; Matko, I.; Janickovic, D.; Svec, P. Sr.; Kepaptsoglou, D. M.

    2013-01-01

    The present contribution is focused on application of PED and phase/orientation mapping of nanocrystals of bcc-Fe formed during the first crystallization stage of amorphous Fe-Co-Si-B ribbon. Using precession electron diffraction and phase/orientation mapping the formation of primary crystalline phase, bcc-Fe, from amorphous Fe-Co-Si-B has been analyzed. Important information about mutual orientation of the phase in individual submicron grains as well as against the sample surface has been obtained. This information contributes to the understanding of micromechanisms controlling crystallization from amorphous rapidly quenched structure and of the structure of the original amorphous state. The presented technique due to its high spatial resolution, speed and information content provided complements well classical techniques, especially in nanocrystalline materials. (authors)

  15. Eu-emission quenching by electron screening in VO2 thin films

    International Nuclear Information System (INIS)

    Liu, H.; Lysenko, S.; Rua, A.; Vikhnin, V.; Vasquez, O.; Fernandez, F.E.

    2006-01-01

    As a kind of phase transition functional material, Vanadium dioxide (VO 2 ) thin films deposited on fused quartz substrate were fabricated using pulsed laser deposition (PLD) technique. Europium was introduced for structure study. By laser excitation at 526 nm, VO 2 thin film undergoes a reversible and ultrafast phase transition from semiconductor to metallic state, which results in a change of optical properties. In fluorescence measurement, Eu emission was found severely quenched in all as-grown thin films. After annealing the sample in air, a red Eu-emission appeared. The emission spectrum is characterized by a pronounced twin peak, centered at 617 nm ( 5 D - 7 F 2 ), surrounded by a set of broad, but relatively weaker bands (emission from 5 D to 7 F j manifold). The emission lifetime increased when the sample annealed at higher temperature for longer time. Each spectral component is actually a doublet which is the spectral overlap of emissions from Eu 3+ situated in two sites with different configurations. One is a linear h-Eu 3+ -h, where h stands for holes. Another is a right-angle configuration of h-Eu 3+ -h with Eu 3+ in the corner. In as-grown VO 2 film, Eu 3+ ions can either substitute V 4+ , leaving a negative charge around (Eu 3+ -O) - , or substitute V 5+ , leaving two negative charges around (Eu 3+ -O) -- . Due to trapped electrons in a large radius state, it covers Eu 3+ V 4+ -V 5+ complexes. It suggests that the screening by degenerate electronic gas may result in switching off the Eu-related optical response for a wide spectral region, causing emission quenching in VO 2 films

  16. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.

    Science.gov (United States)

    Marinica, D C; Lourenço-Martins, H; Aizpurua, J; Borisov, A G

    2013-01-01

    Coupling molecular excitons and localized surface plasmons in hybrid nanostructures leads to appealing, tunable optical properties. In this respect, the knowledge about the excitation dynamics of a quantum emitter close to a plasmonic nanoantenna is of importance from fundamental and practical points of view. We address here the effect of the excited electron tunneling from the emitter into a metallic nanoparticle(s) in the optical response. When close to a plasmonic nanoparticle, the excited state localized on a quantum emitter becomes short-lived because of the electronic coupling with metal conduction band states. We show that as a consequence, the characteristic features associated with the quantum emitter disappear from the optical absorption spectrum. Thus, for the hybrid nanostructure studied here and comprising quantum emitter in the narrow gap of a plasmonic dimer nanoantenna, the quantum tunneling might quench the plexcitonic states. Under certain conditions the optical response of the system approaches that of the individual plasmonic dimer. Excitation decay via resonant electron transfer can play an important role in many situations of interest such as in surface-enhanced spectroscopies, photovoltaics, catalysis, or quantum information, among others.

  17. Fluorescence quenching of derivatives of anthracene by organic electron donors and acceptors in acetonitrile. Electron and proton transfer mechanism

    Science.gov (United States)

    Mac, Marek; Najbar, Jan; Wirz, Jakob

    1995-03-01

    Fluorescence quenching of anthracene derivatives by organic electron donors (amines) and acceptors was investigated using stationary fluorescence measurements. The dependence of log( kq) on Δ Get shows Rehm-Weller-type behavior. The formation of anion radicals of anthracene, bianthryl, and 9-cyanoanthracene was detected by flash photolysis in systems containing aromatic amines (aniline, 2-bromoaniline, 4-bromoaniline, N,N-dimethylaniline, 4-bromo-N,N-dimethylaniline, N,N-diethylaniline, and 1,4-diazabicyclo[2.2.2]octane). The radical yields decreased and triplet yields increased when bromo derivatives of amines were used as donor quenchers, indicating the heavy-atom effect on spin conversion within radical pairs. The importance of the heavy-atom effect decreased when the energy gap between the charge transfer and molecular triplet states was small. The formation of separated radicals decreased when primary amines were used as quenchers which indicated the existence of an additional path of deactivation of the radical pair. The behavior of amines as quenchers of bianthryl and anthracene is compared with that of inorganic anion quenchers.

  18. Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3 -cored dendrimer

    Science.gov (United States)

    Ribierre, J. C.; Ruseckas, A.; Samuel, I. D. W.; Staton, S. V.; Burn, P. L.

    2008-02-01

    We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)3] -cored dendrimer and in its blend with a 4,4' -bis( N -carbazolyl)biphenyl host for the temperature range of 77-300K . The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7meV , which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials.

  19. Design of electronic measurement and quench detection equipment for the Current Lead Test facility Karlsruhe (CuLTKa)

    International Nuclear Information System (INIS)

    Hollik, Markus; Fietz, Walter H.; Fink, Stefan; Gehrlein, Mirko; Heller, Reinhard; Lange, Christian; Möhring, Tobias

    2013-01-01

    The Current Lead Test facility Karlsruhe (CuLTKa) is under construction at the Karlsruhe Institute of Technology (KIT) to perform acceptance tests of high temperature superconductor (HTS) current leads (CL). CuLTKa is in progress and present planning expects the completion in 2013. The data acquisition system is based on a modular design with electronic measurement and monitoring equipment covering a test voltage of 50 kV DC against ground. It provides plug-in units which enable temperature and voltage measurement at high voltage potential and in addition quench detection units which detect a loss of superconductivity reliably and quickly to avoid damage of the superconducting device under test. Prototype units for quench detection, temperature and voltage measurement have been successfully tested. Six temperature measurement units are already in use in the KIT test facility TOSKA and operated reliably during the acceptance tests of the HTS current leads for Wendelstein 7-X (W7-X) in 2011/2012. CuLTKa will be used first for 26 current leads which will be built in KIT for the fusion experiment JT-60SA. The present paper gives an overview of the design of the electronic measurement and quench detection equipment

  20. Quenches after LS1

    International Nuclear Information System (INIS)

    Verweij, A.P.

    2012-01-01

    In this paper I will give an overview of the different types of quenches that occur in the LHC, followed by an estimate of the number of quenches that we can expect after LS1. Beam-induced quenches and false triggering of the QPS will be the main cause of those quenches that cause a beam dump. Possibly in total up to 10-20 per year. After consolidation of the 13 kA joints, the approach for the BLM settings can be less conservative than in 2010-2012 in order to maximize beam time. This will cause some quenches but, anyhow, a beam.induced quench is not more risky than a quench provoked by false triggering. It is not easy to predict the number of BLM triggered beam dumps, needed to avoid magnet quenches, because it is not sure how to scale beam losses and UFO's from 3.5 TeV to 6.5 TeV, and it is not sure if the thresholds at 3.5 TeV are correct. Quench events will be much more massive (ex: RB quench at 6 kA → 2 MJ, RB quench at 11 kA → 6-20 MJ), and as a result cryo recuperation much longer. There will also be more ramp induced quenches after a FPA in other circuits due to higher ramp rates and smaller temperature margins (mutual coupling)

  1. Thermal electron heating rate: a derivation

    International Nuclear Information System (INIS)

    Hoegy, W.R.

    1983-11-01

    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons, (2) a heating term evaluated on the energy surface m(e)/2 E(T) at the transition between Maxwellian and tail electrons at E(T), and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two

  2. Effect of applied hydrostatic pressure on the quenching kinetics, and electronic and molecular structure of eight and nine-coordinate lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Maupin, C.L.; Riehl, J.P.

    1998-01-01

    Full text: Applied hydrostatic pressure may be used as a probe of the reaction mechanism for various solution reactions involving lanthanide ions. In this work we report on the use of high pressure to probe the mechanism of enantioselective quenching between racemic luminescent lanthanide complexes containing Dy(III) Tb(III) and Eu(III), and optically active transition metal complexes as quenchers. Diastereomeric rate constants are obtained from a biexponential fit of the luminescence decay. Particular attention will be given to solvation effects on the measured diastereomeric rate constants. The source of chirality is ascribed to a enantioselective rearrangement step within a bimolecular 'encounter' complex yielding a intermolecular geometry in which the energy transfer is efficient. The effect of high pressure on the molecular and electronic structure of these complexes will also be discussed

  3. Rate control for electron gun evaporation

    International Nuclear Information System (INIS)

    Schellingerhout, A.J.G.; Janocko, M.A.; Klapwijk, T.M.; Mooij, J.E.

    1989-01-01

    Principles for obtaining high-quality rate control for electron gun evaporation are discussed. The design criteria for rate controllers are derived from this analysis. Results are presented which have been obtained with e-guns whose evaporation rate is controlled by a Wehnelt electrode or by sweeping of the electron beam. Further improvements of rate stability can be obtained by improved design of e-guns and power supplies

  4. Electron dose rate and photon contamination in electron arc therapy

    International Nuclear Information System (INIS)

    Pla, M.; Podgorsak, E.B.; Pla, C.

    1989-01-01

    The electron dose rate at the depth of dose maximum dmax and the photon contamination are discussed as a function of several parameters of the rotational electron beam. A pseudoarc technique with an angular increment of 10 degrees and a constant number of monitor units per each stationary electron field was used in our experiments. The electron dose rate is defined as the electron dose at a given point in phantom divided by the number of monitor units given for any one stationary electron beam. For a given depth of isocenter di the electron dose rates at dmax are linearly dependent on the nominal field width w, while for a given w the dose rates are inversely proportional to di. The dose rates for rotational electron beams with different di are related through the inverse square law provided that the two beams have (di,w) combinations which give the same characteristic angle beta. The photon dose at the isocenter depends on the arc angle alpha, field width w, and isocenter depth di. For constant w and di the photon dose at isocenter is proportional to alpha, for constant alpha and w it is proportional to di, and for constant alpha and di it is inversely proportional to w. The w and di dependence implies that for the same alpha the photon dose at the isocenter is inversely proportional to the electron dose rate at dmax

  5. Influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ShengDan, E-mail: csuliusd@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China); Li, ChengBo [Light Alloy Research Institute, Central South University, Changsha 410083 (China); Deng, YunLai; Zhang, XinMing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China)

    2015-11-01

    The influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy 7055 was investigated by electrochemical test, accelerated exfoliation corrosion test, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The decrease of quench rate led to lower corrosion resistance of both the homogenized and solution heat treated (HS) alloy with equiaxed grains and the hot-rolled and solution heat treated (HRS) alloy with elongated grains, but there was a higher increment in corrosion depth and corrosion current density and a higher decrement in corrosion potential for the latter alloy, which therefore exhibited higher quench sensitivity. It is because in this alloy the larger amount of (sub) grain boundaries led to a higher increment in the amount of quench-induced η phase and precipitates free zone at (sub) grain boundaries with the decrease of quench rate, and there was a larger increment in the content of Zn, Mg and Cu in the η phase at grain boundaries due to slow quenching. The presence of subgrain boundaries in the HRS alloy tended to increase corrosion resistance at high quench rates higher than about 630 °C/min but decrease it at lower quench rates. - Highlights: • (Sub)Grain boundaries increase quench sensitivity relative to localized corrosion. • Subgrain boundaries decrease corrosion resistance below quench rate of 630 °C/min. • More (sub) grain boundaries leads to more GBPs and PFZ with decreasing quench rate.

  6. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system.

    Science.gov (United States)

    Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S

    2010-06-15

    To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    Science.gov (United States)

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  8. Short range photoinduced electron transfer in proteins: QM-MM simulations of tryptophan and flavin fluorescence quenching in proteins

    International Nuclear Information System (INIS)

    Callis, Patrik R.; Liu Tiqing

    2006-01-01

    Hybrid quantum mechanical-molecular mechanics (dynamics) were performed on flavin reductase (Fre) and flavodoxin reductase (Fdr), both from Escherichia coli. Each was complexed with riboflavin (Rbf) or flavin mononucleotide (FMN). During 50 ps trajectories, the relative energies of the fluorescing state (S 1 ) of the isoalloxazine ring and the lowest charge transfer state (CT) were assessed to aid prediction of fluorescence lifetimes that are shortened due to quenching by electron transfer from tyrosine. The simulations for the four cases display a wide range in CT-S 1 energy gap caused by the presence of phosphate, other charged and polar residues, water, and by intermolecular separation between donor and acceptor. This suggests that the Gibbs energy change (ΔG 0 ) and reorganization energy (λ) for the electron transfer may differ in different flavoproteins

  9. Quench limits

    International Nuclear Information System (INIS)

    Sapinski, M.

    2012-01-01

    With thirteen beam induced quenches and numerous Machine Development tests, the current knowledge of LHC magnets quench limits still contains a lot of unknowns. Various approaches to determine the quench limits are reviewed and results of the tests are presented. Attempt to reconstruct a coherent picture emerging from these results is taken. The available methods of computation of the quench levels are presented together with dedicated particle shower simulations which are necessary to understand the tests. The future experiments, needed to reach better understanding of quench limits as well as limits for the machine operation are investigated. The possible strategies to set BLM (Beam Loss Monitor) thresholds are discussed. (author)

  10. Quenching of the He/sub μ/ +(2s) atom

    International Nuclear Information System (INIS)

    Russell, J.E.

    1986-01-01

    Quenching of the metastable 2s state of the He/sub μ/ + atom in helium gas is discussed. The first part of the discussion, which is devoted entirely to processes occurring after the He/sub μ/ + has become bound to one or more ordinary helium atoms, is based partly on Cohen's calculations of rates of vibrational quenching and partly on estimates obtained in the present paper of rates of Burbidge--de Borde quenching and Ruderman quenching. It is concluded that Burbidge--de Borde quenching or Ruderman quenching, or both, are likely to be more effective than Cohen quenching if the vibrational level of the bound system is low. A recent experiment by von Arb et al. is then analyzed in the light of this conclusion. The analysis is based on the reported absence, or near absence, of Auger electrons accompanying 2s quenching. While it is agreed that the Cohen mechanism occurring in the molecular ion HeHe/sub μ/ + remains the most likely explanation of the experiment, it is concluded that the quenching occurs in comparatively high levels. It is then argued that this conclusion is in accord with some theoretical investigations of three-body association reactions and also with some elementary considerations regarding the relaxation of highly excited diatomic molecules, and it is further concluded that the quenching is most likely to occur in states with very low rotational quantum number and vibrational quantum number 8≤v≤14

  11. Dissociative electron attachment to ozone: rate constant

    International Nuclear Information System (INIS)

    Skalny, J.D.; Cicman, P.; Maerk, T.D.

    2002-01-01

    The rate constant for dissociative electron attachment to ozone has been derived over the energy range of 0-10 eV by using previously measured cross section data revisited here in regards to discrimination effect occurring during the extraction of ions. The obtained data for both possible channels exhibit the maximum at mean electron energies close to 1 eV. (author)

  12. Mitigation of current quench by runaway electrons in LHCD discharges in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Lu, H.W.; Hu, L.Q.; Lin, S.Y.; Zhong, G.Q.

    2009-01-01

    Production of runaway electrons during a major disruption has been observed in HT-7 Tokamak. The runaway current plateaus, which can carry part of the pre-disruptive current, are observed in lower-hybrid current drive (LHCD) limiter discharges. It is found that the runaway current can mitigate the disruptions effectively. Detailed observations are presented on the runaway electrons generated following disruptions in the HT-7 tokamak with carbon limited discharges. The results indicate that the magnetic oscillations play an important role in the activity of runaway electrons in disruption. (author)

  13. New N2(C 3Πu, v) collision quenching and vibrational relaxation rate constants: 2. PG emission diagnostics of high-pressure discharges

    International Nuclear Information System (INIS)

    Dilecce, G; Ambrico, P F; De Benedictis, S

    2007-01-01

    The present paper deals with the determination of discharge parameters using N 2 (C 3 Π u , v) populations deduced from 2.PG emission spectra, focusing on the influence of N 2 (C 3 Π u , v) collision rate coefficients on these determinations. In particular it is shown that the new set of quenching and vibrational relaxation rate coefficients of N 2 (C 3 Π u , v 0-4) vibronic levels recently measured by optical-optical double resonance laser induced fluorescence (LIF) have a large effect on discharge parameter determination in high-pressure discharges. In the present paper we explore this effect, evidencing the differences with respect to the old data set case, in both simulated and real cases of N 2 (C 3 Π u , v) vibrational distributions measured at high pressure in a dielectric barrier discharge. Finally we point out the improved potentiality of 2.PG spectroscopy as a diagnostic technique: with the new rate coefficients, and measurement of the N 2 (C 3 Π u , v) distribution up to at least v = 3, it is possible to have a quasi-independent evaluation of the electron temperature and of the first level vibrational temperature of the N 2 ground state

  14. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    Quenches can be divided into two categories; conductor-limited and energy-deposited quenches. A conductor-limited quench occurs when the current in the magnet exceeds the capacity of the superconductor; it is characterized by a strong correlation with temperature. An energy-deposited quench occurs when a disturbance releases enough energy to trigger a quench; the main disturbances during magnet energization are frictional movements of the conductor due to increasing Lorentz forces. The current level of the conductor-limited quenches defines the limit of the magnet performance, and can only be surpassed by lowering the operating temperature; the occurrence of a constant current at quench during the magnetic testing is called a plateau. Usually it takes a few energy-deposited quenches of increasing currents to reach the plateau; these first few steps are called the magnet's training. The goal in designing a magnet is to be able to energize it and to reliably operate it at the design current without training. This can be achieved by optimizing the magnet's operating margin, that is, by designing and building the magnet in such a way that the sizes of the mechanical disturbances needed to trigger a quench are much larger than the achievable mechanical tolerances. (N.K.) 112 refs

  15. The effect of quench rate on the microstructure and properties of AF/C-458 and AF/C-489 Al-Li-Cu-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Csontos, A.A.; Gable, B.M.; Starke, E.A. Jr. [Virginia Univ., Charlottesville, VA (United States). Dept. of Mater. Sci. and Eng.; Gaber, A.

    2000-07-01

    The air force recently developed two isotropic Al-Li-Cu-X alloys with 1.8{sup w}/oLiLi and 2.1{sup w}/oLi designated AF/C-458 and AF/C-489, respectively. The objective of this investigation was to determine the effect of quench rate on the microstructure and mechanical properties of the AF/C-458 and AF/C-489 alloys. TEM, SEM, microhardness, and tensile testing were utilized to ascertain these microstructure/property relationships for both alloys in the T4, T6, and T86 tempers as a function of quench rate. Subsequent losses in ductility for both alloys in all tempers with decreasing quench rate were determined to be due to the precipitation of the equilibrium Al{sub 2}CuLi (T{sub 1}) phase along subgrain and grain boundaries which promoted intergranular fracture. Furthermore, yield and tensile strengths increased for both alloys in the T4 temper but decreased in the T6 and T86 tempers with decreasing quench rate. The increased strengths for the T4 condition resulted from the heterogeneous precipitation of coarse T{sub 1} and naturally aged {delta}' phases. The decrease in yield and tensile strengths for the T6 and T86 tempers were also due to the coarse heterogeneous precipitation of T{sub 1} which denuded regions of Cu thereby reducing the number density of fine matrix {theta}{sup ''} (T6) and T{sub 1} (T86). Finally, a comparison of the quench sensitivity for both the AF/C-458 and AF/C-489 alloys indicates that the mechanical properties for both alloys were less quench rate sensitive than other typical Al-Li-Cu-X alloys. (orig.)

  16. A method to quench and recharge avalanche photo diodes for use in high rate situations

    International Nuclear Information System (INIS)

    Regan, T.O.; Fenker, H.C.; Thomas, J.; Oliver, J.

    1992-06-01

    We present a new method of using Avalanche Photo Diodes (APDS) for low level light detection in Geiger mode in high rate situations such as those encountered at the Superconducting Super Collider (SSC). The new technique is readily adaptable to implementation in CMOS VLSI

  17. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    NARCIS (Netherlands)

    Bruggeman, P.J.; Iza, F.; Guns, P.; Lauwers, D.; Kong, M.G.; Aranda Gonzalvo, Y.; Leys, C.; Schram, D.C.

    2010-01-01

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by

  18. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    In this paper, I shall discuss the quench origins. I shall first establish a method of classification and introduce the notions of conductor-limited and energy-deposited quenches. Next the paper will be devoted to the study of conductor-limited quenches, and I shall introduce the notions of plateau and of fraction of short sample. Also the paper will be devoted to the study of energy-deposited quenches, and I shall introduce the notions of training and of minimum energy deposit; I shall then review the possible causes of energy release. Lastly, I shall introduce the notion of operating margin, and I shall indicate how to optimize the operating margin in order to limit the risk of premature quenching. 112 refs., 14 figs

  19. A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David; Sommer-Larsen, Peter

    2010-01-01

    Information on oxygen permeability through polymer films is essential for some applications, especially in food packaging where the control of oxygen levels can be critical in avoiding food spoilage. A permeability testing device using fluorescence-based optical oxygen sensing was developed...... as a potential new instrument for measuring the oxygen permeability of packaging films. The fluorescence-based permeability tester was validated against two existing commercial oxygen permeability measuring devices, the Mocon Ox-Tran 2/20 and PBI-Dansensor OPT-5000. Oxygen transmission rates (OTR) of polylactide...... (PLA) and nanoclay-reinforced PLA films, as well as polyethylene/poly(ethylene terephthalate) (PE/PET) and polypropylene/poly(ethylene terephthalate) (PP/PET) laminated films were determined at 23°C and 50% relative humidity using each of these instruments. No significant differences were observed...

  20. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum.

    Science.gov (United States)

    Yang, Haitao; Wang, Fujia; Zheng, Jilin; Lin, Hao; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-06-04

    Energy transfer between fluorescent dyes and quenchers is widely used in the design of light-up probes. Although dual quenchers are more effective in offering lower background signals and higher turn-on ratios than one quencher, such probes are less explored in practice as they require both quenchers to be within the proximity of the fluorescent core. In this contribution, we utilized intramolecular motion and photoinduced electron transfer (PET) as quenching mechanisms to build super-quenched light-up probes based on fluorogens with aggregation-induced emission. The optimized light-up probe possesses negligible background and is able to detect not only free formaldehyde (FA) but also polymeric FA, with an unprecedented turn-on ratio of >4900. We envision that this novel dual quenching strategy will help to develop various light-up probes for analyte sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fluorescence from gaseous UF/sub 6/ excited by a near-UV dye laser. [Decay time,quenching rate,room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, P [Pavia Univ. (Italy); Cubeddu, R; Sacchi, C A; Svelto, O; Zaraga, F [Politecnico di Milano (Italy)

    1976-06-01

    Preliminary data are reported on the visible fluorescence of gaseous UF/sub 6/ excited by a dye laser at 374 nm. A decay time of 500 ns at p = 0 and a quenching rate of 5.7 x 10/sup -12/cm/sup 3/molec/sup -1/s/sup -1/ have been measured at room temperature.

  2. Proposed Quenching of Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole Asymmetries

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    by photoluminescence excitation spectroscopy of a single quantum dot. We also investigate the implications for cavity QED, i.e., a coupled quantum dot-cavity system, and demonstrate that the phonon scattering may be strongly quenched. The quenching is explained by a balancing between the deformation potential...

  3. C02(nu2)-0 Quenching Rate Coefficient Derived from Coincidental Fort Collins Lidar and SABER Measurements

    Science.gov (United States)

    Feofilov, A. G.; Kutepov, A. A.; She, C. Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(V2) vibrational levels in collisions with oxygen atoms plays an important role. However, neither the rate coefficient of this process (k(CO2O)) nor the atomic oxygen concentrations ([O]) in the MLT are well known. The discrepancy between k(CO2O) measured in the lab and retrieved from atmospheric measurements is of about factor of 2.5. At the same time, the discrepancy between [O] in the MLT measured by different instruments is of the same order of magnitude. In this work we used a synergy of a ground based lidar and satellite infrared radiometer to make a further step in understanding of the physics of the region. In this study we apply the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado for retrieving the product of k(CO2-O) x [O] from the limb radiances in the 15 micron channel measured by the SABER/TIMED instrument for nearly simultaneous common volume measurements of both instruments within +/-1 degree in latitude, +/-2 degrees in longitude and +/-10 minutes in time. We derive k(CO2-O) and its possible variation range from the retrieved product by utilizing the [O] values measured by the SABER and other instruments.

  4. Electronics for very high rate tracking detectors

    International Nuclear Information System (INIS)

    Williams, H.H.; Dressnandt, N.; Ekenberg, T.; Gerds, E.J.; Newcomer, F.M.; Tedja, S.; Van Berg, R.; Van der Speigel, J.

    1995-01-01

    Results are presented on a system of electronics designed for very high rate tracking detectors at the SSC and LHC. The primary goal was a system for signal detection, time measurement, and readout for the straw tracker for SDC. An integrated circuit incorporating eight channels of amplifier-shaper-discriminator (including detector tail cancellation), and two different integrated circuits for time measurement are described. The performance of tracking measurements up to counting rates of 8 MHz per wire is reported, as well as preliminary results from a baseline restoration circuit. (orig.)

  5. Altitude Variation of the CO2 (V2)-O Quenching Rate Coefficient in Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilovi, Artem; Kutepov, Alexander; She, Chiao-Yao; Smith, Anne K.; Pesnell, William Dean; Goldberg, Richard A.

    2010-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (mlt), the quenching of CO2(N2) vibrational levels by collisions with oxygen atoms plays an important role. However, the k(CO2-O) values measured in the lab and retrieved from atmospheric measurements vary from 1.5 x 10(exp -12) cubic centimeters per second through 9.0 x 10(exp -12) cubic centimeters per second that requires further studying. In this work we used synergistic data from a ground based lidar and a satellite infrared radiometer to estimate K(CO2-O). We used the night- and daytime temperatures between 80 and 110 km measured by the colorado state university narrow-band sodium (Na) lidar located at fort collins, colorado (41N, 255E) as ground truth of the saber/timed nearly simultaneous (plus or minus 10 minutes) and common volume (within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude) observations. For each altitude in 80-110 km interval we estimate an "optimal" value of K(CO2-O) needed to minimize the discrepancy between the simulated 15 mm CO2 radiance and that measured by the saber/timed instrument. The K(CO2-O) obtained in this way varies in altitude from 3.5 x 10(exp -12) cubic centimeters per second at 80 km to 5.2 x 10(exp -12) cubic centimeters pers second for altitudes above 95 km. We discuss this variation of the rate constant and its impact on temperature retrievals from 15 mm radiance measurements and on the energy budget of mlt.

  6. Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants

    International Nuclear Information System (INIS)

    Liao, Pen-Nan; Bode, Stefan; Wilk, Laura; Hafi, Nour; Walla, Peter J.

    2010-01-01

    The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid-chlorophyll interactions, φ Coupling Car S 1 -Chl , as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between φ Coupling Car S 1 -Chl and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II . In order to elucidate which carotenoid-chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.

  7. Co2(nu2)-o Quenching Rate Coefficient Derived from Coincidental SABER-TIMED and Fort Collins Lidar Observations of the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2012-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.

  8. Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens

    Czech Academy of Sciences Publication Activity Database

    Pinnola, A.; Staleva-Musto, H.; Capaldi, S.; Ballottari, M.; Bassini, R.; Polívka, Tomáš

    2016-01-01

    Roč. 1857, č. 12 (2016), s. 1870-1878 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Carotenoids * Femtosecond spectroscopy * LHCSR * Non-photochemical quenching Subject RIV: BO - Biophysics Impact factor: 4.932, year: 2016

  9. Reliability analysis for the quench detection in the LHC machine

    CERN Document Server

    Denz, R; Vergara-Fernández, A

    2002-01-01

    The Large Hadron Collider (LHC) will incorporate a large amount of superconducting elements that require protection in case of a quench. Key elements in the quench protection system are the electronic quench detectors. Their reliability will have an important impact on the down time as well as on the operational cost of the collider. The expected rates of both false and missed quenches have been computed for several redundant detection schemes. The developed model takes account of the maintainability of the system to optimise the frequency of foreseen checks, and evaluate their influence on the performance of different detection topologies. Seen the uncertainty of the failure rate of the components combined with the LHC tunnel environment, the study has been completed with a sensitivity analysis of the results. The chosen detection scheme and the maintainability strategy for each detector family are given.

  10. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna

    DEFF Research Database (Denmark)

    Frigaard, N-U; Tokita, S; Matsuura, K

    1999-01-01

    In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence and o...... antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus....... and on flash-induced cytochrome c oxidation were studied in whole cells under aerobic conditions. BChl c fluorescence in a cell suspension with 5.4 microM BChl c was quenched to 50% by addition of 0.6 microM shikonin ((R)-2-(1-hydroxy-4-methyl-3-pentenyl)-5,8-dihydroxy-1, 4-naphthoquinone), 0.9 microM 5......-hydroxy-1,4-naphthoquinone, or 4 microM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited...

  11. Superconductivity, magnetic susceptibility, and electronic properties of amorphous (Mo/sub 1-x/Ru/sub x/)80P20 alloys obtained by liquid quenching

    International Nuclear Information System (INIS)

    Johnson, W.L.; Poon, S.J.; Duwez, P.

    1977-11-01

    Results of x-ray diffraction, transmission electron diffraction, and crystallization studies on amorphous (Mo/sub 1-x/Ru/sub x/) 80 P 20 alloys obtained by liquid quenching are presented and discussed. The alloys are all found to be superconducting with transition temperatures ranging from approximately 3 0 K to approximately 9 0 K. The variation of T/sub c/ with alloy composition is compared to that obtained by Collver and Hammond for vapor quenched transition metal films. Results of magnetic susceptibility measurements are used to estimate the variation of the electronic density of states at the Fermi level, N(0), from the Pauli paramagnetic contribution. The relationship between the variation of T/sub c/ and N(0) is discussed in terms of the microscope theory of superconductivity. Finally, results of measurements of the upper critical field H/sub c2/, and the normal state electronic transport properties are presented and compared with recent theoretical models for amorphous superconductors

  12. Influence of the quenching rate and step-wise cooling temperatures on microstructural and tensile properties of PER72 ® Ni-based superalloy

    Directory of Open Access Journals (Sweden)

    Le Baillif Paul

    2014-01-01

    Full Text Available The PER72® grade is used as a wrought engine turbine disk, which is a critical high temperature component. During the heat treatment process, residual stresses are generated during the quench, which may lead to irreversible damages on the workpiece. The aim of this study is to better understand the mechanisms involved in the residual stress generation. Therefore, the influence of quenching conditions on the high temperature tensile properties and the multi-scale microstructure evolutions are investigated after cooling. PER72® specimens are annealed above the solvus temperature, directly on the servo-hydraulic testing machine. Three quenching rates are used: 30 ∘C/min, 120 ∘C/min, and 300 ∘C/min. For each condition, the cooling is interrupted at 1000 ∘C, 850 ∘C, 600 ∘C and 20 ∘C to perform isothermal tensile test. Specimens are post-mortem analysed. On one hand the fracture surface is investigated using SEM. On the other hand the microstructure evolution was observed and quantified at different scales using SEM directly on the bulk or after the chemical extraction of precipitation. The precipitation size and volume fraction statistics, X-Ray diffraction for the crystallography and composition of the different phases are investigated. It was shown that the testing temperature does not significantly influence the γ′ distribution of particles. Conversely, the γ′ precipitation is strongly influenced by the cooling rate. Notably, the average size, the distance between particles as well as the number density of γ′ precipitates are significantly modified by the cooling rate. Changes in tensile properties are related to microstructural.

  13. A study of point defects in quenched stainless steels

    International Nuclear Information System (INIS)

    Kheloufi, Khelifa.

    1977-07-01

    Thin foils of stainless steels (18%Cr, 14%Ni) containing boron (50x10 -6 ) and stabilised with titanium have been quenched at different rates in order to observe secondary defects by transmission electron microscopy. A rapid quenching in gallium has not given any secondary defects either before or after annealing. But samples quenched from temperatures greater than 800 0 C-900 0 C exhibit a dislocation density approximately 10 9 cm/cm 3 . A vacancy concentration less than 10 -6 has been observed by positron annihilation technique. After a moderate quenching, any secondary defects has been observed. It is thus clear that boron does not favour the secondary defects formation as does phosphorus [fr

  14. Quenching of excited uranyl ion during its photochemical reduction by triphenylphosphine: Part III

    International Nuclear Information System (INIS)

    Sidhu, M.S.; Chahal, P.; Singh, R.J.

    1993-01-01

    Relative rates of bimolecular quenching of excited uranyl ion by some mono and di-substituted benzene derivatives have been measured during its photochemical reduction with triphenylphosphine. For the related compounds in a series it has been found that substituent groups enriching the aromatic π-electron cloud due to resonance stabilization, show an enhanced photophysical quenching action. The substituents decreasing the π-electron cloud and delocalization of positive charger over the benzene ring decrease the quenching action. (author). 16 refs., 2 figs., 1 tab

  15. Exciplex formation accompanied with excitation quenching.

    Science.gov (United States)

    Fedorenko, Stanislav G; Burshtein, Anatoly I

    2010-04-08

    The competence of the reversible exciplex formation and parallel quenching of excitation (by electron or energy transfer) was considered using a non-Markovian pi-forms approach, identical to integral encounter theory (IET). General equations accounting for the reversible quenching and exciplex formation are derived in the contact approximation. Their general solution was obtained and adopted to the most common case when the ground state particles are in great excess. Particular cases of only photoionization or just exciplex formation separately studied earlier by means of IET are reproduced. In the case of the irreversible excitation quenching, the theory allows specifying the yields of the fluorescence and exciplex luminescence, as well as the long time kinetics of excitation and exciplex decays, in the absence of quenching. The theory distinguishes between the alternative regimes of (a) fast equilibration between excitations and exciplexes followed by their decay with a common average rate and (b) the fastest and deep excitation decay followed by the weaker and slower delayed fluorescence, backed by exciplex dissociation.

  16. Self-quenching streamers

    International Nuclear Information System (INIS)

    Atac, M.; Tollestrup, A.V.; Potter, D.

    1982-01-01

    Self quenching streamers in drift tubes have been observed both optically and electronically. The streamers of 150-200 μm width extend out from the anode wire to 1.5 to 3 mm at atmospheric pressures. Electronic measurements at a two atomsphere pressure show pulses into a 50 Ω load with a rise time of 5 ns, a decay time of 40 ns, and an amplitude of 30 mV. Details of the experiments are discussed. There was no detectable residue on an anode wire after exposing it to 2x10 9 streamers for a 1 mm section. (orig.)

  17. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  18. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  19. Electron microscope study of vacancy clusters produced by quenching in magnesium; Etude par microscopie electronique des amas de lacunes crees par trempe dans le magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Espinasse, J; Mairy, C; Hillairet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    Vacancy clustering in quenched magnesium has been studied by transmission electron microscopy. The nature of the vacancy loops observed, seems to depend essentially on the impurity content of the metal; this effect can be attributed to a variation of the stacking fault energy of magnesium due to impurities. (authors) [French] On a etudie par microscopie electronique en transmission les defauts crees par trempe dans le magnesium. Un effet considerable des impuretes du metal sur la nature des boucles obtenues par condensation de lacunes a ete mis en evidence; cet effet semble s'expliquer de facon satisfaisante par un abaissement de l'energie de faute d'empilement du magnesium du aux impuretes. (auteur)

  20. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl; Graef, W.A.A.D.; Hübner, S.; Mullen, J.J.A.M. van der, E-mail: jjamvandermullen@gmail.com

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas. - Highlights: • Time resolved laser induced fluorescence at high repetition rate • Decay times as function of pressure, electron density and temperature • Measurement of total electron atom depopulation rates • Reasonable agreement of electron total rates with hard sphere approximations.

  1. The effect of quench rate on the microstructure, mechanical properties, and corrosion behavior of U-6 Wt Pct Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.; Romiy, A.D.; Weirick, L.J.

    1984-01-01

    The effect of cooling rate on microstructure, mechanical behavior, corrosion resistance, and subsequent age hardenability is discussed. Cooling rates in excess of 20 Ks -1 cause the parent γ-phase to transform martensitically to a niobium supersaturated variant of the α-phase. This phase exhibits low hardness and strength, high ductility, good corrosion resistance, and age hardenability. As cooling rate decreases from 10 Ks -1 to 0.2 Ks -1 , microstructural changes (consistent with spinodal decomposition) occur to an increasing extent. These changes produce increases in hardness and strength and decreases in ductility, corrosion resistance, and age hardenability. At cooling rates less than 0.2 Ks -1 the parent phase undergoes cellular decomposition to a coarse two-phase lamellar microstructure which exhibits intermediate strength and ductility, reduced corrosion resistance, and no age hardenability. An analysis of the cooling rates indicates that fully martensitic microstructures can be obtained in plates as thick as 50 mm

  2. Enhanced turbulence during the energy quench of disruptions

    International Nuclear Information System (INIS)

    Remkes, G.J.J.; Schueller, F.C.

