WorldWideScience

Sample records for electronic quenching rate

  1. The electronic quenching rates of NO(A2Σ+, v'=0-2)

    International Nuclear Information System (INIS)

    Nee, J.B.; Juan, C.Y.; Hsu, J.Y.; Yang, J.C.; Chen, W.J.

    2004-01-01

    The electronic quenching rates of NO(A 2 Σ + , v ' =0-2) are measured for the gases He, Ar, Xe, N 2 , O 2 , CO 2 , N 2 O, and SF 6 . The variations of the fluorescence intensity were measured for the (0,0), (1,0), and (2,0) bands of the γ band system when the quencher gases were added. The quenching rates were determined by using the Stern-Volmer plots with the known radiative lifetimes of the excited states. The electronic quenching rate constants are fast for the group of gases of O 2 , CO 2 , N 2 O, and SF 6 , whose quenching rate constants are in the order of 10 -10 cm 3 /s. The quenching rate constants are slow for the group of gases including He, Ar, Xe, and N 2 whose rate constants are in the order of 10 -14 cm 3 /s. For the slow group, the quenching rate constants increase rapidly for v ' =2 compared with those of v ' =0 and 1. The charge transfer model and collision complex model are used to understand the quenching mechanism. For the fast group which mainly consists of gases with positive electron affinities, the charge transfer model adequately describes the mechanism. For the slow quenching group, a theoretical background is provided by consider the coupling of initial and final states in the complex potential surfaces

  2. Measurement of the electron quenching rate in an electron beam pumped KrF* laser

    International Nuclear Information System (INIS)

    Nishioka, Hajime; Kurashima, Toshio; Kuranishi, Hideaki; Ueda, Kenichi; Takuma, Hiroshi; Sasaki, Akira; Kasuya, Koichi.

    1988-01-01

    The electron quenching rate of KrF * in an electron beam pumped laser has been studied by accurately measuring the saturation intensity in a mixture of Ar/Kr/F 2 = 94/6/0.284. The input intensity of the measurements was widely varied from 100 W cm -2 (small signal region) to 100 MW cm -2 (absorption dominant region) in order to separate laser parameters which are small signal gain coefficient, absorption coefficient, and saturation intensity from the measured net gain coefficients. The gas pressure and the pump rate were varied in the range of 0.5 to 2.5 atm and 0.3 to 1.4 MW cm -3 , respectively. The electron quenching rate constant of 4.5 x 10 -7 cm 3 s -1 was obtained from the pressure and the pump rate dependence of the KrF * saturation intensity with the temperature dependence of the rate gas 3-body quenching rate as a function of gas temperature to the -3rd power. The small signal gain coefficients calculated with the determined quenching rate constants shows excellent agreement with the measurements. (author)

  3. Measurement of the electron quenching rate in an electron beam pumped KrF/sup */ laser

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Hajime; Kurashima, Toshio; Kuranishi, Hideaki; Ueda, Kenichi; Takuma, Hiroshi; Sasaki, Akira; Kasuya, Koichi.

    1988-09-01

    The electron quenching rate of KrF/sup */ in an electron beam pumped laser has been studied by accurately measuring the saturation intensity in a mixture of Ar/Kr/F/sub 2/ = 94/6/0.284. The input intensity of the measurements was widely varied from 100 W cm/sup -2/ (small signal region) to 100 MW cm/sup -2/ (absorption dominant region) in order to separate laser parameters which are small signal gain coefficient, absorption coefficient, and saturation intensity from the measured net gain coefficients. The gas pressure and the pump rate were varied in the range of 0.5 to 2.5 atm and 0.3 to 1.4 MW cm/sup -3/, respectively. The electron quenching rate constant of 4.5 x 10/sup -7/ cm/sup 3/s/sup -1/ was obtained from the pressure and the pump rate dependence of the KrF/sup */ saturation intensity with the temperature dependence of the rate gas 3-body quenching rate as a function of gas temperature to the -3rd power. The small signal gain coefficients calculated with the determined quenching rate constants shows excellent agreement with the measurements.

  4. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  5. Effect of Quenching Rate on Microstructure and Hardness of Al-Zn-Mg-Cu-Cr Alloy Extruded Bar

    Directory of Open Access Journals (Sweden)

    HAN Su-qi

    2017-04-01

    Full Text Available The effect of quenching rate on microstructure and hardness of Al-Zn-Mg-Cu-Cr alloy extruded bar was studied by hardness test, scanning electron microscopy and transmission electron microscopy. The results show that at quenching rate below 100℃/s, during the cooling process, the hardness begins to fall significantly; and it decreases by 43% at the quenching rate of 2℃/s. At quenching rate below 100℃/s, the number and size of equilibrium η phase heterogeneously nucleated at(subgrain boundaries and on dispersoids inside grains increase obviously with the decrease of quenching rate, leading to greatly reduced age-hardening response. At the same quenching rate, the equilibrium η phase inside grains is larger than that at grain boundaries. In the range of the studied quenching rates, a quantitative relationship between hardness and equilibrium η phase area fraction has been established.

  6. Enhanced diffusion due to electrons, protons and quenching

    International Nuclear Information System (INIS)

    Schuele, W.

    1987-01-01

    Results of investigations of radiation enhanced diffusion in copper -30% zinc alloys using 17.65 MeV protons are reported and compared with results obtained for 2 MeV electrons. The activation energy of diffusion decreases considerably from 0.35 eV to 0.26 eV for displacement rates increasing from 3x10 -12 dpa.s -1 to 1.2x10 -8 dpa.s -1 , i.e. the migration activation energy of interstitials decreases for this dpa.s -1 range from 0.70 eV to 0.52 eV. Results of electron irradiations obtained for 0.050 and 0.10 mm thick specimens are compared. It is found that the diffusion rates increase considerably in the presence of dislocations and that the diffusion rates decrease for very low electron fluxes and high irradiation temperatures in the 0.050 mm thick specimens in comparison to the rates obtained in 0.10 mm thick specimens. A value of 0.95 eV was determined for the activation energy of the ordering rate after quenching from 250 0 C in water. This was attributed to the migration activation energy of vacancies

  7. Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elgallad, E.M., E-mail: eelgalla@uqac.ca; Zhang, Z.; Chen, X.-G.

    2017-06-01

    Slow quenching of direct chill (DC) cast aluminum ingot plates used in large mold applications is often used to decrease quench-induced residual stresses, which can deteriorate the machining performance of these plates. Slow quenching may negatively affect the mechanical properties of the cast plates when using highly quench-sensitive aluminum alloys because of its negative effect on the precipitation hardening behavior of such alloys. The effect of the quenching rate on precipitation kinetics in AA2219 DC cast alloy was systematically studied under water and air quenching conditions using differential scanning calorimetry (DSC) technique. Transmission electron microscopy (TEM) was also used to characterize the precipitate microstructure. The results showed that the precipitation kinetics of the θ′ phase in the air-quenched condition was mostly slower than that in the water-quenched one. Air quenching continuously increased the precipitation kinetics of the θ phase compared to water quenching. These results revealed the contributions of the inadequate precipitation of the strengthening θ′ phase and the increased precipitation of the equilibrium θ phase to the deterioration of the mechanical properties of air-quenched AA2219 DC cast plates. The preexisting GP zones and quenched-in dislocations affected the kinetics of the θ′ phase, whereas the preceding precipitation of the θ′ phase affected the kinetics of the θ phase by controlling its precipitation mechanism.

  8. Quench detection electronics testing protocol for SST-1 magnets

    International Nuclear Information System (INIS)

    Banaudha, Moni; Varmora, Pankaj; Parghi, Bhadresh; Prasad, Upendra

    2017-01-01

    Quench Detection (QD) system consisting 204 signal channels has been successfully installed and working well during plasma experiment of SST-1 Tokamak. QD system requires testing, validation and maintenance in every SST-1 campaign for better reliability and maintainability of the system. Standalone test of each channel of the system is essential for hard-ware validation. The standard Testing Protocol follow in every campaign which validate each section of QD electronics as well as voltage tap signal cables which are routed inside the cryostat and then extended outside of the SST-1 machine up-to the magnet control room. Fiber link for Quench signal transmission to the SST-1 magnet power supply is also test and validate before every plasma campaign. Precise instrument used as a dummy source of quench signal and for manual quench generation to test the each channel and Master Quench Logic. Each signal Integrated with the magnet DAQ system, signal observed at 1Hz and 50Hz configuration to validate the logging data, compare with actual and previous test data. This paper describes the testing protocol follow in every campaign to validate functionality of QD electronics, limitation of testing, test results and overall integration of the quench detection system for SST-1 magnet. (author)

  9. The effect of composition, electron irradiation and quenching on ...

    Indian Academy of Sciences (India)

    The ionic conductivity at room temperature exhibits a characteristic double peak for the composition = 20 and 70. Both electron beam irradiation and quenching at low temperature have resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is ...

  10. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-xun, E-mail: zhangyuxun198@163.com; Yi, You-ping, E-mail: yyp@csu.edu.cn; Huang, Shi-quan, E-mail: huangsqcsu@sina.com; Dong, Fei

    2016-09-30

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  11. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    International Nuclear Information System (INIS)

    Zhang, Yu-xun; Yi, You-ping; Huang, Shi-quan; Dong, Fei

    2016-01-01

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  12. Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Weihong; Li Tanping; Zhang Luyuan; Yang Yi; Kao Yating; Wang Lijuan [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States); Zhong Dongping [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States)], E-mail: dongping@mps.ohio-state.edu

    2008-06-23

    Quenching of tryptophan fluorescence in proteins has been critical to the understanding of protein dynamics and enzyme reactions using tryptophan as a molecular optical probe. We report here our systematic examinations of potential quenching residues with more than 40 proteins. With site-directed mutation, we placed tryptophan to desired positions or altered its neighboring residues to screen quenching groups among 20 amino acid residues and of peptide backbones. With femtosecond resolution, we observed the ultrafast quenching dynamics within 100 ps and identified two ultrafast quenching groups, the carbonyl- and sulfur-containing residues. The former is glutamine and glutamate residues and the later is disulfide bond and cysteine residue. The quenching by the peptide-bond carbonyl group as well as other potential residues mostly occurs in longer than 100 ps. These ultrafast quenching dynamics occur at van der Waals distances through intraprotein electron transfer with high directionality. Following optimal molecular orbital overlap, electron jumps from the benzene ring of the indole moiety in a vertical orientation to the LUMO of acceptor quenching residues. Molecular dynamics simulations were invoked to elucidate various correlations of quenching dynamics with separation distances, relative orientations, local fluctuations and reaction heterogeneity. These unique ultrafast quenching pairs, as recently found to extensively occur in high-resolution protein structures, may have significant biological implications.

  13. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more ...

  14. Comparison of radiation and quenching rate effects on the structure of a sodium borosilicate glass

    International Nuclear Information System (INIS)

    Peuget, Sylvain; Maugeri, Emilio-Andrea; Mendoza, Clement; Fares, Toby; Bouty, Olivier; Jegou, Christophe; Charpentier, Thibault; Moskura, Melanie

    2013-01-01

    The effects of quenching rate and irradiation on the structure of a sodium borosilicate glass were compared using 29 Si, 11 B, and 23 Na nuclear magnetic resonance and Raman spectroscopy. Quenching rate ranging from 0.1 to 3 * 10 4 K min -1 was studied. Various irradiation conditions were performed, i.e. gold-ion irradiation in a multi-energy mode (from 1 to 6.75 MeV), and Kr and Xe ion irradiations with energy of 74 and 92 MeV, respectively. In pile irradiation with thermal neutron flux was performed as well, to study the effect of alpha radiation from the nuclear reaction 10 B(n,α) 7 Li. Both irradiation and high quenching rate induce similar local order modification of the glass structure, mainly a decrease of the mean boron coordination and an increase of Q 3 units. Nevertheless, the variations observed under irradiation are more pronounced than the ones induced by the quenching rate. Moreover, some important modifications of the glass medium range order, i.e. the emergence of the D2 band associated to three members silica rings and a modification of the Si-O-Si angle distribution were only noticed after irradiation. These results suggest that the irradiated structure is certainly not exactly the one obtained by a rapidly quenched equilibrated melt, but rather a more disordered structure that was weakly relaxed during the very rapid quenching phase following the energy deposition step. Raman spectroscopy showed a similar irradiated structure whereas the glass evolutions were controlled by the electronic energy loss in the ion track formation regime for Kr-ion irradiation or by the nuclear energy loss for Au and OSIRIS irradiation. The similar irradiated structure despite different irradiation routes, suggests that the final structural state of this sodium borosilicate glass is mainly controlled by the glass reconstruction after the energy deposition step. (authors)

  15. Non-self-averaging nucleation rate due to quenched disorder

    International Nuclear Information System (INIS)

    Sear, Richard P

    2012-01-01

    We study the nucleation of a new thermodynamic phase in the presence of quenched disorder. The quenched disorder is a generic model of both impurities and disordered porous media; both are known to have large effects on nucleation. We find that the nucleation rate is non-self-averaging. This is in a simple Ising model with clusters of quenched spins. We also show that non-self-averaging behaviour is straightforward to detect in experiments, and may be rather common. (fast track communication)

  16. Effect of quench rate on the mechanical properties of U-6 wt % Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1980-03-01

    U-6 wt % Nb conventionally is water quenched from 800 0 C in order to obtain a niobium supersaturated α'' structure having good corrosion resistance and high ductility (125% tensile elongation). The high cooling rate associated with the water quench, however, produces undesirable distortion and residual stress. This study was conducted to determine the extent to which the quench rate could be reduced (in order to minimize the distortion and residual stress problems) without sacrificing properties. The results indicate that quench rate can be reduced by as much as a factor of 10 without any loss of ductility, and that a factor of 100 reduction in quench rate (as is produced by air cooling) still produces material with moderate ductility (> 12% tensile elongation). The results also indicate that supersaturated α'' structures are produced at all of these quench rates. This suggests that these reductions in quench rate should not have drastic adverse effects on corrosion resistance. Hence, it should not be possible to substantially reduce the magnitudes of the distortion and residual stress problems while retaining appreciable ductility and corrosion resistance in U-6 wt % Nb

  17. Change of structure, microstructure and mechanical properties of steels after electron-beam quenching using new technology

    International Nuclear Information System (INIS)

    Tsenker, R.; Yun, V.; Rat'en, D.; Fritshe, G.

    1988-01-01

    Main principles and technological possibilities of a new method for electron-beam treatment are presented. The method lies in local-time high-frequency scanning of electron beam (surface-isothermal energy transfer). The method can be used for quenching of the band with up to 30(50) mm width and up to 1.5(2.0) mm depth of quenched layer. Changes of structure, microstructure and properties were investigated with the use of the following methods: surface sounding, light microscopy, scanning electron microscopy, X-ray phase analysis, X-ray radiographic analysis of internal stresses, macrohardness, microhardness and recording hardness measuring. A study was made on the effect of parameters of electron-beam quenching of steel (S45, 55St1, S100.1, 90MnV8, 100ST6) basic state on quenched layer depth, surface relief, martensite morphology, residual austenite amount, austenite grain system, internal stresses, hardness profiles and determined hardness

  18. Influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ShengDan, E-mail: csuliusd@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China); Li, ChengBo [Light Alloy Research Institute, Central South University, Changsha 410083 (China); Deng, YunLai; Zhang, XinMing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China)

    2015-11-01

    The influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy 7055 was investigated by electrochemical test, accelerated exfoliation corrosion test, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The decrease of quench rate led to lower corrosion resistance of both the homogenized and solution heat treated (HS) alloy with equiaxed grains and the hot-rolled and solution heat treated (HRS) alloy with elongated grains, but there was a higher increment in corrosion depth and corrosion current density and a higher decrement in corrosion potential for the latter alloy, which therefore exhibited higher quench sensitivity. It is because in this alloy the larger amount of (sub) grain boundaries led to a higher increment in the amount of quench-induced η phase and precipitates free zone at (sub) grain boundaries with the decrease of quench rate, and there was a larger increment in the content of Zn, Mg and Cu in the η phase at grain boundaries due to slow quenching. The presence of subgrain boundaries in the HRS alloy tended to increase corrosion resistance at high quench rates higher than about 630 °C/min but decrease it at lower quench rates. - Highlights: • (Sub)Grain boundaries increase quench sensitivity relative to localized corrosion. • Subgrain boundaries decrease corrosion resistance below quench rate of 630 °C/min. • More (sub) grain boundaries leads to more GBPs and PFZ with decreasing quench rate.

  19. Positronium Inhibition and Quenching by Organic Electron Acceptors and Charge Transfer Complexes

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Jensen, Bror Skytte

    1975-01-01

    Positron lifetime measurements were performed on a series of organic electron acceptors and charge-transfer complexes in solution. The acceptors cause both positronium (Ps) inhibition (with maybe one exception) and quenching, but when an acceptor takes part in a charge-transfer complex...... in terms of the spur reaction model of Ps formation. Correlation was also made to gas phase reaction between electron acceptors and free electron, as well as to pulse radiolysis data....

  20. Collisional quenching of cometary emission in the 18 centimeter OH transitions

    International Nuclear Information System (INIS)

    Schloerb, F.P.

    1988-01-01

    A model of collisional quenching of the OH 2Pi(3/2) J = 3/2 Lambda doublet in cometary comae is presented. It is found that collisions with ions and electrons in the outer coma have a strong quenching effect on the Swings-effect inversion of the Lambda doublet that is responsible for the OH radio emission at 18 cm wavelength. For the conditions of Halley's comet, collisional quenching should lead radio observers to systematically underestimate the OH parent production rate by a factor of approximately 3 relative to its actual value, and in general, radio-derived production rates should always be less than or equal to UV-derived production rates, which are relatively unaffected by this process. The observation that UV production rates exceed those derived by radio techniques is well known; the direct measurement of this ratio, using a consistent coma model, should provide information about the ion and electron content of the cometary coma. 22 references

  1. Quenching of excited uranyl ion during its photochemical reduction by triphenylphosphine: Part III

    International Nuclear Information System (INIS)

    Sidhu, M.S.; Chahal, P.; Singh, R.J.

    1993-01-01

    Relative rates of bimolecular quenching of excited uranyl ion by some mono and di-substituted benzene derivatives have been measured during its photochemical reduction with triphenylphosphine. For the related compounds in a series it has been found that substituent groups enriching the aromatic π-electron cloud due to resonance stabilization, show an enhanced photophysical quenching action. The substituents decreasing the π-electron cloud and delocalization of positive charger over the benzene ring decrease the quenching action. (author). 16 refs., 2 figs., 1 tab

  2. Excited state redox properties of phthalocyanines: influence of the axial ligand on the rates of relaxation and electron-transfer quenching of the lowest /sup 3/. pi pi. /sup */ excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ferraudi, G J; Prasad, D R

    1874-01-01

    Laser flash excitations at 640 nm have been used to generate the transient spectra of the lowest-lying /sup 3/..pi pi../sup */ state of phthalocyaninatoruthenium(II) complexes. The properties of this excited state such as the properties of the maxima, lambda/sub max/ = 500 +/- 30 nm, and lifetimes, t/sub 1/2/ = 70-4500 ns, exhibit a large dependence on the electron-accepting and electron-withdrawing tendencies of the axial ligands. A similar influence was observed upon the rate of electron-transfer quenching of the /sup 3/..pi pi../sup */ state. Values between 10/sup 6/ and 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ for the self-exchange rate constant have been obtained, according to Marcus-Hush theoretical treatments, for (Ru(pc.)LL')/sup +//(/sup 3/..pi pi../sup */)(Ru(pc)LL') (L and L' = neutral axial ligands; pc = phthalocyaninate (2-)) and isoelectronic cobalt(III) and rhodium(III) couples. The redox properties of the ground and excited states are correlated with axial ligand-induced perturbations of the electronic structure.

  3. Core-debris quenching-heat-transfer rates under top- and bottom-reflood conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.; Klages, J.; Schwarz, C.E.; Sanborn, Y.

    1983-02-01

    This paper presents recent experimental data for the quench-heat-transfer characteristics of superheated packed beds of spheres which were cooled, in separate experiments, by top- and bottom-flooding modes. Experiments were carried out with beds of 3-mm steel spheres of 330-mm height. The initial bed temperature was 810 K. The observed heat-transfer rates are strongly dependent on the mode of water injection. The results suggest that top-flood bed quench heat transfer is limited by the rate at which water can penetrate the bed under two-phase countercurrent-flow conditions. With bottom-reflood the heat-transfer rate is an order-of-magnitude greater than under top-flood conditions and appears to be limited by particle-to-fluid film boiling heat transfer

  4. A study of point defects in quenched stainless steels

    International Nuclear Information System (INIS)

    Kheloufi, Khelifa.

    1977-07-01

    Thin foils of stainless steels (18%Cr, 14%Ni) containing boron (50x10 -6 ) and stabilised with titanium have been quenched at different rates in order to observe secondary defects by transmission electron microscopy. A rapid quenching in gallium has not given any secondary defects either before or after annealing. But samples quenched from temperatures greater than 800 0 C-900 0 C exhibit a dislocation density approximately 10 9 cm/cm 3 . A vacancy concentration less than 10 -6 has been observed by positron annihilation technique. After a moderate quenching, any secondary defects has been observed. It is thus clear that boron does not favour the secondary defects formation as does phosphorus [fr

  5. Quenching of the He/sub μ/ +(2s) atom

    International Nuclear Information System (INIS)

    Russell, J.E.

    1986-01-01

    Quenching of the metastable 2s state of the He/sub μ/ + atom in helium gas is discussed. The first part of the discussion, which is devoted entirely to processes occurring after the He/sub μ/ + has become bound to one or more ordinary helium atoms, is based partly on Cohen's calculations of rates of vibrational quenching and partly on estimates obtained in the present paper of rates of Burbidge--de Borde quenching and Ruderman quenching. It is concluded that Burbidge--de Borde quenching or Ruderman quenching, or both, are likely to be more effective than Cohen quenching if the vibrational level of the bound system is low. A recent experiment by von Arb et al. is then analyzed in the light of this conclusion. The analysis is based on the reported absence, or near absence, of Auger electrons accompanying 2s quenching. While it is agreed that the Cohen mechanism occurring in the molecular ion HeHe/sub μ/ + remains the most likely explanation of the experiment, it is concluded that the quenching occurs in comparatively high levels. It is then argued that this conclusion is in accord with some theoretical investigations of three-body association reactions and also with some elementary considerations regarding the relaxation of highly excited diatomic molecules, and it is further concluded that the quenching is most likely to occur in states with very low rotational quantum number and vibrational quantum number 8≤v≤14

  6. Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?

    Science.gov (United States)

    Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.

    2015-01-01

    Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.

  7. Reliability analysis for the quench detection in the LHC machine

    CERN Document Server

    Denz, R; Vergara-Fernández, A

    2002-01-01

    The Large Hadron Collider (LHC) will incorporate a large amount of superconducting elements that require protection in case of a quench. Key elements in the quench protection system are the electronic quench detectors. Their reliability will have an important impact on the down time as well as on the operational cost of the collider. The expected rates of both false and missed quenches have been computed for several redundant detection schemes. The developed model takes account of the maintainability of the system to optimise the frequency of foreseen checks, and evaluate their influence on the performance of different detection topologies. Seen the uncertainty of the failure rate of the components combined with the LHC tunnel environment, the study has been completed with a sensitivity analysis of the results. The chosen detection scheme and the maintainability strategy for each detector family are given.

  8. The role of quench rate in colloidal gels.

    Science.gov (United States)

    Royall, C Patrick; Malins, Alex

    2012-01-01

    Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.

  9. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process

    International Nuclear Information System (INIS)

    Liu Heping; Jin Xuejun; Dong Han; Shi Jie

    2011-01-01

    Hot stamping, which combines forming and quenching in one process, produces high strength steels with limited ductility because the quenching is uncontrolled. A new processing technique has been proposed in which the hot stamping step is followed by a controlled quenching and partitioning process, producing a microstructure containing retained austenite and martensite. To investigate this microstructure, specimens were heated at a rate of 10 deg. C/s to the austenitizing temperature of 900 deg. C, held for 5 min to eliminate thermal gradients, and cooled at a rate of 50 deg. C/s to a quenching temperature of 300 deg. C, which is between the martensite start temperature and the martensite finish temperatures. The resulting microstructure was examined using optical microscope, scanning electron microscopy and transmission electron microscopy. The material produced contains irregular, fragmented martensite plates, a result of the improved strength of the austenite phase and the constraints imposed by a high dislocation density. - Research Highlights: → A novel heat treatment of advanced high strength steels is proposed. → The processing technique is hot stamping plus quenching and partitioning process. → The material produced contains irregular, fragmented martensite plates. → The reason is strength of austenite phase and constraint of dislocation density.

  10. Quenching rates and fluorescence efficiency in the A 2Σ+ state of OH

    International Nuclear Information System (INIS)

    Selzer, P.M.; Wang, C.C.

    1979-01-01

    Using direct lifetime measurements at pressures up to 25 Torr, the quenching rates for the A 2 Σ + (v=0) state of OH due to N 2 , O 2 , H 2 O, and air have been determined. These values are in general agreement with other direct lifetime measurements obtained in the millitorr range and show that the quenching cross sections are pressure independent. The implications of these values on the previous ambient OH measurements are discussed

  11. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl; Graef, W.A.A.D.; Hübner, S.; Mullen, J.J.A.M. van der, E-mail: jjamvandermullen@gmail.com

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas. - Highlights: • Time resolved laser induced fluorescence at high repetition rate • Decay times as function of pressure, electron density and temperature • Measurement of total electron atom depopulation rates • Reasonable agreement of electron total rates with hard sphere approximations.

  12. Exciplex formation accompanied with excitation quenching.

    Science.gov (United States)

    Fedorenko, Stanislav G; Burshtein, Anatoly I

    2010-04-08

    The competence of the reversible exciplex formation and parallel quenching of excitation (by electron or energy transfer) was considered using a non-Markovian pi-forms approach, identical to integral encounter theory (IET). General equations accounting for the reversible quenching and exciplex formation are derived in the contact approximation. Their general solution was obtained and adopted to the most common case when the ground state particles are in great excess. Particular cases of only photoionization or just exciplex formation separately studied earlier by means of IET are reproduced. In the case of the irreversible excitation quenching, the theory allows specifying the yields of the fluorescence and exciplex luminescence, as well as the long time kinetics of excitation and exciplex decays, in the absence of quenching. The theory distinguishes between the alternative regimes of (a) fast equilibration between excitations and exciplexes followed by their decay with a common average rate and (b) the fastest and deep excitation decay followed by the weaker and slower delayed fluorescence, backed by exciplex dissociation.

  13. Quenching mechanisms of porous silicon photoluminescence with an electron beam at different intensity

    CERN Document Server

    Kostishko, B M

    2001-01-01

    The effect of the particles flux density by the electron irradiation of the porous silicon on the kinetics of the surface complexes desorption and correspondingly on the photoluminescence quenching degree is studied. It is shown, that by the electron beam density above 5.5 x 10 sup 1 sup 3 cm sup - sup 2 s sup - sup 1 there occurs the surface charging and decrease in its adsorption ability relative to the donor molecular groups

  14. Quenching rate for a nonlocal problem arising in the micro-electro mechanical system

    Science.gov (United States)

    Guo, Jong-Shenq; Hu, Bei

    2018-03-01

    In this paper, we study the quenching rate of the solution for a nonlocal parabolic problem which arises in the study of the micro-electro mechanical system. This question is equivalent to the stabilization of the solution to the transformed problem in self-similar variables. First, some a priori estimates are provided. In order to construct a Lyapunov function, due to the lack of time monotonicity property, we then derive some very useful and challenging estimates by a delicate analysis. Finally, with this Lyapunov function, we prove that the quenching rate is self-similar which is the same as the problem without the nonlocal term, except the constant limit depends on the solution itself.

  15. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  16. Quenching of exciton luminescence due to impact ionization and mechanisms of electron relaxation in cadmium sulphide

    International Nuclear Information System (INIS)

    Kagan, V.D.; Karpenko, S.L.; Katilyus, R.

    1989-01-01

    Quenching of exciton luminescence in the constant electric field in cadmium sulfide at 1.8K, caused by impact ionization of free and delocalization of bound excitons by hot electrons is observed. When the field is increase up to 1 kW/cm continuous transfer from the Taundsen-Shockley law to the Davydov-Wolf one takes place. Among the samples studied pure samples are distinguished by the exciton spectrum, where, as it is shown in the work, the high-energy electrons lose quasipulse, radiating spontaneously piezophonons; in other samples scattering on impurities prevails. Theoretical processing of data on the bound exciton radiation line quenching in the moderate field region presents about 10 -4 values in pure and about 5x10 -6 cm ones in other samples for the 4 MeV energy electron free flight length. So, the optical methods used allowed one to determine high-energy electron relaxation mechanisms, prevailing in CdS at low temperature

  17. Analyses of quenching process during turn-off of plasma electrolytic carburizing on carbon steel

    International Nuclear Information System (INIS)

    Wu, Jie; Liu, Run; Xue, Wenbin; Wang, Bin; Jin, Xiaoyue; Du, Jiancheng

    2014-01-01

    Highlights: • Cooling rate of carburized steel at the end of PEC treatment is measured. • The quench hardening in the fast or slow turn-off mode hardly takes place. • Decrease of the surface roughness during slow turn-off process is found. • A slow turn-off mode is recommended to replace the conventional turn-off mode. - Abstract: Plasma electrolytic carburizing (PEC) under different turn-off modes was employed to fabricate a hardening layer on carbon steel in glycerol solution without stirring at 380 V for 3 min. The quenching process in fast turn-off mode or slow turn-off mode of power supply was discussed. The temperature in the interior of steel and electron temperature in plasma discharge envelope during the quenching process were evaluated. It was found that the cooling rates of PEC samples in both turn-off modes were below 20 °C/s, because the vapor film boiling around the steel sample reduced the cooling rate greatly in terms of Leidenfrost effect. Thus the quench hardening hardly took place, though the slow turn-off mode slightly decreased the surface roughness of PEC steel. At the end of PEC treatment, the fast turn-off mode used widely at present cannot enhance the surface hardness by quench hardening, and the slow turn-off mode was recommended in order to protect the electronic devices against a large current surge

  18. Enhanced turbulence during the energy quench of disruptions

    International Nuclear Information System (INIS)

    Remkes, G.J.J.; Schueller, F.C.

    1991-01-01

    Enhanced electron density fluctuation levels with frequencies in the megahertz range have been observed during the energy quench phase of minor disruptions in the TORTUR Tokamak. The high frequencies of the phenomena indicate that the enhanced transport during the energy quench is caused by turbulence, and not by the coherent low mode number MHD modes themselves, which initiate the disruptions. Both the growth rate and wavelength of the fluctuations increase to such a level that a corresponding diffusivity would increase by two orders of magnitude. This is in good agreement with the observed temperature redistribution. (author)

  19. Role of Fe substitution and quenching rate on the formation of ...

    Indian Academy of Sciences (India)

    Unknown

    (~ 10 m/sec), the alloy (Al65Cu22Cr9Fe6) shows the presence of diffuse scattering of intensities along quasi- periodic direction of the decagonal ... shown that Al–Cu–Fe system exhibits the face-centred icosahedral while Al–Cu–Cr ... system that as the quenching rate increases the icosahedral phase formation increases ...

  20. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Katharina, E-mail: katharina.strobel@aol.com [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Lay, Matthew D.H., E-mail: mlay@fbrice.com [CSIRO Manufacturing Flagship, Clayton, Victoria 3169 (Australia); Easton, Mark A., E-mail: mark.easton@rmit.edu.au [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sweet, Lisa, E-mail: lisa.sweet@monash.edu [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Zhu, Suming, E-mail: suming.zhu@rmit.edu.au [CAST Co-operative Research Centre, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Parson, Nick C., E-mail: nick.parson@riotinto.com [Rio Tinto Alcan, Arvida Research and Development Centre, 1955, Mellon Blvd, Jonquière, Québec G7S 4K8 (Canada); Hill, Anita J., E-mail: anita.hill@csiro.au [CSIRO Manufacturing Flagship, Clayton, Victoria 3169 (Australia)

    2016-01-15

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  1. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    International Nuclear Information System (INIS)

    Strobel, Katharina; Lay, Matthew D.H.; Easton, Mark A.; Sweet, Lisa; Zhu, Suming; Parson, Nick C.; Hill, Anita J.

    2016-01-01

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  2. Observation of thermal quench induced by runaway electrons in magnetic perturbation

    Science.gov (United States)

    Cheon, MunSeong; Seo, Dongcheol; Kim, Junghee

    2018-04-01

    Experimental observations in Korea Superconducting Tokamak Advanced Research (KSTAR) plasmas show that a loss of pre-disruptive runaway electrons can induce a rapid radiative cooling of the plasma, by generating impurity clouds from the first wall. The synchrotron radiation image shows that the loss of runaway electrons occurs from the edge region when the resonant magnetic perturbation is applied on the plasma. When the impact of the runaway electrons on the wall is strong enough, a sudden drop of the electron cyclotron emission (ECE) signal occurs with the characteristic plasma behaviors such as the positive spike and following decay of the plasma current, Dα spike, big magnetic fluctuation, etc. The visible images at this runaway loss show an evidence of the generation of impurity cloud and the following radiative cooling. When the runaway beam is located on the plasma edge, thermal quenches are expected to occur without global destruction of the magnetic structure up to the core.

  3. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Science.gov (United States)

    Palomares, J. M.; Graef, W. A. A. D.; Hübner, S.; van der Mullen, J. J. A. M.

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas.

  4. Studies on halogen quenching through the Stern-Volmer plot

    International Nuclear Information System (INIS)

    Takiue, Makoto; Ishikawa, Hiroaki.

    1978-01-01

    The quenching effect for halogenated benzenes, methanes and ethanes have been investigated. The halogen quenching was accurately measured using the internal conversion electrons emitted from 113 Sn-sup(113m)In. From the quenching constants determined by the Stern-Volmer plots with respect to various halogen quenchers, the following results have been obtained. (1) The quenching constants increase with the number of halogen substituents, so as linearly in halogenated benzenes and exponentially in halogenated methanes and ethanes. Even the isomers of halogenides have different quenching constants. (2) There is a linearity between logarithm of the quenching constant and a polarographic half-wave reduction potential. (3) Electron excitation provides larger quenching constants than UV excitation for halogenated methanes. Based on these results, the mechanism of halogen quenching have been discussed in connection with the exciplex formation. (auth.)

  5. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    International Nuclear Information System (INIS)

    Pan Yang; Zhao Junshu; Ji Yuanyuan; Yan Lei; Yu Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3 TMB* after rapid intersystem crossing from 1 TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), α-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k q T values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k q S have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k q values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation

  6. Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry

    International Nuclear Information System (INIS)

    Zhao, Bingge; Li, Linfang; Yang, Bin; Yan, Ming; Zhai, Qijie; Gao, Yulai

    2013-01-01

    Highlights: •Controllable quenching rate up to 15,000 K/s was realized by FSC. •FSC sample was novelly characterized by FIB and HRTEM. •Solidification structure with undercooling of 110.9 K was investigated. •This study opens a new approach in rapid solidification and FSC measurement. -- Abstract: Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate

  7. The effect of the cooling rate during quenching, electron bombardment and plastic deformation on the kinetics of a solid solution disintegration in iron-copper alloys

    International Nuclear Information System (INIS)

    Fedorov, G.B.; Zhukov, V.P.; Braun, A.G.; Smirnov, E.A.

    1974-01-01

    From the electroresistivity variation at 77 0 K, the influence of nonequilibrium point defect density and of complexes and dislocations on the decay process of the iron-copper solid solution is determined. Owing to high quenching rate of thin foils, isochrones of their electroconductivity curves appear shifted by about 200 0 C to lower temperatures. For quenched and irradiated specimens at 200-250 0 C a sharp retardation of electroconductivity decline is observed due to a zone stage. The plastic deformation (15%) leads to a partial suppression of that stage. Both irradiation and deformation initiate the process of copper separation from the solid solution, the latter being the stronger, the more copper is in the solid solution

  8. Design of electronic measurement and quench detection equipment for the Current Lead Test facility Karlsruhe (CuLTKa)

    International Nuclear Information System (INIS)

    Hollik, Markus; Fietz, Walter H.; Fink, Stefan; Gehrlein, Mirko; Heller, Reinhard; Lange, Christian; Möhring, Tobias

    2013-01-01

    The Current Lead Test facility Karlsruhe (CuLTKa) is under construction at the Karlsruhe Institute of Technology (KIT) to perform acceptance tests of high temperature superconductor (HTS) current leads (CL). CuLTKa is in progress and present planning expects the completion in 2013. The data acquisition system is based on a modular design with electronic measurement and monitoring equipment covering a test voltage of 50 kV DC against ground. It provides plug-in units which enable temperature and voltage measurement at high voltage potential and in addition quench detection units which detect a loss of superconductivity reliably and quickly to avoid damage of the superconducting device under test. Prototype units for quench detection, temperature and voltage measurement have been successfully tested. Six temperature measurement units are already in use in the KIT test facility TOSKA and operated reliably during the acceptance tests of the HTS current leads for Wendelstein 7-X (W7-X) in 2011/2012. CuLTKa will be used first for 26 current leads which will be built in KIT for the fusion experiment JT-60SA. The present paper gives an overview of the design of the electronic measurement and quench detection equipment

  9. Quenches after LS1

    International Nuclear Information System (INIS)

    Verweij, A.P.

    2012-01-01

    In this paper I will give an overview of the different types of quenches that occur in the LHC, followed by an estimate of the number of quenches that we can expect after LS1. Beam-induced quenches and false triggering of the QPS will be the main cause of those quenches that cause a beam dump. Possibly in total up to 10-20 per year. After consolidation of the 13 kA joints, the approach for the BLM settings can be less conservative than in 2010-2012 in order to maximize beam time. This will cause some quenches but, anyhow, a beam.induced quench is not more risky than a quench provoked by false triggering. It is not easy to predict the number of BLM triggered beam dumps, needed to avoid magnet quenches, because it is not sure how to scale beam losses and UFO's from 3.5 TeV to 6.5 TeV, and it is not sure if the thresholds at 3.5 TeV are correct. Quench events will be much more massive (ex: RB quench at 6 kA → 2 MJ, RB quench at 11 kA → 6-20 MJ), and as a result cryo recuperation much longer. There will also be more ramp induced quenches after a FPA in other circuits due to higher ramp rates and smaller temperature margins (mutual coupling)

  10. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pan Yang [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Zhao Junshu [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Ji Yuanyuan [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yan Lei [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yu Shuqin [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China)], E-mail: sqyu@ustc.edu.cn

    2006-01-05

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields {sup 3}TMB* after rapid intersystem crossing from {sup 1}TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), {alpha}-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property ({pi}-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k{sub q}{sup T} values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k{sub q}{sup S} have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k{sub q} values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation.

  11. Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens: elucidation of the maleimide fluorescence quenching mechanism.

    Science.gov (United States)

    Guy, Julia; Caron, Karine; Dufresne, Stéphane; Michnick, Stephen W; Skene, W G; Keillor, Jeffrey W

    2007-10-03

    Dimaleimide fluorogens are being developed for application to fluorescent protein labeling. In this method, fluorophores bearing two maleimide quenching groups do not fluoresce until both maleimide groups have undergone thiol addition reactions with the Cys residues of the target protein sequence [J. Am. Chem. Soc. 2005, 127, 559-566]. In this work, a new convergent synthetic route was developed that would allow any fluorophore to be attached via a linker to a dimaleimide moiety in a modular fashion. Series of dimaleimide and dansyl derivatives were thus prepared conveniently and used to elucidate the mechanism of maleimide quenching. Intersystem crossing was ruled out as a potential quenching pathway, based on the absence of a detectable triplet intermediate by laser flash photolysis. Stern-Volmer rate constants were measured with exogenous dimaleimide quenchers and found to be close to the diffusion-controlled limits, consistent with electron transfer being thermodynamically favorable. The thermodynamic feasibility of the photoinduced electron transfer (PET) quenching mechanism was verified by cyclic voltammetry. The redox potentials measured for dansyl and maleimide confirm that electron transfer from the dansyl excited state to a pendant maleimide group is exergonic and is responsible for fluorescence quenching of the fluorogens studied herein. Taking this PET quenching mechanism into account, future fluorogenic protein labeling agents will be designed with spacers of variable length and rigidity to probe the structure-property PET efficiency relationship.

  12. Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants

    International Nuclear Information System (INIS)

    Liao, Pen-Nan; Bode, Stefan; Wilk, Laura; Hafi, Nour; Walla, Peter J.

    2010-01-01

    The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid-chlorophyll interactions, φ Coupling Car S 1 -Chl , as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between φ Coupling Car S 1 -Chl and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II . In order to elucidate which carotenoid-chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.

  13. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching

    International Nuclear Information System (INIS)

    Meaney, Melissa S.; McGuffin, Victoria L.

    2008-01-01

    Previous studies have indicated that nitrated explosives may be detected by fluorescence quenching of pyrene and related compounds. The use of pyrene, however, invokes numerous health and waste disposal hazards. In the present study, ten safer fluorophores are identified for quenching detection of target nitrated compounds. Initially, Stern-Volmer constants are measured for each fluorophore with nitrobenzene and 4-nitrotoluene to determine the sensitivity of the quenching interaction. For quenching constants greater than 50 M -1 , sensitivity and selectivity are investigated further using an extended set of target quenchers. Nitromethane, nitrobenzene, 4-nitrotoluene, and 2,6-dinitrotoluene are chosen to represent nitrated explosives and their degradation products; aniline, benzoic acid, and phenol are chosen to represent potential interfering compounds. Among the fluorophores investigated, purpurin, malachite green, and phenol red demonstrate the greatest sensitivity and selectivity for nitrated compounds. Correlation of the quenching rate constants for these fluorophores to Rehm-Weller theory suggests an electron-transfer quenching mechanism. As a result of the large quenching constants, purpurin, malachite green, and phenol red are the most promising for future detection of nitrated explosives via fluorescence quenching

  14. Eu-emission quenching by electron screening in VO2 thin films

    International Nuclear Information System (INIS)

    Liu, H.; Lysenko, S.; Rua, A.; Vikhnin, V.; Vasquez, O.; Fernandez, F.E.

    2006-01-01

    As a kind of phase transition functional material, Vanadium dioxide (VO 2 ) thin films deposited on fused quartz substrate were fabricated using pulsed laser deposition (PLD) technique. Europium was introduced for structure study. By laser excitation at 526 nm, VO 2 thin film undergoes a reversible and ultrafast phase transition from semiconductor to metallic state, which results in a change of optical properties. In fluorescence measurement, Eu emission was found severely quenched in all as-grown thin films. After annealing the sample in air, a red Eu-emission appeared. The emission spectrum is characterized by a pronounced twin peak, centered at 617 nm ( 5 D - 7 F 2 ), surrounded by a set of broad, but relatively weaker bands (emission from 5 D to 7 F j manifold). The emission lifetime increased when the sample annealed at higher temperature for longer time. Each spectral component is actually a doublet which is the spectral overlap of emissions from Eu 3+ situated in two sites with different configurations. One is a linear h-Eu 3+ -h, where h stands for holes. Another is a right-angle configuration of h-Eu 3+ -h with Eu 3+ in the corner. In as-grown VO 2 film, Eu 3+ ions can either substitute V 4+ , leaving a negative charge around (Eu 3+ -O) - , or substitute V 5+ , leaving two negative charges around (Eu 3+ -O) -- . Due to trapped electrons in a large radius state, it covers Eu 3+ V 4+ -V 5+ complexes. It suggests that the screening by degenerate electronic gas may result in switching off the Eu-related optical response for a wide spectral region, causing emission quenching in VO 2 films

  15. Fluorescence quenching of 9-cyanoanthracene in presence of zinc tetraphenylporphyrin in a polar liquid medium

    International Nuclear Information System (INIS)

    Mandal, Paulami; Tiwari, Sanat Kumar; Ganguly, Tapan; Sinha, Subrata

    2009-01-01

    Steady-state and time-resolved techniques are used to study photoinduced electron and/or excitational energy transfer processes involved within a novel donor (zinc tetraphenylporphyrin)-acceptor (9-cyanoanthracene) system in a polar liquid medium (acetonitrile) at the ambient temperature (300 K). After photoexcitation of 9-cyanoanthracene, its fluorescence emission as well as lifetime are found to be quenched in presence of zinc tetraphenylporphyrin. The fluorescence quenching is ascribed to be due to the combined effect of electron transfer from zinc tetraphenylporphyrin to 9-cyanoanthracene and energy transfer (radiative as well as non-radiative) from 9-cyanoanthracene to zinc tetraphenylporphyrin. The highly exergonic values of Gibbs free energy change for both forward electron transfer reaction (-1.15 eV) and charge recombination reaction (-1.94 eV) indicate the possibilities of occurrences of these two processes in the Marcus inverted region. The fluorescence quenching rate due to photoinduced electron transfer reaction is found to be close to the diffusion-controlled limit within the present donor-acceptor system upon excitation of the acceptor molecules.

  16. Rate dependence of electron transfer on donor-acceptor separation and on free enthalpy change. The Ru(bpy)32+/viologen2+ system

    International Nuclear Information System (INIS)

    Rau, H.; Frank, R.; Greiner, G.

    1986-01-01

    By attachment of hydrocarbon chains of different lengths to the bipyridyl ligands in Ru(bpy) 3 2+ we have adjusted the donor-acceptor separation in the electron-transfer system Ru[(C/sub n/H/sub 2n+1/) 2 bpyl 3 2+ /methylviolgen. Two electron-transfer reactions with different ΔG are investigated in fluid solution: the quenching of the excited complexes by methylviologen (MV 2+ ) which is exergonic with -0.4 eV and the thermal back electron transfer which is exergonic with -1.7 eV. We observe an exponential decrease of the quenching rate on distance. The back electron transfer is independent of donor-acceptor separation; electron transfer is found to take place at distances of 1.5 nm and more. The results are discussed in terms of a hypothesis on the interdependence of transfer distance and free enthalpy change and compared with current theories. In the framework of the simple classical Marcus model, the Marcus equation relating transfer rate and free enthalpy change is transposed into the Rehm-Weller equation by simple mathematical manipulations and the implications of this are discussed

  17. Characterization of oil based nanofluid for quench medium

    Science.gov (United States)

    Mahiswara, E. P.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Kresnodrianto

    2018-01-01

    The choice of quench medium depends on the hardenability of the metal alloy, the thickness of the component, and the geometry of the component. Some of these will determine the cooling rate required to obtain the desired microstructure and material properties. Improper quench media will cause the material to become brittle, suffers from geometric distortion, or having a high undesirable residual stresses in the components. In heat treatment industries, oil and water are frequently used as the quench media. Recently, nanofluid as a quench medium has also been studied using several different fluids as the solvent. Examples of frequently used solvents include polymers, vegetable oils, and mineral oil. In this research, laboratory-grade carbon powder were used as nanoparticle. Oil was used as the fluid base in this research as the main observation focus. To obtain nanoscale carbon particles, planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. This method was used to lower the cost for nanoparticle synthesis. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which annealed at 1000°C. Hardness testing and metallography observation were then conducted to further examine the effect of different quench medium in steel samples.

  18. Behavior of quenched and tempered steels under high strain rate compression loading

    International Nuclear Information System (INIS)

    Meyer, L.W.; Seifert, K.; Abdel-Malek, S.

    1997-01-01

    Two quenched and tempered steels were tested under compression loading at strain rates of ε = 2.10 2 s -1 and ε = 2.10 3 s -1 . By applying the thermal activation theory, the flow stress at very high strain rates of 10 5 to 10 6 s -1 is derived from low temperature and high strain rate tests. Dynamic true stress - true strain behaviour presents, that stress increases with increasing strain until a maximum, then it decreases. Because of the adiabatic process under dynamic loading the maximum flow stress will occur at a lower strain if the strain rate is increased. Considering strain rate, strain hardening, strain rate hardening and strain softening, a constitutive equation with different additive terms is successfully used to describe the behaviour of material under dynamic compression loading. Results are compared with other models of constitutive equations. (orig.)

  19. Wave form of current quench during disruptions in tokamaks

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Gribov, Yuri; Shimada, Michiya; Lukash, Victor; Kawano, Yasunori; Yoshino, Ryuji; Miki, Nobuharu; Ohmori, Junji; Khayrutdinov, Rustam

    2003-01-01

    The time dependence of the current decay during the current quench phase of disruptions, which can significantly influence the electro-magnetic force on the in-vessel components due to the induced eddy currents, is investigated using data obtained in JT-60U experiments in order to derive a relevant physics guideline for the predictive simulations of disruptions in ITER. It is shown that an exponential decay can fit the time dependence of current quench for discharges with large quench rate (fast current quench). On the other hand, for discharges with smaller quench rate (slow current quench), a linear decay can fit the time dependence of current quench better than exponential. (author)

  20. Characterization of plasma current quench at JET

    International Nuclear Information System (INIS)

    Riccardo, V; Barabaschi, P; Sugihara, M

    2005-01-01

    Eddy currents generated during the fastest disruption current decays represent the most severe design condition for medium and small size in-vessel components of most tokamaks. Best-fit linear and instantaneous plasma current quench rates have been extracted for a set of recent JET disruptions. Contrary to expectations, the current quench rate spectrum of high and low thermal energy disruptions is not substantially different. For most of the disruptions with the highest instantaneous current quench rate an exponential fit of the early phase of the current decay provides a more accurate estimate of the maximum current decay velocity. However, this fit is only suitable to model the fastest events, for which the current quench is dominated by radiation losses rather than the plasma motion

  1. Quenches in the superconducting magnet CELLO

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1979-01-01

    The superconducting magnet CELLO was tested with currents up to 3200 A at Saclay and has been installed at DESY in Hamburg where it will be used for particle physics experiments requiring colliding beams of electrons and positrons. The testing of this unique, large, one-layer solenoid provides an excellent opportunity to evaluate the theory of quench propagation under adiabatic conditions, that is, in a coil in which the conductors are not in direct contact with helium. In an early test of this coil, quenches that occurred, gives the details of the damaged conductor, and includes an analysis of the quenches. Observed axial quench velocities are compared to the calculated values based on both measurements and calculations of the thermal conductivity of the fabricated coil

  2. Investigation of the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by certain substituted uracils

    Energy Technology Data Exchange (ETDEWEB)

    Anbazhagan, V. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Renganathan, R. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)], E-mail: rrengas@yahoo.com

    2009-04-15

    The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by a series of uracils has been studied in water and acetonitrile solvents using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e. 4, 8 and 12). The bimolecular quenching rate constant (k{sub q}) increases with increase in pH of uracils. In acidic pH, a pure hydrogen atom abstraction is proposed as the quenching mechanism. This is supported by a pronounced solvent deuterium isotope effect. Electron transfer from the anionic form of uracil to the excited state of DBO is proposed as a mechanism for quenching in basic pH on the basis of highly exergonic thermodynamics obtained from the Rehm-Weller equation. The variation of k{sub q} is explained on the basis of the electronic effect of substitution in uracils as well.

  3. Investigation of the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by certain substituted uracils

    International Nuclear Information System (INIS)

    Anbazhagan, V.; Renganathan, R.

    2009-01-01

    The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by a series of uracils has been studied in water and acetonitrile solvents using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e. 4, 8 and 12). The bimolecular quenching rate constant (k q ) increases with increase in pH of uracils. In acidic pH, a pure hydrogen atom abstraction is proposed as the quenching mechanism. This is supported by a pronounced solvent deuterium isotope effect. Electron transfer from the anionic form of uracil to the excited state of DBO is proposed as a mechanism for quenching in basic pH on the basis of highly exergonic thermodynamics obtained from the Rehm-Weller equation. The variation of k q is explained on the basis of the electronic effect of substitution in uracils as well

  4. Enhanced Turbulence During the Energy Quench of Disruptions

    NARCIS (Netherlands)

    Remkes, G. J. J.; Schüller, F. C.

    1991-01-01

    Enhanced electron density fluctuation levels with frequencies in the megahertz range have been observed during the energy quench phase of minor disruptions in the TORTUR Tokamak. The high frequencies of the phenomena indicate that the enhanced transport during the energy quench is caused by

  5. The effect of quench rate on the microstructure and properties of AF/C-458 and AF/C-489 Al-Li-Cu-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Csontos, A.A.; Gable, B.M.; Starke, E.A. Jr. [Virginia Univ., Charlottesville, VA (United States). Dept. of Mater. Sci. and Eng.; Gaber, A.

    2000-07-01

    The air force recently developed two isotropic Al-Li-Cu-X alloys with 1.8{sup w}/oLiLi and 2.1{sup w}/oLi designated AF/C-458 and AF/C-489, respectively. The objective of this investigation was to determine the effect of quench rate on the microstructure and mechanical properties of the AF/C-458 and AF/C-489 alloys. TEM, SEM, microhardness, and tensile testing were utilized to ascertain these microstructure/property relationships for both alloys in the T4, T6, and T86 tempers as a function of quench rate. Subsequent losses in ductility for both alloys in all tempers with decreasing quench rate were determined to be due to the precipitation of the equilibrium Al{sub 2}CuLi (T{sub 1}) phase along subgrain and grain boundaries which promoted intergranular fracture. Furthermore, yield and tensile strengths increased for both alloys in the T4 temper but decreased in the T6 and T86 tempers with decreasing quench rate. The increased strengths for the T4 condition resulted from the heterogeneous precipitation of coarse T{sub 1} and naturally aged {delta}' phases. The decrease in yield and tensile strengths for the T6 and T86 tempers were also due to the coarse heterogeneous precipitation of T{sub 1} which denuded regions of Cu thereby reducing the number density of fine matrix {theta}{sup ''} (T6) and T{sub 1} (T86). Finally, a comparison of the quench sensitivity for both the AF/C-458 and AF/C-489 alloys indicates that the mechanical properties for both alloys were less quench rate sensitive than other typical Al-Li-Cu-X alloys. (orig.)

  6. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.

    Science.gov (United States)

    Marinica, D C; Lourenço-Martins, H; Aizpurua, J; Borisov, A G

    2013-01-01

    Coupling molecular excitons and localized surface plasmons in hybrid nanostructures leads to appealing, tunable optical properties. In this respect, the knowledge about the excitation dynamics of a quantum emitter close to a plasmonic nanoantenna is of importance from fundamental and practical points of view. We address here the effect of the excited electron tunneling from the emitter into a metallic nanoparticle(s) in the optical response. When close to a plasmonic nanoparticle, the excited state localized on a quantum emitter becomes short-lived because of the electronic coupling with metal conduction band states. We show that as a consequence, the characteristic features associated with the quantum emitter disappear from the optical absorption spectrum. Thus, for the hybrid nanostructure studied here and comprising quantum emitter in the narrow gap of a plasmonic dimer nanoantenna, the quantum tunneling might quench the plexcitonic states. Under certain conditions the optical response of the system approaches that of the individual plasmonic dimer. Excitation decay via resonant electron transfer can play an important role in many situations of interest such as in surface-enhanced spectroscopies, photovoltaics, catalysis, or quantum information, among others.

  7. Density of kinks just after a quench in an underdamped system

    OpenAIRE

    Dziarmaga, Jacek

    1998-01-01

    A quench in an underdamped one dimensional $\\phi^4$ model is studied by analytical methods. The density of kinks just after the transition is proportional to the square root of the rate of the quench for slow quenches. If the quench is shorter that the relaxation time, then the density scales like the third root of the rate.

  8. Characterization of plasma current quench during disruptions at HL-2A

    Science.gov (United States)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  9. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  10. Phase formation in titanium alloys during their quenching from liquid state

    International Nuclear Information System (INIS)

    Golub, S.Ya.; Kotko, A.V.; Kuz'menko, N.N.; Kulak, L.D.; Firstov, S.A.; Khaenko, B.V.

    1992-01-01

    Methods of X-ray diffractin analysis, light and electron microscopy were applied to study structural state of titanium base alloys quenched from liquid state by spinning with cooling in inert gas or at the surface of solid heat exchanger. Phase formation under rapid cooling conditions was considered. The morphology of phases and mutual orientation of their crystal lattices were investigated along with the character of crystallization texture. It was revealed that on melt quenching with 10 5 -10 6 K/s cooling rates the growth of columnar branches of degenerated dendrites was accopanied by Si atoms movement of the order of 0.1 μm. Structure and crack resistance of compacted articles produced from rapidly solidified powders were under study

  11. Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3 -cored dendrimer

    Science.gov (United States)

    Ribierre, J. C.; Ruseckas, A.; Samuel, I. D. W.; Staton, S. V.; Burn, P. L.

    2008-02-01

    We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)3] -cored dendrimer and in its blend with a 4,4' -bis( N -carbazolyl)biphenyl host for the temperature range of 77-300K . The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7meV , which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials.

  12. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum.

    Science.gov (United States)

    Yang, Haitao; Wang, Fujia; Zheng, Jilin; Lin, Hao; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-06-04

    Energy transfer between fluorescent dyes and quenchers is widely used in the design of light-up probes. Although dual quenchers are more effective in offering lower background signals and higher turn-on ratios than one quencher, such probes are less explored in practice as they require both quenchers to be within the proximity of the fluorescent core. In this contribution, we utilized intramolecular motion and photoinduced electron transfer (PET) as quenching mechanisms to build super-quenched light-up probes based on fluorogens with aggregation-induced emission. The optimized light-up probe possesses negligible background and is able to detect not only free formaldehyde (FA) but also polymeric FA, with an unprecedented turn-on ratio of >4900. We envision that this novel dual quenching strategy will help to develop various light-up probes for analyte sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phase mapping of iron-based rapidly quenched alloys using precession electron diffraction

    International Nuclear Information System (INIS)

    Svec, P.; Janotova, I.; Hosko, J.; Matko, I.; Janickovic, D.; Svec, P. Sr.; Kepaptsoglou, D. M.

    2013-01-01

    The present contribution is focused on application of PED and phase/orientation mapping of nanocrystals of bcc-Fe formed during the first crystallization stage of amorphous Fe-Co-Si-B ribbon. Using precession electron diffraction and phase/orientation mapping the formation of primary crystalline phase, bcc-Fe, from amorphous Fe-Co-Si-B has been analyzed. Important information about mutual orientation of the phase in individual submicron grains as well as against the sample surface has been obtained. This information contributes to the understanding of micromechanisms controlling crystallization from amorphous rapidly quenched structure and of the structure of the original amorphous state. The presented technique due to its high spatial resolution, speed and information content provided complements well classical techniques, especially in nanocrystalline materials. (authors)

  14. Characteristics of current quenches during disruptions in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Zhang, Y; Chen, Z Y; Fang, D; Jin, W; Huang, Y H; Wang, Z J; Yang, Z J; Chen, Z P; Ding, Y H; Zhang, M; Zhuang, G

    2012-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electro-magnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. The characteristics of current quenches in spontaneous disruptions in the J-TEXT tokamak have been investigated. It is shown that the waveforms for the fastest current quenches are more accurately fitted by linear current decays than exponential, although neither is a good fit in many slower cases. The minimum current quench time is about 2.4 ms for the J-TEXT tokamak. The maximum instantaneous current quench rate is more than seven times the average current quench rate in J-TEXT. (paper)

  15. Self-quenching streamers

    International Nuclear Information System (INIS)

    Atac, M.; Tollestrup, A.V.; Potter, D.

    1982-01-01

    Self quenching streamers in drift tubes have been observed both optically and electronically. The streamers of 150-200 μm width extend out from the anode wire to 1.5 to 3 mm at atmospheric pressures. Electronic measurements at a two atomsphere pressure show pulses into a 50 Ω load with a rise time of 5 ns, a decay time of 40 ns, and an amplitude of 30 mV. Details of the experiments are discussed. There was no detectable residue on an anode wire after exposing it to 2x10 9 streamers for a 1 mm section. (orig.)

  16. Quench protection analysis of the Mu2e production solenoid

    International Nuclear Information System (INIS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions

  17. Quench protection analysis of the Mu2e production solenoid

    Science.gov (United States)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  18. Effect of applied hydrostatic pressure on the quenching kinetics, and electronic and molecular structure of eight and nine-coordinate lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Maupin, C.L.; Riehl, J.P.

    1998-01-01

    Full text: Applied hydrostatic pressure may be used as a probe of the reaction mechanism for various solution reactions involving lanthanide ions. In this work we report on the use of high pressure to probe the mechanism of enantioselective quenching between racemic luminescent lanthanide complexes containing Dy(III) Tb(III) and Eu(III), and optically active transition metal complexes as quenchers. Diastereomeric rate constants are obtained from a biexponential fit of the luminescence decay. Particular attention will be given to solvation effects on the measured diastereomeric rate constants. The source of chirality is ascribed to a enantioselective rearrangement step within a bimolecular 'encounter' complex yielding a intermolecular geometry in which the energy transfer is efficient. The effect of high pressure on the molecular and electronic structure of these complexes will also be discussed

  19. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  20. Effects of quenching and partial quenching on penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2001-01-01

    In the calculation of non-leptonic weak decay rates, a "mismatch" arises when the QCD evolution of the relevant weak hamiltonian down to hadronic scales is performed in unquenched QCD, but the hadronic matrix elements are then computed in (partially) quenched lattice QCD. This mismatch arises

  1. Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?

    International Nuclear Information System (INIS)

    Maximenko, Yulia; Segatskov, Dmitri A.

    2011-01-01

    A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problem to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.

  2. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Science.gov (United States)

    2010-07-01

    ... any flow rate into the reaction chamber. This includes, but is not limited to, sample capillary, ozone... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new...

  3. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  4. Investigations on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by certain flavonoids.

    Science.gov (United States)

    Anbazhagan, V; Kalaiselvan, A; Jaccob, M; Venuvanalingam, P; Renganathan, R

    2008-05-29

    The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by seven flavonoids namely flavone, flavanone, quercetin, rutin, genistein, diadzein and chrysin has been investigated in acetonitrile and dichloromethane solvents. The bimolecular quenching rate constants lie in the range of 0.09-5.75 x 10(9)M(-1)s(-1) and are explained in terms of structure of the flavonoids studied. The reactivity of flavonoids are in the order: quercetin>rutin>genistein>diadzein>chrysin>flavone>flavanone. The quenching rate constants (k(q)) increase with increase in the number of -OH groups. The endergonic thermodynamic values of DeltaG(et) reveal that electron transfer quenching mechanism can be ruled out. Bond dissociation enthalpy calculations reveal that the position of -OH is important. Further in vitro-antioxidant activities of flavonoids were evaluated with rat liver catalase by gel electrophoresis. The deuterium isotope effect thus observed in this work provides evidence for hydrogen abstraction involved in the quenching process of singlet excited DBO by flavonoids. The data suggest the involvement of direct hydrogen atom transfer (radical scavenging) in the fluorescence quenching of DBO. Bond dissociation enthalpy calculation performed at B3LYP/6-31G(p')//B3LYP/3-21G level are in excellent agreement with the above observations and further reveal that the number OH groups and position of them decide the quenching ability of the flavonoids.

  5. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    Quenches can be divided into two categories; conductor-limited and energy-deposited quenches. A conductor-limited quench occurs when the current in the magnet exceeds the capacity of the superconductor; it is characterized by a strong correlation with temperature. An energy-deposited quench occurs when a disturbance releases enough energy to trigger a quench; the main disturbances during magnet energization are frictional movements of the conductor due to increasing Lorentz forces. The current level of the conductor-limited quenches defines the limit of the magnet performance, and can only be surpassed by lowering the operating temperature; the occurrence of a constant current at quench during the magnetic testing is called a plateau. Usually it takes a few energy-deposited quenches of increasing currents to reach the plateau; these first few steps are called the magnet's training. The goal in designing a magnet is to be able to energize it and to reliably operate it at the design current without training. This can be achieved by optimizing the magnet's operating margin, that is, by designing and building the magnet in such a way that the sizes of the mechanical disturbances needed to trigger a quench are much larger than the achievable mechanical tolerances. (N.K.) 112 refs

  6. Superconductivity, magnetic susceptibility, and electronic properties of amorphous (Mo/sub 1-x/Ru/sub x/)80P20 alloys obtained by liquid quenching

    International Nuclear Information System (INIS)

    Johnson, W.L.; Poon, S.J.; Duwez, P.

    1977-11-01

    Results of x-ray diffraction, transmission electron diffraction, and crystallization studies on amorphous (Mo/sub 1-x/Ru/sub x/) 80 P 20 alloys obtained by liquid quenching are presented and discussed. The alloys are all found to be superconducting with transition temperatures ranging from approximately 3 0 K to approximately 9 0 K. The variation of T/sub c/ with alloy composition is compared to that obtained by Collver and Hammond for vapor quenched transition metal films. Results of magnetic susceptibility measurements are used to estimate the variation of the electronic density of states at the Fermi level, N(0), from the Pauli paramagnetic contribution. The relationship between the variation of T/sub c/ and N(0) is discussed in terms of the microscope theory of superconductivity. Finally, results of measurements of the upper critical field H/sub c2/, and the normal state electronic transport properties are presented and compared with recent theoretical models for amorphous superconductors

  7. The quench detector on magnetic modulator for the UNK quench protection system

    International Nuclear Information System (INIS)

    Bolotin, I.M.; Enbaev, A.V.; Erokhin, A.N.; Gridasov, V.I.; Priyma, M.V.; Sychev, V.A.; Vasiliev, L.M.

    1992-01-01

    When designing and constructing superconducting high energy accelerators, the development of the Quench Detection System (QDS) for superconducting (SC) magnets becomes an important and critical problem. At present there is experience in developing such systems for the Tevatron (FNAL, USA) and HERA (Hamburg, Germany). The machines for more than 3 TeV-the UNK (Russia) and SSC (USA), which are presently under construction, have very large circumferences, 21 and 87 km, respectively. The QDS's, similar to those of the Tevatron, require a larger part of the active components of the electronic equipment be placed in the machine tunnel close to the magnets, and protected from irradiation or additional surface buildings will have to be constructed. In either case the cost of such a QDS increases. In addition the former ones reliability decreases and maintenance becomes more difficult. For such machines, a QDS in which the quench signal, in each superconducting magnet (SCM) or groups of SCM'S, is extracted with the help of a bridge circuit (BC) appears to be more suitable. The half coils of SCM's are connected as two arms of the bridge and the resistors placed in the vacuum vessels of the magnet cryostats are connected to the other two. The off-balance signal of each BC is enhanced with the help of magnetic amplifiers. This note describes the experimental prototype of a bridge-type Quench Detector (QD) based on a magnetic amplifier Magnetic Modulator (MM) type, allowing one not only to detect a quench in a SCM, but also making feasible a wider system capability, namely: to record the signals from all SC elements during a quench for further analysis of its causes; to check the presence of short circuits of the ring electromagnet bus relative to the cryostats and to localize their position

  8. Quench Detection and Magnet Protection Study for MFTF. LLL final review

    International Nuclear Information System (INIS)

    1979-06-01

    The results of a Quench Detection and Magnet Protection Study for MFTF are summarized. The study was directed toward establishing requirements and guidelines for the electronic package used to protect the MFTF superconducting magnets. Two quench detection schemes were analyzed in detail, both of which require a programmable quench detector. Hardware and software recommendations for the quench detector were presented as well as criteria for dumping the magnet energy in the event of a quench. Overall magnet protection requirements were outlined in a detailed Failure Mode Effects and Criticality analysis, (FMECA). Hardware and software packages compatible with the FMECA were recommended, with the hardware consisting of flexible, dedicated intelligent modules specifically designed for magnet protection

  9. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  10. Quantum quenches with integrable pre-quench dynamics

    OpenAIRE

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t=0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench.

  11. Quantum quenches with integrable pre-quench dynamics

    International Nuclear Information System (INIS)

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t = 0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench. (fast track communication)

  12. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  13. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  14. Quench limits

    International Nuclear Information System (INIS)

    Sapinski, M.

    2012-01-01

    With thirteen beam induced quenches and numerous Machine Development tests, the current knowledge of LHC magnets quench limits still contains a lot of unknowns. Various approaches to determine the quench limits are reviewed and results of the tests are presented. Attempt to reconstruct a coherent picture emerging from these results is taken. The available methods of computation of the quench levels are presented together with dedicated particle shower simulations which are necessary to understand the tests. The future experiments, needed to reach better understanding of quench limits as well as limits for the machine operation are investigated. The possible strategies to set BLM (Beam Loss Monitor) thresholds are discussed. (author)

  15. A new method of quench monitoring in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1978-01-01

    The quench level of different liquid scintillation counting samples is measured by comparing the responses (pulse heights) produced by the same energy electrons in each sample. The electrons utilized in the measurements are those of the maximum energy (Esub(max)) which are produced by the single Compton scattering process for the same energy gamma-rays in each sample. The Esub(max) response produced in any sample is related to the Esub(max) response produced in an unquenched, sealed standard. The difference in response on a logarithm response scale is defined as the ''H Number''. The H number is related to the counting efficiency of the desired radionuclide by measurement of a set of standards of known amounts of the radionuclide and different amounts of quench (standard quench curve). The concept of the H number has been shown to be theoretically valid. Based upon this proof, the features of the H number concept as embodied in the Beckman LS-8000 Series Liquid Scintillation Systems have been demonstrated. It has been shown that one H number is unique; it provides a method of instrument calibration and wide dynamic quench range measurements. Further, it has been demonstrated that the H number concept provides a universal quench parameter. Counting efficiency vs. H number plots are repeatable within the statistical limits of +-1% counting efficiency. By the use of the H number concept a very accurate method of automatic quench compensation (A.Q.C.) is possible. (T.G.)

  16. An experimental study on quenching of a radially stratified heated porous bed

    International Nuclear Information System (INIS)

    Nayak, Arun K.; Sehgal, Bal Raj; Stepanyan, Armen V.

    2006-01-01

    The quenching characteristics of a volumetrically-heated particulate bed composed of radially stratified sand layers were investigated experimentally in the POMECO facility. The sand bed simulates the corium particulate debris bed which is formed when the molten corium released from the vessel fragments in water and deposits on the cavity floor during a postulated severe accident in a light water reactor (LWR). The electrically-heated bed was quenched by water from a water column established over top of it, and later also with water coming from its bottom, which was circulating from the water overlayer through downcomers. A series of experiments were conducted to reveal the effects of the size of downcomers, and their locations in the bed, on the quenching characteristics of the radially stratified debris beds. The downcomers were found to significantly increase the bed quenching rate. To simulate the non-condensable gases generated during the MCCI, air and argon were injected from the bottom of the bed at different flow rates. The effects of gas flow rate and its properties on the quenching behaviour were observed. The results indicate that the non-condensable gas flows reduce the quenching rate significantly. The gas properties also affect the quenching characteristics

  17. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  18. Quantum Quenches in a Spinor Condensate

    International Nuclear Information System (INIS)

    Lamacraft, Austen

    2007-01-01

    We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the ''light-cone'' correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al

  19. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    In this paper, I shall discuss the quench origins. I shall first establish a method of classification and introduce the notions of conductor-limited and energy-deposited quenches. Next the paper will be devoted to the study of conductor-limited quenches, and I shall introduce the notions of plateau and of fraction of short sample. Also the paper will be devoted to the study of energy-deposited quenches, and I shall introduce the notions of training and of minimum energy deposit; I shall then review the possible causes of energy release. Lastly, I shall introduce the notion of operating margin, and I shall indicate how to optimize the operating margin in order to limit the risk of premature quenching. 112 refs., 14 figs

  20. Porous debris behavior modeling of QUENCH-02, QUENCH-03 and QUENCH-09 experiments

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2006-01-01

    The heat-up, melting, relocation, hydrogen generation phenomena, relevant for high-temperature stages both in a reactor case and small-scale integral tests like QUENCH, are governed in particular by heat and mass transfer in porous debris and molten pools which are formed in the core region. Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03, QUENCH-09) plays a considerable role and its adequate modeling is important for thermal analysis. In particular, the analysis of QUENCH experiments shows that the major hydrogen release takes place in debris and melt regions formed in the upper part of the fuel assembly. The porous debris model was implemented in the Russian best estimate numerical code RATEG/SVECHA/HEFEST developed for modelling thermal hydraulics and severe accident phenomena in a reactor. The original approach for debris evolution is developed in the model from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (author)

  1. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  2. Luminescence quenching by reversible ionization or exciplex formation/dissociation.

    Science.gov (United States)

    Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-11-20

    The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.

  3. Passive quench arrest by a chimney induced deluge at every quench front

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1984-01-01

    This chapter describes a magnet in which a growing quench stops itself spontaneously within a fraction of one winding turn because vapor in quench-heated channels generates a progressively increasing downflow of liquid in advance of each of the quench fronts. The downflow eventually becomes a deluge as the quench grows. The design of the multiple arrested quench magnet is discussed. It is shown how to construct a magnet so that if an arrested quench arises when it is at its highest operating current, peak nucleate boiling will exist in all quenching channels

  4. Contribution to the study of defect quenching in gold

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Mairy, C.; Adda, Y.

    1964-01-01

    We have studied by resistivity measurements at low temperatures the influence of quenching conditions on the behaviour of defects in gold. We have quenched from a high temperature and in various liquids gold wires of 0.3 and 0.5 mm diameter having a purity of 99.999 per cent. For cooling rates of 25,000 deg C/second and above all the defects in equilibrium at high temperature are retained by quenching. The annealing of the defects thus obtained occurs in two stages, the first below 150 deg C and the second between 450 and 650 deg C. The mobility energy of the defects which are annealed during the first stage is 0.70 ± 0.06 eV, The annealing kinetics depend on the initial concentration of the defects and of the diameter of the sample. The second stage corresponds to disappearance of the stacking fault tetrahedra which are formed from defect packets during annealing. The formation energy of the defects measured on the 0. 5 mm samples is 0.94 eV. The values obtained with 0,3 mm diameter samples, much lower than 0.94 eV, can be explained by assuming that packets of defects occur at the end of the annealing of the samples. Electron microscope observations have been carried out on strips of annealed gold. (authors) [fr

  5. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  6. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  7. Quenching effects in photon production

    International Nuclear Information System (INIS)

    Durand, M.

    1989-01-01

    Contraints on the photon production calculated by kinetic approaches are studied by means of sum-rules a finite temperature for simple quantum system. For the square-well potential the exact production rate is compared with its semi-classical limit in order to introduce the principle problem. For the scattering of hard spheres the photon production cross section is derived exactly by partial wave expansion. This serves to study the more realistic example of a gas of hard spheres. The corresponding kinetic photon production rates are found to violate the sum-rules, due to a singular behaviour at small gamma energies. Thus the hypothesis of incoherent free scattering is not valid in that range because of destructive interferences which quench the production rates significantly. For the application to nuclear collisions at intermediate energies these quenching effects are found to be important for gamma energies even up to a few hundred MeV. (orig.)

  8. Quench behavior of a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Garber, M.; Dahl, P.F.

    1980-01-01

    Data are presented on the minimum energy required to cause quenches to propagate in an accelerator dipole magnet. The amount of stored energy dissipated into the magnet was measured as a function of dipole excitation current. This in turn determines the maximum coil temperature reached in a given magnet. Quench velocities in the longitudinal direction of the conductor were as high as 11m/sec. The azimuthal velocities or turn to turn velocities were found to be a function of the number of fiberglass layers of insulation that the quench had to cross and were on the order of a few tens of centimeters/sec. The field shape of a given magnet was found to be unchanged for more than 100 quenches. The coil to coil connection and inter-coil splice resistances were found to be less than a namo-ohm and therefore of litle consequence in the cryogenic load considerations. No definitive answers were found on how to decrease the rate of training (130 Gauss/Quench average) required from 4.OT to 5.1T

  9. Transient quenching of superheated debris beds during bottom reflood

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients

  10. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  11. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  12. A comparative study on fluorescence quenching of CdTe nanocrystals with a serial of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Baslak, Canan, E-mail: cananbaslak@gmail.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Kus, Mahmut, E-mail: mahmutkus1@gmail.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemical Engineering, Faculty of Engineering, Selcuk University, 42075 Konya (Turkey); Cengeloglu, Yunus [Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Ersoz, Mustafa [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey)

    2014-09-15

    We report sensing different polycyclic aromatic hydrocarbons (PAHs) with colloidal CdTe nanocrystals. The effect of molecular structure on quenching rate for 2-hyroxy-1-naphthaldehyde (2H–1N), 9,10-phenanthraquinone (PQ), 9-anthracenecarboxaldehyde (9-AC) and quinoline (Q) is presented. The quenching rate constants are observed to be strongly dependent on the molecular structure. PQ, consisting of two carbonyl groups, shows the highest rate constant while Q shows the worst one. Both static and dynamic quenching are simultaneously observed for PQ and 2H–1N. Therefore extended Stern–Volmer equations are used to calculate rate constants. Results showed that dynamic quenching is a dominant process. The rate constants for PQ, 2H–1N, 9-AC and Q are calculated to be 64.84, 10.73, 10.66 and 1.85 respectively. - Highlights: • We report the fluorescence quenching of colloidal CdTe nanocrystals with different polycyclic aromatic hydrocarbons. • The quenching rate constants are observed to be strongly dependent on the molecular structure. • Static and dynamic quenching are simultaneously observed. • The best quenching was observed for 9,10-phenanthraquinone.

  13. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system.

    Science.gov (United States)

    Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S

    2010-06-15

    To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Selective fluorescence quenching of nitrogen-containing polycyclic aromatic hydrocarbons by aliphatic amines

    International Nuclear Information System (INIS)

    Li Xiaoping; McGuffin, Victoria L.

    2004-01-01

    In this investigation, primary, secondary, and tertiary amines are evaluated for their efficiency and selectivity as fluorescence quenchers for polycyclic aromatic hydrocarbons (PAHs) and nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs). In general, the quenching efficiency tends to increase from primary to tertiary amine due to a greater number of alkyl groups that increase the electron-donating ability. However, the selectivity decreases from primary to tertiary amine. The effect of low concentrations of water is also examined. Because water can form hydrogen bonds with amines, the nonbonding electron pair is not available for interaction with the fluorophore, thus the quenching constant is decreased. These aliphatic amines are then applied to PAHs and N-PAHs and some interesting trends are observed. Whereas amino-PAHs remain virtually unquenched by different amines, aza-PAHs are all quenched well. The selectivity between aza-PAHs and amino-PAHs is as high as several hundred. This trend provides an easy and effective method to discriminate between these classes of N-PAHs. Moreover, the alternant aza-PAHs are quenched more than their corresponding alternant PAHs

  15. Performance of the MAGCOOL-subcooler cryogenic system after SSC quadrupole quenches

    International Nuclear Information System (INIS)

    Wu, K.C.

    1993-01-01

    The subcooler assembly installed in the MAGCOOL magnet test area at Brookhaven National Laboratory has been used for testing SSC dipoles, quadrupoles and a spool piece since 1989. A detailed description of the system, its steady state capacity and the performance after quenches of a 50 mm SSC dipole were given. Subsequent studies on low current quenches of the SSC dipoles and quenches of the RHIC dipoles were also carried out. In this paper, the performance of the subcooler after quenches of the SSC quadrupole QCC404 is presented. Pressures, temperatures and flow rates in the magnet cooling loop after magnet quenches are given as a function of time. The cooling rates and total energy removed by cooling during quench recovery have been calculated for quench currents between 2000 and 7952 amperes. Because the inductance of the quadrupole is about one tenth that of a SSC dipole, the stored energy released is small and the impact on the system is mild. The cooling loop pressure never exceeds 12 atmospheres and the cryogenic system recovers in less than 15 minutes. As in all past studies, the peak pressure and temperature in the magnet cooling loop are linearly proportional to the energy released during a quench and excellent agreement between the total cooling provided and the magnetic stored energy is found

  16. SDSS-IV MaNGA: the different quenching histories of fast and slow rotators

    Science.gov (United States)

    Smethurst, R. J.; Masters, K. L.; Lintott, C. J.; Weijmans, A.; Merrifield, M.; Penny, S. J.; Aragón-Salamanca, A.; Brownstein, J.; Bundy, K.; Drory, N.; Law, D. R.; Nichol, R. C.

    2018-01-01

    Do the theorized different formation mechanisms of fast and slow rotators produce an observable difference in their star formation histories? To study this, we identify quenching slow rotators in the MaNGA sample by selecting those that lie below the star-forming sequence and identify a sample of quenching fast rotators that were matched in stellar mass. This results in a total sample of 194 kinematically classified galaxies, which is agnostic to visual morphology. We use u - r and NUV - u colours from the Sloan Digital Sky Survey and GALEX and an existing inference package, STARPY, to conduct a first look at the onset time and exponentially declining rate of quenching of these galaxies. An Anderson-Darling test on the distribution of the inferred quenching rates across the two kinematic populations reveals they are statistically distinguishable (3.2σ). We find that fast rotators quench at a much wider range of rates than slow rotators, consistent with a wide variety of physical processes such as secular evolution, minor mergers, gas accretion and environmentally driven mechanisms. Quenching is more likely to occur at rapid rates (τ ≲ 1 Gyr) for slow rotators, in agreement with theories suggesting slow rotators are formed in dynamically fast processes, such as major mergers. Interestingly, we also find that a subset of the fast rotators quench at these same rapid rates as the bulk of the slow rotator sample. We therefore discuss how the total gas mass of a merger, rather than the merger mass ratio, may decide a galaxy's ultimate kinematic fate.

  17. Photoinduced electron transfer and persistent spectral hole-burning in natural emerald.

    Science.gov (United States)

    Riesen, Hans

    2011-06-02

    Wavelength-selective excited-state lifetime measurements and absorption, luminescence, and hole-burning spectra of a natural African emerald crystal are reported. The (2)E excited-state lifetime displays an extreme wavelength dependence, varying from 190 to 37 μs within 1.8 nm of the R(1)-line. Overall, the excited state is strongly quenched, in comparison to laboratory-created emerald (τ=1.3 ms), with an average quenching rate of ∼6 × 10(3) s(-1) at 2.5 K. This quenching is attributed to photoinduced electron transfer caused by a relatively high concentration of Fe(2+) ions. The forward electron-transfer rate, k(f), from the nearest possible Fe(2+) sites at around 5 Å is estimated to be ∼20 × 10(3) s(-1) at 2.5 K. The photoreductive quenching of the excited Cr(3+) ions by Fe(2+) is followed by rapid electron back-transfer in the ground state upon deactivation. The exchange interaction based quenching can be modeled by assuming a random quencher distribution within the possible Fe(2+) sites with the forward electron-transfer rate, k(f), given as a function of acceptor-donor separation R by exp[(R(f)-R)/a(f)]; R(f) and a(f) values of 13.5 and 2.7 Å are obtained at 2.5 K. The electron transfer/back-transfer reorganizes the local crystal lattice, occasionally leading to a minor variation of the short-range structure around the Cr(3+) ions. This provides a mechanism for spectral hole-burning for which a moderately high quantum efficiency of about ∼0.005% is observed. Spectral holes are subject to spontaneous hole-filling and spectral diffusion, and both effects can be quantified within the standard two-level systems for non-photochemical hole-burning. Importantly, the absorbance increases on both sides of broad spectral holes, and isosbestic points are observed, in accord with the expected distribution of the "photoproduct" in a non-photochemical hole-burning process. © 2011 American Chemical Society

  18. Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    International Nuclear Information System (INIS)

    Leinweber, Derek B.