    1991-01-01

    Enhanced electron density fluctuation levels with frequencies in the megahertz range have been observed during the energy quench phase of minor disruptions in the TORTUR Tokamak. The high frequencies of the phenomena indicate that the enhanced transport during the energy quench is caused by turbulence, and not by the coherent low mode number MHD modes themselves, which initiate the disruptions. Both the growth rate and wavelength of the fluctuations increase to such a level that a corresponding diffusivity would increase by two orders of magnitude. This is in good agreement with the observed temperature redistribution. (author)

  3. Wave form of current quench during disruptions in tokamaks

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Gribov, Yuri; Shimada, Michiya; Lukash, Victor; Kawano, Yasunori; Yoshino, Ryuji; Miki, Nobuharu; Ohmori, Junji; Khayrutdinov, Rustam

    2003-01-01

    The time dependence of the current decay during the current quench phase of disruptions, which can significantly influence the electro-magnetic force on the in-vessel components due to the induced eddy currents, is investigated using data obtained in JT-60U experiments in order to derive a relevant physics guideline for the predictive simulations of disruptions in ITER. It is shown that an exponential decay can fit the time dependence of current quench for discharges with large quench rate (fast current quench). On the other hand, for discharges with smaller quench rate (slow current quench), a linear decay can fit the time dependence of current quench better than exponential. (author)

  4. Defect creation rates in CdTe irradiated by electrons

    International Nuclear Information System (INIS)

    Caillot, M.

    1978-01-01

    Up to now, the defect creation rates in CdTe irradiated by electrons were unknown. They have been calculated for different electron kinetic energies. As the samples studied are thick, the energy loss when the electrons penetrate the material has been taken into account. The cross-sections of Cd and Te displacements vs the depth of electron penetration were determined for different electron kinetic energies, and the defect creation rates obtained for each sublattice. These creation rates have been compared with those deduced from experiments and it was found that the experimental creation rates were lower than the calculated ones. This discrepancy can be explained in terms of creation of neutral Frenkel pairs. (Auth.)

  5. Quenching of electron transfer reactions through coadsorption: A study of oxygen photodesorption from TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Nikolay G.; Kimmel, Gregory A.; Shen, Mingmin; Henderson, Michael A.

    2016-10-01

    Using temperature programmed desorption (TPD) and photon stimulated desorption (PSD), we show that coadsorbates of varying binding energies on the rutile TiO2(110) surface exert a commensurate inhibiting influence on the hole-mediated photodesorption of adsorbed O2. A variety of coadsorbates (Ar, Kr, Xe, N2, CO, CO2, CH4, N2O, acetone, methanol or water) were shown to quench O2 photoactivity, with the extent correlating with the coadsorbate’s gas phase basicity, which in turn determines the strength of the coadsorbate-Ti4+ bond. Coadsorbed rare gases inhibited the photodesorption of O2 by ~10-25%, whereas strongly bound species (water, methanol and acetone) nearly completely inhibited O2 PSD. We suggest that coadsorption of these molecules inhibit the arrival probability of holes to the surface. Band bending effects, which vary with the extent of charge transfer between the coadsorbate and the TiO2(110) surface, are not expected to be significant in the cases of the rare gases and physisorbed species. These results indicate that neutral coadsorbates can exert a significant influence on charge transfer events by altering the interfacial dipole in the vicinity of the target molecule. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830.

  6. Infrared rovibrational spectroscopy of OH–C2H2 in 4He nanodroplets: Parity splitting due to partially quenched electronic angular momentum

    International Nuclear Information System (INIS)

    Douberly, Gary E.; Liang, Tao; Raston, Paul L.; Marshall, Mark D.

    2015-01-01

    The T-shaped OH–C 2 H 2 complex is formed in helium droplets via the sequential pick-up and solvation of the monomer fragments. Rovibrational spectra of the a-type OH stretch and b-type antisymmetric CH stretch vibrations contain resolved parity splitting that reveals the extent to which electronic angular momentum of the OH moiety is quenched upon complex formation. The energy difference between the spin-orbit coupled 2 B 1 (A″) and 2 B 2 (A′) electronic states is determined spectroscopically to be 216 cm −1 in helium droplets, which is 13 cm −1 larger than in the gas phase [Marshall et al., J. Chem. Phys. 121, 5845 (2004)]. The effect of the helium is rationalized as a difference in the solvation free energies of the two electronic states. This interpretation is motivated by the separation between the Q(3/2) and R(3/2) transitions in the infrared spectrum of the helium-solvated 2 Π 3/2 OH radical. Despite the expectation of a reduced rotational constant, the observed Q(3/2) to R(3/2) splitting is larger than in the gas phase by ≈0.3 cm −1 . This observation can be accounted for quantitatively by assuming the energetic separation between 2 Π 3/2 and 2 Π 1/2 manifolds is increased by ≈40 cm −1 upon helium solvation

  7. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  8. Infrared Quenched Photoinduced Superconductivity

    Science.gov (United States)

    Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.

    1996-03-01

    Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.

  9. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching

    International Nuclear Information System (INIS)

    Meaney, Melissa S.; McGuffin, Victoria L.

    2008-01-01

    Previous studies have indicated that nitrated explosives may be detected by fluorescence quenching of pyrene and related compounds. The use of pyrene, however, invokes numerous health and waste disposal hazards. In the present study, ten safer fluorophores are identified for quenching detection of target nitrated compounds. Initially, Stern-Volmer constants are measured for each fluorophore with nitrobenzene and 4-nitrotoluene to determine the sensitivity of the quenching interaction. For quenching constants greater than 50 M -1 , sensitivity and selectivity are investigated further using an extended set of target quenchers. Nitromethane, nitrobenzene, 4-nitrotoluene, and 2,6-dinitrotoluene are chosen to represent nitrated explosives and their degradation products; aniline, benzoic acid, and phenol are chosen to represent potential interfering compounds. Among the fluorophores investigated, purpurin, malachite green, and phenol red demonstrate the greatest sensitivity and selectivity for nitrated compounds. Correlation of the quenching rate constants for these fluorophores to Rehm-Weller theory suggests an electron-transfer quenching mechanism. As a result of the large quenching constants, purpurin, malachite green, and phenol red are the most promising for future detection of nitrated explosives via fluorescence quenching

  10. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.

    Science.gov (United States)

    Chen, Zhong; Gallie, Daniel R

    2012-09-01

    In response to conditions of excess light energy, plants induce non-photochemical quenching (NPQ) as a protective mechanism to prevent over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, which contributes significantly to reversible NPQ to thermally dissipate excess absorbed light energy, involves de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin in response to excess light energy. The activation of violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction, requires the generation of a light-induced, transthylakoid pH gradient. In this work, we overexpressed or repressed the expression of VDE in Arabidopsis (Arabidopsis thaliana) to examine whether VDE is rate-limiting for the induction of NPQ. Increasing VDE expression increased the de-epoxidation state of xanthophyll pigments, the rate of NPQ induction, and the level of NPQ achieved under subsaturating light. In saturating light, however, overexpression of VDE did not increase the xanthophyll pigment de-epoxidation state, the level of NPQ achieved following its initial induction, or substantially improve tolerance to high light. Only under chilling, which reduces VDE activity, did an increase in VDE expression provide slightly greater phototolerance. Repression of VDE expression impaired violaxanthin de-epoxidation, reduced the generation of NPQ, and lowered the level of NPQ achieved while increasing photosensitivity. These results demonstrate that the endogenous level of VDE is rate-limiting for NPQ in Arabidopsis under subsaturating but not saturating light and can become rate-limiting under chilling conditions. These results also show that increasing VDE expression confers greater phototolerance mainly under conditions which limit endogenous VDE activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  12. Physics of the interaction between runaway electrons and the background plasma of the current quench in tokamak disruptions

    Science.gov (United States)

    Reux, Cedric

    2017-10-01

    Runaway electrons are created during disruptions of tokamak plasmas. They can be accelerated in the form of a multi-MA beam at energies up to several 10's of MeV. Prevention or suppression of runaway electrons during disruptions will be essential to ensure a reliable operation of future tokamaks such as ITER. Recent experiments showed that the suppression of an already accelerated beam with massive gas injection was unsuccessful at JET, conversely to smaller tokamaks. This was attributed to a dense, cold background plasma (up to several 1020 m-3 accompanying the runaway beam. The present contribution reports on the latest experimental results obtained at JET showing that some mitigation efficiency can be restored by changing the features of the background plasma. The density, temperature, position of the plasma and the energy of runaways were characterized using a combined analysis of interferometry, soft X-rays, bolometry, magnetics and hard X-rays. It showed that lower density background plasmas were obtained using smaller amounts of gas to trigger the disruption, leading to an improved penetration of the mitigation gas. Based on the observations, a physical model of the creation of the background plasma and its subsequent evolution is proposed. The plasma characteristics during later stages of the disruption are indeed dependent on the way it was initially created. The sustainment of the plasma during the runaway beam phase is then addressed by making a power balance between ohmic heating, power transfer from runaway electrons, radiation and atomic processes. Finally, a model of the interaction of the plasma with the mitigation gas is proposed to explain why massive gas injection of runaway beams works only in specific situations. This aims at pointing out which parameters bear the most importance if this mitigation scheme is to be used on larger devices like ITER. Acknowledgement: This work has been carried out within the framework of the EUROfusion Consortium

  13. Characterization of oil based nanofluid for quench medium

    Science.gov (United States)

    Mahiswara, E. P.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Kresnodrianto

    2018-01-01

    The choice of quench medium depends on the hardenability of the metal alloy, the thickness of the component, and the geometry of the component. Some of these will determine the cooling rate required to obtain the desired microstructure and material properties. Improper quench media will cause the material to become brittle, suffers from geometric distortion, or having a high undesirable residual stresses in the components. In heat treatment industries, oil and water are frequently used as the quench media. Recently, nanofluid as a quench medium has also been studied using several different fluids as the solvent. Examples of frequently used solvents include polymers, vegetable oils, and mineral oil. In this research, laboratory-grade carbon powder were used as nanoparticle. Oil was used as the fluid base in this research as the main observation focus. To obtain nanoscale carbon particles, planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. This method was used to lower the cost for nanoparticle synthesis. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which annealed at 1000°C. Hardness testing and metallography observation were then conducted to further examine the effect of different quench medium in steel samples.

  14. Magnet Quench 101

    OpenAIRE

    Bottura, L.

    2014-01-01

    This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet. This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet.

  15. Jet quenching at ALICE

    International Nuclear Information System (INIS)

    Bianchi, Nicola

    2007-01-01

    RHIC results on leading hadron suppression indicate that the jets produced in hard processes are strongly quenched by the dense medium created in heavy ion collisions. Most of the energy lost by the leading parton remains within the jet cone, but several questions on the medium modification of the jet structure have not been addressed. These include the longitudinal and transverse structures of the quenched jet, the associated radiation observables, and the dependence on the parton flavor. These topics will be studied by ALICE thanks to both the robustness of its tracking and the charged particle identification system. Large medium effects are expected in both the low pt and in the high pt regions. To make ALICE better suited for jet physics, the performances on high p t particles and jets can be significantly improved by completing the present set-up with a large Electromagnetic Calorimeter (EmCal). This will significantly improve the resolution on the jet energy and on the particle composition (with the detection of both charged and neutral particles). It will also allow to calibrate the jet energy by measuring the high energy photon emitted in the opposite direction. EmCal will be used to trigger on the jet energy itself, thus allowing a significant improvement of the statistics achievable for jets of high energy. Finally, due too both the γ/π 0 and the electron/hadron discrimination, EmCal will enhance the ALICE capabilities at high p t for direct photons and heavy quarks measurements

  16. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    International Nuclear Information System (INIS)

    Bruggeman, Peter; Schram, Daan C; Iza, Felipe; Kong, Michael G; Guns, Peter; Lauwers, Daniel; Leys, Christophe; Gonzalvo, Yolanda Aranda

    2010-01-01

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H 2 O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J ≤ 7) are thermalized and representative for the gas temperature.

  17. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Schram, Daan C [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Iza, Felipe; Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Guns, Peter; Lauwers, Daniel; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Gonzalvo, Yolanda Aranda [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: p.j.bruggeman@tue.nl

    2010-02-15

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H{sub 2}O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J {<=} 7) are thermalized and representative for the gas temperature.

  18. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  19. Effects of quenching and partial quenching on penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2001-01-01

    In the calculation of non-leptonic weak decay rates, a "mismatch" arises when the QCD evolution of the relevant weak hamiltonian down to hadronic scales is performed in unquenched QCD, but the hadronic matrix elements are then computed in (partially) quenched lattice QCD. This mismatch arises

  20. Studies on halogen quenching through the Stern-Volmer plot

    International Nuclear Information System (INIS)

    Takiue, Makoto; Ishikawa, Hiroaki.

    1978-01-01

    The quenching effect for halogenated benzenes, methanes and ethanes have been investigated. The halogen quenching was accurately measured using the internal conversion electrons emitted from 113 Sn-sup(113m)In. From the quenching constants determined by the Stern-Volmer plots with respect to various halogen quenchers, the following results have been obtained. (1) The quenching constants increase with the number of halogen substituents, so as linearly in halogenated benzenes and exponentially in halogenated methanes and ethanes. Even the isomers of halogenides have different quenching constants. (2) There is a linearity between logarithm of the quenching constant and a polarographic half-wave reduction potential. (3) Electron excitation provides larger quenching constants than UV excitation for halogenated methanes. Based on these results, the mechanism of halogen quenching have been discussed in connection with the exciplex formation. (auth.)

  1. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    Science.gov (United States)

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  2. Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens: elucidation of the maleimide fluorescence quenching mechanism.

    Science.gov (United States)

    Guy, Julia; Caron, Karine; Dufresne, Stéphane; Michnick, Stephen W; Skene, W G; Keillor, Jeffrey W

    2007-10-03

    Dimaleimide fluorogens are being developed for application to fluorescent protein labeling. In this method, fluorophores bearing two maleimide quenching groups do not fluoresce until both maleimide groups have undergone thiol addition reactions with the Cys residues of the target protein sequence [J. Am. Chem. Soc. 2005, 127, 559-566]. In this work, a new convergent synthetic route was developed that would allow any fluorophore to be attached via a linker to a dimaleimide moiety in a modular fashion. Series of dimaleimide and dansyl derivatives were thus prepared conveniently and used to elucidate the mechanism of maleimide quenching. Intersystem crossing was ruled out as a potential quenching pathway, based on the absence of a detectable triplet intermediate by laser flash photolysis. Stern-Volmer rate constants were measured with exogenous dimaleimide quenchers and found to be close to the diffusion-controlled limits, consistent with electron transfer being thermodynamically favorable. The thermodynamic feasibility of the photoinduced electron transfer (PET) quenching mechanism was verified by cyclic voltammetry. The redox potentials measured for dansyl and maleimide confirm that electron transfer from the dansyl excited state to a pendant maleimide group is exergonic and is responsible for fluorescence quenching of the fluorogens studied herein. Taking this PET quenching mechanism into account, future fluorogenic protein labeling agents will be designed with spacers of variable length and rigidity to probe the structure-property PET efficiency relationship.

  3. Parameterization of ionization rate by auroral electron precipitation in Jupiter

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2008-02-01

    Full Text Available We simulate auroral electron precipitation into the Jovian atmosphere in which electron multi-directional scattering and energy degradation processes are treated exactly with a Monte Carlo technique. We make a parameterization of the calculated ionization rate of the neutral gas by electron impact in a similar way as used for the Earth's aurora. Our method allows the altitude distribution of the ionization rate to be obtained as a function of an arbitrary initial energy spectrum in the range of 1–200 keV. It also includes incident angle dependence and an arbitrary density distribution of molecular hydrogen. We show that there is little dependence of the estimated ionospheric conductance on atomic species such as H and He. We compare our results with those of recent studies with different electron transport schemes by adapting our parameterization to their atmospheric conditions. We discuss the intrinsic problem of their simplified assumption. The ionospheric conductance, which is important for Jupiter's magnetosphere-ionosphere coupling system, is estimated to vary by a factor depending on the electron energy spectrum based on recent observation and modeling. We discuss this difference through the relation with field-aligned current and electron spectrum.

  4. Parameterization of ionization rate by auroral electron precipitation in Jupiter

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2008-02-01

    Full Text Available We simulate auroral electron precipitation into the Jovian atmosphere in which electron multi-directional scattering and energy degradation processes are treated exactly with a Monte Carlo technique. We make a parameterization of the calculated ionization rate of the neutral gas by electron impact in a similar way as used for the Earth's aurora. Our method allows the altitude distribution of the ionization rate to be obtained as a function of an arbitrary initial energy spectrum in the range of 1–200 keV. It also includes incident angle dependence and an arbitrary density distribution of molecular hydrogen. We show that there is little dependence of the estimated ionospheric conductance on atomic species such as H and He. We compare our results with those of recent studies with different electron transport schemes by adapting our parameterization to their atmospheric conditions. We discuss the intrinsic problem of their simplified assumption. The ionospheric conductance, which is important for Jupiter's magnetosphere-ionosphere coupling system, is estimated to vary by a factor depending on the electron energy spectrum based on recent observation and modeling. We discuss this difference through the relation with field-aligned current and electron spectrum.

  5. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  6. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Science.gov (United States)

    Palomares, J. M.; Graef, W. A. A. D.; Hübner, S.; van der Mullen, J. J. A. M.

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas.

  7. The reaction rates of electrons with native and irradiated ribonuclease

    International Nuclear Information System (INIS)

    Schuessler, H.; Ebert, M.; Davies, J.V.

    1977-01-01

    The rate of reaction of hydrated electrons with proteins depends, amongst other things, on the conformational structure of the protein, and irradiation itself causes conformational changes in proteins. A study has been made of variations in the reaction rates of hydrated electrons with RNase pre-irradiated by the Linac or by a 60 Co γ-source. The reaction rate constants varied with the pre-irradiation dose, the concentration of phosphate buffer, the enzyme concentration and also the presence of 10 -2 M ethanol. These variations serve to emphasize the importance of the tertiary structure of biological molecules in irradiation processes and have significant implications in the mathematical analysis of the inactivation of enzymes in steady-state irradiation processes. (U.K.)

  8. Ionization rates and profiles of electron concentration in Martian atmosphere

    International Nuclear Information System (INIS)

    Komitov, B.; Spasov, S.; Gogoshev, M.

    1981-01-01

    The ionization and vertical profiles of electron concentration in the Martian atmosphere are calculated as functions of the solar zenith angles varying from O deg to 90 deg. A neutral atmospheric model based on direct mass-spectometric measurements from the Viking-1 landing modul is employed in the calculation. The Earth data of the ionization solar flux at the same level of the solar activity and for the month of the Viking-1 measurements reduced for the Mars orbit are used. The numerical result for the photoionization rates and quasi-equilibrium electron-concentration profiles in the upper Martian atmosphere at different solar zenith angles from 0 deg to 100 deg are presented. It is shown that the maxima of both quantities decrease and move towards the upper atmosphere regions. The calculated electron density at the zenith solar angle of 40 deg are compared to Viking-1 experimental data and a good agreement is achieved

  9. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Science.gov (United States)

    2010-07-01

    ... any flow rate into the reaction chamber. This includes, but is not limited to, sample capillary, ozone... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new...

  10. Quenching effects in photon production

    International Nuclear Information System (INIS)

    Durand, M.

    1989-01-01

    Contraints on the photon production calculated by kinetic approaches are studied by means of sum-rules a finite temperature for simple quantum system. For the square-well potential the exact production rate is compared with its semi-classical limit in order to introduce the principle problem. For the scattering of hard spheres the photon production cross section is derived exactly by partial wave expansion. This serves to study the more realistic example of a gas of hard spheres. The corresponding kinetic photon production rates are found to violate the sum-rules, due to a singular behaviour at small gamma energies. Thus the hypothesis of incoherent free scattering is not valid in that range because of destructive interferences which quench the production rates significantly. For the application to nuclear collisions at intermediate energies these quenching effects are found to be important for gamma energies even up to a few hundred MeV. (orig.)

  11. Rate dependence of electron transfer on donor-acceptor separation and on free enthalpy change. The Ru(bpy)32+/viologen2+ system

    International Nuclear Information System (INIS)

    Rau, H.; Frank, R.; Greiner, G.

    1986-01-01

    By attachment of hydrocarbon chains of different lengths to the bipyridyl ligands in Ru(bpy) 3 2+ we have adjusted the donor-acceptor separation in the electron-transfer system Ru[(C/sub n/H/sub 2n+1/) 2 bpyl 3 2+ /methylviolgen. Two electron-transfer reactions with different ΔG are investigated in fluid solution: the quenching of the excited complexes by methylviologen (MV 2+ ) which is exergonic with -0.4 eV and the thermal back electron transfer which is exergonic with -1.7 eV. We observe an exponential decrease of the quenching rate on distance. The back electron transfer is independent of donor-acceptor separation; electron transfer is found to take place at distances of 1.5 nm and more. The results are discussed in terms of a hypothesis on the interdependence of transfer distance and free enthalpy change and compared with current theories. In the framework of the simple classical Marcus model, the Marcus equation relating transfer rate and free enthalpy change is transposed into the Rehm-Weller equation by simple mathematical manipulations and the implications of this are discussed

  12. Analyses of quenching process during turn-off of plasma electrolytic carburizing on carbon steel

    International Nuclear Information System (INIS)

    Wu, Jie; Liu, Run; Xue, Wenbin; Wang, Bin; Jin, Xiaoyue; Du, Jiancheng

    2014-01-01

    Highlights: • Cooling rate of carburized steel at the end of PEC treatment is measured. • The quench hardening in the fast or slow turn-off mode hardly takes place. • Decrease of the surface roughness during slow turn-off process is found. • A slow turn-off mode is recommended to replace the conventional turn-off mode. - Abstract: Plasma electrolytic carburizing (PEC) under different turn-off modes was employed to fabricate a hardening layer on carbon steel in glycerol solution without stirring at 380 V for 3 min. The quenching process in fast turn-off mode or slow turn-off mode of power supply was discussed. The temperature in the interior of steel and electron temperature in plasma discharge envelope during the quenching process were evaluated. It was found that the cooling rates of PEC samples in both turn-off modes were below 20 °C/s, because the vapor film boiling around the steel sample reduced the cooling rate greatly in terms of Leidenfrost effect. Thus the quench hardening hardly took place, though the slow turn-off mode slightly decreased the surface roughness of PEC steel. At the end of PEC treatment, the fast turn-off mode used widely at present cannot enhance the surface hardness by quench hardening, and the slow turn-off mode was recommended in order to protect the electronic devices against a large current surge

  13. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  14. Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation

    DEFF Research Database (Denmark)

    Kukuczka, Bernadeta; Magneschi, Leonardo; Petroutsos, Dimitris

    2014-01-01

    To investigate the functional importance of Proton Gradient Regulation5-Like1 (PGRL1) for photosynthetic performances in the moss Physcomitrella patens, we generated a pgrl1 knockout mutant. Functional analysis revealed diminished nonphotochemical quenching (NPQ) as well as decreased capacity for...

  15. Quenching experiments on niobium

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    High-purity niobium wire specimens have been quenched in superfluid helium from near the melting point in order to obtain information on vacancies in this material. The quenched-in resistivity Δsub(pQ) for a quench from 2600 K was very small (approximately 0.3 x 10 -12 Ω m) and near the limit of detection. It is assumed that large quenching losses are responsible for the small quenched-in resistance. From the experimental cooling curve estimates have been made for the formation and migration enthalpies (Hsub(1V)sup(F), Hsub(1V)sup(M)), where Hsub(1V)sup(M)+Hsub(1V)sup(F)=Qsub(1V)sup(SD)=3.62 ev. For Ssub(1V)sup(F), the formation entropy, two different values were assumed. (author)

  16. Density of kinks just after a quench in an underdamped system

    OpenAIRE

    Dziarmaga, Jacek

    1998-01-01

    A quench in an underdamped one dimensional $\\phi^4$ model is studied by analytical methods. The density of kinks just after the transition is proportional to the square root of the rate of the quench for slow quenches. If the quench is shorter that the relaxation time, then the density scales like the third root of the rate.

  17. Comparison of initial damage rates using neutron and electron irradiations

    International Nuclear Information System (INIS)

    Goldstone, J.A.R.

    1978-08-01

    The purpose of this experiment was twofold: (1) The number of interstitials that pin dislocations was studied as a function of neutron energy. (2) By comparison with electron irradiations on the sample, a correlation between the predicted and measured numbers of defects was found. All irradiations were performed on the same high purity copper sample. The sample was machined in the form of a cantilever beam with a flexural resonant frequency of 770 Hz. Changes in Young's modulus at constant strain amplitude were monitored continuously through changes in the resonant frequency of the sample. These changes in the modulus can be related to the number of pinning points added to dislocation lines, which are in turn related to the number of free interstitials produced. Neutron energy dependence experiments were done from 2 to 24 MeV on the copper sample and at 14 MeV on a gold sample. By equating pinning rates from electron and neutron irradiations and using the free interstitial production rate obtained from electron irradiations, an estimate of the free interstitial production cross section for neutrons of 2 to 24 MeV was made

  18. Characterization of plasma current quench at JET

    International Nuclear Information System (INIS)

    Riccardo, V; Barabaschi, P; Sugihara, M

    2005-01-01

    Eddy currents generated during the fastest disruption current decays represent the most severe design condition for medium and small size in-vessel components of most tokamaks. Best-fit linear and instantaneous plasma current quench rates have been extracted for a set of recent JET disruptions. Contrary to expectations, the current quench rate spectrum of high and low thermal energy disruptions is not substantially different. For most of the disruptions with the highest instantaneous current quench rate an exponential fit of the early phase of the current decay provides a more accurate estimate of the maximum current decay velocity. However, this fit is only suitable to model the fastest events, for which the current quench is dominated by radiation losses rather than the plasma motion

  19. Relativistic electronic structure calculations on endohedral Gd rate at C60, La rate at C60, Gd rate at C74, and La rate at C74

    International Nuclear Information System (INIS)

    Lu, J.; Zhang, X.; Zhao, X.

    2000-01-01

    Relativistic discrete-variational local density functional calculations on endohedral Gd rate at C 60 , La rate at C 60 ,Gd rate at C 74 , and La rate at C 74 are performed. All the C 60 - and C 74 -derived levels are lowered upon endohedral Gd and La doping. Both the Gd (4f 7 5d 1 6s 2 ) and La (5d 1 6s 2 ) atoms only donate their two 6s valence electrons to the cages, leaving behind their 5d electrons when they are placed at the cage centers. Compared with large-band-gap C 60 , small-band-gap C 74 and Gd (La)-metallofullerenes have strong both electron-donating and electron-accepting characters, and the calculated ionization potentials and electron affinities for them agree well with the available experimental data. (orig.)

  20. Heart rate detection from an electronic weighing scale

    International Nuclear Information System (INIS)

    González-Landaeta, R; Casas, O; Pallàs-Areny, R

    2008-01-01

    We propose a novel technique for beat-to-beat heart rate detection based on the ballistocardiographic (BCG) force signal from a subject standing on a common electronic weighing scale. The detection relies on sensing force variations related to the blood acceleration in the aorta, works even if wearing footwear and does not require any sensors attached to the body because it uses the load cells in the scale. We have devised an approach to estimate the sensitivity and frequency response of three commercial weighing scales to assess their capability to detect the BCG force signal. Static sensitivities ranged from 490 nV V −1 N −1 to 1670 nV V −1 N −1 . The frequency response depended on the subject's mass but it was broad enough for heart rate estimation. We have designed an electronic pulse detection system based on off-the-shelf integrated circuits to sense heart-beat-related force variations of about 0.24 N. The signal-to-noise ratio of the main peaks of the force signal detected was higher than 30 dB. A Bland–Altman plot was used to compare the RR time intervals estimated from the ECG and BCG force signals for 17 volunteers. The error was ±21 ms, which makes the proposed technique suitable for short-term monitoring of the heart rate

  1. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  2. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  3. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process

    International Nuclear Information System (INIS)

    Liu Heping; Jin Xuejun; Dong Han; Shi Jie

    2011-01-01

    Hot stamping, which combines forming and quenching in one process, produces high strength steels with limited ductility because the quenching is uncontrolled. A new processing technique has been proposed in which the hot stamping step is followed by a controlled quenching and partitioning process, producing a microstructure containing retained austenite and martensite. To investigate this microstructure, specimens were heated at a rate of 10 deg. C/s to the austenitizing temperature of 900 deg. C, held for 5 min to eliminate thermal gradients, and cooled at a rate of 50 deg. C/s to a quenching temperature of 300 deg. C, which is between the martensite start temperature and the martensite finish temperatures. The resulting microstructure was examined using optical microscope, scanning electron microscopy and transmission electron microscopy. The material produced contains irregular, fragmented martensite plates, a result of the improved strength of the austenite phase and the constraints imposed by a high dislocation density. - Research Highlights: → A novel heat treatment of advanced high strength steels is proposed. → The processing technique is hot stamping plus quenching and partitioning process. → The material produced contains irregular, fragmented martensite plates. → The reason is strength of austenite phase and constraint of dislocation density.

  4. Investigations on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by certain flavonoids.

    Science.gov (United States)

    Anbazhagan, V; Kalaiselvan, A; Jaccob, M; Venuvanalingam, P; Renganathan, R

    2008-05-29

    The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by seven flavonoids namely flavone, flavanone, quercetin, rutin, genistein, diadzein and chrysin has been investigated in acetonitrile and dichloromethane solvents. The bimolecular quenching rate constants lie in the range of 0.09-5.75 x 10(9)M(-1)s(-1) and are explained in terms of structure of the flavonoids studied. The reactivity of flavonoids are in the order: quercetin>rutin>genistein>diadzein>chrysin>flavone>flavanone. The quenching rate constants (k(q)) increase with increase in the number of -OH groups. The endergonic thermodynamic values of DeltaG(et) reveal that electron transfer quenching mechanism can be ruled out. Bond dissociation enthalpy calculations reveal that the position of -OH is important. Further in vitro-antioxidant activities of flavonoids were evaluated with rat liver catalase by gel electrophoresis. The deuterium isotope effect thus observed in this work provides evidence for hydrogen abstraction involved in the quenching process of singlet excited DBO by flavonoids. The data suggest the involvement of direct hydrogen atom transfer (radical scavenging) in the fluorescence quenching of DBO. Bond dissociation enthalpy calculation performed at B3LYP/6-31G(p')//B3LYP/3-21G level are in excellent agreement with the above observations and further reveal that the number OH groups and position of them decide the quenching ability of the flavonoids.

  5. Quenches in the superconducting magnet CELLO

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1979-01-01

    The superconducting magnet CELLO was tested with currents up to 3200 A at Saclay and has been installed at DESY in Hamburg where it will be used for particle physics experiments requiring colliding beams of electrons and positrons. The testing of this unique, large, one-layer solenoid provides an excellent opportunity to evaluate the theory of quench propagation under adiabatic conditions, that is, in a coil in which the conductors are not in direct contact with helium. In an early test of this coil, quenches that occurred, gives the details of the damaged conductor, and includes an analysis of the quenches. Observed axial quench velocities are compared to the calculated values based on both measurements and calculations of the thermal conductivity of the fabricated coil

  6. Determination of heart rate variability with an electronic stethoscope.

    Science.gov (United States)

    Kamran, Haroon; Naggar, Isaac; Oniyuke, Francisca; Palomeque, Mercy; Chokshi, Priya; Salciccioli, Louis; Stewart, Mark; Lazar, Jason M

    2013-02-01

    Heart rate variability (HRV) is widely used to characterize cardiac autonomic function by measuring beat-to-beat alterations in heart rate. Decreased HRV has been found predictive of worse cardiovascular (CV) outcomes. HRV is determined from time intervals between QRS complexes recorded by electrocardiography (ECG) for several minutes to 24 h. Although cardiac auscultation with a stethoscope is performed routinely on patients, the human ear cannot detect heart sound time intervals. The electronic stethoscope digitally processes heart sounds, from which cardiac time intervals can be obtained. Accordingly, the objective of this study was to determine the feasibility of obtaining HRV from electronically recorded heart sounds. We prospectively studied 50 subjects with and without CV risk factors/disease and simultaneously recorded single lead ECG and heart sounds for 2 min. Time and frequency measures of HRV were calculated from R-R and S1-S1 intervals and were compared using intra-class correlation coefficients (ICC). The majority of the indices were strongly correlated (ICC 0.73-1.0), while the remaining indices were moderately correlated (ICC 0.56-0.63). In conclusion, we found HRV measures determined from S1-S1 are in agreement with those determined by single lead ECG, and we demonstrate and discuss differences in the measures in detail. In addition to characterizing cardiac murmurs and time intervals, the electronic stethoscope holds promise as a convenient low-cost tool to determine HRV in the hospital and outpatient settings as a practical extension of the physical examination.

  7. Effects of ion and electron screening on thermonuclear reaction rates

    International Nuclear Information System (INIS)

    Brady, L.R. Jr.

    1977-01-01

    The effects of screening by ions and electrons on thermonuclear reaction rates in stellar plasmas are considered. The enhancement of the reaction rate ranges from negligible to extremely large (on the order of 10 26 or greater). In order to calculate these effects, the potential about a given reacting nucleus is determined. First, Boltzmann-Vlasov and Poisson-Boltzmann equations are solved to yield a Yukawa potential. A suitable approximation to this potential is integrated in the action integral to give the barrier penetration. The screened reaction rate is then found by the saddle-point method. In developing a general formalism to calculate the screened reaction rate and the screening factor, effects due to the finite size of the nucleus are considered and found to be negligible. An expression for the screening factor for resonant reaction rates is also derived. A different and relatively simple approach, based on work of Stewart and Pyatt (1966), is used to find the barrier penetration from the action integral in two approximations: a modified Coulomb potential and a constant-shift potential. Screening factors are calculated for carbon burning at T 6 = 100 and T 6 = 400 for a wide range of densities and also for several examples in late stellar evolution. These screening factors are, for the most part, greater than those given by most others by a few percent at low density to 4 or more orders of magnitude at T 6 = 100 and rho = 10 10 g/cm 3 . Near the edge of the crystalline lattice region, however, they are significantly lower than those of some others. The increase in reaction rates for carbon burning indicates that carbon ignition may occur at lower densities than previously thought and may affect the density at which a supernova shock may occur

  8. Modelling of Power Fluxes during Thermal Quenches

    International Nuclear Information System (INIS)

    Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.

    2005-01-01

    Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the

  9. Transition and Electron Impact Excitation Collision Rates for O III

    Science.gov (United States)

    Tayal, S. S.; Zatsarinny, O.

    2017-12-01

    Transition probabilities, electron excitation collision strengths, and rate coefficients for a large number of O III lines over a broad wavelength range, from the infrared to ultraviolet, have been reported. The collision strengths have been calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in combination with B-spline expansions is employed for an accurate representation of the target wave functions. The close-coupling expansion contains 202 O2+ fine-structure levels of the 2{s}22{p}2,2s2{p}3, 2{p}4,2{s}22p3s,3p,3d, 4s,4p,4d,4f,5s, and 2s2{p}33s,3p,3d configurations. The effective collision strengths are obtained by averaging electron excitation collision strengths over a Maxwellian distribution of velocities at electron temperatures ranging from 100 to 100,000 K. The calculated effective collision strengths have been reported for the 20,302 transitions between all 202 fine-structure levels. There is an overall good agreement with the recent R-matrix calculations by Storey et al. for the transitions between all levels of the ground 2{s}22{p}2 configuration, but significant discrepancies have been found with Palay et al. for transitions to the 2{s}22{p}2 1 S 0 level. Line intensity ratios between the optical lines arising from the 2{s}22{p}2{}3{P}{0,1,2} - 1 D 2 transitions have been compared with other calculations and observations from the photoionized gaseous nebulae, and good agreement is found. The present calculations provide the most complete and accurate data sets, which should allow a more detailed treatment of the available measured spectra from different ground and space observatories.

  10. Quantum Quenches in a Spinor Condensate

    International Nuclear Information System (INIS)

    Lamacraft, Austen

    2007-01-01

    We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the ''light-cone'' correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al

  11. The Quench Action

    Science.gov (United States)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  12. Enhanced Turbulence During the Energy Quench of Disruptions

    NARCIS (Netherlands)

    Remkes, G. J. J.; Schüller, F. C.

    1991-01-01

    Enhanced electron density fluctuation levels with frequencies in the megahertz range have been observed during the energy quench phase of minor disruptions in the TORTUR Tokamak. The high frequencies of the phenomena indicate that the enhanced transport during the energy quench is caused by

  13. Development of electronic tattoo for pulse rate monitoring: Materials perspective

    Science.gov (United States)

    Shinde, Shilpa Vikas; Sonavane, S. S.