    2004-01-01

    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation

  19. Observation of magnetic flux generated spontaneously during a rapid quench of superconducting films

    International Nuclear Information System (INIS)

    Maniv, A.; Polturak, E.; Koren, G.

    2003-01-01

    We report observations of spontaneous formation of magnetic flux lines during a rapid quench of YBa 2 Cu 3 O 7-δ films through T c . This effect is predicted according to the Kibble-Zurek mechanism of creation of topological defects of the order parameter during a symmetry-breaking phase transition. Our previous experiment, at a quench rate of 20 K/s, gave null results. In the present experiment, the quench rate was increased to >10 8 K/s. The amount of spontaneous flux increases weakly with the cooling rate

  20. Fluorescence from gaseous UF/sub 6/ excited by a near-UV dye laser. [Decay time,quenching rate,room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, P [Pavia Univ. (Italy); Cubeddu, R; Sacchi, C A; Svelto, O; Zaraga, F [Politecnico di Milano (Italy)

    1976-06-01

    Preliminary data are reported on the visible fluorescence of gaseous UF/sub 6/ excited by a dye laser at 374 nm. A decay time of 500 ns at p = 0 and a quenching rate of 5.7 x 10/sup -12/cm/sup 3/molec/sup -1/s/sup -1/ have been measured at room temperature.

  1. Quantum quenches in the Luttinger model and its close relatives

    Science.gov (United States)

    Cazalilla, M. A.; Chung, Ming-Chiang

    2016-06-01

    A number of results on quantum quenches in the Luttinger and related models are surveyed with emphasis on post-quench correlations. For the Luttinger model and initial gaussian states, we discuss both sudden and smooth quenches of the interaction and the emergence of a steady state described by a generalized Gibbs ensemble. Comparisons between analytics and numerics, and the question of universality or lack thereof are also discussed. The relevance of the theoretical results to current and future experiments in the fields of ultracold atomic gases and mesoscopic systems of electrons is also briefly touched upon. Wherever possible, our approach is pedagogical and self-contained. This work is dedicated to the memory of our colleague Alejandro Muramatsu.

  2. Spectral analysis of colour-quenched and chemically quenched C 14 samples

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Scott Guillearrd, P.E.

    1987-01-01

    Pairs of pulse height distribution curves, of C-14 samples, colour quenched and chemically quenched were obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (author). 7 figs., 7 refs

  3. Spectral analysis of colour-quenched and chemically quenched C-14 samples

    International Nuclear Information System (INIS)

    Scott, P. E.; Grau, A.

    1987-01-01

    In this paper pairs of pulse height distribution curves, of C-14 samples, colour-quenched and chemically quenched was obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (Author) 7 refs

  4. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  5. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  6. Quantum quench in an atomic one-dimensional Ising chain.

    Science.gov (United States)

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  7. Proposed Quenching of Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole Asymmetries

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    by photoluminescence excitation spectroscopy of a single quantum dot. We also investigate the implications for cavity QED, i.e., a coupled quantum dot-cavity system, and demonstrate that the phonon scattering may be strongly quenched. The quenching is explained by a balancing between the deformation potential...

  8. Hot compressive deformation behavior of the as-quenched A357 aluminum alloy

    International Nuclear Information System (INIS)

    Yang, X.W.; Lai, Z.H.; Zhu, J.C.; Liu, Y.; He, D.

    2012-01-01

    Highlights: ► We create a thermal history curve which was applied to carry out compression tests. ► We make an analysis of deformation performance for as-quenched A357 alloy. ► We create a constitutive equation which has good accuracy. - Abstract: The objective of the present work was to establish an accurate thermal-stress mathematical model of the quenching operation for A357 (Al–7Si–0.6Mg) alloy and to investigate the deformation behavior of this alloy. Isothermal compression tests of as-quenched A357 alloy were performed in the temperature range of 350–500 °C and at the strain rate range of 0.001–1 s −1 . Experimental results show that the flow stress of as-quenched A357 alloy decreases with the increase of temperature and the decrease of strain rate. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched A357 alloy is 252.095 kJ/mol. Under the different small strains (≤0.01), the constitutive equation parameters of as-quenched A357 alloy were calculated. Values of flow stress calculated by constitutive equation were in a very good agreement with experimental results. Therefore, it can be used as an accurate thermal-stress model to solve the problems of quench distortion of parts.

  9. Short range photoinduced electron transfer in proteins: QM-MM simulations of tryptophan and flavin fluorescence quenching in proteins

    International Nuclear Information System (INIS)

    Callis, Patrik R.; Liu Tiqing

    2006-01-01

    Hybrid quantum mechanical-molecular mechanics (dynamics) were performed on flavin reductase (Fre) and flavodoxin reductase (Fdr), both from Escherichia coli. Each was complexed with riboflavin (Rbf) or flavin mononucleotide (FMN). During 50 ps trajectories, the relative energies of the fluorescing state (S 1 ) of the isoalloxazine ring and the lowest charge transfer state (CT) were assessed to aid prediction of fluorescence lifetimes that are shortened due to quenching by electron transfer from tyrosine. The simulations for the four cases display a wide range in CT-S 1 energy gap caused by the presence of phosphate, other charged and polar residues, water, and by intermolecular separation between donor and acceptor. This suggests that the Gibbs energy change (ΔG 0 ) and reorganization energy (λ) for the electron transfer may differ in different flavoproteins

  10. Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A. [SIMAP, INPGrenoble-CNRS-UJF BP 75, 38402 St Martin d' Heres Cedex (France)], E-mail: alexis.deschamps@simap.grenoble-inp.fr; Texier, G.; Ringeval, S. [CEA-DAM centre de Valduc, 21120 Is-Sur-Tille (France); SIMAP, INPGrenoble-CNRS-UJF BP 75, 38402 St Martin d' Heres Cedex (France); Delfaut-Durut, L. [CEA-DAM centre de Valduc, 21120 Is-Sur-Tille (France)

    2009-02-15

    Medium strength Al-Zn-Mg age hardening alloys are widely used when a low quench sensitivity is required, such as in welding applications. In this work we present a detailed characterization of the precipitate microstructures resulting from different quench rates from the solution treatment, and from the subsequent artificial ageing to the T6 state, in an Al-4.5Zn-1Mg (wt%) alloy. This work is carried out using differential scanning calorimetry, transmission electron microscopy and in situ small-angle X-ray scattering. It is shown that for quench rate between 5 and 200 deg. C/min substantial heterogeneous precipitation is observed, nucleated on dispersoids and on grain boundaries, the former being of much larger size than the latter. During subsequent ageing, it is shown that the precipitation kinetics in the material unaffected by the quench-induced precipitates is independent on the quench rate used.

  11. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  12. STRUCTURE OF RAPIDLY QUENCHED RIBBONS AFTER NATURAL AGING

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2015-01-01

    Full Text Available Alloy solidification at high cooling rates leads to significant changes in structure and phase composition. Conditions appear for a significant extension of solid solubility, grain refining, and formation of metastable phases or amorphous state. Due to this it is possible to obtain  unique combinations of physical, mechanical and other properties in rapidly quenched alloys. Undoubted scientific and practical interest is an application of  quenching processes from a liquid state for aluminum alloys with the purpose to improve their physical and mechanical properties.As the structure of such alloys is extremely unstable from a thermodynamic point of view the important issue is to study  temporal stability of the microstructure and phase composition of rapidly quenched aluminium alloys of various chemical composition. The paper has investigated an influence of various alloying elements on the structure, phase composition and durometric properties of aluminum foils obtained by liquid aluminum alloy melt-spinning on the disk rotating with various speed. Optical and electron microscopy  has been used to study structure and phase composition as well as X-ray structural analysis. It has been shown that alloying of aluminium with copper leads to an increase in micro-hardness up to 130–160 HV0.01, and alloying with chromium and zirconium provides micro-hardness up to 60–80 HV0.01. It has been shown that increasing in amount of alloying additions in the aluminum melt (Al–Cu system alloy rises the number of CuAl2 precipitates and is accompanied with an increase in micro-hardness of aluminum foils. An increase in cooling rate of the aluminum melt (Al–Cr–Zr system is accompanied with structure dispersion which increases micro-hardness of the casted foils. The obtained results have made it possible to establish the optimal percentage of alloying elements and the disk rotation speed providing the highest level of aluminium foils’ durometric

  13. Thermal electron heating rate: a derivation

    International Nuclear Information System (INIS)

    Hoegy, W.R.

    1983-11-01

    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons, (2) a heating term evaluated on the energy surface m(e)/2 E(T) at the transition between Maxwellian and tail electrons at E(T), and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two

  14. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  15. Electron dose rate and photon contamination in electron arc therapy

    International Nuclear Information System (INIS)

    Pla, M.; Podgorsak, E.B.; Pla, C.

    1989-01-01

    The electron dose rate at the depth of dose maximum dmax and the photon contamination are discussed as a function of several parameters of the rotational electron beam. A pseudoarc technique with an angular increment of 10 degrees and a constant number of monitor units per each stationary electron field was used in our experiments. The electron dose rate is defined as the electron dose at a given point in phantom divided by the number of monitor units given for any one stationary electron beam. For a given depth of isocenter di the electron dose rates at dmax are linearly dependent on the nominal field width w, while for a given w the dose rates are inversely proportional to di. The dose rates for rotational electron beams with different di are related through the inverse square law provided that the two beams have (di,w) combinations which give the same characteristic angle beta. The photon dose at the isocenter depends on the arc angle alpha, field width w, and isocenter depth di. For constant w and di the photon dose at isocenter is proportional to alpha, for constant alpha and w it is proportional to di, and for constant alpha and di it is inversely proportional to w. The w and di dependence implies that for the same alpha the photon dose at the isocenter is inversely proportional to the electron dose rate at dmax

  16. Tryptophan and ATTO 590: mutual fluorescence quenching and exciplex formation.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Beck, Christie; Winter, Arthur; Wells, Carson; Petrich, Jacob W

    2014-07-24

    Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.

  17. Modelling of Power Fluxes during Thermal Quenches

    International Nuclear Information System (INIS)

    Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.

    2005-01-01

    Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the

  18. Characterization of water based nanofluid for quench medium

    Science.gov (United States)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub

  19. Quenching of photoluminescence of colloidal ZnO nanocrystals by nitronyl nitroxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Stroyuk, Oleksandr L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky avenue, 03028 Kyiv (Ukraine); Yakovenko, Anastasiya V.; Raevskaya, Oleksandra E. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky avenue, 03028 Kyiv (Ukraine); Plyusnin, Victor F. [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-11-15

    Quenching of the photoluminescence of colloidal zinc oxide nanocrystals by a series of stable nitronyl nitroxide radicals was studied by means of stationary and time-resolved luminescence spectroscopy. Among the studied radicals the most efficient quenchers of the ZnO luminescence are the carboxyl-substituted species. The meta-substituted radical was found to be a more active quencher, than para-substituted one due to a closer proximity of the radical center to the nanocrystals surface. The PL quenching has a complex dynamic/static character. The dynamic quenching arises from photocatalytic radical reduction by ZnO conduction band electrons, while the static quenching is caused by adsorption of the photoreduction products on the nanocrystal surface. The non-substituted and OH-substituted radicals are inferior to the products of their photoreduction in capability of adsorption of the ZnO surface, and the quenching is dominated by interactions between the nanocrystals and photoreduced hydroxylamines. In case of COOH-substituted radicals, however, the radicals compete with the photoreduction products for the surface sites of ZnO nanocrystals resulting in a dynamic character of photoluminescence quenching.

  20. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    NARCIS (Netherlands)

    Bruggeman, P.J.; Iza, F.; Guns, P.; Lauwers, D.; Kong, M.G.; Aranda Gonzalvo, Y.; Leys, C.; Schram, D.C.

    2010-01-01

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by

  1. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    Science.gov (United States)

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  2. Polyfluorophore Labels on DNA: Dramatic Sequence Dependence of Quenching

    Science.gov (United States)

    Teo, Yin Nah; Wilson, James N.

    2010-01-01

    We describe studies carried out in the DNA context to test how a common fluorescence quencher, dabcyl, interacts with oligodeoxynu-cleoside fluorophores (ODFs)—a system of stacked, electronically interacting fluorophores built on a DNA scaffold. We tested twenty different tetrameric ODF sequences containing varied combinations and orderings of pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and spacer (S) monomers conjugated to the 3′ end of a DNA oligomer. Hybridization of this probe sequence to a dabcyl-labeled complementary strand resulted in strong quenching of fluorescence in 85% of the twenty ODF sequences. The high efficiency of quenching was also established by their large Stern–Volmer constants (KSV) of between 2.1 × 104 and 4.3 × 105M−1, measured with a free dabcyl quencher. Interestingly, quenching of ODFs displayed strong sequence dependence. This was particularly evident in anagrams of ODF sequences; for example, the sequence BYDS had a KSV that was approximately two orders of magnitude greater than that of BSDY, which has the same dye composition. Other anagrams, for example EDSY and ESYD, also displayed different responses upon quenching by dabcyl. Analysis of spectra showed that apparent excimer and exciplex emission bands were quenched with much greater efficiency compared to monomer emission bands by at least an order of magnitude. This suggests an important role played by delocalized excited states of the π stack of fluorophores in the amplified quenching of fluorescence. PMID:19780115

  3. Quantum quench of Kondo correlations in optical absorption.

    Science.gov (United States)

    Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A

    2011-06-29

    The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.

  4. Results of heater induced quenches on a 1-m SSC model dipole

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1985-10-01

    This report describes the results of a series of heater induced quenches on the 1-m long SSC model dipole D-12C-7 constructed at LBL. Test results of the following types are described: quench propagation velocities - axial; quench propagation velocities - transverse; and rate of temperature rise in the conductor. The primary purpose of these tests was to measure quench velocities at a variety of locations and for several currents/fields which can be used to refine the quench predictions for longer magnets. Because of limited data in the low field region of this magnet, it is recommended that it be retested with additional voltage taps. 20 figs., 6 tabs

  5. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang

    2018-02-01

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.

  6. Fate of Majorana fermions and Chern numbers after a quantum quench.

    Science.gov (United States)

    Sacramento, P D

    2014-09-01

    In the sequence of quenches to either nontopological phases or other topological phases, we study the stability of Majorana fermions at the edges of a two-dimensional topological superconductor with spin-orbit coupling and in the presence of a Zeeman term. Both instantaneous and slow quenches are considered. In the case of instantaneous quenches, the Majorana modes generally decay, but for a finite system there is a revival time that scales to infinity as the system size grows. Exceptions to this decaying behavior are found in some cases due to the presence of edge states with the same momentum in the final state. Quenches to a topological Z(2) phase reveal some robustness of the Majorana fermions in the sense that even though the survival probability of the Majorana state is small, it does not vanish. If the pairing is not aligned with the spin-orbit Rashba coupling, it is found that the Majorana fermions are fairly robust with a finite survival probability. It is also shown that the Chern number remains invariant after the quench, until the propagation of the mode along the transverse direction reaches the middle point, beyond which the Chern number fluctuates between increasing values. The effect of varying the rate of change in slow quenches is also analyzed. It is found that the defect production is nonuniversal and does not follow the Kibble-Zurek scaling with the quench rate, as obtained before for other systems with topological edge states.

  7. Infrared Quenched Photoinduced Superconductivity

    Science.gov (United States)

    Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.

    1996-03-01

    Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.

  8. The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0

    Science.gov (United States)

    Socolovsky, Miguel; Almaini, Omar; Hatch, Nina A.; Wild, Vivienne; Maltby, David T.; Hartley, William G.; Simpson, Chris

    2018-05-01

    We investigate the relationship between environment and galaxy evolution in the redshift range 0.5 distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different time-scales. Fast quenching acts on galaxies with high specific star formation rates, operating on time-scales shorter than the cluster dynamical time (<1 Gyr). In contrast, slow quenching affects galaxies with moderate specific star formation rates, regardless of their stellar mass, and acts on longer time-scales (≳ 1 Gyr). Of the cluster galaxies in the stellar mass range 9.0 < log (M/M⊙) < 10.5 quenched during this epoch, we find that 73 per cent were transformed through fast quenching, while the remaining 27 per cent followed the slow quenching route.

  9. ITER Side Correction Coil Quench model and analysis

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Ciazynski, D.; Duchateau, J. L.; Gauthier, F.; Lacroix, B.

    2016-12-01

    Previous thermohydraulic studies performed for the ITER TF, CS and PF magnet systems have brought some important information on the detection and consequences of a quench as a function of the initial conditions (deposited energy, heated length). Even if the temperature margin of the Correction Coils is high, their behavior during a quench should also be studied since a quench is likely to be triggered by potential anomalies in joints, ground fault on the instrumentation wires, etc. A model has been developed with the SuperMagnet Code (Bagnasco et al., 2010) for a Side Correction Coil (SCC2) with four pancakes cooled in parallel, each of them represented by a Thea module (with the proper Cable In Conduit Conductor characteristics). All the other coils of the PF cooling loop are hydraulically connected in parallel (top/bottom correction coils and six Poloidal Field Coils) are modeled by Flower modules with equivalent hydraulics properties. The model and the analysis results are presented for five quench initiation cases with/without fast discharge: two quenches initiated by a heat input to the innermost turn of one pancake (case 1 and case 2) and two other quenches initiated at the innermost turns of four pancakes (case 3 and case 4). In the 5th case, the quench is initiated at the middle turn of one pancake. The impact on the cooling circuit, e.g. the exceedance of the opening pressure of the quench relief valves, is detailed in case of an undetected quench (i.e. no discharge of the magnet). Particular attention is also paid to a possible secondary quench detection system based on measured thermohydraulic signals (pressure, temperature and/or helium mass flow rate). The maximum cable temperature achieved in case of a fast current discharge (primary detection by voltage) is compared to the design hot spot criterion of 150 K, which includes the contribution of helium and jacket.

  10. Fuel rod quenching with oxidation and precursory cooling

    International Nuclear Information System (INIS)

    Davidi, A.; Elias, E.; Olek, S.

    1999-01-01

    During a loss-of-coolant-accident in LWR fuel rods may be temporarily exposed thus reaching high temperature levels. The injection of cold water into the core, while providing the necessary cooling to prevent melting may also generate steam inducing exothermal oxidation of the cladding. A number of high temperature quenching experiments [I] have demonstrated that during the early phase of the quenching process, the rate of hydrogen generation increased markedly and the surface temperatures rose rapidly. These effects are believed to result from thermal stresses breaking up the oxide layer on the zircalloy cladding, thus exposing the inner surface to oxidizing atmosphere. Steam reacts exothermally with the metallic components of the newly formed surface causing temporarily local temperature escalation. The main objective of this study is to develop and assess a one-dimensional time-dependent rewetting model to address the problem of quenching of hot surfaces undergoing exothermic oxidation reactions. Addressing a time-dependent problem is an important aspect of the work since it is believed that the progression of a quench-front along a hot oxidizing surface is an unsteady process. Several studies dealing with time-dependent rewetting problems have been published, e.g. [2]-[5], but none considers oxidation reactions downstream of the quench-front. The main difficulty in solving time-dependent rewetting problems stems from the fact that either the quench-front velocity or the quench-front positions constitute a time-dependent eigenvalue of the problem. The model is applied to describe the interrelated processes of cooling and exothermic steam-metal reactions at the vapor zirconium-cladding interface during quenching of degraded fuel rods. A constant heat transfer coefficient is assumed upstream of the quenching front whereas the combined effect of oxidation and post dry-out cooling is described by prescribing a heat flux distribution of general form downstream. The

  11. Numerical simulation for quenching meshes with TONUS platform

    International Nuclear Information System (INIS)

    Bin, Chen; Hongxing, Yu

    2009-01-01

    For mitigation of hydrogen risks during severe accidents to protect the integrity of containment, PAR and ignitors are used in current advanced nuclear power plants. But multiple combustions induced by ignitors and consequent DDT phenomena are not practically eliminated. An innovative design call 'quenching meshes' is considered to confine hydrogen flame within one compartment by metallic meshes, so that hazardous flame propagation can be prevented. The numerical simulation results based on discretization of the full Navier-Stokes equations with global one-step reaction represented by Arrhenius laminar combustion model have shown the possibility of flame quenching 'numerically'. This is achieved via multiplication of the combustion rate expression by a Heaviside function having an ignition temperature as a parameter. Qualitative behavior of the computed flow shows that the flame velocity diminishes while passing through a quenching mesh, while qualitative analysis based on the energy balance reveals the mechanism of flame quenching. All the above analysis has been performed for a stoichiometric mixture and normal initial pressure and temperature for initial conditions. For further research we would like to suggest the investigation of the influence of the mixture composition, initial pressure and/or temperature on the quenching criteria

  12. Screening of exciplex formation by distant electron transfer.

    Science.gov (United States)

    Fedorenko, S G; Khokhlova, S S; Burshtein, A I

    2012-01-12

    The excitation quenching by reversible exciplex formation, combined with irreversible but distant electron transfer, is considered by means of the integral encounter theory (IET). Assuming that the quenchers are in great excess, the set of IET equations for the excitations, free ions, and exciplexes is derived. Solving these equations gives the Laplace images of all these populations, and these are used to specify the quantum yields of the corresponding reaction products. It appears that diffusion facilitates the exciplex production and the electron transfer. On the other hand the stronger the electron transfer is, the weaker is the exciplex production. At slow diffusion the distant quenching of excitations by ionization prevents their reaching the contact where they can turn into exciplexes. This is a screening effect that is most pronounced when the ionization rate is large.

  13. Doubler system quench detection threshold

    International Nuclear Information System (INIS)

    Kuepke, K.; Kuchnir, M.; Martin, P.

    1983-01-01

    The experimental study leading to the determination of the sensitivity needed for protecting the Fermilab Doubler from damage during quenches is presented. The quench voltage thresholds involved were obtained from measurements made on Doubler cable of resistance x temperature and voltage x time during quenches under several currents and from data collected during operation of the Doubler Quench Protection System as implemented in the B-12 string of 20 magnets. At 4kA, a quench voltage threshold in excess of 5.OV will limit the peak Doubler cable temperature to 452K for quenches originating in the magnet coils whereas a threshold of 0.5V is required for quenches originating outside of coils

  14. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1993-05-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures -- detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot -- protection. The temperature rise is diluted by firing heaters along the length of the magnet to insure that the dissipated energy is spread. To develop a reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, we followed an iterative top-down approach. First we defined the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then we further optimize the system through iterative upgrading based on our signal and noise character findings

  15. Evaluation of the ionization quenching correction for several liquid scintillators

    International Nuclear Information System (INIS)

    Los Arcos, J.M.; Borras, C.

    1990-01-01

    The most appropiate computational model for the ionization quench-ing function Q(E) is analyzed for electrons in liquid scintillators. A numerical evaluation of Q(E) from 0.1 keV to 3 MeV which the kB parameter varying between 0.005 and 0.010 cm/MeV is presented for seven scintillators; Toluene, Toluene-Alcohol, PCS, Toluene-CC14, INSTAGEL, Dioxane-Naphtalene and HISAFE II. The numerical result are summarized as tables of least squares fitting coefficient which make easy the computation of Q(E).(Author)

  16. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting

    International Nuclear Information System (INIS)

    Cassette, Philippe

    2016-01-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ"2 minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. - Highlights: • The program “QUENCH” is devoted to the interpolation of quenching curves in LSC. • Functions are fitted to experimental data with uncertainties in both quenching and efficiency. • The parameters of the fitting function and the associated covariance matrix are evaluated. • The detection efficiency and uncertainty corresponding to a given quenching index is calculated.

  17. New N2(C 3Πu, v) collision quenching and vibrational relaxation rate constants: 2. PG emission diagnostics of high-pressure discharges

    International Nuclear Information System (INIS)

    Dilecce, G; Ambrico, P F; De Benedictis, S

    2007-01-01

    The present paper deals with the determination of discharge parameters using N 2 (C 3 Π u , v) populations deduced from 2.PG emission spectra, focusing on the influence of N 2 (C 3 Π u , v) collision rate coefficients on these determinations. In particular it is shown that the new set of quenching and vibrational relaxation rate coefficients of N 2 (C 3 Π u , v 0-4) vibronic levels recently measured by optical-optical double resonance laser induced fluorescence (LIF) have a large effect on discharge parameter determination in high-pressure discharges. In the present paper we explore this effect, evidencing the differences with respect to the old data set case, in both simulated and real cases of N 2 (C 3 Π u , v) vibrational distributions measured at high pressure in a dielectric barrier discharge. Finally we point out the improved potentiality of 2.PG spectroscopy as a diagnostic technique: with the new rate coefficients, and measurement of the N 2 (C 3 Π u , v) distribution up to at least v = 3, it is possible to have a quasi-independent evaluation of the electron temperature and of the first level vibrational temperature of the N 2 ground state

  18. effects of various effects of various quenching media on quenching

    African Journals Online (AJOL)

    eobe

    ABSTRACT. Evaluation of palm kernel oil, cotton seed oil and olive oil as quenching media of 0.509Wt%C medium carbon steel ... Quenching is an essential element in developing the .... machine, heat treatment furnace, Avery Denison Izod.

  19. Smooth and fast versus instantaneous quenches in quantum field theory

    Science.gov (United States)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-08-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.

  20. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses

    Science.gov (United States)

    Lerner, Edan; Bouchbinder, Eran

    2017-08-01

    Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .

  1. Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Menard, J.E.

    2008-01-01

    A detailed analysis of the plasma current quench in the National Spherical Torus Experiment (M.Ono, et al Nuclear Fusion 40, 557 (2000)) is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change

  2. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus.

    Science.gov (United States)

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-04-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.

  3. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    International Nuclear Information System (INIS)

    Chen, Zhi; Chen, Jiayi; Liang, Qiaowen; Wu, Dudu; Zeng, Yuaner; Jiang, Bin

    2014-01-01

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10 −7 mol L −1 . Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K q (1.02×10 13 L mol −1 s −1 ). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure

  4. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Chen, Jiayi; Liang, Qiaowen [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Wu, Dudu [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); Zeng, Yuaner, E-mail: zengyuaner@126.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Jiang, Bin, E-mail: gzjiangbin@hotmail.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China)

    2014-01-15

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10{sup −7} mol L{sup −1}. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K{sub q} (1.02×10{sup 13} L mol{sup −1} s{sup −1}). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure.

  5. The production and confinement of runaway electrons with impurity ''killer'' pellets in DIII-D

    International Nuclear Information System (INIS)

    Evans, T.E.; Taylor, P.L.; Whyte, D.G.

    1998-12-01

    Prompt runaway electron bursts, generated by rapidly cooling DIII-D plasmas with argon killer pellets, are used to test a recent knock-on avalanche theory describing the growth of multi-MeV runaway electron currents during disruptions in tokamaks. Runaway current amplitudes, observed during some but not all DIII-D current quenches, are consistent with growth rates predicted by the theory assuming a pre-current quench runaway electron density of approximately 10 15 m -3 . Argon killer pellet modeling yields runaway densities of between 10 15 --10 16 m -3 in these discharges. Although knock-on avalanching appears to agree rather well with the measurements, relatively small avalanche amplification factors combined with uncertainties in the spatial distribution of pellet mass and cooling rates make it difficult to unambiguously confirm the proposed theory with existing data

  6. Influence of the quenching rate and step-wise cooling temperatures on microstructural and tensile properties of PER72 ® Ni-based superalloy

    Directory of Open Access Journals (Sweden)

    Le Baillif Paul

    2014-01-01

    Full Text Available The PER72® grade is used as a wrought engine turbine disk, which is a critical high temperature component. During the heat treatment process, residual stresses are generated during the quench, which may lead to irreversible damages on the workpiece. The aim of this study is to better understand the mechanisms involved in the residual stress generation. Therefore, the influence of quenching conditions on the high temperature tensile properties and the multi-scale microstructure evolutions are investigated after cooling. PER72® specimens are annealed above the solvus temperature, directly on the servo-hydraulic testing machine. Three quenching rates are used: 30 ∘C/min, 120 ∘C/min, and 300 ∘C/min. For each condition, the cooling is interrupted at 1000 ∘C, 850 ∘C, 600 ∘C and 20 ∘C to perform isothermal tensile test. Specimens are post-mortem analysed. On one hand the fracture surface is investigated using SEM. On the other hand the microstructure evolution was observed and quantified at different scales using SEM directly on the bulk or after the chemical extraction of precipitation. The precipitation size and volume fraction statistics, X-Ray diffraction for the crystallography and composition of the different phases are investigated. It was shown that the testing temperature does not significantly influence the γ′ distribution of particles. Conversely, the γ′ precipitation is strongly influenced by the cooling rate. Notably, the average size, the distance between particles as well as the number density of γ′ precipitates are significantly modified by the cooling rate. Changes in tensile properties are related to microstructural.

  7. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1994-01-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures - Detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot - Protection. The temperature rise is diluted by firing heaters along the length of the magnet to ensure that the dissipated energy is spread. It is interesting that there is not a significant amount of published research on detection. To afford a more reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, the authors followed an iterative top-down approach. First they defend the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then they further optimize the system through iterative upgrading based on their signal and noise character findings

  8. Magnet Quench 101

    OpenAIRE

    Bottura, L.

    2014-01-01

    This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet. This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet.

  9. The influence of martensite, bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel – Experiments and model

    International Nuclear Information System (INIS)

    Bardelcik, Alexander; Worswick, Michael J.; Wells, Mary A.

    2014-01-01

    Highlights: • Gleeble tests were conducted to quench and simultaneously deform boron steel. • Different as-quenched vol. fractions of martensite, bainite and ferrite were observed. • Low to int. strain rate tensile tests were conducted on the as-quenched materials. • The presence of ferrite improved the uniform elongation, hardening rate and toughness. • A rate sensitive const. model was developed for varying vol fract. mart/bain/ferrite. - Abstract: This paper examines the relationship between as-formed microstructure and mechanical properties of a hot stamped boron steel used in automotive structural applications. Boron steel sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 °C/s within a Gleeble thermal–mechanical simulator. For each cooling rate condition, the blanks were simultaneously deformed at temperatures of 600 °C and 800 °C. A strain of approximately 0.20 was imposed in the middle of the blanks, from which miniature tensile specimens were extracted. Depending on the cooling rate and deformation temperature imposed on the specimens, some of the as-quenched microstructures consisted of predominantly martensite and bainite, while others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic techniques were used to quantify the area fractions of the phases present and quasi-static (0.003 s −1 ) uniaxial tests were conducted on the miniature tensile specimens. The results revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation and an increase in n-value without affecting the strength of the material for equivalent hardness levels. This finding resulted in improved energy absorption due to the presence of ferrite and showed that a material with a predominantly bainitic microstructure containing 16% ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a material condition that was fully bainitic with

  10. Rate control for electron gun evaporation

    International Nuclear Information System (INIS)

    Schellingerhout, A.J.G.; Janocko, M.A.; Klapwijk, T.M.; Mooij, J.E.

    1989-01-01

    Principles for obtaining high-quality rate control for electron gun evaporation are discussed. The design criteria for rate controllers are derived from this analysis. Results are presented which have been obtained with e-guns whose evaporation rate is controlled by a Wehnelt electrode or by sweeping of the electron beam. Further improvements of rate stability can be obtained by improved design of e-guns and power supplies

  11. Quenching experiments on niobium

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    High-purity niobium wire specimens have been quenched in superfluid helium from near the melting point in order to obtain information on vacancies in this material. The quenched-in resistivity Δsub(pQ) for a quench from 2600 K was very small (approximately 0.3 x 10 -12 Ω m) and near the limit of detection. It is assumed that large quenching losses are responsible for the small quenched-in resistance. From the experimental cooling curve estimates have been made for the formation and migration enthalpies (Hsub(1V)sup(F), Hsub(1V)sup(M)), where Hsub(1V)sup(M)+Hsub(1V)sup(F)=Qsub(1V)sup(SD)=3.62 ev. For Ssub(1V)sup(F), the formation entropy, two different values were assumed. (author)

  12. Smooth and fast versus instantaneous quenches in quantum field theory

    International Nuclear Information System (INIS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-01-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δt, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies http://dx.doi.org/10.1103/PhysRevLett.112.171601 and http://dx.doi.org/10.1007/JHEP02(2015)167 highlighted that the two protocols remain distinct in the limit δt→0 because of the relation of the quench rate to the UV cut-off, i.e., 1/δt≪Λ always holds in the fast smooth quenches while 1/δt∼Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δt, the correlator scales universally with δt, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δt drops out. The excess energy density is finite (for finite mδt) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδt→0 for d≥4, just as in an instantaneous quench, where it is UV divergent for d≥4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ>d/2.

  13. Simulation of quenches in SSC magnets with passive quench protection

    International Nuclear Information System (INIS)

    Koepke, K.

    1985-06-01

    The relative ease of protecting an SSC magnet following a quench and the implications of quench protection on magnet reliability and operation are necessary inputs in a rational magnet selection process. As it appears likely that the magnet selection will be made prior to full scale prototype testing, an alternative means is required to ascertain the surviveability of contending magnet types. This paper attempts to provide a basis for magnet selection by calculating the peak expected quench temperatures in the 3 T Design C magnet and the 6 T Design D magnet as a function of magnet length. A passive, ''cold diode'' protection system has been assumed. The relative merits of passive versus active protection systems have been discussed in a previous report. It is therefore assumed that - given the experience gained from the Tevatron system - that an active quench protection system can be employed to protect the magnets in the eventuality of unreliable cold diode function

  14. LHC magnet quench protection system

    Science.gov (United States)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  15. LHC magnet quench protection system

    International Nuclear Information System (INIS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-01-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called ''cold diode'' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements--so called ''cold diodes''. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a ''natural'' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages

  16. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    Science.gov (United States)

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Understanding CO2 decomposition by thermal plasma with supersonic expansion quench

    Science.gov (United States)

    Tao, YANG; Jun, SHEN; Tangchun, RAN; Jiao, LI; Pan, CHEN; Yongxiang, YIN

    2018-04-01

    CO2 pyrolysis by thermal plasma was investigated, and a high conversion rate of 33% and energy efficiency of 17% were obtained. The high performance benefited from a novel quenching method, which synergizes the converging nozzle and cooling tube. To understand the synergy effect, a computational fluid dynamics simulation was carried out. A quick quenching rate of 107 K s‑1 could be expected when the pyrolysis gas temperature decreased from more than 3000 to 1000 K. According to the simulation results, the quenching mechanism was discussed as follows: first, the compressible fluid was adiabatically expanded in the converging nozzle and accelerated to sonic speed, and parts of the heat energy converted to convective kinetic energy; second, the sonic fluid jet into the cooling tube formed a strong eddy, which greatly enhanced the heat transfer between the inverse-flowing fluid and cooling tube. These two mechanisms ensure a quick quenching to prevent the reverse reaction of CO2 pyrolysis gas when it flows out from the thermal plasma reactor.

  18. Fluorescence quenching of derivatives of anthracene by organic electron donors and acceptors in acetonitrile. Electron and proton transfer mechanism

    Science.gov (United States)

    Mac, Marek; Najbar, Jan; Wirz, Jakob

    1995-03-01

    Fluorescence quenching of anthracene derivatives by organic electron donors (amines) and acceptors was investigated using stationary fluorescence measurements. The dependence of log( kq) on Δ Get shows Rehm-Weller-type behavior. The formation of anion radicals of anthracene, bianthryl, and 9-cyanoanthracene was detected by flash photolysis in systems containing aromatic amines (aniline, 2-bromoaniline, 4-bromoaniline, N,N-dimethylaniline, 4-bromo-N,N-dimethylaniline, N,N-diethylaniline, and 1,4-diazabicyclo[2.2.2]octane). The radical yields decreased and triplet yields increased when bromo derivatives of amines were used as donor quenchers, indicating the heavy-atom effect on spin conversion within radical pairs. The importance of the heavy-atom effect decreased when the energy gap between the charge transfer and molecular triplet states was small. The formation of separated radicals decreased when primary amines were used as quenchers which indicated the existence of an additional path of deactivation of the radical pair. The behavior of amines as quenchers of bianthryl and anthracene is compared with that of inorganic anion quenchers.

  19. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus *

    Science.gov (United States)

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-01-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage. PMID:24711354

  20. Free parameter, figure of merit and ionization quench in liquid scintillation counting

    International Nuclear Information System (INIS)

    Carles, P. Grau; Malonda, A. Grau

    2001-01-01

    A statistical study of the detection process demonstrates that the free parameter is essential to compute the counting efficiency in both CIEMAT/NIST and TDCR methods. An analysis of the computed counting efficiencies shows the uselessness of old definition of the figure of merit. A new definition is required and we adopt the idea of taking quantities related with the output of the photomultiplier. In addition, we justify the application of the chemical quenching simulation with the electronic variation of the photomultiplier gain. Finally, we describe a new procedure to determine the figure of merit and the optimum ionization-quenching factor from the pulse spectrum of different radionuclides. The robustness of the new procedure is tested with three different sets of stopping power for low-energy electrons

  1. The location of the quench origin in a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1987-01-01

    A method of calculating the initial rate of rise of the resistive voltage in a quenching superconducting magnet is described. Comparison of such calculations with data from spontaneously occurring quenches gives the location of the quench origin since the normal state resistance of the conductor is determined by its position in the windings due to the magnetoresistance of the copper matrix. The characteristics of the voltage buildup is used to separate quenches occurring in low field regions, such as the magnet ends, from those starting in the two-dimensional straight section of the coil. The magnitude of V dot is a measure of performance and can be used to determine if the magnet is reaching the maximum current permitted by the conductor parameters

  2. Architecture of a software quench management system

    International Nuclear Information System (INIS)

    Jerzy M. Nogiec et al.

    2001-01-01

    Testing superconducting accelerator magnets is inherently coupled with the proper handling of quenches; i.e., protecting the magnet and characterizing the quench process. Therefore, software implementations must include elements of both data acquisition and real-time controls. The architecture of the quench management software developed at Fermilab's Magnet Test Facility is described. This system consists of quench detection, quench protection, and quench characterization components that execute concurrently in a distributed system. Collaboration between the elements of quench detection, quench characterization and current control are discussed, together with a schema of distributed saving of various quench-related data. Solutions to synchronization and reliability in such a distributed quench system are also presented

  3. Reduction of thermal quenching of biotite mineral due to annealing

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2014-01-01

    Graphical abstract: - Highlights: • Thermoluminescence of X-ray irradiate biotite was studied at various heating rates. • Thermal quenching was found to decrease with increase in annealing temperature. • Due to annealing one trap level was vanished and a new shallow trap level generated. • The new trap level contributes low thermally quenched thermoluminescence signal. - Abstract: Thermoluminescence (TL) of X-ray irradiated natural biotite annealed at 473, 573, 673 and 773 K were studied within 290–480 K at various linear heating rates (2, 4, 6, 8 and 10 K/s). A Computerized Glow Curve Deconvolution technique was used to study various TL parameters. Thermal quenching was found to be very high for un-annealed sample, however it decreased significantly with increase in annealing temperature. For un-annealed sample thermal quenching activation energy (W) and pre-exponential frequency factor (C) were found to be W = (2.71 ± 0.05) eV and C = (2.38 ± 0.05) × 10 12 s −1 respectively. However for 773 K annealed sample, these parameters were found to be W = (0.63 ± 0.03) eV, C = (1.75 ± 0.27) × 10 14 s −1 . Due to annealing, the initially present trap level at depth 1.04 eV was vanished and a new shallow trap state was generated at depth of 0.78 eV which contributes very low thermally quenched TL signal

  4. Negative thermal quenching of the defects in GaInP top cell with temperature-dependent photoluminescence analysis

    Science.gov (United States)

    Junling, Wang; Rui, Wu; Tiancheng, Yi; Yong, Zheng; Rong, Wang

    2018-01-01

    Temperature-dependent photoluminescence (PL) measurements were carried out to investigate the irradiation effects of 1.0 MeV electrons on the n+- p GaInP top cell of GaInP/GaAs/Ge triple-junction solar cells in the 10-300 K temperature range. The PL intensities plotted against inverse temperature in an Arrhenius plot shows a thermal quenching behavior from 10 K to 140 K and an unusual negative thermal quenching (NTQ) behavior from 150 K to 300 K. The appearance of the PL thermal quenching with increasing temperature confirms that there is a nonradiative recombination center, i.e., the H2 hole trap located at Ev + 0.55 eV, in the cell after electron irradiation. The PL negative thermal quenching behavior may tentatively be attributed to the intermediate states at an energy level of 0.05 eV within the band gap in GaInP top cell.

  5. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    Science.gov (United States)

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  6. The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division

    International Nuclear Information System (INIS)

    Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

    2009-01-01

    This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

  7. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  8. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning-tempering process

    International Nuclear Information System (INIS)

    Wang, X.D.; Xu, W.Z.; Guo, Z.H.; Wang, L.; Rong, Y.H.

    2010-01-01

    Based on the observations of scanning electron microscopy and transmission electron microscopy, four kinds of carbides were identified in a Nb-microalloyed steel after quenching-partitioning-tempering treatment. In addition to transitional epsilon carbide that usually forms in silicon-free carbon steel, other three types of niobium carbides (NbC) formed at various treatment stages respectively. They are incoherent NbC inclusion that nucleated at solidification mainly, fine NbC that nucleated in lath martensite at tempering stage and regular polygonal NbC that nucleated in austenite before quenching. Their formation mechanisms on steel were discussed briefly based on thermodynamics.

  9. Defect production in nonlinear quench across a quantum critical point.

    Science.gov (United States)

    Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi

    2008-07-04

    We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.

  10. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  11. Reconstruction of thermally quenched glow curves in quartz

    International Nuclear Information System (INIS)

    Subedi, Bhagawan; Polymeris, George S.; Tsirliganis, Nestor C.; Pagonis, Vasilis; Kitis, George

    2012-01-01

    The experimentally measured thermoluminescence (TL) glow curves of quartz samples are influenced by the presence of the thermal quenching effect, which involves a variation of the luminescence efficiency as a function of temperature. The real shape of the thermally unquenched TL glow curves is completely unknown. In the present work an attempt is made to reconstruct these unquenched glow curves from the quenched experimental data, and for two different types of quartz samples. The reconstruction is based on the values of the thermal quenching parameter W (activation energy) and C (a dimensionless constant), which are known from recent experimental work on these two samples. A computerized glow-curve deconvolution (CGCD) analysis was performed twice for both the reconstructed and the experimental TL glow curves. Special attention was paid to check for consistency between the results of these two independent CGCD analyses. The investigation showed that the reconstruction attempt was successful, and it is concluded that the analysis of reconstructed TL glow curves can provide improved values of the kinetic parameters E, s for the glow peaks of quartz. This also leads to a better evaluation of the half-lives of electron trapping levels used for dosimetry and luminescence dating.

  12. Quench propagation and quench detection in the TF system of JT-60SA

    International Nuclear Information System (INIS)

    Lacroix, Benoit; Duchateau, Jean-Luc; Meuris, Chantal; Ciazynski, Daniel; Nicollet, Sylvie; Zani, Louis; Polli, Gian-Mario

    2013-01-01

    Highlights: • The JT-60SA primary quench detection system will be based on voltage measurements. • The early quench propagation was studied in the JT-60SA TF conductor. • The impact of the conductor jacket on the hot spot criterion was quantified. • The detection parameters were investigated for different quench initiations. -- Abstract: In the framework of the JT-60SA project, France and Italy will provide to JAEA 18 Toroidal Field (TF) coils including NbTi cable-in-conduit conductors. During the tokamak operation, these coils could experience a quench, an incidental event corresponding to the irreversible transition from superconducting state to normal resistive state. Starting from a localized disturbance, the normal zone propagates along the conductor and dissipates a large energy due to Joule heating, which can cause irreversible damages. The detection has to be fast enough (a few seconds) to trigger the current discharge, so as to dump the stored magnetic energy into an external resistor. The JT-60SA primary quench detection system will be based on voltage measurements, which are the most rapid technology. The features of the detection system must be adjusted so as to detect the most probable quenches, while avoiding inopportune fast safety discharges. This requires a reliable simulation of the early quench propagation, performed in this study with the Gandalf code. The conductor temperature reached during the current discharge must be kept under a maximal value, according to the hot spot criterion. In the present study, a hot spot criterion temperature of 150 K was taken into account and the role of each conductor component (strands, helium and conduit) was analyzed. The detection parameters were then investigated for different hypotheses regarding the quench initiation

  13. Time-scales for quenching single-bubble sonoluminescence in the presence of alcohols

    Science.gov (United States)

    Guan, Jingfeng; Matula, Thomas

    2002-11-01

    A small amount of alcohol added to water dramatically decreases the light intensity from single-bubble sonoluminescence [Weninger et al., J. Phys. Chem. 99, 14195-14197 (1995)]. From an excess accumulation at the bubble surface [Ashokkumar et al., J. Phys. Chem. 104, 8462-8465 (2000)], the molecules evaporate into the bubble interior, reducing the effective adiabatic exponent of the gas, and decreasing the bubble temperature and light output [Toegel et al., Phys. Rev. Lett. 84, 2509-2512 (2000)]. There is a debate as to the rate at which alcohol is injected into the bubble interior. One camp favors the notion that molecules must be repetitively injected over many acoustic cycles. Another camp favors the notion that most quenching occurs during a single collapse. An experiment has been conducted in order to resolve the debate. Quenching rates were measured by recording the instantaneous bubble response and corresponding light emission during a sudden increase in pressure. It was found that complete quenching in the presence of methanol requires over 8000 acoustic cycles, while quenching with butanol occurs in about 20 acoustic cycles. These observations are consistent with the view that quenching requires the repetitive injection of alcohol molecules over repetitive acoustic cycles.

  14. Chemical Quenching of Positronium in CuO/Al2O3 Catalysts

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Liu Zhe-Wen; Chen Zhi-Quan; Wang Shao-Jie

    2011-01-01

    CuO/Al 2 O 3 catalysts were prepared by mixing CuO and γ-Al 2 O 3 nanopowders. Microstructure and chemical environment of the catalysts are characterized by positron annihilation spectroscopy. The positron annihilation lifetime measurements reveal two long lifetime components τ 3 and τ 4 , which correspond to ortho-positronium (o-Ps) annihilating in microvoids and large pores, respectively. With increasing CuO content from 0 to 40 wt%, both τ 4 and its intensity I 4 show significant decrease, which indicates quenching effect of o-Ps. The para-positronium (p-Ps) intensities derived from multi-Gaussian fitting of the coincidence Doppler broadening spectra also decreases gradually with increasing CuO content. This excludes the possibility of spin-conversion of positronium. Therefore, the chemical quenching by CuO is probably responsible for the decrease of o-Ps lifetime. Variation in the o-Ps annihilation rate λ 4 (1/τ 4 ) as a function of CuO content can be well fitted by a straight line, and the slope of the fitting line is (1.83 ± 0.05) × 10 −7 s −1 . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Quenching of overcompensated Kondo impurities via channel asymmetry

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1996-01-01

    We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the symmetry between the orbital channels. This corresponds to a splitting of the conduction electron Γ 8 into two doublets in the quadrupolar Kondo effect and to the application of an external magnetic field in the electron assisted tunneling of an atom in a double-well potential. We study the ground-state properties of the impurity as a function of the magnetic and crystalline fields. The crystalline field quenches the critical behavior of the overcompensated fixed point: The impurity ground state is a singlet. (orig.)

  16. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  17. Study of effect of composition, irradiation and quenching on ionic ...

    Indian Academy of Sciences (India)

    The electrolyte samples are also quenched at liquid nitrogen temperature and conductivity measurements are carried out. The ionic conductivity at room temperature exhibits a characteristic peak for the composition, = 46. Electron beam irradiation results in an increase in conductivity for all compositions by a factor of 2–3.

  18. Quench detection and behaviour in case of quench in the ITER magnet systems

    International Nuclear Information System (INIS)

    Coatanea-Gouachet, M.

    2012-02-01

    The quench of one of the ITER magnet system is an irreversible transition from superconducting to normal resistive state, of a conductor. This normal zone propagates along the cable in conduit conductor dissipating a large power. The detection has to be fast enough to dump out the magnetic energy and avoid irreversible damage of the systems. The primary quench detection in ITER is based on voltage detection, which is the most rapid detection. The very magnetically disturbed environment during the plasma scenario makes the voltage detection particularly difficult, inducing large inductive components in the coils and voltage compensations have to be designed to discriminate the resistive voltage associated with the quench. A conceptual design of the quench detection based on voltage measurements is proposed for the three majors magnet systems of ITER. For this, a clear methodology was developed. It includes the classical hot spot criterion, the quench propagation study using the commercial code Gandalf and the careful estimation of the inductive disturbances by developing the TrapsAV code. Specific solutions have been proposed for the compensation in the three ITER magnet systems and for the quench detection parameters, which are the voltage threshold (in the range of 0.1 V - 0.55 V) and the holding time (in the range of 1-1.4 s). The selected values, in particular the holding time, are sufficiently high to ensure the reliability of the system and avoid fast safety discharges not induced by a quench, which is a classical problem. (author)

  19. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  20. Quantum quenches in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  1. Effect on thermoluminescence parameters of biotite mineral due to thermal quenching

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2012-01-01

    The Thermally Stimulated Luminescence (TSL) at room temperature X-ray irradiated natural biotite in form of micro-grain powder was studied under various heating rates. TSL peaks showed at temperatures 393 K, 399.6 K, 403.5 K, 404.5 K, 406.9 K at their respective heating rates 2 K/s, 4 K/s, 6 K/s, 8 K/s and 10 K/s. The effect of thermal quenching on thermoluminescence parameters such as peak maximum temperature, peak area, FWHM, geometrical symmetry factor, the activation energy were investigated. From the symmetry factor it is clear that the TL glow curve follows the first order kinetics for the lowest heating rate, but as the heating rate increases it defers from the first order. The activation energies for each heating rates were calculated by using Chen peak shape methods for general order kinetics and found to be decreased for higher heating rates. When activation energy is calculated by variable heating rate method it is observed that the method overestimated the value of activation energy and pre-exponential frequency factor significantly due to thermal quenching. - Highlights: ► Biotite is a common mineral with chemical formula K(Mg,Fe) 3 AlSi 3 O 10 (F,OH) 2 . ► Structural, compositional and elemental analysis of biotite is carried out. ► TSL of X-ray irradiated natural biotite was studied under various heating rates. ► The effect of thermal quenching on TL parameters has been investigated.

  2. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  3. Thermal quenching of thermoluminescence in quartz samples of various origin

    International Nuclear Information System (INIS)

    Subedi, B.; Oniya, E.; Polymeris, G.S.; Afouxenidis, D.; Tsirliganis, N.C.; Kitis, G.

    2011-01-01

    The effect of thermal quenching stands among the most important properties in the thermoluminescence (TL) of quartz on which many applications of TL are based. Since the quartz samples used in various applications are all of different origin it is useful to investigate whether the values of the thermal quenching parameters, i.e. the activation energy for thermal quenching W and a parameter C which describes the ratio of non-radiative to radiative luminescence transitions, evaluated mainly in specific quartz samples can be extrapolated to quartz samples of unknown origin as well as to quartz samples which are annealed at high temperatures. In the present work the TL glow curve of a series of un-annealed and annealed natural and synthetic quartz samples were studied as a function of the heating rate between 0.25 K/s and 16 K/s. Using an indirect fitting method it was found that the thermal quenching parameters W and C in most of the quartz samples are very similar to the values accepted in the literature. Furthermore, in some cases the thermal quenching parameters W and C are not the same for all TL glow-peaks in the same glow-curve. Finally, the strong external treatment of annealing the quartz samples at very high temperature can also influence at least one of the thermal quenching parameters.

  4. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates

    International Nuclear Information System (INIS)

    Tisa, Simone; Guerrieri, Fabrizio; Zappa, Franco

    2009-01-01

    We present a single-chip monolithic array of 32 Single-Photon Avalanche Diodes (SPAD) and associated electronics for imaging at high frame rates and high sensitivity. Photodetectors, front-end circuitry and control electronics used to manage the array are monolithically integrated on the same chip in a standard 0.35 μm CMOS high-voltage technology. The array is composed of 32 'smart' pixels working in photon counting mode and functioning in a parallel fashion. Every cell comprises of an integrated SPAD photodetector, a novel quenching circuit named as Variable Load Quenching Circuit (VLQC), counting electronics and a buffer memory. Proper ancillary electronics that perform the arbitration of photon counts between two consecutive frames is integrated as well. Thanks to the presence of in-pixel memory registers, the inter-frame dead time between subsequent frames is limited to few nanoseconds. Since integration and download are performed simultaneously and the array can be addressed like a standard digital memory, the achievable maximum frame rate is very high in the order of hundreds of thousands of frame/s.

  5. Co2(nu2)-o Quenching Rate Coefficient Derived from Coincidental SABER-TIMED and Fort Collins Lidar Observations of the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2012-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.

  6. Ultra-fast electron capture by electrosterically-stabilized gold nanoparticles.

    Science.gov (United States)

    Ghandi, Khashayar; Findlater, Alexander D; Mahimwalla, Zahid; MacNeil, Connor S; Awoonor-Williams, Ernest; Zahariev, Federico; Gordon, Mark S

    2015-07-21

    Ultra-fast pre-solvated electron capture has been observed for aqueous solutions of room-temperature ionic liquid (RTIL) surface-stabilized gold nanoparticles (AuNPs; ∼9 nm). The extraordinarily large inverse temperature dependent rate constants (k(e)∼ 5 × 10(14) M(-1) s(-1)) measured for the capture of electrons in solution suggest electron capture by the AuNP surface that is on the timescale of, and therefore in competition with, electron solvation and electron-cation recombination reactions. The observed electron transfer rates challenge the conventional notion that radiation induced biological damage would be enhanced in the presence of AuNPs. On the contrary, AuNPs stabilized by non-covalently bonded ligands demonstrate the potential to quench radiation-induced electrons, indicating potential applications in fields ranging from radiation therapy to heterogeneous catalysis.

  7. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  8. Quench characteristics of a two-strand superconducting cable and the influence of its length

    NARCIS (Netherlands)

    Mulder, G.B.J.; Mulder, G.B.J.; Krooshoop, Hendrikus J.G.; Vysotski, V.S.; Vysotski, V.S.; van de Klundert, L.J.M.; van de Klundert, L.J.M.

    1992-01-01

    The quench process of a multi-strand cable was investigated using the simplest system: two twisted wires. Several properties of the quench, such as the commutation of currents, the time scale, the resistance rate, and the maximum voltage, were determined experimentally or by calculation. Particular

  9. SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella [Institute for Astronomy, Department of Physics, ETH Zurich, 8093 Zurich (Switzerland)

    2016-12-10

    There are very strong observed correlations between the specific star formation rates (sSFRs) of galaxies and their mean surface mass densities, Σ, as well as other aspects of their internal structure. These strong correlations have often been taken to argue that the internal structure of a galaxy must play a major physical role, directly or indirectly, in the control of star formation. In this paper we show by means of a very simple toy model that these correlations can arise naturally without any such physical role once the observed evolution of the size–mass relation for star-forming galaxies is taken into account. In particular, the model reproduces the sharp threshold in Σ between galaxies that are star-forming and those that are quenched and the evolution of this threshold with redshift. Similarly, it produces iso-quenched-fraction contours in the f {sub Q}( m , R {sub e}) plane that are almost exactly parallel to lines of constant Σ for centrals and shallower for satellites. It does so without any dependence on quenching on size or Σ and without invoking any differences between centrals and satellites, beyond the different mass dependences of their quenching laws. The toy model also reproduces several other observations, including the sSFR gradients within galaxies and the appearance of inside-out build-up of passive galaxies. Finally, it is shown that curvature in the main-sequence sSFR–mass relation can produce curvature in the apparent B / T ratios with mass. Our analysis therefore suggests that many of the strong correlations that are observed between galaxy structure and sSFR may well be a consequence of things unrelated to quenching and should not be taken as evidence of the physical processes that drive quenching.

  10. Influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Tianbing, E-mail: tianbing_1988@sina.com [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China); Li, Huiqu; Tang, Pengjun; He, Xiaolei; Li, Peiyong [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China)

    2016-08-15

    15% vol. SiC{sub p}/2009 composites prepared by powder metallurgy were quenched in room temperature water and 20% polyethylene glycol (PEG) solution respectively, then aged naturally. The influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites were investigated by means of scanning/transmission electron microscope, hardness and tensile test. The results showed that the number of precipitated phase in water quenched composites increased, with much finer in size and more homogeneous in distribution compared with 20% PEG quenched one. Meanwhile, the density of dislocation in composites by water quenching was also much higher. Intergranular corrosion did not occur with the two quenching agents. The 20% PEG quenched composites exhibited slight lower hardness and higher electrical conductivity than that of water quenched one. The two quenched composites showed same level in tensile strength, but the yield strength of water-quenched composites was higher (8 MPa, 3%). The usage of 20% PEG reduced thermal stress and minimized warping deformation of the parts, it is a more suitable quenching agent for SiC{sub p}/2009 composites in engineering application fields. - Highlights: •SiC{sub p}/2009 composites quenched by water and 20% PEG solution were investigated. •Aging precipitation behavior of SiC{sub p}/2009 composites is sensitive to quenchant. •Influence of quenching agent on properties of SiC{sub p}/2009 composites are minimal. •Quenching with 20% PEG reduces thermal stress of SiC{sub p}/2009 composites remarkably. •20% PEG is a more suitable quenching agent for SiC{sub p}/2009 composites than water.

  11. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    Karasik, A.S.

    1982-01-01

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V [ru

  12. In-pile behavior of controlled beta-quenched fuel channels

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Andreas; Pflaum, Wolfgang; Cremer, Ingo [AREVA NP GmbH, Erlangen (Germany); Zbib, Ali A. [AREVA NP Inc., Richland, WA (United States)

    2011-07-01

    Dimensional stability during in-reactor service is the major requirement that is put on fuel channels to provide good moderation and power distribution, and to guarantee unrestricted movement of the control blades during operation. High corrosion resistance and low hydrogen pick-up are required as well. The latter are usually not considered to be life limiting, but may contribute to channel deformation since increased oxide layers due to shadow corrosion on the control blade sides of a channel result in differential oxide thickness and differential volume expansion due to hydride formation. This would be in addition to the well known effects of irradiation induced channel deformation, especially channel growth and bow. In order to meet the trend toward increased fuel assembly discharge burnup levels and the industry wide need for improved dimensional stability of fuel channels, AREVA NP has developed the Controlled Beta-Quenching of fuel channels. The process combines the positive effect of randomization of the crystallographic texture by beta-quenching with the optimization of the microstructure for good corrosion resistance by providing intermetallic phase particles in the optimum size range. The Controlled Beta-Quenching is a continuous heat treatment operation. Its key features are the two-step induction heating to uniformly reach the target temperature, the tight control of the quench rate by cooling the fuel channel from the outer surface using a controlled argon mass flow for quenching, and the protection of the inner surface from oxidation by providing an argon atmosphere. Due to the utilization of argon, the surfaces of the channels remain metal bright after beta-quenching. All in all, the Controlled Beta-Quenching provides an overall 'clean' and environment friendly operation without the need of additional surface conditioning. The first set of beta-quenched fuel channels, exhibiting these optimized material properties, were inserted in the core

  13. Charge separation in photoinitiated electron transfer reactions induced by a polyelectrolyte

    International Nuclear Information System (INIS)

    Meyerstein, D.; Rabani, J.; Matheson, M.S.; Meisel, D.

    1978-01-01

    When uncharged molecules quench the luminescence of Ru(bpy) 3 /sup 2+*/ by electron transfer to the quencher, the addition of poly(vinyl sulfate) (PVS) may, through its potential field, affect the rate of quenching, enhance the net separated charge yield, and slow the back reaction of the separated photoredox products. In all such cases that we have studied the quenching rate in the presence of PVS was reduced to about 60% of the rate measured in the absence of PVS. For two neutral species, iron(III) nitrilotriacetate (FeNTA) and cobalt(III) acetylacetonate (Co(acac) 3 ), photoreduction of the quencher was observed, and the redox yield escaping geminate recombination was substantially increased by added PVS. In the case of FeNTA the rate of the bulk back reaction was not changed appreciably by the presence of PVS owing to the rapid neutralization of Fe(NTA) - by protonation. For Co(acac) 3 the rate of the bulk back reaction was decreased by several orders of magnitude and the back reaction was shown to occur via the enolate form of the ligand which is released to the bulk solution. 4 figures, 4 tables

  14. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones.

    Science.gov (United States)

    Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi

    2017-10-26

    Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.

  15. Effect of direct quenching on the microstructure and mechanical properties of the lean-chemistry HSLA-100 steel plates

    International Nuclear Information System (INIS)

    Dhua, S.K.; Sen, S.K.

    2011-01-01

    Highlights: → Direct-quenched and tempered (DQT) steels gives better mechanical properties. → Fine Cu and Nb (C, N) precipitates enhance matrix strengthening and tempering resistance. → Boron promotes hardenability, but low temperature Charpy impact toughness gets affected. → Mechanical properties equivalent to HSLA-100 steel is achieved by directly quenched leaner chemistry alloys. - Abstract: The influence of direct quenching on structure-property behavior of lean chemistry HSLA-100 steels was studied. Two laboratory heats, one containing Cu and Nb (C:0.052, Mn:0.99, Cu:1.08, Nb:0.043, Cr:0.57, Ni:1.76, Mo:0.55 pct) and the other containing Cu, Nb and B (C:0.04, Mn:1.02, Cu:1.06, Nb:0.036, Cr:0.87, Ni:1.32, Mo:0.41, B:0.002 percent) were hot-rolled into 25 and 12.5 mm thick plates by varying finish-rolling temperatures. The plates were heat-treated by conventional reheat quenching and tempering (RQT), as well as by direct quenching and tempering (DQT) techniques. In general, direct-quench and tempered plates of Nb-Cu heat exhibited good strength (yield strength ∼ 900 MPa) and low-temperature impact toughness (average: 74 J at -85 deg. C); the Charpy V-notch impact energies were marginally lower than conventional HSLA-100 steel. In Nb-Cu-B heat, impact toughness at low-temperature was inferior owing to boron segregation at grain boundaries. Transmission electron microscopy (TEM) and scanning auger microprobe (SAM) analysis confirmed existence of borocarbides at grain boundaries in this steel. In general, for both the steels, the mechanical properties of the direct-quench and tempered plates were found to be superior to reheat quench and tempered plates. A detailed transmission electron microscopy study revealed presence of fine Cu and Nb (C, N) precipitates in these steels. It was also observed that smaller martensite inter-lath spacing, finer grains and precipitates in direct-quench and tempered plates compared to the reheat quench and tempered plates

  16. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy

    International Nuclear Information System (INIS)

    Liu, Shengdan; Li, Chengbo; Han, Suqi; Deng, Yunlai; Zhang, Xinming

    2015-01-01

    Highlights: • The quench-induced hardness inhomogeneity in 7055 Al alloy decreases by natural aging. • The reason is discussed based on natural aging effect on microstructural inhomogeneity. • Natural aging decreases the difference of hardening precipitates due to slow quenching. • GPII zones appear in the rapidly-quenched sample after natural aging for 17,280 h. - Abstract: The effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy was investigated by means of end quenching technique, transmission electron microscopy and differential scanning calorimetry thermal analysis. The hardness inhomogeneity in the end-quenched specimens after artificial aging decreases with the increase of natural aging time prior to artificial aging. The quench-induced differences in the amount and size of η′ phase are large in the end-quenched specimen after artificial aging at 120 °C for 24 h, leading to high hardness inhomogeneity. Natural aging for a long time results in a larger amount of stable GPI zones in the slowly-quenched sample, and thus decreases such differences in the end-quenched specimens after subsequent artificial aging, leading to lower hardness inhomogeneity. The hardness inhomogeneity can be reduced from 14% to be 4% by natural aging for 17,280 h prior to artificial aging

  17. Intramolecular photoinduced electron-transfer in azobenzene-perylene diimide

    International Nuclear Information System (INIS)

    Feng Wen-Ke; Wang Shu-Feng; Gong Qi-Huang; Feng Yi-Yu; Feng Wei; Yi Wen-Hui

    2010-01-01

    This paper studies the intramolecular photoinduced electron-transfer (PET) of covalent bonded azobenzene-perylene diimide (AZO-PDI) in solvents by using steady-state and time-resolved fluorescence spectroscopy together with ultrafast transient absorption spectroscopic techniques. Fast fluorescence quenching is observed when AZO-PDI is excited at characteristic wavelengths of AZO and perylene moieties. Reductive electron-transfer with transfer rate faster than 10 11 s −1 is found. This PET process is also consolidated by femtosecond transient absorption spectra

  18. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Yuzhen Zhao

    2016-11-01

    Full Text Available Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  19. The Quench Action

    Science.gov (United States)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  20. Quantum quenches in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)

    2017-04-10

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.

  1. Quenching behaviour of hot zircaloy tube

    International Nuclear Information System (INIS)

    Chinchole, A.S.; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    The quenching process plays a very important role in case of safety of nuclear reactors. During large break Loss of Coolant Accident in a nuclear reactor, the cooling water from the system is lost. Under this condition, cold water is injected from emergency core cooling system. Quenching behaviour of such heated rod bundle is really complex. It is well known that nanofluids have better heat removal capability and high heat transfer coefficient owing to enhanced thermal properties. Alumina nano-particles result in better cooling abilities compared with the traditionally used quenching media. In this paper, the authors have carried out experiments on quenching behaviour of hot zircaloy tube with demineralized water and nanofluids. It was observed that, the tube got quenched within few seconds even with the presence of decay heat and shows slightly reduced quenching time compared with DM water. (author)

  2. Scintillation quenching in BGO crystal of the Solar Orbiter HET

    Energy Technology Data Exchange (ETDEWEB)

    Grunau, J.; Kulkarni, Shrinivasrao; Martin, C.; Boettcher, Stephan; Seimetz, L.; Schuster, B.; Kulemzin, A.; Wimmer-Schweingruber, Robert F. [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    The High-Energy Telescope (HET) on ESA's Solar Orbiter mission will measure electrons from 300 keV up to about 30 MeV, protons from 10 to 100 MeV and heavy ions from approximately 20 to 200 MeV/nuc. These measurement capabilities are reached by a combination of solid-state tracking detectors and a scintillator calorimeter. This setup can perform particle identification via the dE/dx vs total E technique. The scintillator approach provides a good resolution over the complete energy range but the total energy deposition has to be corrected for the scintillation quenching. The quenching lowers light output depending on the type and energy of the incident particle. We measured the crystal response for different heavy ions and energies and compared them to simulated values. Simulations were carried out using the GEANT4 toolkit provided by CERN. From comparison of simulated and measured data we were able to calculate quenching factors for the BGO crystals for ions up to iron. The results are of great interest for later data analysis with the HET telescope.

  3. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  4. Quench propagation tests on the LHC superconducting magnet string

    CERN Document Server

    Coull, L; Krainz, G; Rodríguez-Mateos, F; Schmidt, R

    1996-01-01

    The installation and testing of a series connection of superconducting magnets (three 10 m long dipoles and one 3 m long quadrupole) has been a necessary step in the verification of the viability of the Large Hadron Collider at CERN. In the LHC machine, if one of the lattice dipoles or quadrupoles quenches, the current will be by-passed through cold diodes and the whole magnet chain will be de-excited by opening dump switches. In such a scenario it is very important to know whether the quench propagates from the initially quenching magnet to adjacent ones. A series of experiments have been performed with the LHC Test String powered at different current levels and at different de-excitation rates in order to understand possible mechanisms for such a propagation, and the time delays involved. Results of the tests and implications regarding the LHC machine operation are described in this paper.

  5. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    International Nuclear Information System (INIS)

    Bagan, H.; Tarancon, A.; Rauret, G.; Garcia, J.F.

    2008-01-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14 C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach

  6. Rapid Quench in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  7. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  8. Concentration quenching in Nd-doped glasses

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Cook, L.; Mueller, H.; Weber, M.J.

    1984-01-01

    Fluorescence from trivalent Nd in solids is unfortunately quenched by interactions between Nd ions. Thus, laser materials with high Nd concentrations have reduced efficiencies because of this self-quenching, also known as concentration quenching. Nd self-quenching in different crystals and glasses varies considerably. We are therefore investigating this effect in a large number of materials in an effort to: (1) find those materials with long Nd fluorescent lifetimes at high Nd concentrations; and (2) elucidate the basic mechanisms of quenching and how the material structure controls its magnitude. We have concentrated on Nd-doped glasses because they provide a rich variety of structures, albeit complicated by Nd site inhomogeneities, and are easily and quickly made

  9. Quenching mechanism of exciplex fluorescence by inverted micelles

    International Nuclear Information System (INIS)

    Sato, Chika; Kikuchi, Koichi

    1992-01-01

    Using an emission-absorption laser photolysis method, the quenching mechanism of the pyrene-N,N-dimethylaniline exciplex fluorscence by inverted micelles is studied. The rate of enhanced intersystem crossing depends upon water pool size and is reduced by external magnetic fields. 15 refs., 3 figs., 2 tabs

  10. Advanced active quenching circuit for ultra-fast quantum cryptography.

    Science.gov (United States)

    Stipčević, Mario; Christensen, Bradley G; Kwiat, Paul G; Gauthier, Daniel J

    2017-09-04

    Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting". We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

  11. Correlation of heterojunction luminescence quenching and photocurrent in polymer-blend photovoltaic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rabade, Astrid; Morteani, Arne C.; Friend, Richard H. [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-10-19

    Charge generation in organic solar cells proceeds via photogeneration of excitons in the bulk that form geminate electron-hole pairs at the heterojunction formed between electron donor and acceptors. It is shown that an externally applied electric field increases the number of free charges formed from the geminate pair, and quenches the luminescence from the relaxed exciplex with one-to-one correspondence. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. On the quench sensitivity of 7010 aluminum alloy forgings in the overaged condition

    Energy Technology Data Exchange (ETDEWEB)

    Tiryakioğlu, Murat, E-mail: m.tiryakioglu@unf.edu [School of Engineering, University of North Florida, Jacksonville, FL 32224 (United States); Robinson, Jeremy S. [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Eason, Paul D. [School of Engineering, University of North Florida, Jacksonville, FL 32224 (United States)

    2014-11-17

    The quench sensitivity of an overaged 7010 alloy forging was characterized by tensile and Vickers hardness tests, as well as scanning electron microscopy. Longitudinal tensile specimens, excised from a rectilinear open die forging were cooled from the solution treatment temperature following thirty-two different cooling paths including interrupted and delayed quenches. SEM analysis of the microstructure showed that quench precipitates were (i) Al{sub 2}CuMg (S) which nucleated heterogeneously on grain boundaries and (ii) Mg(Zn,Cu,Al){sub 2} (η) on grain boundaries, dispersoid bands, subgrain boundaries as well as in the aluminum matrix. The quench sensitivity of the alloy's yield strength and Vickers hardness was modeled simultaneously by quadruple-C curves, using an improved methodology for Quench Factor Analysis. The four C-curves used in the model represented loss of solute by (i) precipitation of S on grain boundaries, and precipitation of η (ii) on grain boundaries and dispersoid bands, (iii) on subgrain boundaries and (iv) in the matrix. The model yielded coefficient of determination (R{sup 2}) values of 0.967 and 0.974 for yield strength and Vickers hardness, respectively. The model and the implications of the results are discussed in this paper.

  13. Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2016-04-01

    In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature tests, receiving calculation results with the evaluated range of uncertainties.

  14. Quenching and recovery experiments on molybdenum

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    Quenching experiments in superfluid helium have been performed on high-purity wire specimens obtained from a Mo single crystal with a residual resistance ratio of 40 000. Quenching from various temperatures near the melting point to 1.5 K resulted in quenched-in resistivities which are interpreted in terms of quenched-in vacancies. The following parameters were derived: Hsub(1V)sup(F) = 3.2 eV (formation enthalpy of monovacancies) and Ssub(1V)sup(F) = 1.5 k (formation entropy). The recovery of the quenched-in resistivity showed a recovery stage at 520 K, which is compatible with a migration enthalpy of Hsub(1V)sup(M) = 1.35 eV. The results are compared with recently published positron annihilation data. (author)

  15. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  16. Environmental Quenching of Low-Mass Field Galaxies

    Science.gov (United States)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  17. Quenching of I(2P1/2) by O3 and O(3P).

    Science.gov (United States)

    Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C

    2007-04-26

    Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.

  18. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  19. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    CERN Document Server

    AUTHOR|(CDS)2132435; Seifert, Thomas

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb$_{3}$Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrica...

  20. Defect creation rates in CdTe irradiated by electrons

    International Nuclear Information System (INIS)

    Caillot, M.

    1978-01-01

    Up to now, the defect creation rates in CdTe irradiated by electrons were unknown. They have been calculated for different electron kinetic energies. As the samples studied are thick, the energy loss when the electrons penetrate the material has been taken into account. The cross-sections of Cd and Te displacements vs the depth of electron penetration were determined for different electron kinetic energies, and the defect creation rates obtained for each sublattice. These creation rates have been compared with those deduced from experiments and it was found that the experimental creation rates were lower than the calculated ones. This discrepancy can be explained in terms of creation of neutral Frenkel pairs. (Auth.)

  1. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  2. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  3. Analysis of fluorescence quenching of pyronin B and pyronin Y by molecular oxygen in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Celebi, Neslihan [Faculty of Arts and Sciences, Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Arik, Mustafa [Faculty of Arts and Sciences, Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Onganer, Yavuz [Faculty of Arts and Sciences, Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey)]. E-mail: yonganer@atauni.edu.tr

    2007-09-15

    The fluorescence quenching of pyronin B and pyronin Y molecules by molecular oxygen in aqueous solution was studied by using steady-state and time-resolved fluorescence and UV-Vis absorption spectroscopy techniques. In order to understand the quenching mechanism, fluorescence decays, absorption and fluorescence spectra of the probes were recorded as a function of the oxygen concentration and temperature. The quenching was found to be appreciable and shows positive deviation in the Stern-Volmer representation obtained from the fluorescence intensity ratio. Fluorescence quenching constants (k {sub q}) were calculated from the {tau} {sub o}/{tau} vs. [Q] plots having linear correlation and compared with calculated diffusion-controlled rate constants (k {sub diff}) values. Experimental results were in good agreement with the simultaneous dynamic and static quenching model.

  4. Analysis of fluorescence quenching of pyronin B and pyronin Y by molecular oxygen in aqueous solution

    International Nuclear Information System (INIS)

    Celebi, Neslihan; Arik, Mustafa; Onganer, Yavuz

    2007-01-01

    The fluorescence quenching of pyronin B and pyronin Y molecules by molecular oxygen in aqueous solution was studied by using steady-state and time-resolved fluorescence and UV-Vis absorption spectroscopy techniques. In order to understand the quenching mechanism, fluorescence decays, absorption and fluorescence spectra of the probes were recorded as a function of the oxygen concentration and temperature. The quenching was found to be appreciable and shows positive deviation in the Stern-Volmer representation obtained from the fluorescence intensity ratio. Fluorescence quenching constants (k q ) were calculated from the τ o /τ vs. [Q] plots having linear correlation and compared with calculated diffusion-controlled rate constants (k diff ) values. Experimental results were in good agreement with the simultaneous dynamic and static quenching model

  5. Fluorescence quenching of uric acid solubilized in bicontinuous microemulsion by nitrobenzene

    Directory of Open Access Journals (Sweden)

    Maurice O. Iwunze

    2013-02-01

    Full Text Available Abstract: Uric Acid is known to be practically insoluble in aqueous and alcoholic media. However, it exhibits a reasonable solubility in a Bicontinuous Microemulsion system – a 15-fold or more increase in solubility in this system compared to its solubility in water. The bicontinuous microemulsion is made up of three components –Dodecane-Surfactant-water. Uric acid solubilized in this system is quenched by nitrobenzene. The obtained fluorescence data do not obey the Stern-Volmer equation when plotted accordingly. Therefore, the modified Stern-Volmer equation was used to analyze the data. It was observed that only one third (1/3 of uric acid is accessible to quenching in this medium and the reaction is diffusion-limited. The Stern-Volmer quenching constant, KSV, was calculated to be 130 M-1 and the fluorescence lifetime, 0, the quantum yield,, and the bimolecular quenching rate constant, kq, were calculated as 10.6 nanoseconds, 0.06 and 1.231010 M-1s-1, respectively.

  6. Quench/reflood modeling in MELCOR

    International Nuclear Information System (INIS)

    Gauntt, R.O.

    2001-01-01

    The authors describe the reactor accident simulation model MELCOR. It comprises hydrodynamic investigations on reactor core quenching, hydrogen generation in the reactor core vessel, quench front advances. Preliminary comparisons to data are reasonable but need further validation. (uke)

  7. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  8. Application of AE technique for on-line monitoring of quenching in racetrack superconducting coil at cryogenic environment

    International Nuclear Information System (INIS)

    Lee, Jun Hyun; Lee, Min Rae; Shon, Myung Hwan; Kwon, Young Kil

    1998-01-01

    An acoustic emission(AE) technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2 K. The ultimate goal is to ensure the safety and reliability of large superconducting magnet systems by being able to identity and locate the sources of quench in superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current. It was found in this study that there was good correlation between quench current and AE parameters. The source location of quenching in superconducting magnet was also discussed on the hashing of correlation between magnet voltage and AE energy.

  9. The ionization quench factor in liquid-scintillation counting standardizations

    CERN Document Server

    Grau-Malonda, A

    1999-01-01

    We present a new detailed analysis of the ionization quench function Q(E) used in calculating the counting efficiency in liquid-scintillation counting (LSC), which shows that Q(0)=1, and permits one to derive Q(E) as a function of the electron energy and the parameter kB. The coefficients are tabulated by applying a new empirical formula of Q(E) for kB values in the range between 0.001 and 0.20 gMeV sup - sup 1 cm sup - sup 2. We demonstrate the convenience of applying sup 3 H and sup 5 sup 4 Mn for beta-ray and electron capture standardizations, respectively.

  10. The climb of dissociated dislocations in a quenched Cu-13.43 at.% Al alloy

    International Nuclear Information System (INIS)

    Decamps, B.; Cherns, D.; Condat, M.

    1983-01-01

    The weak-beam electron microscopy technique has been used to study the climb of dissociated dislocations in a Cu-13.43 at.% Al alloy under conditions of supersaturation of vacancies introduced by quenching. The results are similar to those obtained under electron irradiation (interstitial climb) in the same alloy (Cherns, Hirsch and Saka 1980) in that climb may proceed by the nucleation of prismatic loops on the individual partials. The nature of the loops is such as to minimize the total energy of the configuration (partial plus loop) and to maximize their edge component. Interaction with the other partial has been observed, causing the entire dislocation to climb. Additional features observed suggest that climb under quenching is initiated by the nucleation of Frank loops. The detailed configurations also enable climb by absorption of vacancies and interstitials to be distinguished. (author)

  11. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    Science.gov (United States)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  12. 40 CFR 1065.675 - CLD quench verification calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD quench verification calculations... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.675 CLD quench verification calculations. Perform CLD quench-check calculations as follows: (a) Perform a CLD analyzer quench...

  13. Fluorescence quenching of newly synthesized biologically active coumarin derivative by aniline in binary solvent mixtures

    International Nuclear Information System (INIS)

    Evale, Basavaraj G.; Hanagodimath, S.M.

    2009-01-01

    The fluorescence quenching of newly synthesized coumarin (chromen-2-one) derivative, 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one (MFBMC) by aniline in different solvent mixtures of benzene and acetonitrile was determined at room temperature (296 K) by steady-state fluorescence measurements. The quenching is found to be appreciable and positive deviation from linearity was observed in the Stern-Volmer (S-V) plots in all the solvent mixtures. This could be explained by static and dynamic quenching models. The positive deviation in the S-V plot is interpreted in terms of ground-state complex formation model and sphere of action static quenching model. Various rate parameters for the fluorescence quenching process have been determined by using the modified Stern-Volmer equation. The sphere of action static quenching model agrees very well with experimental results. The dependence of Stern-Volmer constant K SV , on dielectric constant ε of the solvent mixture suggests that the fluorescence quenching is diffusion-limited. Further with the use of finite sink approximation model, it is concluded that these bimolecular quenching reactions are diffusion-limited. Using lifetime (τ o ) data, the distance parameter R' and mutual diffusion coefficient D are estimated independently.

  14. Jet quenching at ALICE

    International Nuclear Information System (INIS)

    Bianchi, Nicola

    2007-01-01

    RHIC results on leading hadron suppression indicate that the jets produced in hard processes are strongly quenched by the dense medium created in heavy ion collisions. Most of the energy lost by the leading parton remains within the jet cone, but several questions on the medium modification of the jet structure have not been addressed. These include the longitudinal and transverse structures of the quenched jet, the associated radiation observables, and the dependence on the parton flavor. These topics will be studied by ALICE thanks to both the robustness of its tracking and the charged particle identification system. Large medium effects are expected in both the low pt and in the high pt regions. To make ALICE better suited for jet physics, the performances on high p t particles and jets can be significantly improved by completing the present set-up with a large Electromagnetic Calorimeter (EmCal). This will significantly improve the resolution on the jet energy and on the particle composition (with the detection of both charged and neutral particles). It will also allow to calibrate the jet energy by measuring the high energy photon emitted in the opposite direction. EmCal will be used to trigger on the jet energy itself, thus allowing a significant improvement of the statistics achievable for jets of high energy. Finally, due too both the γ/π 0 and the electron/hadron discrimination, EmCal will enhance the ALICE capabilities at high p t for direct photons and heavy quarks measurements

  15. lessons learned from the QUENCH program at FZK

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Grosse, M.; Sepold, L.; Stuckert, J.