    2018-05-01

    In India, there is a growing concern of the heart diseases and deaths due to heart failure. The severity of the problem can be minimised by efficient heart rate monitoring which can be used to provide before time caution to cater heart attack. Wearable sensor can be designed to sense the pulse. The sensor can be either placed near to heart or on the wrist to sense pulses and send pulse signals to the doctors. Such sensor should adhere to the skin for sufficiently long period without causing etching to the patient. It should also be bendable and stretchable like skin. This paper is a part of the research work carried out to develop patch type sensor, which is termed as Electronic Tattoo (ET). In pursuit for development of ET, we came across various designs and candidate materials which can be used for the ET. Thus, in this paper, we describe the process of selecting best suited method and material for the ET. It may also be noted that the sensor development is governed by the prevailing IEEE 802.15.6 standard.

  14. effects of various effects of various quenching media on quenching

    African Journals Online (AJOL)

    eobe

    ABSTRACT. Evaluation of palm kernel oil, cotton seed oil and olive oil as quenching media of 0.509Wt%C medium carbon steel ... Quenching is an essential element in developing the .... machine, heat treatment furnace, Avery Denison Izod.

  15. Contribution to the study of defect quenching in gold

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Mairy, C.; Adda, Y.

    1964-01-01

    We have studied by resistivity measurements at low temperatures the influence of quenching conditions on the behaviour of defects in gold. We have quenched from a high temperature and in various liquids gold wires of 0.3 and 0.5 mm diameter having a purity of 99.999 per cent. For cooling rates of 25,000 deg C/second and above all the defects in equilibrium at high temperature are retained by quenching. The annealing of the defects thus obtained occurs in two stages, the first below 150 deg C and the second between 450 and 650 deg C. The mobility energy of the defects which are annealed during the first stage is 0.70 ± 0.06 eV, The annealing kinetics depend on the initial concentration of the defects and of the diameter of the sample. The second stage corresponds to disappearance of the stacking fault tetrahedra which are formed from defect packets during annealing. The formation energy of the defects measured on the 0. 5 mm samples is 0.94 eV. The values obtained with 0,3 mm diameter samples, much lower than 0.94 eV, can be explained by assuming that packets of defects occur at the end of the annealing of the samples. Electron microscope observations have been carried out on strips of annealed gold. (authors) [fr

  16. Effects of keV electron irradiation on the avalanche-electron generation rates of three donors on oxidized silicon

    International Nuclear Information System (INIS)

    Sah, C.; Sun, J.Y.; Tzou, J.J.

    1983-01-01

    After keV electron beam irradiation of oxidized silicon, the avalanche-electron-injection generation rates and densities of the bulk compensating donor, the interface states, and the turnaround trap all increase. Heating at 200 0 C can anneal out these three donor-like traps, however, it cannot restore the generation rates back to their original and lower pre-keV electron irradiation values. The experimental results also indicate that all three traps may be related to the same mobile impurity species whose bonds are loosened by the keV electrons and then broken or released by the avalanche injected electrons

  17. Improving Interprofessional Consistency in Electronic Fetal Heart Rate Interpretation.

    Science.gov (United States)

    Govindappagari, Shravya; Zaghi, Sahar; Zannat, Ferdous; Reimers, Laura; Goffman, Dena; Kassel, Irene; Bernstein, Peter S

    2016-07-01

    Objective To determine if mandatory online training in electronic fetal monitoring (EFM) improved agreement in documentation between obstetric care providers and nurses on labor and delivery. Methods Health care professionals working in obstetrics at our institution were required to complete a course on EFM interpretation. We performed a retrospective chart review of 701 charts including patients delivered before and after the introduction of the course to evaluate agreement among providers in their documentation of their interpretations of the EFM tracings. Results Agreement between provider and nurse documentation at the time of admission improved for variability and accelerations (variability: 91.1 vs. 98.3%, p < 0.001; and accelerations: 75.2 vs. 87.7%, p < 0.001). Similarly, agreement improved at the time of the last note prior to delivery for documentation of variability and accelerations (variability: 82.1 vs. 90.6%, p = 0.001; and accelerations: 56.7 vs. 68.6%, p = 0.0012). Agreement in interpretation of decelerations both at the time of admission and at the time of delivery increased (86.3 vs. 90.6%, p = 0.0787, and 56.7 vs. 61.1%, p = 0.2314, respectively) but was not significant. Conclusion An online EFM course can significantly improve consistency in multidisciplinary documentation of fetal heart rate tracing interpretation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  19. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  20. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  1. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  2. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field

    International Nuclear Information System (INIS)

    Kheiri, Golshad; Esmaeilzadeh, Mahdi

    2013-01-01

    A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread

  3. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  4. Doubler system quench detection threshold

    International Nuclear Information System (INIS)

    Kuepke, K.; Kuchnir, M.; Martin, P.

    1983-01-01

    The experimental study leading to the determination of the sensitivity needed for protecting the Fermilab Doubler from damage during quenches is presented. The quench voltage thresholds involved were obtained from measurements made on Doubler cable of resistance x temperature and voltage x time during quenches under several currents and from data collected during operation of the Doubler Quench Protection System as implemented in the B-12 string of 20 magnets. At 4kA, a quench voltage threshold in excess of 5.OV will limit the peak Doubler cable temperature to 452K for quenches originating in the magnet coils whereas a threshold of 0.5V is required for quenches originating outside of coils

  5. Quench behavior of a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Garber, M.; Dahl, P.F.

    1980-01-01

    Data are presented on the minimum energy required to cause quenches to propagate in an accelerator dipole magnet. The amount of stored energy dissipated into the magnet was measured as a function of dipole excitation current. This in turn determines the maximum coil temperature reached in a given magnet. Quench velocities in the longitudinal direction of the conductor were as high as 11m/sec. The azimuthal velocities or turn to turn velocities were found to be a function of the number of fiberglass layers of insulation that the quench had to cross and were on the order of a few tens of centimeters/sec. The field shape of a given magnet was found to be unchanged for more than 100 quenches. The coil to coil connection and inter-coil splice resistances were found to be less than a namo-ohm and therefore of litle consequence in the cryogenic load considerations. No definitive answers were found on how to decrease the rate of training (130 Gauss/Quench average) required from 4.OT to 5.1T

  6. A Comparison of Response Rate, Response Time, and Costs of Mail and Electronic Surveys.

    Science.gov (United States)

    Shannon, David M.; Bradshaw, Carol C.

    2002-01-01

    Compared response rates, response time, and costs of mail and electronic surveys using a sample of 377 college faculty members. Mail surveys yielded a higher response rate and a lower rate of undeliverable surveys, but response time was longer and costs were higher than for electronic surveys. (SLD)

  7. Electron capture rate of a composite of partially ionized atomic nuclei

    International Nuclear Information System (INIS)

    Yokoi, K.; Takahashi, K.

    1979-01-01

    Electron captures (or more generally β-transitions) are known to play key roles at various stages of stellar evolution and in many nucleosynthesis processes. With decreasing temperatures and densities, the bound electron captures start to compete with the free electron captures, and eventually in the low-temperature, low-density limit the total capture rate shall converge to that of the orbital electrons observed in laboratory. The authors calculate the occupation probabilities of the electron orbits and the electron capture rates in a mixture of atoms and ions which are supposedly under a chemical equilibrium. (orig./AH)

  8. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring.

    Science.gov (United States)

    Fréchette, Emmanuelle; Wong, Christopher Y S; Junker, Laura Verena; Chang, Christine Yao-Yun; Ensminger, Ingo

    2015-12-01

    In evergreen conifers, the winter down-regulation of photosynthesis and its recovery during spring are the result of a reorganization of the chloroplast and adjustments of energy-quenching mechanisms. These phenological changes may remain undetected by remote sensing, as conifers retain green foliage during periods of photosynthetic down-regulation. The aim was to assess if the timing of the spring recovery of photosynthesis and energy-quenching characteristics are accurately monitored by the photochemical reflectance index (PRI) in the evergreen conifer Pinus strobus. The recovery of photosynthesis was studied using chlorophyll fluorescence, leaf gas exchange, leaf spectral reflectance, and photosynthetic pigment measurements. To assess if climate change might affect the recovery of photosynthesis, seedlings were exposed to cold spring conditions or warm spring conditions with elevated temperature. An early spring decoupling of the relationship between photosynthesis and PRI in both treatments was observed. This was caused by differences between the timing of the recovery of photosynthesis and the timing of carotenoid and chlorophyll pool size adjustments which are the main factors controlling PRI during spring. It was also demonstrated that zeaxanthin-independent NPQ mechanisms undetected by PRI further contributed to the early spring decoupling of the PRI-LUE relationship. An important mechanism undetected by PRI seems to involve increased electron transport around photosystem I, which was a significant energy sink during the entire spring transition, particularly in needles exposed to a combination of high light and cold temperatures. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Quantum quenches with integrable pre-quench dynamics

    International Nuclear Information System (INIS)

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t = 0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench. (fast track communication)

  10. Quantum quenches with integrable pre-quench dynamics

    OpenAIRE

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t=0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench.

  11. Collisional quenching of cometary emission in the 18 centimeter OH transitions

    International Nuclear Information System (INIS)

    Schloerb, F.P.

    1988-01-01

    A model of collisional quenching of the OH 2Pi(3/2) J = 3/2 Lambda doublet in cometary comae is presented. It is found that collisions with ions and electrons in the outer coma have a strong quenching effect on the Swings-effect inversion of the Lambda doublet that is responsible for the OH radio emission at 18 cm wavelength. For the conditions of Halley's comet, collisional quenching should lead radio observers to systematically underestimate the OH parent production rate by a factor of approximately 3 relative to its actual value, and in general, radio-derived production rates should always be less than or equal to UV-derived production rates, which are relatively unaffected by this process. The observation that UV production rates exceed those derived by radio techniques is well known; the direct measurement of this ratio, using a consistent coma model, should provide information about the ion and electron content of the cometary coma. 22 references

  12. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  13. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  14. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  15. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.-H.; Thomas, A. G. R.; Nees, J. A.; Hou, B.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States); Beaurepaire, B.; Malka, V.; Faure, J. [Laboratoire d' Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2013-02-11

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  16. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    International Nuclear Information System (INIS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-01-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections

  17. Fluorescence quenching of 9-cyanoanthracene in presence of zinc tetraphenylporphyrin in a polar liquid medium

    International Nuclear Information System (INIS)

    Mandal, Paulami; Tiwari, Sanat Kumar; Ganguly, Tapan; Sinha, Subrata

    2009-01-01

    Steady-state and time-resolved techniques are used to study photoinduced electron and/or excitational energy transfer processes involved within a novel donor (zinc tetraphenylporphyrin)-acceptor (9-cyanoanthracene) system in a polar liquid medium (acetonitrile) at the ambient temperature (300 K). After photoexcitation of 9-cyanoanthracene, its fluorescence emission as well as lifetime are found to be quenched in presence of zinc tetraphenylporphyrin. The fluorescence quenching is ascribed to be due to the combined effect of electron transfer from zinc tetraphenylporphyrin to 9-cyanoanthracene and energy transfer (radiative as well as non-radiative) from 9-cyanoanthracene to zinc tetraphenylporphyrin. The highly exergonic values of Gibbs free energy change for both forward electron transfer reaction (-1.15 eV) and charge recombination reaction (-1.94 eV) indicate the possibilities of occurrences of these two processes in the Marcus inverted region. The fluorescence quenching rate due to photoinduced electron transfer reaction is found to be close to the diffusion-controlled limit within the present donor-acceptor system upon excitation of the acceptor molecules.

  18. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    International Nuclear Information System (INIS)

    OCONNOR, P.; GRATCHEV, V.; KANDASAMY, A.; POLYCHRONAKOS, V.; TCHERNIATINE, V.; PARSONS, J.; SIPPACH, W.

    1999-01-01

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm 2 /s

  19. STRUCTURE OF RAPIDLY QUENCHED RIBBONS AFTER NATURAL AGING

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2015-01-01

    Full Text Available Alloy solidification at high cooling rates leads to significant changes in structure and phase composition. Conditions appear for a significant extension of solid solubility, grain refining, and formation of metastable phases or amorphous state. Due to this it is possible to obtain  unique combinations of physical, mechanical and other properties in rapidly quenched alloys. Undoubted scientific and practical interest is an application of  quenching processes from a liquid state for aluminum alloys with the purpose to improve their physical and mechanical properties.As the structure of such alloys is extremely unstable from a thermodynamic point of view the important issue is to study  temporal stability of the microstructure and phase composition of rapidly quenched aluminium alloys of various chemical composition. The paper has investigated an influence of various alloying elements on the structure, phase composition and durometric properties of aluminum foils obtained by liquid aluminum alloy melt-spinning on the disk rotating with various speed. Optical and electron microscopy  has been used to study structure and phase composition as well as X-ray structural analysis. It has been shown that alloying of aluminium with copper leads to an increase in micro-hardness up to 130–160 HV0.01, and alloying with chromium and zirconium provides micro-hardness up to 60–80 HV0.01. It has been shown that increasing in amount of alloying additions in the aluminum melt (Al–Cu system alloy rises the number of CuAl2 precipitates and is accompanied with an increase in micro-hardness of aluminum foils. An increase in cooling rate of the aluminum melt (Al–Cr–Zr system is accompanied with structure dispersion which increases micro-hardness of the casted foils. The obtained results have made it possible to establish the optimal percentage of alloying elements and the disk rotation speed providing the highest level of aluminium foils’ durometric

  20. How Does the Electron Dynamics Affect the Global Reconnection Rate

    Science.gov (United States)

    Hesse, Michael

    2012-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  1. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  2. Critical Review of rate constants for reacitons of hydrated electrons

    International Nuclear Information System (INIS)

    Buxton, G.V.; Greenstock, C.L.; Phillips Helman, W.; Ross, A.B.

    1988-01-01

    Kinetic data for the radicals Hx and xOH in aqueous solution,and the corresponding radical anions, xO - and e/sub =/, have been critically reviewed. Reactions of the radicals in aqueous solution have been studied by pulse radiolysis, flash photolysis and other methods. Rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes

  3. Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry

    International Nuclear Information System (INIS)

    Zhao, Bingge; Li, Linfang; Yang, Bin; Yan, Ming; Zhai, Qijie; Gao, Yulai

    2013-01-01

    Highlights: •Controllable quenching rate up to 15,000 K/s was realized by FSC. •FSC sample was novelly characterized by FIB and HRTEM. •Solidification structure with undercooling of 110.9 K was investigated. •This study opens a new approach in rapid solidification and FSC measurement. -- Abstract: Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate

  4. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    Karasik, A.S.

    1982-01-01

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V [ru

  5. LHC magnet quench protection system

    Science.gov (United States)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  6. LHC magnet quench protection system

    International Nuclear Information System (INIS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-01-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called ''cold diode'' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements--so called ''cold diodes''. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a ''natural'' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages

  7. High-rate deposition of SI absorber layers by electron beam evaporation and first electron beam crystallization tests

    OpenAIRE

    Saager, Stefan; Ben Yaala, Marwa; Heinß, Jens-Peter; Temmler, Dietmar; Pfefferling, Bert; Metzner, Christoph

    2014-01-01

    In earlier electron beam physical vapor deposition tests (EB-PVD), using a conventional copper crucible (A), high Si deposition rates at relatively high EB power together with a contamination level of 1016 cm-3 are demonstrated. To improve the rate vs. EB power relation as well as the Si layer purity, two alternative high rate EBPVD methods are investigated and reported here - a contact-less crucible setup (B) and a crucible-free setup (C).In these experiments comparable deposition rates of ~...

  8. Gamow-Teller strength distributions and electron capture rates for 55Co and 56Ni

    International Nuclear Information System (INIS)

    Nabi, Jameel-Un; Rahman, Muneeb-Ur

    2005-01-01

    The Gamow-Teller strength (GT) distributions and electron capture rates on 55 Co and 56 Ni have been calculated using the proton-neutron quasiparticle random phase approximation theory. We calculate these weak interaction mediated rates over a wide temperature (0.01x10 9 -30x10 9 K) and density (10-10 11 gcm -3 ) domain. Electron capture process is one of the essential ingredients involved in the complex dynamics of supernova explosion. Our calculations of electron capture rates show differences with the reported shell model diagonalization approach calculations and are comparatively enhanced at presupernova temperatures. We note that the GT strength is fragmented over many final states

  9. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  10. ITER Side Correction Coil Quench model and analysis

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Ciazynski, D.; Duchateau, J. L.; Gauthier, F.; Lacroix, B.

    2016-12-01

    Previous thermohydraulic studies performed for the ITER TF, CS and PF magnet systems have brought some important information on the detection and consequences of a quench as a function of the initial conditions (deposited energy, heated length). Even if the temperature margin of the Correction Coils is high, their behavior during a quench should also be studied since a quench is likely to be triggered by potential anomalies in joints, ground fault on the instrumentation wires, etc. A model has been developed with the SuperMagnet Code (Bagnasco et al., 2010) for a Side Correction Coil (SCC2) with four pancakes cooled in parallel, each of them represented by a Thea module (with the proper Cable In Conduit Conductor characteristics). All the other coils of the PF cooling loop are hydraulically connected in parallel (top/bottom correction coils and six Poloidal Field Coils) are modeled by Flower modules with equivalent hydraulics properties. The model and the analysis results are presented for five quench initiation cases with/without fast discharge: two quenches initiated by a heat input to the innermost turn of one pancake (case 1 and case 2) and two other quenches initiated at the innermost turns of four pancakes (case 3 and case 4). In the 5th case, the quench is initiated at the middle turn of one pancake. The impact on the cooling circuit, e.g. the exceedance of the opening pressure of the quench relief valves, is detailed in case of an undetected quench (i.e. no discharge of the magnet). Particular attention is also paid to a possible secondary quench detection system based on measured thermohydraulic signals (pressure, temperature and/or helium mass flow rate). The maximum cable temperature achieved in case of a fast current discharge (primary detection by voltage) is compared to the design hot spot criterion of 150 K, which includes the contribution of helium and jacket.

  11. Smooth and fast versus instantaneous quenches in quantum field theory

    Science.gov (United States)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-08-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.

  12. Smooth and fast versus instantaneous quenches in quantum field theory

    International Nuclear Information System (INIS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-01-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δt, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies http://dx.doi.org/10.1103/PhysRevLett.112.171601 and http://dx.doi.org/10.1007/JHEP02(2015)167 highlighted that the two protocols remain distinct in the limit δt→0 because of the relation of the quench rate to the UV cut-off, i.e., 1/δt≪Λ always holds in the fast smooth quenches while 1/δt∼Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δt, the correlator scales universally with δt, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δt drops out. The excess energy density is finite (for finite mδt) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδt→0 for d≥4, just as in an instantaneous quench, where it is UV divergent for d≥4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ>d/2.

  13. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  14. Quantum quench in an atomic one-dimensional Ising chain.

    Science.gov (United States)

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  15. Exponential decay and exponential recovery of modal gains in high count rate channel electron multipliers

    International Nuclear Information System (INIS)

    Hahn, S.F.; Burch, J.L.

    1980-01-01

    A series of data on high count rate channel electron multipliers revealed an initial drop and subsequent recovery of gains in exponential fashion. The FWHM of the pulse height distribution at the initial stage of testing can be used as a good criterion for the selection of operating bias voltage of the channel electron multiplier

  16. Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought.

    Science.gov (United States)

    Kitao, M; Lei, T T

    2007-01-01

    We investigated the patterns of response to a long-term drought in the field in cotton cultivars (genotypes) with known differences in their drought tolerance. Four cotton genotypes with varying physiological and morphological traits, suited to different cropping conditions, were grown in the field and subjected to a long-term moderate drought. In general, cotton leaves developed under drought had significantly higher area-based leaf nitrogen content (N (area)) than those under well irrigation. Droughted plants showed a lower light-saturated net photosynthetic rate (A (sat)) with lower stomatal conductance (g (s)) and intercellular CO (2) concentration (C (i)) than irrigated ones. Based on the responses of A (sat) to g (s) and C (i), there was no decreasing trend in A (sat) at a given g (s) and C (i) in droughted leaves, suggesting that the decline in A (sat) in field-grown cotton plants under a long-term drought can be attributed mainly to stomatal closure, but not to nonstomatal limitations. There was little evidence of an increase in thermal energy dissipation as indicated by the lack of a decrease in the photochemical efficiency of open PSII (F (v)'/F (m)') in droughted plants. On the basis of electron transport (ETR) and photochemical quenching (q (P)), however, we found evidence indicating that droughted cotton plants can circumvent the risk of excessive excitation energy in photosystem (PS) II by maintaining higher electron transport rates associated with higher N (area), even while photosynthetic rates were reduced by stomatal closure.

  17. Simulation of quenches in SSC magnets with passive quench protection

    International Nuclear Information System (INIS)

    Koepke, K.

    1985-06-01

    The relative ease of protecting an SSC magnet following a quench and the implications of quench protection on magnet reliability and operation are necessary inputs in a rational magnet selection process. As it appears likely that the magnet selection will be made prior to full scale prototype testing, an alternative means is required to ascertain the surviveability of contending magnet types. This paper attempts to provide a basis for magnet selection by calculating the peak expected quench temperatures in the 3 T Design C magnet and the 6 T Design D magnet as a function of magnet length. A passive, ''cold diode'' protection system has been assumed. The relative merits of passive versus active protection systems have been discussed in a previous report. It is therefore assumed that - given the experience gained from the Tevatron system - that an active quench protection system can be employed to protect the magnets in the eventuality of unreliable cold diode function

  18. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.

    Science.gov (United States)

    Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A

    2016-11-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.

  19. A new method of quench monitoring in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1978-01-01

    The quench level of different liquid scintillation counting samples is measured by comparing the responses (pulse heights) produced by the same energy electrons in each sample. The electrons utilized in the measurements are those of the maximum energy (Esub(max)) which are produced by the single Compton scattering process for the same energy gamma-rays in each sample. The Esub(max) response produced in any sample is related to the Esub(max) response produced in an unquenched, sealed standard. The difference in response on a logarithm response scale is defined as the ''H Number''. The H number is related to the counting efficiency of the desired radionuclide by measurement of a set of standards of known amounts of the radionuclide and different amounts of quench (standard quench curve). The concept of the H number has been shown to be theoretically valid. Based upon this proof, the features of the H number concept as embodied in the Beckman LS-8000 Series Liquid Scintillation Systems have been demonstrated. It has been shown that one H number is unique; it provides a method of instrument calibration and wide dynamic quench range measurements. Further, it has been demonstrated that the H number concept provides a universal quench parameter. Counting efficiency vs. H number plots are repeatable within the statistical limits of +-1% counting efficiency. By the use of the H number concept a very accurate method of automatic quench compensation (A.Q.C.) is possible. (T.G.)

  20. On the possibility of developing quasi-CW high-power high-pressure laser on 4p-4s transition of ArI with electron beam—optical pumping: quenching of 4s (3P2) lower laser level

    Science.gov (United States)

    Ionin, A. A.; Kholin, I. V.; L'dov, A. Yu; Seleznev, L. V.; Ustinovskii, N. N.; Zayarnyi, D. A.

    2017-12-01

    A new electron beam-optical procedure is proposed for quasi-cw pumping of high-pressure large-volume He-Ar laser on the 4p[1/2]1-4s[3/2]20 argon atom transition at the wavelength of 912.5 nm. It consists of creation and maintenance of a necessary density of the 4s[3/2]20 metastable state in the gain medium by a fast electron beam and subsequent optical pumping of the upper laser level via the classical three-level scheme using a laser diode. Absorption probing is used to study collisional quenching of Ar* metastable in electron-beam-excited high-pressure He-Ar mixtures with a low content of argon. The rate constants for plasma-chemical reactions Ar*  +  He  +  Ar  >  Ar2*   +  He (3.6  ±  0.4)  ×  10-33 cm6 s-1, Ar*  +  2He  >  HeAr*  +  He (4.4  ±  0.9)  ×  10-36 cm6 s-1 and Ar*  +  He  >  Products  +  He (2.4  ±  0.3)  ×  10-15 cm3 s-1 were for the first time measured.

  1. Electron transfer rates and energy releases during denitrification of municipal wastewater

    DEFF Research Database (Denmark)

    Abdul-Talib, S.; Ujang, Z; Vollertsen, J.

    2004-01-01

    could be simplified by a two-stage process. In the first stage, nitrate was utilised with significant accumulation of nitrite. In the second stage nitrite was utilised when nitrate depleted. Denitrification rates during the two stages were expressed in terms of electron equivalents (e-eq.) in order...... to compare the process when differennt electron acceptors namlely, nitrate and nitrite were utilised. The energy release rates during the two stages were calculated and compared....

  2. Rate coefficients for low-energy electron dissociative attachment to molecular hydrogen

    International Nuclear Information System (INIS)

    Horacek, J.; Houfek, K.; Cizek, M.; Murakami, I.; Kato, T.

    2003-02-01

    Calculation of rate constants for dissociative electron attachment to molecular hydrogen is reported. The calculation is based on an improved nonlocal resonance model of Cizek, Horacek and Domcke which takes fully into account the nonlocality of the resonance dynamics and uses potentials with correct asymptotic forms. The rate constants are calculated for all quantum numbers v and J of the target molecules and for electron temperature in the range 0-30000 K. (author)

  3. Tryptophan and ATTO 590: mutual fluorescence quenching and exciplex formation.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Beck, Christie; Winter, Arthur; Wells, Carson; Petrich, Jacob W

    2014-07-24

    Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.

  4. Phase formation in titanium alloys during their quenching from liquid state

    International Nuclear Information System (INIS)

    Golub, S.Ya.; Kotko, A.V.; Kuz'menko, N.N.; Kulak, L.D.; Firstov, S.A.; Khaenko, B.V.

    1992-01-01

    Methods of X-ray diffractin analysis, light and electron microscopy were applied to study structural state of titanium base alloys quenched from liquid state by spinning with cooling in inert gas or at the surface of solid heat exchanger. Phase formation under rapid cooling conditions was considered. The morphology of phases and mutual orientation of their crystal lattices were investigated along with the character of crystallization texture. It was revealed that on melt quenching with 10 5 -10 6 K/s cooling rates the growth of columnar branches of degenerated dendrites was accopanied by Si atoms movement of the order of 0.1 μm. Structure and crack resistance of compacted articles produced from rapidly solidified powders were under study

  5. Luminescence quenching by reversible ionization or exciplex formation/dissociation.

    Science.gov (United States)

    Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-11-20

    The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.

  6. Quench protection analysis of the Mu2e production solenoid

    International Nuclear Information System (INIS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions

  7. Quench protection analysis of the Mu2e production solenoid

    Science.gov (United States)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  8. Light Quality Affects Chloroplast Electron Transport Rates Estimated from Chl Fluorescence Measurements.

    Science.gov (United States)

    Evans, John R; Morgan, Patrick B; von Caemmerer, Susanne

    2017-10-01

    Chl fluorescence has been used widely to calculate photosynthetic electron transport rates. Portable photosynthesis instruments allow for combined measurements of gas exchange and Chl fluorescence. We analyzed the influence of spectral quality of actinic light on Chl fluorescence and the calculated electron transport rate, and compared this with photosynthetic rates measured by gas exchange in the absence of photorespiration. In blue actinic light, the electron transport rate calculated from Chl fluorescence overestimated the true rate by nearly a factor of two, whereas there was closer agreement under red light. This was consistent with the prediction made with a multilayer leaf model using profiles of light absorption and photosynthetic capacity. Caution is needed when interpreting combined measurements of Chl fluorescence and gas exchange, such as the calculation of CO2 partial pressure in leaf chloroplasts. © Crown copyright 2017.

  9. Holographic Jet Quenching

    Science.gov (United States)

    Ficnar, Andrej

    In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence. We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=infinity) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass mu and the mean free path lambda. In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor RAA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model. The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based

  10. Results of heater induced quenches on a 1-m SSC model dipole

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1985-10-01

    This report describes the results of a series of heater induced quenches on the 1-m long SSC model dipole D-12C-7 constructed at LBL. Test results of the following types are described: quench propagation velocities - axial; quench propagation velocities - transverse; and rate of temperature rise in the conductor. The primary purpose of these tests was to measure quench velocities at a variety of locations and for several currents/fields which can be used to refine the quench predictions for longer magnets. Because of limited data in the low field region of this magnet, it is recommended that it be retested with additional voltage taps. 20 figs., 6 tabs

  11. Long- and short-lived electrons with anomalously high collision rates in laser-ionized gases

    International Nuclear Information System (INIS)

    Kampfrath, Tobias; Perfetti, Luca; Tegeder, Petra; Wolf, Martin; Frischkorn, Christian; Gericke, Dirk O.

    2007-01-01

    Ultrashort broadband terahertz pulses are applied to probe the electron dynamics of gaseous Ar and O 2 following ionization by an intense femtosecond laser pulse. The conductivity in the plasma center is extracted by a modified Wentzel-Kramers-Brillouin approach. It exhibits a nearly perfect Drude-like spectral shape and yields the temporal evolution of the free-electron density and collision rate. While the electron density in the Ar plasma remains nearly constant during the first 200 ps after generation, it decays much faster in O 2 due to dissociative recombination which is only possible in molecular plasmas. Adding a small amount of the electron scavenger SF 6 to Ar reduces the electron lifetime in the plasma dramatically and allows us to determine the electron temperature to about 20 000 K. Furthermore, anomalously high, metal-like electron collision rates of up to 25 THz are found. Kinetic plasma theory substantially underestimates these rates pointing towards additional and more complex processes randomizing the total electronic momentum. Our results are relevant to both lightning control and generation of terahertz radiation by intense laser pulses in gases

  12. Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?

    International Nuclear Information System (INIS)

    Maximenko, Yulia; Segatskov, Dmitri A.

    2011-01-01

    A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problem to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.

  13. A high-repetition rate LWFA for studies of laser propagation and electron generation

    Science.gov (United States)

    He, Zhaohan; Easter, James; Hou, Bixue; Krushelnick, Karl; Nees, John; Thomas, Alec

    2010-11-01

    Advances in ultrafast optics today have enabled laser systems to deliver ever shorter and more intense pulses. When focused, such laser pulses can easily exceed relativistic intensities where the wakefield created by the strong laser electric field can be used to accelerate electrons. Laser wakefield acceleration of electrons holds promise for future compact electron accelerators or drivers of other radiation sources in many scientific, medical and engineering applications. We present experimental studies of laser wakefield acceleration using the λ-cubed laser at the University of Michigan -- a table-top high-power laser system operating at 500 Hz repetition rate. The high repetition rate allows statistical studies of laser propagation and electron acceleration which are not accessible with typical sub-0.1 Hz repetition rate systems. In addition, we compare the experiments with particle-in-cell simulations using the code OSIRIS.

  14. Quantum quenches in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  15. Quantum quenches in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)

    2017-04-10

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.

  16. Electronic circuit SG-6 type for electric differential manometer in the flow rate measuring system

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W; Pytel, K; Beldzikowski, W

    1978-01-01

    A system measuring the flow rate of a liquid or gas employing a ruft and a differential manometer needs the square rooting circuit providing the linearity of the output signal to the measured flow rate ratio. The paper describes the electronic circuit developed for this purpose.

  17. Estimating morbidity rates from electronic medical records in general practice: evaluation of a grouping system.

    NARCIS (Netherlands)

    Biermans, M.C.J.; Verheij, R.A.; Bakker, D.H. de; Zielhuis, G.A.; Vries Robbé, P.F. de

    2008-01-01

    Objectives: In this study, we evaluated the internal validity of EPICON, an application for grouping ICPCcoded diagnoses from electronic medical records into episodes of care. These episodes are used to estimate morbidity rates in general practice. Methods: Morbidity rates based on EPICON were

  18. Evolution of complexity following a global quench

    Science.gov (United States)

    Moosa, Mudassir

    2018-03-01

    The rate of complexification of a quantum state is conjectured to be bounded from above by the average energy of the state. A different conjecture relates the complexity of a holographic CFT state to the on-shell gravitational action of a certain bulk region. We use `complexity equals action' conjecture to study the time evolution of the complexity of the CFT state after a global quench. We find that the rate of growth of complexity is not only consistent with the conjectured bound, but it also saturates the bound soon after the system has achieved local equilibrium.

  19. Investigation of the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by certain substituted uracils

    Energy Technology Data Exchange (ETDEWEB)

    Anbazhagan, V. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Renganathan, R. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)], E-mail: rrengas@yahoo.com

    2009-04-15

    The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by a series of uracils has been studied in water and acetonitrile solvents using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e. 4, 8 and 12). The bimolecular quenching rate constant (k{sub q}) increases with increase in pH of uracils. In acidic pH, a pure hydrogen atom abstraction is proposed as the quenching mechanism. This is supported by a pronounced solvent deuterium isotope effect. Electron transfer from the anionic form of uracil to the excited state of DBO is proposed as a mechanism for quenching in basic pH on the basis of highly exergonic thermodynamics obtained from the Rehm-Weller equation. The variation of k{sub q} is explained on the basis of the electronic effect of substitution in uracils as well.

  20. Investigation of the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by certain substituted uracils

    International Nuclear Information System (INIS)

    Anbazhagan, V.; Renganathan, R.

    2009-01-01

    The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by a series of uracils has been studied in water and acetonitrile solvents using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e. 4, 8 and 12). The bimolecular quenching rate constant (k q ) increases with increase in pH of uracils. In acidic pH, a pure hydrogen atom abstraction is proposed as the quenching mechanism. This is supported by a pronounced solvent deuterium isotope effect. Electron transfer from the anionic form of uracil to the excited state of DBO is proposed as a mechanism for quenching in basic pH on the basis of highly exergonic thermodynamics obtained from the Rehm-Weller equation. The variation of k q is explained on the basis of the electronic effect of substitution in uracils as well

  1. Architecture of a software quench management system

    International Nuclear Information System (INIS)

    Jerzy M. Nogiec et al.

    2001-01-01

    Testing superconducting accelerator magnets is inherently coupled with the proper handling of quenches; i.e., protecting the magnet and characterizing the quench process. Therefore, software implementations must include elements of both data acquisition and real-time controls. The architecture of the quench management software developed at Fermilab's Magnet Test Facility is described. This system consists of quench detection, quench protection, and quench characterization components that execute concurrently in a distributed system. Collaboration between the elements of quench detection, quench characterization and current control are discussed, together with a schema of distributed saving of various quench-related data. Solutions to synchronization and reliability in such a distributed quench system are also presented

  2. Polyfluorophore Labels on DNA: Dramatic Sequence Dependence of Quenching

    Science.gov (United States)

    Teo, Yin Nah; Wilson, James N.

    2010-01-01

    We describe studies carried out in the DNA context to test how a common fluorescence quencher, dabcyl, interacts with oligodeoxynu-cleoside fluorophores (ODFs)—a system of stacked, electronically interacting fluorophores built on a DNA scaffold. We tested twenty different tetrameric ODF sequences containing varied combinations and orderings of pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and spacer (S) monomers conjugated to the 3′ end of a DNA oligomer. Hybridization of this probe sequence to a dabcyl-labeled complementary strand resulted in strong quenching of fluorescence in 85% of the twenty ODF sequences. The high efficiency of quenching was also established by their large Stern–Volmer constants (KSV) of between 2.1 × 104 and 4.3 × 105M−1, measured with a free dabcyl quencher. Interestingly, quenching of ODFs displayed strong sequence dependence. This was particularly evident in anagrams of ODF sequences; for example, the sequence BYDS had a KSV that was approximately two orders of magnitude greater than that of BSDY, which has the same dye composition. Other anagrams, for example EDSY and ESYD, also displayed different responses upon quenching by dabcyl. Analysis of spectra showed that apparent excimer and exciplex emission bands were quenched with much greater efficiency compared to monomer emission bands by at least an order of magnitude. This suggests an important role played by delocalized excited states of the π stack of fluorophores in the amplified quenching of fluorescence. PMID:19780115

  3. The quench detector on magnetic modulator for the UNK quench protection system

    International Nuclear Information System (INIS)

    Bolotin, I.M.; Enbaev, A.V.; Erokhin, A.N.; Gridasov, V.I.; Priyma, M.V.; Sychev, V.A.; Vasiliev, L.M.

    1992-01-01

    When designing and constructing superconducting high energy accelerators, the development of the Quench Detection System (QDS) for superconducting (SC) magnets becomes an important and critical problem. At present there is experience in developing such systems for the Tevatron (FNAL, USA) and HERA (Hamburg, Germany). The machines for more than 3 TeV-the UNK (Russia) and SSC (USA), which are presently under construction, have very large circumferences, 21 and 87 km, respectively. The QDS's, similar to those of the Tevatron, require a larger part of the active components of the electronic equipment be placed in the machine tunnel close to the magnets, and protected from irradiation or additional surface buildings will have to be constructed. In either case the cost of such a QDS increases. In addition the former ones reliability decreases and maintenance becomes more difficult. For such machines, a QDS in which the quench signal, in each superconducting magnet (SCM) or groups of SCM'S, is extracted with the help of a bridge circuit (BC) appears to be more suitable. The half coils of SCM's are connected as two arms of the bridge and the resistors placed in the vacuum vessels of the magnet cryostats are connected to the other two. The off-balance signal of each BC is enhanced with the help of magnetic amplifiers. This note describes the experimental prototype of a bridge-type Quench Detector (QD) based on a magnetic amplifier Magnetic Modulator (MM) type, allowing one not only to detect a quench in a SCM, but also making feasible a wider system capability, namely: to record the signals from all SC elements during a quench for further analysis of its causes; to check the presence of short circuits of the ring electromagnet bus relative to the cryostats and to localize their position

  4. Defect production in nonlinear quench across a quantum critical point.

    Science.gov (United States)

    Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi

    2008-07-04

    We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.