    2011-01-01

    The paper gives an overview on the main outcome of the QUENCH program at FZK, including complementary bundle experiments and separate-effects tests. The major objective of the program is to deliver experimental and analytical data to support development and validation of quench and quench-related models as used in code systems. So far, 15 integral bundle QUENCH experiments with 21-31 electrically heated fuel rod simulators of 2.5 m length have been conducted. The following parameters and their influence on bundle degradation and reflood have been investigated: degree of pre-oxidation, temperature at initiation of reflood, flooding rate, influence of neutron absorber materials (B 4 C, AgInCd), air ingress, and the influence of the type of cladding alloy. In six tests reflood of the bundle caused a temporary temperature excursion connected with the release of a significant amount of hydrogen, typically 2 orders of magnitude greater than in those tests with 'successful' quenching in which cool-down was immediately achieved. Comprehensive formation, relocation, and oxidation of melt were observed in all tests with escalation. The temperature boundary between rapid cooldown and temperature escalation was typically 2100-2200 K in the 'normal' quench tests, i.e. tests without absorber and/or steam starvation. Tests with absorber and/or steam starvation were found to lead to temperature escalations at lower temperatures. All phenomena occurring in the bundle tests have been additionally investigated in parametric and more systematic separate-effects tests. Oxidation kinetics of various cladding alloys, including advanced ones, have been determined over a wide temperature range (873-1773 K) in different atmospheres (steam, oxygen, air, and their mixtures). Hydrogen absorption by different zirconium alloys was investigated in detail, recently also using neutron radiography as non-destructive method for determination of hydrogen distribution in claddings

  16. Quantum state-to-state dynamics for the quenching process of Br(2P1/2) + H2(v(i) = 0, 1, j(i) = 0).

    Science.gov (United States)

    Xie, Changjian; Jiang, Bin; Xie, Daiqian; Sun, Zhigang

    2012-03-21

    Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data. © 2012 American Institute of Physics

  17. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  18. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  19. Quench propagation in the SSC dipole magnets

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab

  20. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  1. Simulation of the Quench-06 experiment with Scdapsim; Simulacion del experimento Quench-06 con Scdapsim

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, E. del; Nunez C, A.; Amador G, R. [CNSNS, Dr. Barragan No. 779, 03020 Mexico D.F. (Mexico)]. e-mail: edangelm@cnsns.gob.mx

    2003-07-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  2. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  3. Experimental methods for quenching structures in lunar-analog silicate melts - Variations as a function of quench media and composition

    International Nuclear Information System (INIS)

    Dyar, M.D.

    1984-01-01

    Compositions analogous to lunar green, orange, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses

  4. Computational quench model applicable to the SMES/CICC

    Science.gov (United States)

    Luongo, Cesar A.; Chang, Chih-Lien; Partain, Kenneth D.

    1994-07-01

    A computational quench model accounting for the hydraulic peculiarities of the 200 kA SMES cable-in-conduit conductor has been developed. The model is presented and used to simulate the quench on the SMES-ETM. Conclusions are drawn concerning quench detection and protection. A plan for quench model validation is presented.

  5. Must Star-forming Galaxies Rapidly Get Denser before They Quench?

    Science.gov (United States)

    Abramson, L. E.; Morishita, T.

    2018-05-01

    Using the deepest data yet obtained, we find no evidence preferring compaction-triggered quenching—where rapid increases in galaxy density truncate star formation—over a null hypothesis in which galaxies age at constant surface density ({{{Σ }}}e\\equiv {M}* /2π {r}e2). Results from two fully empirical analyses and one quenching-free model calculation support this claim at all z ≤ 3: (1) qualitatively, galaxies’ mean U–V colors at 6.5 ≲ {log}{{{Σ }}}e/{\\text{}}{M}ȯ {kpc}}-2≲ 10 have reddened at rates/times correlated with {{{Σ }}}e, implying that there is no density threshold at which galaxies turn red but that {{{Σ }}}e sets the pace of maturation; (2) quantitatively, the abundance of {log}{M}* /{\\text{}}{M}ȯ ≥slant 9.4 red galaxies never exceeds that of the total population a quenching time earlier at any {{{Σ }}}e, implying that galaxies need not transit from low to high densities before quenching; (3) applying d{log}{r}e/{dt}=1/2 d{log}{M}* /{dt} to a suite of lognormal star formation histories reproduces the evolution of the size–mass relation at {log}{M}* /{\\text{}}{M}ȯ ≥slant 10. All results are consistent with evolutionary rates being set ab initio by global densities, with denser objects evolving faster than less-dense ones toward a terminal quiescence induced by gas depletion or other ∼Hubble-timescale phenomena. Unless stellar ages demand otherwise, observed {{{Σ }}}e thresholds need not bear any physical relation to quenching beyond this intrinsic density–formation epoch correlation, adding to Lilly & Carollo’s arguments to that effect.

  6. Quenching of cold antiprotonic helium atoms by collisions with H/sub 2/ molecules

    CERN Document Server

    Sauge, S

    2002-01-01

    We investigate the collisional quenching of cold metastable antiprotonic atomcules pHe/sup +/u/sub n, l/ by H/sub 2/ molecules in view of the recent state-resolved measurements at CERN. Firstly, we determine ab initio the 6-D intermolecular interaction between the four (anti)nuclei at the CCSD(T)/CP level. After averaging the interaction over the fast p orbits, we exhibit reactive channels and activation barriers below few 100 mu E/sub h/. Hence, we account qualitatively for the order of magnitude and (n, l) dependence of the quenching cross-sections measured at 30 K, after estimating tunneling probabilities. We also account for the lower quenching efficiency by deuterium. However improving this overall agreement would require the determination of numerous finer contributions. We monitor the saturation of electronic correlation with larger basis sets; we estimate the importance of dynamical relaxation effects; and we stress the role of quantum vibrational and rotational delocalization for the light (p, p) nuc...

  7. Avoidance of VDEs during plasma current quench in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1996-01-01

    Vertical displacement events (VDEs) during plasma current quench (I p quench) are one of the serious problems encountered in designing tokamak fusion reactors, owing to the generation of enormously high electromagnetic forces on the vacuum vessel and in-vessel components, but they have been passively and actively avoided in JT-60U. In JT-60U 'slow I p quench' is ended with very fast plasma current termination (final I p termination), and the halo current is frequently measured at this final I p termination. VDEs make the final I p termination severe by increasing the halo current and the electromagnetic force. A strong dependence of VDE growth rate on the initial vertical position of the plasma current centre (Z J ) has been clarified experimentally, and a neutral point of Z J for VDE has been found at ∼ 15 cm above the midplane of the vacuum vessel. According to these measurements, VDE has been avoided by the selection of Z J at the start of I p quench (passive control) and by the control of Z J during I p quench (active control) eventually obtained owing to the small deviation of Z J in real time calculations from its actual value. Furthermore, passive avoidance of VDEs by the injection of a neon ice pellet has been demonstrated. (author). 29 refs, 14 figs

  8. Electron transfer reactions induced by the triplet state of thiacarbocyanine dimers

    International Nuclear Information System (INIS)

    Chibisov, Alexander K.; Slavnova, Tatyana D.; Goerner, Helmut

    2004-01-01

    The photoinduced electron transfer between either cationic 5,5 ' -dichloro-3,3 ' ,9-triethylthiacarbocyanine (1) or a structurally similar anionic dye (2) and appropriate donors, e.g. ascorbic acid, and acceptors, e.g. methyl viologen, was studied by ns-laser photolysis. In aqueous solution the dyes in the ground state are present as an equilibrated mixture of dimers and monomers, whereas the triplet state is mainly populated from dimers. The triplet states of both dimers and monomers are quenched by electron donors or acceptors and the rate constant for quenching is generally 2-4 times higher for dimers than for monomers. The kinetics of triplet decay and radical formation and decay as a result of primary and secondary electron transfer were analyzed. While the one-electron reduced dimer decays due to back reactions, the one-electron oxidized dimer rapidly dissociates into the monomer and the monomeric dye radical. For the dimeric dye/donor/acceptor systems the primary photoinduced electron transfer occurs either from the donor or to the acceptor yielding the dimeric dye radicals. The one-electron reduced dimer can be efficiently oxidized by acceptors, e.g. the rate constant for reaction of the dimeric dye radical of 1 with methyl viologen (photoreductive pathway of sensitization) is 1.6x10 9 M -1 s -1 . The photooxidative pathway of sensitization is more complicated; after dissociation of the dimeric dye radical, the monomeric dye radical is reduced in a secondary electron transfer from ascorbic acid, e.g. with a rate constant of 1x10 9 M -1 s -1 for 2, yielding the monomer. On increasing the donor concentration the photooxidative pathway of sensitization is switched to a photoreductive one

  9. Radiation ordering in quenched alloys observed 'in situ' in the high voltage microscope

    International Nuclear Information System (INIS)

    Tendeloo, G. van; Landuyt, J. van; Amelinckx, S.

    1979-01-01

    Different alloys with a face centered cubic disordered structure have been electron irradiated in the quenched or short range order state under direct observation in a high voltage electron microscope. Ordering due to 1 MeV irradiation has been observed in Au 4 MN, Ni 4 Mo and Cu 3 Pd. Care has been taken to avoid ordering due to the thermal effect of the electron beam. It has been demonstrated that although similar states of order can be achieved by thermal and irradiation ordering, the path followed can be different. (author)

  10. Ultrafast quenching of metals to liquid-helium temperatures - investigation of the low-temperature mobility of hydrogen in niobium

    International Nuclear Information System (INIS)

    Blanz, M.; Blocher, R.; Carstanjen, H.D.; Messer, R.; Plachke, D.; Seeger, A.

    1989-01-01

    A novel technique for ultrafast quenching from 300 K to 4.2 K has been developed. It employs a fast jet of liquid helium with a speed of about 10 2 m/s and allows us to quench metal samples in about 6 ms. This corresponds to a quenching rate of about 4.5x10 4 K/s, which exceeds that achievable by conventional quenching in liquid helium by more than one order of magnitude. The technique has been used for a resistometric study of the behaviour of hydrogen in niobium quenched-in from the α-phase by means of isochronal and isothermal annealing. Even in the low-temperature region below 20 K a considerable recovery of the resistivity has been found, which cannot be seen in conventional quenching experiments. (orig.)

  11. Properties of self-quenching streamer (SQS) tubes

    International Nuclear Information System (INIS)

    Koori, N.; Nohtomi, A.; Hashimoto, M.; Yoshioka, K.; Kumabe, I.

    1989-01-01

    The self-quenching streamer (SQS) mode of gas counters have been widely used for measuring high energy particles. The authors have very recently found that all the rare gas (He, Ne, Ar and Xe) mixtures with quenching gas of CH 4 , C 2 H 6 , C 3 H 8 , iso-C 4 H 10 or CO 2 can be used as gas mixtures for the SQS mode except Ne- and He-mixtures with CH 4 or CO 2 . Further studies on the properties of this mode are needed for its application to monitoring devices. Properties of a self-quenching tube are discussed here from this point of view. Gas multiplication properties, pulse shape of current signals, and dead zone are measured under several gas pressures equal to or less than one atomospheric pressure. Either the SQS or GM mode can be obtained by changing the gas pressure with a cylindrical gas counter. The operation mode of the counter may be correctly determined from the dead zone measurement. The measurements show that the SQS and GM modes are exclusive, even though SQS's can be simultaneously formed with a GM discharge. The counting rate capability of the SQS mode is higher than that of the GM mode by about one order of magnitude. Thus, SQS tubes are suitable for use in high flux radiation fields. (N.K.)

  12. Quenching of acridine orange fluorescence by salts in aqueous solutions: Effects of aggregation and charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Amado, A.M. [Departamento de Física, FFCLRP, USP (Brazil); Ramos, A.P. [Departamento de Química, FFCLRP, USP (Brazil); Silva, E.R. [Departamento de Física, FFCLRP, USP (Brazil); Borissevitch, I.E., E-mail: iouribor@usp.br [Departamento de Física, FFCLRP, USP (Brazil)

    2016-10-15

    Acridine orange (AO) is widely applied in biology and medicine as a fluorescence probe, an intracellular pH indicator, and a photosensitizer in photodynamic therapy due to its adequate spectroscopic characteristics and high affinity to biological structures. Being introduced in an organism, AO is dispersed in blood plasma characterized by high ionic strength (ca. 0.36 M in humans). We have investigated the effect of ionic strength upon AO spectral characteristics and fluorescence quenching. The effect of pH on these characteristics was also tested. Salts quench AO fluorescence, the quenching constant (k{sub q}) increasing with the AO concentration. Salts stimulate AO aggregation, the process depending weakly on the salt origin. On the other hand, k{sub q} does depend on the salt anion origin, increasing as the anion oxidation potential decreases, and is virtually independent of the cation origin. This means that at least two different mechanisms of the AO fluorescence quenching by salts exist: fluorescence intensity decrease due to AO aggregation and quenching by partial electron transfer from salt anion to AO molecule in its singlet excited state (the exciplex formation).

  13. Luminescence and luminescence quenching of Eu{sub 2}Mo{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Janulevicius, Matas; Grigorjevaite, Julija; Merkininkaite, Greta [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Sakirzanovas, Simas [Department of Applied Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, Arturas, E-mail: arturas.katelnikovas@chf.vu.lt [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2016-11-15

    A polycrystalline Eu{sub 2}Mo{sub 4}O{sub 15} phosphor sample was prepared by high temperature solid state reaction. Phase purity and morphological features of the phosphor were investigated by X-ray diffraction and scanning electron microscopy, respectively. Reflectance spectra showed that the optical band gap of Eu{sub 2}Mo{sub 4}O{sub 15} is 2.95 eV. Phosphor emits intensive red light when excited with 394 and 465 nm radiation. Temperature dependent emission and luminescence lifetime measurements revealed that external and internal quantum yields decrease at the same rate and that luminescence quenches due to photoionization. The calculated external quantum yields for 394 and 465 nm excitation were 7.8% and 53.5%, respectively.

  14. Kinetics and mechanisms of photoinduced electron-transfer reaction of zinc myoglobin

    International Nuclear Information System (INIS)

    Tsukahara, Keiichi; Asami, Satoko; Okada, Mihoko; Sakurai, Takeshi.

    1994-01-01

    Photoinduced electron transfer (ET) between zinc myoglobin (ZnPPMb) and a variety of quenchers, such as hexacyanoferrate(III)([Fe(CN) 6 ] 3- ) and hexaammineruthenium(III)(Ru(NH 3 ) 6 ] 3+ ions, cationic viologens, copper(II) protein (stellacyanin), and metmyoglobins, has been studied in aqueous degassed solutions. The excited triplet state of ZnPPMb( * ZnPPMb) was quenched by [Fe(CN) 6 ] 3- in a self-associated complex. Both quenching rate constant and formation constant of the self-associated complex decrease with increasing ionic strengths. The thermal backward ET reaction for this system was not observed; it is most likely that the backward ET step is much faster than the quenching reaction. All of the cationic quenchers examined in this work did not form a self-associated complex with * ZnPPMb, and the intermolecular quenching occurred. The thermal backward ET reaction was observed for these cationic quenchers. Not only photoinduced ET but also thermal backward ET reactions were insensitive to the driving force of the reactions, suggesting that the reactions are controlled by conformational changes in ZnPPMb. The quenching rate constants increase with increasing ionic strength for the cationic quenchers. The effects of poly-L-lysine hydrochloride, sodium poly-L-glutamate, and sodium cyclo-hexaphosphate were also examined. The active site of the * ZnPPMb toward both anionic and cationic quenchers is assumed to be the positively charged site near the heme pocket. (author)

  15. Evolution of complexity following a global quench

    Science.gov (United States)

    Moosa, Mudassir

    2018-03-01

    The rate of complexification of a quantum state is conjectured to be bounded from above by the average energy of the state. A different conjecture relates the complexity of a holographic CFT state to the on-shell gravitational action of a certain bulk region. We use `complexity equals action' conjecture to study the time evolution of the complexity of the CFT state after a global quench. We find that the rate of growth of complexity is not only consistent with the conjectured bound, but it also saturates the bound soon after the system has achieved local equilibrium.

  16. Measurement of the rates of reaction of the ground and metastable excited states of 02+, N0+ and 0+ with atmospheric gases at thermal energy

    International Nuclear Information System (INIS)

    Glosik, J.; Rakshit, A.B.; Twiddy, N.D.; Adams, N.G.; Smith, D.

    1978-01-01

    Thermal-energy reaction rate coefficients and product ion distributions have been measured for reactions of both the ground state and metastable electronic states of 0 2 + , N0 + and 0 + with several neutral species, using a selected-ion flow tube. In general the excited-ion reaction rates are fast, frequently approaching the Langevin limit. Collisional quenching occurs for the reactions of N0 + sup(star) with N 2 ,0 2 and H 2 and the quenching rates have been determined. The ion source also provided a substantial yield of doubly charged 0 2 permitting some measurements of reaction rates of 0 2 2+ . (author)

  17. A magnetically coupled quench detector for superconducting magnets

    International Nuclear Information System (INIS)

    Jaskierny, W.; Kristalinski, A.; Visser, A.T.

    1993-12-01

    This note describes a low voltage signal detector that is useful for detecting quenches or excessive lead voltages at superconducting magnets. It can also be used for other applications where it is needed to detect low level signals present on high voltage installations. The application of isolated operational amplifiers is often not practical for high voltage applications because of their limited input voltage rating, common mode rejection and sensitivity. The described detector can withstand 7.5 kV input to ground voltage. It has a typical common mode rejection of -150 dB at 60 Hz and an input sensitivity better than 1 mV. The magnetically coupled quench detector assembly is very sensitive to extremely small (order of 1 μAmp) current changes in the sense windings. The detector assembly can therefore also be referred to as a micro current detector

  18. Quenching behaviour for a singular predator–prey model

    International Nuclear Information System (INIS)

    Ducrot, Arnaud; Guo, Jong-Shenq

    2012-01-01

    In this paper, we study the quenching behaviour for a system of two reaction–diffusion equations arising in the modelling of the spatio-temporal interaction of prey and predator populations in fragile environment. We first provide some sufficient conditions on the initial data to have finite time quenching. Then we classify the initial data to distinguish type I quenching and type II quenching, by introducing a delicate energy functional along with the help of some a priori estimates. Finally, we present some results on the quenching set. It can be a singleton, the whole domain, or a compact subset of the domain

  19. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  20. Quenching-induced deactivation of photosensitizer by nanoencapsulation to improve phototherapy of cancer.

    Science.gov (United States)

    Zeisser-Labouèbe, Magali; Mattiuzzo, Marc; Lange, Norbert; Gurny, Robert; Delie, Florence

    2009-09-01

    Photodynamic therapy has emerged as a promising alternative to current cancer treatment. However, conventional photosensitizers have several limitations due to their unsuitable pharmaceutical formulations and lack of selectivity. Our strategy was to exploit the advantages of nanoparticles and the quenching-induced deactivation of the model photosensitizer hypericin to produce "activatable" drug delivery systems. Efficient fluorescence and activity quenching were achieved by increasing the drug-loading rate of nanoparticles. In vitro assays confirmed the reversibility of hypericin deactivation, as the hypericin fluorescence and photodynamic activity were recovered upon cell internalization.

  1. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz

    Science.gov (United States)

    Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.

  2. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  3. Photoinduced electron transfer between anionic fluorophores and methyl viologen in homogeneous and microheterogeneous media

    International Nuclear Information System (INIS)

    Burai, Tarak Nath; Panda, Debashis; Iyer, E Siva Subramaniam; Datta, Anindya

    2012-01-01

    The rate and extent of photoinduced electron transfer change significantly as a result of confinement in nanovolumes. Study of such processes is an active area of research in physical chemistry. The effect is most interesting when the molecules that participate in PET are charged. In the present article, the modulation of PET has been studied for two anionic fluorophores: Lucifer Yellow CH and chlorin p 6 with Methylviologen dication. PET, manifested in the quenching of fluorescence of the fluorophores, has been modulated by incorporating the molecules in organized assemblies like micelles, reverse micelles and supramolecular hosts. The dynamics of the process has been monitored in the femtosecond to nanosecond timescale. The modulation of the electron transfer has been found to be occurring mainly due to the disruption of contact ion pairs formed between the fluorophores and the quencher. - Highlights: ► Modulation of PET of biologically active fluorophores and Methyl viologen. ► Static and Dynamic Quenching present. ► PET enhanced upon encapsulation, studied through Fluorescence upconversion experiments. ► Rotational anisotropy has significant contribution in quenching.

  4. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    OpenAIRE

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...

  5. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    Science.gov (United States)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  6. Quenching of p-Cyanophenylalanine Fluorescence by Various Anions.

    Science.gov (United States)

    Pazos, Ileana M; Roesch, Rachel M; Gai, Feng

    2013-03-20

    To expand the spectroscopic utility of the non-natural amino acid p -cyanophenylalanine (Phe CN ), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in Phe CN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of Phe CN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of Phe CN strongly quenches its fluorescence, suggesting that Phe CN could be used as a local pH sensor.

  7. Thermal simulation of quenching uranium-0.75% titanium alloy in water

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Llewellyn, G.H.; Childs, K.W.; Ludtka, G.M.; Aramayo, G.A.

    1985-01-01

    A computer model, The Quench Simulator, has been developed to simulate and predict in detail the behavior of U-0.75 Ti alloy when quenched at high temperature (about 850 0 C) in cold water. The code allows one to determine the time- and space-dependent distributions of temperature, residual stress, distortion, and microstructure that evolve during the quenching process. The nonlinear temperature- and microstructure-dependent properties, as well as the cooling rate-dependent heats of transformation, are incorporated into the model. The complex boiling heat transfer with its various regimes and other thermal boundary conditions are simulated. Experiments have been performed and incorporated into the model. Both sudden submersion and gradual controlled immersion can be applied. A parametric and sensitivity study has been performed demonstrating the importance of the thermal boundary conditions applied for achieving certain product characteristics. The thermal aspects of the model and its applications are discussed and demonstrated

  8. Severe fuel damage experiments performed in the QUENCH facility with 21-rod bundles of LWR-type

    International Nuclear Information System (INIS)

    Sepold, L.; Hering, W.; Schanz, G.; Scholtyssek, W.; Steinbrueck, M.; Stuckert, J.

    2006-01-01

    The objective of the QUENCH experimental program at the Karlsruhe Research Center is to investigate core degradation and the hydrogen source term that results from quenching/flooding an uncovered core, to examine the physical/chemical behavior of overheated fuel elements under different flooding conditions, and to create a data base for model development and improvement of severe fuel damage (SFD) code systems. The large-scale 21-rod bundle experiments conducted in the QUENCH out-of-pile facility are supported by an extensive separate-effects test program, by modeling activities as well as application and improvement of SFD code systems. International cooperations exist with institutions mainly within the European Union but e.g. also with the Russian Academy of Science (IBRAE, Moscow) and the CSARP program of the USNRC. So far, eleven experiments have been performed, two of them with B 4 C absorber material. Experimental parameters were: the temperature at initiation of reflood, the degree of peroxidation, the quench medium, i.e. water or steam, and its injection rate, the influence of a B 4 C absorber rod, the effect of steam-starved conditions before quench, the influence of air oxidation before quench, and boil-off behavior of a water-filled bundle with subsequent quenching. The paper gives an overview of the QUENCH program with its organizational structure, describes the test facility and the test matrix with selected experimental results. (author)

  9. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  10. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  11. Luminescence quenching by heavy metal ions of probes based on anthracene, pyrene, and eosin in human serum albumin

    Science.gov (United States)

    Naumova, E. V.; Melnikov, A. G.; Melnikov, G. V.

    2013-05-01

    Fluorescence and phosphorescence quenching processes of polar and non-polar luminescent probes associated with human serum albumin (HSA) in phosphate buffer at pH 7.4 were studied. Stern-Volmer quenching constants of anthracene and pyrene fluorescence and eosin phosphorescence and rate constants for quenching of eosin triplet states were determined. The polarity index of pyrene bound to HSA was obtained as a function of thallium nitrate concentration. The influences of structural changes in the proteins that were stimulated by heavy-metal salts and of screening of protein charges by salt ions on quenching processes of singlet and triplet states of the probes were found.

  12. Study of runaway electron generation process during major disruptions in JET

    International Nuclear Information System (INIS)

    Plyusnin, V.V.; Riccardo, V.; Alper, B.; Kiptily, V.G.; Popovichev, S.; Helander, P.; Jaspers, R.; Mlynar, J.; Luna, E. de La; Andersson, F.

    2005-01-01

    The analysis of a large number of JET disruptions has provided further data on the trends of the disruption induced runaway process in large tokamaks. The role of primary runaway electrons generated at the thermal quench has been examined to assess their influence on secondary avalanching, which is recognized as a main source of large runaway currents created during disruptions. The tomographic reconstruction of the soft X-ray emission during the thermal quench has made possible the observation of the magnetic flux geometry evolution and the locating of the most probable zones for generation and confinement of the primary runaway electrons. Runaway currents have been found to increase with toroidal magnetic field and pre-disruption plasma current values. The average conversion efficiency is approximately 40-45% at a wide range of plasma currents. This agrees well with results of numerical simulations, which predict similar conversion rates at an assumed post-disruption plasma electron temperature of 10 eV. The experimental trends and numerical simulations show that runaway electrons might be an issue for ITER and therefore it remains prudent to develop mitigation methods, which suppress runaway generation. (author)

  13. Radiation Induced Removal of Stacking Faults in Quenched Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Bergenlid, U

    1965-12-15

    The effect of neutron irradiation on specimens of quenched aluminium containing Frank sessile dislocation loops has been studied by means of electron microscopy. The Frank loops were found to trans. form into perfect loops at doses less than 10{sup 17} nvt. A possible reason for the removal of the stacking faults is the displacement of a number of atoms at the faults, leading to the passage of a Shockley partial. Unfaulting induced by stress fields from dislocations, released during the irradiation, can also be important.

  14. Radiation Induced Removal of Stacking Faults in Quenched Aluminium

    International Nuclear Information System (INIS)

    Bergenlid, U.

    1965-12-01

    The effect of neutron irradiation on specimens of quenched aluminium containing Frank sessile dislocation loops has been studied by means of electron microscopy. The Frank loops were found to trans. form into perfect loops at doses less than 10 17 nvt. A possible reason for the removal of the stacking faults is the displacement of a number of atoms at the faults, leading to the passage of a Shockley partial. Unfaulting induced by stress fields from dislocations, released during the irradiation, can also be important

  15. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  16. Enhanced photoconductivity by melt quenching method for amorphous organic photorefractive materials

    Science.gov (United States)

    Tsujimura, S.; Fujihara, T.; Sassa, T.; Kinashi, K.; Sakai, W.; Ishibashi, K.; Tsutsumi, N.

    2014-10-01

    For many optical semiconductor fields of study, the high photoconductivity of amorphous organic semiconductors has strongly been desired, because they make the manufacture of high-performance devices easy when controlling charge carrier transport and trapping is otherwise difficult. This study focuses on the correlation between photoconductivity and bulk state in amorphous organic photorefractive materials to probe the nature of the performance of photoconductivity and to enhance the response time and diffraction efficiency of photorefractivity. The general cooling processes of the quenching method achieved enhanced photoconductivity and a decreased filling rate for shallow traps. Therefore, sample processing, which was quenching in the present case, for photorefractive composites significantly relates to enhanced photorefractivity.

  17. Superconducting synchrotron power supply and quench protection scheme

    International Nuclear Information System (INIS)

    Stiening, R.; Flora, R.; Lauckner, R.; Tool, G.

    1978-01-01

    The power supply and quench protection scheme for the proposed Fermilab 6 km circumference superconducting synchrotron is described. Specifically, the following points are discussed: (1) the 46 MW thyristor power supply; (2) the 3 x 10 8 J emergency energy dump; (3) the distributed microprocessing system for the detection of quenches; (4) the thyristor network for shunting current around quenched magnets; and (5) the heaters internal to the magnets which cause rapid propagation of quenches. Test results on prototype systems are given

  18. A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel.

    Science.gov (United States)

    1982-10-01

    steel . Successful martempering requires a cooling rate sufficient to avoid the nose of the C- curve and thus prevent significant bainite formation. When...STUDY OF THE EFFECT OF INTERRUPTED QUENCHES ON A THERMONECHANICALLY PROCESSED HIGH CARBON STEEL by Steven A. Barton October 1982 Thesis Advisor: T.R...unlimited. A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel by Steven A. Barton Lieutenant, United

  19. "Super-quenching" state protects Symbiodinium from thermal stress - Implications for coral bleaching.

    Science.gov (United States)

    Slavov, Chavdar; Schrameyer, Verena; Reus, Michael; Ralph, Peter J; Hill, Ross; Büchel, Claudia; Larkum, Anthony W D; Holzwarth, Alfred R

    2016-06-01

    The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching. Copyright © 2016. Published by Elsevier B.V.

  20. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  1. AGN Feedback and Its Quenching Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Combes, Francoise, E-mail: francoise.combes@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, College de France, PSL, Sorbonne University UPMC, Paris (France)

    2017-09-21

    In the last decade, observations have accumulated on gas outflows in galaxies, and in particular massive molecular ones. The mass outflow rate is estimated between 1 and 5 times the star formation rate. For the highest maximal velocities, they are driven by AGN; these outflows are therefore a clear way to moderate or suppress star formation. Some of the most convincing examples at low redshift come from the radio mode, when the radio jets are inclined toward the galaxy plane, or expand in the hot intra-cluster medium, in cool core clusters. However, AGN feedback can also be positive in many occasions, and the net effect is difficult to evaluate. The quenching efficiency is discussed in view of recent observations.

  2. Quench simulations for superconducting elements in the LHC accelerator

    Science.gov (United States)

    Sonnemann, F.; Schmidt, R.

    2000-08-01

    The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.

  3. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  4. Heat transfer model for quenching by submerging

    International Nuclear Information System (INIS)

    Passarella, D N; Varas, F; MartIn, E B

    2011-01-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  5. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  6. Correlation of heat transfer coefficient in quenching process using ABAQUS

    Science.gov (United States)

    Davare, Sandeep Kedarnath; Balachandran, G.; Singh, R. K. P.

    2018-04-01

    During the heat treatment by quenching in a liquid medium the convective heat transfer coefficient plays a crucial role in the extraction of heat. The heat extraction ultimately influences the cooling rate and hence the hardness and mechanical properties. A Finite Element analysis of quenching a simple flat copper sample with different orientation of sample and with different quenchant temperatures were carried out to check and verify the results obtained from the experiments. The heat transfer coefficient (HTC) was calculated from temperature history in a simple flat copper disc sample experimentally. This HTC data was further used as input to simulation software and the cooling curves were back calculated. The results obtained from software and using experimentation shows nearly consistent values.

  7. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna

    DEFF Research Database (Denmark)

    Frigaard, N-U; Tokita, S; Matsuura, K

    1999-01-01

    In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence and o...... antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus....... and on flash-induced cytochrome c oxidation were studied in whole cells under aerobic conditions. BChl c fluorescence in a cell suspension with 5.4 microM BChl c was quenched to 50% by addition of 0.6 microM shikonin ((R)-2-(1-hydroxy-4-methyl-3-pentenyl)-5,8-dihydroxy-1, 4-naphthoquinone), 0.9 microM 5......-hydroxy-1,4-naphthoquinone, or 4 microM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited...

  8. Calculating Quench Propagation with ANSYS(regsign)

    International Nuclear Information System (INIS)

    Caspi, S.; Chiesa, L.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.; Hinkins, R.; Lietzke, A.F.; Prestemon, S.

    2002-01-01

    A commercial Finite-Element-Analysis program, ANSYS(reg s ign), is widely used in structural and thermal analysis. With the program's ability to include non-linear material properties and import complex CAD files, one can generate coil geometries and simulate quench propagation in superconducting magnets. A 'proof-of-principle' finite element model was developed assuming a resistivity that increases linearly from zero to its normal value at a temperature consistent with the assumed B magnetic field. More sophisticated models could easily include finer-grained coil, cable, structural, and circuit details. A quench is provoked by raising the temperature of an arbitrary superconducting element above its T c . The time response to this perturbation is calculated using small time-steps to allow convergence between steps. Snapshots of the temperature and voltage distributions allow examination of longitudinal and turn-to-turn quench propagation, quench-front annihilation, and cryo-stability. Modeling details are discussed, and a computed voltage history was compared with measurements from a recent magnet test.

  9. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  10. Optimization of a quench detection system for superconducting magnets

    International Nuclear Information System (INIS)

    Borlein, M.

    2004-12-01

    Subject of this report is the detection of a quench in a superconducting magnet. For the safe operation of superconducting magnets one of the most important issues is the quench detection system which controls the superconducting state of the magnet and triggers a safety discharge if necessary. If it comes to a breakdown of the superconductivity (quench), the magnet has to be discharged very quickly to avoid any damage or danger for the magnet or its environment. First an introducing overview is given. Next different methods of quench detection will be presented, partially on the basis of existing quench detection systems and the applicability of these methods in different states of the magnet operation will be shown. The different quench detection methods are compared and evaluated partially by using test experiments described in the appendix. As an application example this report contains a proposal for the quench detection system for the Wendelstein 7-X facility, actually built by the Institute for Plasma Physics, Garching [de

  11. Quench simulations for superconducting elements in the LHC accelerator

    CERN Document Server

    Sonnemann, F

    2000-01-01

    The design of he protection system for he superconducting elements in an accel- erator such as the Large Hadron Collider (LHC),now under construction at CERN, requires a detailed understanding of the hermo-hydraulic and electrodynamic pro- cesses during a quench.A numerical program (SPQR -Simulation Program for Quench Research)has been developed o evaluate temperature and voltage dis ri- butions during a quench as a func ion of space and ime.The quench process is simulated by approximating the heat balance equation with the finite di fference method in presence of variable cooling and powering conditions.The simulation predicts quench propagation along a superconducting cable,forced quenching with heaters,impact of eddy curren s induced by a magnetic field change,and heat trans- fer hrough an insulation layer in o helium,an adjacen conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequ...

  12. Fullerene-doped conducting polymers: effects of enhanced photoconductivity and quenched photoluminescence

    International Nuclear Information System (INIS)

    Yoshino, K.; Yin, X.H.; Muro, K.; Kiyomatsu, S.; Morita, S.; Zakhidov, A.A.; Noguchi, T.; Ohnishi, T.

    1993-01-01

    It is found that fullerenes (C 60 , C 70 ), due to their strong electron accepting abilities can be hole generators in conducting polymers sensitizing photoinduced charge transfer. Here we report that photoconductivity of poly(2,5-dialkoxy-p-phenylene-vinylene) OO-PPV is found to be remarkably enhanced by several orders of magnitude upon introduction of several mol % of C 60 . Positive polarons (P + ) photogenerated with increased efficiency due to autoionization of excitons and/or photopumping from fullerene are considered to be responsible for enhanced photoconductivity. Photoluminescence of polymer is strongly quenched upon C 60 doping due to dissociation of excitons accompanied by electron transfer to fullerene. (orig.)

  13. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  14. Intermolecular electron transfer between coumarin dyes and aromatic amines in Triton-X-100 micellar solutions: Evidence for Marcus inverted region

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2004-02-01

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (ΔG0) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-ΔG0) of ~0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (Vel) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor-acceptor separation in the micellar ET reactions is substantially larger than for the donor-acceptor contact distance. Comparison of the Vel values in the micellar solution and in the donor-acceptor close

  15. The quench detection system of Wendelstein 7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko

    2011-01-01

    The Quench Detection System of Wendelstein W7-X has been developed, pretested and manufactured during the last four years. This safety subsystem of the superconducting magnet power supply will guarantee the safe operating of the whole magnet system. The main targets of the Quench Detection System are the complete data acquisition of all the voltages along the superconducting components, i.e. non planar and planar coils, and bus bars, the evaluation of this data and the control of the magnet system safety discharges. The Quench Detection System is generating control commands for the magnet power supply control system and the electrical status of the superconducting components of W7-X. The Quench Detection System consists of nearly 580 Quench Detection Units (QDU) located in 10 QD-subsystems, 8 racks in each, one host system and two special interfaces for evaluation of the quench control commands and the failure signals. The operating software suite of the QD System allows the configuration, the operation and the maintenance of the whole system.

  16. (Talk) Investigating The Star Formation Quenching Across Cosmic Time - A Methodology To Select Galaxies Just After The Quenching Of Star Formation

    Science.gov (United States)

    Citro, Annalisa; Pozzetti, Lucia; Quai, Salvatore; Moresco, Michele; Vallini, Livia; Cimatti, Andrea

    2017-06-01

    We propose a method aimed at identifing galaxies in the short evolutionary phase in which they quench their star-formation (SF). We rely on high- to low-ionization emission line ratios, which rapidly disappear after the SF halt due to the softening of the UV ionizing radiation. In particular, we focus on [O III] 5007/Halpha and [Ne III] 3869/[O II] 3727, simulating their time evolution by means of the CLOUDY photoionization code. We find that these two emission line ratios are able to trace the quenching on very short time-scales (i.e. 10-80 Myr), depending on if a sharp or a smoother SF quenching is assumed. We adopt the [N II] 6584/[O II] 3727 ratio as metallicity diagnostic to mitigate the metallicity degeneracy which affects our method. Using a Sloan Digital Sky Survey galaxy sample, we identify 11 examples of extreme quenching candidates within the [O III] 5007/Halpha vs. [N II] 6584/[O II] 3727 plane, characterized by faint [Ne III] 3869, blue dust-corrected spectra and blue (u-r) colours, as expected if the quenching occurred in the recent past. Our results also suggest that the observed fractions of quenching candidates can be used to constrain the quenching mechanism at work and its time-scales.

  17. Novel water-air circulation quenching process for AISI 4140 steel

    Science.gov (United States)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  18. High-Field Quench Behavior and Protection of $Bi_2 Sr_2 Ca Cu_2 O_x$ Coils: Minimum and Maximum Quench Detection Voltages

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming [Fermilab; Ye, Liyang [NCSU, Raleigh; Turrioni, Daniele [Fermilab; Li, Pei [Fermilab

    2015-01-01

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.

  19. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Directory of Open Access Journals (Sweden)

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  20. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    CERN Document Server

    Schwerg, N; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the feasibility of a self-protected magnet surviving a powering cycle with an undetected quench and without quench heater firing or energy-extraction system.

  1. Quench antenna for superconducting particle accelerator magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Devred, A.; Kim, K.

    1993-10-01

    We report on the design, fabrication, and test of an assembly of stationary pickup coils which can be used to localize quench origins. After describing the pickup coils configuration, we develop a simple model of current redistribution which allows interpretation of the measured voltages and determination of the turn of the magnet coil in which the quench started. The technique is illustrated by analyzing the data from a quench of a 5-cm-aperture, 15-m-long SSC dipole magnet prototype

  2. Computer simulation of quenching uranium-0.75 weight per cent titanium alloy

    International Nuclear Information System (INIS)

    Ludtka, G.M.; Llewellyn, G.H.; Aramayo, G.A.; Siman-Tov, M.; Childs, K.W.

    1986-01-01

    A ''QUENCH SIMULATOR'' has been developed which uses finite difference heat transfer and finite element stress analysis techniques to predict the behavior of a metal during quenching. The actual nonlinear temperature- and microstructure-dependent physical, thermophysical, and mechanical properties are incorporated as input into the computer model as well as the continuous cooling transformation (CCT) behavior and heats of transformation of the alloy. The final output provides the transient temperature distribution, details the final residual profile, predicts and shows where distortion occurs, and maps out the microstructure distribution throughout the entire sample. These data are available in tabulated form, contour plots, or color-coded graphics. This analysis has been demonstrated on simple shapes for unalloyed uranium and the uranium-0.75 weight per titanium alloy which undergoes a martensite transformation and is quench-rate sensitive. The results of this study are discussed in detail in addition to other applications of this analysis approach which is generic in nature

  3. Fluorescence quenching of fluorescein by Merocyanine 540 in liposomes

    International Nuclear Information System (INIS)

    Toprak, Mahmut; Meryem Aydin, Burcu; Arik, Mustafa; Onganer, Yavuz

    2011-01-01

    The fluorescence quenching of fluorescein (FL) by merociyanine 540 (MC540) was examined in L-egg lecithin phosphatidycholine (PC) liposomes using spectroscopic methods. The type of quenching mechanism (dynamic or static) was evaluated using the Stern-Volmer plots. Findings were also supported by the temperature studies and florescence decay measurements. The Stern-Volmer equation was utilized to calculate bimolecular quenching constants (K q ). Furthermore, the bimolecular quenching constant of the quencher in the liposomes (K SV ), partition coefficient (K p ), binding constant (K), and corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated. The quenching property was also used in determining quantitatively (K p ) the partition coefficient of Merociyanini 540 in PC liposome.The obtained data indicated that static quenching occurred in the system and the K SV values decreased with increasing lipid concentration. In addition, thermodynamic analysis suggested that van der Waals interactions and hydrogen bonding were the main acting forces between fluorescein and merociyanine 540 molecules in the medium. - Highlights: → Fluorescence quenching of FL by MC540 in liposome system was analyzed. → Fluorescence quenching mechanism of FL by MC540 was consistent with the static model. → Binding FL to MC540 was spontaneous and carried out by hydrogen bond and van der Waals forces.

  4. A summary of the quench behavior of B ampersand W 1 m collider quadrupole model magnets

    International Nuclear Information System (INIS)

    Rey, C.M.; Xu, M.F.; Hlasnicek, P.; Kelley, J.P.; Dixon, K.; Savignano, J.; Letterman, S.; Craig, P.; Maloney, J.; Boyes, D.

    1994-01-01

    In order to evaluate the quench performance of a B ampersand W-Siemens designed quadrupole magnet at the earliest possible stage, a model magnet program was developed at B ampersand W for the support of the Superconducting Super Collider. The authors report the quench performance, training behavior, and the ramp rate dependence for the QSH-801 through QSH-804 series of short (1.2 meter) quadrupole model magnets

  5. Quorum Quenching Revisited—From Signal Decays to Signalling Confusion

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-04-01

    Full Text Available In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing, others are interrupting the communication (quorum quenching, thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching.

  6. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  7. Dissociative electron attachment to ozone: rate constant

    International Nuclear Information System (INIS)

    Skalny, J.D.; Cicman, P.; Maerk, T.D.

    2002-01-01

    The rate constant for dissociative electron attachment to ozone has been derived over the energy range of 0-10 eV by using previously measured cross section data revisited here in regards to discrimination effect occurring during the extraction of ions. The obtained data for both possible channels exhibit the maximum at mean electron energies close to 1 eV. (author)

  8. Free-running InGaAs/InP single photon detector with feedback quenching IC

    International Nuclear Information System (INIS)

    Zheng, Fu; Wang, Feilong; Wang, Chao; Sun, Zhibin; Zhai, Guangjie

    2015-01-01

    InGaAs/InP avalanche photodiodes (APD) are usually employed as Geiger-mode single photon detector at near-infrared wavelength between 1.0 μm and 1.7 μm. In order to work in the free-running regime rather than gated regime, we demonstrate a feedback quenching integrated circuit to rapidly quench the avalanche and reset the APD. Because this IC is close to the APD, parasitic capacitance is largely reduced, thus reducing the quench-time, reset-time and also the afterpulsing probability. We investigated the free-running single photon detector's afterpulsing effect, de-trapping time, dark count rate and detection efficiency and also compared with gated regime operation. After corrected for deadtime and afterpulse, we found the free-running detector performance is comparable with gated regime

  9. Photoinduced electron transfer between anionic fluorophores and methyl viologen in homogeneous and microheterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Burai, Tarak Nath; Panda, Debashis; Iyer, E Siva Subramaniam [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Datta, Anindya, E-mail: anindya@chem.iitb.ac.in [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2012-11-15

    The rate and extent of photoinduced electron transfer change significantly as a result of confinement in nanovolumes. Study of such processes is an active area of research in physical chemistry. The effect is most interesting when the molecules that participate in PET are charged. In the present article, the modulation of PET has been studied for two anionic fluorophores: Lucifer Yellow CH and chlorin p{sub 6} with Methylviologen dication. PET, manifested in the quenching of fluorescence of the fluorophores, has been modulated by incorporating the molecules in organized assemblies like micelles, reverse micelles and supramolecular hosts. The dynamics of the process has been monitored in the femtosecond to nanosecond timescale. The modulation of the electron transfer has been found to be occurring mainly due to the disruption of contact ion pairs formed between the fluorophores and the quencher. - Highlights: Black-Right-Pointing-Pointer Modulation of PET of biologically active fluorophores and Methyl viologen. Black-Right-Pointing-Pointer Static and Dynamic Quenching present. Black-Right-Pointing-Pointer PET enhanced upon encapsulation, studied through Fluorescence upconversion experiments. Black-Right-Pointing-Pointer Rotational anisotropy has significant contribution in quenching.

  10. Processing of the quench detection signals in W7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko; Petry, Klaus; Ebersoldt, Andreas

    2009-01-01

    The Wendelstein 7-X (W7-X) project uses superconductive coils for generation of the magnetic field to keep the plasma. One of the important safety systems is the protection against quench events. The quench detection system of W7-X protects the superconducting coils, the superconducting bus bar sections and the high temperature superconductor of the current leads against the damage because of a quench and against the high stress by a fast discharge of the magnet system. Therefore, the present design of the quench detection system (QDS) uses a two-stage safety concept for discharging the magnetic system. This paper describes the present design of the system assembly from the quench detection unit (QDU) for the detection of the quench to the quench detection interface (QDI) to implement the two-stage safety concept.

  11. Heating the quenched Eguchi-Kawai model

    Energy Technology Data Exchange (ETDEWEB)

    Klinkhamer, F.R. (Rijksuniversiteit Leiden (Netherlands). Sterrewacht)

    1983-05-30

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent.

  12. Quenching of the resonance 5s({sup 3}P{sub 1}) state of krypton atoms in collisions with krypton and helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zayarnyi, D A; L' dov, A Yu; Kholin, I V [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-11-30

    The processes of collision quenching of the resonance 5s[3/2]{sub 1}{sup o}({sup 3}P{sub 1}) state of the krypton atom are studied by the absorption probe method in electron-beam-excited high-pressure He – Kr mixtures with a low content of krypton. The rate constants of plasmochemical reactions Kr* + Kr + He → Kr*{sub 2} + He [(4.21 ± 0.42) × 10{sup -33} cm{sup 6} s{sup -1}], Kr* + 2He → HeKr* + He [(4.5 ± 1.2) × 10{sup -36} cm{sup 6} s{sup -1}] and Kr* + He → products + He [(2.21 ± 0.22) × 10{sup -15} cm{sup 3} s{sup -1}] are measured for the first time. The rate constants of similar reactions are refined for krypton in the metastable 5s[3/2]{sub 2}{sup o} ({sup 3}P{sub 2}) state. (laser applications and other topics in quantum electronics)

  13. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2018-03-01

    The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH = 7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse.

  14. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  15. Investigation of an overheated PWR-type fuel rod simulator bundle cooled down by steam. Pt. 1: experimental and calculational results of the QUENCH-04 test. Pt. 2: application of the SVECHA/QUENCH code to the analysis of the QUENCH-01 and QUENCH-04 bundle tests

    International Nuclear Information System (INIS)

    Sepold, L.; Hofmann, P.; Homann, C.

    2002-04-01

    The QUENCH experiments are to investigate the hydrogen source term that results from the water injection into an uncovered core of a light-water reactor (LWR). The test bundle is made of 21 fuel rod simulators with a length of approximately 2.5 m. 20 fuel rod simulators are heated over a length of 1024 mm, the one unheated fuel rod simulator is located in the center of the test bundle. Heating is carried out electrically using 6-mm-diameter tungsten heating elements installed in the center of the rods and surrounded by annular ZrO 2 pellets. The rod cladding is identical to that used in LWRs: Zircaloy-4, 10.75 mm outside diameter, 0.725 mm wall thickness. The test bundle is instrumented with thermocouples attached to the cladding and the shroud at 17 different elevations with an axial distance between the thermocouples of 100 mm. During the entire test up to the cooldown phase, superheated steam together with the argon as carrier gas enters the test bundle at the bottom end and leaves the test section at the top together with the hydrogen that is produced in the zirconium-steam reaction. The hydrogen is analyzed by three different instruments: two mass spectrometers and a ''Caldos 7 G'' hydrogen measuring device (based on the principle of heat conductivity). Part I of this report describes the results of test QUENCH-04 performed in the QUENCH test facility at the Forschungszentrum Karlsruhe on June 30, 1999. The objective of the experiment QUENCH-04 was to investigate the reaction of the non-preoxidized rod cladding on cooldown by steam rather than quenching by water. Part II of the present report deals with the results of the SVECHA/QUENCH (S/Q) code application to the FZK QUENCH bundle tests. The adaptation of the S/Q code to such kind of calculations is described. The numerical procedure of the recalculation of the temperature test data, and the preparation for the S/Q code input is presented. In particular, the results of the QUENCH-01 and QUENCH-04 test

  16. Bonded exciplex formation: electronic and stereoelectronic effects.

    Science.gov (United States)

    Wang, Yingsheng; Haze, Olesya; Dinnocenzo, Joseph P; Farid, Samir; Farid, Ramy S; Gould, Ian R

    2008-12-18

    As recently proposed, the singlet-excited states of several cyanoaromatics react with pyridine via bonded-exciplex formation, a novel concept in photochemical charge transfer reactions. Presented here are electronic and steric effects on the quenching rate constants, which provide valuable support for the model. Additionally, excited-state quenching in poly(vinylpyridine) is strongly inhibited both relative to that in neat pyridine and also to conventional exciplex formation in polymers, consistent with a restrictive orientational requirement for the formation of bonded exciplexes. Examples of competing reactions to form both conventional and bonded exciplexes are presented, which illustrate the delicate balance between these two processes when their reaction energetics are similar. Experimental and computational evidence is provided for the formation of a bonded exciplex in the reaction of the singlet excited state of 2,6,9,10-tetracyanoanthracene (TCA) with an oxygen-substituted donor, dioxane, thus expanding the scope of bonded exciplexes.

  17. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects

    NARCIS (Netherlands)

    Dulkeith, E.; Morteani, A.C.; Niedereichholz, T.; Klar, T.A.; Feldman, J.; Levi, S.; van Veggel, F.C.J.M.; Reinhoudt, David; Möller, M.; Gittins, D.I.

    2002-01-01

    The radiative and nonradiative decay rates of lissamine dye molecules, chemically attached to differently sized gold nanoparticles, are investigated by means of time-resolved fluorescence experiments. A pronounced fluorescence quenching is observed already for the smallest nanoparticles of 1  nm

  18. Forced convective post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.

    1980-01-01

    This paper discusses mechanisms in the post-CHF region which provide understanding and qualitative prediction capability for several current forced convective heat transfer problems. In the area of nuclear reactor safety, the mechanisms are important in the prediction of fuel rod quenches for the reflood phase, blowdown phase, and possibly some operational transients with dryout. Results using the mechanisms to investigate forced convective quenching are presented. Data reduction of quenching experiments is discussed, and the way in which the quenching transient may affect the results of different types of quenching experiments is investigated. This investigation provides an explanation of how minimum wall superheats greater than the homogeneous nucleation temperature result, as well as how these may appear to be either hydrodynamically or thermodynamically controlled. Finally, the results of a parametric study of the effects of the mechanisms upon the LOFT L2-3 hotpin calculation are presented

  19. Heating the quenched Eguchi-Kawai model

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.

    1983-01-01

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent. (orig.)

  20. Quench start localization in full-length SSC R ampersand D dipoles

    International Nuclear Information System (INIS)

    Devred, A.; Chapman, M.; Cortella, J.; Desportes, A.; Kaugerts, J.; Kirk, T.; Mirk, K.; Schermer, R.; Tompkins, J.C.; Turner, J.; Bleadon, M.; Brown, B.C.; Hanft, R.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peoples, J.; Strait, J.; Tool, G.; Caspi, S.; Gilbert, W.; Meuser, R.; Peters, C.; Rechen, J.; Royet, J.; Scanlan, R.; Taylor, C.; Zbasnik, J.

    1989-04-01

    Full-length SSC R ampersand D dipole magnets instrumented with four voltage taps on each turn of the inner quarter coils have been tested. These voltage taps enable accurate location of the point at which the quenches start and detailed studies of quench development in the coil. Attention here is focused on localizing the quench source. After recalling the basic mechanism of a quench (why it occurs and how it propagates), the method of quench origin analysis is described: the quench propagation velocity on the turn where the quench occurs is calculated, and the quench location is then verified by reiterating the analysis on the adjacent turns. Last, the velocity value, which appears to be higher than previously measured, is discussed

  1. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  2. Fluorescence quenching of polycyclic aromatic hydrocarbons within deep eutectic solvents and their aqueous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Ashish; Yadav, Anita; Bhawna; Pandey, Siddharth, E-mail: sipandey@chemistry.iitd.ac.in

    2017-03-15

    Two common and popular deep eutectic solvents (DESs) composed of the salt choline chloride and H-bond donors glycerol and urea in 1:2 mol ratio named glyceline and reline, respectively, are investigated for the analysis of polycyclic aromatic hydrocarbons (PAHs) using quenching of both steady-state and time-resolved fluorescence of ten different PAHs by nitromethane at 30 °C. Based on their quenching efficiencies, the PAHs are divided into two groups – group 1 is constituted of the five PAHs whose fluorescence are quenched less effectively by nitromethane whereas the other five exhibiting high quenching efficiency are associated to group 2. Quenching of steady-state fluorescence of group 1 PAHs by nitromethane, albeit not very significant, follow a simple Stern-Volmer behavior. The excited-state emission intensity decay of these PAHs, in both absence and presence of nitromethane, fit best to a single exponential model with small but monotonic decrease in lifetimes. The decrease in lifetime also follows Stern-Volmer behavior, however, the quenching constants (K{sub D}) are lower than those obtained from steady-state fluorescence (K{sub SV}). This is ascribed to the possible formation of charge-transfer complex between the PAH and the nitromethane. Steady-state fluorescence quenching of group 2 PAHs exhibit distinct upward curvature from linear Stern-Volmer behavior implying highly efficient quenching. The intensity decay fits best to a double exponential decay model with longer of the decay times following simple Stern-Volmer behavior. Formation of a complex or the presence of nitromethane within the quenching sphere of action of the PAH having short decay time is proposed. Quenching behavior was found to be similar irrespective of the identity of the DES. A representative group 2 PAH, pyrene, is employed to investigate diffusion dynamics within aqueous mixtures of the two DESs. The bimolecular quenching rate constant (k{sub q}) is found to increase linearly with

  3. Modelling of QUENCH-03 and QUENCH-06 Experiments Using RELAP/SCDAPSIM and ASTEC Codes

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2014-01-01

    Full Text Available To prevent total meltdown of the uncovered and overheated core, the reflooding with water is a necessary accident management measure. Because these actions lead to the generation of hydrogen, which can cause further problems, the related phenomena are investigated performing experiments and computer simulations. In this paper, for the experiments of loss of coolant accidents, performed in Forschungszentrum Karlsruhe, QUENCH-03 and QUENCH-06 are modelled using RELAP5/SCDAPSIM and ASTEC codes. The performed benchmark allowed analysing different modelling features. The recommendations for the model development are presented.

  4. Partially quenched gauge theories and an application to staggered fermions

    International Nuclear Information System (INIS)

    Bernard, C.W.; Golterman, M.F.L.

    1994-01-01

    We extend our Lagrangian technique for chiral perturbation theory for quenched QCD to include theories in which only some of the quarks are quenched. We discuss the relationship between the partially quenched theory and a theory in which only the unquenched quarks are present. We also investigate the peculiar infrared divergences associated with the η' in the quenched approximation, and find the conditions under which such divergences can appear in a partially quenched theory. We then apply our results to staggered fermion QCD in which the square root of the fermion determinant is taken, using the observation that this should correspond to a theory with four quarks, two of which are quenched

  5. Quenching of liquid scintillator fluorescence by chloroalkanes and chloroalkenes

    International Nuclear Information System (INIS)

    Hariharan, Chithra; Mishra, A.K.

    2000-01-01

    The fluorescence quenching of 2,5-diphenyloxazole (PPO) by a series of chloroalkanes and chloroalkenes including carbon tetrachloride, chloroform, dichloroethane, tetrachloroethane, dichloroethylene, trichloroethylene and tetrachloroethylene was studied in toluene as solvent at room temperature. CCl 4 was found to be the most efficient quencher in the series. The quenching was found to be appreciable and a positive deviation from linearity was observed in the Stern-Volmer (SV) plots for all the quenchers in the concentration range studied. From the studies of effect of temperature, solvent viscosity and excitation wavelength dependence for the PPO-CCl 4 system, it was inferred that non-linearity is due to the presence of a minor static quenching component in an overall dynamic quenching. The static (K S ) and the dynamic (K D ) quenching constants were calculated from the modified SV equation using quadratic least square fits. Fluorescence quenching experiments with CCl 4 were done for four other scintillators (POPOP, α-NPO, BBO and PBBO). The mechanism of quenching was established to be via charge-transfer, with the direction of transfer being from the scintillators to the chloroalkanes and chloroalkenes

  6. EFFECT OF CONTROLLED QUENCHING ON THE AGING OF 2024 ALUMINUM ALLOY CONTAINING BORON

    Directory of Open Access Journals (Sweden)

    N. Khatami

    2014-03-01

    Full Text Available The presence of alloying elements, sometimes in a very small amount, affects mechanical properties one of these elements is Boron. In Aluminum industries, Boron master alloy is widely used as a grain refiner In this research, the production process of Aluminum –Boron master alloy was studied at first then, it was concurrently added to 2024 Aluminum alloy. After rolling and homogenizing the resulting alloy, the optimal temperature and time of aging were determined during the precipitation hardening heat treatment by controlled quenching (T6C. Then, in order to find the effect of controlled quenching, different cycles of heat treatment including precipitation heat treatment by controlled quenching (T6C and conventional quenching (T6 were applied on the alloy at the aging temperature of 110°C. Mechanical properties of the resulting alloy were evaluated after aging at optimum temperature of 110°C by performing mechanical tests including hardness and tensile tests. The results of hardness test showed that applying the controlled quenching instead of conventional quenching in precipitation heat treatment caused reduction in the time of reaching the maximum hardness and also increase in hardness rate due to the generated thermo-elastic stresses rather than hydrostatic stresses and increased atomic diffusion coefficient as well. Tensile test results demonstrated that, due to the presence of boride particles in the microstructure of the present alloy, the ultimate tensile strength in the specimens containing Boron additive increased by 3.40% in comparison with the specimens without such an additive and elongation (percentage of relative length increase which approximately increased by 38.80% due to the role of Boron in the increase of alloy ductility

  7. Investigation of thermal quenching and abnormal thermal quenching in mixed valence Eu co-doped LaAlO{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingjing [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Zhao, Yang [China academy of civil aviation science and technology, Beijing 100028 (China); Mao, Zhiyong, E-mail: mzhy1984@163.com [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Wang, Dajian [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Bie, Lijian, E-mail: ljbie@tjut.edu.cn [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2017-06-15

    Temperature dependent luminescence of mixed valence Eu co-doped LaAlO{sub 3} phosphors are deeply investigated in this work. Different temperature properties of Eu{sup 2+} and Eu{sup 3+} luminescence are observed as the phosphor excited by different incident light. Eu{sup 3+} luminescence shows normal thermal quenching when excited at 320 nm and abnormal thermal quenching as the excitation light changed into 365 nm, while Eu{sup 2+} luminescence exhibits a normal thermal quenching independent on the incident excitation lights. The origin of these novel normal/abnormal thermal quenching phenomena are analyzed and discussed by the excitation-emission processes in terms of the configuration coordinate model. The presented important experimental and analysis results give insights into the temperature properties of phosphors.

  8. The LHC quench protection system

    CERN Multimedia

    2009-01-01

    The new quench protection system (QPS) has the crucial roles of providing an early warning for any part of the superconducting coils and busbars that develop high resistance, as well as triggering the switch-off of the machine. Over 2000 new detectors will be installed around the LHC to make sure every busbar segment between magnets is monitored and protected. One of the major consolidation activities for the LHC is the addition of two new detectors to the quench protection system. A magnet quench occurs when part of the superconducting cable becomes normally-conducting. When the protection system detects an increased resistance the huge amount of energy stored in the magnet chains is safely extracted and ‘dumped’ into specially designed resistors. In the case of the main dipole chain, the stored energy in a single LHC sector is roughly the same as the kinetic energy of a passenger jet at cruising speed. The first new detector is designed to monitor the superconducting...

  9. Quench detection by fluid dynamic means in cable-in-conduit superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    The tight confinement of the helium in cable-in-conduit superconductors creates protection problems because of the pressure rise that can occur during a quench. But the same pressure rise offers the possibility of a non-electrical means of detecting incipient quenches by monitoring the outflow from the various hydraulic paths of the magnet. If the method is to work, the signal must be large enough to be detected unambiguously at an early time, and must not depend too strongly on the length, Joule power density, or rate of growth of the initial normal zone. This paper explores by calculation the degree to which these conditions can be met. The Westinghouse Large Coil Task coil is used as an example

  10. Infrared rovibrational spectroscopy of OH–C2H2 in 4He nanodroplets: Parity splitting due to partially quenched electronic angular momentum

    International Nuclear Information System (INIS)

    Douberly, Gary E.; Liang, Tao; Raston, Paul L.; Marshall, Mark D.

    2015-01-01

    The T-shaped OH–C 2 H 2 complex is formed in helium droplets via the sequential pick-up and solvation of the monomer fragments. Rovibrational spectra of the a-type OH stretch and b-type antisymmetric CH stretch vibrations contain resolved parity splitting that reveals the extent to which electronic angular momentum of the OH moiety is quenched upon complex formation. The energy difference between the spin-orbit coupled 2 B 1 (A″) and 2 B 2 (A′) electronic states is determined spectroscopically to be 216 cm −1 in helium droplets, which is 13 cm −1 larger than in the gas phase [Marshall et al., J. Chem. Phys. 121, 5845 (2004)]. The effect of the helium is rationalized as a difference in the solvation free energies of the two electronic states. This interpretation is motivated by the separation between the Q(3/2) and R(3/2) transitions in the infrared spectrum of the helium-solvated 2 Π 3/2 OH radical. Despite the expectation of a reduced rotational constant, the observed Q(3/2) to R(3/2) splitting is larger than in the gas phase by ≈0.3 cm −1 . This observation can be accounted for quantitatively by assuming the energetic separation between 2 Π 3/2 and 2 Π 1/2 manifolds is increased by ≈40 cm −1 upon helium solvation

  11. Quench propagation across the copper wedges in SSC dipoles

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1986-01-01

    The effect of copper wedges on quench propagation in SSC windings has been studied. The results indicate that the turn-to-turn quench transit time for conductors separated by an insulated copper wedge can be predicted with reasonable accuracy from the bulk quench properties and the mean wedge thickness

  12. Quench protection and safety of the ATLAS central solenoid

    CERN Document Server

    Makida, Y; Haruyama, T; ten Kate, H H J; Kawai, M; Kobayashi, T; Kondo, T; Kondo, Y; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A; Yamaoka, H

    2002-01-01

    Fabrication of the ATLAS central solenoid was completed and the performance test has been carried out. The solenoid was successfully charged up to 8.4 kA, which is 10% higher than the normal operational current of 7.6 kA. Two methods for quench protection, pure aluminum strips accelerating quench propagation and quench protection heaters distributing normal zones, are applied in order to safely dissipate the stored energy. In this paper, quench characteristics and protection methods of the ATLAS central solenoid are described. (14 refs).

  13. [Nature of the electron excited state in pigment redox reactions. II. Analysis of the scheme of primary processes in the photooxidation reaction of chlorophylls a and b and pheophytin a ].

    Science.gov (United States)

    Andreeva, N E; Barashkov, B I; Zakharova, G V; Shubin, V V; Chibisov, A K

    1978-01-01

    A scheme of primary reactions in photooxidation of pigments was considered assuming that electron transfer processes can occur via singlet excited as well as triplet states. The results of analysis are compared with the experimental data on relative yield values of chlorophylls a, b, and pheophytin a cation-radicals, as well as with the data on fluorescence quenching. A conclusion has been drawn that photooxidation of pigments proceeds exclusively via the triplet state. The dependence of rate constant quenching values of chlorophyll a triplet state by certain electron acceptors on values of half cell potentials was given.

  14. Relativistic electronic structure calculations on endohedral Gd rate at C60, La rate at C60, Gd rate at C74, and La rate at C74

    International Nuclear Information System (INIS)

    Lu, J.; Zhang, X.; Zhao, X.

    2000-01-01

    Relativistic discrete-variational local density functional calculations on endohedral Gd rate at C 60 , La rate at C 60 ,Gd rate at C 74 , and La rate at C 74 are performed. All the C 60 - and C 74 -derived levels are lowered upon endohedral Gd and La doping. Both the Gd (4f 7 5d 1 6s 2 ) and La (5d 1 6s 2 ) atoms only donate their two 6s valence electrons to the cages, leaving behind their 5d electrons when they are placed at the cage centers. Compared with large-band-gap C 60 , small-band-gap C 74 and Gd (La)-metallofullerenes have strong both electron-donating and electron-accepting characters, and the calculated ionization potentials and electron affinities for them agree well with the available experimental data. (orig.)

  15. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  16. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  17. Quench detection, protection and simulation studies on SST-1 magnets

    International Nuclear Information System (INIS)

    Sharma, Aashoo N.; Khristi, Yohan; Pradhan, Subrata; Doshi, Kalpesh; Prasad, Upendra; Banaudha, Moni; Varmora, Pankaj; Praghi, Bhadresh R.

    2015-01-01

    Steady-state Superconducting Tokamak-1 (SST-1) is India's first tokamak with superconducting toroidal field (TF) and Poloidal Field (PF) magnets. These magnets are made with NbTi based Cable-In-Conduit-Conductors. The quench characteristic of SST-1 CICC has been extensively studied both analytically and using simulation codes. Dedicated experiments like model coil test program, TF coil test program and laboratory experiments were conducted to fully characterize the performance of the CICC and the magnets made using this CICC. Results of quench experiments performed during these tests have been used to design the SST-1 quench detection and protection system. Simulation results of TF coil quenches and slow propagation quench of TF busbars have been used to further optimize these systems during the SST-1 tokamak operation. Redundant hydraulic based quench detection is also proposed for the TF coil quench detection. This paper will give the overview of these development and simulation activities. (author)

  18. Evaluation of the ionization quenching correction for several liquid scintillators

    International Nuclear Information System (INIS)

    Los Arcos, J. M.; Borras, C.

    1990-01-01

    The most appropriate computational model for the ionization quenching function Q(E) is analyzed for electrons in liquid scintillators. A numerical evaluation of Q(E) from 0.1 keV to 3 MeV which the kB parameter varying between 0.005 and 0.010 cm/MeV is presented for seven scintillators; Toluene, Toluene-Alcohol, PCS, Toluene-CCl4, INSTAGEL, Dioxane-Naphtalene and HISAFE II. The numerical result are summarized as tables of Ieast squares fitting coefficient which make easy the computation of Q(E). (Author)

  19. Short initial length quench on CICC of ITER TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bessette, D.; Rodriguez-Mateos, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Coatanea-Gouachet, M. [ELC Engineering, 350 chemin du Verladet, F-13290 Les Milles (France); Gauthier, F. [Soditech Ingenierie, 4 bis allée des Gabians, ZI La Frayère, 06150 Cannes (France)

    2014-01-29

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.

  20. Short initial length quench on CICC of ITER TF coils

    International Nuclear Information System (INIS)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B.; Bessette, D.; Rodriguez-Mateos, F.; Coatanea-Gouachet, M.; Gauthier, F.

    2014-01-01

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed

  1. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  2. History of Giant Resonances and Quenching

    CERN Document Server

    Arima, A

    1999-01-01

    The history of nuclear magnetic moments and Gamow-Teller transitions is reviewed. The importance of configuration mixing and core polarization to explain the quenching phenomena is shown, and discussed in the context of the recent measurement of the Gamow-Teller strength in sup 9 sup 0 Nb. It is confirmed that the contribution of the DELTA-hole excitation to the quenching of spin matrix elements is small.

  3. Critical current degradation of short YBa2Cu3O7-δ coated conductor due to an unprotected quench

    International Nuclear Information System (INIS)

    Wang, X; Trociewitz, U P; Schwartz, J

    2011-01-01

    The critical current of a short YBa 2 Cu 3 O 7-δ (YBCO) coated conductor sample degrades in an unprotected quench performed in a nearly adiabatic environment at 30 K. The conductor has Cu stabilizers on both surfaces. The quench is initiated by a heater attached to the sample surface. The amplitude of the transport current is fixed as 91% of the sample's initial critical current. The duration of the current is increased to simulate an unprotected quench and to reach increasing and controlled voltage and temperature levels. A peak temperature of 490 ± 50 K and a heating rate of 1800 K s -1 are measured when the critical current degrades by ∼ 5%. The applied thermal strain on the YBCO layer from 30 to 490 K is estimated to be 0.31% and is applied at a strain rate of ∼ 1% s -1 . The rate of temperature change and the time to reach a certain peak temperature, determined by the current density in the Cu stabilizer, are estimated assuming adiabatic conditions based on the short sample case. For a Cu stabilizer current density ranging from 1000 to 2000 A mm -2 , achieved in commercial conductors currently available, the quench detection and protection requires a response time -2 may challenge the existing detection and protection techniques for the same 200 K limit. Integrating the substrate as part of the stabilizer may help reduce the stabilizer current density to gain more time for quench detection and protection while maintaining the engineering current density.

  4. Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.

    Science.gov (United States)

    Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji

    2018-03-01

    Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.

  5. A study on quench phenomena during reflood phase, 1

    International Nuclear Information System (INIS)

    Murao, Yoshio; Sudoh, Takashi

    1977-03-01

    Based on the observation with an outside-heated quartz tube experiment of the reflood phase, three quench modes for bottom flooding are proposed : 1) liquid column type, 2) dryout type, 3) droplet-rewetting type. Using Blair's correlation for quench velocity, the approximate correlation for maximum liquid superheat, the assumption that the heat transfer upstream of the quench front is a function of the local liquid subcooling and the data of PWR-FLECHT experiments, the correlation for quench velocity of the liquid column type and of the dryout type are obtained. The quench temperature for the droplet-rewetting type is also derived. These relations are compared with the results of PWR-FLECHT Group 1 experiments and of Piggott and Porthouse's experiments. The agreements among them are fairly good. (auth.)

  6. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  7. Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens

    Czech Academy of Sciences Publication Activity Database

    Pinnola, A.; Staleva-Musto, H.; Capaldi, S.; Ballottari, M.; Bassini, R.; Polívka, Tomáš

    2016-01-01

    Roč. 1857, č. 12 (2016), s. 1870-1878 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Carotenoids * Femtosecond spectroscopy * LHCSR * Non-photochemical quenching Subject RIV: BO - Biophysics Impact factor: 4.932, year: 2016

  8. Topological Rényi entropy after a quantum quench.

    Science.gov (United States)

    Halász, Gábor B; Hamma, Alioscia

    2013-04-26

    We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.

  9. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  10. The mass dependence of satellite quenching in Milky Way-like haloes

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Tollerud, Erik

    2015-02-01

    Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass (M⋆ = 108.5-1010.5 M⊙), with only ˜20 per cent of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive haloes quench their satellites more efficiently. These results extend trends seen previously in more massive host haloes and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about 108 M⊙ are uniformly resistant to environmental quenching, with the relative harshness of the host environment likely serving as the primary driver of satellite quenching. At lower stellar masses (<108 M⊙), however, observations of the Local Group suggest that the vast majority of satellite galaxies are quenched, potentially pointing towards a characteristic satellite mass scale below which quenching efficiency increases dramatically.

  11. A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES

    International Nuclear Information System (INIS)

    Geha, M.; Blanton, M. R.; Yan, R.; Tinker, J. L.

    2012-01-01

    We demonstrate that dwarf galaxies (10 7 stellar 9 M ☉ , –12 > M r > –18) with no active star formation are extremely rare ( Hα stellar 9 M ☉ below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1σ upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 × 10 9 M ☉ , ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.

  12. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  13. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  14. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    Science.gov (United States)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating

  15. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  16. Temperature profile evolution in quenching high-Tc ...

    Indian Academy of Sciences (India)

    Abstract. Irreversible normal zones leading to quench is an important aspect of high-temperature superconductors (HTS) in all practical applications. As a consequence of quench, transport current gets diverted to the matrix stabilizer material of the high-Tc composite and causes Joule heating till the original conditions are ...

  17. Electron microscope study of vacancy clusters produced by quenching in magnesium; Etude par microscopie electronique des amas de lacunes crees par trempe dans le magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Espinasse, J; Mairy, C; Hillairet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    Vacancy clustering in quenched magnesium has been studied by transmission electron microscopy. The nature of the vacancy loops observed, seems to depend essentially on the impurity content of the metal; this effect can be attributed to a variation of the stacking fault energy of magnesium due to impurities. (authors) [French] On a etudie par microscopie electronique en transmission les defauts crees par trempe dans le magnesium. Un effet considerable des impuretes du metal sur la nature des boucles obtenues par condensation de lacunes a ete mis en evidence; cet effet semble s'expliquer de facon satisfaisante par un abaissement de l'energie de faute d'empilement du magnesium du aux impuretes. (auteur)

  18. Fluorescence quenching of N,N-bis(2,5-di-tert-butylphenyl)-3,4:9,10-perylenebis(dicarboximide) (DBPI) by silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    El-Daly, Samy A., E-mail: samyeldaly@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, Tanta University, Tanta 2173 (Egypt); Rahman, Mohammed M. [Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589 (Saudi Arabia); Alamry, Kahlid A. [Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589 (Saudi Arabia); Asiri, Abdullah M. [Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589 (Saudi Arabia)

    2014-04-15

    The interaction of a perylene derivative namely N,N-bis(2,5-di-tert-butylphenyl)-3,4:9,10-perylenebis(dicarboximide) (DBPI) with colloidal silver nanoparticles (AgNPs) was studied in ethanol and ethylene glycol using steady state fluorescence quenching measurements. The Stern–Volmer quenching rate constant (K{sub sv}) was calculated as 4.03×10{sup 9} and 29.14×10{sup 9} M{sup −1} in ethanol and ethylene glycol, respectively. From fluorescence quenching data, static quenching and energy transfer play a major role in the fluorescence quenching of DBPI by AgNPs. The apparent association constant (k{sub app}) was calculated as 1.26×10{sup 8} M{sup −1} in EtOH and 1.83×10{sup 9} M{sup −1} in ethylene glycol. Due to potential AgNPs interaction with DBPI, the average AgNPs size is increased slightly from ∼37.1 nm (As-prepared) to 48.9 nm. -- Highlights: • Fluorescence quenching of photostable DBPI by AgNPs. • Static quenching mechanism of interaction between DBPI and AgNPs. • Enhancement of fluorescence quenching of DBPI in ethylene glycol.

  19. Electron capture rate of a composite of partially ionized atomic nuclei

    International Nuclear Information System (INIS)

    Yokoi, K.; Takahashi, K.

    1979-01-01

    Electron captures (or more generally β-transitions) are known to play key roles at various stages of stellar evolution and in many nucleosynthesis processes. With decreasing temperatures and densities, the bound electron captures start to compete with the free electron captures, and eventually in the low-temperature, low-density limit the total capture rate shall converge to that of the orbital electrons observed in laboratory. The authors calculate the occupation probabilities of the electron orbits and the electron capture rates in a mixture of atoms and ions which are supposedly under a chemical equilibrium. (orig./AH)

  20. Characterization and observation of water-based nanofluids quench medium with carbon particle content variation

    Science.gov (United States)

    Yahya, S. S.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Kresnodrianto, Mahiswara, E. P.

    2018-05-01

    Recently, nanofluids have been widely used in heat treatment industries as quench medium with better quenching performance. The thermal conductivity of nanofluids is higher compared to conventional quench medium such as polymer, water, brine, and petroleum-based oil. This characteristic can be achieved by mixing high thermal conductivity particles in nanometer scale with a fluid as base. In this research, carbon powder and distilled water were used as nanoparticles and base respectively. The carbon source used in this research was laboratory grade carbon powder, and activated carbon as a cheaper alternative source. By adjusting the percentage of dispersed carbon particles, thermal conductivity of nanofluids could be controlled as needed. To obtain nanoscale carbon particles, planetary ball mill was used to grind laboratory-grade carbon and active carbon powder to further decrease its particle size. This milling method will provide nanoparticles with lower production cost. Milling speed and duration were set at 500 rpm and 15 hours. Scanning electron microscope (SEM) and Energy Dispersive X-Ray (EDX) were carried out respectively to determine the particle size, material identification, particle morphology. The carbon nanoparticle content in nanofluids quench mediums for this research were varied at 0.1, 0.3, and 0.5 % vol. Furthermore, these mediums were used to quench AISI 1045 carbon steel samples which had been annealed at 1000 °C. Hardness testing and metallography observation were then conducted to check the effect of different quench medium in steel samples. Preliminary characterizations showed that the carbon particle dimension after milling was hundreds of nanometers, or still in sub-micron range. Therefore, the milling process parameters are need to be optimized further. EDX observation in laboratory-grade carbon powder showed that the powder was pure carbon as expected for, but in activated carbon has some impurities. The nanofluid itself, however, was

  1. I/asterisk/ /6s 4P/ collisional quenching - Application to the IF 491-nm laser

    Science.gov (United States)

    Hutchison, S. B.; Verdeyen, J. T.; Eden, J. G.

    1981-01-01

    Measurements of the rate constants for quenching of the excited I (6s 4P) states by Ar, Xe, CF39I, UF6, and NF3 are described. Each rate constant is determined by recording the exponential time decay of the excited IF or excited I2 (342 nm) fluorescence in the afterglow of the e-beam-excited plasmas containing Ar, CF3I, NF3, and the desired quenching gas. In addition, further experimental evidence in support of neutral channel formation of excited IF in e-beam-pumped Ar/CF3I/NF3 mixtures is presented. Details of the experimental apparatus and gas handling procedures are given, and the kinetics model developed to interpret the experimental data is described.

  2. Concentration quenching and photostability in Eu(dbm)3phen embedded in mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Moretti, Elisa; Talon, Aldo; Storaro, Loretta; Le Donne, Alessia; Binetti, Simona; Benedetti, Alvise; Polizzi, Stefano

    2014-01-01

    Ordered mesoporous silica nanoparticles (MSNs) were impregnated with different loadings of the luminescent complex tris(dibenzoylmethane) mono(1,10-phenanthroline)europium(III) (Eu(dbm) 3 phen), with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as spectral converter for multi-crystalline silicon solar cells. The morphological, structural and luminescence properties of the impregnated silica nanoparticles were characterized by N 2 physisorption, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, UV–visible spectroscopy and photoluminescence excitation and emission measurements. Photostability was tested under 1 sun (1000 W/m 2 ) illumination for 24 h and the related effects were inspected by UV–visible and photoluminescence spectroscopies. Impregnation of the complex into 50–70 nm MSNs with pore size tailored around 2.9 nm depressed concentration quenching and allowed the use of complex loadings as high as 23 wt%. Sunlight irradiation caused a marked increase in the luminescence intensity. -- Highlights: • Mesoporous silica nanoparticles tailored to the size of Eu 3+ (dbm) 3 phen molecules. • Concentration quenching avoided up to 23 wt% of Eu 3+ (dbm) 3 phen/silica. • Sun irradiation increased luminescence intensity by two order of magnitudes

  3. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund; Sharma, Anurag; Spetea, Cornelia; Pribil, Mathias; Husted, Søren

    2018-05-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley ( Hordeum vulgare ). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b 6 f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO 2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. © 2018 American Society of Plant Biologists. All Rights Reserved.

  4. The impacts of phosphorus deficiency on the photosynthetic electron transport chain

    DEFF Research Database (Denmark)

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund

    2018-01-01

    light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and hence reduces CO2 fixation. In parallel, lumen acidification activates the qE component of the non-photochemical quenching (NPQ) mechanism......Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency...... accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol (PQH2) oxidation retards electron transport to the cytochrome (Cyt) b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high...

  5. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  6. Criterion for the onset of quench for low-flow reflood

    International Nuclear Information System (INIS)

    Hsu, Y.Y.; Young, M.W.

    1982-07-01

    This study provides a criterion for the onset of quench for low flow reflood. The criterion is a combination of two conditions: T/sub clad/ < T/sub limiting quench/ where T = Temperature, and α < 0.95 where α = void fraction. This criterion was obtained by examining temperature data from tests simulating PWR reflood, such as FLECHT, THTF, PBF, CCTF, and FEBA tests, with void fraction data from CCTF, FEBA, and FLECHT low flood tests. The data show that quenching initiated at α = 0.95 and that the majority of quench occurred at void fractions near 0.85. The results show that rods can be completely quenched by entrained droplets even if the collapsed liquid level does not advance. A thorough discussion of the analysis which supports this quench criterion is given in the text of this report

  7. Color quench correction for low level Cherenkov counting.

    Science.gov (United States)

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  8. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    Science.gov (United States)

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  9. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  10. An experimental simulation study of debris quenching in a radially stratified porous bed

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Nayak, A.K.; Stepanyan, A.

    2004-01-01

    test section with dimensions 350x350 mm containing sand which simulates the corium debris. The height of the bed was 500 mm. The sand bed with lower porosity was put at the centre of test section and the bed with higher porosity was put at the periphery. The porosities and size of the sand chosen were close to that observed in a corium debris bed. The sand beds were heated directly with heaters of maximum capacity 46 kW. The bed was quenched by flooding water from the top of the bed. For this, seven downcomers (six small size and the centre one large) were placed inside the test section to study their effects on quenching of the various sections of the debris bed. Those downcomers bring water from the top of the debris bed to the bottom and enable quenching from the bottom. In addition, provisions were made for water injection into the bed at four different points located symmetrically in the side wall of the test section. The level of water above the bed was always maintained at 0.5 m for each experiment. In order to study the effects of non-condensable gases on quenching and CCFL (counter current flooding limitations), air was injected at different velocities and its effect on quenching rate and possible existence of CCFL was investigated. Fig.1 shows a typical quenching result measured with top flooding using all downcomers. Also, we allowed water injection at four locations through the side walls. The bed was heated to a temperature of about 500 deg. C before water at 95 deg. C was added to the top of the bed. The graph shows the temperature listing at different axial locations in one radial plane. Thermocouples 0 to 5 are distributed from top to bottom at equally spaced axial intervals. The results show that the top and bottom of the bed are quenched much earlier than the middle section of the bed. The time for water to ingress to middle of section bed is quite large as evident from the above figure. The experiments are continuing and further results on the

  11. Automatic quench compensation for liquid scintillation counting system

    International Nuclear Information System (INIS)

    Nather, R.E.