  5. Theoretical study of electronic transfer current rate at dye-sensitized solar cells

    Science.gov (United States)

    AL-Agealy, Hadi J. M.; AlMaadhede, Taif Saad; Hassooni, Mohsin A.; Sadoon, Abbas K.; Ashweik, Ahmed M.; Mahdi, Hind Abdlmajeed; Ghadhban, Rawnaq Qays

    2018-05-01

    In this research, we present a theoretical study of electronic transfer kinetics rate in N719/TiO2 and N719/ZnO dye-sensitized solar cells (DSSC) systems using a simple model depending on the postulate of quantum mechanics theory. The evaluation of the electronic transition current rate in DSSC systems are function of many parameters such that; the reorientation transition energies ΛSe m D y e , the transition coupling parameter ℂT(0), potential exponential effect e-(E/C-EF ) kBT , unit cell volume VSem, and temperature T. Furthermore, the analysis of electronic transfer current rate in N719/TiO2 and N719/ZnO systems show that the rate upon dye-sensitization solar cell increases with increases of transition coupling parameter, decreasing potential that building at interface a results of different material in this devices and increasing with reorientation transition energy. On the other hand, we can find the electronic transfer behavior is dependent of the dye absorption spectrum and mainly depending on the reorientation of transition energy. The replacement of the solvents in both DSSC system caused increasing of current rates dramatically depending on polarity of solvent in subset devices. This change in current rate of electron transfer were attributed to much more available of recombination sites introduced by the solvents medium. The electronic transfer current dynamics are shown to occurs in N719/TiO2 system faster many time compare to ocuures at N719/ZnO system, this indicate that TiO2 a is a good and active material compare with ZnO to using in dye sensitized solar cell devices. In contrast, the large current rate in N719/TiO2 comparing to ZnO of N719/ZnO systems indicate that using TiO2 with N719 dye lead to increasing the efficiency of DSSC.

  6. Rate constant of free electrons and holes recombination in thin films CdSe

    International Nuclear Information System (INIS)

    Radychev, N.A.; Novikov, G.F.

    2006-01-01

    Destruction kinetics of electrons generated in thin films CdSe by laser impulse (wave length is 337 nm, period of impulse - 8 nc) is studied by the method of microwave photoconductivity (36 GHz) at 295 K. Model of the process was suggested using the analysis of kinetics of photo-responses decay, and it allowed determination of rate constant of recombination of free electrons and holes in cadmium selenide - (4-6)x10 -11 cm 3 s -1 [ru

  7. Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A. [SIMAP, INPGrenoble-CNRS-UJF BP 75, 38402 St Martin d' Heres Cedex (France)], E-mail: alexis.deschamps@simap.grenoble-inp.fr; Texier, G.; Ringeval, S. [CEA-DAM centre de Valduc, 21120 Is-Sur-Tille (France); SIMAP, INPGrenoble-CNRS-UJF BP 75, 38402 St Martin d' Heres Cedex (France); Delfaut-Durut, L. [CEA-DAM centre de Valduc, 21120 Is-Sur-Tille (France)

    2009-02-15

    Medium strength Al-Zn-Mg age hardening alloys are widely used when a low quench sensitivity is required, such as in welding applications. In this work we present a detailed characterization of the precipitate microstructures resulting from different quench rates from the solution treatment, and from the subsequent artificial ageing to the T6 state, in an Al-4.5Zn-1Mg (wt%) alloy. This work is carried out using differential scanning calorimetry, transmission electron microscopy and in situ small-angle X-ray scattering. It is shown that for quench rate between 5 and 200 deg. C/min substantial heterogeneous precipitation is observed, nucleated on dispersoids and on grain boundaries, the former being of much larger size than the latter. During subsequent ageing, it is shown that the precipitation kinetics in the material unaffected by the quench-induced precipitates is independent on the quench rate used.

  8. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  9. A comparative study of different methods for calculating electronic transition rates

    Science.gov (United States)

    Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan

    2018-03-01

    We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.

  10. Dosimetric accuracy at low monitor unit setting in electron beams at different dose rates

    International Nuclear Information System (INIS)

    Ravikumar, M.; Ravichandran, R.; Supe, Sanjay S.; Sharma, Anil K.

    1999-01-01

    As electron beam with low monitor unit (LMU) settings are used in some dosimetric studies, better understanding of accuracy in dose delivery at LMU setting is necessary. The dose measurements were carried out with 0.6 cm 3 farmer type ion chamber at d max in a polystyrene phantom. Measurements at different MUs show that the dose linearity ratio (DLR) increases as the MU setting decreases below 20 MU and DLRs are found to increase when the incident electron beams have higher energies. The increase in DLR is minimum for low dose rate setting for all five electron beam energies (6, 9, 12, 16 and 20 MeV). As the variation in dose delivery is machine-specific, a detailed study should be conducted before the low MU setting is implemented. Since errors in dose delivery are high at higher dose rates, low dose rate may be better at low MU unit setting. (author)

  11. The Dose Rate Dependence of the Yield of Trapped Electrons in Crystalline Ice

    DEFF Research Database (Denmark)

    Nilsson, Johan Daniel Göran; Pagsberg, Palle Bjørn

    1980-01-01

    in competition with other reactions and we propose a simple model where we assume that the mobile electrons can undergo bimolecular bulk reactions with protons and OH radicals. Rate constants of 3.0 × 1015 M−1 S−1 and 1.4 × 1014 M−1 S−1 for the two reactions were required in the model in order to account......The yield of localized excess electrons in crystalline H2O ice has been studied as a function of the dose rate at various temperatures in the range −10 to −40°C. The G value was found to decrease significantly with increasing dose rate. Thus it appears that the localization of electrons takes place...

  12. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  13. Porous debris behavior modeling of QUENCH-02, QUENCH-03 and QUENCH-09 experiments

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2006-01-01

    The heat-up, melting, relocation, hydrogen generation phenomena, relevant for high-temperature stages both in a reactor case and small-scale integral tests like QUENCH, are governed in particular by heat and mass transfer in porous debris and molten pools which are formed in the core region. Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03, QUENCH-09) plays a considerable role and its adequate modeling is important for thermal analysis. In particular, the analysis of QUENCH experiments shows that the major hydrogen release takes place in debris and melt regions formed in the upper part of the fuel assembly. The porous debris model was implemented in the Russian best estimate numerical code RATEG/SVECHA/HEFEST developed for modelling thermal hydraulics and severe accident phenomena in a reactor. The original approach for debris evolution is developed in the model from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (author)

  14. Triggering, front-end electronics, and data acquisition for high-rate beauty experiments

    International Nuclear Information System (INIS)

    Johnson, M.; Lankford, A.J.

    1988-04-01

    The working group explored the feasibility of building a trigger and an electronics data acquisition system for both collider and fixed target experiments. There appears to be no fundamental technical limitation arising from either the rate or the amount of data for a collider experiment. The fixed target experiments will likely require a much higher rate because of the smaller cross section. Rates up to one event per RF bucket (50 MHz) appear to be feasible. Higher rates depend on the details of the particular experiment and trigger. Several ideas were presented on multiplicity jump and impact parameter triggers for fixed target experiments. 14 refs., 3 figs

  15. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  16. Improved rate control for electron-beam evaporation and evaluation of optical performance improvements.

    Science.gov (United States)

    Gevelber, Michael; Xu, Bing; Smith, Douglas

    2006-03-01

    A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.

  17. Study of effect of composition, irradiation and quenching on ionic ...

    Indian Academy of Sciences (India)

    The electrolyte samples are also quenched at liquid nitrogen temperature and conductivity measurements are carried out. The ionic conductivity at room temperature exhibits a characteristic peak for the composition, = 46. Electron beam irradiation results in an increase in conductivity for all compositions by a factor of 2–3.

  18. Thermal quenching of thermoluminescence in quartz samples of various origin

    International Nuclear Information System (INIS)

    Subedi, B.; Oniya, E.; Polymeris, G.S.; Afouxenidis, D.; Tsirliganis, N.C.; Kitis, G.

    2011-01-01

    The effect of thermal quenching stands among the most important properties in the thermoluminescence (TL) of quartz on which many applications of TL are based. Since the quartz samples used in various applications are all of different origin it is useful to investigate whether the values of the thermal quenching parameters, i.e. the activation energy for thermal quenching W and a parameter C which describes the ratio of non-radiative to radiative luminescence transitions, evaluated mainly in specific quartz samples can be extrapolated to quartz samples of unknown origin as well as to quartz samples which are annealed at high temperatures. In the present work the TL glow curve of a series of un-annealed and annealed natural and synthetic quartz samples were studied as a function of the heating rate between 0.25 K/s and 16 K/s. Using an indirect fitting method it was found that the thermal quenching parameters W and C in most of the quartz samples are very similar to the values accepted in the literature. Furthermore, in some cases the thermal quenching parameters W and C are not the same for all TL glow-peaks in the same glow-curve. Finally, the strong external treatment of annealing the quartz samples at very high temperature can also influence at least one of the thermal quenching parameters.

  19. Electron-impact excitation rate-coefficients and polarization of subsequent emission for Ar"+ ion

    International Nuclear Information System (INIS)

    Dipti; Srivastava, Rajesh

    2016-01-01

    Electron impact excitation in Ar"+ ions has been studied by using fully relativistic distorted wave theory. Calculations are performed to obtain the excitation cross-sections and rate-coefficients for the transitions from the ground state 3p"5 (J=3/2) to fine-structure levels of excited states 3p"44s, 3p"44p, 3p"45s, 3p"45p, 3p"43d and 3p"44d. Polarization of the radiation following the excitation has been calculated using the obtained magnetic sub-level cross-sections. Comparison of the present rate-coefficients is also done with the previously reported theoretical results for some unresolved fine structure transitions. - Highlights: • Fully relativistic distorted wave theory has been used to study the excitation of fine-structure states of Ar"+. • We have calculated electron-impact excitation cross-sections for the wide range of incident electron energies. • Electron impact excitation rate-coefficients are calculated as a function of electron temperature. • Polarization of photons emitted following the decay of the excited fine-structure states are also reported.

  20. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  1. Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amin-Ahmadi, B., E-mail: behnam.amin-ahmadi@ua.ac.be [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Idrissi, H. [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Galceran, M. [Université Libre de Bruxelles, Matters and Materials Department, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Colla, M.S. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve (Belgium); Raskin, J.P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Pardoen, T. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve (Belgium); Godet, S. [Université Libre de Bruxelles, Matters and Materials Department, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Schryvers, D. [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-07-31

    The influence of the deposition rate on the formation of growth twins in nanocrystalline Pd films deposited by electron beam evaporation is investigated using transmission electron microscopy. Statistical measurements prove that twin boundary (TB) density and volume fraction of grains containing twins increase with increasing deposition rate. A clear increase of the dislocation density was observed for the highest deposition rate of 5 Å/s, caused by the increase of the internal stress building up during deposition. Based on crystallographic orientation indexation using transmission electron microscopy, it can be concluded that a {111} crystallographic texture increases with increasing deposition rate even though the {101} crystallographic texture remains dominant. Most of the TBs are fully coherent without any residual dislocations. However, for the highest deposition rate (5 Å/s), the coherency of the TBs decreases significantly as a result of the interaction of lattice dislocations emitted during deposition with the growth TBs. The analysis of the grain boundary character of different Pd films shows that an increasing fraction of high angle grain boundaries with misorientation angles around 55–65° leads to a higher potential for twin formation. - Highlights: • Fraction of twinned grains and twin boundary density increase with deposition rate. • Clear increase of dislocation density was observed for the highest deposition rate. • A moderate increase of the mean grain size with increase of deposition rate is found. • For the highest deposition rate, the twin boundaries lose their coherency. • Fraction of high angle grain boundary (55–65) increases with deposition rate.

  2. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  3. Optimization of the ATLAS (s)MDT readout electronics for high counting rates

    Energy Technology Data Exchange (ETDEWEB)

    Kortner, Oliver; Kroha, Hubert; Nowak, Sebastian; Schmidt-Sommerfeld, Korbinian [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)

    2016-07-01

    In the ATLAS muon spectrometer, Monitored Drift Tube (MDT) chambers are used for precise muon track measurement. For the high background rates expected at HL-LHC, which are mainly due to neutrons and photons produced by interactions of the proton collision products in the detector and shielding, new small-diameter muon drift tube (sMDT)-chambers with half the drift tube diameter of the MDT-chambers and ten times higher rate capability have been developed. The standard MDT readout electronics uses bipolar shaping in front of a discriminator. This shaping leads to an undershoot of same charge but opposite polarity following each pulse. With count rates also the probability of having the subsequent pulse in this undershoot increases, which leads to losses in efficiency and spatial resolution. In order to decrease this effect, discrete prototype electronics including Baseline Restoration has been developed. Results of their tests and data taken with them during muon beamtime measurements at CERN's Gamma Irradiation Facility will be presented. which causes a deterioration of signal pulses by preceding background hits, leading to losses in muon efficiency and drift tube spatial resolution. In order to mitigate these so-called signal pile-up effects, new readout electronics with active baseline restoration (BLR) is under development. Discrete prototype electronics with BLR functionality has been tested in laboratory measurements and in the Gamma Irradiation Facility at CERN under high γ-irradiation rates. Results of the measurements are presented.

  4. Growth rate enhancement of free-electron laser by two consecutive ...

    Indian Academy of Sciences (India)

    2014-06-03

    Jun 3, 2014 ... been the subject of many papers published by different groups all around the world. The radiation is generated by relativistic electron beam passing through a wiggler. ..... Shown in figure 2 are plots of growth rate, Im ¯k, vs.

  5. Antibiotics in Dutch general practice: nationwide electronic GP database and national reimbursement rates.

    NARCIS (Netherlands)

    Akkerman, A.E.; Kuyvenhoven, M.M.; Verheij, T.J.M.; Dijk, L. van

    2008-01-01

    PURPOSE: In order to assess whether different databases generate information which can be reliable compared with each other, this study aimed to assess to which degree prescribing rates for systemic antibiotics from a nationwide electronic general practitioner (GP) database correspond with national

  6. On the influence of the electron dose rate on the HRTEM image contrast

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Juri, E-mail: ju.barthel@fz-juelich.de [RWTH Aachen University, Ahornstraße 55, 52074 Aachen (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lentzen, Markus; Thust, Andreas [Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2017-05-15

    We investigate a possible dependence between the applied electron dose-rate and the magnitude of the resulting image contrast in HRTEM of inorganic crystalline objects. The present study is focussed on the question whether electron irradiation can induce excessively strong atom vibrations or displacements, which in turn could significantly reduce the resulting image contrast. For this purpose, high-resolution images of MgO, Ge, and Au samples were acquired with varying dose rates using a C{sub S}-corrected FEI Titan 80–300 microscope operated at 300 kV accelerating voltage. This investigation shows that the magnitude of the signal contrast is independent from the dose rates occurring in conventional HRTEM experiments and that excessively strong vibrations or displacements of bulk atoms are not induced by the applied electron irradiation. - Highlights: • No dependence between electron dose rate and HRTEM image contrast is found. • This finding is in full accordance with established solid-state physics theory. • Object-related causes for the previous Stobbs-factor phenomenon are ruled out.

  7. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  8. Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler

    Science.gov (United States)

    Zirak, H.; Jafari, S.

    2015-06-01

    In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.

  9. Characteristics of current quenches during disruptions in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Zhang, Y; Chen, Z Y; Fang, D; Jin, W; Huang, Y H; Wang, Z J; Yang, Z J; Chen, Z P; Ding, Y H; Zhang, M; Zhuang, G

    2012-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electro-magnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. The characteristics of current quenches in spontaneous disruptions in the J-TEXT tokamak have been investigated. It is shown that the waveforms for the fastest current quenches are more accurately fitted by linear current decays than exponential, although neither is a good fit in many slower cases. The minimum current quench time is about 2.4 ms for the J-TEXT tokamak. The maximum instantaneous current quench rate is more than seven times the average current quench rate in J-TEXT. (paper)

  10. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  11. Evaluation of the ionization quenching correction for several liquid scintillators

    International Nuclear Information System (INIS)

    Los Arcos, J.M.; Borras, C.

    1990-01-01

    The most appropiate computational model for the ionization quench-ing function Q(E) is analyzed for electrons in liquid scintillators. A numerical evaluation of Q(E) from 0.1 keV to 3 MeV which the kB parameter varying between 0.005 and 0.010 cm/MeV is presented for seven scintillators; Toluene, Toluene-Alcohol, PCS, Toluene-CC14, INSTAGEL, Dioxane-Naphtalene and HISAFE II. The numerical result are summarized as tables of least squares fitting coefficient which make easy the computation of Q(E).(Author)

  12. Bioanalytical Applications of Fluorenscence Quenching.

    Science.gov (United States)

    1986-02-10

    fluorescence is observed. Thus, ’ the enzymes (in this case phosphorylase C) which can hydrolyze the lecithin , can be determined by measuring the released...encapsulated in lecithin liposomes. In this manner the fluorescence is self-quenched. When the liposomes are disrupted, the dye is released and

  13. Assessment of electronic component failure rates on the basis of experimental data

    International Nuclear Information System (INIS)

    Nitsch, R.

    1991-01-01

    Assessment and prediction of failure rates of electronic systems are made using experimental data derived from laboratory-scale tests or from the practice, as for instance from component failure rate statistics or component repair statistics. Some problems and uncertainties encountered in an evaluation of such field data are discussed in the paper. In order to establish a sound basis for comparative assessment of data from various sources, the items of comparison and the procedure in case of doubt have to be defined. The paper explains two standard methods proposed for practical failure rate definition. (orig.) [de

  14. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    Science.gov (United States)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  15. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  16. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  17. The numerical evaluation on non-radiative multiphonon transition rate from different electronic bases

    International Nuclear Information System (INIS)

    Zhu Bangfen.

    1985-10-01

    A numerical calculation on the non-radiative multiphonon transition probability based on the adiabatic approximation (AA) and the static approximation (SA) has been accomplished in a model of two electronic levels coupled to one phonon mode. The numerical results indicate that the spectra based on different approximations are generally different apart from those vibrational levels which are far below the classical crossing point. For large electron-phonon coupling constant, the calculated transition rates based on AA are more reliable; on the other hand, for small transition coupling the transition rates near or beyond the cross region are quite different for two approximations. In addition to the diagonal non-adiabatic potential, the mixing and splitting of the original static potential sheets are responsible for the deviation of the transition rates based on different approximations. The relationship between the transition matrix element and the vibrational level shift, the Huang-Rhys factor, the separation of the electronic levels and the electron-phonon coupling is analysed and discussed. (author)

  18. Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laporta, V. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari, Italy and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Celiberto, R. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Italy and Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari (Italy); Tennyson, J. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2014-12-09

    Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.

  19. Quantum quenches in the Luttinger model and its close relatives

    Science.gov (United States)

    Cazalilla, M. A.; Chung, Ming-Chiang

    2016-06-01

    A number of results on quantum quenches in the Luttinger and related models are surveyed with emphasis on post-quench correlations. For the Luttinger model and initial gaussian states, we discuss both sudden and smooth quenches of the interaction and the emergence of a steady state described by a generalized Gibbs ensemble. Comparisons between analytics and numerics, and the question of universality or lack thereof are also discussed. The relevance of the theoretical results to current and future experiments in the fields of ultracold atomic gases and mesoscopic systems of electrons is also briefly touched upon. Wherever possible, our approach is pedagogical and self-contained. This work is dedicated to the memory of our colleague Alejandro Muramatsu.

  20. Characterization of plasma current quench during disruptions at HL-2A

    Science.gov (United States)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  1. Quench/reflood modeling in MELCOR

    International Nuclear Information System (INIS)

    Gauntt, R.O.

    2001-01-01

    The authors describe the reactor accident simulation model MELCOR. It comprises hydrodynamic investigations on reactor core quenching, hydrogen generation in the reactor core vessel, quench front advances. Preliminary comparisons to data are reasonable but need further validation. (uke)

  2. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  3. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  4. Heat transfer model for quenching by submerging

    International Nuclear Information System (INIS)

    Passarella, D N; Varas, F; MartIn, E B

    2011-01-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  5. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  6. Fuel rod quenching with oxidation and precursory cooling

    International Nuclear Information System (INIS)

    Davidi, A.; Elias, E.; Olek, S.

    1999-01-01

    During a loss-of-coolant-accident in LWR fuel rods may be temporarily exposed thus reaching high temperature levels. The injection of cold water into the core, while providing the necessary cooling to prevent melting may also generate steam inducing exothermal oxidation of the cladding. A number of high temperature quenching experiments [I] have demonstrated that during the early phase of the quenching process, the rate of hydrogen generation increased markedly and the surface temperatures rose rapidly. These effects are believed to result from thermal stresses breaking up the oxide layer on the zircalloy cladding, thus exposing the inner surface to oxidizing atmosphere. Steam reacts exothermally with the metallic components of the newly formed surface causing temporarily local temperature escalation. The main objective of this study is to develop and assess a one-dimensional time-dependent rewetting model to address the problem of quenching of hot surfaces undergoing exothermic oxidation reactions. Addressing a time-dependent problem is an important aspect of the work since it is believed that the progression of a quench-front along a hot oxidizing surface is an unsteady process. Several studies dealing with time-dependent rewetting problems have been published, e.g. [2]-[5], but none considers oxidation reactions downstream of the quench-front. The main difficulty in solving time-dependent rewetting problems stems from the fact that either the quench-front velocity or the quench-front positions constitute a time-dependent eigenvalue of the problem. The model is applied to describe the interrelated processes of cooling and exothermic steam-metal reactions at the vapor zirconium-cladding interface during quenching of degraded fuel rods. A constant heat transfer coefficient is assumed upstream of the quenching front whereas the combined effect of oxidation and post dry-out cooling is described by prescribing a heat flux distribution of general form downstream. The

  7. THE USE OF ELECTRONIC JOURNALS IN SCORE RATING ACCOUNTING SYSTEM OF EDUCATIONAL ACHIEVEMENTS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    И Н Куринин

    2016-12-01

    Full Text Available The article describes a method of using electronic journals as a tool for efficient organization of teacher’s practical work in conditions of computerization of educational process and the widespread implementation of credit-modular system of educational process organization and grade-rating system for basic educational programs proficiency examination. A version of the electronic journal designed by the authors and realized in the program MS Excel is also presented in the article. An example of a completed “Academic Progress” page of the university educational web portal is discussed. It contains a marked electronic student grade book section and the stated conditions and criteria for grades allocation, according to a 100-point scale.

  8. Free energy correlation of rate constants for electron transfer between organic systems in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, D

    1975-07-15

    Recent experimental data concerning the rate constants for electron transfer reactions of organic systems in aqueous solutions and their equilibrium constants is examined for possible correlation. The data is correlated quite well by the Marcus theory, if a reorganization parameter, lambda, of 18 kcal/mole is used. Assuming that the only contribution to lambda is the free energy of rearrangement of the water molecules, an effective radius of 5 A for the reacting entities is estimated. For the zero free energy change reaction, i.e., electron exchange between a radical ion and its parent molecule, a rate constant of about 5 X 10/sup 7/ M/sup -1/ s/sup -1/ is predicted. (auth)

  9. Reliability prediction system based on the failure rate model for electronic components

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Lee, Hwa Ki

    2008-01-01

    Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. Among the reliability prediction methods are the statistical analysis based method, the similarity analysis method based on an external failure rate database, and the method based on the physics-of-failure model. In this study, we developed a system by which the reliability of electronic components can be predicted by creating a system for the statistical analysis method of predicting reliability most easily. The failure rate models that were applied are MILHDBK- 217F N2, PRISM, and Telcordia (Bellcore), and these were compared with the general purpose system in order to validate the effectiveness of the developed system. Being able to predict the reliability of electronic components from the stage of design, the system that we have developed is expected to contribute to enhancing the reliability of electronic components

  10. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.

    Science.gov (United States)

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-03-10

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  11. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors

    Directory of Open Access Journals (Sweden)

    Nozomu Tsuruoka

    2017-03-01

    Full Text Available The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  12. Improving Rates of Post-Essure Hysterosalpingography in an Urban Population Using Electronic Tracking Reminders.

    Science.gov (United States)

    Virginia Hu, Yu-Han; Arora, Kavita Shah

    2017-02-01

    To demonstrate the efficacy of electronic reminders for follow-up hysterosalpingography (HSG) after Essure hysteroscopic sterilization in an urban tertiary care hospital obstetrics and gynecology practice. Retrospective cohort study (Canadian Task Force classification II-3). Obstetrics and gynecology practice at a university-affiliated urban tertiary care teaching hospital. Two hundred and fifty patients who underwent Essure hysteroscopic sterilization between June 2011 and July 2014. Implementation of electronic reminders for the office staff. Two hundred and fifty of 259 patients (96.5%) underwent Essure hysteroscopic sterilization and successful placement of coils into bilateral Fallopian tubes. Among these 250 patients, 135 (54%) returned for HSG at 3 months post-Essure as advised at the time of procedure. The use of electronic reminders prompted another 45 patients (18%) to return for HSG, improving the total post-Essure follow-up rate to 72%. Electronic reminders for the office staff of an urban tertiary care hospital's obstetrics and gynecology practice is an effective method for improving the rate of post-Essure HSG. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  13. Passive quench arrest by a chimney induced deluge at every quench front

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1984-01-01

    This chapter describes a magnet in which a growing quench stops itself spontaneously within a fraction of one winding turn because vapor in quench-heated channels generates a progressively increasing downflow of liquid in advance of each of the quench fronts. The downflow eventually becomes a deluge as the quench grows. The design of the multiple arrested quench magnet is discussed. It is shown how to construct a magnet so that if an arrested quench arises when it is at its highest operating current, peak nucleate boiling will exist in all quenching channels

  14. Carrier density independent scattering rate in SrTiO3-based electron liquids.

    Science.gov (United States)

    Mikheev, Evgeny; Raghavan, Santosh; Zhang, Jack Y; Marshall, Patrick B; Kajdos, Adam P; Balents, Leon; Stemmer, Susanne

    2016-02-10

    We examine the carrier density dependence of the scattering rate in two- and three-dimensional electron liquids in SrTiO3 in the regime where it scales with T(n) (T is the temperature and n ≤ 2) in the cases when it is varied by electrostatic control and chemical doping, respectively. It is shown that the scattering rate is independent of the carrier density. This is contrary to the expectations from Landau Fermi liquid theory, where the scattering rate scales inversely with the Fermi energy (EF). We discuss that the behavior is very similar to systems traditionally identified as non-Fermi liquids (n density-independent scattering rates have been observed. The results indicate that the applicability of Fermi liquid theory should be questioned for a much broader range of correlated materials and point to the need for a unified theory.

  15. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    International Nuclear Information System (INIS)

    Guelorget, Bruno; Francois, Manuel; Vial-Edwards, Cristian; Montay, Guillaume; Daniel, Laurent; Lu, Jian

    2006-01-01

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force (ε t ≅ 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements

  16. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)]. E-mail: bruno.guelorget@utt.fr; Francois, Manuel [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Vial-Edwards, Cristian [Departemento de Ingenieria Mecanica y Metalurgica, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, 6904411 Santiago (Chile); Montay, Guillaume [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Daniel, Laurent [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Lu, Jian [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2006-01-15

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force ({epsilon} {sup t} {approx_equal} 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements.

  17. Large electron transfer rate effects from the Duschinsky mixing of vibrations

    DEFF Research Database (Denmark)

    Sando, Gerald M.; Spears, Kenneth G; Hupp, Joseph T

    2001-01-01

    vibrations are very important. The Duschinsky effect arises when two electronic states have vibrational normal mode coordinate systems that are rotated and translated relative to each other. We use a conventional quantum rate model for ET, and the examples include 6-8 vibrations, where two vibrational modes...... are mixed with different amounts of coordinate rotation. The multidimensional Franck-Condon factors (FCF) are computed with standard algorithms and recently developed recursion relations. When displaced, totally symmetric modes are involved, rates with Duschinsky mixing can increase several orders...

  18. A multiplexed electronic architecture for opto-electronic patch sensor to effectively monitor heart rate and oxygen saturation

    Science.gov (United States)

    Yan, Liangwen; Hu, Sijung; Alharbi, Samah; Blanos, Panagiotis

    2018-02-01

    To effectively capture human vital signs, a multi-wavelength optoelectronic patch sensor (MOEPS), together with a schematic architecture of electronics, was developed to overcome the drawbacks of present photoplethysmographic (PPG) sensors. To obtain a better performance of in vivo physiological measurement, the optimal illuminations, i.e., light emitting diodes (LEDs) in the MOEPS, whose wavelength is automatically adjusted to each specific subject, were selected to capture better PPG signals. A multiplexed electronic architecture has been well established to properly drive the MOEPS and effectively capture pulsatile waveforms at rest. The protocol was designed to investigate its performance with the participation of 11 healthy subjects aged between 18 and 30. The signals obtained from green (525nm) and orange (595nm) illuminations were used to extract heart rate (HR) and oxygen saturation (SpO2%). These results were compared with data, simultaneously acquired, from a commercial ECG and a pulse oximeter. Considering the difficulty for current devices to attain the SpO2%, a new computing method, to obtain the value of SpO2%, is proposed depended on the green and orange wavelength illuminations. The values of SpO2% between the MOEPS and the commercial Pulse Oximeter devics showed that the results were in good agreement. The values of HR showed close correlation between commercial devices and the MOEPS (HR: r1=0.994(Green); r2=0.992(Orange); r3=0.975(Red); r4=0.990(IR)).

  19. Defect production rates by electrons, ions and neutrons in cubic metals

    International Nuclear Information System (INIS)

    Jung, P.; Nielsen, B.R.; Andersen, H.H.

    1982-01-01

    The results of an interlaboratory program to study low temperature damage rates in dilute alloys of 300 ppM Zr in vanadium, niobium and molybdenum with electrons, light ions, fission neutrons and high energy neutrons are summarized. Additional experiments and literature data supplied complete sets of data also for the fcc metals Al, Cu and Pt. From the initial damage rates, displacement functions for each material were derived which give the number of stable defects produced by a recoil event of a certain knock-on energy. The low and high energy part of the displacement function was determined from the results of the electron and neutron irradiations, respectively, while the light ion data supplied information on the intermediate energy range. The displacement function allows the reliable calculation of atomic displacement rates also for particles and/or energies not employed in this program. For all metals the displacement rates for high energy neutrons scaled reasonably with the minimum displacement energies. This allows to estimate neutron damage rates also for those cubic metals where no high energy neutron results are available. For stainless steel, e.g., an average displacement energy of about 120 eV is deduced. The results are suggested to find practical use in defect calculations for fusion reactor first wall technology and in correlating the corresponding simulation experiments

  20. TASK 2: QUENCH ZONE SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  1. The LHC quench protection system

    CERN Multimedia

    2009-01-01

    The new quench protection system (QPS) has the crucial roles of providing an early warning for any part of the superconducting coils and busbars that develop high resistance, as well as triggering the switch-off of the machine. Over 2000 new detectors will be installed around the LHC to make sure every busbar segment between magnets is monitored and protected. One of the major consolidation activities for the LHC is the addition of two new detectors to the quench protection system. A magnet quench occurs when part of the superconducting cable becomes normally-conducting. When the protection system detects an increased resistance the huge amount of energy stored in the magnet chains is safely extracted and ‘dumped’ into specially designed resistors. In the case of the main dipole chain, the stored energy in a single LHC sector is roughly the same as the kinetic energy of a passenger jet at cruising speed. The first new detector is designed to monitor the superconducting...

  2. The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0

    Science.gov (United States)

    Socolovsky, Miguel; Almaini, Omar; Hatch, Nina A.; Wild, Vivienne; Maltby, David T.; Hartley, William G.; Simpson, Chris

    2018-05-01

    We investigate the relationship between environment and galaxy evolution in the redshift range 0.5 distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different time-scales. Fast quenching acts on galaxies with high specific star formation rates, operating on time-scales shorter than the cluster dynamical time (<1 Gyr). In contrast, slow quenching affects galaxies with moderate specific star formation rates, regardless of their stellar mass, and acts on longer time-scales (≳ 1 Gyr). Of the cluster galaxies in the stellar mass range 9.0 < log (M/M⊙) < 10.5 quenched during this epoch, we find that 73 per cent were transformed through fast quenching, while the remaining 27 per cent followed the slow quenching route.

  3. Quench characteristics of a two-strand superconducting cable and the influence of its length

    NARCIS (Netherlands)

    Mulder, G.B.J.; Mulder, G.B.J.; Krooshoop, Hendrikus J.G.; Vysotski, V.S.; Vysotski, V.S.; van de Klundert, L.J.M.; van de Klundert, L.J.M.

    1992-01-01

    The quench process of a multi-strand cable was investigated using the simplest system: two twisted wires. Several properties of the quench, such as the commutation of currents, the time scale, the resistance rate, and the maximum voltage, were determined experimentally or by calculation. Particular

  4. AGN Feedback and Its Quenching Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Combes, Francoise, E-mail: francoise.combes@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, College de France, PSL, Sorbonne University UPMC, Paris (France)

    2017-09-21

    In the last decade, observations have accumulated on gas outflows in galaxies, and in particular massive molecular ones. The mass outflow rate is estimated between 1 and 5 times the star formation rate. For the highest maximal velocities, they are driven by AGN; these outflows are therefore a clear way to moderate or suppress star formation. Some of the most convincing examples at low redshift come from the radio mode, when the radio jets are inclined toward the galaxy plane, or expand in the hot intra-cluster medium, in cool core clusters. However, AGN feedback can also be positive in many occasions, and the net effect is difficult to evaluate. The quenching efficiency is discussed in view of recent observations.

  5. Influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Tianbing, E-mail: tianbing_1988@sina.com [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China); Li, Huiqu; Tang, Pengjun; He, Xiaolei; Li, Peiyong [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China)

    2016-08-15

    15% vol. SiC{sub p}/2009 composites prepared by powder metallurgy were quenched in room temperature water and 20% polyethylene glycol (PEG) solution respectively, then aged naturally. The influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites were investigated by means of scanning/transmission electron microscope, hardness and tensile test. The results showed that the number of precipitated phase in water quenched composites increased, with much finer in size and more homogeneous in distribution compared with 20% PEG quenched one. Meanwhile, the density of dislocation in composites by water quenching was also much higher. Intergranular corrosion did not occur with the two quenching agents. The 20% PEG quenched composites exhibited slight lower hardness and higher electrical conductivity than that of water quenched one. The two quenched composites showed same level in tensile strength, but the yield strength of water-quenched composites was higher (8 MPa, 3%). The usage of 20% PEG reduced thermal stress and minimized warping deformation of the parts, it is a more suitable quenching agent for SiC{sub p}/2009 composites in engineering application fields. - Highlights: •SiC{sub p}/2009 composites quenched by water and 20% PEG solution were investigated. •Aging precipitation behavior of SiC{sub p}/2009 composites is sensitive to quenchant. •Influence of quenching agent on properties of SiC{sub p}/2009 composites are minimal. •Quenching with 20% PEG reduces thermal stress of SiC{sub p}/2009 composites remarkably. •20% PEG is a more suitable quenching agent for SiC{sub p}/2009 composites than water.

  6. Numerical simulation for quenching meshes with TONUS platform

    International Nuclear Information System (INIS)

    Bin, Chen; Hongxing, Yu

    2009-01-01

    For mitigation of hydrogen risks during severe accidents to protect the integrity of containment, PAR and ignitors are used in current advanced nuclear power plants. But multiple combustions induced by ignitors and consequent DDT phenomena are not practically eliminated. An innovative design call 'quenching meshes' is considered to confine hydrogen flame within one compartment by metallic meshes, so that hazardous flame propagation can be prevented. The numerical simulation results based on discretization of the full Navier-Stokes equations with global one-step reaction represented by Arrhenius laminar combustion model have shown the possibility of flame quenching 'numerically'. This is achieved via multiplication of the combustion rate expression by a Heaviside function having an ignition temperature as a parameter. Qualitative behavior of the computed flow shows that the flame velocity diminishes while passing through a quenching mesh, while qualitative analysis based on the energy balance reveals the mechanism of flame quenching. All the above analysis has been performed for a stoichiometric mixture and normal initial pressure and temperature for initial conditions. For further research we would like to suggest the investigation of the influence of the mixture composition, initial pressure and/or temperature on the quenching criteria

  7. Electron scattering rate in epitaxial YBa2Cu3O7 superconducting films

    Science.gov (United States)

    Flik, M. I.; Zhang, Z. M.; Goodson, K. E.; Siegal, M. P.; Phillips, Julia M.

    1992-09-01

    This work determines the electron scattering rate in the a-b plane of epitaxial YBa2Cu3O7 films using two techniques. Infrared spectroscopy yields the scattering rate at temperatures of 10, 78, and 300 K by fitting reflectance data using thin-film optics and a model for the free-carrier conductivity. The scattering rate is also obtained using kinetic theory and an extrapolation of normal-state electrical resistivity data to superconducting temperatures based on the Bloch theory for the phonon-limited electrical resistivity of metals. The scattering rates determined using both techniques are in agreement and show that the electron mean free path in the a-b plane of YBa2Cu3O7 superconducting films is three to four times the coherence length. Hence YBa2Cu3O7 is pure but not in the extreme pure limit. An average defect interaction range of 4 nm is obtained using the defect density resulting from flux-pinning considerations.

  8. Quenching mechanism of exciplex fluorescence by inverted micelles

    International Nuclear Information System (INIS)

    Sato, Chika; Kikuchi, Koichi

    1992-01-01

    Using an emission-absorption laser photolysis method, the quenching mechanism of the pyrene-N,N-dimethylaniline exciplex fluorscence by inverted micelles is studied. The rate of enhanced intersystem crossing depends upon water pool size and is reduced by external magnetic fields. 15 refs., 3 figs., 2 tabs

  9. Quench propagation tests on the LHC superconducting magnet string

    CERN Document Server

    Coull, L; Krainz, G; Rodríguez-Mateos, F; Schmidt, R

    1996-01-01

    The installation and testing of a series connection of superconducting magnets (three 10 m long dipoles and one 3 m long quadrupole) has been a necessary step in the verification of the viability of the Large Hadron Collider at CERN. In the LHC machine, if one of the lattice dipoles or quadrupoles quenches, the current will be by-passed through cold diodes and the whole magnet chain will be de-excited by opening dump switches. In such a scenario it is very important to know whether the quench propagates from the initially quenching magnet to adjacent ones. A series of experiments have been performed with the LHC Test String powered at different current levels and at different de-excitation rates in order to understand possible mechanisms for such a propagation, and the time delays involved. Results of the tests and implications regarding the LHC machine operation are described in this paper.

  10. Study of the thermo-electronic stability of LTS conductors and contribution to the study of the thermo-electric stability of HTS conductors. Novel techniques to simulate quench precursors in superconducting electro-magnets

    International Nuclear Information System (INIS)

    Trillaud, F.

    2005-09-01

    Most of this work deals with the development of new heater technology to simulate quench precursors in super-conducting electro-magnets. The carbon paste point heater and 2 alternative technologies have been used: induction coils and the diode laser. 2 main experimental setups with 2 different heaters have been used to study the stability of Cu/NbTi composite wires. The order of magnitude of the results obtained with the charged point heater and the diode laser is consistent. Our work covered both low critical temperature (LTS) conductors and high critical temperature (HTS) conductors. A large body of data has been gathered on quench energies and normal zone propagation velocities (NZPV). Concerning quench energy: LTS conductors appear largely more sensitive to heat disturbances than HTS conductors. NZPV enables one to define the criteria for which a magnet can be considered as self-protected. It is commonly assumed that, below 1 m/s, active protection is necessary to ensure safe quenches. This is the case for HTS conductors whose NZPV is of the order of a few centimeters per seconds, at most. However, the NZPVs of LTS conductors are above a few meters per seconds. While HTS conductors can suffer from local hot spots which diffuse slowly resulting in damaging overheating, LTS conductors spread the normal zone quickly enough owing to their good thermal conductivity to minimize local overheating. In addition, this gives enough time to dump the energy of the magnet. This work clears a new path to carry out accurate and reproducible experiment on superconductors. It demonstrates the powerfulness of diode laser technology for stability studies. Numerical simulations of the thermal behaviour of a Cu/NbTi multi-filament composite wire have been performed, they are based on a simplified transient liquid helium heat exchange model. This model appears to be not accurate enough to simulate the early time evolution of the voltage between the current sharing temperature and the

  11. Electron transfer rates and equilibria between substituted phenoxide ions and phenoxyl radicals

    International Nuclear Information System (INIS)

    Steenken, S.; Neta, P.

    1979-01-01

    The rate constants for electron transfer from a series of substituted isomeric dihydroxy- and diaminobenzenes to different substituted phenoxyl radicals were measured by observing the decay or buildup of one of the radicals invoved. In many cases the electron transfer reactions were reversible and the equilibrium constants could be calculated from the individual rate constants for attainment of equilibrium and from the concentrations of the species involved at equilibrium. From the equilibrium constants the one-electron redox potentials for 15 individual Q - ./Q 2- pairs were determined, using the value for hydroquinone (23 mV at pH 13.5) as a reference. The potential for catechol (43 mV) is near that of hydroquinone; resorcinol is oxidized much less readily (300 mV), while phenol is even a weaker reductant (>500mV). Methyl, methoxy, and hydroxy substituents decrease the redox potentials while acetyl and carboxyl substituents increase these values. Ascorbate has a potential (15mV) similar to that of hydroquinone, while TMPD (82mV) and p-phenylenediamine (183mV) are less easily oxidized

  12. The Impact of an Electronic Ordering System on Blood Bank Specimen Rejection Rates.

    Science.gov (United States)

    Forest, Stefanie K; Shirazi, Maryam; Wu-Gall, Charlotte; Stotler, Brie A

    2017-01-01

    To evaluate the impact that an electronic ordering system has on the rate of rejection of blood type and screen testing samples and the impact on the number of ABO blood-type discrepancies over a 4-year period. An electronic ordering system was implemented in May 2011. Rejection rates along with reasons for rejection were tracked between January 2010 and December 2013. A total of 40,104 blood samples were received during this period, of which 706 (1.8%) were rejected for the following reasons: 382 (54.0%) unsigned samples, 235 (33.0%) mislabeled samples, 57 (8.0%) unsigned requisitions, 18 (2.5%) incorrect tubes, and 14 (1.9%) ABO discrepancies. Of the samples, 2.5% were rejected in the year prior to implementing the electronic ordering system compared with 1.2% in the year following implementation ( P  blood sample rejection. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    Science.gov (United States)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  14. Two-electron one-photon decay rates in doubly ionized atoms

    International Nuclear Information System (INIS)

    Baptista, G.B.

    1984-01-01

    The transion rate for the two-electron one-photon and one-electron one-photon decaying processes in atoms bearing initially two K-shell vacancies were evaluated for Ne up to Zr. The two-electron one-photon decay process is considered to be the result of the interaction between the jumping electrons and their interaction with the radiation field. The calculation is performed in second order perturbation theory and the many particle states are constructed from single particle solutions. The present approach allows one to discuss several aspects of the decaying process. The results obtained for the branching ratio between the two processes reproduces reasonably well available experimental data and show an almost linear dependence on the second power of the atomic number. A comparison with other theoretical predictions is also presented for the two decaying processes and the strong dependence of the branching ratio on the initial configuration of the decaying atom is pointed out. (Author) [pt

  15. On the role of the gas environment, electron-dose-rate, and sample on the image resolution in transmission electron microscopy

    DEFF Research Database (Denmark)

    Ek, Martin; Jespersen, Sebastian Pirel Fredsgaard; Damsgaard, Christian Danvad

    2016-01-01

    on the electron-dose-rate. In this article, we demonstrate that both the total and areal electron-dose-rates work as descriptors for the dose-rate-dependent resolution and are related through the illumination area. Furthermore, the resolution degradation was observed to occur gradually over time after......The introduction of gaseous atmospheres in transmission electron microscopy offers the possibility of studying materials in situ under chemically relevant environments. The presence of a gas environment can degrade the resolution. Surprisingly, this phenomenon has been shown to depend...... initializing the illumination of the sample and gas by the electron beam. The resolution was also observed to be sensitive to the electrical conductivity of the sample. These observations can be explained by a charge buildup over the electron-illuminated sample area, caused by the beam–gas–sample interaction...

  16. Structural and Optical Changes of Poly-Vinylidene Fluoride by Electron Irradiation at High Dose Rate

    International Nuclear Information System (INIS)

    Jaleh, B.; Fakhri, P.; Borhani, M.; Habibi, S.; Noroozi, M.

    2012-01-01

    Poly-vinylidene fluoride films were prepared and irradiated by 10MeV electrons at different doses ranging from 50 to 300kGy with a dose rate of 10kGy/s. The FTIR results indicated that no major phase content change was observed. The optical absorption spectra indicated that the electron irradiation results in shifting of the absorption peak, appearance of a new peak and increasing the band gap (Eg). These changes may be due to the breaking of polymer chains and creation of new defects. The X-ray diffraction analysis of samples indicated that the crystallinity did not show any major changes. Concerning the gel fraction measurements, it was observed that gel fraction increases with increasing the dose, where it is an indication of the formation of cross-linked films.

  17. n l -> n' l' transition rates in electron and proton - Rydberg atom collision

    Science.gov (United States)

    Vrinceanu, Daniel

    2017-04-01

    Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).

  18. Two dimensional localization of electrons and positrons under high counting rate

    International Nuclear Information System (INIS)

    Barbosa, A.F.; Anjos, J.C.; Sanchez-Hernandez, A.; Pepe, I.M.; Barros, N.

    1997-12-01

    The construction of two wire chambers for the experiment E831 at Fermilab is reported. Each chamber includes three wire planes - one anode and two orthogonal cathodes - in which the wires operate as independent proportional counters. One of the chambers is rotated with respect to the other, so that four position coordinates may be encoded for a charged particle crossing both chambers. Spatial resolution is determined by the wire pitch: 1 mm for cathodes, 2 mm for anodes. 320 electronic channels are involved in the detection system readout. Global counting rates in excess to 10 7 events per second have been measured, while the average electron-positron beam intensity may be as high as 3 x 10 7 events per second. (author)

  19. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Loureiro, J.

    1983-06-01

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  20. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  1. Quench Detection and Magnet Protection Study for MFTF. LLL final review

    International Nuclear Information System (INIS)

    1979-06-01

    The results of a Quench Detection and Magnet Protection Study for MFTF are summarized. The study was directed toward establishing requirements and guidelines for the electronic package used to protect the MFTF superconducting magnets. Two quench detection schemes were analyzed in detail, both of which require a programmable quench detector. Hardware and software recommendations for the quench detector were presented as well as criteria for dumping the magnet energy in the event of a quench. Overall magnet protection requirements were outlined in a detailed Failure Mode Effects and Criticality analysis, (FMECA). Hardware and software packages compatible with the FMECA were recommended, with the hardware consisting of flexible, dedicated intelligent modules specifically designed for magnet protection

  2. Dependence of electron beam instability growth rates on the beam-plasma system parameters

    International Nuclear Information System (INIS)

    Strangeway, R.J.

    1982-01-01

    Electron beam instabilites are studied by using a simple model for an electron beam streaming through a cold plasma, the beam being of finite width perpendicular to the ambient magnetic field. Through considerations of finite geometry and the coldness of the beam and background plasma, an instability similar to the two stream instability is assumed to be the means for wave growth in the system. Having found the maximum growth rate for one set of beam-plasma system parameters, this maximum growth rate is traced as these parameters are varied. The parameters that describe the system are the beam velocity (v/sub b/), electron gyrofrequency to ambient electron plasma frequency ratio (Ω/sub e//ω/sub p/e), the beam to background number density ratio (n/sub b//n/sub a/), and the beam width (a). When Ω/sub e//ω/sub p/e>1, a mode with Ω/sub e/<ω<ω/sub u/hr is found to be unstable, where Ω is the wave frequency and ω/sub u/hr is the upper hybrid resonance frequency. For low values of n/sub b//n/sub a/ and Ω/sub e/<ω/sub p/e, this mode is still present with ω/sub p/e<ω<ω/sub u/hr. If the beam density is large, n/sub b//n/sub a/approx. =1, the instability occures for frequencies just above the electron gyrofrequency. This mode may well be that observed in laboratory plasma before the system undergoes the beam-plasma discharge. There is another instability present, which occurs for ωapprox. =ω/sub p/e. The growth rates for this mode, which are generally larger than those found for the ωapprox. =ωuhr mode, are only weakly dependent on Ω/sub d//ω/sub p/e. That this mode is not always observed in the laboratory implies that some factors not considered in the present theory suppress this mode, specifically, finite beam length

  3. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    Science.gov (United States)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  4. Observation of magnetic flux generated spontaneously during a rapid quench of superconducting films

    International Nuclear Information System (INIS)

    Maniv, A.; Polturak, E.; Koren, G.

    2003-01-01

    We report observations of spontaneous formation of magnetic flux lines during a rapid quench of YBa 2 Cu 3 O 7-δ films through T c . This effect is predicted according to the Kibble-Zurek mechanism of creation of topological defects of the order parameter during a symmetry-breaking phase transition. Our previous experiment, at a quench rate of 20 K/s, gave null results. In the present experiment, the quench rate was increased to >10 8 K/s. The amount of spontaneous flux increases weakly with the cooling rate

  5. Characterization of water based nanofluid for quench medium

    Science.gov (United States)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub

  6. Low-energy rate enhancement in recombination processes of electrons into bare uranium ions

    International Nuclear Information System (INIS)

    Wu Yong; Zeng Siliang; Duan Bin; Yan Jun; Wang Jianguo; Chinese Academy of Sciences, Lanzhou; Dong Chenzhong; Ma Xinwen

    2007-01-01

    Based on the Dirac-Fork-Slater method combined with the multichannel quantum defect theory, the recombination processes of electrons into bare uranium ions (U 92+ ) are investigated in the relative energy range close to zero, and the x-ray spectrum emitted in the direct radiative recombination and cascades processes are simulated. Compared with the recent measurement, it is found that the rate enhancement comes from the additional populations on high Rydberg states. These additional populations may be produced by other recombination mechanisms, such as the external electric-magnetic effects and the many-body correlation effects, which still remains an open problem. (authors)

  7. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  8. Electron-beam CT coronary angiography in the patients with high heart rate arrhythmia or pacemaker

    International Nuclear Information System (INIS)

    Dong Zhi; Zhu Jiemin; Liu Zhe; Liu Junbo; Li Youjie; Qi Ji

    2006-01-01

    Objective: To report the clinical applicability of coronary angiography for patients with high heart rate, arrhythmia or cardiac pacing using the new-generation of electron-beam CT (e-Speed). Methods: EBCT (GE e-Speed) coronary angiography was performed in 36 eases (male 27, female 9, mean age 58), including the heart rate more than 90 bpm in 20 patients, frequent ectopic beats in 11 cases, implantation of cardiac pacemaker in 4 patients and the unacceptable MSCT image quality due to variability of interscan heart rate (from 82 bpm to 104 bpm) in 1 case. After volume data set was acquired using spiral mode with prospective ECG-gating, the reconstructions of MIP, CPR, VR and Cine were performed. The VR quality was evaluated using a five-point scale. Results: The quality of coronary imaging in all of 36 cases were acceptable. The total visualization rate of coronary artery branches was 80.0%. Left main, left anterior artery and right coronary artery were visualized in all patients and in 94.3% of all cases circumflex artery were visible. Conclusion: EBCT (e-Speed) is applicable in noninvasive coronary angiography for patients with high heart rate, arrhythmia or implanted cardiac pacemaker', and this examination can obtain satisfied diagnosis. (authors)

  9. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  10. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  11. Front-end electronics for high rate, position sensitive neutron detectors

    CERN Document Server

    Yu, B; Harder, J A; Hrisoho, A; Radeka, V; Smith, G C

    2002-01-01

    Advanced neutron detectors for experiments at new spallation sources will require greater counting rate capabilities than previously attainable. This necessitates careful design of both detector and readout electronics. As part of a new instrument for protein crystallography at LANSCE, we are constructing a detector whose concept was described previously (IEEE Trans. Nucl. Sci. NS-46 (1999) 1916). Here, we describe the signal processing circuit, which is well suited for sup 3 He detectors with a continuous interpolating readout. The circuit is based on standard charge preamplification, transmission of this signal over 20 meters or so, followed by sample and hold using a second order gated baseline restorer. This latter unit provides high rate capability without requiring pole-zero and tail cancellation circuits. There is also provision for gain-adjustment. The circuits are produced in surface mounted technology.

  12. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  13. Quenching behaviour of hot zircaloy tube

    International Nuclear Information System (INIS)

    Chinchole, A.S.; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    The quenching process plays a very important role in case of safety of nuclear reactors. During large break Loss of Coolant Accident in a nuclear reactor, the cooling water from the system is lost. Under this condition, cold water is injected from emergency core cooling system. Quenching behaviour of such heated rod bundle is really complex. It is well known that nanofluids have better heat removal capability and high heat transfer coefficient owing to enhanced thermal properties. Alumina nano-particles result in better cooling abilities compared with the traditionally used quenching media. In this paper, the authors have carried out experiments on quenching behaviour of hot zircaloy tube with demineralized water and nanofluids. It was observed that, the tube got quenched within few seconds even with the presence of decay heat and shows slightly reduced quenching time compared with DM water. (author)

  14. Rapid Quench in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  15. SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella [Institute for Astronomy, Department of Physics, ETH Zurich, 8093 Zurich (Switzerland)

    2016-12-10

    There are very strong observed correlations between the specific star formation rates (sSFRs) of galaxies and their mean surface mass densities, Σ, as well as other aspects of their internal structure. These strong correlations have often been taken to argue that the internal structure of a galaxy must play a major physical role, directly or indirectly, in the control of star formation. In this paper we show by means of a very simple toy model that these correlations can arise naturally without any such physical role once the observed evolution of the size–mass relation for star-forming galaxies is taken into account. In particular, the model reproduces the sharp threshold in Σ between galaxies that are star-forming and those that are quenched and the evolution of this threshold with redshift. Similarly, it produces iso-quenched-fraction contours in the f {sub Q}( m , R {sub e}) plane that are almost exactly parallel to lines of constant Σ for centrals and shallower for satellites. It does so without any dependence on quenching on size or Σ and without invoking any differences between centrals and satellites, beyond the different mass dependences of their quenching laws. The toy model also reproduces several other observations, including the sSFR gradients within galaxies and the appearance of inside-out build-up of passive galaxies. Finally, it is shown that curvature in the main-sequence sSFR–mass relation can produce curvature in the apparent B / T ratios with mass. Our analysis therefore suggests that many of the strong correlations that are observed between galaxy structure and sSFR may well be a consequence of things unrelated to quenching and should not be taken as evidence of the physical processes that drive quenching.

  16. Electron impact excitation cross sections and rates from the ground state of atomic calcium

    CERN Document Server

    Samson, A M

    2001-01-01

    New R-matrix calculations are presented for electron excitation of atomic calcium. The target state expansion includes 22 states: 4s sup 2 sup 1 S; 4snl sup 1 sup , sup 3 L, where nl is 3d, 4p, 5s, 5p, 4d and 4f; 3d4p sup 1 sup , sup 3 P,D,F; and 4p sup 2 sup 3 P, sup 1 D, sup 1 S terms. The calculation is in LS coupling, and configuration interaction involving 3p subshell correlation is included. Electron impact excitation cross sections from the 4s sup 2 ground state to the next 10 states are tabulated for low energies, and thermally averaged effective collision strengths are tabulated over a range of electron temperatures from 1000 to 10,000 K. Comparisons are made with previous cross sections calculations for the 4s sup 2 -4s4p sup 3 P deg. transition; excellent agreement is found with experimentally derived rates for 4s sup 2 -4s4p sup 1 P deg

  17. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    International Nuclear Information System (INIS)

    Lin, M-W; Jovanovic, I

    2014-01-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented. (paper)

  18. Performance of the MAGCOOL-subcooler cryogenic system after SSC quadrupole quenches

    International Nuclear Information System (INIS)

    Wu, K.C.

    1993-01-01

    The subcooler assembly installed in the MAGCOOL magnet test area at Brookhaven National Laboratory has been used for testing SSC dipoles, quadrupoles and a spool piece since 1989. A detailed description of the system, its steady state capacity and the performance after quenches of a 50 mm SSC dipole were given. Subsequent studies on low current quenches of the SSC dipoles and quenches of the RHIC dipoles were also carried out. In this paper, the performance of the subcooler after quenches of the SSC quadrupole QCC404 is presented. Pressures, temperatures and flow rates in the magnet cooling loop after magnet quenches are given as a function of time. The cooling rates and total energy removed by cooling during quench recovery have been calculated for quench currents between 2000 and 7952 amperes. Because the inductance of the quadrupole is about one tenth that of a SSC dipole, the stored energy released is small and the impact on the system is mild. The cooling loop pressure never exceeds 12 atmospheres and the cryogenic system recovers in less than 15 minutes. As in all past studies, the peak pressure and temperature in the magnet cooling loop are linearly proportional to the energy released during a quench and excellent agreement between the total cooling provided and the magnetic stored energy is found

  19. Whole cell quenched flow analysis.

    Science.gov (United States)

    Chiang, Ya-Yu; Haeri, Sina; Gizewski, Carsten; Stewart, Joanna D; Ehrhard, Peter; Shrimpton, John; Janasek, Dirk; West, Jonathan

    2013-12-03

    This paper describes a microfluidic quenched flow platform for the investigation of ligand-mediated cell surface processes with unprecedented temporal resolution. A roll-slip behavior caused by cell-wall-fluid coupling was documented and acts to minimize the compression and shear stresses experienced by the cell. This feature enables high-velocity (100-400 mm/s) operation without impacting the integrity of the cell membrane. In addition, rotation generates localized convection paths. This cell-driven micromixing effect causes the cell to become rapidly enveloped with ligands to saturate the surface receptors. High-speed imaging of the transport of a Janus particle and fictitious domain numerical simulations were used to predict millisecond-scale biochemical switching times. Dispersion in the incubation channel was characterized by microparticle image velocimetry and minimized by using a horizontal Hele-Shaw velocity profile in combination with vertical hydrodynamic focusing to achieve highly reproducible incubation times (CV = 3.6%). Microfluidic quenched flow was used to investigate the pY1131 autophosphorylation transition in the type I insulin-like growth factor receptor (IGF-1R). This predimerized receptor undergoes autophosphorylation within 100 ms of stimulation. Beyond this demonstration, the extreme temporal resolution can be used to gain new insights into the mechanisms underpinning a tremendous variety of important cell surface events.

  20. Corium quench in deep pool mixing experiments

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.; Gregorash, D.; Aeschlimann, R.; Sienicki, J.J.

    1985-01-01

    The results of two recent corium-water thermal interaction (CWTI) tests are described in which a stream of molten corium was poured into a deep pool of water in order to determine the mixing behavior, the corium-to-water heat transfer rates, and the characteristic sizes of the quenched debris. The corium composition was 60% UO 2 , 16% ZrO 2 , and 24% stainless steel by weight; its initial temperature was 3080 K, approx.160 K above the oxide phase liquidus temperature. The corium pour stream was a single-phase 2.2 cm dia liquid column which entered the water pool in film boiling at approx.4 m/s. The water subcooling was 6 and 75C in the two tests. Test results showed that with low subcooling, rapid steam generation caused the pool to boil up into a high void fraction regime. In contrast, with large subcooling no net steam generation occurred, and the pool remained relatively quiescent. Breakup of the jet appeared to occur by surface stripping. In neither test was the breakup complete during transit through the 32 cm deep water pool, and molten corium channeled to the base where it formed a melt layer. The characteristic heat transfer rates measured 3.5 MJ/s and 2.7 MJ/s during the fall stage for small and large subcooling, respectively; during the initial stage of bed quench, the surface heat fluxes measured 2.4 MW/m 2 and 3.7 MW/m 2 , respectively. A small mass of particles was formed in each test, measuring typically 0.1 to 1 mm and 1 to 5 mm dia for the large and small subcooling conditions, respectively. 9 refs., 13 figs., 1 tab

  1. Quench antenna for superconducting particle accelerator magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Devred, A.; Kim, K.

    1993-10-01

    We report on the design, fabrication, and test of an assembly of stationary pickup coils which can be used to localize quench origins. After describing the pickup coils configuration, we develop a simple model of current redistribution which allows interpretation of the measured voltages and determination of the turn of the magnet coil in which the quench started. The technique is illustrated by analyzing the data from a quench of a 5-cm-aperture, 15-m-long SSC dipole magnet prototype

  2. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  3. ASTERIX a new facility for simulation of dose rate effects on electronics

    International Nuclear Information System (INIS)

    Johan, A.; Azais, B.; Malaval, C.; Raboisson, G.; Roche, M.

    1989-01-01

    ASTERIX is a pulsed X-ray generator used to simulate and study dose rate effects on electronic equipments. This generator was built by the Centre de VALDUC of French Atomic Energy Commission, to the request of CEG. The housing of the generator was conceived in such a way as to minimize the stray signals due to electromagnetic radiations emitted by the generator during the shots, or by X-ray direct effects on cables or surrounding electronic equipments associated to components and systems under test. The radiation pulse width is 35 ns (FWHM) with a rise time of 18 ns. In normal use the dose rate amplitude reached inside silicon are respectively: 2 x 10 12 cGy (Si)/s on a 80 cm 2 area in contact with the converter; 1.5 x 10 11 cGy(Si)/s on a 700 cm 2 area and of 2 x 10 10 cGy(Si)/s at 1 meter from the converter [fr

  4. Transient quenching of superheated debris beds during bottom reflood

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients

  5. Heat-induced electron emission in paraelectric phase of triglycine sulfate heated with great rate

    CERN Document Server

    Sidorkin, A A; Rogazinskaya, O V; Milovidova, S D

    2002-01-01

    One recorded experimentally heat-induced electron emission in ferroelectric triglycine sulfate (TGS) crystal within temperature range exceeding the Curie point by 10-15 K. One studied cases of q = dT/dt various rates of linear heating of specimens of TGS nominally pure crystal and TGS crystal with chromium impurity. Increase of heating rate is shown to result in increase of emission current density within the whole investigated range of temperatures. Temperature of emission occurrence depends on q rate negligibly. At the same time, temperature of emission disappearance monotonically increases with q growth. At q below 1 K/min it is localized below the Curie point. At q = 4-5 K/min the mentioned temperature reaches 60-65 deg C. In TGS crystal with chromium impurity the temperature of emission occurrence is close to the case of pure TGS. In this case, the range of emission drawing in paraphase here is by about 2 times narrower in contrast to the case of pure TGS heated with the same rate

  6. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers.

    Science.gov (United States)

    Burns, Katrina N; Sun, Kan; Fobil, Julius N; Neitzel, Richard L

    2016-01-19

    Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people's livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen's Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman's ρ 0.46, p stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  7. Growth rate of dislocation loop in Fe-Ni-Cr alloy under Kr+ ion and electron irradiation

    International Nuclear Information System (INIS)

    Kimoto, T.; Allen, C.W.; Rehn, L.E.

    1991-10-01

    In order to examine the effect of irradiating particle species on the growth rate of radiation-induced dislocation loops, a solution-annealed Fe-25Ni-15Cr-0.02C alloy was irradiated at 723 K first by 1.5 MeV Kr + ions for 2520 sec, then by 1.5 MeV Kr + ions and 1.0 MeV electrons simultaneously for 780 sec, and finally by 1.0 MeV electrons for 780 sec with the HVEM-Tandem Facility in Argonne National Laboratory. The calculated damage rate by 1.5 MeV Kr + ions was 5.8 x 10 -4 dpa/s, and that by 1.0 MeV electrons was 1 x 10 -4 dpa/s. The growth rate of a dislocation loop located at the center of the specimen was 7 x 10 -3 nm/s for the Kr + ion irradiation, 4 x 10 -2 nm/s for the simultaneous Kr + and electron irradiation, and (2--3) x 10 -2 nm/s for the electron irradiation. This implies that the electron irradiation is about 19 times more effective in the growth of radiation-induced dislocation loops than the Kr + ion irradiation. The dislocation loop growth rate under the simultaneous Kr + and electron irradiation is higher than the sum of the growth rates under the individual Kr + and electron irradiations. 5 refs., 4 figs

  8. An experimental study on quenching of a radially stratified heated porous bed

    International Nuclear Information System (INIS)

    Nayak, Arun K.; Sehgal, Bal Raj; Stepanyan, Armen V.

    2006-01-01

    The quenching characteristics of a volumetrically-heated particulate bed composed of radially stratified sand layers were investigated experimentally in the POMECO facility. The sand bed simulates the corium particulate debris bed which is formed when the molten corium released from the vessel fragments in water and deposits on the cavity floor during a postulated severe accident in a light water reactor (LWR). The electrically-heated bed was quenched by water from a water column established over top of it, and later also with water coming from its bottom, which was circulating from the water overlayer through downcomers. A series of experiments were conducted to reveal the effects of the size of downcomers, and their locations in the bed, on the quenching characteristics of the radially stratified debris beds. The downcomers were found to significantly increase the bed quenching rate. To simulate the non-condensable gases generated during the MCCI, air and argon were injected from the bottom of the bed at different flow rates. The effects of gas flow rate and its properties on the quenching behaviour were observed. The results indicate that the non-condensable gas flows reduce the quenching rate significantly. The gas properties also affect the quenching characteristics

  9. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    Science.gov (United States)

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  10. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy

    International Nuclear Information System (INIS)

    Liu, Shengdan; Li, Chengbo; Han, Suqi; Deng, Yunlai; Zhang, Xinming

    2015-01-01

    Highlights: • The quench-induced hardness inhomogeneity in 7055 Al alloy decreases by natural aging. • The reason is discussed based on natural aging effect on microstructural inhomogeneity. • Natural aging decreases the difference of hardening precipitates due to slow quenching. • GPII zones appear in the rapidly-quenched sample after natural aging for 17,280 h. - Abstract: The effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy was investigated by means of end quenching technique, transmission electron microscopy and differential scanning calorimetry thermal analysis. The hardness inhomogeneity in the end-quenched specimens after artificial aging decreases with the increase of natural aging time prior to artificial aging. The quench-induced differences in the amount and size of η′ phase are large in the end-quenched specimen after artificial aging at 120 °C for 24 h, leading to high hardness inhomogeneity. Natural aging for a long time results in a larger amount of stable GPI zones in the slowly-quenched sample, and thus decreases such differences in the end-quenched specimens after subsequent artificial aging, leading to lower hardness inhomogeneity. The hardness inhomogeneity can be reduced from 14% to be 4% by natural aging for 17,280 h prior to artificial aging

  11. Analysis of fluorescence quenching of pyronin B and pyronin Y by molecular oxygen in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Celebi, Neslihan [Faculty of Arts and Sciences, Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Arik, Mustafa [Faculty of Arts and Sciences, Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Onganer, Yavuz [Faculty of Arts and Sciences, Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey)]. E-mail: yonganer@atauni.edu.tr

    2007-09-15

    The fluorescence quenching of pyronin B and pyronin Y molecules by molecular oxygen in aqueous solution was studied by using steady-state and time-resolved fluorescence and UV-Vis absorption spectroscopy techniques. In order to understand the quenching mechanism, fluorescence decays, absorption and fluorescence spectra of the probes were recorded as a function of the oxygen concentration and temperature. The quenching was found to be appreciable and shows positive deviation in the Stern-Volmer representation obtained from the fluorescence intensity ratio. Fluorescence quenching constants (k {sub q}) were calculated from the {tau} {sub o}/{tau} vs. [Q] plots having linear correlation and compared with calculated diffusion-controlled rate constants (k {sub diff}) values. Experimental results were in good agreement with the simultaneous dynamic and static quenching model.

  12. Analysis of fluorescence quenching of pyronin B and pyronin Y by molecular oxygen in aqueous solution

    International Nuclear Information System (INIS)

    Celebi, Neslihan; Arik, Mustafa; Onganer, Yavuz

    2007-01-01

    The fluorescence quenching of pyronin B and pyronin Y molecules by molecular oxygen in aqueous solution was studied by using steady-state and time-resolved fluorescence and UV-Vis absorption spectroscopy techniques. In order to understand the quenching mechanism, fluorescence decays, absorption and fluorescence spectra of the probes were recorded as a function of the oxygen concentration and temperature. The quenching was found to be appreciable and shows positive deviation in the Stern-Volmer representation obtained from the fluorescence intensity ratio. Fluorescence quenching constants (k q ) were calculated from the τ o /τ vs. [Q] plots having linear correlation and compared with calculated diffusion-controlled rate constants (k diff ) values. Experimental results were in good agreement with the simultaneous dynamic and static quenching model

  13. Spectral analysis of colour-quenched and chemically quenched C 14 samples

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Scott Guillearrd, P.E.

    1987-01-01

    Pairs of pulse height distribution curves, of C-14 samples, colour quenched and chemically quenched were obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (author). 7 figs., 7 refs

  14. Spectral analysis of colour-quenched and chemically quenched C-14 samples

    International Nuclear Information System (INIS)

    Scott, P. E.; Grau, A.

    1987-01-01

    In this paper pairs of pulse height distribution curves, of C-14 samples, colour-quenched and chemically quenched was obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (Author) 7 refs

  15. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers

    Directory of Open Access Journals (Sweden)

    Katrina N. Burns

    2016-01-01

    Full Text Available Electronic waste (e-waste is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people’s livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA and community (70 dBA noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen’s Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman’s ρ 0.46, p < 0.001. A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01 even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  16. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  17. Quench protection in superconducting magnets

    International Nuclear Information System (INIS)

    Shajii, A.; Freidberg, J.P.

    1993-01-01

    The purpose of this obviously non-plasma physics research is to demonstrate that many of the powerful and sophisticated theoretical techniques widely used by the plasma physics community can be applied to engineering problems of direct interest to the magnetic fusion program. Quench protection is such a problem. If a sudden pulse of energy is delivered (usually by accident) to a small section of a superconducting magnet, it may go normal. Under such conditions, the magnet current flows in the surrounding copper matrix, which is essentially in parallel with the superconductor. Although the copper is a good conductor, it still dissipates ohmic power, further adding to the energy input. It is important to detect the quench as early as possible in order to shut off the current, thereby preventing irreversible damage to the conductor. This a non-trivial problem since the cables comprising a coil can be as long as one kilometer. The theory presented here starts with a set of multi-dimensional Navier-Stokes and heat transport equations for the coupled system of helium coolant, superconducting/copper cable, and surrounding jacket. A combination of multiple time scale expansions and asymptotic analysis reduces the problem to a nonlinear fourth order system of 1-D plus time equations. A code has been written whose numerical results are in excellent agreement with more complex engineering codes. There is at least an order of magnitude savings in CPU over the existing codes where a typical run requires one hour Cray CPU. By investigating a number of different cases the authors have been able to introduce further analytic approximations which reduce the problem to quasi-analytic form, a set of three ODE's in time. The results here too are in excellent agreement with the engineering code and requires only several seconds of CPU time. More important, the critical dimensionless parameters have been identified, as well as practical scaling information for the magnet design

  18. Quenching of Einstein A-Coefficients in plasmas and lasers

    International Nuclear Information System (INIS)

    Suckewer, S.; Princeton Univ., NJ

    1991-03-01

    The coefficient of spontaneous emission (Einstein A-coefficient) is considered to be one of the basic constants of a given transition in atom or ion. The formula for the Einstein A-coefficient was derived in the pioneering works of Weisskopf and Wigner (WW) based on Dirac's theory of light. More recently, however, it was noted in several papers that the rate of spontaneous radiative decay can deviate significantly from the WW expression in certain conditions, for example in a laser cavity. A different type of change in A- coefficients was inferred from measurements of changes in the intensity branching ratio of spectral lines in a plasma. A change of branching ratio of up to a factor of 10 was observed in CIV for 3p-3s (580.1--581.2nm) and 3p-2s (31.2-nm) transitions when the electron density changed from approximately N e ∼ 1 x 10 18 to 5 x 10 18 cm -3 . This effect was also observed in CIII and NV. An initial theoretical approach to the problem based on the integration of the Schroedinger equation with the ion Coulomb potential modified by the electron cloud within the Debye radius was unsuccessfully in predicting the experimental observations. The effect of quenching of spontaneous emission coefficients was observed also in an Ar-ion laser as a function of the intracavity power density (photon density) for lines originating from the same upper level as the lasing line. Measurements of these line profiles absorption for different lasing conditions and related discussions are also presented. 14 refs., 6 figs

  19. Fluorescence quenching of newly synthesized biologically active coumarin derivative by aniline in binary solvent mixtures

    International Nuclear Information System (INIS)

    Evale, Basavaraj G.; Hanagodimath, S.M.

    2009-01-01

    The fluorescence quenching of newly synthesized coumarin (chromen-2-one) derivative, 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one (MFBMC) by aniline in different solvent mixtures of benzene and acetonitrile was determined at room temperature (296 K) by steady-state fluorescence measurements. The quenching is found to be appreciable and positive deviation from linearity was observed in the Stern-Volmer (S-V) plots in all the solvent mixtures. This could be explained by static and dynamic quenching models. The positive deviation in the S-V plot is interpreted in terms of ground-state complex formation model and sphere of action static quenching model. Various rate parameters for the fluorescence quenching process have been determined by using the modified Stern-Volmer equation. The sphere of action static quenching model agrees very well with experimental results. The dependence of Stern-Volmer constant K SV , on dielectric constant ε of the solvent mixture suggests that the fluorescence quenching is diffusion-limited. Further with the use of finite sink approximation model, it is concluded that these bimolecular quenching reactions are diffusion-limited. Using lifetime (τ o ) data, the distance parameter R' and mutual diffusion coefficient D are estimated independently.

  20. 78 FR 36768 - Electron Hydro, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2013-06-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1646-000] Electron Hydro, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Electron...

  1. Reduction of thermal quenching of biotite mineral due to annealing

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2014-01-01

    Graphical abstract: - Highlights: • Thermoluminescence of X-ray irradiate biotite was studied at various heating rates. • Thermal quenching was found to decrease with increase in annealing temperature. • Due to annealing one trap level was vanished and a new shallow trap level generated. • The new trap level contributes low thermally quenched thermoluminescence signal. - Abstract: Thermoluminescence (TL) of X-ray irradiated natural biotite annealed at 473, 573, 673 and 773 K were studied within 290–480 K at various linear heating rates (2, 4, 6, 8 and 10 K/s). A Computerized Glow Curve Deconvolution technique was used to study various TL parameters. Thermal quenching was found to be very high for un-annealed sample, however it decreased significantly with increase in annealing temperature. For un-annealed sample thermal quenching activation energy (W) and pre-exponential frequency factor (C) were found to be W = (2.71 ± 0.05) eV and C = (2.38 ± 0.05) × 10 12 s −1 respectively. However for 773 K annealed sample, these parameters were found to be W = (0.63 ± 0.03) eV, C = (1.75 ± 0.27) × 10 14 s −1 . Due to annealing, the initially present trap level at depth 1.04 eV was vanished and a new shallow trap state was generated at depth of 0.78 eV which contributes very low thermally quenched TL signal

  2. Predicting the Rate Constant of Electron Tunneling Reactions at the CdSe-TiO2 Interface.

    Science.gov (United States)

    Hines, Douglas A; Forrest, Ryan P; Corcelli, Steven A; Kamat, Prashant V

    2015-06-18

    Current interest in quantum dot solar cells (QDSCs) motivates an understanding of the electron transfer dynamics at the quantum dot (QD)-metal oxide (MO) interface. Employing transient absorption spectroscopy, we have monitored the electron transfer rate (ket) at this interface as a function of the bridge molecules that link QDs to TiO2. Using mercaptoacetic acid, 3-mercaptopropionic acid, 8-mercaptooctanoic acid, and 16-mercaptohexadecanoic acid, we observe an exponential attenuation of ket with increasing linker length, and attribute this to the tunneling of the electron through the insulating linker molecule. We model the electron transfer reaction using both rectangular and trapezoidal barrier models that have been discussed in the literature. The one-electron reduction potential (equivalent to the lowest unoccupied molecular orbital) of each molecule as determined by cyclic voltammetry (CV) was used to estimate the effective barrier height presented by each ligand at the CdSe-TiO2 interface. The electron transfer rate (ket) calculated for each CdSe-ligand-TiO2 interface using both models showed the results in agreement with the experimentally determined trend. This demonstrates that electron transfer between CdSe and TiO2 can be viewed as electron tunneling through a layer of linking molecules and provides a useful method for predicting electron transfer rate constants.

  3. Electron capture rates in stars studied with heavy ion charge exchange reactions

    Science.gov (United States)

    Bertulani, C. A.

    2018-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  4. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.

    2017-01-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...... to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047–2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin...... for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33 °C and pH 5.8, 33 °C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR...

  5. Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.

    Science.gov (United States)

    Xie, Binghe; Yang, Cheng; Zhang, Zhexu; Zou, Peichao; Lin, Ziyin; Shi, Gaoquan; Yang, Quanhong; Kang, Feiyu; Wong, Ching-Ping

    2015-06-23

    With the bloom of wearable electronics, it is becoming necessary to develop energy storage units, e.g., supercapacitors that can be arbitrarily tailored at the device level. Although gel electrolytes have been applied in supercapacitors for decades, no report has studied the shape-tailorable capability of a supercapacitor, for instance, where the device still works after being cut. Here we report a tailorable gel-based supercapacitor with symmetric electrodes prepared by combining electrochemically reduced graphene oxide deposited on a nickel nanocone array current collector with a unique packaging method. This supercapacitor with good flexibility and consistency showed excellent rate performance, cycling stability, and mechanical properties. As a demonstration, these tailorable supercapacitors connected in series can be used to drive small gadgets, e.g., a light-emitting diode (LED) and a minimotor propeller. As simple as it is (electrochemical deposition, stencil printing, etc.), this technique can be used in wearable electronics and miniaturized device applications that require arbitrarily shaped energy storage units.

  6. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  7. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  8. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  9. Heating the quenched Eguchi-Kawai model

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.

    1983-01-01

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent. (orig.)

  10. Heating the quenched Eguchi-Kawai model

    Energy Technology Data Exchange (ETDEWEB)

    Klinkhamer, F.R. (Rijksuniversiteit Leiden (Netherlands). Sterrewacht)

    1983-05-30

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent.

  11. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses

    Science.gov (United States)

    Lerner, Edan; Bouchbinder, Eran

    2017-08-01

    Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .

  12. Quantum state-to-state dynamics for the quenching process of Br(2P1/2) + H2(v(i) = 0, 1, j(i) = 0).

    Science.gov (United States)

    Xie, Changjian; Jiang, Bin; Xie, Daiqian; Sun, Zhigang

    2012-03-21

    Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data. © 2012 American Institute of Physics

  13. Rate of electronic health record adoption in South Korea: A nation-wide survey.

    Science.gov (United States)

    Kim, Young-Gun; Jung, Kyoungwon; Park, Young-Taek; Shin, Dahye; Cho, Soo Yeon; Yoon, Dukyong; Park, Rae Woong

    2017-05-01

    The adoption rate of electronic health record (EHR) systems in South Korea has continuously increased. However, in contrast to the situation in the United States (US), where there has been a national effort to improve and standardize EHR interoperability, no consensus has been established in South Korea. The goal of this study was to determine the current status of EHR adoption in South Korean hospitals compared to that in the US. All general and tertiary teaching hospitals in South Korea were surveyed regarding their EHR status in 2015 with the same questionnaire as used previously. The survey form estimated the level of adoption of EHR systems according to 24 core functions in four categories (clinical documentation, result view, computerized provider order entry, and decision supports). The adoption level was classified into comprehensive and basic EHR systems according to their functionalities. EHRs and computerized physician order entry systems were used in 58.1% and 86.0% of South Korean hospitals, respectively. Decision support systems and problem list documentation were the functions most frequently missing from comprehensive and basic EHR systems. The main barriers cited to adoption of EHR systems were the cost of purchasing (48%) and the ongoing cost of maintenance (11%). The EHR adoption rate in Korean hospitals (37.2%) was higher than that in US hospitals in 2010 (15.1%), but this trend was reversed in 2015 (58.1% vs. 75.2%). The evidence suggests that these trends were influenced by the level of financial and political support provided to US hospitals after the HITECH Act was passed in 2009. The EHR adoption rate in Korea has increased, albeit more slowly than in the US. It is logical to suggest that increased funding and support tied to the HITECH Act in the US partly explains the difference in the adoption rates of EHRs in both countries. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quenching and recovery experiments on molybdenum

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    Quenching experiments in superfluid helium have been performed on high-purity wire specimens obtained from a Mo single crystal with a residual resistance ratio of 40 000. Quenching from various temperatures near the melting point to 1.5 K resulted in quenched-in resistivities which are interpreted in terms of quenched-in vacancies. The following parameters were derived: Hsub(1V)sup(F) = 3.2 eV (formation enthalpy of monovacancies) and Ssub(1V)sup(F) = 1.5 k (formation entropy). The recovery of the quenched-in resistivity showed a recovery stage at 520 K, which is compatible with a migration enthalpy of Hsub(1V)sup(M) = 1.35 eV. The results are compared with recently published positron annihilation data. (author)

  15. Quench propagation in the SSC dipole magnets

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab

  16. Concentration quenching in Nd-doped glasses

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Cook, L.; Mueller, H.; Weber, M.J.

    1984-01-01

    Fluorescence from trivalent Nd in solids is unfortunately quenched by interactions between Nd ions. Thus, laser materials with high Nd concentrations have reduced efficiencies because of this self-quenching, also known as concentration quenching. Nd self-quenching in different crystals and glasses varies considerably. We are therefore investigating this effect in a large number of materials in an effort to: (1) find those materials with long Nd fluorescent lifetimes at high Nd concentrations; and (2) elucidate the basic mechanisms of quenching and how the material structure controls its magnitude. We have concentrated on Nd-doped glasses because they provide a rich variety of structures, albeit complicated by Nd site inhomogeneities, and are easily and quickly made

  17. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1987-01-01

    Dose-rate conversion factors have been calculated for external exposure of the skin from electrons emitted by sources that are deposited uniformly on the body surface. The dose-rate factors are obtained from electron scaled point kernels developed by Berger. The dose-rate factors are calculated at depths of 4, 8, and 40 mg cm-2 below the body surface as recommended by Whitton, and at a depth of 7 mg cm-2 as recommended in ICRP Publication 26 (ICRP77). The dependence of the dose-rate factors at selected depths on the energy of the emitted electrons is displayed. The dose-rate factors for selected radionuclides of potential importance in radiological assessments are tabulated

  18. Simulation evaluation of NIST air-kerma rate calibration standard for electronic brachytherapy.

    Science.gov (United States)

    Hiatt, Jessica R; Rivard, Mark J; Hughes, H Grady

    2016-03-01

    Dosimetry for the model S700 50 kV electronic brachytherapy (eBT) source (Xoft, Inc., a subsidiary of iCAD, San Jose, CA) was simulated using Monte Carlo (MC) methods by Rivard et al. ["Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent x-ray source: An electronic brachytherapy source," Med. Phys. 33, 4020-4032 (2006)] and recently by Hiatt et al. ["A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model," Med. Phys. 42, 2764-2776 (2015)] with improved geometric characterization. While these studies examined the dose distribution in water, there have not previously been reports of the eBT source calibration methods beyond that recently reported by Seltzer et al. ["New national air-kerma standard for low-energy electronic brachytherapy sources," J. Res. Natl. Inst. Stand. Technol. 119, 554-574 (2014)]. Therefore, the motivation for the current study was to provide an independent determination of air-kerma rate at 50 cm in air K̇air(d=50 cm) using MC methods for the model S700 eBT source. Using CAD information provided by the vendor and disassembled sources, an MC model was created for the S700 eBT source. Simulations were run using the mcnp6 radiation transport code for the NIST Lamperti air ionization chamber according to specifications by Boutillon et al. ["Comparison of exposure standards in the 10-50 kV x-ray region," Metrologia 5, 1-11 (1969)], in air without the Lamperti chamber, and in vacuum without the Lamperti chamber. K̇air(d=50 cm) was determined using the *F4 tally with NIST values for the mass energy-absorption coefficients for air. Photon spectra were evaluated over 2 π azimuthal sampling for polar angles of 0° ≤ θ ≤ 180° every 1°. Volume averaging was averted through tight radial binning. Photon energy spectra were determined over all polar angles in both air and vacuum using

  19. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  20. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  1. Patient perceptions of electronic medical records use and ratings of care quality

    Directory of Open Access Journals (Sweden)

    Finney Rutten LJ

    2014-03-01

    Full Text Available Lila J Finney Rutten,1 Sana N Vieux,2 Jennifer L St Sauver,1 Neeraj K Arora,2 Richard P Moser,2 Ellen Burke Beckjord,3 Bradford W Hesse2 1Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; 2Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA; 3Biobehavioral Medicine in Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA Purpose: Despite considerable potential for improving health care quality, adoption of new technologies, such as electronic medical records (EMRs, requires prudence, to ensure that such tools are designed, implemented, and used meaningfully to facilitate patient-centered communication and care processes, and better health outcomes. The association between patients’ perceptions of health care provider use of EMRs and health care quality ratings was assessed. Method: Data from two iterations of the Health Information National Trends Survey, fielded in 2011 and 2012, were pooled for these analyses. The data were collected via mailed questionnaire, using a nationally representative listing of home addresses as the sampling frame (n=7,390. All data were weighted to provide representative estimates of quality of care ratings and physician use of EMR, in the adult US population. Descriptive statistics, t-tests, and multivariable linear regression analyses were conducted. Results: EMR use was reported significantly more frequently by females, younger age groups, non-Hispanic whites, and those with higher education, higher incomes, health insurance, and a usual source of health care. Respondents who reported physician use of EMRs had significantly higher ratings of care quality (Beta=4.83, standard error [SE]=1.7, P<0.01, controlling for sociodemographic characteristics, usual source of health care, and health insurance status. Conclusion: Nationally representative

  2. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    International Nuclear Information System (INIS)

    Pan Yang; Zhao Junshu; Ji Yuanyuan; Yan Lei; Yu Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3 TMB* after rapid intersystem crossing from 1 TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), α-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k q T values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k q S have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k q values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation

  3. One-electron redox potentials and rate of electron transfer in aqueous micellar solution. Partially solubilized quinones

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Thomas, J.K.

    1979-01-01

    The electron transfer equilibrium between AQS/AQS - and DQ/DQ - (where AQS is sodium 9,10-arthraquinone-2-sulfonate and DQ, duroquinone) has been studied by pulse radiolysis in aqueous micellar solutions of sodium lauryl sulfate. The equilibrium constant is changed as would be expected if AQS, AQS - , and DQ- were all mainly in the aqueous solution, and DQ distributed between the micelles and the aqueous phase with a distribution constant of K/sub D//N = 150 M -1 , in agreement with the independently determined value of this constant. The kinetics of the equilibration show, however, that electron transfer at the micelle surface is important, indicating that also AQS and DQ - are associated with the micelle to some extent. With reasonable assumptions regarding the distribution constants of these species (that have some independent support), the observed catalytic effect of the micelles on the electron transfer from DQ - to AQS can be understood

  4. A comparative study on fluorescence quenching of CdTe nanocrystals with a serial of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Baslak, Canan, E-mail: cananbaslak@gmail.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Kus, Mahmut, E-mail: mahmutkus1@gmail.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemical Engineering, Faculty of Engineering, Selcuk University, 42075 Konya (Turkey); Cengeloglu, Yunus [Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Ersoz, Mustafa [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey)

    2014-09-15

    We report sensing different polycyclic aromatic hydrocarbons (PAHs) with colloidal CdTe nanocrystals. The effect of molecular structure on quenching rate for 2-hyroxy-1-naphthaldehyde (2H–1N), 9,10-phenanthraquinone (PQ), 9-anthracenecarboxaldehyde (9-AC) and quinoline (Q) is presented. The quenching rate constants are observed to be strongly dependent on the molecular structure. PQ, consisting of two carbonyl groups, shows the highest rate constant while Q shows the worst one. Both static and dynamic quenching are simultaneously observed for PQ and 2H–1N. Therefore extended Stern–Volmer equations are used to calculate rate constants. Results showed that dynamic quenching is a dominant process. The rate constants for PQ, 2H–1N, 9-AC and Q are calculated to be 64.84, 10.73, 10.66 and 1.85 respectively. - Highlights: • We report the fluorescence quenching of colloidal CdTe nanocrystals with different polycyclic aromatic hydrocarbons. • The quenching rate constants are observed to be strongly dependent on the molecular structure. • Static and dynamic quenching are simultaneously observed. • The best quenching was observed for 9,10-phenanthraquinone.

  5. Cross-section and rate coefficient calculation for electron impact excitation, ionisation and dissociation of H2 and OH molecules

    International Nuclear Information System (INIS)

    Riahi, R.; Ben Lakhdar, Z.; Teulet, Ph.; Gleizes, A.

    2006-01-01

    The weighted total cross-sections (WTCS) theory is used to calculate electron impact excitation, ionization and dissociation cross-sections and rate coefficients of OH, H 2 , OH + , H 2 + , OH - and H 2 - diatomic molecules in the temperature range 1500-15000 K. Calculations are performed for H 2 (X, B, C), OH(X, A, B), H 2 + (X), OH + (X, a, A, b, c), H 2 - (X) and OH - (X) electronic states for which Dunham coefficients are available. Rate coefficients are calculated from WTCS assuming Maxwellian energy distribution functions for electrons and heavy particles. One and 2 temperatures (θ e and θ g respectively for electron and heavy particles kinetic temperatures) results are presented and fitting parameters (a, b and c) are given for each reaction rate coefficient: k(θ) a(θ b )exp(-c/θ). (authors)

  6. Chemical Quenching of Positronium in CuO/Al2O3 Catalysts

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Liu Zhe-Wen; Chen Zhi-Quan; Wang Shao-Jie

    2011-01-01

    CuO/Al 2 O 3 catalysts were prepared by mixing CuO and γ-Al 2 O 3 nanopowders. Microstructure and chemical environment of the catalysts are characterized by positron annihilation spectroscopy. The positron annihilation lifetime measurements reveal two long lifetime components τ 3 and τ 4 , which correspond to ortho-positronium (o-Ps) annihilating in microvoids and large pores, respectively. With increasing CuO content from 0 to 40 wt%, both τ 4 and its intensity I 4 show significant decrease, which indicates quenching effect of o-Ps. The para-positronium (p-Ps) intensities derived from multi-Gaussian fitting of the coincidence Doppler broadening spectra also decreases gradually with increasing CuO content. This excludes the possibility of spin-conversion of positronium. Therefore, the chemical quenching by CuO is probably responsible for the decrease of o-Ps lifetime. Variation in the o-Ps annihilation rate λ 4 (1/τ 4 ) as a function of CuO content can be well fitted by a straight line, and the slope of the fitting line is (1.83 ± 0.05) × 10 −7 s −1 . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. lessons learned from the QUENCH program at FZK

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Grosse, M.; Sepold, L.; Stuckert, J.

    2011-01-01

    The paper gives an overview on the main outcome of the QUENCH program at FZK, including complementary bundle experiments and separate-effects tests. The major objective of the program is to deliver experimental and analytical data to support development and validation of quench and quench-related models as used in code systems. So far, 15 integral bundle QUENCH experiments with 21-31 electrically heated fuel rod simulators of 2.5 m length have been conducted. The following parameters and their influence on bundle degradation and reflood have been investigated: degree of pre-oxidation, temperature at initiation of reflood, flooding rate, influence of neutron absorber materials (B 4 C, AgInCd), air ingress, and the influence of the type of cladding alloy. In six tests reflood of the bundle caused a temporary temperature excursion connected with the release of a significant amount of hydrogen, typically 2 orders of magnitude greater than in those tests with 'successful' quenching in which cool-down was immediately achieved. Comprehensive formation, relocation, and oxidation of melt were observed in all tests with escalation. The temperature boundary between rapid cooldown and temperature escalation was typically 2100-2200 K in the 'normal' quench tests, i.e. tests without absorber and/or steam starvation. Tests with absorber and/or steam starvation were found to lead to temperature escalations at lower temperatures. All phenomena occurring in the bundle tests have been additionally investigated in parametric and more systematic separate-effects tests. Oxidation kinetics of various cladding alloys, including advanced ones, have been determined over a wide temperature range (873-1773 K) in different atmospheres (steam, oxygen, air, and their mixtures). Hydrogen absorption by different zirconium alloys was investigated in detail, recently also using neutron radiography as non-destructive method for determination of hydrogen distribution in claddings

  8. Fate of Majorana fermions and Chern numbers after a quantum quench.

    Science.gov (United States)

    Sacramento, P D

    2014-09-01

    In the sequence of quenches to either nontopological phases or other topological phases, we study the stability of Majorana fermions at the edges of a two-dimensional topological superconductor with spin-orbit coupling and in the presence of a Zeeman term. Both instantaneous and slow quenches are considered. In the case of instantaneous quenches, the Majorana modes generally decay, but for a finite system there is a revival time that scales to infinity as the system size grows. Exceptions to this decaying behavior are found in some cases due to the presence of edge states with the same momentum in the final state. Quenches to a topological Z(2) phase reveal some robustness of the Majorana fermions in the sense that even though the survival probability of the Majorana state is small, it does not vanish. If the pairing is not aligned with the spin-orbit Rashba coupling, it is found that the Majorana fermions are fairly robust with a finite survival probability. It is also shown that the Chern number remains invariant after the quench, until the propagation of the mode along the transverse direction reaches the middle point, beyond which the Chern number fluctuates between increasing values. The effect of varying the rate of change in slow quenches is also analyzed. It is found that the defect production is nonuniversal and does not follow the Kibble-Zurek scaling with the quench rate, as obtained before for other systems with topological edge states.

  9. A data driven method to measure electron charge mis-identification rate

    CERN Document Server

    Bakhshiansohi, Hamed

    2009-01-01

    Electron charge mis-measurement is an important challenge in analyses which depend on the charge of electron. To estimate the probability of {\\it electron charge mis-measurement} a data driven method is introduced and a good agreement with MC based methods is achieved.\\\\ The third moment of $\\phi$ distribution of hits in electron SuperCluster is studied. The correlation between this variable and the electron charge is also investigated. Using this `new' variable and some other variables the electron charge measurement is improved by two different approaches.

  10. Determining rates of overweight and obese status in children using electronic medical records

    Science.gov (United States)

    Birken, Catherine S.; Tu, Karen; Oud, William; Carsley, Sarah; Hanna, Miranda; Lebovic, Gerald; Guttmann, Astrid

    2017-01-01

    Abstract Objective To determine the prevalence of overweight and obese status in children by age, sex, and visit type, using data from EMRALD® (Electronic Medical Record Administrative data Linked Database). Design Heights and weights were abstracted for children 0 to 19 years of age who had at least one well-child visit from January 2010 to December 2011. Using the most recent visit, the proportions and 95% CIs of patients defined as overweight and obese were compared by age group, sex, and visit type using the World Health Organization growth reference standards. Setting Ontario. Participants Children 0 to 19 years of age who were rostered to a primary care physician participating in EMRALD and had at least one well-child visit from January 2010 to December 2011. Main outcome measures Proportion and 95% CI of children with overweight and obese status by age group; proportion of children with overweight and obese status by sex (with male sex as the referent) within each age group; and proportion of children with overweight and obese status at the most recent well-child visit type compared with other visit types by age group. Results There were 28 083 well-child visits during this period. For children who attended well-child visits, 84.7% of visits had both a height and weight documented. Obesity rates were significantly higher in 1- to 4-year-olds compared with children younger than 1 (6.1% vs 2.3%; P overweight and obese status were lower using data from well-child visits compared with other visits. Conclusion Electronic medical records might be useful to conduct population-based surveillance of overweight or obese status in children. Methodologic standards, however, should be developed. PMID:28209703

  11. Effect of Alfvén waves on the growth rate of the electron-cyclotron maser emission

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-06-15

    By using the non-relativistic approximation for the calculation of growth rates, but taking account of the weakly relativistic modification for the electron-cyclotron resonance condition, it is shown that the effect of Alfvén waves (AWs) on the electron-cyclotron maser emission leads to the significant increase of the O-mode growth rate, but has little effect on the X-mode growth rate. We propose that this is because the O-mode wave has the field-aligned polarization sense in the same as the field-aligned oscillatory current, which is created by the field-aligned oscillatory motion of the energetic electrons caused via the presence of AWs. It is this field-aligned oscillatory current that contributes a novel growth rate to the O-mode wave but has little effect on the X-mode wave.

  12. Ultrafast quenching of metals to liquid-helium temperatures - investigation of the low-temperature mobility of hydrogen in niobium

    International Nuclear Information System (INIS)

    Blanz, M.; Blocher, R.; Carstanjen, H.D.; Messer, R.; Plachke, D.; Seeger, A.

    1989-01-01

    A novel technique for ultrafast quenching from 300 K to 4.2 K has been developed. It employs a fast jet of liquid helium with a speed of about 10 2 m/s and allows us to quench metal samples in about 6 ms. This corresponds to a quenching rate of about 4.5x10 4 K/s, which exceeds that achievable by conventional quenching in liquid helium by more than one order of magnitude. The technique has been used for a resistometric study of the behaviour of hydrogen in niobium quenched-in from the α-phase by means of isochronal and isothermal annealing. Even in the low-temperature region below 20 K a considerable recovery of the resistivity has been found, which cannot be seen in conventional quenching experiments. (orig.)

  13. Luminescence quenching by heavy metal ions of probes based on anthracene, pyrene, and eosin in human serum albumin

    Science.gov (United States)

    Naumova, E. V.; Melnikov, A. G.; Melnikov, G. V.

    2013-05-01

    Fluorescence and phosphorescence quenching processes of polar and non-polar luminescent probes associated with human serum albumin (HSA) in phosphate buffer at pH 7.4 were studied. Stern-Volmer quenching constants of anthracene and pyrene fluorescence and eosin phosphorescence and rate constants for quenching of eosin triplet states were determined. The polarity index of pyrene bound to HSA was obtained as a function of thallium nitrate concentration. The influences of structural changes in the proteins that were stimulated by heavy-metal salts and of screening of protein charges by salt ions on quenching processes of singlet and triplet states of the probes were found.

  14. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  15. Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    International Nuclear Information System (INIS)

    Leinweber, Derek B.

    2004-01-01

    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation

  16. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells.

    Science.gov (United States)

    Laschinsky, Lydia; Karsch, Leonhard; Leßmann, Elisabeth; Oppelt, Melanie; Pawelke, Jörg; Richter, Christian; Schürer, Michael; Beyreuther, Elke

    2016-08-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

  17. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

    International Nuclear Information System (INIS)

    Laschinsky, Lydia; Karsch, Leonhard; Schuerer, Michael; Lessmann, Elisabeth; Beyreuther, Elke; Oppelt, Melanie; Pawelke, Joerg; Richter, Christian

    2016-01-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10"1"0 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone. (orig.)

  18. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    Science.gov (United States)

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.

  19. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    AUTHOR|(CDS)2132435; Seifert, Thomas

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb$_{3}$Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrica...

  20. Electronic prompts significantly increase response rates to postal questionnaires: a randomized trial within a randomized trial and meta-analysis.

    Science.gov (United States)

    Clark, Laura; Ronaldson, Sarah; Dyson, Lisa; Hewitt, Catherine; Torgerson, David; Adamson, Joy

    2015-12-01

    To assess the effectiveness of sending electronic prompts to randomized controlled trial participants to return study questionnaires. A "trial within a trial" embedded within a study determining the effectiveness of chronic obstructive pulmonary disease (DOC) screening on smoking cessation. Those participants taking part in DOC who provided a mobile phone number and/or an electronic mail address were randomized to either receive an electronic prompt or no electronic prompt to return a study questionnaire. The results were combined with two previous studies in a meta-analysis. A total of 437 participants were randomized: 226 to the electronic prompt group and 211 to the control group. A total of 285 (65.2%) participants returned the follow-up questionnaire: 157 (69.5%) in the electronic prompt group and 128 (60.7%) in the control group [difference 8.8%; 95% confidence interval (CI): -0.11%, 17.7%; P = 0.05]. The mean time to response was 23 days in the electronic prompt group and 33 days in the control group (hazard ratio = 1.27; 95% CI: 1.105, 1.47). The meta-analysis of all three studies showed an increase in response rate of 7.1% (95% CI: 0.8%, 13.3%). The use of electronic prompts increased response rates and reduces the time to response. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Shut-down dose rate analyses for the ITER electron cyclotron-heating upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Weinhorst, Bastian; Serikov, Arkady; Fischer, Ulrich; Lu, Lei [Institute for Neutron Physics and Reactor Technology INR (Germany); Karlsruhe Institute of Technology KIT (Germany); Spaeh, Peter; Strauss, Dirk [Institute for Applied Materials IAM (Germany); Karlsruhe Institute of Technology KIT (Germany)

    2014-10-15

    The electron cyclotron resonance heating upper launcher (ECHUL) is going to be installed in the upper port of the ITER tokamak thermonuclear fusion reactor for plasma mode stabilization (neoclassical tearing modes and the sawtooth instability). The paper reports the latest neutronic modeling and analyses which have been performed for the ITER reference front steering launcher design. It focuses on the port accessibility after reactor shut-down for which dose rate (SDDR) distributions on a fine regular mesh grid were calculated. The results are compared to those obtained for the ITER Dummy Upper Port. The calculations showed that the heterogeneous ECHUL design gives rise to enhanced radiation streaming as compared to the homogenous dummy upper port. Therefore the used launcher geometry was upgraded to a more recent development stage. The inter-comparison shows a significant improvement of the launchers shielding properties but also the necessity to further upgrade the shielding performance. Furthermore, the analysis for the homogenous dummy upper port, which represents optimal shielding inside the launcher, demonstrates that the shielding upgrade also needs to include the launcher's environment.

  2. Ruthenium-modified cytochrome c: temperature dependence of the rate of intramolecular electron transfer

    International Nuclear Information System (INIS)

    Isied, S.S.; Kuehn, C.; Worosila, G.

    1984-01-01

    The ruthenium-modified horse heart cytochrome c, Ru(III)-cyt c(III), where the ruthenium is bound to the histidines-33 residue has been synthesized and characterized by ruthenium analysis, UV-vis and CD spectra, and differential pulse polarography and cyclic voltammetry. The intermediate Ru(III)-cyt c(III) has been generated by pulse-radioanalysis with use of four different radicals, CO 2 -., (CH 3 )COH., (CH 2 OH) 3 CCHOH, and -OCCH(OH)C(OH)CO 2 -. The rate of intramolecular electron transfer within the Ru(III)-cyt c(III) complex and its temperature dependence were determined over a 40 0 C temperature range with the CO 2 -. radical. At 25 0 C, these values are k/sub u/=53 +/- s/sup -1/ (pH 7.01 M phosphate buffer, 0.1 M NaHCO 2 ), ΔH/sup +/=3.5 +/- 0.2 kcal mol/sup -1/, and ΔS/sup +/=-39 +/- 1 eu

  3. Electron beam induced graft-polymerization of methyl methacrylate onto polyethylene films at high dose rates

    International Nuclear Information System (INIS)

    Mori, Koji; Koshiishi, Kenji; Masuhara, Ken-ichi

    1991-01-01

    Electron beam induced graft-polymerization by the mutual irradiation technique of methyl methacrylate on the surface of low density polyethylene films (LD) and high density polyethylene films (HD) was investigated at high dose rates over 10 Mrad per second. Graft-polymerization mechanisms were discussed on the basis of O 2 permeability, tensile strength, elongation at break, and surface tension of the grafted films. As the degree of grafting increased, the O 2 permeability of LD decreased, while that of HD little changed at the grafting up to 4 ∼ 5 %. This indicates that the grafting occurred in the amorphous regions for LD and occurred in the amorphous regions in the neighborhood of crystalline regions for HD. For HD, when the degree of the grafting surpassed 4 ∼ 5 %, the O 2 permeability, tensile strength, elongation at break, and surface tension decreased with an increase in the degree of grafting. It was assumed that rapid grafting in the amorphous regions in the neighborhood of crystalline regions caused the increase in local temperature by the heat of polymerization, and the viscosity of polyethylene in the amorphous regions decreased with an increase in temperature. As a result, the graft chains, which formed micro domain structure, condensed in the amorphous regions and the domain increased in size. (author)

  4. Population densities and rate coefficients for electron impact excitation in singly ionized oxygen

    International Nuclear Information System (INIS)

    Awakowicz, P.; Behringer, K.

    1995-01-01

    In non-LTE arc plasmas, O II excited state number densities were measured relative to the O II ground and metastable states. The results were compared with collisional-radiative code calculations on the basis of the JET ADAS programs. Stationary He plasmas with small oxygen admixtures, generated in a 5 mm diameter cascade arc chamber (pressures 13-70 hPa, arc current 150 A), were investigated spectroscopically in the visible and the VUV spectral range. The continuum of a 2 mm diameter pure He arc (atmospheric pressure, current 100 A) served for calibration of the VUV system response. Plasma diagnostics on the basis of Hβ Stark broadening yielded electron densities between 2.4 x 10 14 and 2.0 x 10 15 cm -3 for the low-pressure O II mixture plasmas. The agreement of measured and calculated excited state populations is generally very satisfactory, thus confirming the rate coefficients in the code. This is of particular interest in this intermediate region between corona balance and LTE, where many atomic data are required in the simulation. Clear indications were found for the diffusion of metastables lowering their number densities significantly below their statistical values. (author)

  5. Scintillation quenching in BGO crystal of the Solar Orbiter HET

    Energy Technology Data Exchange (ETDEWEB)

    Grunau, J.; Kulkarni, Shrinivasrao; Martin, C.; Boettcher, Stephan; Seimetz, L.; Schuster, B.; Kulemzin, A.; Wimmer-Schweingruber, Robert F. [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    The High-Energy Telescope (HET) on ESA's Solar Orbiter mission will measure electrons from 300 keV up to about 30 MeV, protons from 10 to 100 MeV and heavy ions from approximately 20 to 200 MeV/nuc. These measurement capabilities are reached by a combination of solid-state tracking detectors and a scintillator calorimeter. This setup can perform particle identification via the dE/dx vs total E technique. The scintillator approach provides a good resolution over the complete energy range but the total energy deposition has to be corrected for the scintillation quenching. The quenching lowers light output depending on the type and energy of the incident particle. We measured the crystal response for different heavy ions and energies and compared them to simulated values. Simulations were carried out using the GEANT4 toolkit provided by CERN. From comparison of simulated and measured data we were able to calculate quenching factors for the BGO crystals for ions up to iron. The results are of great interest for later data analysis with the HET telescope.

  6. Reconstruction of thermally quenched glow curves in quartz

    International Nuclear Information System (INIS)

    Subedi, Bhagawan; Polymeris, George S.; Tsirliganis, Nestor C.; Pagonis, Vasilis; Kitis, George

    2012-01-01

    The experimentally measured thermoluminescence (TL) glow curves of quartz samples are influenced by the presence of the thermal quenching effect, which involves a variation of the luminescence efficiency as a function of temperature. The real shape of the thermally unquenched TL glow curves is completely unknown. In the present work an attempt is made to reconstruct these unquenched glow curves from the quenched experimental data, and for two different types of quartz samples. The reconstruction is based on the values of the thermal quenching parameter W (activation energy) and C (a dimensionless constant), which are known from recent experimental work on these two samples. A computerized glow-curve deconvolution (CGCD) analysis was performed twice for both the reconstructed and the experimental TL glow curves. Special attention was paid to check for consistency between the results of these two independent CGCD analyses. The investigation showed that the reconstruction attempt was successful, and it is concluded that the analysis of reconstructed TL glow curves can provide improved values of the kinetic parameters E, s for the glow peaks of quartz. This also leads to a better evaluation of the half-lives of electron trapping levels used for dosimetry and luminescence dating.

  7. A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel.

    Science.gov (United States)

    1982-10-01

    steel . Successful martempering requires a cooling rate sufficient to avoid the nose of the C- curve and thus prevent significant bainite formation. When...STUDY OF THE EFFECT OF INTERRUPTED QUENCHES ON A THERMONECHANICALLY PROCESSED HIGH CARBON STEEL by Steven A. Barton October 1982 Thesis Advisor: T.R...unlimited. A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel by Steven A. Barton Lieutenant, United

  8. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    OpenAIRE

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...

  9. A summary of the quench behavior of B ampersand W 1 m collider quadrupole model magnets

    International Nuclear Information System (INIS)

    Rey, C.M.; Xu, M.F.; Hlasnicek, P.; Kelley, J.P.; Dixon, K.; Savignano, J.; Letterman, S.; Craig, P.; Maloney, J.; Boyes, D.

    1994-01-01

    In order to evaluate the quench performance of a B ampersand W-Siemens designed quadrupole magnet at the earliest possible stage, a model magnet program was developed at B ampersand W for the support of the Superconducting Super Collider. The authors report the quench performance, training behavior, and the ramp rate dependence for the QSH-801 through QSH-804 series of short (1.2 meter) quadrupole model magnets

  10. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Chen, Jiayi; Liang, Qiaowen [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Wu, Dudu [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); Zeng, Yuaner, E-mail: zengyuaner@126.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Jiang, Bin, E-mail: gzjiangbin@hotmail.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China)

    2014-01-15

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10{sup −7} mol L{sup −1}. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K{sub q} (1.02×10{sup 13} L mol{sup −1} s{sup −1}). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure.

  11. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    International Nuclear Information System (INIS)

    Chen, Zhi; Chen, Jiayi; Liang, Qiaowen; Wu, Dudu; Zeng, Yuaner; Jiang, Bin

    2014-01-01

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10 −7 mol L −1 . Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K q (1.02×10 13 L mol −1 s −1 ). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure

  12. Advanced active quenching circuit for ultra-fast quantum cryptography.

    Science.gov (United States)

    Stipčević, Mario; Christensen, Bradley G; Kwiat, Paul G; Gauthier, Daniel J

    2017-09-04

    Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting". We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

  13. A magnetically coupled quench detector for superconducting magnets

    International Nuclear Information System (INIS)

    Jaskierny, W.; Kristalinski, A.; Visser, A.T.

    1993-12-01

    This note describes a low voltage signal detector that is useful for detecting quenches or excessive lead voltages at superconducting magnets. It can also be used for other applications where it is needed to detect low level signals present on high voltage installations. The application of isolated operational amplifiers is often not practical for high voltage applications because of their limited input voltage rating, common mode rejection and sensitivity. The described detector can withstand 7.5 kV input to ground voltage. It has a typical common mode rejection of -150 dB at 60 Hz and an input sensitivity better than 1 mV. The magnetically coupled quench detector assembly is very sensitive to extremely small (order of 1 μAmp) current changes in the sense windings. The detector assembly can therefore also be referred to as a micro current detector

  14. Correlation of heat transfer coefficient in quenching process using ABAQUS

    Science.gov (United States)

    Davare, Sandeep Kedarnath; Balachandran, G.; Singh, R. K. P.

    2018-04-01

    During the heat treatment by quenching in a liquid medium the convective heat transfer coefficient plays a crucial role in the extraction of heat. The heat extraction ultimately influences the cooling rate and hence the hardness and mechanical properties. A Finite Element analysis of quenching a simple flat copper sample with different orientation of sample and with different quenchant temperatures were carried out to check and verify the results obtained from the experiments. The heat transfer coefficient (HTC) was calculated from temperature history in a simple flat copper disc sample experimentally. This HTC data was further used as input to simulation software and the cooling curves were back calculated. The results obtained from software and using experimentation shows nearly consistent values.

  15. [Effect of high magnesium ion concentration on the electron transport rate and proton exchange in thylakoid membranes in higher plants].

    Science.gov (United States)

    Ignat'ev, A R; Khorobrykh, S A; Ivanov, B N

    2001-01-01

    The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.

  16. History of Giant Resonances and Quenching

    CERN Document Server

    Arima, A

    1999-01-01

    The history of nuclear magnetic moments and Gamow-Teller transitions is reviewed. The importance of configuration mixing and core polarization to explain the quenching phenomena is shown, and discussed in the context of the recent measurement of the Gamow-Teller strength in sup 9 sup 0 Nb. It is confirmed that the contribution of the DELTA-hole excitation to the quenching of spin matrix elements is small.

  17. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  18. A quenched c = 1 critical matrix model

    International Nuclear Information System (INIS)

    Qiu, Zongan; Rey, Soo-Jong.

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints

  19. Development of a high repetition rate laser-plasma accelerator for ultra-fast electron diffraction experiments

    International Nuclear Information System (INIS)

    Beaurepaire, B.

    2009-01-01

    Electronic microscopy and electron diffraction allowed the understanding of the organization of atoms in matter. Using a temporally short source, one can measure atomic displacements or modifications of the electronic distribution in matter. To date, the best temporal resolution for time resolved diffraction experiments is of the order of a hundred femto-seconds (fs). Laser accelerators are good candidates to reach the femtosecond temporal resolution in electron diffraction experiments. Such accelerators used to work at a low repetition rate, so that it was necessary to develop a new one operating at a high repetition rate in order to accumulate a large amount of data. In this thesis, a laser-plasma accelerator operating at the kHz repetition rate was developed and built. This source generates electron bunches at 100 keV from 3 mJ and 25 fs laser pulses. The physics of the acceleration has been studied, and the effect of the laser wavefront on the electron transverse distribution has been demonstrated. (author)

  20. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting

    International Nuclear Information System (INIS)

    Cassette, Philippe

    2016-01-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ"2 minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. - Highlights: • The program “QUENCH” is devoted to the interpolation of quenching curves in LSC. • Functions are fitted to experimental data with uncertainties in both quenching and efficiency. • The parameters of the fitting function and the associated covariance matrix are evaluated. • The detection efficiency and uncertainty corresponding to a given quenching index is calculated.

  1. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  2. Quenching of weak interactions in nucleon matter

    International Nuclear Information System (INIS)

    Cowell, S.; Pandharipande, V.R.

    2003-01-01

    We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and 0.24 fm -3 and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne-v18 and Urbana-IX two- and three-nucleon interactions. The squares of the charge- current matrix elements are found to be quenched by 20-25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and interactions studied here. All presented results use the simple two-body cluster approximation to calculate the correlated basis matrix elements. This allows for a clear

  3. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  4. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  5. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  6. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    Science.gov (United States)

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  8. Application of a sawtooth surface to accelerator beam chambers with low electron emission rate

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Tsuchiya, M.; Nishidono, T.; Kato, N.; Satoh, N.; Endo, S.; Yokoyama, T.

    2003-01-01

    One of the latest problems in positron or proton accelerators is a single-beam instability due to an electron cloud around the beam. The instability, for an example, causes a beam size blow up of the positron beam and deteriorates the performance of the electron-positron collider. the seed of the electron cloud is the electrons emitted from the surface of the beam chamber, which consists of electrons due to the synchrotron radiation (photoelectrons) and sometimes those multiplied by the multipactoring. Suppressing the electron emission from the surface is, therefore, an essential way to cure the instability. Here a rough surface with a sawtooth structure (sawtooth surface) is proposed to reduce the electron emission from the surface of the beam chamber. A new rolling-tap method is developed for this study to make the sawtooth surface in a circular beam chamber with a length of several meters. The first experiment using a test chamber at a photon beam line of the KEK Photon Factory verifies its validity. The photoelectron emission from the sawtooth surface reduces by one order of magnitude compared to the usual smooth surface. In the second experiment under a bunched positron beam in the KEK B-Factory, however, the electron emission is comparable to that of a smooth surface and the behavior is quite different from the previous one. The reason is that the beam field excites the multipactoring of electrons and the decrease of the photoelectron emission by the sawtooth surface is wiped out. The sawtooth surface will be effective to reduce the electron emission under the situation with external magnetic fields or without strong beam fields where the electron multipactoring hardly occurs

  9. Evaluation of the ionization quenching correction for several liquid scintillators

    International Nuclear Information System (INIS)

    Los Arcos, J. M.; Borras, C.

    1990-01-01

    The most appropriate computational model for the ionization quenching function Q(E) is analyzed for electrons in liquid scintillators. A numerical evaluation of Q(E) from 0.1 keV to 3 MeV which the kB parameter varying between 0.005 and 0.010 cm/MeV is presented for seven scintillators; Toluene, Toluene-Alcohol, PCS, Toluene-CCl4, INSTAGEL, Dioxane-Naphtalene and HISAFE II. The numerical result are summarized as tables of Ieast squares fitting coefficient which make easy the computation of Q(E). (Author)

  10. Radiation Induced Removal of Stacking Faults in Quenched Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Bergenlid, U

    1965-12-15

    The effect of neutron irradiation on specimens of quenched aluminium containing Frank sessile dislocation loops has been studied by means of electron microscopy. The Frank loops were found to trans. form into perfect loops at doses less than 10{sup 17} nvt. A possible reason for the removal of the stacking faults is the displacement of a number of atoms at the faults, leading to the passage of a Shockley partial. Unfaulting induced by stress fields from dislocations, released during the irradiation, can also be important.

  11. Radiation Induced Removal of Stacking Faults in Quenched Aluminium

    International Nuclear Information System (INIS)

    Bergenlid, U.

    1965-12-01

    The effect of neutron irradiation on specimens of quenched aluminium containing Frank sessile dislocation loops has been studied by means of electron microscopy. The Frank loops were found to trans. form into perfect loops at doses less than 10 17 nvt. A possible reason for the removal of the stacking faults is the displacement of a number of atoms at the faults, leading to the passage of a Shockley partial. Unfaulting induced by stress fields from dislocations, released during the irradiation, can also be important

  12. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    International Nuclear Information System (INIS)

    Aggarwal, Kanti M; Keenan, Francis P

    2013-01-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 8 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions. (paper)

  13. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    Science.gov (United States)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2013-04-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.

  14. Quantum quench of Kondo correlations in optical absorption.

    Science.gov (United States)

    Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A

    2011-06-29

    The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.

  15. 40 CFR 1065.675 - CLD quench verification calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD quench verification calculations... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.675 CLD quench verification calculations. Perform CLD quench-check calculations as follows: (a) Perform a CLD analyzer quench...

  16. Computational quench model applicable to the SMES/CICC

    Science.gov (United States)

    Luongo, Cesar A.; Chang, Chih-Lien; Partain, Kenneth D.

    1994-07-01

    A computational quench model accounting for the hydraulic peculiarities of the 200 kA SMES cable-in-conduit conductor has been developed. The model is presented and used to simulate the quench on the SMES-ETM. Conclusions are drawn concerning quench detection and protection. A plan for quench model validation is presented.

  17. Quenching of overcompensated Kondo impurities via channel asymmetry

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1996-01-01

    We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the symmetry between the orbital channels. This corresponds to a splitting of the conduction electron Γ 8 into two doublets in the quadrupolar Kondo effect and to the application of an external magnetic field in the electron assisted tunneling of an atom in a double-well potential. We study the ground-state properties of the impurity as a function of the magnetic and crystalline fields. The crystalline field quenches the critical behavior of the overcompensated fixed point: The impurity ground state is a singlet. (orig.)

  18. Measurement of the rates of reaction of the ground and metastable excited states of 02+, N0+ and 0+ with atmospheric gases at thermal energy

    International Nuclear Information System (INIS)

    Glosik, J.; Rakshit, A.B.; Twiddy, N.D.; Adams, N.G.; Smith, D.

    1978-01-01

    Thermal-energy reaction rate coefficients and product ion distributions have been measured for reactions of both the ground state and metastable electronic states of 0 2 + , N0 + and 0 + with several neutral species, using a selected-ion flow tube. In general the excited-ion reaction rates are fast, frequently approaching the Langevin limit. Collisional quenching occurs for the reactions of N0 + sup(star) with N 2 ,0 2 and H 2 and the quenching rates have been determined. The ion source also provided a substantial yield of doubly charged 0 2 permitting some measurements of reaction rates of 0 2 2+ . (author)

  19. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  20. Quenching of photoluminescence of colloidal ZnO nanocrystals by nitronyl nitroxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Stroyuk, Oleksandr L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky avenue, 03028 Kyiv (Ukraine); Yakovenko, Anastasiya V.; Raevskaya, Oleksandra E. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky avenue, 03028 Kyiv (Ukraine); Plyusnin, Victor F. [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-11-15

    Quenching of the photoluminescence of colloidal zinc oxide nanocrystals by a series of stable nitronyl nitroxide radicals was studied by means of stationary and time-resolved luminescence spectroscopy. Among the studied radicals the most efficient quenchers of the ZnO luminescence are the carboxyl-substituted species. The meta-substituted radical was found to be a more active quencher, than para-substituted one due to a closer proximity of the radical center to the nanocrystals surface. The PL quenching has a complex dynamic/static character. The dynamic quenching arises from photocatalytic radical reduction by ZnO conduction band electrons, while the static quenching is caused by adsorption of the photoreduction products on the nanocrystal surface. The non-substituted and OH-substituted radicals are inferior to the products of their photoreduction in capability of adsorption of the ZnO surface, and the quenching is dominated by interactions between the nanocrystals and photoreduced hydroxylamines. In case of COOH-substituted radicals, however, the radicals compete with the photoreduction products for the surface sites of ZnO nanocrystals resulting in a dynamic character of photoluminescence quenching.

  1. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  2. The location of the quench origin in a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1987-01-01

    A method of calculating the initial rate of rise of the resistive voltage in a quenching superconducting magnet is described. Comparison of such calculations with data from spontaneously occurring quenches gives the location of the quench origin since the normal state resistance of the conductor is determined by its position in the windings due to the magnetoresistance of the copper matrix. The characteristics of the voltage buildup is used to separate quenches occurring in low field regions, such as the magnet ends, from those starting in the two-dimensional straight section of the coil. The magnitude of V dot is a measure of performance and can be used to determine if the magnet is reaching the maximum current permitted by the conductor parameters

  3. Properties of self-quenching streamer (SQS) tubes

    International Nuclear Information System (INIS)

    Koori, N.; Nohtomi, A.; Hashimoto, M.; Yoshioka, K.; Kumabe, I.

    1989-01-01

    The self-quenching streamer (SQS) mode of gas counters have been widely used for measuring high energy particles. The authors have very recently found that all the rare gas (He, Ne, Ar and Xe) mixtures with quenching gas of CH 4 , C 2 H 6 , C 3 H 8 , iso-C 4 H 10 or CO 2 can be used as gas mixtures for the SQS mode except Ne- and He-mixtures with CH 4 or CO 2 . Further studies on the properties of this mode are needed for its application to monitoring devices. Properties of a self-quenching tube are discussed here from this point of view. Gas multiplication properties, pulse shape of current signals, and dead zone are measured under several gas pressures equal to or less than one atomospheric pressure. Either the SQS or GM mode can be obtained by changing the gas pressure with a cylindrical gas counter. The operation mode of the counter may be correctly determined from the dead zone measurement. The measurements show that the SQS and GM modes are exclusive, even though SQS's can be simultaneously formed with a GM discharge. The counting rate capability of the SQS mode is higher than that of the GM mode by about one order of magnitude. Thus, SQS tubes are suitable for use in high flux radiation fields. (N.K.)

  4. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  5. SDSS-IV MaNGA: the different quenching histories of fast and slow rotators

    Science.gov (United States)

    Smethurst, R. J.; Masters, K. L.; Lintott, C. J.; Weijmans, A.; Merrifield, M.; Penny, S. J.; Aragón-Salamanca, A.; Brownstein, J.; Bundy, K.; Drory, N.; Law, D. R.; Nichol, R. C.

    2018-01-01

    Do the theorized different formation mechanisms of fast and slow rotators produce an observable difference in their star formation histories? To study this, we identify quenching slow rotators in the MaNGA sample by selecting those that lie below the star-forming sequence and identify a sample of quenching fast rotators that were matched in stellar mass. This results in a total sample of 194 kinematically classified galaxies, which is agnostic to visual morphology. We use u - r and NUV - u colours from the Sloan Digital Sky Survey and GALEX and an existing inference package, STARPY, to conduct a first look at the onset time and exponentially declining rate of quenching of these galaxies. An Anderson-Darling test on the distribution of the inferred quenching rates across the two kinematic populations reveals they are statistically distinguishable (3.2σ). We find that fast rotators quench at a much wider range of rates than slow rotators, consistent with a wide variety of physical processes such as secular evolution, minor mergers, gas accretion and environmentally driven mechanisms. Quenching is more likely to occur at rapid rates (τ ≲ 1 Gyr) for slow rotators, in agreement with theories suggesting slow rotators are formed in dynamically fast processes, such as major mergers. Interestingly, we also find that a subset of the fast rotators quench at these same rapid rates as the bulk of the slow rotator sample. We therefore discuss how the total gas mass of a merger, rather than the merger mass ratio, may decide a galaxy's ultimate kinematic fate.

  6. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1993-05-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures -- detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot -- protection. The temperature rise is diluted by firing heaters along the length of the magnet to insure that the dissipated energy is spread. To develop a reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, we followed an iterative top-down approach. First we defined the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then we further optimize the system through iterative upgrading based on our signal and noise character findings

  7. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1994-01-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures - Detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot - Protection. The temperature rise is diluted by firing heaters along the length of the magnet to ensure that the dissipated energy is spread. It is interesting that there is not a significant amount of published research on detection. To afford a more reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, the authors followed an iterative top-down approach. First they defend the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then they further optimize the system through iterative upgrading based on their signal and noise character findings

  8. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope

    OpenAIRE

    Nazin, G. V.; Wu, S. W.; Ho, W.

    2005-01-01

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks correspondi...

  9. A Novel Electronic Device for Measuring Urine Flow Rate: A Clinical Investigation

    OpenAIRE

    Aliza Goldman; Hagar Azran; Tal Stern; Mor Grinstein; Dafna Wilner

    2017-01-01

    Objective: Currently, most vital signs in the intensive care unit (ICU) are electronically monitored. However, clinical practice for urine output (UO) measurement, an important vital sign, usually requires manual recording of data that is subject to human errors. In this study, we assessed the ability of a novel electronic UO monitoring device to measure real-time hourly UO versus current clinical practice. Design: Patients were connected to the RenalSense Clarity RMS Sensor Kit with a sensor...

  10. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pan Yang [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Zhao Junshu [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Ji Yuanyuan [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yan Lei [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yu Shuqin [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China)], E-mail: sqyu@ustc.edu.cn

    2006-01-05

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields {sup 3}TMB* after rapid intersystem crossing from {sup 1}TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), {alpha}-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property ({pi}-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k{sub q}{sup T} values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k{sub q}{sup S} have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k{sub q} values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation.

  11. Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination.

    Science.gov (United States)

    Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre

    2002-04-24

    A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron

  12. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  13. Measurement of the radiative cooling rates for high-ionization species of krypton using an electron beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.; Fuchs, T.; Fussmann, G.; Beiersdorfer, P.

    2000-01-01

    We describe a measurement of the radiative cooling rate for krypton made at the Berlin electron beam ion trap (EBIT). The EBIT was tuned to a charge-state distribution approaching the ionization balance of a plasma at a temperature of about 5 keV. To determine the cooling rate, we made use of EBIT's capabilities to sample a wide range of electron-beam energies and distinguish between different radiation channels. We have measured the x-ray emission from bremsstrahlung, radiative recombination, dielectronic recombination, and line radiation following electron-impact excitation. The dominant contribution to the cooling rate is made by the n=3-2, n=4-2,... x rays of the L-shell spectra of krypton, which produce more than 75% of the total radiation loss. A difference with theoretical calculations is noted for the measured total cooling rate. The predicted values are lower by a factor of 1.5-2, depending on the theoretical model. For our measurement of the cooling rate, we estimate an uncertainty interval of 22-30 %. (c) 2000 The American Physical Society

  14. The Library quenches your thirst

    CERN Multimedia

    CERN Library

    2010-01-01

    As you might know, the CERN Library switched to an (almost) fully electronic journal collection a couple of years ago ; now all subscribed journals are accessible online except some magazines and reviews.     Of course, librarians carefully monitor  the usage of the electronic journals, in order to maintain a coherent collection in accordance with users' needs. Statistics show a constant increase in the use of this collection, so that, even for the most expensive journals titles, the average cost per downloaded article can be as little as 0.5 euros! This archived growth in use can be explained by factors such as the increasing number of CERN users, and also by the usage of electronic resources becoming a deep-rooted habit. However, it is worthwile to note that, according to a recent study (Scientometrics, 2010, 84, 345) in High Energy Physics, 82% of SPIRES users prefer to read the arXiv version of a paper even if the published version exists on the publisher's website. But t...

  15. Increased Ratio of Electron Transport to Net Assimilation Rate Supports Elevated Isoprenoid Emission Rate in Eucalypts under Drought1[W][OPEN

    Science.gov (United States)

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James

    2014-01-01

    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r2 > 0.8) and photorespiratory stress (r2 > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission. PMID:25139160

  16. The effect of an electronic "hard-stop" alert on HIV testing rates in the emergency department.

    Science.gov (United States)

    Schnall, Rebecca; Sperling, Jeremy D; Liu, Nan; Green, Robert A; Clark, Sunday; Vawdrey, David K

    2013-01-01

    Use of electronic alerts in clinical practice has had mixed effects on providers' prescribing practices. Little research has explored the use of electronic alerts for improving screening practices. New York City has one of the highest rates of HIV in the United States. Recent New York State legislation requires healthcare providers to offer an HIV test to patients aged 13-64 years during a clinical encounter. Adhering to this requirement is particularly challenging in emergency department (ED) settings, which are frequently overcrowded and under-resourced. The purpose of this study was to evaluate the effect of an electronic "hard-stop" alert on HIV testing rates in the ED. Approximately four months of data were reviewed before and after the implementation of the alert. We found that use of the electronic alert significantly increased documentation of offering an HIV test (O.R. = 267.27, p<0.001) and resulted in a significant increase in HIV testing. Findings from this study add to the current knowledge about the use of electronic alertsfor improving disease screening.

  17. Thermal quench at finite 't Hooft coupling

    Directory of Open Access Journals (Sweden)

    H. Ebrahim

    2016-03-01

    Full Text Available Using holography we have studied thermal electric field quench for infinite and finite 't Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′ corrected AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, for massless fundamental matter, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench regime for different values of the temperature and α′ correction parameter. It seems that in the slow quench regime the system behaves adiabatically. We have also observed that the equilibration time decreases in finite 't Hooft coupling limit.

  18. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  19. Structure of partly quenched molten copper chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-09-01

    The structural modifications induced in a model of molten CuCl by quenching the chlorine component into a microporous disordered matrix are evaluated using the hypernetted-chain closure in Ornstein-Zernike relations for the pair distribution functions in random systems. Aside from obvious changes in the behaviour of long-wavelength density fluctuations, the main effect of partial quenching is an enhanced delocalization of the Cu + ions. The model suggests that the ionic mobility in a superionic glass is enhanced relative to the melt at the same temperature and density. Only very minor quantitative differences are found in the structural functions when the replica Ornstein-Zernike relations derived by Given and Stell for a partly quenched system are simplified to those given earlier by Madden and Glandt. (author). 19 refs, 6 figs

  20. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  1. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  2. Theoretical relaxation rates of dipole orientation around an excess electron in liquid alcohols

    International Nuclear Information System (INIS)

    Fueki, K.; Feng, D.F.; Kevan, L.

    1975-01-01

    A method was developed for calculation of relaxation times for dipole orientation in liquid alcohols induced by localized excess electrons. A microscopic model is used which utilizes quantities calculated from the Fueki, Feng, Kevan semicontinuum model of solvated electron energy levels. Given the semicontinuum model results, the relaxation times are calculated as functions of temperature with no adjustable parameters. Calculated results for methanol, ethanol and 1-propanol agree well with the limited experimental data available from Hunt, Baxendale and Wardman, and Thomas and Beck. The calculated results agree best for propanol and imply that the theoretical model is most applicable to larger molecule solvents. The impressive agreement between experiment and theory suggest that simple dipole orientation is the mechanism of rapid electron solvation in polar liquids. (auth)

  3. Theoretical relaxation rates of dipole orientation around an excess electron in liquid alcohols

    International Nuclear Information System (INIS)

    Fueki, K.; Feng, D.F.; Kevan, L.

    1975-01-01

    A method is developed for calculation of relaxation times for dipole orientation in liquid alcohols induced by localized excess electrons. A microscopic model is used which utilizes quantities calculated from the Fueki, Feng, Kevan semicontinuum model of solvated electron energy levels. Given the semicontinuum model results, the relaxation times are calculated as functions of temperature with no adjustable parameters. Calculated results for methanol, ethanol and 1-propanol agree well with the limited experimental data available from Hunt, Baxendale and Wardman, and Thomas and Beck. The calculated results agree best for propanol and imply that the theoretical model is most applicable to larger molecule solvents. The impressive agreement between experiment and theory suggest that simple dipole orientation is the mechanism of rapid electron solvation in polar liquids. (author)

  4. Electron-ion collision rates in atomic clusters irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Moll, M; Hilse, P; Schlanges, M; Bornath, Th; Krainov, V P

    2010-01-01

    In atomic clusters irradiated by femtosecond laser pulses, plasmas with high density and high temperature are created. The heating is mainly caused by inverse bremsstrahlung, i.e. determined by electron-ion collisions. In the description of the scattering of electrons on noble gas ions in such plasmas, it is important to account for the inner structure of the ions and the screening by the surrounding plasma medium which can be accomplished by using suitable model potentials. In the wide parameter range met in experiments, the Born approximation is not applicable. Instead, the electron-ion collision frequency is calculated on the basis of classical momentum transport cross sections. Results are presented for xenon, krypton and argon ions in different charge states. A comparison of these results to those for the scattering on Coulomb particles with the same charge shows an enhancement of the collision frequency. The Born approximation, however, leads to an overestimation.

  5. Population decay time and distribution of exciton states analyzed by rate equations based on theoretical phononic and electron-collisional rate coefficients

    Science.gov (United States)

    Oki, Kensuke; Ma, Bei; Ishitani, Yoshihiro

    2017-11-01

    Population distributions and transition fluxes of the A exciton in bulk GaN are theoretically analyzed using rate equations of states of the principal quantum number n up to 5 and the continuum. These rate equations consist of the terms of radiative, electron-collisional, and phononic processes. The dependence of the rate coefficients on temperature is revealed on the basis of the collisional-radiative model of hydrogen plasma for the electron-collisional processes and theoretical formulation using Fermi's "golden rule" for the phononic processes. The respective effects of the variations in electron, exciton, and lattice temperatures are exhibited. This analysis is a base of the discussion on nonthermal equilibrium states of carrier-exciton-phonon dynamics. It is found that the exciton dissociation is enhanced even below 150 K mainly by the increase in the lattice temperature. When the thermal-equilibrium temperature increases, the population fluxes between the states of n >1 and the continuum become more dominant. Below 20 K, the severe deviation from the Saha-Boltzmann distribution occurs owing to the interband excitation flux being higher than the excitation flux from the 1 S state. The population decay time of the 1 S state at 300 K is more than ten times longer than the recombination lifetime of excitons with kinetic energy but without the upper levels (n >1 and the continuum). This phenomenon is caused by a shift of population distribution to the upper levels. This phonon-exciton-radiation model gives insights into the limitations of conventional analyses such as the ABC model, the Arrhenius plot, the two-level model (n =1 and the continuum), and the neglect of the upper levels.

  6. Quenching of spin-flip quadrupole transitions

    International Nuclear Information System (INIS)

    Castel, B.; Blunden, P.; Okuhara, Y.

    1985-01-01

    An increasing amount of experimental data indicates that spin-flip quadrupole transitions exhibit quenching effects similar to those reported earlier in (p,n) reactions involving l = 0 and l = 1 transitions. We present here two model calculations suggesting that the E2 spin-flip transitions are more affected than their M1 and M3 counterparts by the tensor and spin-orbit components of the nuclear force and should exhibit the largest quenching. We also review the experimental evidence corroborating our observations

  7. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Skinner, C.H.; Suckewer, S.; Princeton Univ., NJ; Lee, W.

    1991-02-01

    Experimental evidence is presented for the change of Einstein's A-coefficients for spontaneous transitions from the upper laser level of an argon ion laser discharge due to the presence of the high-intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  8. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Lee, W.; Skinner, C.H.; Suckewer, S.

    1991-03-01

    Experimental evidence is presented for the change of Einstein's A- coefficients for spontaneous transitions from the upper laser level of argon ion laser discharge due to the presence of the high- intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  9. Analysis of transformations of the ultrafast electron transfer photoreaction mechanism in liquid solutions by the rate distribution approach.

    Science.gov (United States)

    Kuzmin, Michael G; Soboleva, Irina V

    2014-05-01

    Representation of the experimental reaction kinetics in the form of rate distribution is shown to be an effective method for the analysis of the mechanisms of these reactions and for comparisons of the kinetics with QC calculations, as well as with the experimental data on the medium mobility. The rate constant distribution function P(k) can be obtained directly from the experimental kinetics N(t) by an inverse Laplace transform. The application of this approach to kinetic data for several excited-state electron transfer reactions reveals the transformations of their rate control factors in the time domain of 1-1000 ps. In neat electron donating solvents two components are observed. The fastest component (k > 1 ps(-1)) was found to be controlled by the fluctuations of the overall electronic coupling matrix element, involving all the reactant molecules, located inside the interior of the solvent shell, rather than for specific pairs of reactant molecules. The slower component (1 > k > 0.1 ps(-1)) is controlled by the medium reorganization (longitudinal relaxation times, τL). A substantial contribution from the non-stationary diffusion controlled reaction is observed in diluted solutions ([Q] transformation of the rate control factors in the course of the reactions.

  10. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus.

    Science.gov (United States)

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-04-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.

  11. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus *

    Science.gov (United States)

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-01-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage. PMID:24711354

  12. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  13. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  14. Application of AE technique for on-line monitoring of quenching in racetrack superconducting coil at cryogenic environment

    International Nuclear Information System (INIS)

    Lee, Jun Hyun; Lee, Min Rae; Shon, Myung Hwan; Kwon, Young Kil

    1998-01-01

    An acoustic emission(AE) technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2 K. The ultimate goal is to ensure the safety and reliability of large superconducting magnet systems by being able to identity and locate the sources of quench in superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current. It was found in this study that there was good correlation between quench current and AE parameters. The source location of quenching in superconducting magnet was also discussed on the hashing of correlation between magnet voltage and AE energy.

  15. Quench detection and behaviour in case of quench in the ITER magnet systems

    International Nuclear Information System (INIS)

    Coatanea-Gouachet, M.

    2012-02-01

    The quench of one of the ITER magnet system is an irreversible transition from superconducting to normal resistive state, of a conductor. This normal zone propagates along the cable in conduit conductor dissipating a large power. The detection has to be fast enough to dump out the magnetic energy and avoid irreversible damage of the systems. The primary quench detection in ITER is based on voltage detection, which is the most rapid detection. The very magnetically disturbed environment during the plasma scenario makes the voltage detection particularly difficult, inducing large inductive components in the coils and voltage compensations have to be designed to discriminate the resistive voltage associated with the quench. A conceptual design of the quench detection based on voltage measurements is proposed for the three majors magnet systems of ITER. For this, a clear methodology was developed. It includes the classical hot spot criterion, the quench propagation study using the commercial code Gandalf and the careful estimation of the inductive disturbances by developing the TrapsAV code. Specific solutions have been proposed for the compensation in the three ITER magnet systems and for the quench detection parameters, which are the voltage threshold (in the range of 0.1 V - 0.55 V) and the holding time (in the range of 1-1.4 s). The selected values, in particular the holding time, are sufficiently high to ensure the reliability of the system and avoid fast safety discharges not induced by a quench, which is a classical problem. (author)

  16. The ionization quench factor in liquid-scintillation counting standardizations

    CERN Document Server

    Grau-Malonda, A

    1999-01-01

    We present a new detailed analysis of the ionization quench function Q(E) used in calculating the counting efficiency in liquid-scintillation counting (LSC), which shows that Q(0)=1, and permits one to derive Q(E) as a function of the electron energy and the parameter kB. The coefficients are tabulated by applying a new empirical formula of Q(E) for kB values in the range between 0.001 and 0.20 gMeV sup - sup 1 cm sup - sup 2. We demonstrate the convenience of applying sup 3 H and sup 5 sup 4 Mn for beta-ray and electron capture standardizations, respectively.

  17. Hot compressive deformation behavior of the as-quenched A357 aluminum alloy

    International Nuclear Information System (INIS)

    Yang, X.W.; Lai, Z.H.; Zhu, J.C.; Liu, Y.; He, D.

    2012-01-01

    Highlights: ► We create a thermal history curve which was applied to carry out compression tests. ► We make an analysis of deformation performance for as-quenched A357 alloy. ► We create a constitutive equation which has good accuracy. - Abstract: The objective of the present work was to establish an accurate thermal-stress mathematical model of the quenching operation for A357 (Al–7Si–0.6Mg) alloy and to investigate the deformation behavior of this alloy. Isothermal compression tests of as-quenched A357 alloy were performed in the temperature range of 350–500 °C and at the strain rate range of 0.001–1 s −1 . Experimental results show that the flow stress of as-quenched A357 alloy decreases with the increase of temperature and the decrease of strain rate. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched A357 alloy is 252.095 kJ/mol. Under the different small strains (≤0.01), the constitutive equation parameters of as-quenched A357 alloy were calculated. Values of flow stress calculated by constitutive equation were in a very good agreement with experimental results. Therefore, it can be used as an accurate thermal-stress model to solve the problems of quench distortion of parts.

  18. Fluorescence quenching of polycyclic aromatic hydrocarbons within deep eutectic solvents and their aqueous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Ashish; Yadav, Anita; Bhawna; Pandey, Siddharth, E-mail: sipandey@chemistry.iitd.ac.in

    2017-03-15

    Two common and popular deep eutectic solvents (DESs) composed of the salt choline chloride and H-bond donors glycerol and urea in 1:2 mol ratio named glyceline and reline, respectively, are investigated for the analysis of polycyclic aromatic hydrocarbons (PAHs) using quenching of both steady-state and time-resolved fluorescence of ten different PAHs by nitromethane at 30 °C. Based on their quenching efficiencies, the PAHs are divided into two groups – group 1 is constituted of the five PAHs whose fluorescence are quenched less effectively by nitromethane whereas the other five exhibiting high quenching efficiency are associated to group 2. Quenching of steady-state fluorescence of group 1 PAHs by nitromethane, albeit not very significant, follow a simple Stern-Volmer behavior. The excited-state emission intensity decay of these PAHs, in both absence and presence of nitromethane, fit best to a single exponential model with small but monotonic decrease in lifetimes. The decrease in lifetime also follows Stern-Volmer behavior, however, the quenching constants (K{sub D}) are lower than those obtained from steady-state fluorescence (K{sub SV}). This is ascribed to the possible formation of charge-transfer complex between the PAH and the nitromethane. Steady-state fluorescence quenching of group 2 PAHs exhibit distinct upward curvature from linear Stern-Volmer behavior implying highly efficient quenching. The intensity decay fits best to a double exponential decay model with longer of the decay times following simple Stern-Volmer behavior. Formation of a complex or the presence of nitromethane within the quenching sphere of action of the PAH having short decay time is proposed. Quenching behavior was found to be similar irrespective of the identity of the DES. A representative group 2 PAH, pyrene, is employed to investigate diffusion dynamics within aqueous mixtures of the two DESs. The bimolecular quenching rate constant (k{sub q}) is found to increase linearly with

  19. Partially quenched gauge theories and an application to staggered fermions

    International Nuclear Information System (INIS)

    Bernard, C.W.; Golterman, M.F.L.

    1994-01-01

    We extend our Lagrangian technique for chiral perturbation theory for quenched QCD to include theories in which only some of the quarks are quenched. We discuss the relationship between the partially quenched theory and a theory in which only the unquenched quarks are present. We also investigate the peculiar infrared divergences associated with the η' in the quenched approximation, and find the conditions under which such divergences can appear in a partially quenched theory. We then apply our results to staggered fermion QCD in which the square root of the fermion determinant is taken, using the observation that this should correspond to a theory with four quarks, two of which are quenched

  20. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  1. Severe fuel damage experiments performed in the QUENCH facility with 21-rod bundles of LWR-type

    International Nuclear Information System (INIS)

    Sepold, L.; Hering, W.; Schanz, G.; Scholtyssek, W.; Steinbrueck, M.; Stuckert, J.

    2006-01-01

    The objective of the QUENCH experimental program at the Karlsruhe Research Center is to investigate core degradation and the hydrogen source term that results from quenching/flooding an uncovered core, to examine the physical/chemical behavior of overheated fuel elements under different flooding conditions, and to create a data base for model development and improvement of severe fuel damage (SFD) code systems. The large-scale 21-rod bundle experiments conducted in the QUENCH out-of-pile facility are supported by an extensive separate-effects test program, by modeling activities as well as application and improvement of SFD code systems. International cooperations exist with institutions mainly within the European Union but e.g. also with the Russian Academy of Science (IBRAE, Moscow) and the CSARP program of the USNRC. So far, eleven experiments have been performed, two of them with B 4 C absorber material. Experimental parameters were: the temperature at initiation of reflood, the degree of peroxidation, the quench medium, i.e. water or steam, and its injection rate, the influence of a B 4 C absorber rod, the effect of steam-starved conditions before quench, the influence of air oxidation before quench, and boil-off behavior of a water-filled bundle with subsequent quenching. The paper gives an overview of the QUENCH program with its organizational structure, describes the test facility and the test matrix with selected experimental results. (author)

  2. Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2016-04-01

    In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature tests, receiving calculation results with the evaluated range of uncertainties.

  3. A Novel Electronic Device for Measuring Urine Flow Rate: A Clinical Investigation

    Directory of Open Access Journals (Sweden)

    Aliza Goldman

    2017-09-01

    Full Text Available Objective: Currently, most vital signs in the intensive care unit (ICU are electronically monitored. However, clinical practice for urine output (UO measurement, an important vital sign, usually requires manual recording of data that is subject to human errors. In this study, we assessed the ability of a novel electronic UO monitoring device to measure real-time hourly UO versus current clinical practice. Design: Patients were connected to the RenalSense Clarity RMS Sensor Kit with a sensor integrated within a standard sterile urinary catheter drainage tube to monitor urine flow in real time. The Clarity RMS Sensor Kit was modified to incorporate a standard urinometer (Unomedical for the nursing staff to record UO as per their standard practice. The drainage bag was placed in a container on a scientific scale (Precisa BJ to be used as the gold standard. Interventions: Nursing records for hourly UO were collected and compared with the electronically recorded UO. Sensor measurements and nursing staff manual records of UO were compared with the scale data. Setting: The study setting was the ICU of Hadassah Hospital, Jerusalem. Patients: Data from 23 patients with a urinary catheter were observed in this study. Measurements and main results: A total of 1046 hours of UO were recorded from 23 subjects. Compared with the scale data, the measurements of hourly urine flow measured with the RenalSense system were closer, had a better correlation, and narrower limits of agreement to gravimetrically determined values than the measurements obtained by the nurses. In addition, continuous monitoring of UO provided graphical display of response to repeated diuretic administration. Conclusions: An electronic device for recording UO has been shown to provide more reliable information of UO records and patient fluid status than current practice. Future applications of this device will provide valuable information to help set protocol goals such as decisions for

  4. Speech recognition software and electronic psychiatric progress notes: physicians' ratings and preferences

    Directory of Open Access Journals (Sweden)

    Derman Yaron D

    2010-08-01

    Full Text Available Abstract Background The context of the current study was mandatory adoption of electronic clinical documentation within a large mental health care organization. Psychiatric electronic documentation has unique needs by the nature of dense narrative content. Our goal was to determine if speech recognition (SR would ease the creation of electronic progress note (ePN documents by physicians at our institution. Methods Subjects: Twelve physicians had access to SR software on their computers for a period of four weeks to create ePN. Measurements: We examined SR software in relation to its perceived usability, data entry time savings, impact on the quality of care and quality of documentation, and the impact on clinical and administrative workflow, as compared to existing methods for data entry. Data analysis: A series of Wilcoxon signed rank tests were used to compare pre- and post-SR measures. A qualitative study design was used. Results Six of twelve participants completing the study favoured the use of SR (five with SR alone plus one with SR via hand-held digital recorder for creating electronic progress notes over their existing mode of data entry. There was no clear perceived benefit from SR in terms of data entry time savings, quality of care, quality of documentation, or impact on clinical and administrative workflow. Conclusions Although our findings are mixed, SR may be a technology with some promise for mental health documentation. Future investigations of this nature should use more participants, a broader range of document types, and compare front- and back-end SR methods.

  5. Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Menard, J.E.

    2008-01-01

    A detailed analysis of the plasma current quench in the National Spherical Torus Experiment (M.Ono, et al Nuclear Fusion 40, 557 (2000)) is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change

  6. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Yuzhen Zhao

    2016-11-01

    Full Text Available Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  7. Electron impact collision strengths and transition rates for extreme ultraviolet emission from Xe10+

    International Nuclear Information System (INIS)

    Shen Yunfeng; Gao Cheng; Zeng Jiaolong

    2009-01-01

    The energy levels, oscillator strengths, and electron impact collision strengths are calculated for the Xe 10+ ion using the configuration interaction scheme implemented by the Flexible Atomic Code. These data pertain to the 3917 levels belonging to the following configurations: 4s 2 4p 6 4d 8 , 4s 2 4p 6 4d 7 4f, 4s 2 4p 6 4d 7 5l (l = s, p, d, or f), 4s 2 4p 5 4d 9 , 4s 2 4p 5 4d 8 4f, 4s 2 4p 5 4d 8 5l, 4s 2 4p 6 4d 6 5s5p, 4s 2 4p 6 4d 6 5p5d. Configuration interactions among these configurations are included in the calculation. Collision strengths are obtained at 10 scattered electron energies (1-1000 eV) and are tabulated here at five representative energies of 10, 50, 100, 500, and 1000 eV. Effective collision strengths are obtained by assuming a Maxwellian electron velocity distribution at 10 temperatures ranging from 10 to 100 eV, and are tabulated at five representative temperatures of 10, 30, 50, 70 and 100 eV in this work. The whole data set should be useful for research involving extreme ultraviolet emission from Xe 10+

  8. Growth rate of non-thermodynamic emittance of intense electron beams

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1998-01-01

    The nonlinear free-energy concept has been particularly useful in estimating the emittance growth resulting from any excess energy of electron beams in periodic and uniform channels. However, additional emittance growth, that is geometrical rather than thermodynamic in origin, is induced if the particles have different kinetic energies and axial velocities, which is common for mildly relativistic, very intense electron beams. This effect is especially strong if particles lose or gain significant kinetic energy due to the beam's potential depression, as the beam converges and diverges. In this paper we analyze these geometric emittance growth mechanisms for a uniform, continuous, intense electron beam in a focusing transport channel consisting of discrete solenoidal magnets, over distances short enough that the beam does not reach equilibrium. These emittance growth mechanisms are based on the effects of (1) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (2) an axial velocity shear radially along the beam due to the beam's azimuthal motion in the solenoids, and (3) an energy redistribution of the beam as the beam compresses or expands. The geometric emittance growth is compared in magnitude with that resulting from the nonlinear free energy, for the case of a mismatched beam in a uniform channel, and is shown to dominate for certain experimental conditions. Rules for minimizing the emittance along a beamline are outlined. copyright 1998 The American Physical Society

  9. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  10. Calculating Quench Propagation with ANSYS(regsign)

    International Nuclear Information System (INIS)

    Caspi, S.; Chiesa, L.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.; Hinkins, R.; Lietzke, A.F.; Prestemon, S.

    2002-01-01

    A commercial Finite-Element-Analysis program, ANSYS(reg s ign), is widely used in structural and thermal analysis. With the program's ability to include non-linear material properties and import complex CAD files, one can generate coil geometries and simulate quench propagation in superconducting magnets. A 'proof-of-principle' finite element model was developed assuming a resistivity that increases linearly from zero to its normal value at a temperature consistent with the assumed B magnetic field. More sophisticated models could easily include finer-grained coil, cable, structural, and circuit details. A quench is provoked by raising the temperature of an arbitrary superconducting element above its T c . The time response to this perturbation is calculated using small time-steps to allow convergence between steps. Snapshots of the temperature and voltage distributions allow examination of longitudinal and turn-to-turn quench propagation, quench-front annihilation, and cryo-stability. Modeling details are discussed, and a computed voltage history was compared with measurements from a recent magnet test.

  11. Screening of exciplex formation by distant electron transfer.

    Science.gov (United States)

    Fedorenko, S G; Khokhlova, S S; Burshtein, A I

    2012-01-12

    The excitation quenching by reversible exciplex formation, combined with irreversible but distant electron transfer, is considered by means of the integral encounter theory (IET). Assuming that the quenchers are in great excess, the set of IET equations for the excitations, free ions, and exciplexes is derived. Solving these equations gives the Laplace images of all these populations, and these are used to specify the quantum yields of the corresponding reaction products. It appears that diffusion facilitates the exciplex production and the electron transfer. On the other hand the stronger the electron transfer is, the weaker is the exciplex production. At slow diffusion the distant quenching of excitations by ionization prevents their reaching the contact where they can turn into exciplexes. This is a screening effect that is most pronounced when the ionization rate is large.

  12. Graphene–cyclodextrin–cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Cheng-Bin; Guo, Cong-Cong; Jiang, Dan; Tang, Qian, E-mail: qiantang@swu.edu.cn; Liu, Chang-Hua; Ma, Xue-Bing

    2014-06-01

    This study aimed to develop a new graphene-based layered assembly, named graphene–cyclodextrin–cytochrome c with improved electron transfer rate. This assembly has combined high conductivity of graphene nanosheets (GNs), selectively binding properties and electronegativity of cyclodextrins (CDs), as well as electropositivity of cytochrome c (Cyt c). This assembly can also mimic the confined environments of the intermembrane space of mitochondria. A β-cyclodextrin (β-CD) functionalized GN (GN–CD) assembly was initially prepared by a simple wet-chemical strategy, i.e., in situ thermal reduction of graphene oxide with hydrazine hydrate in the presence of β-CD. Cyt c was then intercalated to the GN–CD assembly to form a layered self-assembled structure, GN–CD–Cyt c, through electrostatic interaction. Compared with GNs and GN–CD, GN–CD–Cyt c assembly displayed improved electron transfer rate and high supramolecular recognition capability toward six probe molecules. - Highlights: • A new tertiary layered assembly named GN–CD–Cyt c was prepared. • Compared with GNs and GN–CD, GN–CD–Cyt c shows improved electron transfer rate. • GN–CD–Cyt c displays high supramolecular recognition capability.

  13. Graphene–cyclodextrin–cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability

    International Nuclear Information System (INIS)

    Gong, Cheng-Bin; Guo, Cong-Cong; Jiang, Dan; Tang, Qian; Liu, Chang-Hua; Ma, Xue-Bing

    2014-01-01

    This study aimed to develop a new graphene-based layered assembly, named graphene–cyclodextrin–cytochrome c with improved electron transfer rate. This assembly has combined high conductivity of graphene nanosheets (GNs), selectively binding properties and electronegativity of cyclodextrins (CDs), as well as electropositivity of cytochrome c (Cyt c). This assembly can also mimic the confined environments of the intermembrane space of mitochondria. A β-cyclodextrin (β-CD) functionalized GN (GN–CD) assembly was initially prepared by a simple wet-chemical strategy, i.e., in situ thermal reduction of graphene oxide with hydrazine hydrate in the presence of β-CD. Cyt c was then intercalated to the GN–CD assembly to form a layered self-assembled structure, GN–CD–Cyt c, through electrostatic interaction. Compared with GNs and GN–CD, GN–CD–Cyt c assembly displayed improved electron transfer rate and high supramolecular recognition capability toward six probe molecules. - Highlights: • A new tertiary layered assembly named GN–CD–Cyt c was prepared. • Compared with GNs and GN–CD, GN–CD–Cyt c shows improved electron transfer rate. • GN–CD–Cyt c displays high supramolecular recognition capability

  14. Resolution and Efficiency of Monitored Drift-Tube Chambers with Final Read-out Electronics at High Background Rates

    CERN Document Server

    Dubbert, J; Kortner, O; Kroha, H; Manz, A; Mohrdieck-Möck, S; Rauscher, F; Richter, R; Staude, A; Stiller, W

    2003-01-01

    The performance of a monitored drift-tube chamber for ATLAS with the final read-out electronics was tested at the Gamma Irradiation facility at CERN under varyin photon irradiation rates of up to 990~Hz\\,cm$^{-2}$ which corresponds to 10 times the highest background rate expected in ATLAS. The signal pulse-height measurement of the final read-out electronics was used to perform time-slewing corrections. The corrections improve the average single-tube resolution from 106~$\\mu$m to 89~$\\mu$m at the nominal discriminator threshold of 44~mV without irradiation, and from 114~$\\mu$m to 89~$\\mu$m at the maximum nominal irradiation rate in ATLAS of 100~Hz\\,cm$^{-2}$. The reduction of the threshold from 44~mV to 34~mV and the time-slewing corrections lead to an average single-tube resolution of 82~$\\mu$m without photon background and of 89~$\\mu$m at 100~Hz\\,cm$^{-2}$. The measured muon detection efficiency agrees with the expectation for the final read-out electronics.

  15. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  16. Simulation of the Quench-06 experiment with Scdapsim; Simulacion del experimento Quench-06 con Scdapsim

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, E. del; Nunez C, A.; Amador G, R. [CNSNS, Dr. Barragan No. 779, 03020 Mexico D.F. (Mexico)]. e-mail: edangelm@cnsns.gob.mx

    2003-07-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  17. Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction.

    Science.gov (United States)

    Lukas, Aaron S; Bushard, Patrick J; Weiss, Emily A; Wasielewski, Michael R

    2003-04-02

    The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination

  18. Correlation of heterojunction luminescence quenching and photocurrent in polymer-blend photovoltaic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rabade, Astrid; Morteani, Arne C.; Friend, Richard H. [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-10-19

    Charge generation in organic solar cells proceeds via photogeneration of excitons in the bulk that form geminate electron-hole pairs at the heterojunction formed between electron donor and acceptors. It is shown that an externally applied electric field increases the number of free charges formed from the geminate pair, and quenches the luminescence from the relaxed exciplex with one-to-one correspondence. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    Science.gov (United States)

    Tesoriero, Anthony J.; Liebscher, Hugh; Cox, Stephen E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third‐order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon‐based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.

  20. Quench propagation and quench detection in the TF system of JT-60SA

    International Nuclear Information System (INIS)

    Lacroix, Benoit; Duchateau, Jean-Luc; Meuris, Chantal; Ciazynski, Daniel; Nicollet, Sylvie; Zani, Louis; Polli, Gian-Mario

    2013-01-01

    Highlights: • The JT-60SA primary quench detection system will be based on voltage measurements. • The early quench propagation was studied in the JT-60SA TF conductor. • The impact of the conductor jacket on the hot spot criterion was quantified. • The detection parameters were investigated for different quench initiations. -- Abstract: In the framework of the JT-60SA project, France and Italy will provide to JAEA 18 Toroidal Field (TF) coils including NbTi cable-in-conduit conductors. During the tokamak operation, these coils could experience a quench, an incidental event corresponding to the irreversible transition from superconducting state to normal resistive state. Starting from a localized disturbance, the normal zone propagates along the conductor and dissipates a large energy due to Joule heating, which can cause irreversible damages. The detection has to be fast enough (a few seconds) to trigger the current discharge, so as to dump the stored magnetic energy into an external resistor. The JT-60SA primary quench detection system will be based on voltage measurements, which are the most rapid technology. The features of the detection system must be adjusted so as to detect the most probable quenches, while avoiding inopportune fast safety discharges. This requires a reliable simulation of the early quench propagation, performed in this study with the Gandalf code. The conductor temperature reached during the current discharge must be kept under a maximal value, according to the hot spot criterion. In the present study, a hot spot criterion temperature of 150 K was taken into account and the role of each conductor component (strands, helium and conduit) was analyzed. The detection parameters were then investigated for different hypotheses regarding the quench initiation

  1. Quench detection on a superconducting radio-frequency cavity

    OpenAIRE

    Lai, Ru-Yu; Spirn, Daniel

    2017-01-01

    We study quench detection in superconducting accelerator cavities cooled with He-II. A rigorous mathematical formula is derived to localize the quench position from dynamical data over a finite time interval at a second sound detector.

  2. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching

    NARCIS (Netherlands)

    van Oort, Bart; Roy, Laura M; Xu, Pengqi; Lu, Yinghong; Karcher, Daniel; Bock, Ralph; Croce, Roberta

    2018-01-01

    Photoprotective nonphotochemical quenching (NPQ) of absorbed solar energy is vital for survival of photosynthetic organisms, and NPQ modifications significantly improve plant productivity. However, the exact NPQ quenching mechanism is obscured by discrepancies between reported mechanisms, involving

  3. On the quench sensitivity of 7010 aluminum alloy forgings in the overaged condition

    Energy Technology Data Exchange (ETDEWEB)

    Tiryakioğlu, Murat, E-mail: m.tiryakioglu@unf.edu [School of Engineering, University of North Florida, Jacksonville, FL 32224 (United States); Robinson, Jeremy S. [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Eason, Paul D. [School of Engineering, University of North Florida, Jacksonville, FL 32224 (United States)

    2014-11-17

    The quench sensitivity of an overaged 7010 alloy forging was characterized by tensile and Vickers hardness tests, as well as scanning electron microscopy. Longitudinal tensile specimens, excised from a rectilinear open die forging were cooled from the solution treatment temperature following thirty-two different cooling paths including interrupted and delayed quenches. SEM analysis of the microstructure showed that quench precipitates were (i) Al{sub 2}CuMg (S) which nucleated heterogeneously on grain boundaries and (ii) Mg(Zn,Cu,Al){sub 2} (η) on grain boundaries, dispersoid bands, subgrain boundaries as well as in the aluminum matrix. The quench sensitivity of the alloy's yield strength and Vickers hardness was modeled simultaneously by quadruple-C curves, using an improved methodology for Quench Factor Analysis. The four C-curves used in the model represented loss of solute by (i) precipitation of S on grain boundaries, and precipitation of η (ii) on grain boundaries and dispersoid bands, (iii) on subgrain boundaries and (iv) in the matrix. The model yielded coefficient of determination (R{sup 2}) values of 0.967 and 0.974 for yield strength and Vickers hardness, respectively. The model and the implications of the results are discussed in this paper.

  4. Quenching of acridine orange fluorescence by salts in aqueous solutions: Effects of aggregation and charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Amado, A.M. [Departamento de Física, FFCLRP, USP (Brazil); Ramos, A.P. [Departamento de Química, FFCLRP, USP (Brazil); Silva, E.R. [Departamento de Física, FFCLRP, USP (Brazil); Borissevitch, I.E., E-mail: iouribor@usp.br [Departamento de Física, FFCLRP, USP (Brazil)

    2016-10-15

    Acridine orange (AO) is widely applied in biology and medicine as a fluorescence probe, an intracellular pH indicator, and a photosensitizer in photodynamic therapy due to its adequate spectroscopic characteristics and high affinity to biological structures. Being introduced in an organism, AO is dispersed in blood plasma characterized by high ionic strength (ca. 0.36 M in humans). We have investigated the effect of ionic strength upon AO spectral characteristics and fluorescence quenching. The effect of pH on these characteristics was also tested. Salts quench AO fluorescence, the quenching constant (k{sub q}) increasing with the AO concentration. Salts stimulate AO aggregation, the process depending weakly on the salt origin. On the other hand, k{sub q} does depend on the salt anion origin, increasing as the anion oxidation potential decreases, and is virtually independent of the cation origin. This means that at least two different mechanisms of the AO fluorescence quenching by salts exist: fluorescence intensity decrease due to AO aggregation and quenching by partial electron transfer from salt anion to AO molecule in its singlet excited state (the exciplex formation).

  5. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    International Nuclear Information System (INIS)

    Bagan, H.; Tarancon, A.; Rauret, G.; Garcia, J.F.

    2008-01-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14 C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach

  6. Development of a Suitable Survey Instrument To Identify Causes Behind High Turnover Rates within the 0301 Series in the Communications Electronics Command

    Science.gov (United States)

    2017-09-01

    CAUSES BEHIND HIGH TURNOVER RATES WITHIN THE 0301 SERIES IN THE COMMUNICATIONS- ELECTRONICS COMMAND September 2017 By: Antonia U. Orjih...THE COMMUNICATIONS- ELECTRONICS COMMAND 5. FUNDING NUMBERS 6. AUTHOR(S) Antonia U. Orjih and Shamika M. Fleuranges 7. PERFORMING ORGANIZATION...AGENCY NAME(S) AND ADDRESS(ES) Communications- Electronics Command (CECOM) Aberdeen Proving Ground (APG), Maryland 10. SPONSORING / MONITORING

  7. Rare-gas dependence of the self-quenching streamer

    International Nuclear Information System (INIS)

    Yoshioka, K.; Hashimoto, M.; Koori, N.; Kumabe, I.; Ohgaki, H.; Matoba, M.

    1989-01-01

    The self-quenching streamer (SQS) mode is understood these days as one of the basic modes of gas counter operation. In the present work, the SQS transition is clearly observed for Ar-, Kr- and Xe-mixtures with CH 4 , C 2 H 6 , C 3 H 8 , isoC 4 H 10 and CO 2 , and for He- and Ne-mixtures with C 2 H 6 , C 3 H 8 and isoC 4 H 10 . For He- and Ne-mixtures with CH 4 or CO 2 , the GM discharge is developed instead of the SQS transition. The avalanche size at the transition voltage decreases, in the order of He-, Ne-, Ar-, Kr- and Xe-mixtures, except for He-mixtures with CH 4 or CO 2 . The mechanisms of the SQS transition proposed by Atac et al. and Zhang have disadvantages in explaining all these results. If the photo-ionization is assumed as in Atac's mechanism, energetic photons whose yield is sufficiently large are needed for the SQS transition. The interaction between metastable states of rare gases proposed by Zhang may be energetically capable of producing electrons for the transition; effects of quenching gas in mixtures cannot be explained by this mechanism. Further investigation is necessary for microscopic processes occurring in the avalanche development. More detailed information is required on the atomic reaction cross sections of photo-ionization, radiative recombination, etc. (N.K.)

  8. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  9. Superconducting synchrotron power supply and quench protection scheme

    International Nuclear Information System (INIS)

    Stiening, R.; Flora, R.; Lauckner, R.; Tool, G.

    1978-01-01

    The power supply and quench protection scheme for the proposed Fermilab 6 km circumference superconducting synchrotron is described. Specifically, the following points are discussed: (1) the 46 MW thyristor power supply; (2) the 3 x 10 8 J emergency energy dump; (3) the distributed microprocessing system for the detection of quenches; (4) the thyristor network for shunting current around quenched magnets; and (5) the heaters internal to the magnets which cause rapid propagation of quenches. Test results on prototype systems are given

  10. Time-scales for quenching single-bubble sonoluminescence in the presence of alcohols

    Science.gov (United States)

    Guan, Jingfeng; Matula, Thomas

    2002-11-01

    A small amount of alcohol added to water dramatically decreases the light intensity from single-bubble sonoluminescence [Weninger et al., J. Phys. Chem. 99, 14195-14197 (1995)]. From an excess accumulation at the bubble surface [Ashokkumar et al., J. Phys. Chem. 104, 8462-8465 (2000)], the molecules evaporate into the bubble interior, reducing the effective adiabatic exponent of the gas, and decreasing the bubble temperature and light output [Toegel et al., Phys. Rev. Lett. 84, 2509-2512 (2000)]. There is a debate as to the rate at which alcohol is injected into the bubble interior. One camp favors the notion that molecules must be repetitively injected over many acoustic cycles. Another camp favors the notion that most quenching occurs during a single collapse. An experiment has been conducted in order to resolve the debate. Quenching rates were measured by recording the instantaneous bubble response and corresponding light emission during a sudden increase in pressure. It was found that complete quenching in the presence of methanol requires over 8000 acoustic cycles, while quenching with butanol occurs in about 20 acoustic cycles. These observations are consistent with the view that quenching requires the repetitive injection of alcohol molecules over repetitive acoustic cycles.

  11. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Zhang, Jiabei; Zhou, Junhu; Cen, Kefa; Murphy, Jerry D

    2017-09-01

    Interspecies electron transfer between bacteria and archaea plays a vital role in enhancing energy efficiency of anaerobic digestion (AD). Conductive carbon materials (i.e. graphene nanomaterial and activated charcoal) were assessed to enhance AD of ethanol (a key intermediate product after acidogenesis of algae). The addition of graphene (1.0g/L) resulted in the highest biomethane yield (695.0±9.1mL/g) and production rate (95.7±7.6mL/g/d), corresponding to an enhancement of 25.0% in biomethane yield and 19.5% in production rate. The ethanol degradation constant was accordingly improved by 29.1% in the presence of graphene. Microbial analyses revealed that electrogenic bacteria of Geobacter and Pseudomonas along with archaea Methanobacterium and Methanospirillum might participate in direct interspecies electron transfer (DIET). Theoretical calculations provided evidence that graphene-based DIET can sustained a much higher electron transfer flux than conventional hydrogen transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. How Does the Electron Dynamics Affect the Reconnection Rate in a Typical Reconnection Layer?

    Science.gov (United States)

    Hesse, Michael

    2009-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  13. Modelling of pressure tube Quench using PDETWO

    International Nuclear Information System (INIS)

    Parlatan, Y.; Lei, Q.M.; Kwee, M.

    2004-01-01

    Transient two-dimensional heat conduction calculations have been carried out to determine the time-dependent temperature distribution in an overheated pressure tube during quenching with water. The purpose of the calculations is to provide input for evaluation of thermal (secondary) stresses in the pressure tube due to quench. The quench phenomenon in pressure tubes could occur in several hypothetical accident scenarios, including incidents involving intermittent buoyancy-induced flow during outages. In these scenarios, there will be two (radial and axial) or three dimensional temperature gradients, resulting in thermal stresses in the pressure tube, as the water front reaches and starts to cool down the hot pressure tube. The transient, two-dimensional heat conduction equation in the pressure tube during quench is solved using a FORTRAN package called PDETWO, available in the open literature for solving time-dependent coupled systems of non-linear partial differential equations over a two-dimensional rectangular region. This routine is based on finite difference solution of coupled, non-linear partial differential equations. Temperature gradient in the circumferential gradient is neglected for conservatism and convenience. The advancing water front is not modelled explicitly, and assumed to be at a uniform temperature and moving at a constant velocity inferred from experimental data. For outer surface and both ends of the pressure tube in the axial direction, a zero-heat flux boundary condition is assumed, while for the inner surface a moving water-quench front is assumed by appropriately varying the fluid temperature and the heat transfer coefficient. The pressure tube is assumed to be at a uniform temperature of 400 o C initially, to represent conditions expected during an intermittent buoyancy-influenced flow scenario. The results confirm the expectations that axial temperature gradients and associated heat fluxes are small in comparison with those in the

  14. Quench propagation across the copper wedges in SSC dipoles

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1986-01-01

    The effect of copper wedges on quench propagation in SSC windings has been studied. The results indicate that the turn-to-turn quench transit time for conductors separated by an insulated copper wedge can be predicted with reasonable accuracy from the bulk quench properties and the mean wedge thickness

  15. First experience with the new coupling loss induced quench system

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Dudarev, A.V.; Kirby, G.; Sperin, K.A.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A

  16. Elemental depth profiles and plasma etching rates of positive-tone electron beam resists after sequential infiltration synthesis of alumina

    Science.gov (United States)

    Ozaki, Yuki; Ito, Shunya; Hiroshiba, Nobuya; Nakamura, Takahiro; Nakagawa, Masaru

    2018-06-01

    By scanning transmission electron microscopy and energy dispersive X-ray spectroscopy (STEM–EDS), we investigated the elemental depth profiles of organic electron beam resist films after the sequential infiltration synthesis (SIS) of inorganic alumina. Although a 40-nm-thick poly(methyl methacrylate) (PMMA) film was entirely hybridized with alumina, an uneven distribution was observed near the interface between the substrate and the resist as well as near the resist surface. The uneven distribution was observed around the center of a 100-nm-thick PMMA film. The thicknesses of the PMMA and CSAR62 resist films decreased almost linearly as functions of plasma etching period. The comparison of etching rate among oxygen reactive ion etching, C3F8 reactive ion beam etching (RIBE), and Ar ion beam milling suggested that the SIS treatment enhanced the etching resistance of the electron beam resists to chemical reactions rather than to ion collisions. We proposed oxygen- and Ar-assisted C3F8 RIBE for the fabrication of silica imprint molds by electron beam lithography.

  17. Design of readout electronics for BES III online dose rate monitoring and protection system

    International Nuclear Information System (INIS)

    Yang Shiming; Gong Guanghua; Shao Beibei; Li Jin

    2006-01-01

    To protect the beam pipe of BES III, Si PIN diodes will be used as detectors to monitor the dose rate level near the IP area. Analog to digital conversion is selected to read out the current signals of Si PIN diodes. Several low current amplifying and measuring methods are compared, mainly describing the theory of operation, software and hardware design and performance of the A/D conversion circuit. (authors)

  18. Luminescence and luminescence quenching of Eu{sub 2}Mo{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Janulevicius, Matas; Grigorjevaite, Julija; Merkininkaite, Greta [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Sakirzanovas, Simas [Department of Applied Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, Arturas, E-mail: arturas.katelnikovas@chf.vu.lt [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2016-11-15

    A polycrystalline Eu{sub 2}Mo{sub 4}O{sub 15} phosphor sample was prepared by high temperature solid state reaction. Phase purity and morphological features of the phosphor were investigated by X-ray diffraction and scanning electron microscopy, respectively. Reflectance spectra showed that the optical band gap of Eu{sub 2}Mo{sub 4}O{sub 15} is 2.95 eV. Phosphor emits intensive red light when excited with 394 and 465 nm radiation. Temperature dependent emission and luminescence lifetime measurements revealed that external and internal quantum yields decrease at the same rate and that luminescence quenches due to photoionization. The calculated external quantum yields for 394 and 465 nm excitation were 7.8% and 53.5%, respectively.

  19. Nanocrystallization in Al85Ce8Ni5Co2 amorphous alloy obtained by different strain rate during high pressure torsion

    International Nuclear Information System (INIS)

    Henits, P.; Kovacs, Zs.; Schafler, E.; Varga, L.K.; Labar, J.L.; Revesz, A.

    2010-01-01

    In order to elucidate the role of total strain and strain rate during high pressure torsion of Al 85 Ce 8 Ni 5 Co 2 metallic glass, different deformation conditions were applied to devitrify the as-quenched alloy. The disk-shaped specimens were characterized by X-ray diffraction, transmission electron microscopy and thermal analysis.

  20. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  1. Heat transfer coefficients during quenching of steels

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, H.S.; Jalil, J.M. [University of Technology, Department of Electromechanical Engineering, Baghdad (Iraq); Peet, M.J.; Bhadeshia, H.K.D.H. [University of Cambridge, Department of Materials Science and Metallurgy, Cambridge (United Kingdom)

    2011-03-15

    Heat transfer coefficients for quenching in water have been measured as a function of temperature using steel probes for a variety of iron alloys. The coefficients were derived from measured cooling curves combined with calculated heat-capacities. The resulting data were then used to calculate cooling curves using the finite volume method for a large steel sample and these curves have been demonstrated to be consistent with measured values for the large sample. Furthermore, by combining the estimated cooling curves with time-temperature-transformation (TTT) diagrams it has been possible to predict the variation of hardness as a function of distance via the quench factor analysis. The work should prove useful in the heat treatment of the steels studied, some of which are in the development stage. (orig.)

  2. Quench dynamics of topological maximally entangled states.

    Science.gov (United States)

    Chung, Ming-Chiang; Jhu, Yi-Hao; Chen, Pochung; Mou, Chung-Yu

    2013-07-17

    We investigate the quench dynamics of the one-particle entanglement spectra (OPES) for systems with topologically nontrivial phases. By using dimerized chains as an example, it is demonstrated that the evolution of OPES for the quenched bipartite systems is governed by an effective Hamiltonian which is characterized by a pseudospin in a time-dependent pseudomagnetic field S(k,t). The existence and evolution of the topological maximally entangled states (tMESs) are determined by the winding number of S(k,t) in the k-space. In particular, the tMESs survive only if nontrivial Berry phases are induced by the winding of S(k,t). In the infinite-time limit the equilibrium OPES can be determined by an effective time-independent pseudomagnetic field Seff(k). Furthermore, when tMESs are unstable, they are destroyed by quasiparticles within a characteristic timescale in proportion to the system size.

  3. Chiral analysis of quenched baryon masses

    International Nuclear Information System (INIS)

    Young, R.D.; Leinweber, D.B.; Thomas, A.W.; Wright, S. V.

    2002-01-01

    We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise to the leading and next-to-leading nonanalytic behavior (and hence the most rapid variation in the region of light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass splitting between these baryons

  4. Collapse and revival in holographic quenches

    International Nuclear Information System (INIS)

    Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-01-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  5. A pilot rating scale for evaluating failure transients in electronic flight control systems

    Science.gov (United States)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  6. The QUENCH programme at Forschungszentrum Karlsruhe (FZK)

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Schanz, G.; Sepold, L.; Stuckert, J.; Hering, W.; Homann, C.; Miassoedov, A.

    2004-01-01

    The QUENCH programme at FZK was launched to investigate the hydrogen source term during reflood of an overheated reactor core. It consists of large scale bundle experiments, separate-effects tests, modelling activities and application and validation of severe fuel damage (SFD) code systems. The paper describes the experimental part of the programme, namely the experimental facilities and test rigs as well as selected results obtained during the recent years. (author)

  7. Bonded exciplex formation: electronic and stereoelectronic effects.

    Science.gov (United States)

    Wang, Yingsheng; Haze, Olesya; Dinnocenzo, Joseph P; Farid, Samir; Farid, Ramy S; Gould, Ian R

    2008-12-18

    As recently proposed, the singlet-excited states of several cyanoaromatics react with pyridine via bonded-exciplex formation, a novel concept in photochemical charge transfer reactions. Presented here are electronic and steric effects on the quenching rate constants, which provide valuable support for the model. Additionally, excited-state quenching in poly(vinylpyridine) is strongly inhibited both relative to that in neat pyridine and also to conventional exciplex formation in polymers, consistent with a restrictive orientational requirement for the formation of bonded exciplexes. Examples of competing reactions to form both conventional and bonded exciplexes are presented, which illustrate the delicate balance between these two processes when their reaction energetics are similar. Experimental and computational evidence is provided for the formation of a bonded exciplex in the reaction of the singlet excited state of 2,6,9,10-tetracyanoanthracene (TCA) with an oxygen-substituted donor, dioxane, thus expanding the scope of bonded exciplexes.

  8. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  9. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Rodriguez, R.; Ramirez, E.

    2010-08-14

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient {cflx q} extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting {cflx q} to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  10. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); Fries, R.J., E-mail: rjfries@comp.tamu.ed [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ramirez, E. [Physics Department, University of Texas El Paso, El Paso, TX 79968 (United States)

    2010-09-27

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient q extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting q to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  11. Successful magnet quench test for CAST.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    The CERN Axion Solar Telescope (CAST) consists of a prototype LHC dipole magnet with photon detectors at each end. It searches for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The telescope, located at Point 8, can move vertically within its wheeled platform, which travels horizontally along tracks in the floor. In this way, the telescope can view the Sun at sunrise through one end and at sunset through the other end. It has been cooled down to below 1.8 K and reached ~95% of its final magnetic field of 9 tesla before a quench was induced to test the whole cryogenic system under such conditions. The cryogenic system responded as expected to the magnet quench and CAST is now ready to start its three-year search for solar axions. Photos 01 & 02 : Members of the LHC cryogenics team pose in front of the axion telescope on the day of the first quench test, together with some of the CAST collaboration.

  12. Post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.; Condie, K.G.

    1980-01-01

    This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation

  13. Quenching behaviour for a singular predator–prey model

    International Nuclear Information System (INIS)

    Ducrot, Arnaud; Guo, Jong-Shenq

    2012-01-01

    In this paper, we study the quenching behaviour for a system of two reaction–diffusion equations arising in the modelling of the spatio-temporal interaction of prey and predator populations in fragile environment. We first provide some sufficient conditions on the initial data to have finite time quenching. Then we classify the initial data to distinguish type I quenching and type II quenching, by introducing a delicate energy functional along with the help of some a priori estimates. Finally, we present some results on the quenching set. It can be a singleton, the whole domain, or a compact subset of the domain

  14. Quenching of p-Cyanophenylalanine Fluorescence by Various Anions.

    Science.gov (United States)

    Pazos, Ileana M; Roesch, Rachel M; Gai, Feng

    2013-03-20

    To expand the spectroscopic utility of the non-natural amino acid p -cyanophenylalanine (Phe CN ), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in Phe CN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of Phe CN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of Phe CN strongly quenches its fluorescence, suggesting that Phe CN could be used as a local pH sensor.

  15. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  16. Universal Nonequilibrium Signatures of Majorana Zero Modes in Quench Dynamics

    Directory of Open Access Journals (Sweden)

    R. Vasseur

    2014-10-01

    Full Text Available The quantum evolution that occurs after a metallic lead is suddenly connected to an electron system contains information about the excitation spectrum of the combined system. We exploit this type of “quantum quench” to probe the presence of Majorana fermions at the ends of a topological superconducting wire. We obtain an algebraically decaying overlap (Loschmidt echo L(t=|⟨ψ(0|ψ(t⟩|^{2}∼t^{-α} for large times after the quench, with a universal critical exponent α=1/4 that is found to be remarkably robust against details of the setup, such as interactions in the normal lead, the existence of additional lead channels, or the presence of bound levels between the lead and the superconductor. As in recent quantum-dot experiments, this exponent could be measured by optical absorption, offering a new signature of Majorana zero modes that is distinct from interferometry and tunneling spectroscopy.

  17. Selective fluorescence quenching of nitrogen-containing polycyclic aromatic hydrocarbons by aliphatic amines

    International Nuclear Information System (INIS)

    Li Xiaoping; McGuffin, Victoria L.

    2004-01-01

    In this investigation, primary, secondary, and tertiary amines are evaluated for their efficiency and selectivity as fluorescence quenchers for polycyclic aromatic hydrocarbons (PAHs) and nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs). In general, the quenching efficiency tends to increase from primary to tertiary amine due to a greater number of alkyl groups that increase the electron-donating ability. However, the selectivity decreases from primary to tertiary amine. The effect of low concentrations of water is also examined. Because water can form hydrogen bonds with amines, the nonbonding electron pair is not available for interaction with the fluorophore, thus the quenching constant is decreased. These aliphatic amines are then applied to PAHs and N-PAHs and some interesting trends are observed. Whereas amino-PAHs remain virtually unquenched by different amines, aza-PAHs are all quenched well. The selectivity between aza-PAHs and amino-PAHs is as high as several hundred. This trend provides an easy and effective method to discriminate between these classes of N-PAHs. Moreover, the alternant aza-PAHs are quenched more than their corresponding alternant PAHs

  18. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  19. Quench detection, protection and simulation studies on SST-1 magnets

    International Nuclear Information System (INIS)

    Sharma, Aashoo N.; Khristi, Yohan; Pradhan, Subrata; Doshi, Kalpesh; Prasad, Upendra; Banaudha, Moni; Varmora, Pankaj; Praghi, Bhadresh R.

    2015-01-01

    Steady-state Superconducting Tokamak-1 (SST-1) is India's first tokamak with superconducting toroidal field (TF) and Poloidal Field (PF) magnets. These magnets are made with NbTi based Cable-In-Conduit-Conductors. The quench characteristic of SST-1 CICC has been extensively studied both analytically and using simulation codes. Dedicated experiments like model coil test program, TF coil test program and laboratory experiments were conducted to fully characterize the performance of the CICC and the magnets made using this CICC. Results of quench experiments performed during these tests have been used to design the SST-1 quench detection and protection system. Simulation results of TF coil quenches and slow propagation quench of TF busbars have been used to further optimize these systems during the SST-1 tokamak operation. Redundant hydraulic based quench detection is also proposed for the TF coil quench detection. This paper will give the overview of these development and simulation activities. (author)

  20. Processing of the quench detection signals in W7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko; Petry, Klaus; Ebersoldt, Andreas

    2009-01-01

    The Wendelstein 7-X (W7-X) project uses superconductive coils for generation of the magnetic field to keep the plasma. One of the important safety systems is the protection against quench events. The quench detection system of W7-X protects the superconducting coils, the superconducting bus bar sections and the high temperature superconductor of the current leads against the damage because of a quench and against the high stress by a fast discharge of the magnet system. Therefore, the present design of the quench detection system (QDS) uses a two-stage safety concept for discharging the magnetic system. This paper describes the present design of the system assembly from the quench detection unit (QDU) for the detection of the quench to the quench detection interface (QDI) to implement the two-stage safety concept.