    1978-01-01

    A method of automatic quench compensation is provided, where a reference measure of quench is taken on a sample prior to taking a sample count. The measure of quench is then compared with a reference voltage source which has been established to vary in proportion to the variation of the measure of quench with the level of a system parameter required to restore at least one isotope spectral energy endpoint substantially to a selected counting window discriminator level in order to determine the amount of adjustment of the system parameter required to restore the endpoint. This is followed by the appropriate adjustment of the system parameter required to restore the relative position of the discriminator windows and the sample spectrum and is followed in turn by taking a sample count

  12. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  13. Weak localization and electron-electron interaction in modulation doped GaAs/AlGaAs heterostructures

    International Nuclear Information System (INIS)

    Taboryski, R.; Lindelof, P.E.

    1990-01-01

    The first heterostructure wafer only had one electronic subband at the GaAs/AlGaAs interface populated. Weak localization magnetoresistance was interpreted by a theory valid to relatively high magnetic fields and also valid for electrons with a long mean free path. The adjustable parameter in fitting the magnetoresistance was in each case the phasebreaking relaxation time, which could then subsequently be plotted as a function of temperature. The temperature dependence of the phasebreaking rate could be interpreted on the basic of existing theories, but the residual relaxation rate at the lowest temperature remains so far unexplained. Already at low magnetic fields the weak localization magnetoresistance saturates, indicating a complete quench of weak localization. We find that the value of saturation (i.e. the total weak localization at the appropriate temperature) was smaller than predicted by the existing theories. At magnetic fields of the order of the inverse electron mobility, a quadratic magnetoresistance show up in our experiments. This quadratic magnetoresistance corresponds to corrections to the conductivity of the order of e 2 /h. Whereas we find that the temperature dependence of this conductivity correction is well in agreement with predicted effects of electron-electron interaction, the dependence on mobility, which we can measure via our ion implantation, is larger than any existing theory predicts, yet still in the ballpark of the conductance quantum. (orig./BHO)

  14. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    OpenAIRE

    Schwerg, N; Auchman, B; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the fe...

  15. Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought.

    Science.gov (United States)

    Kitao, M; Lei, T T

    2007-01-01

    We investigated the patterns of response to a long-term drought in the field in cotton cultivars (genotypes) with known differences in their drought tolerance. Four cotton genotypes with varying physiological and morphological traits, suited to different cropping conditions, were grown in the field and subjected to a long-term moderate drought. In general, cotton leaves developed under drought had significantly higher area-based leaf nitrogen content (N (area)) than those under well irrigation. Droughted plants showed a lower light-saturated net photosynthetic rate (A (sat)) with lower stomatal conductance (g (s)) and intercellular CO (2) concentration (C (i)) than irrigated ones. Based on the responses of A (sat) to g (s) and C (i), there was no decreasing trend in A (sat) at a given g (s) and C (i) in droughted leaves, suggesting that the decline in A (sat) in field-grown cotton plants under a long-term drought can be attributed mainly to stomatal closure, but not to nonstomatal limitations. There was little evidence of an increase in thermal energy dissipation as indicated by the lack of a decrease in the photochemical efficiency of open PSII (F (v)'/F (m)') in droughted plants. On the basis of electron transport (ETR) and photochemical quenching (q (P)), however, we found evidence indicating that droughted cotton plants can circumvent the risk of excessive excitation energy in photosystem (PS) II by maintaining higher electron transport rates associated with higher N (area), even while photosynthetic rates were reduced by stomatal closure.

  16. Quench detection on a superconducting radio-frequency cavity

    OpenAIRE

    Lai, Ru-Yu; Spirn, Daniel

    2017-01-01

    We study quench detection in superconducting accelerator cavities cooled with He-II. A rigorous mathematical formula is derived to localize the quench position from dynamical data over a finite time interval at a second sound detector.

  17. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching

    NARCIS (Netherlands)

    van Oort, Bart; Roy, Laura M; Xu, Pengqi; Lu, Yinghong; Karcher, Daniel; Bock, Ralph; Croce, Roberta

    2018-01-01

    Photoprotective nonphotochemical quenching (NPQ) of absorbed solar energy is vital for survival of photosynthetic organisms, and NPQ modifications significantly improve plant productivity. However, the exact NPQ quenching mechanism is obscured by discrepancies between reported mechanisms, involving

  18. AgInCd control rod failure in the QUENCH-13 bundle test

    International Nuclear Information System (INIS)

    Sepold, L.; Lind, T.; Csordas, A. Pinter; Stegmaier, U.; Steinbrueck, M.; Stuckert, J.

    2009-01-01

    The QUENCH off-pile experiments performed at the Karlsruhe Research Center are to investigate the high-temperature behavior of Light Water Reactor (LWR) core materials under transient conditions and in particular the hydrogen source term resulting from the water injection into an uncovered LWR core. The typical LWR-type QUENCH test bundle, which is electrically heated, consists of 21 fuel rod simulators with a total length of approximately 2.5 m. The Zircaloy-4 rod claddings and the grid spacers are identical to those used in Pressurized Water Reactors (PWR) whereas the fuel is represented by ZrO 2 pellets. In the QUENCH-13 experiment the single unheated fuel rod simulator in the center of the test bundle was replaced by a PWR-type control rod. The QUENCH-13 experiment consisting of pre-oxidation, transient, and quench water injection at the bottom of the test section investigated the effect of an AgInCd/stainless steel/Zircaloy-4 control rod assembly on early-phase bundle degradation and on reflood behavior. Furthermore, in the frame of the EU 6th Framework Network of Excellence SARNET, release and transport of aerosols of a failed absorber rod were to be studied in QUENCH-13, which was accomplished with help of aerosol measurements performed by PSI-Switzerland and AEKI-Hungary. Control rod failure was initiated by eutectic interaction of steel cladding and Zircaloy-4 guide tube and was indicated at about 1415 K by axial peak absorber and bundle temperature responses and additionally by the on-line aerosol monitoring system. Significant releases of aerosols and melt relocation from the control rod were observed at an axial peak bundle temperature of 1650 K. At a maximum bundle temperature of 1820 K reflood from the bottom was initiated with cold water at a flooding rate of 52 g/s. There was no noticeable temperature escalation during quenching. This corresponds to the small amount of about 1 g in hydrogen production during the quench phase (compared to 42 g of H 2

  19. Hotspot temperature calculation and quench analysis on ITER busbar

    International Nuclear Information System (INIS)

    Rong, J.; Huang, X.Y.; Song, Y.T.; Wu, S.T.

    2014-01-01

    Highlights: • The hotspot temperature is calculated in the case of different extra copper in this paper. • The MQE (minimum quench energy) is carried out as the external heating to trigger a quench in busbar. • The temperature changes after quench is analyzed by Gandalf code in the case of different extra copper and no helium. • The normal length is carried out in the case of different extra copper by Gandalf code. - Abstract: This paper describes the analysis of ITER feeder busbar, the hotspot temperature of busbar is calculated by classical method in the case of 0%, 50%, 75% and 100% extra copper (copper strands). The quench behavior of busbar is simulated by 1-D Gandalf code, and the MQE (minimum quench energy) is estimated in classical method as initial external heat in Gandalf input file. The temperature and the normal length of conductor are analyzed in the case of 0%, 50% and 100% extra copper and no helium. By hotspot temperature, conductor temperature and normal length are contrasted in different extra copper cases, it is shown that the extra copper play an important role in quench protecting

  20. The Effect of Substitution of Fe By Co on Rapidly Quenched (FeCoMoCuB Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Marek Paluga

    2005-01-01

    Full Text Available (Fe1-xCox79Mo8Cu1B15 amorphous alloys ware prepared in the form of ribbons by rapid quenching for x=0. 0.25 and 0.5. The effect of variation of Co/Fe ratio is analyzed with respect to the formation of amorphous state and to transformation of the structure into nancrystalline phases formed after subsequent thermal treatment. Selected properties and atomic structure in as-quenched state are studied by TEM, AFM, XRD any by measurement of magnetoresistance characteristics. The influence of heat treatment on transport and magnetic properties is shown on temperature dependencies of electrical resistivity and magnetization. It was founf that while the increase of Co content leads to the increase of Curie temperature of as-quenched structure, transition to nanocrystalline state is not affected in a significant manner. The as-quenched state for alloy without Co was found to contain thin crystal-containing layer which, however, was observed, contary to general behavior, at the side of the ribbon exposed to higher quenching rates.

  1. Fluorescence quenching and photocatalytic degradation of textile dyeing waste water by silver nanoparticles

    Science.gov (United States)

    Kavitha, S. R.; Umadevi, M.; Janani, S. R.; Balakrishnan, T.; Ramanibai, R.

    2014-06-01

    Silver nanoparticles (Ag NPs) of different sizes have been prepared by chemical reduction method and characterized using UV-vis spectroscopy and transmission electron microscopy (HRTEM). Fluorescence spectral analysis showed that the quenching of fluorescence of textile dyeing waste water (TDW) has been found to decrease with decrease in the size of the Ag NPs. Experimental results show that the silver nanoparticles can quench the fluorescence emission of adsorbed TDW effectively. The fluorescence interaction between Ag NPs (acceptor) and TDW (donor) confirms the Förster Resonance Energy Transfer (FRET) mechanism. Long range dipole-dipole interaction between the excited donor and ground state acceptor molecules is the dominant mechanism responsible for the energy transfer. Furthermore, photocatalytic degradation of TDW was measured spectrophotometrically by using silver as nanocatalyst under UV light illumination. The kinetic study revealed that synthesized Ag NPs was found to be effective in degrading TDW.

  2. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.

    Science.gov (United States)

    Chen, Zhong; Gallie, Daniel R

    2012-09-01

    In response to conditions of excess light energy, plants induce non-photochemical quenching (NPQ) as a protective mechanism to prevent over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, which contributes significantly to reversible NPQ to thermally dissipate excess absorbed light energy, involves de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin in response to excess light energy. The activation of violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction, requires the generation of a light-induced, transthylakoid pH gradient. In this work, we overexpressed or repressed the expression of VDE in Arabidopsis (Arabidopsis thaliana) to examine whether VDE is rate-limiting for the induction of NPQ. Increasing VDE expression increased the de-epoxidation state of xanthophyll pigments, the rate of NPQ induction, and the level of NPQ achieved under subsaturating light. In saturating light, however, overexpression of VDE did not increase the xanthophyll pigment de-epoxidation state, the level of NPQ achieved following its initial induction, or substantially improve tolerance to high light. Only under chilling, which reduces VDE activity, did an increase in VDE expression provide slightly greater phototolerance. Repression of VDE expression impaired violaxanthin de-epoxidation, reduced the generation of NPQ, and lowered the level of NPQ achieved while increasing photosensitivity. These results demonstrate that the endogenous level of VDE is rate-limiting for NPQ in Arabidopsis under subsaturating but not saturating light and can become rate-limiting under chilling conditions. These results also show that increasing VDE expression confers greater phototolerance mainly under conditions which limit endogenous VDE activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. Study of electromagnetic noise influence on quench detection system under different discharge conditions for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Shen, Biao; Lv, Huanyu; Xiao, Y.Z.

    2013-01-01

    Highlights: ► Reliable quench detection in EAST is a key issue for steady-state operation. ► The electromagnet noise interference associated with detection signals under different discharge conditions are evaluated. ► The effective measures have been realized on detection systems. ► Recently upgrade work has been done, especially for the optimization of ACS and false FSDS were reduced greatly. -- Abstract: EAST is the first Tokamak device whose toroidal and poloidal magnet are superconducting. The enormous magnetic field energy stored in the magnet system will transfer into thermal energy and cause the damage of superconducting magnet, if a quench happened. Therefore, reliable quench detection is a key issue for steady-state operation. In addition to electromagnetic noise from poloidal magnet fields and plasma current which will experience fast current ramp rate, radio frequency noise from heating system also have some interference on quench detection system to a certain degree. The most difficult point for quench detection system is required to have more detail evaluation on electromagnetic noise interference. Recently experiments have been carried out successfully in EAST device. The steady-state operation with 1 MA of plasma current and more than 100-s plasma duration has been obtained. In the paper, the electromagnetic noise interference on quench detection system under different discharge conditions are analyzed and relative process methods are also introduced. The technological experience and experimental data are significant for the constructing ITER and similar superconducting device have been mentioned which will supply significant technological experience and experimental data for constructing ITER and similar superconducting device

  4. Self-quenching streamer discharge in a wire chamber

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Kruglov, V.V.; Khazins, D.M.

    1982-01-01

    A summary is given of the investigation of a new mode of operation of a wire chamber involving a self-quenching streamer discharge. The history of the question is briefly discussed. The main characteristics of the self-quenching mode and the influence of the composition and pressure of the gas mixture and the geometrical parameters of the chamber on the characteristics are described. The mechanism of a self-quenching streamer discharge is analyzed. Detectors working in this mode are described, and the prospects for its future use are discussed

  5. Simulation of jet quenching at RHIC and LHC

    International Nuclear Information System (INIS)

    Lokhtin, I P; Snigirev, A M

    2007-01-01

    A model to simulate the jet quenching effect in ultrarelativistic heavy ion collisions is presented. The model is the fast Monte Carlo tool implemented to modify a standard PYTHIA jet event. The model has been generalized to the case of the 'full' heavy ion event (the superposition of soft, hydro-type state and hard multi-jets) using a simple and fast simulation procedure for soft particle production. The model is capable of reproducing the main features of the jet quenching pattern at RHIC and is applied to analyse novel jet quenching features at LHC

  6. First experience with the new Coupling Loss Induced Quench system

    CERN Document Server

    Ravaioli, E; Dudarev, A V; Kirby, G; Sperin, K A; ten Kate, H H J; Verweij, A P

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A new protection system called Coupling-Loss Induced Quench (CLIQ) was recently, developed and tested at CERN. This method provokes a fast change in the magnet transport current by means of a capacitive discharge. The resulting change in the local magnetic field induces inter-filament and inter-strand coupling losses which heat up the superconductor and eventually initiate a quench in a large fraction of the coil winding pack. The method is extensively tested on a Nb-Ti single-wire test solenoid magnet in the CERN Cryogenic Laboratory in order to assess its performance, optimize its operating parameters, and study new electrical configurations. Each parameter is thoroughly analyzed and its impact on the quench effi...

  7. Probing the Highly Efficient Electron Transfer Dynamics between Zinc Protoporphyrin IX and Sodium Titanate Nanosheets.

    Science.gov (United States)

    Biswas, Sudipta; Mukherjee, Debdyuti; De, Swati; Kathiravan, Arunkumar

    2016-09-15

    Sodium titanate nanosheets (NaTiO2 NS) have been prepared by a new method and completely characterized by TEM, SEM, XRD, EDX, and XPS techniques. The sensitization of nanosheets is carried out with Zn protoporphyrin IX (ZnPPIX). The emission intensity of ZnPPIX is quenched by NaTiO2 NS, and the dominant process for this quenching has been attributed to the process of photoinduced electron injection from excited ZnPPIX to the nanosheets. Time resolved fluorescence measurement was used to elucidate the process of electron injection from the singlet state of ZnPPIX to the conduction band of NaTiO2 NS. Electron injection from the dye to the semiconductor is very fast (ket ≈ 10(11) s(-1)), much faster than previously reported rates. The large two-dimensional surface offered by the NaTiO2 NS for interaction with the dye and the favorable driving force for electron injection from ZnPPIX to NaTiO2 NS (ΔGinj = -0.66 V) are the two important factors responsible for such efficient electron injection. Thus, NaTiO2 NS can serve as an effective alternative to the use of TiO2 nanoparticles in dye sensitized solar cells (DSSCs).

  8. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    International Nuclear Information System (INIS)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel; Dekel, Avishai; Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J.; Muzzin, Adam; Franx, Marijn; Brammer, Gabriel B.; Marchesini, Danilo; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.; Whitaker, Katherine E.

    2014-01-01

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M * /M ☉ = 6.5 × 10 10 ) to nearby massive ellipticals (M * /M ☉ = 1.5 × 10 11 ). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M * /M ☉ = 6.5 × 10 9 ). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10 12 and 10 13 M ☉ , consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  9. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Muzzin, Adam; Franx, Marijn [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Patel, Shannon G.; Quadri, Ryan F. [Carnegie Observatories, Pasadena, CA 91101 (United States); Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa); Wake, David A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Whitaker, Katherine E., E-mail: tal@ucolick.org [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-10

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M{sub *}/M{sub ☉} = 6.5 × 10{sup 10}) to nearby massive ellipticals (M{sub *}/M{sub ☉} = 1.5 × 10{sup 11}). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M{sub *}/M{sub ☉} = 6.5 × 10{sup 9}). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10{sup 12} and 10{sup 13} M{sub ☉}, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  10. Study on quench effects in liquid scintillation counting during tritium measurements

    International Nuclear Information System (INIS)

    Ivana Jakonic; Jovana Nikolov; Natasa Todorovic; Miroslav Veskovic; Branislava Tenjovic

    2014-01-01

    Quench effects can cause a serious reduction in counting efficiency for a given sample/cocktail mixture in liquid scintillation counting (LSC) experiments. This paper presents a simple experiment performed in order to test the influence of quenching on the LSC efficiency of 3 H. The aim of this study was to investigate the behavior of several quench agents with different quench strengths (nitromethane, nitric acid, acetone, dimethyl-sulfoxide) added in different amounts to tritiated water in order to obtain standard sets for quench calibration curves. The OptiPhase HiSafe 2 and OptiPhase HiSafe 3 scintillation cocktails were used in this study in order to compare their quench resistance. Measurements were performed using a low-level LS counter (Wallac, Quantulus 1220). (author)

  11. Quench detection of superconducting magnet by dual-core optical fiber

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kawai, K.; Kokubun, Y.; Takao, T.

    1988-01-01

    A quench-detecting technique using two single-mode optical cores in one fiber has been developed. The technique can detect quench from a temperature rise of 1.0 K at 4.2 K. An electromagnetic force-stress to the fiber did not deteriorate quench detection sensitivity. A quench detector using this method was immune from electromagnetic noise and free from troubles caused by high voltage tension. Problems arising when applying this method to a large scale magnet and possible improvements in the instrumentation are discussed

  12. Concentration Effect on Quenching of Chlorophyll a Fluorescence by All-Trans-β-Carotene in Photosynthesis

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2017-09-01

    Full Text Available Absorption, fluorescence spectra of chlorophyll a (Chl-a and all-trans-β-carotene (β-Car mixing solution are investigated in different polarity and polarizability solvents. The carotenoids regulate the energy flow in photosynthesis by interaction with chlorophyll, leading to an observable reduction of Chl-a fluorescence. The fluorescence red shifts with the increasing solvent polarizability. The energy transfer in the Chl-a and β-Car system is proposed. The electron transfer should be dominant in quenching Chl-a fluorescence rather than the energy transfer in this system. Polar solvent with large polarizability shows high quenching efficiency. When dissolved in carbon tetrachloride, Chl-a presents red shift of absorption and blue shift of fluorescence spectra with increasing β-Car concentration, which implies a Chl-a conformational change.

  13. High-field quench behavior and dependence of hot spot temperature on quench detection voltage threshold in a Bi2Sr2CaCu2Ox coil

    International Nuclear Information System (INIS)

    Shen, Tengming; Ye, Liyang; Turrioni, Daniele; Li, Pei

    2015-01-01

    Small insert solenoids have been built using a multifilamentary Ag/Bi 2 Sr 2 CaCu 2 O x round wire insulated with a mullite sleeve (∼100 μm in thickness) and characterized in background fields to explore the quench behaviors and limits of Bi 2 Sr 2 CaCu 2 O x superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage should be greater than 50 mV in order not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increased from ∼40–∼80 K while increasing the operating wire current density J o from 89 A mm −2 to 354 A mm −2 , whereas for the voltage to reach 1 V, it increased from ∼60–∼140 K. This shows the increasing negative impact of slow normal zone propagation on quench detection with increasing J o and the need to limit the quench detection voltage to <1 V. These measurements, coupled with an analytical quench model, were used to assess the impact of the maximum allowable detection voltage and temperature upon quench detection on the quench protection, assuming a limit of the hot spot temperature to <300 K. (paper)

  14. Comparison of the quench experiments CORA-12, CORA-13, CORA-17

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1996-08-01

    The CORA quench experiments 12, 13 (PWR) und 17 (BWR) are in agreement with the inpile tests LOFT LP-FP-2 and PBF SFD-ST and the TMI accident: Flooding of hot Zircaloy clad fuel rods does not result in an immediate cooldown of the bundle, but produces a remarkable temporary temperature increase connected to a strong peak in hydrogen production. For the preparation of new quench bundle tests, necessary for the understanding of the mechanisms governing the quench process and support for validation of future quench models in SFD codes the three tests are compared to each other and to the relevant non-quench tests CORA-29 (PWR) and CORA-16 (BWR). The PWR tests CORA-12 and CORA-13 are of the same geometrical arrangement and test conduct. An exception is the shorter time between power shutdown and quench initiation for CORA 13, resulting in a higher temperature of the bundle at start of quenching. The BWR test CORA-17 used B 4 C absorber and Zircaloy channel box walls, but was in respect to the delay time between power shutdown and start of quenching similar to test CORA-12. (orig./GL) [de

  15. Simulation of the Quench-06 experiment with Scdapsim

    International Nuclear Information System (INIS)

    Angel M, E. del; Nunez C, A.; Amador G, R.

    2003-01-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  16. Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals

    International Nuclear Information System (INIS)

    Boruc, Z.; Fetlinski, B.; Kaczkan, M.; Turczynski, S.; Pawlak, D.; Malinowski, M.

    2012-01-01

    Highlights: ► Spectroscopic properties of Tb 3+ :Y 4 Al 2 O 9 crystals are studied. ► Concentration and temperature dependencies of fluorescence are investigated. ► The cross-relaxation transfer rates are experimentally determined. ► Strong influence of cross relaxation process on 5 D 3 emission quenching is observed. ► Decays are modelled using Inokuti–Hirayama approach. - Abstract: Spectroscopic properties of trivalent terbium (Tb 3+ ) activated Y 4 Al 2 O 9 (abbreviated YAM) crystals were studied. Concentration and temperature dependent emission spectra and fluorescence dynamics profiles have been investigated in YAM:Tb 3+ in order to understand better processes responsible for quenching of the terbium 5 D 3 and 5 D 4 emissions. Decays were modelled using Inokuti–Hirayama approach to obtain information on the energy transfer mechanism. The cross-relaxation transfer rates were experimentally determined as a function of temperature and Tb 3+ concentration. The investigation revealed strong influence of cross-relaxation process on 5 D 3 emission quenching. The two different processes responsible for the increase of fluorescence quenching with growing temperature were observed, both related to thermal activation energy. For temperatures above 700 K, the temperature dependence of the emission intensity ratio ( 5 D 3 / 5 D 4 ) becomes linear and the decay times are rapidly decreasing monotonously with increasing temperature, what is confirming the potential of Y 4 Al 2 O 9 :Tb 3+ material in high temperature luminescence thermometry.

  17. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Rodriguez, R.; Ramirez, E.

    2010-08-14

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient {cflx q} extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting {cflx q} to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  18. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); Fries, R.J., E-mail: rjfries@comp.tamu.ed [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ramirez, E. [Physics Department, University of Texas El Paso, El Paso, TX 79968 (United States)

    2010-09-27

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient q extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting q to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  19. Quenching of spin-flip quadrupole transitions

    International Nuclear Information System (INIS)

    Castel, B.; Blunden, P.; Okuhara, Y.

    1985-01-01

    An increasing amount of experimental data indicates that spin-flip quadrupole transitions exhibit quenching effects similar to those reported earlier in (p,n) reactions involving l = 0 and l = 1 transitions. We present here two model calculations suggesting that the E2 spin-flip transitions are more affected than their M1 and M3 counterparts by the tensor and spin-orbit components of the nuclear force and should exhibit the largest quenching. We also review the experimental evidence corroborating our observations

  20. An electron counting mechanism for the open counter operated in air

    International Nuclear Information System (INIS)

    Noguchi, T.; Nagashima, S.; Uda, M.

    1994-01-01

    An electron counting mechanism for an open or air filled counter has been explicitly explained for the first time. Electrons emitted from a solid surface or formed in air by radiations are transported to the neighborhood of the anode in the counter in the form of O 2 - ions, and are detached from the ions and multiplied in the proximity to the anode through electronic avalanche process. The estimation of the number of the emitted electrons from observed count rates has successively been performed by expressing the dead time as the sum of time intervals necessary for quenching using an external circuit and for drifting of the O 2 - ions, and also by taking into account the reduction in the number of electrons during transportation, which is due to scattering of the O 2 - ions in air. (orig.)

  1. First experience with the new coupling loss induced quench system

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Dudarev, A.V.; Kirby, G.; Sperin, K.A.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A

  2. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    Science.gov (United States)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2018-03-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  3. Dust emission from wet, low-emission coke quenching process

    Science.gov (United States)

    Komosiński, Bogusław; Bobik, Bartłomiej; Konieczny, Tomasz; Cieślik, Ewelina

    2018-01-01

    Coke plants, which produce various types of coke (metallurgical, foundry or heating), at temperatures between 600 and 1200°C, with limited access to oxygen, are major emitters of particulates and gaseous pollutants to air, water and soils. Primarily, the process of wet quenching should be mentioned, as one of the most cumbersome. Atmospheric pollutants include particulates, tar substances, organic pollutants including B(a)P and many others. Pollutants are also formed from the decomposition of water used to quench coke (CO, phenol, HCN, H2S, NH3, cresol) and decomposition of hot coke in the first phase of quenching (CO, H2S, SO2) [1]. The development of the coke oven technology has resulted in the changes made to different types of technological installations, such as the use of baffles in quench towers, the removal of nitrogen oxides by selective NOx reduction, and the introduction of fabric filters for particulates removal. The BAT conclusions for coke plants [2] provide a methodology for the measurement of particulate emission from a wet, low-emission technology using Mohrhauer probes. The conclusions define the emission level for wet quenching process as 25 g/Mgcoke. The conducted research was aimed at verification of the presented method. For two of three quench towers (A and C) the requirements included in the BAT conclusions are not met and emissions amount to 87.34 and 61.35 g/Mgcoke respectively. The lowest particulates emission was recorded on the quench tower B and amounted to 22.5 g/Mgcoke, therefore not exceeding the requirements.

  4. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    Science.gov (United States)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  5. Quenched Approximation to ΔS = 1 K Decay

    International Nuclear Information System (INIS)

    Christ, Norman H.

    2005-01-01

    The importance of explicit quark loops in the amplitudes contributing to ΔS = 1, K meson decays raises potential ambiguities when these amplitudes are evaluated in the quenched approximation. Using the factorization of these amplitudes into short- and long-distance parts provided by the standard low-energy effective weak Hamiltonian, we argue that the quenched approximation can be conventionally justified if it is applied to the long-distance portion of each amplitude. The result is a reasonably well-motivated definition of the quenched approximation that is close to that employed in the RBC and CP-PACS calculations of these quantities

  6. Stability and quench of dual cooling channel cable-in-conduct superconductors

    International Nuclear Information System (INIS)

    Blau, Bertrand

    1999-11-01

    Presently, the most ambitious experimental project towards controlled thermonuclear fusion is the International Thermonuclear Experimental Reactor ITER. All coils of its magnet system will be superconducting since for magnetic fields in the range between 6 - 13 T high current densities are required. During recent years, in particular for fusion applications, a special configuration of superconductor was favoured: the so-called Cable-In-Conduit Conductor (CICC). The CICCs for ITER consist of a superconducting cable made of a large number of superconducting wires (NbTi or Nb 3 Sn) twisted around a central cooling channel, which are tightly jacketed in a metal conduit, providing the desired mechanical stiffness of the conductor against magnetic forces. Pressurized supercritical helium is pumped through the cable interstices and the central channel. The direct contact between the coolant and the cable provides good thermal stability of the conductor against sudden energy inputs. These disturbances can lead to a transition into the normal state (quench) if the released energy is sufficiently high, so that the temperature of the superconductor exceeds locally its critical temperature and if the energy cannot be absorbed efficiently by the surrounding helium. Stability of superconductors against quenches is one of the most important issues in applied superconductivity. The recovery capabilities of a CICC after thermal disturbances are governed by the heat transfer rate from the strands to the helium. The heat transfer is greatly affected by the flow velocity of the coolant. It has been shown theoretically that a temporal thermal disturbance in a CICC can induce an additional strong helium flow, which enhances the heat transfer rate and, hence, the stability. This self-stabilizing effect is believed to play an important role for the recovery capabilities of a CICC. The scope of this thesis is the experimental assessment of the quench and stability behaviour of dual cooling

  7. Stability and quench of dual cooling channel cable-in-conduct superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Bertrand [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-11-01

    Presently, the most ambitious experimental project towards controlled thermonuclear fusion is the International Thermonuclear Experimental Reactor ITER. All coils of its magnet system will be superconducting since for magnetic fields in the range between 6 - 13 T high current densities are required. During recent years, in particular for fusion applications, a special configuration of superconductor was favoured: the so-called Cable-In-Conduit Conductor (CICC). The CICCs for ITER consist of a superconducting cable made of a large number of superconducting wires (NbTi or Nb{sub 3}Sn) twisted around a central cooling channel, which are tightly jacketed in a metal conduit, providing the desired mechanical stiffness of the conductor against magnetic forces. Pressurized supercritical helium is pumped through the cable interstices and the central channel. The direct contact between the coolant and the cable provides good thermal stability of the conductor against sudden energy inputs. These disturbances can lead to a transition into the normal state (quench) if the released energy is sufficiently high, so that the temperature of the superconductor exceeds locally its critical temperature and if the energy cannot be absorbed efficiently by the surrounding helium. Stability of superconductors against quenches is one of the most important issues in applied superconductivity. The recovery capabilities of a CICC after thermal disturbances are governed by the heat transfer rate from the strands to the helium. The heat transfer is greatly affected by the flow velocity of the coolant. It has been shown theoretically that a temporal thermal disturbance in a CICC can induce an additional strong helium flow, which enhances the heat transfer rate and, hence, the stability. This self-stabilizing effect is believed to play an important role for the recovery capabilities of a CICC. The scope of this thesis is the experimental assessment of the quench and stability behaviour of dual

  8. Post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.; Condie, K.G.

    1980-01-01

    This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation

  9. QUENCH-LOCA program at KIT and results of the QUENCH-L0 bundle test

    International Nuclear Information System (INIS)

    Stuckert, J.; Grosse, M.; Roessger, C.; Steinbrueck, M.; Walter, M.

    2012-01-01

    The current LOCA criteria and their safety goals are applied worldwide with minor modifications since the USNRC release in 1973. The criteria are given as limits on peak cladding temperature (T PCT ≤ 1200 C) and on oxidation level ECR (equivalent cladding reacted) calculated as a percentage of cladding oxidized (ECR ≤ 17% calculated using Baker-Just oxidation correlation). These two rules constitute the criterion of cladding embrittlement due to oxygen uptake. The results elaborated worldwide in the 1980s and 1990s on Zircaloy-4 (Zry-4) cladding tubes behavior (oxidation, deformation and bundle coolability) under LOCA conditions constitute a detailed data base and an important input for the safety assessment of LWRs. In-pile test data (with burn-up up to 35 MWd/kgU) were consistent with the out-of-pile data and did not indicate an influence of the nuclear environment on cladding deformation. At high burn-up, fuel rods fabricated from conventional Zry-4 often exhibit significant oxidation, hydriding, and oxide spallation. Thus, many fuel vendors have proposed the use of recently developed cladding alloys, such as M5 registered , ZIRLO trademark and other. Therefore, it is important to verify the safety margins for high burn-up fuel and fuel claddings with new alloys. Due to long cladding hydriding period for the high fuel burn-up, post-quench ductility is strongly influenced not only by oxidation but also hydrogen uptake. The 17% ECR limit is inadequate to ensure post-quench ductility at hydrogen concentrations higher than ∼500 wppm. Due to so called secondary hydriding (during oxidation of inner cladding surface after burst), which was firstly observed in JAEA, the hydrogen content can reach 4000 wppm in Zircaloy cladding regions around burst. To investigate the influence of these phenomena on the applicability of the embrittlement criteria for the German nuclear reactors it was decided to perform the QUENCH-LOCA bundle test series at the Karlsruhe Institute

  10. QUENCH-LOCA program at KIT and results of the QUENCH-L0 bundle test

    Energy Technology Data Exchange (ETDEWEB)

    Stuckert, J.; Grosse, M.; Roessger, C.; Steinbrueck, M.; Walter, M. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2012-11-01

    The current LOCA criteria and their safety goals are applied worldwide with minor modifications since the USNRC release in 1973. The criteria are given as limits on peak cladding temperature (T{sub PCT} {<=} 1200 C) and on oxidation level ECR (equivalent cladding reacted) calculated as a percentage of cladding oxidized (ECR {<=} 17% calculated using Baker-Just oxidation correlation). These two rules constitute the criterion of cladding embrittlement due to oxygen uptake. The results elaborated worldwide in the 1980s and 1990s on Zircaloy-4 (Zry-4) cladding tubes behavior (oxidation, deformation and bundle coolability) under LOCA conditions constitute a detailed data base and an important input for the safety assessment of LWRs. In-pile test data (with burn-up up to 35 MWd/kgU) were consistent with the out-of-pile data and did not indicate an influence of the nuclear environment on cladding deformation. At high burn-up, fuel rods fabricated from conventional Zry-4 often exhibit significant oxidation, hydriding, and oxide spallation. Thus, many fuel vendors have proposed the use of recently developed cladding alloys, such as M5 {sup registered}, ZIRLO trademark and other. Therefore, it is important to verify the safety margins for high burn-up fuel and fuel claddings with new alloys. Due to long cladding hydriding period for the high fuel burn-up, post-quench ductility is strongly influenced not only by oxidation but also hydrogen uptake. The 17% ECR limit is inadequate to ensure post-quench ductility at hydrogen concentrations higher than {approx}500 wppm. Due to so called secondary hydriding (during oxidation of inner cladding surface after burst), which was firstly observed in JAEA, the hydrogen content can reach 4000 wppm in Zircaloy cladding regions around burst. To investigate the influence of these phenomena on the applicability of the embrittlement criteria for the German nuclear reactors it was decided to perform the QUENCH-LOCA bundle test series at the

  11. Effects of keV electron irradiation on the avalanche-electron generation rates of three donors on oxidized silicon

    International Nuclear Information System (INIS)

    Sah, C.; Sun, J.Y.; Tzou, J.J.

    1983-01-01

    After keV electron beam irradiation of oxidized silicon, the avalanche-electron-injection generation rates and densities of the bulk compensating donor, the interface states, and the turnaround trap all increase. Heating at 200 0 C can anneal out these three donor-like traps, however, it cannot restore the generation rates back to their original and lower pre-keV electron irradiation values. The experimental results also indicate that all three traps may be related to the same mobile impurity species whose bonds are loosened by the keV electrons and then broken or released by the avalanche injected electrons

  12. Nanocrystallization in Al85Ce8Ni5Co2 amorphous alloy obtained by different strain rate during high pressure torsion

    International Nuclear Information System (INIS)

    Henits, P.; Kovacs, Zs.; Schafler, E.; Varga, L.K.; Labar, J.L.; Revesz, A.

    2010-01-01

    In order to elucidate the role of total strain and strain rate during high pressure torsion of Al 85 Ce 8 Ni 5 Co 2 metallic glass, different deformation conditions were applied to devitrify the as-quenched alloy. The disk-shaped specimens were characterized by X-ray diffraction, transmission electron microscopy and thermal analysis.

  13. Quench detection/protection of an HTS coil by AE signals

    International Nuclear Information System (INIS)

    Yoneda, M.; Nanato, N.; Aoki, D.; Kato, T.; Murase, S.

    2011-01-01

    A quench detection/protection system based on measuring AE signals was developed. The system was tested for a Bi2223 coil. Temperature rise after a quench occurrence was restrained at very low value. The normal zone propagation velocities in high T c superconductors are slow at high operation temperature and therefore local and excessive temperature rise generates at quench occurrence, and then the superconductors are degraded or burned. Therefore it is essential to detect the temperature rise in high T c superconducting (HTS) coils as soon as possible and protect them. The authors have presented a quench detection method for HTS coils by time-frequency visualization of AE signals and have shown its usefulness for a HTS coil with height and outer diameter of 40-50 mm. In this paper, the authors present a quench detection/protection system based on superior method in quench detection time to the previous method and show its usefulness for a larger HTS coil (height and outer diameter: 160-190 mm) than the previous coil.

  14. Quench Protection and Magnet Powe Supply Requirements for the MICE Focusing and Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    This report discusses the quench protection and power supply requirements of the MICE superconducting magnets. A section of the report discusses the quench process and how to calculate the peak voltages and hotspot temperature that result from a magnet quench. A section of the report discusses conventional quench protection methods. Thermal quench back from the magnet mandrel is also discussed. Selected quench protection methods that result in safe quenching of the MICE focusing and coupling magnets are discussed. The coupling of the MICE magnets with the other magnets in the MICE is described. The consequences of this coupling on magnet charging and quenching are discussed. Calculations of the quenching of a magnet due quench back from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. The conclusion of this report describes how the MICE magnet channel will react when one or magnets in that channel are quenched

  15. Origin and Quenching of Novel ultraviolet and blue emission in NdGaO3: Concept of Super-Hydrogenic Dopants.

    Science.gov (United States)

    Ghosh, Siddhartha; Saha, Surajit; Liu, Zhiqi; Motapothula, M; Patra, Abhijeet; Yakovlev, Nikolai; Cai, Yao; Prakash, Saurav; Huang, Xiao Hu; Tay, Chuan Beng; Cong, Chun Xiao; Bhatt, Thirumaleshwara; Dolmanan, Surani B; Chen, Jianqiang; Lü, Weiming; Huang, Zhen; Tripathy, Sudhiranjan; Chua, Soo Jin; Yu, Ting; Asta, Mark; Ariando, A; Venkatesan, T

    2016-11-03

    In this study we report the existence of novel ultraviolet (UV) and blue emission in rare-earth based perovskite NdGaO 3 (NGO) and the systematic quench of the NGO photoluminescence (PL) by Ce doping. Study of room temperature PL was performed in both single-crystal and polycrystalline NGO (substrates and pellets) respectively. Several NGO pellets were prepared with varying Ce concentration and their room temperature PL was studied using 325 nm laser. It was found that the PL intensity shows a systematic quench with increasing Ce concentration. XPS measurements indicated that nearly 50% of Ce atoms are in the 4+ state. The PL quench was attributed to the novel concept of super hydrogenic dopant (SHD)", where each Ce 4+ ion contributes an electron which forms a super hydrogenic atom with an enhanced Bohr radius, due to the large dielectric constant of the host. Based on the critical Ce concentration for complete quenching this SHD radius was estimated to be within a range of 0.85 nm and 1.15 nm whereas the predicted theoretical value of SHD radius for NdGaO3 is ~1.01 nm.

  16. A novel Silicon Photomultiplier with bulk integrated quench resistors: utilization in optical detection and tracking applications for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovics, Stefan, E-mail: stp@hll.mpg.de [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Andricek, Ladislav [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Diehl, Inge; Hansen, Karsten [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Jendrysik, Christian [Infineon Technologies AG, Am Campeon 1-12, D-85579 Neubiberg (Germany); Krueger, Katja [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Lehmann, Raik; Ninkovic, Jelena [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Reckleben, Christian [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Richter, Rainer; Schaller, Gerhard; Schopper, Florian [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Sefkow, Felix [DESY, Notkestrasse 85, D-22607 Hamburg (Germany)

    2017-02-11

    Silicon Photomultipliers (SiPMs) are a promising candidate for replacing conventional photomultiplier tubes (PMTs) in many applications, thanks to ongoing developments and advances in their technology. Conventional SiPMs are generally an array of avalanche photo diodes, operated in Geiger mode and read out in parallel, thus leading to the necessity of a high ohmic quenching resistor. This resistor enables passive quenching and is usually located on top of the array, limiting the fill factor of the device. In this paper, a novel detector concept with a bulk integrated quenching resistor will be recapped. In addition, due to other advantages of this novel detector design, a new concept, in which these devices will be utilized as tracking detectors for particle physics applications will be introduced, as well as first simulation studies and experimental measurements of this new approach. - Highlights: • A novel SiPM concept with bulk integrated quenching resistor is shown. • First prototypes of these SiPMs as tracking detectors are proposed. • Simulations of the Geiger efficiency suggest feasible operations at low overbias. • First measurements of the electron detection efficiency show promising results. • Measurements are in good agreement with the simulations.

  17. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1983-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdown are eliminated up to 7 /sub μ/A average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  18. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1982-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdowns are eliminated up to 7 μA average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  19. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao

    2017-09-22

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  20. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao; Shakfa, Mohammad Khaled; Mishra, Pawan; Li, Ming-Yang; Chiu, Ming-Hui; Ng, Tien Khee; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  1. A novel approach to quench detection for high temperature superconducting coils

    International Nuclear Information System (INIS)

    Song, W.J.; Fang, X.Y.; Fang, J.; Wei, B.; Hou, J.Z.; Liu, L.F.; Lu, K.K.; Li, Shuo

    2015-01-01

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  2. A novel approach to quench detection for high temperature superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.J., E-mail: songwenjuan@bjtu.edu.cn [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); China Electric Power Research Institute, Beijing (China); Fang, X.Y. [Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 2Y2 (Canada); Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Wei, B.; Hou, J.Z. [China Electric Power Research Institute, Beijing (China); Liu, L.F. [Guangzhou Metro Design & Research Institute Co., Ltd, Guangdong (China); Lu, K.K. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Shuo [College of Information Science and Engineering, Northeastern University, Shenyang (China)

    2015-11-15

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  3. Quench propagation and protection analysis of the ATLAS Toroids

    OpenAIRE

    Dudarev, A; Gavrilin, A V; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the inte...

  4. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    International Nuclear Information System (INIS)

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-01-01

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: ► Through thickness residual stress measurements made on large Al alloy forgings. ► Residual stress characterised using neutron diffraction and deep hole drilling. ► Biaxial compressive surface and triaxial subsurface residual stresses. ► Quench sensitivity of 7075 promotes significant microstructural differences to 7010. ► When precipitation is

  5. Generalized thermalization for integrable system under quantum quench.

    Science.gov (United States)

    Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S

    2018-01-01

    We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.

  6. Anthracene Fluorescence Quenching by a Tetrakis (Ketocarboxamide Cavitand

    Directory of Open Access Journals (Sweden)

    Tibor Zoltan Janosi

    2014-01-01

    Full Text Available Quenching of both fluorescence lifetime and fluorescence intensity of anthracene was investigated in the presence of a newly derived tetrakis (ketocarboxamide cavitand at various concentrations. Time-correlated single photon counting method was applied for the lifetime measurements. A clear correlation between the fluorescence lifetime of anthracene as a function of cavitand concentration in dimethylformamide solution was observed. The bimolecular collisional quenching constant was derived from the decrease of lifetime. Fluorescence intensity was measured in the emission wavelength region around 400 nm as a result of excitation at 280 nm. Effective quenching was observed in the presence of the cavitand. The obtained Stern-Volmer plot displayed upward curvature. The results did not follow even extended Stern-Volmer behavior, often used to describe deviations from static bimolecular quenching. To explain our results we adopted the Smoluchowski model and obtained a reasonable estimate for the molecular radius of the cavitand in solution.

  7. Galaxy evolution. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang.

    Science.gov (United States)

    Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G

    2015-04-17

    Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.

  8. Critical properties of Sudden Quench Dynamics in the anisotropic XY Model

    OpenAIRE

    Guo, Hongli; Liu, Zhao; Fan, Heng; Chen, Shu

    2010-01-01

    We study the zero temperature quantum dynamical critical behavior of the anisotropic XY chain under a sudden quench in a transverse field. We demonstrate theoretically that both quench magnetic susceptibility and two-particle quench correlation can be used to describe the dynamical quantum phase transition (QPT) properties. Either the quench magnetic susceptibility or the derivative of correlation functions as a function of initial magnetic field $a$ exhibits a divergence at the critical poin...

  9. Modelling of pressure tube Quench using PDETWO

    International Nuclear Information System (INIS)

    Parlatan, Y.; Lei, Q.M.; Kwee, M.

    2004-01-01

    Transient two-dimensional heat conduction calculations have been carried out to determine the time-dependent temperature distribution in an overheated pressure tube during quenching with water. The purpose of the calculations is to provide input for evaluation of thermal (secondary) stresses in the pressure tube due to quench. The quench phenomenon in pressure tubes could occur in several hypothetical accident scenarios, including incidents involving intermittent buoyancy-induced flow during outages. In these scenarios, there will be two (radial and axial) or three dimensional temperature gradients, resulting in thermal stresses in the pressure tube, as the water front reaches and starts to cool down the hot pressure tube. The transient, two-dimensional heat conduction equation in the pressure tube during quench is solved using a FORTRAN package called PDETWO, available in the open literature for solving time-dependent coupled systems of non-linear partial differential equations over a two-dimensional rectangular region. This routine is based on finite difference solution of coupled, non-linear partial differential equations. Temperature gradient in the circumferential gradient is neglected for conservatism and convenience. The advancing water front is not modelled explicitly, and assumed to be at a uniform temperature and moving at a constant velocity inferred from experimental data. For outer surface and both ends of the pressure tube in the axial direction, a zero-heat flux boundary condition is assumed, while for the inner surface a moving water-quench front is assumed by appropriately varying the fluid temperature and the heat transfer coefficient. The pressure tube is assumed to be at a uniform temperature of 400 o C initially, to represent conditions expected during an intermittent buoyancy-influenced flow scenario. The results confirm the expectations that axial temperature gradients and associated heat fluxes are small in comparison with those in the

  10. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain1[OPEN

    Science.gov (United States)

    2018-01-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. PMID:29540590

  11. Studies of quench propagation in a superconducting window frame magnet

    International Nuclear Information System (INIS)

    Allinger, J.; Carroll, A.; Danby, G.; DeVito, B.; Jackson, J.; Leonhardt, M.; Prodell, A.; Stoehr, R.

    1981-01-01

    During the testing of a meter long, superconducting window frame magnet, information from many spontaneously generated quenches have been recorded by an on-line computer system. Nearly every layer in an eleven layer dipole had a voltage tap and for some layers this subdivided into two halves. This allowed us to study development of the quenches in some detail. Knowledge of the resistances throughout the magnet also allowed the temperature distributions in the superconducting windings to be determined. A qualitative picture of the quench was developed and quantitative values of quench propagation velocities were compared to heat transfer calculations

  12. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

  13. The fluorescence quenching mechanism of coumarin 120 with CdS nanoparticles in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Murat; Bozkurt, Ebru; Meral, Kadem; Arık, Mustafa; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr

    2015-01-15

    The interaction of coumarin 120 (C120) with CdS nanoparticles (CdS NPs) in aqueous suspension was examined by using UV–vis absorption, steady-state, time-resolved fluorescence, and electron paramagnetic resonance (EPR) spectroscopy techniques. The fluorescence intensity of C120 was quenched with increasing the amount of CdS NPs in the aqueous suspension. The spectroscopic data revealed that the C120 molecules adsorbed on CdS NPs via electrostatic interactions. The apparent association constant (K{sub app}) and the degree of association (α) for C120/CdS NPs were determined as 130.3 M{sup −1} and 0.51 for 4 nm CdS NPs and 624.3 M{sup −1} and 0.71 for 8 nm CdS NPs, respectively. The photoinduced EPR studies exhibited that no electron transfers between CdS and C120 taking place. The results revealed that the fluorescence quenching of C120 with different CdS NPs is due to the formation of a non-fluorescent complex. - Highlights: • Interaction of C120 with CdS NPs in aqueous solution was spectroscopically examined. • Nonfluorescent C120–CdS NPs complexes in aqueous solution were formed. • In the system, CdS NPs in aqueous solution acted as a fluorescence quencher.

  14. The fluorescence quenching mechanism of coumarin 120 with CdS nanoparticles in aqueous suspension

    International Nuclear Information System (INIS)

    Acar, Murat; Bozkurt, Ebru; Meral, Kadem; Arık, Mustafa; Onganer, Yavuz

    2015-01-01

    The interaction of coumarin 120 (C120) with CdS nanoparticles (CdS NPs) in aqueous suspension was examined by using UV–vis absorption, steady-state, time-resolved fluorescence, and electron paramagnetic resonance (EPR) spectroscopy techniques. The fluorescence intensity of C120 was quenched with increasing the amount of CdS NPs in the aqueous suspension. The spectroscopic data revealed that the C120 molecules adsorbed on CdS NPs via electrostatic interactions. The apparent association constant (K app ) and the degree of association (α) for C120/CdS NPs were determined as 130.3 M −1 and 0.51 for 4 nm CdS NPs and 624.3 M −1 and 0.71 for 8 nm CdS NPs, respectively. The photoinduced EPR studies exhibited that no electron transfers between CdS and C120 taking place. The results revealed that the fluorescence quenching of C120 with different CdS NPs is due to the formation of a non-fluorescent complex. - Highlights: • Interaction of C120 with CdS NPs in aqueous solution was spectroscopically examined. • Nonfluorescent C120–CdS NPs complexes in aqueous solution were formed. • In the system, CdS NPs in aqueous solution acted as a fluorescence quencher

  15. Phase-separation control of KxFe2-ySe2 superconductor through rapid-quenching process

    International Nuclear Information System (INIS)

    Yanagisawa, Yusuke; Tanaka, Masashi; Yamashita, Aichi; Suzuki, Kouji; Hara, Hiroshi; Takeya, Hiroyuki; Takano, Yoshihiko; ElMassalami, Mohammed

    2017-01-01

    K x Fe 2-y Se 2 exhibits iron-vacancy ordering at T s ∼ 270°C and separates into two phases: a minor superconducting (iron-vacancy-disordered) phase and a major non-superconducting (iron-vacancy-ordered) phase. The microstructural and superconducting properties of this intermixture can be tuned by an appropriate control of the quenching process through T s . A faster quenching rate leads to a finer microstructure and a suppression of formation of the non-superconducting phase by up to 50%. Nevertheless, such a faster cooling rate induces a monotonic reduction in the superconducting transition temperature (from 30.7 to 26.0 K) and, simultaneously, a decrease in the iron content within the superconducting phase such that the compositional ratio changed from K 0.35 Fe 1.83 Se 2 to K 0.58 Fe 1.71 Se 2 . (author)

  16. Structure of partly quenched molten copper chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-09-01

    The structural modifications induced in a model of molten CuCl by quenching the chlorine component into a microporous disordered matrix are evaluated using the hypernetted-chain closure in Ornstein-Zernike relations for the pair distribution functions in random systems. Aside from obvious changes in the behaviour of long-wavelength density fluctuations, the main effect of partial quenching is an enhanced delocalization of the Cu + ions. The model suggests that the ionic mobility in a superionic glass is enhanced relative to the melt at the same temperature and density. Only very minor quantitative differences are found in the structural functions when the replica Ornstein-Zernike relations derived by Given and Stell for a partly quenched system are simplified to those given earlier by Madden and Glandt. (author). 19 refs, 6 figs

  17. Group quenching and galactic conformity at low redshift

    Science.gov (United States)

    Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.

    2018-06-01

    We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a colour-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive haloes than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of `group quenching'; at log (Mh/M⊙) ≳ 13, a cut-off that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller haloes. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star formation of blue satellites in massive haloes is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low-mass haloes, show no deviation from the colour-stellar mass relation of blue field galaxies.

  18. Group quenching and galactic conformity at low redshift

    Science.gov (United States)

    Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.

    2018-03-01

    We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly (GAMA) to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a color-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive halos than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of "group quenching"; at log (Mh/M⊙) ≳ 13, a cutoff that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller halos. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star-formation of blue satellites in massive halos is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low mass halos, show no deviation from the color-stellar mass relation of blue field galaxies.

  19. Photodetachment and electron reactivity in 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide

    Energy Technology Data Exchange (ETDEWEB)

    Molins i Domenech, Francesc; FitzPatrick, Benjamin; Healy, Andrew T.; Blank, David A. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 (United States)

    2012-07-21

    The transient absorption spectrum in the range 500 nm-1000 nm was measured with ultrafast time resolution on a flowing neat, aliphatic, room-temperature ionic liquid following anion photodetachment. In this region the spectrum was shown to be a combination of absorption from the electron and the hole. Spectrally-resolved electron quenching determined a bimodal shape for the hole spectrum in agreement with recent computational predictions on a smaller aliphatic ionic liquid [Margulis et al., J. Am. Chem. Soc. 133, 20186 (2011)]. For time delays beyond 15 ps, spectral evolution qualitatively agrees with recent radiolysis experiments [Wishart et al., Faraday Discuss. 154, 353 (2012)]. However, the shape of the spectrum is different, reflecting the contrast in ionization energy between the two methods. Previously unobserved reactivity of the electron was found with a time constant of 300 fs. The results demonstrate solvent control of the rate coefficient for reaction between the electron and proton, with a rapid decline in the rate within the first picosecond.

  20. Quenched Magnon excitations by oxygen sublattice reconstruction in (SrCuO2)n/(SrTiO3)2 superlattices.

    Science.gov (United States)

    Dantz, M; Pelliciari, J; Samal, D; Bisogni, V; Huang, Y; Olalde-Velasco, P; Strocov, V N; Koster, G; Schmitt, T

    2016-09-12

    The recently discovered structural reconstruction in the cuprate superlattice (SrCuO2)n/(SrTiO3)2 has been investigated across the critical value of n = 5 using resonant inelastic x-ray scattering (RIXS). We find that at the critical value of n, the cuprate layer remains largely in the bulk-like two-dimensional structure with a minority of Cu plaquettes being reconstructed. The partial reconstruction leads to quenching of the magnons starting at the Γ-point due to the minority plaquettes acting as scattering points. Although comparable in relative abundance, the doped charge impurities in electron-doped cuprate superconductors do not show this quenching of magnetic excitations.

  1. Molecular dynamics study of dual-phase microstructure of Titanium and Zirconium metals during the quenching process

    Science.gov (United States)

    Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji

    Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.

  2. Quenching of Einstein A-Coefficients in plasmas and lasers

    International Nuclear Information System (INIS)

    Suckewer, S.; Princeton Univ., NJ

    1991-03-01

    The coefficient of spontaneous emission (Einstein A-coefficient) is considered to be one of the basic constants of a given transition in atom or ion. The formula for the Einstein A-coefficient was derived in the pioneering works of Weisskopf and Wigner (WW) based on Dirac's theory of light. More recently, however, it was noted in several papers that the rate of spontaneous radiative decay can deviate significantly from the WW expression in certain conditions, for example in a laser cavity. A different type of change in A- coefficients was inferred from measurements of changes in the intensity branching ratio of spectral lines in a plasma. A change of branching ratio of up to a factor of 10 was observed in CIV for 3p-3s (580.1--581.2nm) and 3p-2s (31.2-nm) transitions when the electron density changed from approximately N e ∼ 1 x 10 18 to 5 x 10 18 cm -3 . This effect was also observed in CIII and NV. An initial theoretical approach to the problem based on the integration of the Schroedinger equation with the ion Coulomb potential modified by the electron cloud within the Debye radius was unsuccessfully in predicting the experimental observations. The effect of quenching of spontaneous emission coefficients was observed also in an Ar-ion laser as a function of the intracavity power density (photon density) for lines originating from the same upper level as the lasing line. Measurements of these line profiles absorption for different lasing conditions and related discussions are also presented. 14 refs., 6 figs

  3. Thermalhydraulic phenomena governing the quenching of hot rods, and existing models

    International Nuclear Information System (INIS)

    Bestion, D.

    2001-01-01

    After a core dry-out and a period of rod clad overheating, which might occur in some postulated accidental sequences in a PWR, the actuation of safety injections allows to quench the hot rods. Both thermal and mechanical processes control the phenomenon of quenching. Quenching first requires that liquid water is present to release the heat stored in the rod. When water is present, a pre-cooling of the clad is also required before quenching. (author)

  4. Thermalhydraulic phenomena governing the quenching of hot rods, and existing models

    Energy Technology Data Exchange (ETDEWEB)

    Bestion, D. [CEA-Grenoble, DEN/DTP/SMTH (France)

    2001-07-01

    After a core dry-out and a period of rod clad overheating, which might occur in some postulated accidental sequences in a PWR, the actuation of safety injections allows to quench the hot rods. Both thermal and mechanical processes control the phenomenon of quenching. Quenching first requires that liquid water is present to release the heat stored in the rod. When water is present, a pre-cooling of the clad is also required before quenching. (author)

  5. Quench tank in-leakage diagnosis at St. Lucie

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.E.; Au-Yang, M.K.; Beckner, D.A.; Vickery, A.N.

    1996-12-01

    In February 1995, leakage into the quench tank of the St. Lucie Nuclear Station Unit 1 was becoming an operational concern. This internal leak resulted in measurable increases in both the temperature and level of the quench tank water, and was so severe that, if the trend continued, plant shut down would be necessary. Preliminary diagnosis based on in-plant instrumentation indicated that any one of 11 valves might be leaking into the quench tank. This paper describes the joint effort by two teams of engineers--one from Florida Power & Light, the other from Framatome Technologies--to identify the sources of the leak, using the latest technology developed for valve diagnosis.

  6. The Inductive Coupling of the Magnets in MICE and its Effect on Quench Protection

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    The inductive coupling between various MICE magnet circuits is described. The consequences of this coupling on magnet charging and quenching are discussed. Magnet quench protection is achieved through the use of quench-back. Calculations of the quenching of a magnet due to quench-back resulting from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. This report describes how the MICE magnet channel will react when magnets in that channel are quenched

  7. Measurement of cell volume changes by fluorescence self-quenching

    DEFF Research Database (Denmark)

    Hamann, Steffen; Kiilgaard, J.F.; Litman, Thomas

    2002-01-01

    At high concentrations, certain fluorophores undergo self-quenching, i.e., fluorescence intensity decreases with increasing fluorophore concentration. Accordingly, the self-quenching properties can be used for measuring water volume changes in lipid vesicles. In cells, quantitative determination...... concentrations of the fluorophore calcein suitable for measurement of changes in cell water volume by self-quenching. The relationship between calcein fluorescence intensity, when excited at 490 nm (its excitation maximum), and calcein concentration was investigated in vitro and in various cultured cell types...... to a decrease in calcein fluorescence with high signal-to-noise ratio (>15). Similar results were obtained with the fluorophore BCECF when excited at its isosbestic wavelength (436 nm). The present results demonstrate the usefulness of fluorescence self-quenching to measure rapid changes in cell water volume....

  8. Rare-gas dependence of the self-quenching streamer

    International Nuclear Information System (INIS)

    Yoshioka, K.; Hashimoto, M.; Koori, N.; Kumabe, I.; Ohgaki, H.; Matoba, M.

    1989-01-01

    The self-quenching streamer (SQS) mode is understood these days as one of the basic modes of gas counter operation. In the present work, the SQS transition is clearly observed for Ar-, Kr- and Xe-mixtures with CH 4 , C 2 H 6 , C 3 H 8 , isoC 4 H 10 and CO 2 , and for He- and Ne-mixtures with C 2 H 6 , C 3 H 8 and isoC 4 H 10 . For He- and Ne-mixtures with CH 4 or CO 2 , the GM discharge is developed instead of the SQS transition. The avalanche size at the transition voltage decreases, in the order of He-, Ne-, Ar-, Kr- and Xe-mixtures, except for He-mixtures with CH 4 or CO 2 . The mechanisms of the SQS transition proposed by Atac et al. and Zhang have disadvantages in explaining all these results. If the photo-ionization is assumed as in Atac's mechanism, energetic photons whose yield is sufficiently large are needed for the SQS transition. The interaction between metastable states of rare gases proposed by Zhang may be energetically capable of producing electrons for the transition; effects of quenching gas in mixtures cannot be explained by this mechanism. Further investigation is necessary for microscopic processes occurring in the avalanche development. More detailed information is required on the atomic reaction cross sections of photo-ionization, radiative recombination, etc. (N.K.)

  9. Review of quench simulations for the protection of LHC main dipole magnets

    CERN Document Server

    Sonnemann, F

    1999-01-01

    The simulation program QUABER [1] allows studying the quench process of superconducting magnets for the LHC. The performance of the protection system of the LHC main dipole magnets was simulated under various parameter dependencies at different magnet excitation currents. This simulation study was motivated to complement measurement results in order to help preparing and understanding experiments of the quench propagation and magnet protection. The influence of the quench propagation velocity and the time for a quench propagation between adjacent turns was studied. The different copper plating cycles of the quench heater strips were simulated. Experimental measurement results [2] were used to calibrate the input parameters. The performance of the protection system for various quench detection thresholds was investigated and different failure modes of the system were considered. The maximum voltages and values of the quench load are discussed. The values given are obtained using conservatively chosen parameter...

  10. Quantum mechanics of electronic-rotational energy transfer in F(2P) + H2 collisions

    International Nuclear Information System (INIS)

    Wyatt, R.E.; Walker, R.B.

    1977-01-01

    A theoretical study is made of electronic-rotational energy transfer in F( 2 P) + H 2 three-dimensional collisions, with electronic matrix elements from DIM theory. The quantum close-coupled equations are integrated via the R-matrix propagation method. Inelastic quenching probabilities are emphasized, with and without simulated open reaction channels. Interweaving patterns in the transition probability for even and odd nuclear parity vs. J (total angular momentum quantum number) are analyzed in terms of avoided crossing structure in the electrotational energy correlation diagrams. Localized regions where electronic quenching is dominant are identified in the correlation diagrams, and are confirmed in separate calculations which neglect interchannel mixing in local regions of the atom-molecule separation. Open reaction channels are found to have little influence on the quenching probabilities in these low energy calculations

  11. Thermo hydraulic and quench propagation characteristics of SST-1 TF coil

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Patel, D.; Tanna, V.L. [Institute for Plasma Research, Gandhinagar (India)

    2014-02-15

    Highlights: • Details of SST-1 TF coils, CICC. • Details of SST-1 TF coil cold test. • Quench analysis of TF magnet. • Flow changes following quench. • Predictive analysis of assembled magnet system. - Abstract: SST-1 toroidal field (TF) magnet system is comprising of sixteen superconducting modified ‘D’ shaped TF coils. During single coil test campaigns spanning from June 10, 2010 till January 24, 2011; the electromagnetic, thermal hydraulic and mechanical performances of each TF magnet have been qualified at its respective nominal operating current of 10,000 A in either two-phase or supercritical helium cooling conditions. During the current charging experiments, few quenches have initiated either as a consequence of irrecoverable normal zones or being induced in some of the TF magnets. Quench evolution in the TF coils have been analyzed in detail in order to understand the thermal hydraulic and quench propagation characteristics of the SST-1 TF magnets. The same were also simulated using 1D code Gandalf. This paper elaborates the details of the analyses and the quench simulation results. A predictive quench propagation analysis of 16 assembled TF magnets system has also been reported in this paper.

  12. Quench Heater Experiments on the LHC Main Superconducting Magnets

    OpenAIRE

    Rodríguez-Mateos, F; Pugnat, P; Sanfilippo, S; Schmidt, R; Siemko, A; Sonnemann, F

    2000-01-01

    In case of a quench in one of the main dipoles and quadrupoles of CERN's Large Hadron Collider (LHC), the magnet has to be protected against excessive temperatures and high voltages. In order to uniformly distribute the stored magnetic energy in the coils, heater strips installed in the magnet are fired after quench detection. Tests of different quench heater configurations were performed on various 1 m long model and 15 m long prototype dipole magnets, as well as on a 3 m long prototype quad...

  13. A new NH 3 orbital of the NH 3/Ni(110) surface observed by metastable quenching spectroscopy

    Science.gov (United States)

    Lee, Lihwa; Arias, Jose; Hanrahan, Ciaran; Martin, Richard M.; Metiu, Horia

    1986-01-01

    By using metastable quenching spectroscopy we have found a new NH 3 filled orbital (in the language of one electron theory) for NH 3/Ni(110), located at the Fermi level of the surface. The orbital is not observed when NH 3 is adsorbed on Ni(110), but it is detected for NH 3 adsorbed on polycrystalline Al.

  14. Detection of radioactively labeled proteins is quenched by silver staining methods: quenching is minimal for 14C and partially reversible for 3H with a photochemical stain

    International Nuclear Information System (INIS)

    Van Keuren, M.L.; Goldman, D.; Merril, C.R.

    1981-01-01

    Silver staining methods for protein detection in polyacrylamide gels have a quenching effect on autoradiography and fluorography. This effect was quantitated for proteins in two-dimensional gels by microdensitometry using a computer equipped with an image processor and by scintillation counting of proteins solubilized from the gels. The original histologically derived silver stain had a quenching effect that was severe and irreversible for 3 H detection and moderate for 14 C detection. A silver stain based on photochemical methods had minimal quenching of 14 C detection and less of a quenching effect than the histological stain for 3 H detection. The 3 H quenching effect was partially reversible for the photochemical stain

  15. Exciton-dopant and exciton-charge interactions in electronically doped OLEDs

    International Nuclear Information System (INIS)

    Williams, Christopher; Lee, Sergey; Ferraris, John; Zakhidov, A. Anvar

    2004-01-01

    The electronic dopants, like tetrafluorocyanoquinodimethane (F 4 -TCNQ) molecules, used for p-doping of hole transport layers in organic light-emitting diodes (OLEDs) are found to quench the electroluminescence (EL) if they diffuse into the emissive layer. We observed EL quenching in OLED with F 4 -TCNQ doped N,N'-diphenyl-N'N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine hole transport layer at large dopant concentrations, >5%. To separate the effects of exciton-dopant quenching, from exciton-polaron quenching we have intentionally doped the emissive layer of (8-tris-hydroxyquinoline) with three acceptors (A) of different electron affinities: F 4 -TCNQ, TCNQ, and C 60 , and found that C 60 is the strongest EL-quencher, while F 4 -TCNQ is the weakest, contrary to intuitive expectations. The new effects of charge transfer and usually considered energy transfer from exciton to neutral (A) and charged acceptors (A - ) are compared as channels for non-radiative Ex-A decay. At high current loads the EL quenching is observed, which is due to decay of Ex on free charge carriers, hole polarons P + . We consider contributions to Ex-P + interaction by short-range charge transfer and describe the structure of microscopic charge transfer (CT)-processes responsible for it. The formation of metastable states of 'charged excitons' (predicted and studied by Agranovich et al. Chem. Phys. 272 (2001) 159) by electron transfer from a P to an Ex is pointed out, and ways to suppress non-radiative Ex-P decay are suggested

  16. Spectral analysis of colour-quenched and chemically quenched C-14 samples; Estudio espectral de muestras de C-14 con extincion quimica y por color en centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P E; Grau, A

    1987-07-01

    In this paper pairs of pulse height distribution curves, of C-14 samples, colour-quenched and chemically quenched was obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (Author) 7 refs.

  17. On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P. [Theoretical Division, T-4, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Nesterov, Alexander I., E-mail: nesterov@cencar.udg.mx [Departamento de Física, CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara, CP 44420, Jalisco (Mexico); Sayre, Richard T. [Biological Division, B-11, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, NM 87544 (United States); Still, Susanne [Department of Information and Computer Sciences, and Department of Physics and Astronomy, University of Hawaii at Mānoa, 1860 East–West Road, Honolulu, HI 96822 (United States)

    2016-03-22

    We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification. - Highlights: • Improvement of the efficiency of the charge-transfer nonphotochemical quenching in CP29. • Strategy for restoring the NPQ efficiency when the environment changes. • By changing of energy transfer rates to the sinks, one can significantly improve the performance of the NPQ.

  18. Successful magnet quench test for CAST.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    The CERN Axion Solar Telescope (CAST) consists of a prototype LHC dipole magnet with photon detectors at each end. It searches for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The telescope, located at Point 8, can move vertically within its wheeled platform, which travels horizontally along tracks in the floor. In this way, the telescope can view the Sun at sunrise through one end and at sunset through the other end. It has been cooled down to below 1.8 K and reached ~95% of its final magnetic field of 9 tesla before a quench was induced to test the whole cryogenic system under such conditions. The cryogenic system responded as expected to the magnet quench and CAST is now ready to start its three-year search for solar axions. Photos 01 & 02 : Members of the LHC cryogenics team pose in front of the axion telescope on the day of the first quench test, together with some of the CAST collaboration.

  19. Quench analysis of pancake wound REBCO coils with low resistance between turns

    International Nuclear Information System (INIS)

    Markiewicz, W Denis; Jaroszynski, Jan J; Abraimov, Dymtro V; Joyner, Rachel E; Khan, Amanatullah

    2016-01-01

    Quench in a pancake wound REBCO superconducting coil with low resistance (LR) between turns is examined by numerical analysis. In these calculations it is generally observed that once established, quench propagates rapidly in LR coils. Large transients are induced in the azimuthal solenoid current, allowed by the LR between turns, and become self-propagating. The transition from an initial state characterized by thermal diffusion to the dynamic inductive state of quench propagation is observed. The analysis is applied to the inner coil of a 30 T magnet where the quench performance is studied as a function of the value of resistance between turns. Rapid propagation of quench is seen in calculations for resistance between turns significantly greater than the resistance reported for no-insulation coils. The influence on quench of both steel co-wind and the amount of copper in the conductor is examined through calculation of the maximum temperature and the quench propagation velocity. (paper)

  20. Thermal-hydraulic behaviour of the ITER TF system during a quench development

    International Nuclear Information System (INIS)

    Nicollet, S.; Lacroix, B.; Bessette, D.; Copetti, R.; Duchateau, J.L.; Coatanea-Gouachet, M.; Rodriguez-Mateos, F.

    2011-01-01

    In order to ensure the safety of the ITER TF magnets, a primary quench detection system has been foreseen, based on voltage detection. In addition, a secondary quench detection could rely on signals of thermo-hydraulic nature. As a matter of fact, the development of a quench in a CICC leads to significant variations of pressure and mass flow at the quenched pancake extremities. Analyses of the quench development have thus been performed using the coupled GANDALF and FLOWER codes. This tool allows to simulate the thermo-hydraulic behaviour of one CICC with a model of the external cryogenic circuit. The study has focused on the first seconds of the quench development, supposing that the quench has not been detected earlier by the primary detector. It is shown that signals regarding pressure, mass flow and temperature reach significant high values especially in the connecting feeder associated with the helium inlet. More detailed studies will be needed to select a secondary detector in this region.

  1. Universality of fast quenches from the conformal perturbation theory

    Science.gov (United States)

    Dymarsky, Anatoly; Smolkin, Michael

    2018-01-01

    We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system's response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming and generalizing universal scalings found previously. Finally, we discuss late time behavior after the quench and argue that all local quantities will equilibrate to their thermal values specified by an excess energy acquired by the system during the quench.

  2. Entanglement growth after a global quench in free scalar field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, Jordan S. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Hertzberg, Mark P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Mezei, Márk [Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 (United States); Mueller, Mark T. [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-11-28

    We compute the entanglement and Rényi entropy growth after a global quench in various dimensions in free scalar field theory. We study two types of quenches: a boundary state quench and a global mass quench. Both of these quenches are investigated for a strip geometry in 1, 2, and 3 spatial dimensions, and for a spherical geometry in 2 and 3 spatial dimensions. We compare the numerical results for massless free scalars in these geometries with the predictions of the analytical quasiparticle model based on EPR pairs, and find excellent agreement in the limit of large region sizes. At subleading order in the region size, we observe an anomalous logarithmic growth of entanglement coming from the zero mode of the scalar.

  3. Asymmetries in the spectral density of an interaction-quenched Luttinger liquid

    Science.gov (United States)

    Calzona, A.; Gambetta, F. M.; Carrega, M.; Cavaliere, F.; Sassetti, M.

    2018-03-01

    The spectral density of an interaction-quenched one-dimensional system is investigated. Both direct and inverse quench protocols are considered and it is found that the former leads to stronger effects on the spectral density with respect to the latter. Such asymmetry is directly reflected on transport properties of the system, namely the charge and energy current flowing to the system from a tunnel coupled biased probe. In particular, the injection of particles from the probe to the right-moving channel of the system is considered. The resulting fractionalization phenomena are strongly affected by the quench protocol and display asymmetries in the case of direct and inverse quench. Transport properties therefore emerge as natural probes for the observation of this quench-induced behavior.

  4. Reliability of the quench protection system for the LHC superconducting elements

    International Nuclear Information System (INIS)

    Vergara Fernandez, A.; Rodriguez-Mateos, F.

    2004-01-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed

  5. Reliability of the quench protection system for the LHC superconducting elements

    Science.gov (United States)

    Vergara Fernández, A.; Rodríguez-Mateos, F.

    2004-06-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed.

  6. Quench propagation in coated conductors for fault current limiters

    International Nuclear Information System (INIS)

    Roy, F.; Perez, S.; Therasse, M.; Dutoit, B.; Sirois, F.; Decroux, M.; Antognazza, L.

    2009-01-01

    A fundamental understanding of the quench phenomenon is crucial in the future design and operation of high temperature superconductors based fault current limiters. The key parameter that quantifies the quenching process in superconductors is the normal zone propagation (NZP) velocity, which is defined as the speed at which the normal zone expands into the superconducting volume. In the present paper, we used numerical models developed in our group recently to investigate the quench propagation in coated conductors. With our models, we have shown that the NZP in these tapes depends strongly on the substrate properties.

  7. Quench tank in-leakage diagnosis at St. Lucie

    International Nuclear Information System (INIS)

    Price, J.E.; Au-Yang, M.K.; Beckner, D.A.; Vickery, A.N.

    1996-01-01

    In February 1995, leakage into the quench tank of the St. Lucie Nuclear Station Unit 1 was becoming an operational concern. This internal leak resulted in measurable increases in both the temperature and level of the quench tank water, and was so severe that, if the trend continued, plant shut down would be necessary. Preliminary diagnosis based on in-plant instrumentation indicated that any one of 11 valves might be leaking into the quench tank. This paper describes the joint effort by two teams of engineers--one from Florida Power ampersand Light, the other from Framatome Technologies--to identify the sources of the leak, using the latest technology developed for valve diagnosis

  8. Design of FPGA-based radiation tolerant quench detectors for LHC

    Science.gov (United States)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  9. Design of FPGA-based radiation tolerant quench detectors for LHC

    International Nuclear Information System (INIS)

    Steckert, J.; Skoczen, A.

    2017-01-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  10. Corium quench in deep pool mixing experiments

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.; Gregorash, D.; Aeschlimann, R.; Sienicki, J.J.

    1985-01-01

    The results of two recent corium-water thermal interaction (CWTI) tests are described in which a stream of molten corium was poured into a deep pool of water in order to determine the mixing behavior, the corium-to-water heat transfer rates, and the characteristic sizes of the quenched debris. The corium composition was 60% UO 2 , 16% ZrO 2 , and 24% stainless steel by weight; its initial temperature was 3080 K, approx.160 K above the oxide phase liquidus temperature. The corium pour stream was a single-phase 2.2 cm dia liquid column which entered the water pool in film boiling at approx.4 m/s. The water subcooling was 6 and 75C in the two tests. Test results showed that with low subcooling, rapid steam generation caused the pool to boil up into a high void fraction regime. In contrast, with large subcooling no net steam generation occurred, and the pool remained relatively quiescent. Breakup of the jet appeared to occur by surface stripping. In neither test was the breakup complete during transit through the 32 cm deep water pool, and molten corium channeled to the base where it formed a melt layer. The characteristic heat transfer rates measured 3.5 MJ/s and 2.7 MJ/s during the fall stage for small and large subcooling, respectively; during the initial stage of bed quench, the surface heat fluxes measured 2.4 MW/m 2 and 3.7 MW/m 2 , respectively. A small mass of particles was formed in each test, measuring typically 0.1 to 1 mm and 1 to 5 mm dia for the large and small subcooling conditions, respectively. 9 refs., 13 figs., 1 tab

  11. Electronics for very high rate tracking detectors

    International Nuclear Information System (INIS)

    Williams, H.H.; Dressnandt, N.; Ekenberg, T.; Gerds, E.J.; Newcomer, F.M.; Tedja, S.; Van Berg, R.; Van der Speigel, J.

    1995-01-01

    Results are presented on a system of electronics designed for very high rate tracking detectors at the SSC and LHC. The primary goal was a system for signal detection, time measurement, and readout for the straw tracker for SDC. An integrated circuit incorporating eight channels of amplifier-shaper-discriminator (including detector tail cancellation), and two different integrated circuits for time measurement are described. The performance of tracking measurements up to counting rates of 8 MHz per wire is reported, as well as preliminary results from a baseline restoration circuit. (orig.)

  12. High sensitive quench detection method using an integrated test wire

    International Nuclear Information System (INIS)

    Fevrier, A.; Tavergnier, J.P.; Nithart, H.; Kiblaire, M.; Duchateau, J.L.

    1981-01-01

    A high sensitive quench detection method which works even in the presence of an external perturbing magnetic field is reported. The quench signal is obtained from the difference in voltages at the superconducting winding terminals and at the terminals at a secondary winding strongly coupled to the primary. The secondary winding could consist of a ''zero-current strand'' of the superconducting cable not connected to one of the winding terminals or an integrated normal test wire inside the superconducting cable. Experimental results on quench detection obtained by this method are described. It is shown that the integrated test wire method leads to efficient and sensitive quench detection, especially in the presence of an external perturbing magnetic field

  13. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Skinner, C.H.; Suckewer, S.; Princeton Univ., NJ; Lee, W.

    1991-02-01

    Experimental evidence is presented for the change of Einstein's A-coefficients for spontaneous transitions from the upper laser level of an argon ion laser discharge due to the presence of the high-intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  14. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Lee, W.; Skinner, C.H.; Suckewer, S.

    1991-03-01

    Experimental evidence is presented for the change of Einstein's A- coefficients for spontaneous transitions from the upper laser level of argon ion laser discharge due to the presence of the high- intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  15. Quench in a conduction-cooled Nb3Sn SMES magnet

    Science.gov (United States)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto; Perälä, Raine

    2003-11-01

    Due to the rapid development of cryocoolers, conduction-cooled Nb3Sn devices are nowadays enabled. A 0.2 MJ conduction-cooled Nb3Sn SMES system has been designed and constructed. The nominal current of the coil was 275 A at 10 K. The quench tests have been performed and in this paper the experimental data are compared to the computational one. Due to a slow normal zone propagation, Nb3Sn magnets are not necessarily self-protective. In conduction-cooled coils, a thermal interface provides a protection method known as a quench back. The temperature rise in the coil during a quench was measured with a sensor located on the inner radius of the coil. The current decay was also monitored. The measured temperature increased for approximately 15 s after the current had already decayed. This temperature rise is due to the heat conduction from the hot spot. Thus, the measured temperature does not represent the hot-spot temperature. A computational quench model which takes into account quench back and heat conduction after the current decay was developed in order to understand the measured temperatures. According to the results, a quench back due to the eddy current induced heating of the thermal interface of an LTS coil was an adequate protection method.

  16. Parameterization of ionization rate by auroral electron precipitation in Jupiter

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2008-02-01

    Full Text Available We simulate auroral electron precipitation into the Jovian atmosphere in which electron multi-directional scattering and energy degradation processes are treated exactly with a Monte Carlo technique. We make a parameterization of the calculated ionization rate of the neutral gas by electron impact in a similar way as used for the Earth's aurora. Our method allows the altitude distribution of the ionization rate to be obtained as a function of an arbitrary initial energy spectrum in the range of 1–200 keV. It also includes incident angle dependence and an arbitrary density distribution of molecular hydrogen. We show that there is little dependence of the estimated ionospheric conductance on atomic species such as H and He. We compare our results with those of recent studies with different electron transport schemes by adapting our parameterization to their atmospheric conditions. We discuss the intrinsic problem of their simplified assumption. The ionospheric conductance, which is important for Jupiter's magnetosphere-ionosphere coupling system, is estimated to vary by a factor depending on the electron energy spectrum based on recent observation and modeling. We discuss this difference through the relation with field-aligned current and electron spectrum.

  17. Lessons learned from the quench-11 training exercise

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2007-01-01

    16 organizations in 12 countries are participating in a RELAP/SCDAPSIM training exercise based on the Quench 11 experiment performed at Karlsruhe (Germany) in 2005. This exercise is being conducted in parallel to an International Standard Problem (ISP). Both the ISP and the RELAP/SCDAPSIM training exercise included a 'semi-blind' portion that was completed in the fall of 2006 and an 'open' portion that is to be completed in the summer of 2007. The RELAP/SCDAPSIM training exercise is coordinated by Innovative Systems Software with support by the International SCDAP Development and Training Program (SDTP). The Quench-11 experiment is based on an electrically heated fuel rod bundle representative of a PWR design. The bundle was subjected to a boil down transient, heat-up, and quenching with peak temperatures exceeding the melting point of the Zircaloy cladding. This experiment was chosen by the European Union as an International Benchmark exercise to compare the effectiveness of quenching models in the severe accident computer codes used today for accident analysis. This paper briefly describes (a) RELAP/SCDAPSIM/MOD3.4, (b) the Quench facility and experiments used in the training exercise, and (c) the training guidelines provided to the participants followed by a more detailed description of the lessons learned from the initial 'semi-blind' portion. The representative results demonstrate that good analysts can still have a difficult time predicting the thermal hydraulic response of a relative simple transient in a complex system

  18. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERA-p beam-loss-monitor system

    International Nuclear Information System (INIS)

    Wittenburg, K.

    1994-01-01

    The beam-loss-monitors (BLMs) in the HERA-Proton-ring (HERAp) must fulfil the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System. (orig.)

  19. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.

    Science.gov (United States)

    Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A

    2016-11-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.

  20. A quenched c = 1 critical matrix model

    International Nuclear Information System (INIS)

    Qiu, Zongan; Rey, Soo-Jong.

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints