WorldWideScience

Sample records for electronic pulse detectors

  1. Linearity of photoconductive GaAs detectors to pulsed electrons

    International Nuclear Information System (INIS)

    Ziegler, L.H.

    1995-01-01

    The response of neutron damaged GaAs photoconductor detectors to intense, fast (50 psec fwhm) pulses of 16 MeV electrons has been measured. Detectors made from neutron damaged GaAs are known to have reduced gain, but significantly improved bandwidth. An empirical relationship between the observed signal and the incident electron fluence has been determined

  2. Dead time of different neutron detectors associated with a pulsed electronics with current collection

    International Nuclear Information System (INIS)

    Bacconnet, Eugene; Duchene, Jean; Duquesne, Henry; Schmitt, Andre

    1968-01-01

    After having outlined that the development of fast neutron reactor physics, notably kinetics, requires highly efficient neutron detectors and pulse measurement chains able to cope with high counting rates, the authors report the measurement of dead time of various neutron detectors which are used in the experimental study of fast neutron reactors. They present the SAITB 1 electronic measurement set, its components, its general characteristics, the protected connection between the detector and the electronics. They present and report the experiment: generalities about detector location and measurements, studied detectors (fission chambers, boron counters), and report the exploitation of the obtained results (principle, data, high-threshold counting gain) [fr

  3. Rapid pulse annealing of CdZnTe detectors for reducing electronic noise

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nelson, Art; Nikolic, Rebecca J.; Payne, Stephen A.; Swanberg, Jr., Erik Lars

    2018-05-01

    A combination of doping, rapid pulsed optical and/or thermal annealing, and unique detector structure reduces or eliminates sources of electronic noise in a CdZnTe (CZT) detector. According to several embodiments, methods of forming a detector exhibiting minimal electronic noise include: pulse-annealing at least one surface of a detector comprising CZT for one or more pulses, each pulse having a duration of .about.0.1 seconds or less. The at least one surface may optionally be ion-implanted. In another embodiment, a CZT detector includes a detector surface with two or more electrodes operating at different electric potentials and coupled to the detector surface; and one or more ion-implanted CZT surfaces on or in the detector surface, each of the one or more ion-implanted CZT surfaces being independently connected to one of the two or more electrodes and the surface of the detector. At least two of the ion-implanted surfaces are in electrical contact.

  4. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  5. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  6. Electron detector

    International Nuclear Information System (INIS)

    Hashimoto, H.; Mogami, A.

    1975-01-01

    A device for measuring electron densities at a given energy level in an electron beam or the like having strong background noise, for example, in the detection of Auger electric energy spectrums is described. An electron analyzer passes electrons at the given energy level and at the same time electrons of at least one adjacent energy level. Detecting means associated therewith produce signals indicative of the densities of the electrons at each energy level and combine these signals to produce a signal indicative of the density of the electrons of the given energy level absent background noise

  7. Influence of the parameters of supplying pulses and polarization voltage on the signal and shape of current characteristics of the electron capture detector

    International Nuclear Information System (INIS)

    Lasa, J.; Sliwka, I.; Drozdowicz, B.

    1989-01-01

    The paper contains results of measurements of current characteristics and of the signal for the constant concentration of freon F-11 of the ECD supplied with pulse voltage of changeable time of pulse duration t p , amplitude U 1 and the time of pulse repetition t r . In the course of measurements the detector worked at temperature 573 K with the additional constant polarization voltage. The polarization voltage has been observed to cause the effect of hypercoulometry. The presented mathematical analysis helps to determine the values of the coefficient of efficiency of electron capture p, the coefficient of electron loss k D , the coefficient of collecting of electric charges by the anode k' 3 and the coefficient of collecting of electric charges by the detector cathode k u . The coefficients are determined on the basis of experimental measurements. An attempt of physical interpretation of calculated values of these coefficients and their dependence on the parameters of the pulses supplying the detector has been presented. This interpretation requires the assumption that in some pulse periods t r the concentration of positive ions in the detector considerably exceeds concentration n 0 + = √a xα e /V, where a is an efficiency of the carrier gas ionization, α e is the coefficient of the electron-ion recombination and V is the detector volume. This statement helping to describe the effects observed in the electron capture polarized by voltage U a contradicts the recognized concept that the concentration of positive ions in the detector does not exceed the concentration n 0 + . The paper shows that the detector of the cylindrical construction, supplied with a pulse voltage can be used for coulometric measurements and the voltage polarizing the cathode can cause an effect of hypercoulometry. 33 figs., 9 refs. (author)

  8. Examination of the spatial-response uniformity of a microchannel-plate detector using a pulsed high-voltage electron gun

    International Nuclear Information System (INIS)

    Alumot, D; Kroupp, E; Fisher, A

    2014-01-01

    In this paper we describe an alternative method to examine the spatial-response uniformity of a microchannel-plate (MCP) detector to a ∼ 1 ns pulse of soft x-rays. The examination was performed by illuminating the MCP surface with energetic electrons rather than with x-rays. It is shown that the MCP features similar, yet not identical, response to pulses of soft x-ray photons or energetic electrons, making such examinations much simpler and less expensive. The building of the electron-gun system is relatively easy and inexpensive, and in addition to verifying the spatial uniformity of the response of the MCP to incoming particles and radiation, it can be used to detect damaged areas on the detector. A comparison between the results obtained using the electron-gun with those obtained using a laser-produced-plasma x-ray source, demonstrating the reliability of the method, is presented

  9. Pulse to pulse monitoring of the SLD detector

    International Nuclear Information System (INIS)

    Bogart, J.; Huffer, M.; Russell, J.

    1993-04-01

    The SLAC Linear Collider produces bunches of positrons and polarized electrons which collide at 120 hertz inside the SLD detector. A limited amount of information is collected for each pulse in the modules which do real-time data acquisition. Buffers of approximately ten seconds' worth of this monitor data are periodically delivered to a VAX. The generation and uses of the monitor data will be discussed

  10. Potential beneficial effects of electron-hole plasmas created in silicon sensors by XFEL-like high intensity pulses for detector development

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Joel T.; Becker, Julian; Shanks, Katherine S.; Philipp, Hugh T.; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    There is a compelling need for a high frame rate imaging detector with a wide dynamic range, from single x-rays/pixel/pulse to >10{sup 6} x-rays/pixel/pulse, that is capable of operating at both x-ray free electron laser (XFEL) and 3rd generation sources with sustained fluxes of > 10{sup 11} x-rays/pixel/s [1, 2, 3]. We propose to meet these requirements with the High Dynamic Range Pixel Array Detector (HDR-PAD) by (a) increasing the speed of charge removal strategies [4], (b) increasing integrator range by implementing adaptive gain [5], and (c) exploiting the extended charge collection times of electron-hole pair plasma clouds that form when a sufficiently large number of x-rays are absorbed in a detector sensor in a short period of time [6]. We have developed a measurement platform similar to the one used in [6] to study the effects of high electron-hole densities in silicon sensors using optical lasers to emulate the conditions found at XFELs. Characterizations of the employed tunable wavelength laser with picosecond pulse duration have shown Gaussian focal spots sizes of 6 ± 1 µm rms over the relevant spectrum and 2 to 3 orders of magnitude increase in available intensity compared to previous measurements presented in [6]. Results from measurements on a typical pixelated silicon diode intended for use with the HDR-PAD (150 µm pixel size, 500 µm thick sensor) are presented.

  11. New electronically black neutron detectors

    International Nuclear Information System (INIS)

    Drake, D.M.; Feldman, W.C.; Hurlbut, C.

    1986-03-01

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors

  12. Characterization of a microDiamond detector in high-dose-per-pulse electron beams for intra operative radiation therapy.

    Science.gov (United States)

    Di Venanzio, C; Marinelli, Marco; Tonnetti, A; Verona-Rinati, G; Falco, M D; Pimpinella, M; Ciccotelli, A; De Stefano, S; Felici, G; Marangoni, F

    2015-12-01

    To characterize a synthetic diamond dosimeter (PTW Freiburg microDiamond 60019) in high dose-per-pulse electron beams produced by an Intra Operative Radiation Therapy (IORT) dedicated accelerator. The dosimetric properties of the microDiamond were assessed under 6, 8 and 9 MeV electron beams by a NOVAC11 mobile accelerator (Sordina IORT Technologies S.p.A.). The characterization was carried out with dose-per-pulse ranging from 26 to 105 mGy per pulse. The microDiamond performance was compared with an Advanced Markus ionization chamber and a PTW silicon diode E in terms of dose linearity, percentage depth dose (PDD) curves, beam profiles and output factors. A good linearity of the microDiamond response was verified in the dose range from 0.2 Gy to 28 Gy. A sensitivity of 1.29 nC/Gy was measured under IORT electron beams, resulting within 1% with respect to the one obtained in reference condition under (60)Co gamma irradiation. PDD measurements were found in agreement with the ones by the reference dosimeters, with differences in R50 values below 0.3 mm. Profile measurements evidenced a high spatial resolution of the microDiamond, slightly worse than the one of the silicon diode. The penumbra widths measured by the microDiamond resulted approximately 0.5 mm larger than the ones by the Silicon diode. Output factors measured by the microDiamond were found within 2% with those obtained by the Advanced Markus down to 3 cm diameter field sizes. The microDiamond dosimeter was demonstrated to be suitable for precise dosimetry in IORT applications under high dose-per-pulse conditions. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  14. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    Science.gov (United States)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2018-02-01

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. The algorithm is found to out-perform current leading x-ray inversion algorithms when the error due to counting statistics is high.

  15. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  16. Pulse height model for deuterated scintillation detectors

    International Nuclear Information System (INIS)

    Wang, Haitang; Enqvist, Andreas

    2015-01-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  17. Pile-up and defective pulse rejection by pulse shape discrimination in surface barrier detectors

    International Nuclear Information System (INIS)

    Sjoeland, K.A.; Kristiansson, P.

    1994-01-01

    A technique to reject pile-up pulses and defective tail pulses from surface barrier detectors by the use of pulse shape discrimination is demonstrated. The electronic implementation of the pulse shape discrimination is based upon the zero crossing technique and for data reduction multiparameter techniques are used. The characteristic τ value for pile-up rejection is shown to be less than 56 ns. Its effect on detection limits from tail reduction in Particle Elastic Scattering Analysis (PESA) and pile-up peak suppression is discussed. ((orig.))

  18. Plastic scintillator detector for pulsed flux measurements

    Science.gov (United States)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  19. Plastic scintillator detector for pulsed flux measurements

    International Nuclear Information System (INIS)

    Kadilin, V V; Kaplun, A A; Taraskin, A A

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6 LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results. (paper)

  20. Calibration of a detector for pulsed neutron sources

    International Nuclear Information System (INIS)

    Veeser, L.R.; Hemmendinger, A.; Shunk, E.R.

    1978-02-01

    A plastic scintillator detector for measuring the strength of a pulsed neutron source is described and the problems of calibration and discrimination against x-ray background for both pulsed and steady-state detectors are discussed

  1. Electron detector with a traVelling wave

    International Nuclear Information System (INIS)

    Goncharov, A.S.; Kazakov, V.M.; Kozlov, O.V.

    1979-01-01

    Basic principles of operation of a travelling-wave detector designed to measure the shapes of nanosecond electron pulses are discussed. Propagation of electrons through the input window into the detector results in spreading of TEM waves to both sides. The energy of the wave propagating towards resistor R is absorbed by the latter, while the wave propagating in the opposite direction hits a register. Thus good matching of all the detector elements results in the absence of reflection and standing waves which provides extremely high time resolution and minimum distortion of the electron pulse shape. The detector constitutes a piece of a cylindrical coaxial line whose impedance is equal to the impedance of a transmission line. On one side the detector is loaded onto resistor R equal to the wave resistance of the detector. On the other side the detector is loaded onto the transmission line which connects the detector with a wide-range register. The design and calculation of a detector having a time resolution of about 0.1 ns are presented. The results of testing the coaxial detector When measuring electron pulses with a duration of 60 ns and frequency of 1818 MHz have shown that the developed detector (external diameter being 63 mm, internal diameter 18 mm, length 400 mm) provides the 0.2 ns time resolution

  2. Pulse shape discrimination studies of Phase I Ge-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea [MPI fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERmanium Detector Array experiment aims to search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge by using isotopically enriched germanium crystals as source and detector simultaneously. The bare semiconductor diodes are operated in liquid argon at cryogenic temperatures in an ultra-low background environment. In addition, Gerda applies different active background reduction techniques, one of which is pulse shape discrimination studies of the current Phase I germanium detectors. The analysis of the signal time structure provides an important tool to distinguish single site events (SSE) of the ββ-decay from multi site events (MSE) of common gamma-ray background or surface events. To investigate the correlation between the signal shape and the interaction position, a new, also to the predominantly deployed closed-ended coaxial HPGe detectors applicable analysis technique has been developed. A summary of the used electronic/detector assembly is given and followed by a discussion of the performed classification procedure by means of accurate pulse shape simulations of 0νββ-like signals. Finally, the obtained results are presented along with an evaluation of the relevance for the Gerda experiment.

  3. Proposed Hall D Detector Electronics

    International Nuclear Information System (INIS)

    Paul Smith

    1998-01-01

    With nearly 10**5 channels, the signal processing and data acquisition electronics system will present a significant challenge. We envisage much of the electronics being physically located on or near the detectors to avoid the long and expensive low-level signal cables otherwise required. CERN detectors such as COMPASS and ATLAS provide a good model, and we should build on their experience as much as possible. Radiation hardness and minimal power dissipation are additional constraints. The high beam rate will necessitate good time resolution, integrated low level triggering capability and sufficient pipelining of the data to accommodate the trigger decision time. A proposed architecture is shown in the figure. Detector channels are either ''pixels'', e.g. PWCs, drift chambers, and ring cerenkovs, or charge detectors, e.g. CSI or lead glass. Pixel detectors are discriminated, while charge detectors are digitized by Flash ADCs (FADC). The digitized information is pipelined in shift registers which provide a time window for the first level of triggering to consider. After passing through the shift registers, the data are further pipelined in RAM to provide time for the level 1 trigger decision. In the event of a level 1 trigger, the RAM contents are transferred to a level 2 processor farm where more detailed trigger decisions take place

  4. Selection of the optimum condition for electron capture detector operation

    International Nuclear Information System (INIS)

    Lasa, J.; Korus, A.

    1974-01-01

    A method of determination of the optimal work conditions for the electron capture detector is presented in the paper. Physical phenomena which occur in the detector, as well as the energetic dependence of the electron attachment process are taken into consideration. The influence of the kind of carrier gas, temperature, and the parameters of the supplied voltage in both direct and pulse methods on average values of electron energy is described. Dependence of the sensitivity of the electron capture detector on the carrier gas and the polarizing voltage is illustrated for the Model DNW-300 electron capture detector produced in Poland. Practical indications for selecting optimal conditions of electron capture detector operation are given at the end of the paper. (author)

  5. Pulse shape discrimination performance of inverted coaxial Ge detectors

    Science.gov (United States)

    Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.

    2018-05-01

    We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.

  6. Pulse shape analysis optimization with segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institute for Nuclear Physics, University of Cologne (Germany); Bruyneel, Bart [CEA, Saclay (France); Collaboration: AGATA-Collaboration

    2014-07-01

    Measurements with the position sensitive, highly segmented AGATA HPGe detectors rely on the gamma-ray-tracking GRT technique which allows to determine the interaction point of the individual gamma-rays hitting the detector. GRT is based on a pulse shape analysis PSA of the preamplifier signals from the 36 segments and the central electrode of the detector. The achieved performance and position resolution of the AGATA detector is well within the specifications. However, an unexpected inhomogeneous distribution of interaction points inside the detector volume is observed as a result of the PSA even when the measurement is performed with an isotropically radiating gamma ray source. The clustering of interaction points motivated a study in order to optimize the PSA algorithm or its ingredients. Position resolution results were investigated by including contributions from differential crosstalk of the detector electronics, an improved preamplifier response function and a new time alignment. Moreover the spatial distribution is quantified by employing different χ{sup 2}-minimization procedures.

  7. Fast neutron activating detectors for pulsed flow measurements

    International Nuclear Information System (INIS)

    Dyatlov, V.D.; Kunaev, G.T.; Popytaev, A.N.; Cheremukhov, B.V.

    1979-01-01

    The requirements to the activation detectors of the pulsed flows of the fast neutrons are considered; the criteria of optimum measurement time, geometrical moderator sizes and radioactive detector element properties have been obtained. On their analysis parameter selection has been carried out. The neutron detector to register the short pulses has been designed and calibrated. The ways of further increase of sensitivity and efficiency of such detectors are discussed

  8. Interaction of electron neutrino with LSD detector

    Science.gov (United States)

    Ryazhskaya, O. G.; Semenov, S. V.

    2016-06-01

    The interaction of electron neutrino flux, originating in the rotational collapse mechanism on the first stage of Supernova burst, with the LSD detector components, such as 56Fe (a large amount of this metal is included in as shielding material) and liquid scintillator barNnH2n+2, is being investigated. Both charged and neutral channels of neutrino reaction with 12barN and 56Fe are considered. Experimental data, giving the possibility to extract information for nuclear matrix elements calculation are used. The number of signals, produced in LSD by the neutrino pulse of Supernova 1987A is determined. The obtained results are in good agreement with experimental data.

  9. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  10. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  11. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M. [Instrumentation Group, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  12. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    International Nuclear Information System (INIS)

    Lombigit, L.; Yussup, N.; Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M.

    2015-01-01

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume

  13. Pulsed electron beam generation with fast repetitive double pulse system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  14. Pulse shapes and surface effects in segmented germanium detectors

    International Nuclear Information System (INIS)

    Lenz, Daniel

    2010-01-01

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of 76 Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope 76 Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  15. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  16. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Miki, Shigehito; Satoh, Kazuo; Yotsuya, Tsutomu; Shimakage, Hisashi; Wang, Zhen; Okayasu, Satoru; Katagiri, Masaki; Machida, Masahiko; Kato, Masaru; Ishida, Takekazu

    2005-01-01

    We performed 20-ps pulse laser irradiation experiments on a MgB 2 neutron detector to know a thermal-relaxation process for designing a MgB 2 neutron detector. The membrane-type structured MgB 2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 10 6 events per second

  17. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Science.gov (United States)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  18. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    International Nuclear Information System (INIS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-01-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ"2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  19. Electron injection in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Castoldi, A.; Vacchi, A.

    1990-01-01

    The paper reports the first successful results of a simple MOS structure to inject electrons at a given position in Silicon Drift Detectors. The structure allows on-line calibration of the drift velocity of electrons within the detector. The calibration is a practical method to trace the temperature dependence of the electron mobility. Several of these injection structures can be implemented in silicon drift detectors without additional steps in the fabrication process. 5 refs., 11 figs

  20. Electromagnetic Pulse Coupling Analysis of Electronic Equipment

    OpenAIRE

    Hong Lei; Qingying LI

    2017-01-01

    High-intensity nuclear explosion caused by high-altitude nuclear electromagnetic pulse through the antenna, metal cables, holes and other channels, coupled with very high energy into the electronic device, and cause serious threats. In this paper, the mechanism, waveform, coupling path and damage effect of nuclear electromagnetic pulse is analyzed, and the coupling mechanism of nuclear electromagnetic pulse is studied.

  1. ''In situ'' electronic testing method of a neutron detector performance

    International Nuclear Information System (INIS)

    Gonzalez, J.M.; Levai, F.

    1987-01-01

    The method allows detection of any important change in the electrical characteristics of a neutron sensor channel. It checks the response signal produced by an electronic detector circuit when a pulse generator is connected as input signal in the high voltage supply. The electronic circuit compares the detector capacitance value, previously measured, against a reference value, which is adjusted in a window type comparator electronic circuit to detect any important degrading condition of the capacitance value in a detector-cable system. The ''in-situ'' electronic testing method of neutron detector performance has been verified in a laboratory atmosphere to be a potential method to detect any significant change in the capacitance value of a nuclear sensor and its connecting cable, also checking: detector disconnections, cable disconnections, length changes of the connecting cable, electric short-opened circuits in the sensor channel, and any electrical trouble in the detector-connector-cable system. The experimental practices were carried out by simulation of several electric changes in a nuclear sensor-cable system from a linear D.C. channel which measures reactor power during nuclear reactor operation. It was made at the Training Reactor Electronic Laboratory. The results and conclusions obtained at the Laboratory were proved, satisfactorily, in the Electronic Instrumentation of Budapest Technical University Training Reactor, Hungary

  2. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  3. Pulse height measurements and electron attachment in drift chambers operated with Xe,CO2 mixtures

    CERN Document Server

    Andronic, A

    2003-01-01

    We present pulse height measurements in drift chambers operated with Xe,CO2 gas mixtures. We investigate the attachment of primary electrons on oxygen and SF6 contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and Fe55 pulse height measurements using monitor detectors.

  4. Pulse height measurements and electron attachment in drift chambers operated with Xe,CO2 mixtures

    International Nuclear Information System (INIS)

    Andronic, A.; Appelshaeuser, H.; Blume, C.; Braun-Munzinger, P.; Bucher, D.; Busch, O.; Ramirez, A.C.A. Castillo; Catanescu, V.; Ciobanu, M.; Daues, H.; Devismes, A.; Emschermann, D.; Fateev, O.; Garabatos, C.; Herrmann, N.; Ivanov, M.; Mahmoud, T.; Peitzmann, T.; Petracek, V.; Petrovici, M.; Reygers, K.; Sann, H.; Santo, R.; Schicker, R.; Sedykh, S.; Shimansky, S.; Simon, R.S.; Smykov, L.; Soltveit, H.K.; Stachel, J.; Stelzer, H.; Tsiledakis, G.; Vulpescu, B.; Wessels, J.P.; Windelband, B.; Winkelmann, O.; Xu, C.; Zaudtke, O.; Zanevsky, Yu.; Yurevich, V.

    2003-01-01

    We present pulse height measurements in drift chambers operated with Xe,CO 2 gas mixtures. We investigate the attachment of primary electrons on oxygen and SF 6 contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and 55 Fe pulse height measurements using monitor detectors

  5. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    International Nuclear Information System (INIS)

    TROYER, G.L.

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency

  6. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2007-01-01

    The basic activities of the Department of Nuclear Electronics in 2006 were concentrated on the following areas: · studies of new scintillation techniques and their application to nuclear medicine and border monitoring, · contribution to FWVI European projects, · scientific contracts with European industry in respect to detection techniques · electronics for experiments in High Energy Physics, · development of γ-ray spectrometry apparatus, · development of new generation State of the Art USB based multi-channel analyzers supplied with Ethernet port and wireless connection, · development, investigation and production of silicon detectors, · normalization activities. Most of the scientific achievements of the Department were summarized in 27 publications (released or in press) and 8 submitted publications. The papers were published mainly in IEEE Trans. Nucl. Sci. and Nucl. Instr. Methods. Besides that, our scientists presented 20 contributions at international conferences - 6 presentations on IEEE Nuclear Science Symposium and Medical Imaging 2006 in San Diego, USA. Five invited talks were presented at International Conferences. Also normalization activities in preparation of the Polish versions of European Standards in the field of electronics were supported. In the study of new scintillation techniques, the tests of energy resolution and non-proportionality were carried out for LGSO and CsI(Tl) scintillators, and in the case of NaI(Tl) at reduced temperatures down to -40 o C It shows more precisely an interesting observation of dependences of energy resolution and non-proportionality on a shaping time constant of the amplifier for scintillators with the light pulse consisting of two components. Within the studies addressed to the BioCare European project, realized within FWVI, the proposition of a new common PET/CT detector was developed. The further study of detectors for a Time-of-Flight Positron Emission Tomography was also performed. In the frame of

  7. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Birkenbach, B.; Reiter, P. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany)

    2016-03-15

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ -ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed. (orig.)

  8. Pulse shape discrimination with scintillation detectors

    International Nuclear Information System (INIS)

    Winyard, R.A.

    A quantitative study of pulse shape discrimination with scintillation counters has been undertaken using a crossover timing technique. The scintillators investigated included experimental and commercial liquids and plastics in addition to inorganic phosphors. The versatility of the pulse shape discrimination system has been demonstrated by extending the measurements to investigate phoswiches and liquids loaded with radioactive materials and by its application to the suppression of unwanted backgrounds in delayed coincidence counting for the measurement of nuclear half-lives and isotope identification have been carried out. (author)

  9. Electronically shielded solid state charged particle detector

    International Nuclear Information System (INIS)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-01-01

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig

  10. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  11. Picosecond, single pulse electron linear accelerator

    International Nuclear Information System (INIS)

    Kikuchi, Riichi; Kawanishi, Masaharu

    1979-01-01

    The picosecond, single pulse electron linear accelerators, are described, which were installed in the Nuclear Engineering Laboratory of the University of Tokyo and in the Nuclear Radiation Laboratory of the Osaka University. The purpose of the picosecond, single pulse electron linear accelerators is to investigate the very short time reaction of the substances, into which gamma ray or electron beam enters. When the electrons in substances receive radiation energy, the electrons get high kinetic energy, and the energy and the electric charge shift, at last to the quasi-stable state. This transient state can be experimented with these special accelerators very accurately, during picoseconds, raising the accuracy of the time of incidence of radiation and also raising the accuracy of observation time. The outline of these picosecond, single pulse electron linear accelerators of the University of Tokyo and the Osaka University, including the history, the systems and components and the output beam characteristics, are explained. For example, the maximum energy 30 -- 35 MeV, the peak current 1 -- 8 n C, the pulse width 18 -- 40 ps, the pulse repetition rate 200 -- 720 pps, the energy spectrum 1 -- 1.8% and the output beam diameter 2 -- 5 mm are shown as the output beam characteristics of the accelerators in both universities. The investigations utilizing the picosecond single pulse electron linear accelerators, such as the investigation of short life excitation state by pulsed radiation, the dosimetry study of pulsed radiation, and the investigation of the transforming mechanism and the development of the transforming technology from picosecond, single pulse electron beam to X ray, vacuum ultraviolet ray and visual ray, are described. (Nakai, Y.)

  12. Application of pulse shape discrimination in Si detector for fission ...

    Indian Academy of Sciences (India)

    Pulse shape discrimination (PSD) with totally depleted transmission type Si surface barrier detector in reverse mount has been investigated to identify fission fragments in the presence of elastic background in heavy ion-induced fission reactions by both numerical simulation and experimental studies. The PSD method is ...

  13. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-03-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments were made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapidly-pulsed scanning electron beam was designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods

  14. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-01-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments have been made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapid-pulsed scanning electron-beam has been designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods. (author)

  15. Laser-pulsed relativistic electron gun

    International Nuclear Information System (INIS)

    Sherman, N.K.

    1986-01-01

    A relativistic (β ≅ 0.8) electron gun with good emittance and subnanosecond pulse duration which can be synchronized to picosecond laser pulses is being developed at NRC for use in studies of particle acceleration by lasers. Bursts of electron pulses exceeding 280 keV in energy have been extracted into air form a laser-driven vacuum photodiode. Trains of 5 ps pulses of ultraviolet UV light illuminate a magnesium cathode. Photoelectrons emitted from the cathode are accelerated in a graded electrostatic potential set up by a 360 kV Marx-generator. The UV pulses are obtained by doubling the frequency of a 606 nm dye laser modelocked at 160 MHz. Electron energies were measured by residual range in an echelon of Al foils. Total charge per burst was measured by picoammeter. Time structure of the bursts has been examined with plastic scintillator and a fast photomultiplier. Tests on a low voltage photodiode achieved a current density of 180 A/cm/sup 2/ from an Mg cathode, with quantum efficiency of 2.4 x 10/sup -6/ electron per UV photon. The brevity and intensity of the laser pulses cause the electric charge collected per pulse to increase linearly with bias voltage rather than according to the Langmuir-Child law. Gun emittance is about 150 mm-msr and beam brightness is about 1A/cm/sup 2/-sr. Estimated duration of individual electron pulses of a burst is about 400 ps with instantaneous current of about 0.1 mA. Energy spread within one pulse is expected to be about 15%. This gun has the potential to be a useful source of relativistic electrons for laser acceleration studies

  16. HPGe detectors timing using pulse shape analysis techniques

    International Nuclear Information System (INIS)

    Crespi, F.C.L.; Vandone, V.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.; Wieland, O.

    2010-01-01

    In this work the Pulse Shape Analysis has been used to improve the time resolution of High Purity Germanium (HPGe) detectors. A set of time aligned signals was acquired in a coincidence measurement using a coaxial HPGe and a cerium-doped lanthanum chloride (LaCl 3 :Ce) scintillation detector. The analysis using a Constant Fraction Discriminator (CFD) time output versus the HPGe signal shape shows that time resolution ranges from 2 to 12 ns depending on the slope in the initial part of the signal. An optimization procedure of the CFD parameters gives the same final time resolution (8 ns) as the one achieved after a correction of the CFD output based on the current pulse maximum position. Finally, an algorithm based on Pulse Shape Analysis was applied to the experimental data and a time resolution between 3 and 4 ns was obtained, corresponding to a 50% improvement as compared with that given by standard CFDs.

  17. Generation of Femtosecond Electron and Photon Pulses

    CERN Document Server

    Thongbai, Chitrlada; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Rimjaem, Sakhorn; Saisut, Jatuporn; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    Femtosecond electron and photon pulses become a tool of interesting important to study dynamics at molecular or atomic levels. Such short pulses can be generated from a system consisting of an RF-gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The femtosecond electron pulses can be used directly or used as sources to produce electromagnetic radiation of equally short pulses by choosing certain kind of radiation pruduction processes. At the Fast Neutron Research Facility (Thailand), we are especially interested in production of radiation in Far-infrared and X-ray regime. In the far-infrared wavelengths which are longer than the femtosecond pulse length, the radiation is emitted coherently producing intense radiation. In the X-ray regime, development of femtosecond X-ray source is crucial for application in ultrafast science.

  18. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2008-01-01

    Full text: The basic activities of the Department of Nuclear Electronics in 2007 were concentrated on the following areas: ·studies of new scintillation techniques and their application to nuclear medicine and border monitoring, ·contribution to the FWVI European projects, ·scientific contracts with European industry in respect to detection techniques ·electronics for experiments in High Energy Physics, ·development of γ-ray spectrometry apparatus, ·development of new generation State of the Art USB based multi-channel analysers supplied with Ethernet port and wireless connection, ·development, investigation and production of silicon detectors ·normalisation activities. Most of the scientific achievements of the Department were summarized in 24 publications (released or in press) and 8 submitted publications. The papers were published mainly in IEEE Trans. Nucl. Sci. and Nucl. Instr. Methods. Besides that, our scientists presented 20 contributions at international conferences - 7 presentations on IEEE Nuclear Science Symposium and Medical Imaging 2007 in Honolulu, Hawaii, USA. Also, normalization activities in preparation of Polish versions of European Standards in the field of electronics were supported. The study of new scintillation techniques covered measurements of non-proportionality of organic scintillators in comparison to BGO, a study of the light pulse decays of CsI(T1) at low energies and its relation to the non-proportionality and the summary of earlier measurements showing an influence of slow components of light pulses on the intrinsic resolution of scintillators. Within the studies addressed to the BioCare European project, realized within FWVI, studies analysing the influence of different parameters of fast photomultipliers and scintillators on time resolution of PET detectors for TOF PET were performed. The study was also supported by a contract with Photonis, France. Further study of the common PET/CT detector based on APD array was

  19. Some aspects of detectors and electronics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Goulding, F.S.

    1976-08-01

    Some of the less recognized and potentially important parameters of the electronics and detectors used in X-ray fluorescence spectrometers are discussed. Detector factors include window (dead-layer) effects, time-dependent background and excess background. Noise parameters of field-effect transistors and time-variant pulse shaping are also discussed

  20. Readout electronic for multichannel detectors

    CERN Document Server

    Kulibaba, V I; Naumov, S V

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.

  1. Readout electronic for multichannel detectors

    International Nuclear Information System (INIS)

    Kulibaba, V.I.; Maslov, N.I.; Naumov, S.V.

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc

  2. Pulse discrimination of scintillator detector with artificial neural network

    International Nuclear Information System (INIS)

    Chen Man; Cai Yuerong; Yang Chaowen

    2006-01-01

    The features of signal for scintillator detectors are analyzed. According to the difference in the fraction of slow and fast scintillation for different particles, three intrinsic parameters (signal amplitude, integration of signal during rinsing, integration of frequency spectrum of signals in middle frequencies) of signals are defined. The artificial neural network method for pulse discrimination of scintillator detector is studied. The signals with different shapes under real condition are simulated with computer, and discriminated by the method. Results of discrimination are gotten and discussed. (authors)

  3. Pulsed beam dosimetry using fiber-coupled radioluminescence detectors

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2012-01-01

    The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration...... was given to the discrimination between radioluminescence signals from the phosphors and unwanted light induced in the optical fiber cables during irradiation (Cerenkov and fluorescence). New instrumentation for dose-per-pulse measurements with organic plastic scintillators was developed....

  4. Pulse Shape Tuning in Neutrino Detector Scintillator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aberle, Ch.; Buck, Ch.; Hartmann, F.X.; Schoenert, St. [Max Planck Institute for Nuclear Physics, Heidelberg (Germany); Hartmann, F.X. [Hartmann Scientific, City of Virginia Beach, Virginia (United States)

    2009-07-01

    Full text of publication follows: A new light yield model based on energy transfer pathways in codoped organic liquid scintillator systems is created and used to determine experimentally non-radiative energy transfer rate constants from which time dependent light pulse shapes and total light yields are predicted for multi-component liquids. Such constants determine effective Forster-Dexter critical concentrations. A surprising discovery regarding the critical concentration in n-dodecane permits tuning the pulse shape for different regions in the Double Chooz neutrino detector. (authors)

  5. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  6. Development of picosecond pulsed electron beam monitor

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.; Kobayasi, T.; Yosida, Y.; Ohkuma, J.; Okuda, S.; Suemine, S.

    1993-01-01

    For the picosecond pulsed electron beam of a linear accelerator a simple monitor using an electric connector has been developed which is constructed with SMA, BNC, N type electric connector through pipe (inner diameter = 50 mm or 100 mm). Under the measurement conditions of peak current (26A-900A) and narrow pulse width (Pw = 10 ps(FWHM), Pw = 30 ps(FWHM)), the following characteristics of this monitor were obtained, (A) rise time is less than 25 ps (B) the amplitude of the monitor output pulse is proportional directly to the area of cross section of the electrode. (author)

  7. Electron emitter pulsed-type cylindrical IEC

    International Nuclear Information System (INIS)

    Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Anderl, R.; Hartwell, J.

    1997-01-01

    A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ''reflector'' dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ''pinched'' in the cathode region. Resulting fusion reactions generate ∼10 6 neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are ∼30micros, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented

  8. An analyzer for pulse-interval times to study high-order effects in the processing of nuclear detector signals

    International Nuclear Information System (INIS)

    Denecke, B.; Jonge, S. de

    1998-01-01

    An electronic device to measure interval time density distributions of subsequent pulses in nuclear detectors and their electronics is described. The device has a pair-pulse resolution of 10 ns and 25 ns for 3 subsequent input signals. The conversion range is 4096 channels and the lowest channel width is 10 ns. Counter dead times, single and in series were studied and compared with the statistical model. True count rates were obtained from an exponential fit through the interval-time distribution

  9. Digital pulse shape discrimination of detector data using fuzzy clustering

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chatterjee, A.; Ramachandran, K.; Shrivastava, A.; Mahata, K.

    2011-01-01

    In accelerator based experiments, data acquisition is done by CAMAC, VME and other systems. The current trend is to digitize the pulse shapes and not just the peak heights of all the input channels, by means of Flash ADCs. In view of the large number of channels involved, this leads to unprecedented data volumes. Therefore, attempts to perform a first level of analysis in real time using algorithms implemented in FPGA have become important. In the present work, digital pulse shape discrimination using fuzzy clustering has been investigated. The attempt has been to devise general purpose PSD Techniques, loosely coupled with the characteristics of detector or particle type, for particle identification. The method is applicable to neutron-gamma discrimination for liquid scintillators and charged particles detected by Si detectors

  10. Electronics for the Si detectors in APEX

    International Nuclear Information System (INIS)

    Wilt, P.R.; Betts, R.R.; Freer, M.

    1994-01-01

    APEX (ATLAS Positron EXperiment), a collaborative effort of ANL, FSU, MSU/NSCL, Princeton, Queen's, Rochester, Washington and Yale, is an experiment to study positron and electron production in very heavy ion collisions. The electrons and positrons are detected with two detector arrays, each consisting of 216 1 mm thick Si PIN diodes, and their energy and time-of-flight are measured. The number of detectors and limited space made it necessary to develop a system that could efficiently process and transfer signals from the detectors to the charge sensing ADC's and data readout electronics as well as monitor the condition of the detectors. The discussion will cover the electronics designed for the Si detectors, including the charge amplifier, ''Mother board'' for the charge amplifiers, 8 channel Shaper, 16 channel Constant Fraction Discriminator (CFD), 16 channel Peak-to-FERA (PTF) and the integration of the CFD and PTF with Charge sensing ADC's. Function and performance of the individual modules as well as the system as a whole will be discussed

  11. MCNPX calculations for electron irradiated semiconductor detectors

    International Nuclear Information System (INIS)

    Sedlackova, K.; Necas, V.; Sagatova, A.; Zatko, B.

    2014-01-01

    This study aimed to treat some practical problems of (not only) semiconductor material irradiation by high energy electron beam using MCNPX simulation code. The relation between the absorbed dose and the fluency was found and the energy distribution of electron flux density was simulated on the top and back side of 270 μm thick GaAs, SiC and Si detectors. Furthermore, the dose depth profiles were calculated for GaAs, SiC and Si materials irradiated by 4 and 5 MeV electron beams. For the GaAs detector, a very good agreement with the experiment was shown. To match the absolute values of the absorbed dose with experimentally obtained values, the electron source emissivity has to be determined in relation to the electron beam setting parameters. (authors)

  12. Electron crystallography with the EIGER detector

    Directory of Open Access Journals (Sweden)

    Gemma Tinti

    2018-03-01

    Full Text Available Electron crystallography is a discipline that currently attracts much attention as method for inorganic, organic and macromolecular structure solution. EIGER, a direct-detection hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland, has been tested for electron diffraction in a transmission electron microscope. EIGER features a pixel pitch of 75 × 75 µm2, frame rates up to 23 kHz and a dead time between frames as low as 3 µs. Cluster size and modulation transfer functions of the detector at 100, 200 and 300 keV electron energies are reported and the data quality is demonstrated by structure determination of a SAPO-34 zeotype from electron diffraction data.

  13. Beryllium neutron activation detector for pulsed DD fusion sources

    International Nuclear Information System (INIS)

    Talebitaher, A.; Springham, S.V.; Rawat, R.S.; Lee, P.

    2011-01-01

    A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate ( 9 Be(n,α) 6 He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(E n ) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×10 4 cm -2 , the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.

  14. The efficient neutron-gamma pulse shape discrimination with small active volume scintillation detector

    International Nuclear Information System (INIS)

    Phan Van Chuan; Nguyen Duc Hoa; Nguyen Xuan Hai; Nguyen Ngoc Anh; Tuong Thi Thu Huong; Nguyen Nhi Dien; Pham Dinh Khang

    2016-01-01

    A small detector with EJ-301 liquid scintillation was manufactured for the study on the neutron-gamma pulse shape discrimination. In this research, four algorithms, including Threshold crossing time (TCT), Pulse gradient analysis (PGA), Charge comparison method (CCM), and Correlation pattern recognition (CPR) were developed and compared in terms of their discrimination effectiveness between neutrons and gamma rays. The figures of merits (FOMs) obtained for 100 ÷ 2000 keVee (keV energy electron equivalent) neutron energy range show the charge comparison method was the most efficient of the four algorithms. (author)

  15. Pulse shape method for the Chimera silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, A.; Arena, N.; Cardella, G.; D' Andrea, M.; Filippo, E. de; Fichera, F.; Giudice, N.; Guardone, N.; Grimaldi, A.; Nicotra, D.; Papa, M.; Pirrone, S.; Politi, G.; Rapicavoli, C.; Rizza, G.; Russotto, P.; Sacca, G.; Urso, S.; Lanzano, G. [Catania Univ., INFN Catania and Dipartimento di Fisica e Astronomia (Italy); Alderighi, M.; Sechi, G. [INFN Milano and Istituto di Fisica Cosmica CNR, Milano (Italy); Amorini, F.; Anzalone, A.; Cali, C.; Campagna, V.; Cavallaro, S.; Di Stefano, A.; Giustolisi, F.; La Guidara, E.; Lanzalone, G.; Maiolino, C.; Porto, F.; Rizzo, F.; Salamone, S. [Catania Univ., INFN-LNS and Dipartimento di Fisica e Astronomia (Italy); Auditore, L.; Trifiro, A.; Trimarchi, M. [Messina Univ., INFN and Dipartimento di Fisica (Italy); Bassini, R.; Boiano, C.; Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN Milano and Dipartimento di Fisica (Italy); Blicharska, J.; Grzeszczuk, A. [Silesia Univ., Institute of Physics, Katowice (Poland); Chatterjee, M.B. [Saha Institute Of Nuclear Physics, Kolkata (India); Geraci, E.; Zipper, W. [Bologna Univ., INFN Bologna and Dipartimento di Fisica (Italy); Rosato, E.; Vigilante, M. [Napoli Univ., INFN and Dipartimento di Fisica (Italy); Schroder, W.U.; T-ke, J. [Rochester Univ., Dept. of Chemistry, Rochester, N.Y. (United States)

    2003-07-01

    Since January 2003, the 4{pi} CHIMERA (Charged Heavy Ions Mass and Energy Resolving Array) detector in its full configuration has successfully been operated at the 'Catania Laboratori Nazionali del Sud' (LNS) accelerator facility. The detector has been used with a variety of beams from the Superconducting Cyclotron in heavy-ion reaction studies at Fermi bombarding energies. Future experiments with a focus on isospin physics at Fermi energies, planned for both primary and less intense secondary particle beams, suggest the development of new and more versatile experimental particle identification methods. Recent achievements in implementing specific pulse shape particle identification methods for CHIMERA silicon detectors are reported. They suggest an upgrade of the present charge and mass identification capability of CHIMERA by a simple extension of the method. (authors)

  16. NeuRad detector prototype pulse shape study

    Science.gov (United States)

    Muzalevsky, I.; Chudoba, V.; Belogurov, S.; Kiselev, O.; Bezbakh, A.; Fomichev, A.; Krupko, S.; Slepnev, R.; Kostyleva, D.; Gorshkov, A.; Ovcharenko, E.; Schetinin, V.

    2018-04-01

    The EXPERT setup located at the Super-FRS facility, the part of the FAIR complex in Darmstadt, Germany, is intended for investigation of properties of light exotic nuclei. One of its modules, the high granularity neutron detector NeuRad assembled from a large number of the scintillating fiber is intended for registration of neutrons emitted by investigated nuclei in low-energy decays. Feasibility of the detector strongly depends on its timing properties defined by the spatial distribution of ionization, light propagation inside the fibers, light emission kinetics and transition time jitter in the multi-anode photomultiplier tube. The first attempt of understanding the pulse formation in the prototype of the NeuRad detector by comparing experimental results and Monte Carlo (MC) simulations is reported in this paper.

  17. Programmable pseudo-random detector-pulse-pattern generator

    International Nuclear Information System (INIS)

    Putten, R. van der; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1990-01-01

    This report discusses the design and realization of the digital part of the programmable pseudo-random detector pulse-pattern generator. For the design and realization use has been made of F-TTL and high speed special purpose ic's, in particular FAL's (15 ns). The design possibilities offered by the software for pro-gramming of the FAL's have been utilized as much as possible. In this way counters, registers and a state machine with extended control possibilities have been designed and an advanced 8 channel pulse generator has been developed which is controlled via the VME system bus. the generator possesses an internal clock oscillator of 16 MHZ. The moment when a pulse is generated can be adjusted with a step size of 250 ps. 2000 different periods (time windows) can be stored for generating a pattern. (author). 37 refs.; 6 figs

  18. Study of pulse shapes in Ge detectors with PET

    Energy Technology Data Exchange (ETDEWEB)

    Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. For Phase II Gerda wants to reduce the background contribution significantly by active background-suppression techniques. One of such techniques is the pulse shape analysis of signals induced by the interaction of radiation with the detector. The pulse shapes depend not only on the energy of the interacting gamma, the geometry and field configuration but also on the location of interaction in the crystal. The waveform and the location of the interaction in the germanium can be determined by positron-emission-tomography (PET). First results of this novel pulse shape study with the PET will be presented in this talk.

  19. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martín, S., E-mail: sergiomr@usal.es; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ{sup 2} test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  20. One nanosecond pulsed electron gun systems

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1979-02-01

    At SLAC there has been a continuous need for the injection of very short bunches of electrons into the accelerator. Several time-of-flight experiments have used bursts of short pulses during a normal 1.6 micro-second rf acceleration period. Single bunch beam loading experiments made use of a short pulse injection system which included high power transverse beam chopping equipment. Until the equipment described in this paper came on line, the basic grid-controlled gun pulse was limited to a rise time of 7 nanoseconds and a pulse width of 10 nanoseconds. The system described here has a grid-controlled rise time of less than 500 pico-seconds, and a minimum pulse width of less than 1 nanosecond. Pulse burst repetition rate has been demonstrated above 20 MHz during a 1.6 microsecond rf accelerating period. The order-of-magnitude increase in gun grid switching speed comes from a new gun design which minimizes lead inductance and stray capacitance, and also increases gun grid transconductance. These gun improvements coupled with a newly designed fast pulser mounted directly within the gun envelope make possible subnanosecond pulsing of the gun

  1. Detector and front-end electronics of a fissile mass flow monitoring system

    International Nuclear Information System (INIS)

    Paulus, M.J.; Uckan, T.; Lenarduzzi, R.; Mullens, J.A.; Castleberry, K.N.; McMillan, D.E.; Mihalczo, J.T.

    1997-01-01

    A detector and front-end electronics unit with secure data transmission has been designed and implemented for a fissile mass flow monitoring system for fissile mass flow of gases and liquids in a pipe. The unit consists of 4 bismuth germanate (BGO) scintillation detectors, pulse-shaping and counting electronics, local temperature sensors, and on-board local area network nodes which locally acquire data and report to the master computer via a secure network link. The signal gain of the pulse-shaping circuitry and energy windows of the pulse-counting circuitry are periodicially self calibrated and self adjusted in situ using a characteristic line in the fissile material pulse height spectrum as a reference point to compensate for drift such as in the detector gain due to PM tube aging. The temperature- dependent signal amplitude variations due to the intrinsic temperature coefficients of the PM tube gain and BGO scintillation efficiency have been characterized and real-time gain corrections introduced. The detector and electronics design, measured intrinsic performance of the detectors and electronics, and the performance of the detector and electronics within the fissile mass flow monitoring system are described

  2. A low-cost electrically pulsed shower detector

    CERN Document Server

    Conversi, M; Gentile, S; Nardi, M

    1976-01-01

    A sampling total absorption detector characterized by an extremely low cost and providing also identification of particle tracks has been developed. Preliminary results on the performance of a model with 14 radiation lengths, exposed to electrons of energies E up to 4 GeV, show that this instrument can measure the primary electron energy with an accuracy (r.m.s.) $\\Delta E/E= \\pm(12 $%) / $\\sqrt E$ (E in GeV).

  3. Electronics for the RHIC PHENIX detector

    International Nuclear Information System (INIS)

    Young, G.R.

    1992-01-01

    The PHENIX detector for RHIC is being designed to measure lepton pairs, direct photons and hadrons emitted in collisions of heavy nuclei at center of mass energies up to 200 GeV/(nucleon-pair). The physics goal is tests of predictions concerning the existence and nature of a deconfined state of strongly-interacting matter. The relatively large final state multiplicities, which reach 1500 charged particles per unit of rapidity, place strong demands on detector segmentation and control of electronics cost and power consumption. An overview of present ideas concerning signal processing and data rates for PHENIX will be presented

  4. Electronics for very high rate tracking detectors

    International Nuclear Information System (INIS)

    Williams, H.H.; Dressnandt, N.; Ekenberg, T.; Gerds, E.J.; Newcomer, F.M.; Tedja, S.; Van Berg, R.; Van der Speigel, J.

    1995-01-01

    Results are presented on a system of electronics designed for very high rate tracking detectors at the SSC and LHC. The primary goal was a system for signal detection, time measurement, and readout for the straw tracker for SDC. An integrated circuit incorporating eight channels of amplifier-shaper-discriminator (including detector tail cancellation), and two different integrated circuits for time measurement are described. The performance of tracking measurements up to counting rates of 8 MHz per wire is reported, as well as preliminary results from a baseline restoration circuit. (orig.)

  5. Voltage-pulse generator for electron gun

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    A voltage-pulse generator with combined capacitive and inductive storage devices of an electron gun is described. The current interrupter is a hydrogen thyratron (TGI1-100/8, TGI1-500/16, or TGI1-1000/25) installed in a short magnetic lens. The current interruption time of the thyratrons is 100-300 nsec. When the capacitive storage device is charged to 1 kV, a voltage pulse with an amplitude of 25 kV is obtained at the load

  6. Design of electron detection system for pulse electron irradiator

    International Nuclear Information System (INIS)

    Anjar Anggraini H; Agus Purwadi; Lely Susita RM; Bambang Siswanto; Agus Wijayanto

    2016-01-01

    Design of electron detection system for pulse electron irradiator has been conducted on the Plasma Cathode Electron Source by Rogowski coil technique. Rogowski coil has ability to capture the induced magnetic field of the electric current, subsequent induced magnetic field will provide voltage after passing integrator. This diagnostic used combination of copper wire, ferrite and RC integrator. The design depends on the pulse width and the value of plasma current that passes through the coil, thus the number of windings, coil area and integrator can be designed. For plasma spots current of IDPS expected to be 10 A and pulse width 10 μs the Rogowski coil using MnZn ferrite with inductance L = 0.275 mH and permeability μr = 200 H/m. For the current of plasma arc ADPS expected to be 100 A and pulse width 100 μs by using inductance L=1.9634 mH and permeability μr = 6256 H/m. Electron current in extraction system expected to be 30 A and pulse width 100 μs the Rogowski coil using inductance L=51.749 mH and permeability μr= 4987 H/m. Design integrator used is the type of RC integrator. (author)

  7. Assessment of a silicon detector for pulsed neutron scattering experiments

    International Nuclear Information System (INIS)

    Tardocchi, M.; Arnaboldi, C.; Gorini, G.; Imberti, S.; Pessina, G.; Previtali, E.; Andreani, C.; Pietropaolo, A.; Senesi, R.

    2004-01-01

    Resonance detectors (RD) are being developed for neutron spectroscopy in the epithermal energy region at spallation neutron sources. Different choices of converter foils and gamma spectrometers are being compared as part of an optimization and selection process within the TECHNI project. This paper reports on the design of a silicon detector system and some preliminary tests on the VESUVIO spectrometer. The detector has a good efficiency in the X-ray energy range, where two intense photon peaks (at 12 and 48 keV) are expected to be emitted following neutron capture in a uranium converter foil. The detector energy resolution has been improved by nitrogen vapor cooling of the silicon chip and by careful design of the preamplifier electronics. Neutron time of flight spectra have been measured on VESUVIO when the converter foil is placed in the neutron beam. In that case, the detector response is dominated by a continuum due to Compton detection of gammas of higher energy. These results provide a basis for a critical assessment of the applicability of silicon detectors for RD measurements of epithermal neutrons

  8. Pulse-shape discrimination in NE213 liquid scintillator detectors

    International Nuclear Information System (INIS)

    Cavallaro, M.; Tropea, S.; Agodi, C.; Assié, M.; Azaiez, F.; Boiano, C.; Bondì, M.; Cappuzzello, F.; Carbone, D.; De Napoli, M.; Séréville, N. de; Foti, A.; Linares, R.; Nicolosi, D.; Scarpaci, J.A.

    2013-01-01

    The 16-channel fast stretcher BaFPro module, originally developed for processing signals of Barium Fluoride scintillators, has been modified to make a high performing analog pulse-shape analysis of signals from the NE213 liquid scintillators of the EDEN neutron detector array. The module produces two Gaussian signals, whose amplitudes are proportional to the height of the fast component of the output light and to the total energy deposited into the scintillator, respectively. An in-beam test has been performed at INFN-LNS (Italy) demonstrating a low detection threshold, a good pulse-shape discrimination even at low energies and a wide dynamic range for the measurement of the neutrons energy.

  9. Hard rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Brekke, T.L.; Finnie, I.

    1974-01-01

    Intense submicrosecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types, the spall debris generally consisting of sand, dust, and small flakes. If carried out at rapid repetition rate this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods were studied. (auth)

  10. Correction for hole trapping in AGATA detectors using pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [CEA Saclay, DSM/IRFU/SPhN, Gif-sur-Yvette Cedex (France); Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Birkenbach, B.; Eberth, J.; Hess, H.; Pascovici, Gh.; Reiter, P.; Wiens, A. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Bazzacco, D.; Farnea, E.; Michelagnoli, C.; Recchia, F. [INFN, Sezione di Padova, Padova (Italy); Collaboration: for the AGATA Collaboration

    2013-05-15

    Data from the highly segmented High-Purity Germanium (HPGe) detectors of the AGATA spectrometer show that segments are more sensitive to neutron damage than the central core contact. Calculations on the collection efficiency of charge carriers inside the HPGe detector were performed in order to understand this phenomenon. The trapping sensitivity, an expression based on the collection efficiencies for electrons and holes, is put forward to quantify the effect of charge carrier trapping. The sensitivity is evaluated for each position in the detector volume with respect to the different electrodes and the collected charge carrier type. Using the position information obtained by pulse shape analysis from the position-sensitive AGATA detectors, it is possible to correct for the energy deficit employing detector specific sensitivity values. We report on the successful correction of the energy peaks from heavily neutron-damaged AGATA detectors for core and segment electrode signals. The original energy resolution can optimally be recovered up to a certain quantifiable limit of degradation due to statistical fluctuations caused by trapping effects. (orig.)

  11. A new digital pulse generator for the CALIFA detector

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, Michael; Gernhaeuser, Roman; Heiss, Benjamin; Klenze, Philipp; Remmels, Patrick; Winkel, Max [Physik Department E12, Technische Universitaet Muenchen (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    The 4π-calorimeter CALIFA ist one of the major detectors of the R3B-experiment at the upcoming Facility for Antiproton and Ion Research in Darmstadt. The monitoring of stability, single channel properties, temperature effects and rate dependency in a high resolution, high granularity calorimeter is essential for the success of the whole experiment. A new digital pulse generator will emulate the complex signal of the CsI(Tl) crystals in order to fine tune the online pulse shape analysis for particle identification, background suppression, energy calibration and for deadtime and pileup studies. The total pulse generator firmware is implemented into the digital readout platform FEBEX used in CALIFA. The FPGA and a small analog add on board allow for highly flexible parameter adjustment. New applications are easy to implement and even very complex shapes are produced by simple lookup tables. The concept, features and implementation of a prototype and a first application in the CALIFA Demonstrator Experiment in October 2014 at GSI in Darmstadt are presented.

  12. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); D’Errico, Francesco [Yale University, Department of Diagnostic Radiology, TAC N140, New Haven, CT 06520-8043 (United States); Scuola di Ingegneria, Universitá di Pisa, Largo Lucio Lazzarino 1, Pisa (Italy)

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1–10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200–400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  13. On the response of electronic personal dosimeters in constant potential and pulsed X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Margarete C.; Silva, Teogenes; Silva, Claudete R.E., E-mail: margaretecristinag@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Paulo Marcio C. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem

    2015-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed X-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed X-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC X-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed X-rays. (author)

  14. Electron Beam Induced Radiation Damage of the Semiconductor Radiation Detector based on Silicon

    International Nuclear Information System (INIS)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Haa, Jang Ho; Kang, Sang Mook; Chung, Chong Eun; Cho, Seung Yeon; Park, Ji Hyun; Yoon, Tae Hyung

    2005-01-01

    A Silicon Surface Barrier (SSB) semiconductor detector which is generally used to detect a charged particle such as an alpha particle was developed. The performance of the developed SSB semiconductor detector was measured with an I-V curve and an alpha spectrum. The response for an alpha particle was measured by Pu-238 sources. A SSB semiconductor detector was irradiated firstly at 30sec, at 30μA and secondly 40sec, 40μA with a 2MeV pulsed electron beam generator in KAERI. And the electron beam induced radiation damage of a homemade SSB detector and the commercially available PIN photodiode were investigated. An annealing effect of the damaged SSB and PIN diode detector were also investigated using a Rapid Thermal Annealing (RTA). This data may assist in designing the silicon based semiconductor radiation detector when it is operated in a high radiation field such as space or a nuclear power plant

  15. Isolated sub-100-attosecond pulse generation via controlling electron dynamics

    OpenAIRE

    Lan, Pengfei; Lu, Peixiang; Cao, Wei; Li, Yuhua; Wang, Xinlin

    2007-01-01

    A new method to coherently control the electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp, then an isolated 80-as pulse is straightforwardly obtained and even shorter pulse is achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes which have never be a...

  16. Studies on the transmission and processing of pulse-shaped signals from nuclear radiation detectors using methods of systems theory

    International Nuclear Information System (INIS)

    Spillekothen, H.G.

    2007-01-01

    Using methods of the systems theory of electronic communications and theoretical electrical science, this study describes the transmission of pulse-shaped signals from nuclear radiation detectors from the detector over ''electrically long lines'' (cables) to the output of the first pulse amplifier. The example of pulses from BF 3 -proportional counters shows, using the Fourier transformation, that pulses from radiation detectors contain a frequency spectrum ranging well above 10 8 Hz. If these pulses are transmitted to the first amplifier over a line length of several meters, the laws of the theory of transmission lines must be taken into account to avoid false signals caused by reflections. In the example, line equations are applied and the influence of the line and the terminating impedance is demonstrated. The influence of the frequency response ν(ω) and the phase response δ(ω) of the amplifier is also considered in the sample calculation. The methods presented make it possible to analyze and optimize the transmission and amplification of signals from radiation detectors. Close agreement emerges between empirically observed and calculated pulse shapes. (orig.)

  17. Description of current pulses induced by heavy ions in silicon detectors (II)

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette Cedex (France); Parlog, M. [LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); National Institute for Physics and Nuclear Engineering, RO-76900 Bucharest-Magurele (Romania); Borderie, B., E-mail: borderie@ipno.in2p3.fr [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Lavergne, L. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Le Neindre, N. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); Rivet, M.F.; Barbey, S. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Bougault, R. [LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); Chabot, M. [Inst. de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Chbihi, A. [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Cussol, D. [LPC, CNRS/IN2P3, ENSICAEN, Univ. de Caen, F-14050 Caen Cedex (France); Oliveira Santos, F. de [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Edelbruck, P. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ. Paris-Sud 11, F-91406 Orsay Cedex (France); Frankland, J.D. [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Galichet, E. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ. Paris-Sud 11, F-91406 Orsay Cedex (France); Conservatoire National des Arts et Metier, F-75141 Paris Cedex 03 (France); Guinet, D.; Lautesse, Ph. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ.e Claude Bernard Lyon I, F-69622 Villeurbanne Cedex (France); Lopez, O. [LPC, CNRS/IN2P3, ENSICAEN, Univ. de Caen, F-14050 Caen Cedex (France)

    2011-06-21

    Current pulses induced in a silicon detector by 10 different heavy ion species at known energies around 10 A MeV have been sampled in time at high frequency. Their individual average shapes are quite well reproduced by a fit procedure based on our recent charge carrier collection treatment which considers the progressive extraction of the electrons and holes from the high carrier density zone along the ionizing particle track. This region is assumed to present a supplementary dielectric polarization and consequently a disturbed electric field. The influence of the nature of the heavy ion on the values of the three fit parameters is analyzed.

  18. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  19. Design criteria for pulse transformers used in neutron detector pulse counting channels

    International Nuclear Information System (INIS)

    Powler, E.P.

    1963-10-01

    The need for long cables between the detector and head amplifier in neutron pulse counting channels has led to the development of systems in which a transformer is used to 'match' the high impedance of a fission or proportional counter to the characteristic impedance of the cable. A further transformer can be used to match the cable to the input of a low noise pulse amplifier if this has a high impedance. This report is intended to give the designer sufficient information to optimise a system and predict the performance in terms of signal to noise ratio, resolving time and gain. Related problems are covered and include the use of balanced twin cables, the requirements of temperatures up to 500 deg. C and the need for high interference rejection. Two systems are described in some detail to emphasise the principles of design. (author)

  20. Pulse shape analysis for germanium detectors used in DM searches

    International Nuclear Information System (INIS)

    Sagdeev, I.R.; Drukier, A.K.; Welsh, D.J.; Klimenko, A.A.; Osetrov, S.B.; Smolnikov, A.A.

    1994-01-01

    Progress in Ge detector technology has resulted in ultralow backgrounds of less than 0.3 countskeV -1 kg -1 d -1 at energies between 6 and 9keV and from 12 to 20keV. Between 4 and 6keV it is less than 2 countskeV -1 kg -1 d -1 . Coupled with good energy resolution, 0.4keV FWHM at 10keV, this allows searches for DM particles with m≥qslant8GeV/c 2 .Electromagnetic interference (EMI) and acoustical pick-up are the main sources of background in the best Ge detectors. A PC-based on-line pulse shape analysis system is presented which permits rejection of large fraction of the EMI/acoustical background. The hardware uses a low cost, commercially available digital storage oscilloscope (DSO). The software consists of about 40000 lines of code in Pascal and assembly language. We tested this system using a low radioactive background Ge-system at the Baksan observatory. For low energy events (<100keV) this system permits improvement in the background by about 20-30%. ((orig.))

  1. Automated electronic intruder simulator for evaluation of ultrasonic intrusion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    An automated electronic intruder simulator for testing ultrasonic intrusion detectors is described. This simulator is primarily intended for use in environmental chambers to determine the effects of temperature and humidity on the operation of ultrasonic intrusion detectors

  2. Performance of gas electron multiplier (GEM) detector

    International Nuclear Information System (INIS)

    Han, S. H.; Moon, B. S.; Kim, Y. K.; Chung, C. E.; Kang, H. D.; Cho, H. S.

    2002-01-01

    We have investigated in detail the operating properties of Gas Electron Multiplier (GEM) detectors with a double conical and a cylindrical structure in a wide range of external fields and GEM voltages. With the double conical GEM, the gain gradually increased with time by 10%; whereas this surface charging was eliminated with the cylindrical GEM. Effective gains above 1000 were easily observed over a wide range of collection field strengths in a gas mixture of Ar/CO 2 (70/30). The transparency and electron collection efficiency were found to depend on the ratio of external field and the applied GEM voltage; the mutual influence of both drift and collection fields was found to be trivial

  3. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  4. Pulse shape analysis for the gamma-ray tracking detector Agata

    International Nuclear Information System (INIS)

    Olariu, A.

    2007-10-01

    Agata is the European project for a 4π gamma-ray tracking array of 180 Ge detectors and is expected to have a detection sensitivity higher by 3 orders of magnitude than that of the present generation of gamma spectrometers. The trajectories of the photons inside a Ge crystal are reconstituted, which allows the determination of the initial energy of the incident photons as the total energy deposited along the track. The sequence of a γ-ray scattering process is too fast compared with the time resolution of the detector to be measured electronically, so tracking algorithms are necessary. Gamma-ray tracking detectors are operating in position sensitive mode it means that Ge crystal are segmented in order to facilitate the localization of the gamma interactions. It is possible to improve the position resolution by using the information conveyed by the shape of the detector signal. The task of the PSA (Pulse Shape Analysis) algorithm is to analyze this signal and extract the number of interactions, the position and the energy of each interaction. PSA algorithms rely on a basis of reference signals given by single interactions and that are obtained through an experimental characterization of the detector with scanning systems. The matrix method is a new PSA algorithm that consists in fitting linearly the detector signal with a set of calculated signals. We have tested this method with both simulated and measured signals. In the case of simulated single interactions the position resolution is 1.4 mm which is within Agata's specifications. For measured signals we have obtained mean positional errors of 3.2 mm at the front end of the detector an 4.8 mm at the back end

  5. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2006-01-01

    The basic activities of the Department of Nuclear Electronics in 2005 were concentrated on following areas: · studies of new scintillation techniques and their application in nuclear medicine and border monitoring, · contribution to the FWVI European projects, · scientific contracts with European industry in respect to detection techniques · electronics for experiments in High Energy Physics, · development of γ-ray spectrometry apparatus, · development of new generation State of the Art USB based and PCI based multi-channel analysers, · development, investigation and production of silicon detectors · normalisation activities. Most of the scientific achievements of the Department were summarized in 24 publications (released or being in press) and 6 publications submitted. The papers were published mainly in IEEE Trans. Nucl. Sci. and Nucl. Instr. Methods. Besides that, our scientists presented 11 contributions at international conferences - 5 presentations on IEEE Nuclear Science Symposium and Medical Imaging 2005 in Puerto Rico. It should also be stressed that prof. M. Moszynski was honoured with the title of IEEE Fellow and M. Kapusta has received PhD degree. There also were normalization activities in preparation of polish versions of European Standards in the field of electronics Studies on new scintillation techniques were addressed mainly to their application in a nuclear medicine and a border monitoring, induced by the European projects, realized within FWVI. The study of new prospects for a Time-of-Flight Positron Emission Tomography, carried out within BioCare project, strongly suggested that the time-of-flight PET, based on LSO crystals, is a realistic proposition for the further development. Moreover, the comparative study of several scintillators allowed selecting LaBr 3 crystal as a potential candidate to a common PET/CT detector. A comparative study of a large NaI(Tl) and BGO crystals allowed, in turn, selecting the 5''x 5''x 10'' Na

  6. The influence of anisotropic electron drift velocity on the signal shapes of closed-end HPGe detectors

    CERN Document Server

    Mihailescu, L; Lieder, R M; Brands, H; Jaeger, H

    2000-01-01

    This study is concerned with the anisotropy of the electron drift velocity in germanium crystals at high electric fields and low temperature, and its influence on the charge collection process in n-type, high-purity germanium (HPGe) detectors of closed-end, coaxial geometry. The electron trajectories inside HPGe detectors are simulated using a phenomenological model to calculate the dependence of the drift velocity on the angle between the electric field and the crystal orientation. The resulting induced currents and pulse shapes for a given detector geometry and preamplifier bandwidth are compared to experiment. Experimentally, the dependence of the pulse shapes on the conductivity anisotropy in closed-end HPGe detectors was observed. The experimental data on pulse shapes were obtained by sampling preamplifier signals of an encapsulated, hexaconical EUROBALL detector, which was irradiated by collimated sup 2 sup 2 Na and sup 2 sup 4 sup 1 Am sources. The crystal orientation was measured by neutron reflection...

  7. Isolated sub-100-as pulse generation via controlling electron dynamics

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    A method to coherently control electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp; thus an isolated 80-as pulse is straightforwardly obtained, and even shorter pulses are achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes. In addition, the few-cycle synthesized pulse is expected to be useful for manipulating a wide range of laser-atom interactions

  8. Department of Detectors and Nuclear Electronics: Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2003-01-01

    Full text: The basic activities of the Department of Nuclear Electronics were concentrated on the following areas: - studies of new scintillation techniques, - contribution to the big European projects, - electronics for experiments in High Energy Physics, - development, investigation and production of silicon detectors, - development of γ-ray spectrometry apparatus, - development of new generation state of the art PCI based multi-channel analysers, - technical support for the Institute as the whole with special emphasis on networking, - normalisation activities. Most of the scientific achievements concerning the Department were summarized in 20 publications (released or being in press). The papers were published mainly in IEEE Trans. on Nucl. Sci. and Nucl. Instr. and Methods. Besides that, our scientists presented 6 contributions at international conferences (such as IEEE Nuclear Science Symposium 2002 in Norfolk, USA). The Department was involved in scientific collaborations with a number of international centers, such as CERN, Royal Institute of Technology in Stockholm, FZR Rossendorf, IKF Juelich, GSI Darmstadt and companies as Advanced Photonix, Inc in California, Scionix in Holland and Photonis in France. The collaboration with High Energy Physics Department of our Institute was focused on LHCb experiment in CERN. In the studies of new scintillation techniques large area avalanche photodiodes were used successfully to tests numerous scintillators at liquid nitrogen temperature. The study of pure (undoped) NaI showed some intriguing effects dealing with non-proportionality of the light yield versus energy of γ-quanta and intrinsic energy resolution of the crystals, which may provide a deeper insight into origin of intrinsic resolution. A very high-energy resolution of 3.8% was measured for 662 keV γ-rays from a 137 Cs source. Moreover, very promising properties of pure NaI at room temperature were shown for the first time. The study of Hamamatsu avalanche

  9. Department of Detectors and Nuclear Electronics: Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2004-01-01

    Full text: The basic activities of the Department of Nuclear Electronics in 2003 were concentrated on following areas: - studies of new scintillation techniques, - contribution to the big European projects, - scientific contracts with European industry in respect to detection techniques - electronics for experiments in High Energy Physics, - development, investigation and production of silicon detectors - development of γ-ray spectrometry apparatus, - development of new generation State of the Art PCI based and USB based multi-channel analysers, - technical support for the Institute as the whole with special emphasis on networking, - normalisation activities. Most of the scientific achievements of the Department were summarized in 18 publications (released or in press). These papers were published mainly in IEEE Trans. on Nucl. Sci. and Nucl. Instr. and Methods. Besides that, our scientists presented 14 contributions at international conferences (such as IEEE Nuclear Science Symposium 2003 in Portland, USA or 3 th IEEE Real Time Conference in Montreal, Canada). Particularly, two papers were presented at IEEE NSS Conference in Portland presenting the first in-beam study of LSO/APD array detectors for PET in hadron therapy - this work was performed in the collaboration with FZR Rossendorf in Germany. Studies on new scintillation techniques were concentrated mainly on energy resolution investigations in scintillation detectors. The study of pure CsI and BGO at liquid nitrogen temperature showed some important observations concerning non-proportionality of the light yield versus energy of γ-quanta and intrinsic energy resolution of the scintillators. It suggested that a modification of scintillators by additional doping may improve their proportionality and in consequence, their energy resolution. The Department was involved in scientific collaborations with a number of international centers, such as CERN, the Royal Institute of Technology in Stockholm, FZR

  10. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2010-01-01

    Full text: The basic activities of the Department of Nuclear Electronics in 2010 were concentrated in the following areas: · studies of new scintillation techniques and their application to nuclear medicine and border monitoring, · realization of the A(and)D project, · scientific contracts with European industry in respect of detection techniques · electronics for experiments in High Energy Physics, · development of γ-ray spectrometry apparatus and new generation State-of-the-Art multi-channel analysers, · development, investigation and production of silicon detectors · normalisation activities. Most of the scientific achievements of the Department were summarized in 20 reviewed publications, published mainly in IEEE Trans. Nucl. Sci. and in 1 non-reviewed publication. Besides that, our scientists presented 19 contributions at international conferences - 8 presentations at the IEEE Nuclear Science Symposium and Medical Imaging Conference 2010 in Knoxville, USA. Also normalization activities in preparation of the Polish versions of European Standards in the field of electronics were supported. Wide studies of silicon photomultipliers in gamma spectrometry and fast timing with scintillators were carried out in a quantitative way related to the measured number of photoelectrons. They showed that it is possible to get a comparable resolution to those measured with photomultipliers. The study of non-proportionality of electron response and energy resolution of Compton electrons in scintillators in comparison to those measured with gamma rays confirmed finally that the scintillator contribution to the energy resolution is the effect of scattering of electrons produced in the scintillator by gamma rays. In the last year, the Department started development of the methods and apparatus for border monitoring against smuggling of explosive and radioactive materials within the A(and)D project supported by EU Structural Funds Project no POIG.01.01.02-14-012/08-00. A

  11. Optically isolated electronic trigger system for experiments on a subnanosecond time scale with a pulsed Van de Graaff electron accelerator

    International Nuclear Information System (INIS)

    Luthjens, L.H.; Vermeulen, M.J.W.; Hom, M.L.

    1980-01-01

    An optically isolated electronic trigger system for a pulsed Van de Graaff electron accelerator, producing an external pretrigger pulse 75 ns before arrival of the electron pulse at the target, is described. The total time jitter between trigger signal and electron pulse is 50 ps. The measurement of optical and electrical transients on a subnanosecond time scale with a sequential sampling oscilloscope is demonstrated. The contribution of various parts of the equipment to the total jitter is discussed. Those contributions to the jitter due to the electron transit time fluctuations in the accelerator assuming a constant acceleration voltage gradient and to the shot noise in the photomultiplier detector of the trigger system are calculated to be 5 ps and 12 to 21 ps respectively. Comparison with the experimental results leads to the conclusion that a considerable part of the total jitter may be attributed to acceleration voltage gradient fluctuations, to accelerator vibrations and possibly to density fluctuations in the insulation gas. Possible improvements of the trigger system are discussed. The apparatus is used for pulse radiolysis experiments with subnanosecond time resolution down to 100 ps in combination with subnanosecond time duration electron pulses

  12. Method for pulse to pulse dose reproducibility applied to electron linear accelerators

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Oproiu, C.; Cirstea, E.; Craciun, G.

    2002-01-01

    An original method for obtaining programmed beam single shots and pulse trains with programmed pulse number, pulse repetition frequency, pulse duration and pulse dose is presented. It is particularly useful for automatic control of absorbed dose rate level, irradiation process control as well as in pulse radiolysis studies, single pulse dose measurement or for research experiments where pulse-to-pulse dose reproducibility is required. This method is applied to the electron linear accelerators, ALIN-10 of 6.23 MeV and 82 W and ALID-7, of 5.5 MeV and 670 W, built in NILPRP. In order to implement this method, the accelerator triggering system (ATS) consists of two branches: the gun branch and the magnetron branch. ATS, which synchronizes all the system units, delivers trigger pulses at a programmed repetition rate (up to 250 pulses/s) to the gun (80 kV, 10 A and 4 ms) and magnetron (45 kV, 100 A, and 4 ms).The accelerated electron beam existence is determined by the electron gun and magnetron pulses overlapping. The method consists in controlling the overlapping of pulses in order to deliver the beam in the desired sequence. This control is implemented by a discrete pulse position modulation of gun and/or magnetron pulses. The instabilities of the gun and magnetron transient regimes are avoided by operating the accelerator with no accelerated beam for a certain time. At the operator 'beam start' command, the ATS controls electron gun and magnetron pulses overlapping and the linac beam is generated. The pulse-to-pulse absorbed dose variation is thus considerably reduced. Programmed absorbed dose, irradiation time, beam pulse number or other external events may interrupt the coincidence between the gun and magnetron pulses. Slow absorbed dose variation is compensated by the control of the pulse duration and repetition frequency. Two methods are reported in the electron linear accelerators' development for obtaining the pulse to pulse dose reproducibility: the method

  13. Circuits and systems for CW and pulsed high-field electron spin resonance

    OpenAIRE

    David Robert, Bolton

    2006-01-01

    This thesis is concerned with the design and realisation of components for a new state of the art 94GHz Electron Spin Resonance (ESR) spectrometer capable of operating in both pulsed and CW modes. The complete spectrometer is designed to provide phase coherent 1kW peak power sub-nanosecond π/2 pulses having variable duration and repetition rate. The mm-wave response of a paramagnetic sample to these pulses is detected with a superheterodyne detector. Such a system would offer a step change in...

  14. Pulse pileup effects of plasma electron temperature measurements by soft x-ray energy analysis

    International Nuclear Information System (INIS)

    Dyer, G.R.; Neilson, G.H.; Kelley, G.G.

    1978-10-01

    The electron temperature of hot plasmas is conveniently derived from bremsstrahlung spectra obtained by pulse-height analysis using a lithium-compensated silicon detector. Time-resolved temperature measurements require high counting rates, with ultimate rate limited by pulse pileup. To evaluate this limit, spectral distortion due to pileup and consequent effects on temperature determination are investigated. Expressions for distorted spectra are derived as functions of Maxwellian temperature and pileup fraction for both square and triangular pulse shapes. A comparison of temperatures obtained from distorted spectra with actual values indicates that measurements with less than 10% error can be made in the absence of line radiation, even from spectra containing 40% pileup

  15. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  16. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  17. Rise time of voltage pulses in NbN superconducting single photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, K. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics, 34 Tallinskaya St., 109028 Moscow (Russian Federation); Divochiy, A. V.; Karpova, U. V.; Morozov, P. V. [CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Vakhtomin, Yu. B.; Seleznev, V. A. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Sidorova, M. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); Zotova, A. N.; Vodolazov, D. Yu. [Institute for Physics of Microstructure, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation)

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R{sub n}, which appears after photon absorption, on its kinetic inductance L{sub k} and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  18. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2010-01-01

    Full text: The basic activities of the Department of Nuclear Electronics in 2009 were concentrated in the following areas: · studies of new scintillation techniques and their application to nuclear medicine and border monitoring, · realization of the A(and)D project, · scientific contracts with European industry with respect to detection techniques, · electronics for experiments in high energy Physics, · development of γ-ray spectrometry apparatus and new generation State of the Art multi-channel analysers, · development, investigation and production of silicon detectors, · normalisation activities. Most of the scientific- achievements of the Department were summarized in 25 refereed publications, published mainly iu IEEE Trans. Nucl. Sci. and in 3 non reviewed publications. In addition, our scientists presented 28 contributions at international conferences - 8 presentations at the IEEE Nuclear Science Symposium and Medical Imaging Conference 2009 in Orlando, USA. Normalization activities in preparation of Polish versions of European Standards in the field of electronics were also supported. The observed discrepancy in the light output measured by different PMTs for a number of LSO/LYSO and BGO scintillators triggered studies which showed that the characterization of scintillators by modern photomultipliers may bring a new source of errors related to the space charge effect in PMTs. It enables the right number of the light output of LSO/LYSO scintillator to be given and methods which permit the correct measurement of the photoelectron number and the photon number to be proposed. The further study of new scintillation techniques covered a development of the method to measure the energy resolution of Compton electrons in scintillators. measurements of the non-proportionality of CdWO 4 and ZnWO 4 at liquid nitrogen temperatures and studies of CsI(Na) scintillators. Last year the Department began development of methods and apparatus for border monitoring

  19. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  20. Dual detector pulsed neutron logging for providing indication of formation porosity

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1979-01-01

    A logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument. The radiation detectors are gated differently from each other to provide an indication of formation porosity which is substantially independent of the formation salinity. In the preferred embodiment, the electrical signals indicative of radiation detected by the long-spaced detector are gated for almost the entire interval between neutron pulses and the short-spaced signals are gated for a significantly smaller time interval which commences soon after the termination of a given neutron burst. The signals from the two detectors are combined in a ratio circuit for determination of porosity

  1. Precision calibration of calorimeter electronics in the D0 liquid argon/uranium particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, D.L.

    1991-12-01

    The ability to cross calibrate thousands of channels of detector electronics is of prime importance. This paper will describe the system used to deliver and distribute a 300 nanosecond pulse across 50,000 channels of electronics with better than 0.25% difference between channels from a location more than 200 feet away. The system is used for both cross calibration and functionality checking, (i.e., missing channels). Design of a fixed width pulse generator of high stability is presented as a key ingredient in the system`s overall performance. In addition, the design of a controlled impedance distribution system is discussed. 2 refs.

  2. Precision calibration of calorimeter electronics in the D0 liquid argon/uranium particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, D.L.

    1991-12-01

    The ability to cross calibrate thousands of channels of detector electronics is of prime importance. This paper will describe the system used to deliver and distribute a 300 nanosecond pulse across 50,000 channels of electronics with better than 0.25% difference between channels from a location more than 200 feet away. The system is used for both cross calibration and functionality checking, (i.e., missing channels). Design of a fixed width pulse generator of high stability is presented as a key ingredient in the system's overall performance. In addition, the design of a controlled impedance distribution system is discussed. 2 refs.

  3. Some studies on the pulse-height loss due to capacitive decay in the detector-circuit of parallel plate ionization chambers

    International Nuclear Information System (INIS)

    Sharma, S.L.; Anil Kumar, G.; Choudhury, R.K.

    2006-01-01

    Pulse-type ionization chambers are invariably operated in the electron-sensitive mode where the capacitive decay in the detector-circuit during the electron collection produces loss in the pulse-height. In order to understand and appreciate the effect of this capacitive decay on the detector response, we have carried out Monte Carlo simulations of the response of two-electrode parallel plate ionization chambers with and without the capacitive decay keeping shaping time so large that the ballistic deficit is negligibly small. These simulations have been carried out incorporating the physical processes, namely, emission of charged particles from a point radioactive source, the generation of charge carriers in the active volume, separation and acceleration of the charge carriers, transport of the charge carriers, induction of charges on the electrodes, pulse processing by preamplifier-amplifier network, etc. These simulations have shown that the concerned capacitive decay produces appreciable loss in the pulse-height, if the detector-circuit time constant is of the order of maximum electron collection time. We have also carried out measurements on the pulse-height loss due to the capacitive decay in the detector-circuit during the electron collection for a two-electrode parallel plate ionization chamber. The experimental data on the pulse-height loss match reasonably well with the theoretical predictions

  4. Particle identification in a wide dynamic range based on pulse-shape analysis with solid-state detectors

    International Nuclear Information System (INIS)

    Pausch, G.; Hilscher, D.; Ortlepp, H.G.

    1994-04-01

    Heavy ions detected in a planar silicon detector were identified by exploiting a recently proposed combination of the pulse-shape and the time-of-flight techniques. We were able to resolve charge numbers up to Z = 16 within a wide dynamic range of ∼ 1:5, and to identify even isotopes for the elements up to Magnesium. The simple scheme of signal processing is based on conventional electronics and cheap enough to be exploited in large multidetector arrays. (orig.)

  5. Application of the pulse-shape technique to proton-alpha discrimination in Si-detector arrays

    International Nuclear Information System (INIS)

    Pausch, G.; Moszynski, M.; Wolski, D.; Bohne, W.; Grawe, H.; Hilscher, D.; Schubart, R.; De Angelis, G.; De Poli, M.

    1995-04-01

    The capability of the pulse-shape technique with reversed n-type Si detectors for discrimination of protons and alphas produced in fusion-evaporation reactions was tested at the VICKSI cyclotron in Berlin. We applied a zero-crossing technique which does not need any external time reference, and which can therefore be exploited at DC accelerators. Excellent proton-alpha discrimination in the full energy range of the evaporation spectra, but also charge and even isotope resolution for heavier ions produced in projectile fragmentation, was obtained with detectors of an existing Si ball. There is no doubt that the pulse-shape discrimination works well with detectors from serial production and under experimental conditions which are typical for nuclear structure studies. An application of this technique in Si detector arrays is obvious, but some special features must be considered in the design of the electronics. The particle discrimination depends strongly on the electric field distribution inside the detector. Stabilization of the bias voltage at the detector is therefore recommended. A consequence of the rear-side injection mode is a strong variation of the charge-collection time with energy, charge, and mass number of the detected ion. To obtain a precise energy signal it is indispensable to correct for the ballistic deficit. (orig.)

  6. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  7. Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Zachary S., E-mail: hartwig@psfc.mit.edu [Department of Nuclear Science and Engineering, MIT, Cambridge MA (United States); Gumplinger, Peter [TRIUMF, Vancouver, BC (Canada)

    2014-02-11

    We present new capabilities of the Geant4 toolkit that enable the precision simulation of organic scintillation detectors within a comprehensive Monte Carlo code for the first time. As of version 10.0-beta, the Geant4 toolkit models the data-driven photon production from any user-defined scintillator, photon transportation through arbitrarily complex detector geometries, and time-resolved photon detection at the light readout device. By fully specifying the optical properties and geometrical configuration of the detector, the user can simulate response functions, photon transit times, and pulse shape discrimination. These capabilities enable detector simulation within a larger experimental environment as well as computationally evaluating novel scintillators, detector geometry, and light readout configurations. We demonstrate agreement of Geant4 with the NRESP7 code and with experiments for the spectroscopy of neutrons and gammas in the ranges 0–20 MeV and 0.511–1.274 MeV, respectively, using EJ301-based organic scintillation detectors. We also show agreement between Geant4 and experimental modeling of the particle-dependent detector pulses that enable simulated pulse shape discrimination. -- Highlights: • New capabilities enable the modeling of organic scintillation detectors in Geant4. • Detector modeling of complex scintillators, geometries, and light readout. • Enables particle- and energy-dependent production of scintillation photons. • Provides ability to generate response functions with precise optical physics. • Provides ability to computationally evaluate pulse shape discrimination.

  8. Pulse height measurements and electron attachment in drift chambers operated with Xe,CO{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, A. E-mail: a.andronic@gsi.de; Appelshaeuser, H.; Blume, C.; Braun-Munzinger, P.; Bucher, D.; Busch, O.; Ramirez, A.C.A. Castillo; Catanescu, V.; Ciobanu, M.; Daues, H.; Devismes, A.; Emschermann, D.; Fateev, O.; Garabatos, C.; Herrmann, N.; Ivanov, M.; Mahmoud, T.; Peitzmann, T.; Petracek, V.; Petrovici, M.; Reygers, K.; Sann, H.; Santo, R.; Schicker, R.; Sedykh, S.; Shimansky, S.; Simon, R.S.; Smykov, L.; Soltveit, H.K.; Stachel, J.; Stelzer, H.; Tsiledakis, G.; Vulpescu, B.; Wessels, J.P.; Windelband, B.; Winkelmann, O.; Xu, C.; Zaudtke, O.; Zanevsky, Yu.; Yurevich, V

    2003-02-11

    We present pulse height measurements in drift chambers operated with Xe,CO{sub 2} gas mixtures. We investigate the attachment of primary electrons on oxygen and SF{sub 6} contaminants in the detection gas. The measurements are compared with simulations of properties of drifting electrons. We present two methods to check the gas quality: gas chromatography and {sup 55}Fe pulse height measurements using monitor detectors.

  9. Wiring of instrument for measuring pulse count of pseudocoincidences in radiation detectors

    International Nuclear Information System (INIS)

    Hekrdle, J.

    1978-01-01

    A network is described consisting of a flip-flop circuit, a pulse counter, a shift register, a gate and a clock generator. Pulses from an alpha detector are applied to the adjusting input of the control flip-flop whose output is connected to the reset input of the pulse counter and to the control input of the gate for beta pulses delayed by the shift register. The pulse counter is supplied with pulses from the clock generator output. The pulses also energize the shift register. The control flip-flop is reset by the output of the pulse counter overflow and also by the beta pulse passing through the open gate to the output terminal. (H.S.)

  10. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.

    2017-03-01

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  11. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.

    Science.gov (United States)

    de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L

    2008-10-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.

  12. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis

    International Nuclear Information System (INIS)

    Fuente, R. de la; Celis, B. de; Canto, V. del; Lumbreras, J.M.; Celis, Alonso B. de; Martin-Martin, A.; Gutierrez-Villanueva, J.L.

    2008-01-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for α/β/γ-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of α/β particles and X-rays/γ particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by α/γ coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg -1 for 0.1 kg of soil and 1000 min counting

  13. Photomultiplier pulse Read Out system for the preshower detector of the LHCb experiment

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Bohner, G.; Cornat, R.; Deschamps, O.; Lecoq, J.; Monteil, S.; Perret, P.

    2003-01-01

    The second generation experiment for CP violation studies in B decays, LHCb, is a 20-m-long single-arm spectrometer to be installed on the future Large Hadron Collider at CERN. For its precision measurement purpose, it combines precise vertex location and particle identification, in addition to a performance trigger system able to cope with high flux. The first level of trigger is mainly based on the fast response of the calorimetric subsystem. Of major importance is the 6000 channels preshower detector that aims to validate the electromagnetic nature of calorimetric showers. It consists of two-radiation-length lead sheet in front of a scintillator plane. Scintillator signals are extracted from plastic cells using wavelength-shifting fibres coupled to multi-anode photomultiplier tubes. The preshower Read Out system has to cope with fluctuating photomultiplier pulses caused by small amounts of photoelectrons, in addition to strong constraints imposed by the 40 MHz LHC bunch-crossing frequency. A special Read Out electronics including perfect 40 MHz integrators able to shape fluctuating photomultiplier pulses has been designed, and successfully realized. The temporal shape of photomultiplier pulse and the upstream Read Out system for preshower are described in this document

  14. Electron acceleration by laser produced wake field: Pulse shape effect

    Science.gov (United States)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  15. Electronic system for recording proportional counter rare pulses with the pulse shape analysis

    International Nuclear Information System (INIS)

    Barabanov, I.R.; Gavrin, V.N.; Zakharov, Yu.I.; Tikhonov, A.A.

    1984-01-01

    The anutomated system for recording proportional counter rare pulses is described. The proportional counters are aimed at identification of 37 Ar and H7 1 Gr decays in chemical radiation detectors of solar neutrino. Pulse shape recording by means of a storage oscilloscope and a TV display is performed in the system considered besides two-parametric selection of events (measurement of pulse amplitude in a slow channel and the amplitude of pulse differentiated with time constant of about 10 ns in a parallel fast channel). Pulse discrimination by a front rise rate provides background decrease in the 55 Fe range (5.9 keV) by 6 times; the visual analysis of pulse shapes recorded allows to decrease the background additionally by 25-30%. The background counting rate in the 55 Fe range being equal to 1 pulse per 1.5 days, is obtained when using the installation described above, as well as the passive Pb shield 5 cm thick, and the active shield based on the anticoincidence NaI(Tl) detector with the cathode 5.6 mm in-diameter made of Fe fabircated by zone melting. The installation described allows to reach the background level of 0.6 pulse/day (the total coefficient of background attenuation is 400). Further background decrease is supposed to be provided by installation allocation in the low-noise underground laboratory of the Baksan Neutrino Observatory

  16. Sub aqueous electronics of neutrino detector; Podvodnaya ehlektronika nejtrinnogo detektora

    Energy Technology Data Exchange (ETDEWEB)

    Borisovets, B A; Donskikh, L A; Klabukov, A M [and others

    1996-12-31

    Paper describes the systems of measuring electronics of NT-200 neutrino detector designed to carry out investigations in the field of neutrino astrophysics. Correlation measuring electronics unit are presented by two two-level discriminators and coincidence circuit is studied. 6-channel unit of electronic chain covering time-code number recording is designed for data communication into the computer. detector calibration mode is described. 3 refs.

  17. Silicon radiation detector analysis using back electron beam induced current

    International Nuclear Information System (INIS)

    Guye, R.

    1987-01-01

    A new technique for the observation and analysis of defects in silicon radiation detectors is described. This method uses an electron beam from a scanning electron microscope (SEM) impinging on the rear side of the p + n junction of the silicon detector, which itself is active and detects the electron beam induced current (EBIC). It is shown that this current is a sensitive probe of localized trapping centers, either at the junction surface or somewhere in the volume of the silicon crystal. (orig.)

  18. Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic

    Science.gov (United States)

    Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie

    2018-02-01

    As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.

  19. A correlation-based pulse detection technique for gamma-ray/neutron detectors

    International Nuclear Information System (INIS)

    Faisal, Muhammad; Schiffer, Randolph T.; Flaska, Marek; Pozzi, Sara A.; Wentzloff, David D.

    2011-01-01

    We present a correlation-based detection technique that significantly improves the probability of detection for low energy pulses. We propose performing a normalized cross-correlation of the incoming pulse data to a predefined pulse template, and using a threshold correlation value to trigger the detection of a pulse. This technique improves the detector sensitivity by amplifying the signal component of incoming pulse data and rejecting noise. Simulation results for various different templates are presented. Finally, the performance of the correlation-based detection technique is compared to the current state-of-the-art techniques.

  20. Synchronization circuit for shaping electron beam picosecond pulses

    International Nuclear Information System (INIS)

    Pavlov, Yu.S.; Solov'ev, N.G.; Tomnikov, A.P.

    1985-01-01

    A fast response circuit of modulator trigger pulse synchronization of a deflector of the electron linear accelerator at 13 MeV with the given phase of HF-voltage is described. The circuit is constructed using K500 and K100 integrated emitter-coupled logics circuits. Main parameters of a synchropulse are duration of 20-50 ns, pulse rise time of 1-5 ns, pulse amplitude >=10 V, delay instability of a trigger pulse <=+-0.05 ns. A radiopulse with 3 μs duration, 5 V amplitude and 400 Hz frequency enters the circuit input. The circuit can operate at both pulsed operation and continuous modes

  1. Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors

    Science.gov (United States)

    Du, B. Y.

    2016-10-01

    Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.

  2. Controller for control of pulsed electron linear accelerator

    International Nuclear Information System (INIS)

    Bryazgin, A.A.; Faktorovich, B.L.

    1995-01-01

    The controller is based on the K1816VE31 microprocessor and contains 22-channel integrating 10-digital two-wire analog-to-digital converter, 8-channel 12-digit digital-to-analog converter, 24-digit output register, 16-digit input register pulse generator in the range of 0.5 - 50 Hz with the regulation step of 0.05 Hz and delayed pulse generator. The controller is used for pulsed electron linear accelerator control and is reduced to regulation of the electron beam pulse repetition rate and beam energy. 1 ref., 1 fig

  3. Digital pulse-timing technique for the neutron detector array NEDA

    Energy Technology Data Exchange (ETDEWEB)

    Modamio, V., E-mail: victor.modamio@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Valiente-Dobón, J.J. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Jaworski, G. [Faculty of Physics, Warsaw University of Technology, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, 02-093 Warszawa (Poland); Hüyük, T. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Triossi, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Egea, J. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Department of Electronic Engineering, Universitat de València, E-46100 Burjassot (Spain); Di Nitto, A. [Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Agramunt Ros, J. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Angelis, G. de [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); France, G. de [GANIL, CEA/DSAM and CNRS/IN2P3, F-14076 Caen (France); Erduran, M.N. [Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul (Turkey); and others

    2015-03-01

    A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in. diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in. by 5 in. BC501A liquid scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CFD algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.

  4. Pulse Shape Analysis and Discrimination for Silicon-Photomultipliers in Helium-4 Gas Scintillation Neutron Detector

    Science.gov (United States)

    Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas

    2018-01-01

    Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.

  5. Experimental research of double-pulse linear induction electron accelerator

    International Nuclear Information System (INIS)

    Liao Shuqing; Cheng Cheng; Zheng Shuxin; Tang Chuanxiang; Lin Yuzheng; Jing Xiaobing; Mu Fan; Pan Haifeng

    2009-01-01

    The Mini-LIA is a double-pulse linear induction electron accelerator with megahertz repetition rates, which consists of a double-pulse power system, a thermal cathode electron gun, two induction cells, beam transportation systems and diagnosis systems, etc. Experiments of the Mini-LIA have been conducted. The double-pulse high voltage was obtained with several hundred nanosecond pulse intervals (i. e. megahertz repetition rate) and each pulse had an 80 kV amplitude with a FWHM of 80 ns. In the gap of the induction cell, the double-pulse accelerating electric field was measured via E-field probes, and the double-pulse electron beam with a current about 1.1 A has been obtained at the Mini-LIA exit. These experimental results show that the double-pulse high voltage with megahertz repetition rates can be generated by an insulation and junction system. And they also indicate that the induction cell with metglas as the ferromagnetic material and the LaB 6 thermal cathode electron gun suit the double-pulse operation with megahertz repetition rates. (authors)

  6. Rejecting escape events in large volume Ge detectors by a pulse shape selection procedure

    International Nuclear Information System (INIS)

    Del Zoppo, A.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piattelli, P.; Santonocito, D.; Sapienza, P.

    1993-01-01

    The dependence of the response to γ-rays of a large volume Ge detector on the interval width of a selected initial rise pulse slope is investigated. The number of escape events associated with a small pulse slope is found to be greater than the corresponding number of full energy events. An escape event rejection procedure based on the observed correlation between energy deposition and pulse shape is discussed. Such a procedure seems particularly suited for the design of highly granular large volume Ge detector arrays. (orig.)

  7. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  8. Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.

  9. Pulse discrimination of background and gamma-ray source by digital pulse shape discrimination in a BF3 detector

    International Nuclear Information System (INIS)

    Kim, Jinhyung; Kim, J. H.; Choi, H. D.

    2014-01-01

    As a representative method of non-destructive assay, accurate neutron measurement is difficult due to large background radiation such as γ-ray, secondary radiation, spurious pulse, etc. In a BF 3 detector, the process of signal generation is different between neutron and other radiations. As the development of detection technique, all of signal data can be digitized by digital measurement method. In the previous study, Applied Nuclear Physics Group in Seoul National University has developed digital Pulse Shape Discrimination (PSD) method using digital oscilloscope. In this study, optimization of parameters for pulse discrimination is discussed and γ-ray region is determined by measuring 60 Co source. The background signal of BF 3 detector is discriminated by digital PSD system. Parameters for PSD are optimized through FOM calculation. And the γ-ray region is determined by measuring 60 Co source. In the future, the performance of developed system will be tested in low and high intensity neutron field

  10. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  11. Detectors, sampling, shielding, and electronics for positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1981-08-01

    A brief discussion of the important design elements for positron emission tomographs is presented. The conclusions are that the instrumentation can be improved by the use of larger numbers of small, efficient detectors closely packed in many rings, the development of new detector materials, and novel electronic designs to reduce the deadtime and increase maximum event rates

  12. Detection of secondary electrons with pixelated hybrid semiconductor detectors

    International Nuclear Information System (INIS)

    Gebert, Ulrike Sonja

    2011-01-01

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10 -5 mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm 2 area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm 2 . To achieve this, a new photocathode was mounted in a shorter distance to the detector. The measurements where

  13. Electromagnetic pulses in a strongly magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Yu, M.Y.; Rao, N.N.

    1985-01-01

    The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references

  14. Characteristics of short pulse grid pulser for an electron LINAC

    International Nuclear Information System (INIS)

    Wang Guicheng; Fang Zhigao; Hong Jun

    1996-01-01

    An equivalent circuit is used to obtain the output waveform of a short pulse grid pulser for an electron LINAC, and the amplitude of the output pulse is studied as a function of number of switching transistors for some kinds of transistor. Two pulsers were fabricated to fulfill the requirements of the 200 MeV LINAC at NSRL

  15. Electron acceleration by a self-diverging intense laser pulse

    International Nuclear Information System (INIS)

    Singh, K.P.; Gupta, D.N.; Tripathi, V.K.; Gupta, V.L.

    2004-01-01

    Electron acceleration by a laser pulse having a Gaussian radial and temporal profile of intensity has been studied. The interaction region is vacuum followed by a gas. The starting point of the gas region has been chosen around the point at which the peak of the pulse interacts with the electron. The tunnel ionization of the gas causes a defocusing of the laser pulse and the electron experiences the action of a ponderomotive deceleration at the trailing part of the pulse with a lower intensity rather than an acceleration at the rising part of the laser pulse with a high intensity, and thus gains net energy. The initial density of the neutral gas atoms should be high enough to properly defocus the pulse; otherwise the electron experiences some deceleration during the trailing part of the pulse and the net energy gain is reduced. The rate of tunnel ionization increases with the increase in the laser intensity and the initial density of neutral gas atoms, and with the decreases in the laser spot size, which causes more defocusing of the laser pulse. The required initial density of neutral gas atoms decreases with the increase in the laser intensity and also with the decrease in the laser spot size

  16. Two-pulse laser control of nuclear and electronic motion

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1997-01-01

    We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability...

  17. Electron pulse shaping in the FELIX RF accelerator

    NARCIS (Netherlands)

    Weits, H. H.; van der Geer, C. A. J.; Oepts, D.; van der Meer, A. F. G.

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel

  18. Response of cellulose nitrate track detectors to electron doses

    CERN Document Server

    Segovia, N; Moreno, A; Vazquez-Polo, G; Santamaría, T; Aranda, P; Hernández, A

    1999-01-01

    In order to study alternative dose determination methods, the bulk etching velocity and the latent track annealing of LR 115 track detectors was studied during electron irradiation runs from a Pelletron accelerator. For this purpose alpha irradiated and blank detectors were exposed to increasing electron doses from 10.5 to 317.5 kGy. After the irradiation with electrons the detectors were etched under routine conditions, except for the etching time, that was varied for each electron dose in order to reach a fixed residual thickness. The variation of the bulk etching velocity as a function of each one of the electron doses supplied, was interpolated in order to obtain dosimetric response curves. The observed annealing effect on the latent tracks is discussed as a function of the total electron doses supplied and the temperature.

  19. 2-Dimension pulse shape discriminator for phoswich detector based on FPGA

    International Nuclear Information System (INIS)

    Ji Jianfeng; Liu Congzhan; Zhang Zhi

    2011-01-01

    It improves the data acquire system for the pulse signal based on digital front-rear pulse shape discrimination system. It adds pulse width information into the pulse's data package. Base on this, we divide the pulse event process into two process, on line coast process and offline accurate process: the online process sets a big threshold, just save the data of the event below this threshold; the offline process uses the acquired data, get the pulse amplitude and pulse width, and then according the spectrum's real shape, set the accurate threshold. this design resolves the problem that the detector's decay time change with the temperature; at the same time, it can correct the system's distortion when the input signal at small amplitude, improves the discrimination system's accuracy. (authors)

  20. Secondary electrons detectors for beam tracking: micromegas and wire chamber

    International Nuclear Information System (INIS)

    Pancin, J; Chaminade, T; Drouart, A; Kebbiri, M; Riallot, M; Fernandez, B; Naqvi, F

    2009-01-01

    SPIRAL2 or FAIR will be able to deliver beams of radioactive isotopes of low energy (less than 10 MeV/n). The emittance of these new beams will impose the use of beam tracking detectors to reconstruct the exact impact position of the nuclei on the experimental target. However, due to their thickness, the classical detectors will generate a lot of energy and angular straggling. A possible alternative is the SED principle (Secondary Electron Detector). It consists of an emissive foil placed in beam and a detector for the secondary electrons ejected by the passing of the nuclei through the foil. An R and D program has been initiated at CEA Saclay to study the possibility to use low pressure gaseous detectors as SED for beam tracking. Some SED have been already used on the VAMOS spectrometer at GANIL since 2004. We have constructed new detectors on this model to measure their performances in time and spatial resolution, and counting rate. Other detector types are also under study. For the first time, a test with different micromegas detectors at 4 Torr has been realized. A comparison on the time resolution has been performed between wire chamber and micromegas at very low pressure. The use of micromegas could be promising to improve the counting rate capability and the robustness of beam tracking detectors.

  1. Background recognition in Ge detectors by pulse shape analysis

    International Nuclear Information System (INIS)

    Petry, F.; Piepke, A.; Strecker, H.; Klapdor-Kleingrothaus, H.V.; Balysh, A.; Belyaev, S.T.; Demehin, A.; Gurov, A.; Kondratenko, I.; Kotel'nikov, D.; Lebedev, V.I.; Landis, D.; Madden, N.; Pehl, R.H.

    1993-01-01

    A method of event identification that distinguishes single and multiple-site events by determining the number of interactions in a high purity germanium detector is reported. The selectivity of the method has been experimentally verified. (orig.)

  2. Apparatus and method for generating high density pulses of electrons

    International Nuclear Information System (INIS)

    Lee, C.; Oettinger, P.E.

    1981-01-01

    An apparatus and method are described for the production of high density pulses of electrons using a laser energized emitter. Caesium atoms from a low pressure vapour atmosphere are absorbed on and migrate from a metallic target rapidly heated by a laser to a high temperature. Due to this heating time being short compared with the residence time of the caesium atoms adsorbed on the target surface, copious electrons are emitted which form a high current density pulse. (U.K.)

  3. Development of electron temperature measuring system by silicon drift detector

    International Nuclear Information System (INIS)

    Song Xianying; Yang Jinwei; Liao Min

    2007-12-01

    Soft X-ray spectroscopy with two channels Silicon Drift Detector (SDD) are adopted for electron temperature measuring on HL-2A tokamak in 2005. The working principle, design and first operation of the SDD soft X-ray spectroscopy are introduced. The measuring results of electron temperature are also presented. The results show that the SDD is very good detector for electron temperature measuring on HL-2A tokamak. These will become a solid basic work to establish SDD array for electron temperature profiling. (authors)

  4. Novel Front-end Electronics for Time Projection Chamber Detectors

    CERN Document Server

    García García, Eduardo José

    This work has been carried out in the European Organization for Nuclear Research (CERN) and it was supported by the European Union as part of the research and development towards the European detector the (EUDET) project, specifically for the International Linear Collider (ILC). In particle physics there are several different categories of particle detectors. The presented design is focused on a particular kind of tracking detector called Time Projection Chamber (TPC). The TPC provides a three dimensional image of electrically charged particles crossing a gaseous volume. The thesis includes a study of the requirements for future TPC detectors summarizing the parameters that the front-end readout electronics must fulfill. In addition, these requirements are compared with respect to the readouts used in existing TPC detectors. It is concluded that none of the existing front-end readout designs fulfill the stringent requirements. The main requirements for future TPC detectors are high integration, an increased n...

  5. Synchronization of sub-picosecond electron and laser pulses

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-01-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) copyright 1999 American Institute of Physics

  6. Analytic model of electron pulse propagation in ultrafast electron diffraction experiments

    International Nuclear Information System (INIS)

    Michalik, A.M.; Sipe, J.E.

    2006-01-01

    We present a mean-field analytic model to study the propagation of electron pulses used in ultrafast electron diffraction experiments (UED). We assume a Gaussian form to characterize the electron pulse, and derive a system of ordinary differential equations that are solved quickly and easily to give the pulse dynamics. We compare our model to an N-body numerical simulation and are able to show excellent agreement between the two result sets. This model is a convenient alternative to time consuming and computationally intense N-body simulations in exploring the dynamics of UED electron pulses, and as a tool for refining UED experimental designs

  7. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Amrendra [Mississippi State Univ., Mississippi State, MS (United States)

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  8. Medipix 2 detector applied to low energy electron microscopy

    International Nuclear Information System (INIS)

    Gastel, R. van; Sikharulidze, I.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2009-01-01

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  9. Medipix 2 detector applied to low energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gastel, R. van, E-mail: R.vanGastel@utwente.nl [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Sikharulidze, I. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Schramm, S. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Abrahams, J.P. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Poelsema, B. [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Tromp, R.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands)

    2009-12-15

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  10. Fast pulse beam generation systems for electron accelerators

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1977-01-01

    The fast pulse beam generation system to supply the SLAC storage ring, SPEAR, by the two one nanosecond bunch electron beam pulses is described. Generation of these pulses is accomplished with a combination of a fast pulsed grided gun and a synchronized transverse beam chopper. Fast gun based on spherical cathode-grid assembly has output current up to 2As. Fast pulse amplifier system can handle trains of short pulses with repetition rates up to 40 MHz during the 1.6 μs normal accelerating time. Chopping deflector system consists of a resonant coaxial line with the deflecting plates. The resonator frequency is 39.667 MHz. A schematic diagram of the resonant system is shown. The fast beam pickup system has a one hundred picosecond rise time overrall. Fast beam generation and chopper systems permit to generate almost any short or single bunch beam profile needed for experiments

  11. Electron in the ultrashort laser pulse

    Czech Academy of Sciences Publication Activity Database

    Pardy, Miroslav

    2003-01-01

    Roč. 42, č. 1 (2003), s. 99-110 ISSN 0020-7748 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : laser pulse, Volkov solution, compton effect Subject RIV: BE - The oretical Physics Impact factor: 0.476, year: 2003

  12. Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates

    Science.gov (United States)

    Patting, Matthias; Reisch, Paja; Sackrow, Marcus; Dowler, Rhys; Koenig, Marcelle; Wahl, Michael

    2018-03-01

    Using time-correlated single photon counting for the purpose of fluorescence lifetime measurements is usually limited in speed due to pile-up. With modern instrumentation, this limitation can be lifted significantly, but some artifacts due to frequent merging of closely spaced detector pulses (detector pulse pile-up) remain an issue to be addressed. We propose a data analysis method correcting for this type of artifact and the resulting systematic errors. It physically models the photon losses due to detector pulse pile-up and incorporates the loss in the decay fit model employed to obtain fluorescence lifetimes and relative amplitudes of the decay components. Comparison of results with and without this correction shows a significant reduction of systematic errors at count rates approaching the excitation rate. This allows quantitatively accurate fluorescence lifetime imaging at very high frame rates.

  13. Experimental investigation of electron beam wave interactions utilising short pulses

    International Nuclear Information System (INIS)

    Wiggins, Samuel Mark

    2000-01-01

    Experiments have investigated the production of ultra-short electromagnetic pulses and their interaction with electrons in various resonant structures. Diagnostic systems used in the measurements included large bandwidth detection systems for capturing the short pulses. Deconvolution techniques have been applied to account for bandwidth limitation of the detection systems and to extract the actual pulse amplitudes and durations from the data. A Martin-Puplett interferometer has been constructed for use as a Fourier transform spectrometer. The growth of superradiant electromagnetic spikes from short duration (0.5-1.0 ns), high current (0.6-2.0 kA) electron pulses has been investigated in a Ka-band Cherenkov maser and Ka- and W-band backward wave oscillators (BWO). In the Cherenkov maser, radiation spikes were produced with a peak power ≤ 3 MW, a duration ≥ 70 ps and a bandwidth ≤ 19 %. It is shown that coherent spontaneous emission from the leading edge of the electron pulse drives these interactions, giving rise to self-amplified coherent spontaneous emission (SACSE). BWO spikes were produced with a peak power ≤ 63 MW and a pulse duration ∼ 250 ps in the Ka-band and ≤ 12 MW and ∼ 170 ps in the W-band. Evidence of superradiant evolution has been observed in the measurements of scaling laws such as power scaling with the current squared and duration scaling inversely with the fourth root of the power. An X-band free-electron maser amplifier, in which a short (1.0ns) injected radiation pulse interacts with a long (∼ 140 ns) electron beam, has been investigated. The interaction is shown to evolve in the linear regime. The peak output power was 320 kW, which corresponded to a gain, approximately constant across the band, of 42 dB. Changes to the spectrum, that occur when the input radiation pulse is injected into electrons with an energy gradient, have been analysed. (author)

  14. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  15. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    International Nuclear Information System (INIS)

    Charpak, G; Benaben, P; Breuil, P; Peskov, V

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10 4 ). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  16. A simple pulse shape discrimination technique applied to a silicon strip detector

    International Nuclear Information System (INIS)

    Figuera, P.; Lu, J.; Amorini, F.; Cardella, G.; DiPietro, A.; Papa, M.; Musumarra, A.; Pappalardo, G.; Rizzo, F.; Tudisco, S.

    2001-01-01

    Full text: Since the early sixties, it has been known that the shape of signals from solid state detectors can be used for particle identification. Recently, this idea has been revised in a group of papers where it has been shown that the shape of current signals from solid state detectors is mainly governed by the combination of plasma erosion time and charge carrier collection time effects. We will present the results of a systematic study on a pulse shape identification method which, contrary to the techniques proposed, is based on the use of the same electronic chain normally used in the conventional time of flight technique. The method is based on the use of charge preamplifiers, low polarization voltages (i.e. just above full depletion ones), rear side injection of the incident particles, and on a proper setting of the constant fraction discriminators which enhances the dependence of the timing output on the rise time of the input signals (which depends on the charge and energy of the incident ions). The method has been applied to an annular Si strip detector with an inner radius of about 16 mm and an outer radius of about 88 mm. The detector, manufactured by Eurisys Measures (Type Ips.73.74.300.N9), is 300 microns thick and consists of 8 independent sectors each divided into 9 circular strips. On beam tests have been performed at the cyclotron of the Laboratori Nazionali del Sud in Catania using a 25.7 MeV/nucleon 58 Ni beam impinging on a 51 V and 45 Sc composite target. Excellent charge identification from H up to the Ni projectile has been observed and typical charge identification thresholds are: ∼ 1.7 MeV/nucleon for Z ≅ 6, ∼ 3.0 MeV/nucleon for Z ≅ 11, and ∼ 5.5 MeV/nucleon for Z ≅ 20. Isotope identification up to A ≅ 13 has been observed with an energy threshold of about 6 MeV/nucleon. The identification quality has been studied as a function of the constant fraction settings. The method has been applied to all the 72 independent strips

  17. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  18. Charge-coupled device area detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  19. Behavioral changes induced by single and multiple electron beam pulses

    International Nuclear Information System (INIS)

    Pease, V.P.; McNulty, P.J.

    1985-01-01

    The effects of single, and low-dose, high-dose-rate and multiple electron beam pulses on passive avoidance behavior in mice were studied. Passive avoidance was measured by recording the time that an animal took to enter a chamber from a narrow platform. There were four conditions in the experiment: (1) no shock no radiation-control, (2) radiation only, (3) shock only, and (4) radiation plus shock. Forty animals were run for each data point. Dose rate was held constant at 9 x 10/sup 7/ rads/sec. Average doses for the two single pulses were 7.18 and 8.72 rads. The average total dose for a 25 pulse per second condition was 324.0 rads. The differences between the single versus multiple pulse radiation-only conditions were significant with longer avoidance latencies in the multiple pulse condition. Avoidance latencies were also significantly longer in the shock plus radiation condition for the multiple beam pulse than the single pulse. It is concluded that single and multiple electron beam pulses significantly effect behavior, in this case producing avoidance

  20. Artificial neural network based pulse-shape analysis for cryogenic detectors operated in CRESST-II

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, D-85747 Garching (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    In this talk we report on results of a pulse-shape analysis of cryogenic detectors based on artificial neural networks. To train the neural network a large amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets will be explained. The presented analysis shows an excellent discrimination performance even down to the energy threshold. The method is applied to several detectors, among them is the module with the lowest threshold (307eV) operated in CRESST-II phase 2. The performed blind analysis of this module confirms the substantially enhanced sensitivity for light dark matter published in 2015.

  1. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    Science.gov (United States)

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  2. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  3. Coincidence measurements in α/β/γ spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    International Nuclear Information System (INIS)

    Celis, B. de; Fuente, R. de la; Williart, A.; Celis Alonso, B. de

    2007-01-01

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2 (Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis

  4. Pulsed electron accelerator for radiation technologies in the enviromental applications

    Science.gov (United States)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  5. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  6. Electron imaging with Medipix2 hybrid pixel detector

    International Nuclear Information System (INIS)

    McMullan, G.; Cattermole, D.M.; Chen, S.; Henderson, R.; Llopart, X.; Summerfield, C.; Tlustos, L.; Faruqi, A.R.

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μmx55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach ∼85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach ∼35% of that expected for a perfect detector (4/π 2 ). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses

  7. Electron imaging with Medipix2 hybrid pixel detector.

    Science.gov (United States)

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  8. Femtosecond pulse radiolysis based on photocathode electron accelerator

    International Nuclear Information System (INIS)

    Yoshida, Y.; Yang, Jinfeng; Kondoh, T.; Kozawa, T.; Tagawa, S.

    2006-01-01

    Pulse radiolysis is a powerful tool for studying chemical kinetics and primary processes or reactions of radiation chemistry. In the pulse radiolysis, a short electron beam, which is almost produced by radio-frequency (RF) electron linear accelerator with energy from a few MeV to a few tens MeV, is used as an irradiative source. The electron-induced reactions or phenomena in matter are analyzed by a short-pulse analyzing light (e.g. synchronized lasers) with the time-resolved stroboscopic technique. The time resolution of pulse radiolysis is not only dependent on the electron bunch length, the analyzing light pulse width, the time jitter between the electron bunch and the analyzing light, but also determined by degradation due to the velocity difference between light and the electron in the sample because of the refractive index. In order to improve the time resolution into femtosecond time region, we have develop a new pulse radiolysis based on a concept of 'Equivalent Velocity Spectroscopy (EVS)' to avoid the degradation of the time resolution caused by the velocity difference between the light and the electron beam in sample. In EVS as shown in Fig.1, a femtosecond electron beam produced by a photocathode electron linear accelerator was used, and a synchronized femtosecond laser was used as the analyzing light source. The electron beam and the laser light were injected into sample with an angle (θ), which is determined by the refractive index (n) of the sample. The electron bunch was also rotated with a same angle to make an overlap of the electron bunch with the laser pulse. The degradation of the time resolution caused by the velocity difference between the light and the electron beam can be calculated as g(L)=L[n/c-1/(vcos θ)], where L is the optical path length and v is the velocity of the electron in sample (we can assume v=c for a few tens MeV electron beam).We can thus obtained g(L)=0 by adjusting the incident angle to cos θ=1/n. However, the rotation

  9. Radiation field mapping using a mechanical-electronic detector

    Energy Technology Data Exchange (ETDEWEB)

    Czayka, M., E-mail: mczayka@kent.ed [College of Technology, Kent State University-Ashtabula 3300 Lake Road West, Ashtabula, OH 44004 (United States); Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); Fisch, M. [Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); College of Technology, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 (United States)

    2010-04-15

    A method of radiation field mapping of a scanned electron beam using a Faraday-type detector and an electromechanical linear translator is presented. Utilizing this arrangement, fluence and fluence rate measurements can be made at different locations within the radiation field. The Faraday-type detector used in these experiments differs from most as it consists of a hollow stainless steel sphere. Results are presented in two- and three-dimensional views of the radiation field.

  10. The STAR Heavy Flavor Tracker PXL detector readout electronics

    International Nuclear Information System (INIS)

    Schambach, J.; Contin, G.; Greiner, L.; Stezelberger, T.; Vu, C.; Sun, X.; Szelezniak, M.

    2016-01-01

    The Heavy Flavor Tracker (HFT) is a recently installed micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders. The two innermost layers of the HFT close to the beam pipe, the Pixel ('PXL') subsystem, employ CMOS Monolithic Active Pixel Sensor (MAPS) technology that integrate the sensor, front-end electronics, and zero-suppression circuitry in one silicon die. This paper presents selected characteristics of the PXL detector part of the HFT and the hardware, firmware and software associated with the readout system for this detector

  11. Imaging detectors and electronics - A view of the future

    International Nuclear Information System (INIS)

    Spieler, Helmuth

    2004-01-01

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays

  12. Feasibility studies of microelectrode silicon detectors with integrated electronics

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Batignani, G.; Bettarini, S.; Boscardin, M.; Bosisio, L.; Carpinelli, M.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Lusiani, A.; Manghisoni, M.; Pignatel, G.U.; Rama, M.; Ratti, L.; Re, V.; Sandrelli, F.; Speziali, V.; Svelto, F.; Zorzi, N.

    2002-01-01

    We describe our experience on design and fabrication, on high-resistivity silicon substrates, of microstrip detectors and integrated electronics, devoted to high-energy physics experiments and medical/industrial imaging applications. We report on the full program of our collaboration, with particular regards to the tuning of a new fabrication process, allowing for the production of good quality transistors, while keeping under control the basic detector parameters, such as leakage current. Experimental results on JFET and bipolar transistors are presented, and a microstrip detector with an integrated JFET in source-follower configuration is introduced

  13. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    International Nuclear Information System (INIS)

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-μs pulse width driving a load of ∼100 Ω, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 Ω, up to a level of ∼650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of ∼100 Ω

  14. Pulsed Power for a Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  15. Pulsed Power for a Dynamic Transmission Electron Microscope

    International Nuclear Information System (INIS)

    DeHope, W.J.; Browning, N.; Campbell, G.; Cook, E.; King, W.; Lagrange, T.; Reed, B.; Stuart, B.; Shuttlesworth, R.; Pyke, B.

    2009-01-01

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM

  16. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  17. Pulse propagation in tapered wiggler free electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered wiggler devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristcs are presented and are found to change considerably over this range

  18. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...... deposition followed by high temperature annealing. The films were used to understand the double band gap that we and other groups observed in the material. The Cu-content of the CTS films varied depending on the laser fluence (the laser energy per pulse and per area). The material transfer from...

  19. A timing detector with pulsed high-voltage power supply for mass measurements at CSRe

    International Nuclear Information System (INIS)

    Zhang, W.; Tu, X.L.; Wang, M.; Zhang, Y.H.; Xu, H.S.; Litvinov, Yu. A.; Blaum, K.

    2014-01-01

    Accuracy of nuclear mass measurements in storage rings depends critically on the accuracy with which the revolution times of stored ions can be obtained. In such experiments, micro-channel plates (MCP) are used as timing detectors. Due to large phase space of injected secondary beams, a large number of ions cannot be stored in the ring and is lost within the first few revolutions. However, these ions interact with the detector and can saturate the MCP and thus deteriorate its performance. In order to eliminate such effects, a fast, pulsed high-voltage power supply (PHVPS) has been employed which keeps the detector switched-off during the first few revolutions. The new detector setup was taken into operation at the Experimental Cooler-Storage-Ring CSRe in Lanzhou and resulted in a significant improvement of the detector amplitude and efficiency characteristics

  20. Electron identification with the ATLAS detector

    CERN Document Server

    Tarna, Grigore; The ATLAS collaboration

    2017-01-01

    Electron identification is a crucial input to many ATLAS physics analysis. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. The measurement of the efficiencies of the electron identification and isolationcuts are performed with the data using tag and probe techniques with large statistics sample of Z->ee and J/psi->ee decays. These measurements performed with pp collisions data at sqrt(s)=13 TeV in 2016 (2015) corresponding to an integrated luminosity of 33.9 (3.2) fb-1 of sqrt(s)=13 TeV pp are presented.

  1. Electron identification with the ATLAS detector

    CERN Document Server

    Tarna, Grigore; The ATLAS collaboration

    2017-01-01

    Electron identification is a crucial input to many ATLAS physics analysis. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. The measurement of the efficiencies of the electron identification and isolationcuts are performed with the data using tag and probe techniques with large statistics sample of Z->ee and J/psi->ee decays. These measurements performed with pp collisions data at sqrt(s)=13 TeV in 2016 (2015) corresponding to an integrated luminosity of 33.9 (3.1)fb-1 of sqrt(s)=13 TeV pp are presented.

  2. Prospects for hybrid pixel detectors in electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.

    2001-01-01

    The current status of CCD-based detectors for cryo-electron microscopy of membrane and other proteins is described briefly, highlighting the strengths and weaknesses of the technique. Over the past few years CCD detectors have been used extensively in electron crystallography of membrane proteins, and in particular, in the study of the molecular transitions which take place during the photo-cycle of the light-driven proton pump bacteriorhodopsin. Direct-detection methods, which avoid the intermediate stages of converting the electron energy into light, offer the possibility of improved spatial resolution compared to CCD detectors; in addition, photon counting and noise-free readout should improve the signal-to-noise ratio

  3. Front-end electronics for multichannel semiconductor detector systems

    CERN Document Server

    Grybos, P

    2010-01-01

    Front-end electronics for multichannel semiconductor detektor systems Volume 08, EuCARD Editorial Series on Accelerator Science and Technology The monograph is devoted to many different aspects related to front-end electronics for semiconductor detector systems, namely: − designing and testing silicon position sensitive detectors for HEP experiments and X-ray imaging applications, − designing and testing of multichannel readout electronics for semiconductor detectors used in X-ray imaging applications, especially for noise minimization, fast signal processing, crosstalk reduction and good matching performance, − optimization of semiconductor detection systems in respect to the effects of radiation damage. The monograph is the result mainly of the author's experience in the above-mentioned areas and it is an attempt of a comprehensive presentation of issues related to the position sensitive detection system working in a single photon counting mode and intended to X-ray imaging applications. The structure...

  4. First observation of electrons in the ATLAS detector

    CERN Document Server

    Kraus, J; The ATLAS collaboration

    2010-01-01

    The special topology of cosmic events traversing all subdetectors offers the unique opportunity to investigate the combined performance of ATLAS in identifying and reconstructing particles before first collisions. High-energy delta electrons in cosmic data are studied which are produced by cosmic muons through ionisation of the inner detector material. A method of separating knock-on electrons from the large background of muon bremsstrahlung is presented accounting for the special nature of cosmic events and utilizing the ATLAS tools to identify electrons with their characteristic properties. The resulting isolation of a sample of 32 delta electrons out of 3.5 million cosmic ray events with a high-level trigger track candidate in the inner detector barrel has for the first time enabled an observation and investigation of real electrons in ATLAS.

  5. Neutron-gamma discrimination by pulse analysis with superheated drop detector

    International Nuclear Information System (INIS)

    Das, Mala; Seth, S.; Saha, S.; Bhattacharya, S.; Bhattacharjee, P.

    2010-01-01

    Superheated drop detector (SDD) consisting of drops of superheated liquid of halocarbon is irradiated to neutrons and gamma-rays from 252 Cf fission neutron source and 137 Cs gamma source, respectively, separately. Analysis of pulse height of signals at the neutron and gamma-ray sensitive temperature provides significant information on the identification of neutron and gamma-ray induced events.

  6. Isotopic identification using Pulse Shape Analysis of current signals from silicon detectors: Recent results from the FAZIA collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, G., E-mail: pastore@fi.infn.it [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Gruyer, D. [INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Ottanelli, P. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Le Neindre, N. [LPC Caen, Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen (France); Pasquali, G. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Alba, R. [INFN LNS, Via S.Sofia 62, 95123 Catania (Italy); Barlini, S.; Bini, M. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Bonnet, E. [SUBATECH, EMN-IN2P3/CNRS-Université de Nantes, Nantes (France); GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); Borderie, B. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex (France); Bougault, R. [LPC Caen, Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen (France); Bruno, M. [INFN, Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Casini, G. [INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Chbihi, A. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); and others

    2017-07-11

    The FAZIA apparatus exploits Pulse Shape Analysis (PSA) to identify nuclear fragments stopped in the first layer of a Silicon-Silicon-CsI(Tl) detector telescope. In this work, for the first time, we show that the isotopes of fragments having atomic number as high as Z∼20 can be identified. Such a remarkable result has been obtained thanks to a careful construction of the Si detectors and to the use of low noise and high performance digitizing electronics. Moreover, optimized PSA algorithms are needed. This work deals with the choice of the best algorithm for PSA of current signals. A smoothing spline algorithm is demonstrated to give optimal results without requiring too much computational resources.

  7. A Thin detector with ionization tubes for high energy electrons and photons

    International Nuclear Information System (INIS)

    Amatuni, Ts. A.; Denisov, S.P.; Krasnokutsky, R.N.; Lebedenko, V.N.; Shuvalov, R.S.

    1981-01-01

    A possibility to measure the energy of electrons and photons with a simple detector, consisting of a lead convertor and ionization tubes filled with pure argon, has been studied. The measurements have been performed in a 26.6 GeV electron beam. The best energy resolution approximately 16% was achieved for the convertor thickness 40 mm and argon pressure > 20 atm. The performance of the detector in magnetic field up to 16 kGs has been also studied. It turned out that the mean pulse height rises approximately linearly with increasing magnetic field and becomes flat at H approximately 10 kGs. This behaviour is the same for magnetic field perpendicular and parallel with respect to the ionization tubes. The energy resolution depends weakly on the magnetic field. Ionization tubes filled with argon or xenon under high pressure may be used for minimum ionizing particle detection [ru

  8. Development of picosecond pulsed electron beam monitor. 2

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.

    1994-01-01

    A picosecond pulsed electron beam monitor for a 35 MeV linear accelerator has been developed. The monitor consists of an electric SMA connector and aluminium pipe(inner diameter of 50mm). The following characteristics of this monitor were obtained, (a) the rise time is less than 17.5 ps (b) linearity of the monitor output voltage is proportional to the peak current of beam. It is shown that this monitor can be successfully used for bunch measurements of picosecond pulsed electron beam of 35 MeV linac. (author)

  9. Earth formation pulsed neutron porosity logging system utilizing epithermal neutron and inelastic scattering gamma ray detectors

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  10. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  11. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    International Nuclear Information System (INIS)

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration

  12. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  13. Temporary acceleration of electrons while inside an intense electromagnetic pulse

    Directory of Open Access Journals (Sweden)

    Kirk T. McDonald

    1999-12-01

    Full Text Available A free electron can temporarily gain a very significant amount of energy if it is overrun by an intense electromagnetic wave. In principle, this process would permit large enhancements in the center-of-mass energy of electron-electron, electron-positron, and electron-photon interactions if these take place in the presence of an intense laser beam. Practical considerations severely limit the utility of this concept for contemporary lasers incident on relativistic electrons. A more accessible laboratory phenomenon is electron-positron production via an intense laser beam incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic photons via bremsstrahlung of temporarily accelerated electrons.

  14. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  15. Electron and Photon Reconstruction and Identification with the ATLAS Detector

    International Nuclear Information System (INIS)

    Kuna, Marine

    2011-01-01

    This article presents the electron and photon reconstruction performance of the ATLAS detector based on the first LHC collision data at √(s)=7 TeV. Calorimetric and tracker related electron identification variables are in a fair agreement with the Monte Carlo model describing the detector response. The position of the reconstructed photon conversions vertices has been used to compare the description of the inner detector used in Monte Carlo geometry to that from data. The energy flow measured in the electromagnetic calorimeter has been used to provide the same comparison at larger radii. π 0 →γγ and J/Ψ→e + e - peaks were observed with reconstructed masses in good agreement with both Monte Carlo and PDG values. 17 W→eν candidates and one Z→e + e - candidate have been observed in 6.69 nb -1 of data.

  16. Electron and Photon Reconstruction with the ATLAS Detector

    OpenAIRE

    Mitrevski, J

    2014-01-01

    An excellent performance of the reconstruction of electrons and photons with the ATLAS detector at the LHC is a key component to realize the full physics potential of ATLAS, both in searches for new physics and in precision measurements. For instance, all these played a critical role in the discovery of a Higgs boson, announced by the ATLAS Collaboration in 2012, and in the measurement of its properties. This paper highlights the reconstruction of electrons and photons.

  17. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation

    International Nuclear Information System (INIS)

    Wang Cong; Jiang Lan; Wang Feng; Li Xin; Yuan Yanping; Xiao Hai; Tsai, Hai-Lung; Lu Yongfeng

    2012-01-01

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train. (paper)

  18. Electron identification and implications in SSC detector design

    International Nuclear Information System (INIS)

    Bensinger, J.; Wang, E.M.; Yamamoto, H.

    1990-05-01

    In the context of Heavy Higgs searches in the decay mode H → ZZ → 4e, electron identification issues and their implications on detector design are discussed (though many of the issues are valid for muon modes as well). The backgrounds considered seem manageable (a net rejection of 100 for combined electron ID and isolation cut is needed and seems fairly straightforward). A detector must have wide electron rapidity coverage η T > GeV; be hermetic (in the sense of minimizing regions where electrons can disappear through cracks, dead spaces, or poorly placed walls); and have high efficiency electron ID (∼ 0.90) since we are trying to be sensitive to a feeble signal and we need 4 electrons. The product of a number of fairly high acceptances based on optimistic estimates still yields in the end a net Higgs acceptance about 0.15 to 0.25 depending on how hermetic a detector is assumed. For M Higgs < 500 GeV, this may be tolerable; whereas, for higher Higgs masses, the situation is much less clear

  19. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  20. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  1. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Riedel, R.A.; Cooper, R.G.; Funk, L.L.; Clonts, L.G.

    2012-01-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  2. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, R.A., E-mail: riedelra@ornl.gov [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States); Cooper, R.G.; Funk, L.L.; Clonts, L.G. [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States)

    2012-02-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  3. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira

    2014-01-01

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd 3 Al 2 Ga 3 O 12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios—Ce-doped Gd 3 Al 2.6 Ga 2.4 O 12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm 3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI

  4. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    International Nuclear Information System (INIS)

    Saleh, Ned; Flippo, Kirk; Nemoto, Koshichi; Umstadter, Donald; Crowell, Robert A.; Jonah, Charles D.; Trifunac, Alexander D.

    2000-01-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 μs time resolution. Hydrated electron concentrations as high as 22 μM were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics

  5. Pulse shape analysis of enriched BEGe detectors in vacuum cryostat and liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment searches for the lepton number violating neutrinoless double beta (0νββ) decay of {sup 76}Ge. Germanium diodes of BEGe type (Canberra, Belgium) made from isotopically modified material have been procured for Phase II of Gerda. They will improve the sensitivity of the experiment by additional target mass, improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. The PSD efficiencies of the new enriched BEGe detectors were studied in vacuum cryostats as part of the characterization campaign at the HADES underground laboratory. For a deeper understanding of the pulse shape performance of the enriched BEGe detectors, detailed {sup 241}Am surface scans were performed. Unexpectedly high position-dependence of the pulse shape parameter Amplitude-over-Energy was found for some of the detectors. With further investigation this effect was traced to surface charge effects specific to the operational configuration of the detectors inside the vacuum cryostats. The standard behavior is restored when they are operated in liquid argon in the configuration intended for Gerda Phase II. Finally, five of the enriched BEGe diodes were installed in the Gerda liquid argon cryostat prior to the full upgrade. They show a good performance and are able to reject efficiently multi-site-events as well as β- and α-particles.

  6. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    International Nuclear Information System (INIS)

    Zou, Shiyang; Song, Peng; Pei, Wenbing; Guo, Liang

    2013-01-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses

  7. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    Science.gov (United States)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and

  8. Cadmium-Zinc-Telluride photon detector for epithermal neutron spectroscopy--pulse height response characterisation

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Bracco, A.; D'Angelo, A.; Gorini, G.; Imberti, S.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    The Resonance Detector Spectrometer was recently revised for neutron spectroscopic studies in the eV energy region. In this technique one makes use of a photon detector to record the gamma emission from analyser foils used as neutron-gamma converters. The pulse-height response of a Cadmium-Zinc-Telluride photon detector to neutron capture emission from 238 U and 197 Au analyser foils was characterised in the neutron energy range 1-200 eV. The experiment was performed on the VESUVIO spectrometer at the ISIS neutron-pulsed source. A biparametric data acquisition, specifically developed for these measurements, allowed the simultaneous measurements of both the neutron time of flight and γ pulse-height spectra. Through the analysis of the γ pulse-height spectra the main components of the signal associated with resonant and non-resonant neutron absorption were identified. It was also shown that, in principle, energy discrimination can be used to improve the signal to background ratio of the neutron time-of-flight measurement

  9. Use of a new ion-detector in the study of the jet plasma injected into a pulsed magnetic mirror configuration (deca I)

    International Nuclear Information System (INIS)

    Renaud, C.

    1963-01-01

    The study of a high sensitivity ion detector coupled to an electrostatic analyser has permitted a large investigation of the plasma jet injected into a pulsed magnetic mirror configuration. In this detector the positive ions are accelerated through a potential of 30 kV; they strike a metallic target, on which they produce secondary electrons; these, in turn, are accelerated onto a plastic scintillator. The light pulses are detected with a photomultiplier. The gain of this device is about 10 7 . If we make an admission of air into the vacuum system and again we make vacuum, the gain is not modified, since no special activated surfaces are situated in the detector. (author) [fr

  10. Electronic readout for THGEM detectors based on FPGA TDCs

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Tobias; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Koenigsmann, Kay; Kremser, Paul; Kunz, Tobias; Michalski, Christoph; Schopferer, Sebastian; Szameitat, Tobias [Physikalisches Institut, Freiburg Univ. (Germany); Collaboration: COMPASS-II RICH upgrade Group

    2013-07-01

    In the framework of the RD51 programme the characteristics of a new detector design, called THGEM, which is based on multi-layer arrangements of printed circuit board material, is investigated. The THGEMs combine the advantages for covering gains up to 10{sup 6} in electron multiplication at large detector areas and low material budget. Studies are performed by extending the design to a hybrid gas detector by adding a Micromega layer, which significantly improves the ion back flow ratio of the chamber. With the upgrade of the COMPASS experiment at CERN a MWPC plane of the RICH-1 detector will be replaced by installing THGEM chambers. This summarizes to 40k channels of electronic readout, including amplification, discrimination and time-to-digital conversion of the anode signals. Due to the expected hit rate of the detector we design a cost-efficient TDC, based on Artix7 FPGA technology, with time resolution below 100 ps and sufficient hit buffer depth. To cover the large readout area the data is transferred via optical fibres to a central readout system which is part of the GANDALF framework.

  11. Pulse shape discrimination and classification methods for continuous depth of interaction encoding PET detectors

    International Nuclear Information System (INIS)

    Roncali, Emilie; Phipps, Jennifer E; Marcu, Laura; Cherry, Simon R

    2012-01-01

    In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm 3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors. (paper)

  12. A rotationally symmetric electron beam chopper for picosecond pulses

    International Nuclear Information System (INIS)

    Oldfield, L.C.

    1976-01-01

    The chopper was designed for dynamic electron optical experiments where it is necessary to provide pulses of high quality with respect to both width and energy spread. The chopping action relies on the optical properties of a microwave cavity; these are exploited such that the time dependent space focusing causes a small circular aperture on the axis of rotational symmetry to transmit strongly for a single band of phase angles in each cycle of the excitation. Unless the pulses are to be used near the aperture plane, an 'energy correcting' cavity that operates in phase synchronism with the chopper is added to the system. The theoretical treatment is oriented towards computer display, and is novel in that it follows the progress of individual electron packets throughout the system. In contrast to conventional chopping and bunching theory, it is possible to analyse with ease the pulsing properties of a multicavity device. For a typical two-cavity design the pulse quality may range from 10 0 width and negligible energy spread, to 0.25% energy spread and negligible pulse width, depending on the second cavity excitation; in either situation 7.5% of the original steady beam is transmitted. (author)

  13. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  14. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2015-09-01

    Full Text Available Transabdominal fetal pulse oximetry is a method to monitor the oxygen supply of the unborn child non-invasively. Due to the measurement setup, the received signal of the detector is composed of photons coding purely maternal and photons coding mixed fetal-maternal information. To analyze the wellbeing of the fetus, the fetal signal is extracted from the mixed component. In this paper we assess source-detector configurations, such that the mixed fetal-maternal components of the acquired signals are maximized. Monte-Carlo method is used to simulate light propagation and photon distribution in tissue. We use a plane layer and a spherical layer geometry to model the abdomen of a pregnant woman. From the simulations we extracted the fluence at the detector side for several source-detector distances and analyzed the ratio of the mixed fluence component to total fluence. Our simulations showed that the power of the mixed component depends on the source-detector distance as expected. Further we were able to visualize hot spot areas in the spherical layer model where the mixed fluence ratio reaches the highest level. The results are of high importance for sensor design considering signal composition and quality for non-invasive fetal pulse oximetry.

  15. Knock-on electrons in WA98 silicon drift detector

    International Nuclear Information System (INIS)

    Eliseev, S.

    1997-01-01

    Silicon Drift Detector is used to estimate production of knock-on electrons created by passage of 158 GeV /u fully stripped Pb ion through thick lead target. Analysed data were collected in 1995 during Pb+Pb run in WA98 heavy ion experiment at CERN SPS. Information from WA98 Cherenkov beam counter makes it possible to classify events according to number of additional Pb ions which have during detector's read-out time passed through the target without nuclear interaction. Events with one and none pile-up ion are used for statistical separation of knock-on electrons from all detected charged particles. Resulting inclusive spectra of knock-on electrons are compared with GRANT simulations and good agreement is found. (author)

  16. Responses and mechanisms of positive electron affinity molecules in the N2 mode of the thermionic ionization detector and the electron-capture detector

    International Nuclear Information System (INIS)

    Jones, C.S.

    1989-01-01

    Very little knowledge has been acquired in the past on the mechanistic pathway by which molecules respond in the N 2 mode of the thermionic ionization detector. An attempt is made here to elucidate the response mechanism of the detector. The basic response mechanisms are known for the electron capture detector, and an attempt is made to identify the certain mechanism by which selected molecules respond. The resonance electron capture rate constant has been believed to be temperature independent, and investigations of the temperature dependence of electron capture responses are presented. Mechanisms for the N 2 mode of the thermionic ionization detector have been proposed by examining the detector response to positive electron affinity molecules and by measurement of the ions produced by the detector. Electron capture mechanisms for selected molecules have been proposed by examining their temperature dependent responses in the electron capture detector and negative ion mass spectra of the samples. In studies of the resonance electron capture rate constant, the relative responses of selected positive electron affinity molecules and their temperature dependent responses were investigated. Positive electron affinity did not guarantee large responses in the N 2 mode thermionic ionization detector. High mass ions were measured following ionization of samples in the detector. Responses in the electron capture detector varied with temperature and electron affinity

  17. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit

    International Nuclear Information System (INIS)

    Waldecker, Lutz; Bertoni, Roman; Ernstorfer, Ralph

    2015-01-01

    We present the design and implementation of a highly compact femtosecond electron diffractometer working at electron energies up to 100 keV. We use a multi-body particle tracing code to simulate electron bunch propagation through the setup and to calculate pulse durations at the sample position. Our simulations show that electron bunches containing few thousands of electrons per bunch are only weakly broadened by space-charge effects and their pulse duration is thus close to the one of a single-electron wavepacket. With our compact setup, we can create electron bunches containing up to 5000 electrons with a pulse duration below 100 fs on the sample. We use the diffractometer to track the energy transfer from photoexcited electrons to the lattice in a thin film of titanium. This process takes place on the timescale of few-hundred femtoseconds and a fully equilibrated state is reached within 1 ps

  18. The electromagnetic pulse (EMP) as a danger for the world of electronics

    International Nuclear Information System (INIS)

    Horak, O.

    1984-01-01

    After discussing the characteristics and formation of a nuclear electromagnetic pulse, the author considers the effects such a pulse would have on various types of electronic systems. Finally he discusses what protection there is against such pulses. (Auth.)

  19. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  20. Study of polysilane mainchain electronic structure by picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Habara, H.; Saeki, A.; Kunimi, Y.; Seki, S.; Kozawa, T.; Yoshida, Y.; Tagawa, S.

    2000-01-01

    The electronic structure of a charged polysilane molecle is studied. The transient absorption spectroscopy was carried out for charged radicals of poly (methylphenylsilane): PMPS by pico-second and nanosecond pulse radiolysis technique. It was observed that the peak of the transient absorption spectra shifted to longer wavelength region within a few nsec, and an increase was observed in the optical density at 370 nm, which had been already assigned to the radical anions of PMPS. It is ascribed to inter-segment electron transfer (intra-molecular transfer) through polymer chain. The nanosecond pulse radiolysis experiments gave similar kinetic traces in near-UV and IR region. This suggests the presence of an interband level, that is, a polaron level occupied by an excess electron or a hole. (author)

  1. Position sensitive detector with semiconductor and image electron tube comprising such a detector

    International Nuclear Information System (INIS)

    Roziere, Guy.

    1977-01-01

    This invention concerns a position sensitive detector comprising a semiconducting substrate. It also concerns the electron tubes in which the detector may be incorporated in order to obtain an image formed at the tube input by an incident flux of particles or radiation. When a charged particle or group of such particles, electrons in particular, enter the space charge region of an inversely biased semiconductor diode, the energy supplied by these particles releases in the diode a certain number of electron-hole pairs which move in the field existing in the area towards the diode contacts. A corresponding current arises in the connections of this diode which constitutes the signal corresponding to the incident energy. Such a tube or chain of tubes is employed in nuclear medicine for observing parts of the human body, particularly by gamma radiation [fr

  2. Compression of pulsed electron beams for material tests

    Science.gov (United States)

    Metel, Alexander S.

    2018-03-01

    In order to strengthen the surface of machine parts and investigate behavior of their materials exposed to highly dense energy fluxes an electron gun has been developed, which produces the pulsed beams of electrons with the energy up to 300 keV and the current up to 250 A at the pulse width of 100-200 µs. Electrons are extracted into the accelerating gap from the hollow cathode glow discharge plasma through a flat or a spherical grid. The flat grid produces 16-cm-diameter beams with the density of transported per one pulse energy not exceeding 15 J·cm-2, which is not enough even for the surface hardening. The spherical grid enables compression of the beams and regulation of the energy density from 15 J·cm-2 up to 15 kJ·cm-2, thus allowing hardening, pulsed melting of the machine part surface with the further high-speed recrystallization as well as an explosive ablation of the surface layer.

  3. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  4. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  5. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  6. Development of a computer program to determine the pulse-height distribution in a gamma-ray detector from an arbitrary geometry source -feasibility study

    International Nuclear Information System (INIS)

    Currie, G.D.; Marshall, M.

    1989-03-01

    The feasibility of developing a computer program suitable for evaluating the pulse-height spectrum in a gamma-ray detector from a complex geometry source has been examined. A selection of relevant programs, Monte Carlo radiation transport codes, have been identified and their applicability to this study discussed. It is proposed that the computation be performed in two parts: the evaluation of the photon fluence at the detector using a photon transport code, and calculation of the pulse-height distribution from this spectrum using response functions determined with an electron-photon transport code. The two transport codes selected to perform this procedure are MCNP (Monte Carlo Neutron Photon code), and EGS4 (Electron Gamma Shower code). (Author)

  7. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    International Nuclear Information System (INIS)

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-01-01

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described

  8. Electron pulse shaping in the FELIX RF accelerator

    International Nuclear Information System (INIS)

    Weits, H.H.; Geer, C.A.J. van der; Oepts, D.; Meer, A.F.G. van der

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel through an undulator. It was demonstrated that the power level of the CSE critically depends on the settings of the accelerator. In this article we seek to explain these observations by studying the length and shape of the electron bunches as a function of the settings of the accelerator. A particle-tracking model was used to simulate the acceleration and transport processes. These include bunch compression in a 14-cell travelling wave buncher cavity, acceleration in a travelling wave linear accelerator, and passage through a (dispersive) chicane structure. The effect of the phase setting of the RF accelerating field with respect to the arrival time of the electron bunch in each accelerator structure was studied. The parameter range of the simulations is related to that of an actual free-electron laser experiment using these bunches. We find that, for specific settings of the accelerating system, electron pulses with a length of 350 μm FWHM (1 ps) are produced. The charge in the bunch rises steeply within a distance of 25 μm. This bunch shape explains the high level of coherently enhanced spontaneous emission observed in the FELIX laser. (author)

  9. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  10. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  11. Pixel array detector for X-ray free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Hromalik, Marianne [Electrical and Computer Engineering, SUNY Oswego, Oswego, NY 13126 (United States); Tate, Mark; Koerner, Lucas [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Wilson Laboratory, Cornell University, CHESS, Ithaca, NY 14853 (United States)

    2011-09-01

    X-ray free electron lasers (XFELs) promise to revolutionize X-ray science with extremely high peak brilliances and femtosecond X-ray pulses. This will require novel detectors to fully realize the potential of these new sources. There are many current detector development projects aimed at the many challenges of meeting the XFEL requirements . This paper describes a pixel array detector (PAD) that has been developed for the Coherent X-ray Imaging experiment at the Linac Coherent Light Source (LCLS) at the SLAC National Laboratory . The detector features 14-bit in-pixel digitization; a 2-level in-pixel gain setting that can be used to make an arbitrary 2-D gain pattern that is adaptable to a particular experiment; the ability to handle instantaneous X-ray flux rates of 10{sup 17} photons per second; and continuous frames rates in excess of 120 Hz. The detector uses direct detection of X-rays in a silicon diode. The charge produced by the diode is integrated in a pixilated application specific integrated circuit (ASIC) which digitizes collected holes with single X-ray photon capability. Each ASIC is 194x185 pixels, each pixel is 110{mu}mx110{mu}m on a side. Each pixel can detect up to 2500 X-rays per frame in low-gain mode, yet easily detects single photons at high-gain. Cooled, single-chip detectors have been built and meet all the required specifications. SLAC National Laboratory is engaged in constructing a tiled, multi-chip 1516x1516 pixel detector.

  12. A ns-pulsed high-current electron beam source

    International Nuclear Information System (INIS)

    Guan, Gexin; Li, Youzhi; Pan, Yuli

    1988-01-01

    The behaviour of a pulse electron beam source which is composed of a gun and pulse system depends on not only the time characteristics of the gun and the pulser, but also their combination. This point become apparent if effects of the electron tansit-time between electrodes are studied. A ferrite transmission line (FTL) pulser is used as a grid driver in this source. It has advantages of providing fast risetime, large peak power output and good loading characteristics. It is these advantages of the pulser that compensates the absence of some technological conditions of manufacturing gun and makes the source better. Our testing showed that the cooperation of both the gun and the pulser produced peak currents in the range of 1 to 9 amps with widths of 2 to 2.5 ns (FWHM) at cathode-to-anode potential of 60 to 82 kv, while the grid drives are about in the range of 1 to 3 kv. In addition, the results of the testing instructed that effects of electron transit-time cannot be ignored when the pulses with widths of several nanoseconds are used as a grid drive. Based on the results, electron transit-time effects on the design of the gun and the beam performances are briefly descussed in this paper. (author)

  13. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  14. Terahertz detectors using hot-electrons in superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, A. [DLR, Inst. of Planetary Research, Berlin (Germany)

    2007-07-01

    Recently the terahertz gap has been recognized as a prospective spectral range for radioastronomy as well as for material and security studies. Implementation of terahertz technology in these fields requires further improvement of instruments and their major subcomponents. Physical phenomena associated with the local and homogeneous non-equilibrium electron sates in thin superconducting films offer numerous possibilities for the development of terahertz and infrared detectors. Depending on the nature of the resistive state and the operation regime, a variety of detector can be realized. They are e.g. direct bolometric or kinetic inductance detectors, heterodyne mixers or photon counters. Operation principles and physical limitations of these devices will be discussed. Two examples of the detector development made in cooperation between the German Aerospace Center, the University of Karlsruhe and PTB, Berlin will be presented. The energy resolving single-photon detector with an almost fundamentally limited energy resolution of 0.6 eV at 6.5 K for photons with wavelengths from 400 nm to 2500 nm and the heterodyne mixer quasioptically coupled to radiation in the frequency range from 0.8 THz to 5 THz and providing a noise temperature of less then ten times the quantum limit. The mixers will be implemented in the terahertz radar for security screening (TERASEC) and in the heterodyne receiver of the stratospheric observatory SOFIA. (orig.)

  15. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using spectrum summing

    Energy Technology Data Exchange (ETDEWEB)

    Killian, E.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.

  16. Pulse-height loss in the signal readout circuit of compound semiconductor detectors

    Science.gov (United States)

    Nakhostin, M.; Hitomi, K.

    2018-06-01

    Compound semiconductor detectors such as CdTe, CdZnTe, HgI2 and TlBr are known to exhibit large variations in their charge collection times. This paper considers the effect of such variations on the measurement of induced charge pulses by using resistive feedback charge-sensitive preamplifiers. It is shown that, due to the finite decay-time constant of the preamplifiers, the capacitive decay during the signal readout leads to a variable deficit in the measurement of ballistic signals and a digital pulse processing method is employed to correct for it. The method is experimentally examined by using sampled pulses from a TlBr detector coupled to a charge-sensitive preamplifier with 150 μs of decay-time constant and 20 % improvement in the energy resolution of the detector at 662 keV is achieved. The implications of the capacitive decay on the correction of charge-trapping effect by using depth-sensing technique are also considered.

  17. Use of a silicon surface-barrier detector for measurement of high-energy end loss electrons in a tandem mirror

    International Nuclear Information System (INIS)

    Saito, T.; Kiwamoto, Y.; Honda, T.; Kasugai, A.; Kurihara, K.; Miyoshi, S.

    1991-01-01

    An apparatus for the measurement of high-energy electrons (10--500 keV) with a silicon surface-barrier detector is described. The apparatus has special features. In particular, a fast CAMAC transient digitizer is used to directly record the wave form of a pulse train from the detector and then pulse heights are analyzed with a computer instead of on a conventional pulse height analyzer. With this method the system is capable of detecting electrons with a count rate as high as ∼300--400 kilocounts/s without serious deterioration of performance. Moreover, piled up signals are reliably eliminated from analysis. The system has been applied to measure electron-cyclotron-resonance-heating-induced end loss electrons in the GAMMA 10 tandem mirror and has yielded information relating to electron heating and diffusion in velocity space

  18. Laser pulse control of bridge mediated heterogeneous electron transfer

    International Nuclear Information System (INIS)

    Wang Luxia; May, Volkhard

    2009-01-01

    Ultrafast heterogeneous electron transfer from surface attached dye molecules into semiconductor band states is analyzed. The focus is on systems where the dye is separated from the surface by different bridge anchor groups. To simulate the full quantum dynamics of the transfer process a model of reduced dimensionality is used. It comprises the electronic levels of the dye, the bridge anchor group electronic levels and the continuum of semiconductor band states, all defined versus a single intramolecular vibrational coordinate. The effect of the bridge states is demonstrated, firstly, in studying the injection dynamics following an impulsive excitation of the dye. Then, by discussing different control tasks it is demonstrate in which way the charge injection process can be influenced by tailored laser pulses. To highlight the importance of electron wave function interference emphasis is put on asymmetric two-bridge molecule systems which are also characterized by different and complex valued electronic transfer matrix elements.

  19. Local Trigger Electronics for the CMS Drift Tubes Muon detector

    CERN Document Server

    Travaglini, R

    2003-01-01

    In the CMS detector in preparation for the CERN LHC collider, the Drift Tubes Muon Chambers are equipped with mini-crates hosting custom electronics for fast data processing and local trigger generation. In particular the Trigger Server of a DTC consists of Track Sorter Slave ASICs and a Track Sorter Master system. The trigger electronics boards are in production, to be ready for the muon detector installation in the CMS barrel starting at the end of 2003.In this work, the performance of the Trigger Server will be discussed, on the basis both of high-statistics tests with predefined patterns and of test beam data collected at CERN, where a DTC was exposed to a muon beam having an LHC-like bunch structure. Finally, some system performance expectations, concerning radiation tolerance and signal transmission issues during LHC running, will be also discussed.

  20. The LUCID detector ATLAS luminosity monitor and its electronic system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00378808; The ATLAS collaboration

    2016-01-01

    Starting from 2015 LHC is performing a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side-A-side-C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  1. Limitations of the pulse-shape technique for particle discrimination in planar Si detectors

    International Nuclear Information System (INIS)

    Pausch, G.; Seidel, W.; Lampert, M.O.; Rohr, P.

    1996-11-01

    Limitations of the pulse-shape discrimination (PSD) technique - a promising method to identify the charged particles stopped in planar Si-detectors - have been investigated. The particle resolution turned out to be basically determined by resistivity fluctuations in the bulk silicon which cause the charge-collection time to depend on the point of impact. Detector maps showing these fluctuations have been measured and are discussed. Furthermore we present a simple method to test the performance of detectors with respect to PSD. Another limitation of the PSD technique is the finite energy threshold for particle identification. This threshold is caused by an unexpected decrease of the total charge-collection time for ions with a short range, in spite of the fact that the particle tracks are located in a region of very low electric field. (orig.)

  2. Imaging Electron Dynamics with Ultrashort Light Pulses: A Theory Perspective

    Directory of Open Access Journals (Sweden)

    Daria Popova-Gorelova

    2018-02-01

    Full Text Available A wide range of ultrafast phenomena in various atomic, molecular and condense matter systems is governed by electron dynamics. Therefore, the ability to image electronic motion in real space and real time would provide a deeper understanding of such processes and guide developments of tools to control them. Ultrashort light pulses, which can provide unprecedented time resolution approaching subfemtosecond time scale, are perspective to achieve real-time imaging of electron dynamics. This task is challenging not only from an experimental view, but also from a theory perspective, since standard theories describing light-matter interaction in a stationary regime can provide erroneous results in an ultrafast case as demonstrated by several theoretical studies. We review the theoretical framework based on quantum electrodynamics, which has been shown to be necessary for an accurate description of time-resolved imaging of electron dynamics with ultrashort light pulses. We compare the results of theoretical studies of time-resolved nonresonant and resonant X-ray scattering, and time- and angle-resolved photoelectron spectroscopy and show that the corresponding time-resolved signals encode analogous information about electron dynamics. Thereby, the information about an electronic system provided by these time-resolved techniques is different from the information provided by their time-independent analogues.

  3. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    International Nuclear Information System (INIS)

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V fd ), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V fd *, which is the full depletion voltage traditionally determined by the extrapolation of the fast component amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V fd ) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V fd for highly irradiated detectors

  4. Consistency check of pulse shape discrimination for broad energy germanium detectors using double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Heng-Ye [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda (GERmanium Detector Array) experiment was built to study fundamental neutrino properties via neutrinoless double beta decay (0νββ). 0νββ events are single-site events (SSE) confined to a scale about millimeter. However, most of backgrounds are multi-site events (MSE). Broad Energy Germanium detectors (BEGes) offer the potential merits of improved pulse shape recognition efficiencies of SSE/MSE. They allow us to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the ROI. BEGe detectors with a total target mass of 3.63 kg have been installed to the Gerda setup in the Laboratori Nazionali del Gran Sasso (LNGS) in July 2012 and are collecting data since. A consistency check of the pulse shape discrimination (PSD) efficiencies by comparison of calibration data and 2νββ data will be presented. The PSD power of these detectors is demonstrated.

  5. Study of intense pulse irradiation effects on silicon targets considered as ground matter for optical detectors

    International Nuclear Information System (INIS)

    Muller, O.

    1994-12-01

    This study aim was centered on morphological and structural alterations induced by laser irradiation on silicon targets considered as ground matter for optical detectors. First we recalled the main high light intensity effects on the condensed matter. Then we presented the experimental aspects. The experimental studies were achieved on two sample types: SiO 2 /Si and Si. Two topics were studied: the defect chronology according to wavelength and pulse length, and the crystalline quality as well as the structure defects of irradiated zones by Raman spectroscopy. Finally, irradiation of Si targets by intense pulsed beams may lead to material fusion. This phenomenon is particularly easy when the material is absorbent, when the pulse is short and when the material is superficially oxidized. (MML). 204 refs., 93 figs., 21 tabs., 1 appendix

  6. The powerful pulsed electron beam effect on the metallic surfaces

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  7. A pulsed electron gun for the Plane Wave Transformer Linac

    Science.gov (United States)

    Mahadevan, S.; Gandhi, M. L.; Nandedkar, R. V.

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 μperv and the normalized emittance is within 5 π mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  8. A pulsed electron gun for the Plane Wave Transformer Linac

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, S. E-mail: maharaja@cat.ernet.in; Gandhi, M.L. E-mail: mlg@cat.ernet.in; Nandedkar, R.V. E-mail: nrv@cat.ernet.in

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 {mu}perv and the normalized emittance is within 5{pi} mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  9. A pulsed electron gun for the Plane Wave Transformer Linac

    CERN Document Server

    Mahadevan, S; Nandedkar, R V

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 mu perv and the normalized emittance is within 5 pi mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  10. Design and fabrication of a pulsed diode electron gun

    International Nuclear Information System (INIS)

    Mahadevan, S.; Gandhi, M.L.; Nandedkar, R.V.

    2003-01-01

    A pulsed diode electron gun has been designed, fabricated and tested and this will be used for the initial hot testing of the Plane Wave Transformer (PWT) linac. The gun is required to deliver 1 A at 70 kV which works out to a current of 500 mA at 40 kV. The gun geometry is optimized using the Electron Trajectory Program EGUN at a mesh size of 0.2 mm. The beam divergence close to cathode caused by an annular gap of 2 mm between cathode and focusing electrode (FE) is compensated by using a suitable focusing electrode. Important features of the pulsed power supply (40 kV, 500 mA, 2 μsec) developed for testing this gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance. Suitable positioning of cathode with respect to the FE helps in further improving the beam quality

  11. A pulsed electron gun for the Plane Wave Transformer Linac

    International Nuclear Information System (INIS)

    Mahadevan, S.; Gandhi, M.L.; Nandedkar, R.V.

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 μperv and the normalized emittance is within 5π mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance

  12. Engineering tradeoffs in miniaturization of electronics for very large detectors

    International Nuclear Information System (INIS)

    Larsen, R.S.

    1987-10-01

    The trend toward Application-Specific Integrated Circuits and similar systems-on-a-chip-technologies is fueling a new wave of innovation in detector electronics, just in time to address some of the problems being introduced by detectors which will approach a million channels of electronics. The cost-effectiveness of these technologies can be easily demonstrated, and the trend of the past twenty years of achieving more powerful electronics at a lower per-channel cost should receive a major impetus. The investment required in the new technologies will reshape the work force of most laboratories, by providing more and better tools, and by requiring training or retraining of significant numbers of personnel. The need for new instrumentation standards will arise at new levels in the detectors of the future. The laboratories must also invest heavily in integrating various computer aided engineering and computer aided design tools into a smoothly functioning system. They must also establish a new and different kind of working relationship with vendors and suppliers of both basic devices as well as standard packaged products. This paper discusses three concepts

  13. Qualification and characterization of electronics of the fast neutron Hodoscope detectors using neutrons from CABRI core

    Science.gov (United States)

    Mirotta, S.; Guillot, J.; Chevalier, V.; Biard, B.

    2018-01-01

    The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.

  14. How can attosecond pulse train interferometry interrogate electron dynamics?

    Science.gov (United States)

    Arnold, C. L.; Isinger, M.; Busto, D.; Guénot, D.; Nandi, S.; Zhong, S.; Dahlström, J. M.; Gisselbrecht, M.; l'Huillier, A.

    2018-04-01

    Light pulses of sub-100 as (1 as=10-18 s) duration, with photon energies in the extreme-ultraviolet (XUV) spectral domain, represent the shortest event in time ever made and controlled by human beings. Their first experimental observation in 2001 has opened the door to investigating the fundamental dynamics of the quantum world on the natural time scale for electrons in atoms, molecules and solids and marks the beginning of the scientific field now called attosecond science.

  15. Cost effective electronics for LAr and photo-detectors readout

    CERN Document Server

    Centro, Sandro

    2010-01-01

    The T600 ICARUS detector has a DAQ system that has proved a quite satisfactory performance in the test run performed in Pavia in summer 2001. The electronics has been described in various papers and technical notes. In this paper, starting from the experience gained in the T600 operation, we propose an upgraded DAQ scheme that implements the same basic architecture with more performing new components and different modularity in view a multi-kton TPC (e.g. MODULAr) with a number of channels in the order of ~n*105. Also the electronics for PMTs detecting scintillation light in Ar will be shortly presented.

  16. Photoemission studies using femtosecond pulses for high brightness electron beams

    International Nuclear Information System (INIS)

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1990-06-01

    We present the results of a series of experiments where various metal photocathodes are irradiated with ultrashort laser pulses, whose characteristics are: λ = 625 nm, τ = 100 fs, PRR = 89.5 MHz, Hν = 2 eV and average power 25 mW in each of the two beams. The quantum efficiency of the metals range from ∼10 -12 to 10 -8 at a power density of 100 MW/cm 2 at normal incidence. Since all the electrons are emitted due to multiphoton processes, these efficiencies are expected to increase substantially at large intensities. The efficiency at 100 MW/cm 2 has been increased by using p-polarized light at oblique incidence by ∼20x and by mediating the electron emission through surface plasmon excitation by ∼10 3 x. For the low intensities used in these experiments, the electron pulse duration is almost the same as the laser pulse duration for both the bulk and the surface plasmon mediated photoemission. 7 refs., 8 figs., 2 tabs

  17. Effect of pulsed electron beam on cell killing

    International Nuclear Information System (INIS)

    Acharya, Santhosh; Joseph, Praveen; Sanjeev, Ganesh; Narayana, Y.; Bhat, N.N.

    2009-01-01

    The extent of repairable and irreparable damage in a living cell produced by ionizing radiation depends on the quality of the radiation. In the case of sparsely ionizing radiation, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, radio-sensitive and radioresistive bacteria cells were exposed to 8 MeV pulsed electron beam and the efficiency of cell-killing was investigated to evaluate the Do, the mean lethal dose. The dose to the cell was delivered in micro-second pulses at an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . Fricke dosimeter was used to measure the absorbed dose of electron beam. The results were compared with those of gamma rays. The survival curve of radio-resistive Deinococcus-radiodurans (DR) is found to be sigmoidal and the survival response for radio-sensitive Escherichia-coli (E-coli) is found to be exponential without any shoulder. Comparison of Do values indicate that irradiation with pulsed electron beam resulted in more cell-killing than was observed for gamma irradiation. (author)

  18. Multistage linear electron acceleration using pulsed transmission lines

    International Nuclear Information System (INIS)

    Miller, R.B.; Prestwich, K.R.; Poukey, J.W.; Epstein, B.G.; Freeman, J.R.; Sharpe, A.W.; Tucker, W.K.; Shope, S.L.

    1981-01-01

    A four-stage linear electron accelerator is described which uses pulsed radial transmission lines as the basic accelerating units. An annular electron beam produced by a foilless diode is guided through the accelerator by a strong axial magnetic field. Synchronous firing of the injector and the acccelerating modules is accomplished with self-breaking oil switches. The device has accelerated beam currents of 25 kA to kinetic energies of 9 MV, with 90% current transport efficiency. The average accelerating gradient is 3 MV/m

  19. Harp, a short pulse, high current electron beam accelerator

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1974-01-01

    A 3 MV, 800 kA, 24 ns electron beam accelerator is described and the results of initial switching experiments are discussed. The generator will provide a source for studying the physics of processes leading to electron beam driven, inertially confined fusion. The major components of the accelerator are two diodes with a common anode, twelve oil-dielectric Blumleins with low jitter (less than 2 ns) multichannel switches, three intermediate storage capacitors, a trigger pulse generator and two Marx generators. (U.S.)

  20. Hard-rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1975-01-01

    Intense sub-microsecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this technique appears promising for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a pulsed electron tunnel excavator, capable of tunneling approximately ten times faster than conventional drill/blast methods, is presented. (auth)

  1. Test of the electron stability with the Borexino detector

    Science.gov (United States)

    Vishneva, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; de Kerret, K.; Derbin, H. A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2017-09-01

    Despite the fact that the electric charge conservation law is confirmed by many experiments, search for its possible violation remains a way of searching for physics beyond the Standard Model. Experimental searches for the electric charge non-conservation mainly consider electron decays into neutral particles. The Borexino experiment is an excellent tool for the electron decay search due to the highest radiopurity among all the existing experiments, large detector mass, and good sensitivity at low energies. The process considered in this study is a decay into a photon and a neutrino, for which a new lower limit on the electron lifetime is obtained. This is the best electron lifetime limit up to date, exceeding the previous one obtained at the Borexino prototype at two orders of magnitude.

  2. Transient current changes induced in pin-diodes by nanosecond electron pulses

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Goldner, R.; Bos, J.; Mehnert, R.

    1984-01-01

    The electron pulse technique can be applied as a diagnostic method to measure charge carrier lifetimes, diffusion length or junction width in semiconductor p + -i-n + diodes. The described effect of the pulse length dependence on the electron energy might be of importance as an energy monitor for pulsed electron accelerators. (author)

  3. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  4. Direct single electron detection with a CMOS detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Henderson, R.; Pryddetch, M.; Allport, P.; Evans, A.

    2005-01-01

    We report the results of an investigation into the use of a monolithic active pixel sensor (MAPS) for electron microscopy. MAPS, designed originally for astronomers at the Rutherford Appleton Laboratories, was installed in a 120 kV electron microscope (Philips CM12) at the MRC Laboratory in Cambridge for tests which included recording single electrons at 40 and 120 keV, and measuring signal-to-noise ratio (SNR), spatial resolution and radiation sensitivity. Our results show that, due to the excellent SNR and resolution, it is possible to register single electrons. The radiation damage to the detector is apparent with low doses and gets progressively greater so that its lifetime is limited to 600,000-900,000 electrons/pixel (very approximately 10-15 krad). Provided this detector can be radiation hardened to reduce its radiation sensitivity several hundred fold and increased in size, it will provide excellent performance for all types of electron microscopy

  5. Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance

    Directory of Open Access Journals (Sweden)

    E. Bunert

    2017-12-01

    Full Text Available Gas chromatographs with electron capture detectors are widely used for the analysis of electron affine substances such as pesticides or chlorofluorocarbons. With detection limits in the low pptv range, electron capture detectors are the most sensitive detectors available for such compounds. Based on their operating principle, they require free electrons at atmospheric pressure, which are usually generated by a β− decay. However, the use of radioactive materials leads to regulatory restrictions regarding purchase, operation, and disposal. Here, we present a novel electron capture detector based on a non-radioactive electron source that shows similar detection limits compared to radioactive detectors but that is not subject to these limitations and offers further advantages such as adjustable electron densities and energies. In this work we show first experimental results using 1,1,2-trichloroethane and sevoflurane, and investigate the effect of several operating parameters on the analytical performance of this new non-radioactive electron capture detector (ECD.

  6. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation

    Science.gov (United States)

    Hilsabeck, T. J.; Nagel, S. R.; Hares, J. D.; Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Dymoke-Bradshaw, A. K. L.; Piston, K.; Chung, T. M.

    2017-02-01

    Laser driven inertial confinement fusion (ICF) plasmas typically have burn durations on the order of 100 ps. Time resolved imaging of the x-ray self emission during the hot spot formation is an important diagnostic tool which gives information on implosion symmetry, transient features and stagnation time. Traditional x-ray gated imagers for ICF use microchannel plate detectors to obtain gate widths of 40-100 ps. The development of electron pulse-dilation imaging has enabled a 10X improvement in temporal resolution over legacy instruments. In this technique, the incoming x-ray image is converted to electrons at a photocathode. The electrons are accelerated with a time-varying potential that leads to temporal expansion as the electron signal transits the tube. This expanded signal is recorded with a gated detector and the effective temporal resolution of the composite system can be as low as several picoseconds. An instrument based on this principle, known as the Dilation X-ray Imager (DIXI) has been constructed and fielded at the National Ignition Facility. Design features and experimental results from DIXI will be presented.

  7. Pulse shaper for scintillation detectors with NaI(Tl) or CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Novisov, B.S.; Maksimenko, A.S.; Baryshev, A.V.; Zhukov, A.V.

    1978-01-01

    The basic circuit of a signal shaper for scintillation detectors with NaI(Tl) and CsI(Tl) crystals is described. To increase amplitude resolution, it is suggested to integrate not the whole charge at the photomultiplier output, but a part of the charge during the initial 100 ns of the current pulse; the remaining part of the current signal is compensated directly at the photomultiplier anode by means of an electric circuit. The principal elements of the spectrometric signal shaper include an input transistor amplifier, a compensation circuit, a key element, a shaper amplifier of time pulses, a shaper of signal duration for controlling the key element, and an output spectrometric amplifier. This device, being used, one can shape pulses at durations of 100 ns and more. The shaper restoration time does not exceed 50 ns. When the shaper operates with NaI(Tl) crystals and at counting rate of 10 6 pulse/s, the amplitude resolution with and without the compensation circuit is 17% and 21% respectively

  8. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  9. A custom readout electronics for the BESIII CGEM detector

    Science.gov (United States)

    Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.

    2017-07-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout

  10. A custom readout electronics for the BESIII CGEM detector

    International Nuclear Information System (INIS)

    Rolo, M. Da Rocha; Alexeev, M.; Amoroso, A.; Bianchi, F.; Cossio, F.; Mori, F. De; Destefanis, M.; Ferroli, R. Baldini; Chai, J.Y.; Bertani, M.; Calcaterra, A.; Capodiferro, M.; Cerioni, S.; Bettoni, D.; Canale, N.; Carassiti, V.; Chiozzi, S.; Cibinetto, G.; Ramusino, A. Cotta; Bugalho, R.

    2017-01-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM

  11. Fast sub-electron detectors review for interferometry

    Science.gov (United States)

    Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe

    2016-08-01

    New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA

  12. Comparison of experimental pulse-height distributions in germanium detectors with integrated-tiger-series-code predictions

    International Nuclear Information System (INIS)

    Beutler, D.E.; Halbleib, J.A.; Knott, D.P.

    1989-01-01

    This paper reports pulse-height distributions in two different types of Ge detectors measured for a variety of medium-energy x-ray bremsstrahlung spectra. These measurements have been compared to predictions using the integrated tiger series (ITS) Monte Carlo electron/photon transport code. In general, the authors find excellent agreement between experiments and predictions using no free parameters. These results demonstrate that the ITS codes can predict the combined bremsstrahlung production and energy deposition with good precision (within measurement uncertainties). The one region of disagreement observed occurs for low-energy (<50 keV) photons using low-energy bremsstrahlung spectra. In this case the ITS codes appear to underestimate the produced and/or absorbed radiation by almost an order of magnitude

  13. Iodide- and bromide-specific electron-capture/photodetachment-modulated detector for the trace analysis of halocarbon mixtures

    International Nuclear Information System (INIS)

    Mock, R.S.; Grimsrud, E.P.

    1988-01-01

    The use of photodetachment (PD) of electrons from negative ions in a pulsed electron capture detector (ECD) is described. By passing a chopped light beam through the ECD and amplification of the modulated component of the ECD signal, the photodetachment-modulated (PDM) pulsed ECD can be made to respond selectively and sensitively to iodine- containing hydrocarbons alone, or to iodine- and bromine-containing hydrocarbons in the presence of chlorinated hydrocarbons. The detection limit of the iodide/bromide-specific mode of the PDM-ECD to CH 3 I is shown to be competitive with that of the normal mode of the pulsed ECD. This detection mode of the ECD is shown to be of great assistance in the gas chromatographic analysis of organobromides and organoiodides in complex mixtures which contain a large number of organochlorides

  14. Silicon nanowire based high brightness, pulsed relativistic electron source

    Directory of Open Access Journals (Sweden)

    Deep Sarkar

    2017-06-01

    Full Text Available We demonstrate that silicon nanowire arrays efficiently emit relativistic electron pulses under irradiation by a high-intensity, femtosecond, and near-infrared laser (∼1018 W/cm2, 25 fs, 800 nm. The nanowire array yields fluxes and charge per bunch that are 40 times higher than those emitted by an optically flat surface, in the energy range of 0.2–0.5 MeV. The flux and charge yields for the nanowires are observed to be directional in nature unlike that for planar silicon. Particle-in-cell simulations establish that such large emission is caused by the enhancement of the local electric fields around a nanowire, which consequently leads to an enhanced absorption of laser energy. We show that the high-intensity contrast (ratio of picosecond pedestal to femtosecond peak of the laser pulse (10−9 is crucial to this large yield. We extend the notion of surface local-field enhancement, normally invoked in low-order nonlinear optical processes like second harmonic generation, optical limiting, etc., to ultrahigh laser intensities. These electron pulses, expectedly femtosecond in duration, have potential application in imaging, material modification, ultrafast dynamics, terahertz generation, and fast ion sources.

  15. Rad-hard electronics study for SSC detectors

    International Nuclear Information System (INIS)

    Ekenberg, T.; Dawson, J.; Stevens, A.; Haberichter, W.

    1991-01-01

    The radiation environment in a SSC detector operating at a luminosity of 10 33 cm -2 s -1 will put stringent requirements on radiation hardness of the electronics. Over the expected 10 year life-time of a large detector, ionizing radiation doses of up to 20 MRad and neutron fluences of 10 16 neutrons/cm 2 are projected. At a luminosity of 10 34 cm -2 s -1 even higher total doses are expected. the effect of this environment have been simulated by exposing CMOS/bulk and CMOS/SOS devices from monolithic processes to neutrons and ionizing radiation. leakage currents, noise variations, and DC characteristics have been measured before and after exposure in order to evaluate the effects of the irradiations. As expected the device characteristics remained virtually unchanged by neutron irradiation, while ionizing radiation caused moderate degradation of performance. 5 refs., 6 figs

  16. Energy resolution and throughput of a new real time digital pulse processing system for x-ray and gamma ray semiconductor detectors

    International Nuclear Information System (INIS)

    Abbene, L; Gerardi, G; Raso, G; Brai, M; Principato, F; Basile, S

    2013-01-01

    New generation spectroscopy systems have advanced towards digital pulse processing (DPP) approaches. DPP systems, based on direct digitizing and processing of detector signals, have recently been favoured over analog pulse processing electronics, ensuring higher flexibility, stability, lower dead time, higher throughput and better spectroscopic performance. In this work, we present the performance of a new real time DPP system for X-ray and gamma ray semiconductor detectors. The system is based on a commercial digitizer equipped with a custom DPP firmware, developed by our group, for on-line pulse shape and height analysis. X-ray and gamma ray spectra measurements with cadmium telluride (CdTe) and germanium (Ge) detectors, coupled to resistive-feedback preamplifiers, highlight the excellent performance of the system both at low and high rate environments (up to 800 kcps). A comparison with a conventional analog electronics showed the better high-rate capabilities of the digital approach, in terms of energy resolution and throughput. These results make the proposed DPP system a very attractive tool for both laboratory research and for the development of advanced detection systems for high-rate-resolution spectroscopic imaging, recently proposed in diagnostic medicine, industrial imaging and security screening

  17. Program for the analysis of pulse height spectra and the background from a proportional detector

    International Nuclear Information System (INIS)

    Flores-Llamas, H.; Yee-Madeira, H.; Contreras-Puente, G.; Zamorano-Ulloa, R.

    1991-01-01

    A PC-Fortran program is presented for fitting of lineshapes and the analysis of pulse height spectra obtainable with proportional detectors. The common fitting and analysis of pulse height spectra by means of mixed Gaussian lineshapes is readily improved by using Voigt lineshapes. In addition, the background can be evaluated during the fitting process without the need of extra measurements. As an application of the program, a pulse height transmission spectrum accumulated with a static 57 Co source and detected with an argon-metane proportional detector, was least squares fitted to an elaborated complex trial lineshape function containing two Voigt lines plus a straight line. The fitting straight line parameters a and b characterize quantitatively the background. The very good PC-fitting obtained shows that the fitting of experimental spectra with the more realistic Voigt lineshapes is no longer a formidable task and that it is possible to evaluate and subtract the background inherent to the experiment during the fitting process. (orig.)

  18. Evaluation of real-time digital pulse shapers with various HPGe and silicon radiation detectors

    International Nuclear Information System (INIS)

    Menaa, N.; D'Agostino, P.; Zakrzewski, B.; Jordanov, V.T.

    2011-01-01

    Real-time digital pulse shaping techniques allow synthesis of pulse shapes that have been difficult to realize using the traditional analog methods. Using real-time digital shapers, triangular/trapezoidal filters can be synthesized in real time. These filters exhibit digital control on the rise time, fall time, and flat-top of the trapezoidal shape. Thus, the trapezoidal shape can be adjusted for optimum performance at different distributions of the series and parallel noise. The trapezoidal weighting function (WF) represents the optimum time-limited pulse shape when only parallel and series noises are present in the detector system. In the presence of 1/F noise, the optimum WF changes depending on the 1/F noise contribution. In this paper, we report on the results of the evaluation of new filter types for processing signals from CANBERRA high purity germanium (HPGe) and passivated, implanted, planar silicon (PIPS) detectors. The objective of the evaluation is to determine improvements in performance over the current trapezoidal (digital) filter. The evaluation is performed using a customized CANBERRA digital signal processing unit that is fitted with new FPGA designs and any required firmware modifications to support operation of the new filters. The evaluated filters include the Cusp, one-over-F (1/F), and pseudo-Gaussian filters. The results are compared with the CANBERRA trapezoidal shaper.

  19. Optimization of a photon rejecter to separate electronic noise in a photon-counting detector

    International Nuclear Information System (INIS)

    Cho, Hyo-Min; Choi, Yu-Na; Lee, Seung-Wan; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2012-01-01

    Photon-counting-based X-ray imaging technology provides the capability to count individual photons and to characterize photon energies. The cadmium telluride (CdTe)-based photon-counting detector is limited in capability, however, under a high X-ray flux. A photon rejecter composed of aluminum, for example, can reduce this limitation by modulating the incident number of photons. In addition to this function, the optimal photon rejecter can separate electronic noise, which degrades image quality. The aim of this work was to optimize a photon rejecter for high-quality image acquisition by removing electronic noise from the actual pulse signal. The images and spectra were acquired using a micro-focus X-ray source with a CdTe-based photon-counting detector. We acquired data with various types of photon-rejecter materials composed of aluminum (Al) and iodine at three different tube voltages (50, 70, and 90 kVp). A phantom composed of high-atomic-number materials was imaged to evaluate the efficiency of the photon rejecter. Photon rejecters composed of 1-mm Al, 10-mm Al, and a combination of 10-mm Al and iodine provided optimum capability at 50, 70, and 90 kVp, respectively. Each optimal combination of photon-rejecter material and voltage effectively separated electronic noise from the actual pulse signal and gave the highest contrast-to-noise ratio for materials on the image. These optimized types of photon rejecters can effectively discriminate electronic noise and improve image quality at different tube voltages.

  20. Intense relativistic electron beam generation from KALI-5000 pulse accelerator

    International Nuclear Information System (INIS)

    Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)

  1. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  2. Multiplicity-Vertex Detector Electronics Development for Heavy-Ion Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L., Jr.; Bryan, W.L.; Emery, M.S. [and others

    1995-12-31

    This paper presents the electronics work performed to date for the Multiplicity-Vertex Detector (MVD) for the PHENIX collaboration at RHIC. The detector consists of approximately 34,000 channels of both silicon strips and silicon pads. The per-channel signal processing chain consists of a pre-amplifier gain stage, a current mode summed multiplicity discriminator, a 64 deep analog memory (simultaneous read/write), an analog correlator, and a 10-bit microsecs ADC. The system controller or Heap Manager, supplies all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Prototype performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 mu nwell CMOS process used for fabrication.

  3. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    International Nuclear Information System (INIS)

    Wang Xiaofang; Saleh, Ned; Krishnan, Mohan; Wang Haiwen; Backus, Sterling; Murnane, Margaret; Kapteyn, Henry; Umstadter, Donald; Wang Quandong; Shen Baifei

    2003-01-01

    Mega-electron-volt (MeV) electron emission from the interaction of an ultrafast (τ∼29 fs), intense (>10 18 W/cm 2 ) laser pulse with underdense plasmas has been studied. A beam of MeV electrons with a divergence angle as small as 1 deg. is observed in the forward direction, which is correlated with relativistic filamentation of the laser pulse in plasmas. A novel net-energy-gain mechanism is proposed for electron acceleration resulting from the relativistic filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, MeV electrons at a kilohertz repetition rate with a compact ultrafast intense laser system

  4. Clinical implementation of MOSFET detectors for dosimetry in electron beams

    International Nuclear Information System (INIS)

    Bloemen-van Gurp, Esther J.; Minken, Andre W.H.; Mijnheer, Ben J.; Dehing-Oberye, Cary J.G.; Lambin, Philippe

    2006-01-01

    Background and purpose: To determine the factors converting the reading of a MOSFET detector placed on the patient's skin without additional build-up to the dose at the depth of dose maximum (D max ) and investigate their feasibility for in vivo dose measurements in electron beams. Materials and methods: Factors were determined to relate the reading of a MOSFET detector to D max for 4-15 MeV electron beams in reference conditions. The influence of variation in field size, SSD, angle and field shape on the MOSFET reading, obtained without additional build-up, was evaluated using 4, 8 and 15 MeV beams and compared to ionisation chamber data at the depth of dose maximum (z max ). Patient entrance in vivo measurements included 40 patients, mostly treated for breast tumours. The MOSFET reading, converted to D max , was compared to the dose prescribed at this depth. Results: The factors to convert MOSFET reading to D max vary between 1.33 and 1.20 for the 4 and 15 MeV beams, respectively. The SSD correction factor is approximately 8% for a change in SSD from 95 to 100 cm, and 2% for each 5-cm increment above 100 cm SSD. A correction for fields having sides smaller than 6 cm and for irregular field shape is also recommended. For fields up to 20 x 20 cm 2 and for oblique incidence up to 45 deg., a correction is not necessary. Patient measurements demonstrated deviations from the prescribed dose with a mean difference of -0.7% and a standard deviation of 2.9%. Conclusion: Performing dose measurements with MOSFET detectors placed on the patient's skin without additional build-up is a well suited technique for routine dose verification in electron beams, when applying the appropriate conversion and correction factors

  5. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  6. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  7. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlarb, Michael Christian

    2009-11-17

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of {gamma}-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple {gamma}-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This

  8. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    International Nuclear Information System (INIS)

    Schlarb, Michael Christian

    2009-01-01

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of γ-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple γ-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This is

  9. Diffraction and microscopy with attosecond electron pulse trains

    Science.gov (United States)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  10. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  11. A New Readout Electronics for the LHCb Muon Detector Upgrade

    CERN Multimedia

    Cadeddu, Sandro

    2016-01-01

    The 2018/2019 upgrade of LHCb Muon System foresees a 40 MHz readout scheme and requires the development of a new Off Detector Electronics (nODE) board that will be based on the nSYNC, a radiation tolerant custom ASIC developed in UMC 130 nm technology. Each nODE board has 192 input channels processed by 4 nSYNCs. The nSYNC is equipped with fully digital TDCs and it implements all the required functionalities for the readout: bunch crossing alignment, data zero suppression, time measurements. Optical interfaces, based on GBT and Versatile link components, are used to communicate with DAQ, TFC and ECS systems.

  12. Integrated electronic device for processing impulses from neutron detectors

    International Nuclear Information System (INIS)

    Stoica, Mihai; Pirvu, Ion

    2009-01-01

    The developing of nuclear power is a key factor in decreasing energy Romania's dependence on imports of fossil fuels (oil, natural gas). An important point in achieving this goal is to use the experience acquired in the design and use of the equipment produced with the participation of INR specialists for Cernavoda NPP, Units 1 and 2. The design based on Surface Mount Technology (SMT) and the implementation of electronic interface modules of computer processing and detectors of radiation or nuclear particles contribute both to modernize and increase the performance of equipment. (authors)

  13. K-band single-chip electron spin resonance detector.

    Science.gov (United States)

    Anders, Jens; Angerhofer, Alexander; Boero, Giovanni

    2012-04-01

    We report on the design, fabrication, and characterization of an integrated detector for electron spin resonance spectroscopy operating at 27 GHz. The microsystem, consisting of an LC-oscillator and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The achieved room temperature spin sensitivity is about 10(8)spins/G Hz(1/2), with a sensitive volume of about (100 μm)(3). Operation at 77K is also demonstrated. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A search for supersymmetric electrons with the Mark II detector at PEP [Positron Electron Project

    International Nuclear Information System (INIS)

    LeClaire, B.W.

    1987-10-01

    An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e + e - interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, γ, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb -1 of data, resulting in a cross section limit of less than 2.4 x 10 -2 pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c 2 for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs

  15. A search for supersymmetric electrons with the Mark II detector at PEP (Positron Electron Project)

    Energy Technology Data Exchange (ETDEWEB)

    LeClaire, B.W.

    1987-10-01

    An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e/sup +/e/sup -/ interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e-tilde, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, ..gamma..-tilde, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb/sup -1/ of data, resulting in a cross section limit of less than 2.4 x 10/sup -2/ pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c/sup 2/ for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs.

  16. Dual detector pulsed neutron logging for providing indication of formation porosity

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1980-01-01

    A new improved apparatus for determining rock formation porosity was developed which is substantially independent of the formation salinity. The improvements achieved by using differing gating intervals for the two detectors. The rock formations surrounding the earth borehole are first pulse-irradiated with discrete bursts from a high-energy neutron source. The radiations at two different points in the formation are detected and electrical signals are generated. The electrical signals from the first point are gated for a shorter time interval than those from the second point. The gated first and second electrical signals are combined to determine the porosity of the formations. (DN)

  17. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  18. Electronics cooling of Phenix multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Chen, Z.; Gregory, W.S.

    1996-08-01

    The Multiplicity and Vertex Detector (MVD) uses silicon strip sensors arranged in two concentric barrels around the beam pipe of the PHENIX detector that will be installed at Brookhaven National Laboratory. Each silicon sensor is connected by a flexible kapton cable to its own front-end electronics printed circuit board that is a multi-chip module or MCM. The MCMs are the main heat source in the system. To maintain the MVD at optimized operational status, the maximum temperature of the multi-chip modules must be below 40 C. Using COSMOS/M HSTAR for the Heat Transfer analysis, a finite element model of a typical MCM plate was created to simulate a 9m/s airflow and 9m/s mixed flow composed of 50% helium and 50% air respectively, with convective heat transfer on both sides of the plate. The results using a mixed flow of helium and air show that the average maximum temperature reached by the MCMs is 37.5 C. The maximum temperature which is represented by the hot spots on the MCM is 39.43 C for the helium and air mixture which meets the design temperature requirement 40 C. To maintain the Multiplicity and Vertex Detector at optimized operational status, the configuration of the plenum chamber, the power dissipated by the silicon chips, the fluid flow velocity and comparison on the MCM design parameters will be discussed

  19. Chemical dosimetry of linac electron pulse with nitrous oxide

    International Nuclear Information System (INIS)

    Nanba, Hideki; Shinsaka, Kyoji; Hatano, Yoshihiko; Yagi, Masuo; Shiokawa, Takanobu.

    1975-01-01

    Absorption dose, dose rate and the reproducibility of intensity in each pulse of the electron beam pulses from a Linac (42 MeV, 3μsec) have been determined by applying nitrous oxide chemical dosimetry, in order to obtain the fundamental data required for radiation chemistry researches with the Linac. Nitrous oxide is used as a chemical dosimeter because it is known that it decomposed through radiation ensures easy detection and the determination of quantity of the decomposed product, nitrogen, which is stable, and presents linear relationship between absorption dose and produced quantity over the wide dose-rate range. Irradiation cells used for the experiment were cylindrical ones made of hard molybdenum glass. Irradiated samples were fractionated with liquid nitrogen, and separated and determined with a gas chromatograph. Details on the experimental results and their examination are described at the end. They include absorption dose of 1x10 16 eV/g per pulse, dose rate of 3x10 21 eV/g, sec and intensity reproducibility of +- 20%. (Wakatsuki, Y.)

  20. Development of electronic tattoo for pulse rate monitoring: Materials perspective

    Science.gov (United States)

    Shinde, Shilpa Vikas; Sonavane, S. S.

    2018-05-01

    In India, there is a growing concern of the heart diseases and deaths due to heart failure. The severity of the problem can be minimised by efficient heart rate monitoring which can be used to provide before time caution to cater heart attack. Wearable sensor can be designed to sense the pulse. The sensor can be either placed near to heart or on the wrist to sense pulses and send pulse signals to the doctors. Such sensor should adhere to the skin for sufficiently long period without causing etching to the patient. It should also be bendable and stretchable like skin. This paper is a part of the research work carried out to develop patch type sensor, which is termed as Electronic Tattoo (ET). In pursuit for development of ET, we came across various designs and candidate materials which can be used for the ET. Thus, in this paper, we describe the process of selecting best suited method and material for the ET. It may also be noted that the sensor development is governed by the prevailing IEEE 802.15.6 standard.

  1. Reflection of attosecond x-ray free electron laser pulses

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.; Chapman, Henry N.

    2007-01-01

    In order to utilize hard x-ray free electron lasers (XFEL's) when they are extended to attosecond pulse lengths, it is necessary to choose optical elements with minimal response time. Specular grazing-incidence optics made of low-Z materials are popular candidates for reflectors since they are likely to withstand x-ray damage and provide sufficiently large reflectivities. Using linear-optics reflection theory, we calculated the transient reflectivity of a delta-function electric pulse from a homogenous semi-infinite medium as a function of angle of incidence for s- and p-polarized light. We specifically considered the pulse response of beryllium, diamond, silicon carbide, and silicon, all of which are of relevance to the XFEL's that are currently being built. We found that the media emit energy in a damped oscillatory way, and that the impulse-response times are shorter than 0.3 fs for normal incidence. For grazing incidence, the impulse-response time is substantially shorter, making grazing-incidence mirrors a good choice for deep subfemtosecond reflective optics

  2. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  3. Study of performance of electronic dosemeters in continuous and pulsed X-radiation beams

    International Nuclear Information System (INIS)

    Guimaraes, Margarete Cristina

    2014-01-01

    Personal radiation monitoring is a basic procedure to verify the compliance to regulatory requirements for radiological protection. Electronic personal dosimeters (EPD) based on solid state detectors have largely been used for personnel monitoring; including for pulsed radiation beams where their responses are not well known and deficiencies have been reported. In this work, irradiation conditions for testing the response of EPDs in both continuous and pulsed X-ray beams were studied to be established in a constant potential Seifert-Pantak and in a medical Pulsar 800 Plus VMI X-ray machines. Characterization of X-ray beams was done in terms of tube voltage, half-value layer, mean energy and air kerma rate. A Xi R/F Unfors solid state dosimeter used as reference for air kerma measurements was verified against a RC-6 and 10X6-6 Radical ionization chambers as far its metrological coherence. Rad-60 RADOS, PDM- 11 Aloka and EPD MK2 Thermo electron EPDs were selected to be tested in terms of relative intrinsic error and energy response in similar to IEC RQR, IEC RQA and ISO N reference radiations. Results demonstrated the reliability of the solid state Xi R/F Unfors dosimeter to be as reference dosimeter although its response was affected by heavily filtered beams. Results also showed that relative intrinsic errors in the response of the EPDs in terms of personal dose equivalent, Hp(10), were higher than the requirement established for continuous beams. In pulsed beams, some EPDs showed inadequate response and high relative intrinsic errors. This work stressed the need of performing additional checks for EPDs, besides the limited 137 Cs beam calibration, before using them in pulsed X-ray beams. (author)

  4. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells.

    Science.gov (United States)

    Laschinsky, Lydia; Karsch, Leonhard; Leßmann, Elisabeth; Oppelt, Melanie; Pawelke, Jörg; Richter, Christian; Schürer, Michael; Beyreuther, Elke

    2016-08-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

  5. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

    International Nuclear Information System (INIS)

    Laschinsky, Lydia; Karsch, Leonhard; Schuerer, Michael; Lessmann, Elisabeth; Beyreuther, Elke; Oppelt, Melanie; Pawelke, Joerg; Richter, Christian

    2016-01-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10"1"0 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone. (orig.)

  6. Electron and Photon Reconstruction and Identification with the ATLAS Detector

    CERN Document Server

    Kuna, M; The ATLAS collaboration

    2011-01-01

    This article presents the electron and photon reconstruction performance in ATLAS with the first LHC collision data at $sqrt{s}$~=~7~TeV collected up to the beginning of June 2010. Calorimetric and tracker related electron identification variables are shown to be in a fair agreement with the Monte Carlo model. %Material estimations in the inner detector were checked with photon conversions vertex position, complementarily to the energy flow from minimum bias events for material at larger radii. The position of the reconstructed photon conversions vertices has been used to compare the inner detector model used in Monte Carlo to the real one from data. The energy flow measured in the electromagnetic calorimeter with minimum bias data has been used to provide the same comparison at larger radii. $pi^0 ightarrow gamma gamma$ and $J/Psi ightarrow ee$ peaks were observed with a reconstructed mass in good agreement with both Monte Carlo and PDG value. 17 $W ightarrow e u$ candidates and one $Z ightarrow ee$ candidat...

  7. Absolute and relative dose measurements with Gafchromic trade mark sign EBT film for high energy electron beams with different doses per pulse

    International Nuclear Information System (INIS)

    Fiandra, Christian; Ragona, Riccardo; Ricardi, Umberto; Anglesio, Silvia; Giglioli, Francesca Romana

    2008-01-01

    The authors have evaluated the accuracy, in absolute and relative dose measurements, of the Gafchromic trade mark sign EBT film in pulsed high-energy electron beams. Typically, the electron beams used in radiotherapy have a dose-per-pulse value of less than 0.1 mGy/pulse. However, very high dose-per-pulse electron beams are employed in certain linear accelerators dedicated to intraoperatory radiation therapy (IORT). In this study, the absorbed dose measurements with Gafchromic trade mark sign EBT in both low (less than 0.3 mGy per pulse) and high (30 and 70 mGy per pulse) dose-per-pulse electron beams were compared with ferrous sulfate chemical Fricke dosimetry (operated by the Italian Primary Standard Dosimetry Laboratory), a method independent of the dose per pulse. A summary of Gafchromic trade mark sign EBT in relative and absolute beam output determination is reported. This study demonstrates the independence of Gafchromic trade mark sign EBT absorption as a function of dose per pulse at different dose levels. A good agreement (within 3%) was found with Fricke dosimeters for plane-base IORT applicators. Comparison with a diode detector is presented for relative dose measurements, showing acceptable agreement both in the steep dose falloff zone and in the homogeneous dose region. This work also provides experimental values for recombination correction factor (K sat ) of a Roos (plane parallel) ionization chamber calculated on the basis of theoretical models for charge recombination.

  8. A quantification method for peroxyacetyl nitrate (PAN) using gas chromatography (GC) with a non-radioactive pulsed discharge detector (PDD)

    Science.gov (United States)

    Zhang, Lei; Jaffe, Daniel A.; Gao, Xin; McClure, Crystal D.

    2018-04-01

    In this study, we developed a method for continuous PAN measurements by gas chromatography (GC) with a non-radioactive pulsed discharge detector (PDD). Operational parameters were optimized based on the ratio of peak height over baseline noise (P/N ratio). The GC/PDD system was compared with a traditional radioactive electron-capture detector (ECD). In the lab, the method detection limit (MDL) of the new GC/PDD method (9 pptv) was lower than the radioactive GC/ECD method (15 pptv), demonstrating its excellent potential. The MDL of GC/PDD in the field campaign at the Mt. Bachelor Observatory (MBO) was 23 pptv, higher than in the lab. This was caused in part by the decreased slope of the calibration curve resulting from the low air pressure level at MBO. However, the MDL level of GC/PDD at MBO is still low enough for accurate PAN measurements, although special attention should be paid to its application at high-elevation sites. Observations of PAN were conducted at MBO in the summer of 2016 with the GC/PDD system, and provided more evidence of the performance of the system. PAN was found to be highly correlated with CO. The promising performance of GC/PDD which does not require a radioactive source makes it a useful approach for accurate PAN measurements in the field.

  9. Pulsed hollow cathode discharge: intense electron beam and filamentary plasma

    International Nuclear Information System (INIS)

    Modreanu, Gabriel

    1998-01-01

    This work deals with a transient hollow cathode discharge optimised by a preionization one and providing intense electron beams. It exists a preionization current value for which the pulsed discharge becomes a very straight and bright filament, well collimated on the discharge tube axis for some tenths of centimeters. A remarkable feature of this discharge is that, without internal metallic electrodes very pure plasma could be produced. Using self-biasing by the beam of a Faraday cup placed only few millimeters behind the anode, we deduced the beam electron's distribution function and its temporal behavior for two radial positions, on the axis and 1 millimeter off-axis, respectively. The real advantage of this measurement technique is the transient polarization character, which allows analysis very closely from the electron beam extraction hole. On the other side, using the emission spectroscopy, we have studied the plasma produced in electron beam - gas interaction and deduced the temporal evolution of the electron temperature. The temporal behavior of the filamentary plasma diameter shows a constriction at the last moments of the beam existence, followed by diffusion controlled expansion. The ambipolar diffusion coefficient corresponding to the estimated electron temperature describes quite well this expansion and allows a quantitative interpretation of the measured temperature diminution, with taking into account the preferential fast electrons escape. The analysis of both beam and post-beam plasma phases suggests potential applications of this robust, very reproducible and not expensive discharge also susceptible to be external monitored. The beam - target interaction could be used for PVD, elementary analysis and filamentary or point-like X-ray emission. (author) [fr

  10. Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors

    International Nuclear Information System (INIS)

    Bagan, H.; Tarancon, A.; Rauret, G.; Garcia, J.F.

    2010-01-01

    Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ( 3 H- 241 Am or 90 Sr/ 90 Y- 241 Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste.

  11. New Electron Cloud Detectors for the PS Main Magnets

    CERN Document Server

    Yin Vallgren, Ch; Gilardoni, S; Taborelli, M; Neupert, H; Ferreira Somoza, J

    2014-01-01

    Electron cloud (EC) has already been observed during normal operation of the PS, therefore it is necessary to study its in fluence on any beam instability for the future LHC Injector Upgrade (LIU). Two new electron cloud detectors have been discussed, developed and installed during the Long Shutdown (LS1) in one of the PS main magnets. The first measurement method is based on current measurement by using a shielded button-type pick-up. Due to the geometry and space limitation in the PS magnet, the button-type pick-up made of a 96%Al2O3 block coated with a thin layer of solvent-based Ag painting, placed 30 degrees to the bottom part of the vacuum chamber was installed in the horizontal direction where the only opening of the magnet coil is. The other newly developed measurement method is based on detection of photons emitted by the electrons from the electron cloud impinging on the vacuum chamber walls. The emitted photons are reected to a quartz window. A MCP-PMT (Micro-Channel Plate Photomultiplier Tube) wit...

  12. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    Science.gov (United States)

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  13. Electron-Muon Identification by Atmospheric Shower and Electron Beam in a New EAS Detector Concept

    Science.gov (United States)

    Iori, M.; Denizli, H.; Yilmaz, A.; Ferrarotto, F.; Russ, J.

    2015-03-01

    We present results demonstrating the time resolution and μ/e separation capabilities of a new concept for an EAS detector capable of measuring cosmic rays arriving with large zenith angles. This kind of detector has been designed to be part of a large area (several square kilometer) surface array designed to measure ultra high energy (10-200 PeV) τ neutrinos using the Earth-skimming technique. A criterion to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.

  14. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  15. A zerotime detector for nuclear fragments using channel electron multiplier plates

    International Nuclear Information System (INIS)

    Sundqvist, B.

    1975-01-01

    The literature on zerotime detectors which use the emission of secondary electrons from a thin foil is reviewed. The construction of a zerotime detector using multiplication of the secondary electrons with two Mullard channel electron multiplier plates (CEMP) in tandem is described. Results of tests of such a detector with α particles from a natural α source are given. Total time resolutions of about 200 ps (FWHM) with a Si(Sb) detector as the stop detector has been achieved. The contribution from the zerotime detector is estimated to be less than 150 ps (FWHM). The application of this detector technique to the construction of a heavy-ion spectrometer and a 8 Be detector is described. (Auth)

  16. Development of readout electronics for monolithic integration with diode strip detectors

    International Nuclear Information System (INIS)

    Hosticka, B.J.; Wrede, M.; Zimmer, G.; Kemmer, J.; Hofmann, R.; Lutz, G.

    1984-03-01

    Parallel in - serial out analog readout electronics integrated with silicon strip detectors will bring a reduction of two orders of magnitude in external electronics. The readout concept and the chosen CMOS technology solve the basic problem of low noise and low power requirements. A hybrid solution is an intermediate step towards the final goal of monolithic integration of detector and electronics. (orig.)

  17. Active pixel sensor array as a detector for electron microscopy.

    Science.gov (United States)

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  18. Two electron response to an intense x-ray free electron laser pulse

    International Nuclear Information System (INIS)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T

    2009-01-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .

  19. Two electron response to an intense x-ray free electron laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T, E-mail: l.moore@qub.ac.u [DAMTP, David Bates Building, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne{sup 8+} and Ar{sup 16+} exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10{sup 17} to 10{sup 22} W/cm{sup 2}.

  20. Digital pulse processing techniques for high resolution amplitude measurement of radiation detector

    International Nuclear Information System (INIS)

    Singhai, P.; Roy, A.; Dhara, P.; Chatterjee, S.

    2012-01-01

    The digital pulse processing techniques for high resolution amplitude measurement of radiation detector pulse is an effective replacement of expensive and bulky analog processing as the digital domain offers higher channel density and at the same time it is cheaper. We have demonstrated a prototype digital setup with highspeed sampling ADC with sampling frequency of 80-125 MHz followed by series of IIR filters for pulse shaping in a trigger-less acquisition mode. The IIR filters, peak detection algorithm and the data write-out logic was written on VHDL and implemented on FPGA. We used CAMAC as the read out platform. In conjunction with the full hardware implementation we also used a mixed platform with VME digitizer card with raw-sample read out using C code. The rationale behind this mixed platform is to test out various filter algorithms quickly on C and also to benchmark the performance of the chip level ADCs against the standard commercial digitizer in terms of noise or resolution. The paper describes implementation of both the methods with performance obtained in both the methods. (author)

  1. Study on Digital Pulse Shape Discrimination System in BF{sub 3} Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinhyeong; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, we develop the digital PSD system and discriminate the background signal of BF{sub 3}. Spectrum shapes are different according to the t{sub start} setting method, and it is favorable to set it as the certain ratio of maximum height. In future, it will be performed to vary t{sub start} point to optimize the pulse discrimination. To quantify the performance, Figure Of Merit (FOM) will be determined. For the nuclear non-proliferation and safeguards, an accurate and reliable measurement of nuclear material is essential. The nuclear material emits neutron and γ-ray, simultaneously. For the accurate detection of the nuclear material, neutron should be discriminated from γ-ray or background radiation. In previous study, N. S. Jung developed pulse shape analysis method based on NIM and CAMAC system. However, applications of other discrimination methods based on different detection modules or changing parameters are time-and-money consuming procedures in analogue systems. Today, the performance of digitizers is improved and it replaces some radiation measurement systems which require simple and portable equipment. Digital Pulse Shape Discrimination (PSD) method by using a digital oscilloscope is developed and applied to a neutron detection system by using BF{sub 3} detector in this study.

  2. Pixel detector readout electronics with two-level discriminator scheme

    International Nuclear Information System (INIS)

    Pengg, F.

    1998-01-01

    In preparation for a silicon pixel detector with more than 3,000 readout channels per chip for operation at the future large hadron collider (LHC) at CERN the analog front end of the readout electronics has been designed and measured on several test-arrays with 16 by 4 cells. They are implemented in the HP 0.8 microm process but compatible with the design rules of the radiation hard Honeywell 0.8 microm bulk process. Each cell contains bump bonding pad, preamplifier, discriminator and control logic for masking and testing within a layout area of only 50 microm by 140 microm. A new two-level discriminator scheme has been implemented to cope with the problems of time-walk and interpixel cross-coupling. The measured gain of the preamplifier is 900 mV for a minimum ionizing particle (MIP, about 24,000 e - for a 300 microm thick Si-detector) with a return to baseline within 750 ns for a 1 MIP input signal. The full readout chain (without detector) shows an equivalent noise charge to 60e - r.m.s. The time-walk, a function of the separation between the two threshold levels, is measured to be 22 ns at a separation of 1,500 e - , which is adequate for the 40 MHz beam-crossing frequency at the LHC. The interpixel cross-coupling, measured with a 40fF coupling capacitance, is less than 3%. A single cell consumes 35 microW at 3.5 V supply voltage

  3. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    Science.gov (United States)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  4. Data acquisition electronics for positron emission mammography (PEM) detectors

    International Nuclear Information System (INIS)

    Martinez, J.D.; Sebastia, A.; Cerda, J.; Esteve, R.; Mora, F.J.; Toledo, J.F.; Benlloch, J.M.; Gimenez, N.; Gimenez, M.; Lerche, Ch. W.; Pavon, N.; Sanchez, F.

    2005-01-01

    Positron emission mammography (PEM) is an innovative technique to increase sensitivity and overcome the main drawbacks of conventional X-ray screening. However, dedicated PET imaging systems demand specific hardware solutions for data acquisition and processing that can take advantage of the reduction in the number of channels. Data acquisition issues can affect PEM scanners performance and they should be exhaustively addressed in order to exploit the increment in the event count rate. This is crucial in order to reduce both the scanning time and the total injected dose. This paper presents the electronics for our PEM camera prototype that enables us to achieve very high-count rates and perform comprehensive online processing. Results about acquisition in our detector for a typical clinical setup are studied using Monte Carlo simulation of hot lesion phantoms

  5. Coincidence measurements in α/β/γ spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    Science.gov (United States)

    de Celis, B.; de la Fuente, R.; Williart, A.; de Celis Alonso, B.

    2007-09-01

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2(Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis.

  6. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  7. Development of an external readout electronics for a hybrid photon detector

    CERN Document Server

    Uyttenhove, Simon; Tichon, Jacques; Garcia, Salvador

    The pixel hybrid photon detectors currently installed in the LHCb Cherenkov system encapsulate readout electronics in the vacuum tube envelope. The LHCb upgrade and the new trigger system will require their replacement with new photon detectors. The baseline photon detector candidate is the multi-anode photomultiplier. A hybrid photon detector with external readout electronics has been proposed as a backup option. This master thesis covers a R & D phase to investigate this latter concept. Extensive studies of the initial electronics system underlined the noise contributions from the Beetle chip used as front-end readout ASIC and from the ceramic carrier of the photon detector. New front-end electronic boards have been developed and made fully compatible with the existing LHCb-RICH infrastructure. With this compact readout system, Cherenkov photons have been successfully detected in a real particle beam environment. The proof-of-concept of a hybrid photon detector with external readout electronics was val...

  8. Construction of double discharge pulsed electron beam generator and its applications

    International Nuclear Information System (INIS)

    Goektas, H.

    2001-12-01

    Generation of fast pulsed electron beam by superposing DC and pulsed hollow cathode discharge is studied. The electrical characteristics and measurements of the electron beam generator are done dc glow discharge and for the pulsed one. The electron beam current, its density and magnetic field effect, pinch effect, have been studied. The dependence of the electron beam parameters with respect to pressure and magnetic field have been studied. The pulsing effect of the beam is reviewed. By using the generator, micron holes drilling and carbon deposition was done at the laboratory. As a target source for carbon deposition methane gas is used and for Hydrogen-free carbon deposition was graphite

  9. Practical application of HgI2 detectors to a space-flight scanning electron microscope

    Science.gov (United States)

    Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1989-01-01

    Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.

  10. Superconducting Hot-Electron Submillimeter-Wave Detector

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in

  11. Electronic noise in CT detectors: Impact on image noise and artifacts.

    Science.gov (United States)

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  12. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    CERN Document Server

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  13. Interfacing Detectors to Triggers And DAQ Electronics; TOPICAL

    International Nuclear Information System (INIS)

    Crosetto, Dario B.

    1999-01-01

    The complete design of the front-end electronics interfacing LHCb detectors, Level-0 trigger and higher levels of trigger with flexible configuration parameters has been made for (a) ASIC implementation, and (b) FPGA implementation. The importance of approaching designs in technology-independent form becomes essential with the actual rapid electronics evolution. Being able to constrain the entire design to a few types of replicated components: (a) the fully programmable 3D-Flow system, and (b) the configurable front-end circuit described in this article, provides even further advantages because only one or two types of components will need to migrate to the newer technologies. To base on today's technology the design of a system such as the LHCb project that is to begin working in 2006 is not cost-effective. The effort required to migrate to a higher-performance will, in that case, be almost equivalent to completely redesigning the architecture from scratch. The proposed technology independent design with the current configurable front-end module described in this article and the scalable 3D-Flow fully programmable system described elsewhere, based on the study of the evolution of electronics during the past few years and the forecasted advances in the years to come, aims to provide a technology-independent design which lends itself to any technology at any time. In this case, technology independence is based mainly on generic-HDL reusable code which allows a very rapid realization of the state-of-the-art circuits in terms of gate density, power dissipation, and clock frequency. The design of four trigger towers presently fits into an OR3T30 FPGA. Preliminary test results (provided in this paper) meet the functional requirements of LHCb and provide sufficient flexibility to introduce future changes. The complete system design is also provided along with the integration of the front-end design in the entire system and the cost and dimension of the electronics

  14. Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors: Saturation Effects in DC and Pulsed Modes and Detector Dynamic Range

    International Nuclear Information System (INIS)

    Kruschwitz, Craig; Ming Wu; Moy, Ken; Rochau, Greg

    2008-01-01

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)-based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. We have developed a new model of charge buildup on the walls of the MCP channels and measured its effect on MCP gain. The results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser; these results clearly demonstrate MCP saturation behavior in both DC and pulsed modes. The simulations compare favorably to the experimental results. The dynamic range of the detectors in pulsed operation is of particular interest when fielding an MCP-based camera. By adjusting the laser flux we study the linear range of the camera. These results, too, are compared to our simulations

  15. Photomultiplier pulse Read Out system for the preshower detector of the LHCb experiment

    CERN Document Server

    Ajaltouni, Ziad J; Cornat, R; Deschamps, O; Lecoq, J; Monteil, S; Perret, P

    2003-01-01

    The second generation experiment for CP violation studies in B decays, LHCb, is a 20-m-long single-arm spectrometer to be installed on the future Large Hadron Collider at CERN. For its precision measurement purpose, it combines precise vertex location and particle identification, in addition to a performance trigger system able to cope with high flux. The first level of trigger is mainly based on the fast response of the calorimetric subsystem. Of major importance is the 6000 channels preshower detector that aims to validate the electromagnetic nature of calorimetric showers. It consists of two- radiation-length lead sheet in front of a scintillator plane. Scintillator signals are extracted from plastic cells using wavelength-shifting fibres coupled to multi-anode photomultiplier tubes. The preshower Read Out system has to cope with fluctuating photomultiplier pulses caused by small amounts of photoelectrons, in addition to strong constraints imposed by the 40 MHz LHC bunch- crossing frequency. A special Read...

  16. On-line statistical processing of radiation detector pulse trains with time-varying count rates

    International Nuclear Information System (INIS)

    Apostolopoulos, G.

    2008-01-01

    Statistical analysis is of primary importance for the correct interpretation of nuclear measurements, due to the inherent random nature of radioactive decay processes. This paper discusses the application of statistical signal processing techniques to the random pulse trains generated by radiation detectors. The aims of the presented algorithms are: (i) continuous, on-line estimation of the underlying time-varying count rate θ(t) and its first-order derivative dθ/dt; (ii) detection of abrupt changes in both of these quantities and estimation of their new value after the change point. Maximum-likelihood techniques, based on the Poisson probability distribution, are employed for the on-line estimation of θ and dθ/dt. Detection of abrupt changes is achieved on the basis of the generalized likelihood ratio statistical test. The properties of the proposed algorithms are evaluated by extensive simulations and possible applications for on-line radiation monitoring are discussed

  17. Using phonon pulses to characterise superconducting tunnel junction (STJ) X-ray detectors

    International Nuclear Information System (INIS)

    Steele, A.; Kozorezov, A.G.; Boyd, P.; Wigmore, J.K.; Poelaert, A.; Peacock, A.; Hartog, R. den

    2000-01-01

    Nanosecond phonon pulse experiments have been used to determine fundamental parameters of STJs relevant to their use as X-ray photon detectors. A non-equilibrium distribution of phonons is used to generate an excess non-equilibrium quasi-particle (qp) density in the STJ base electrode. The time dependence of the subsequent current signal is given by the sum of two exponential contributions which depend solely on the qp loss rates and tunnel rates for the top and base electrode of the device. Hence, four fundamental STJ parameters can be determined from measurements of the exponential time constants and pre-exponential current amplitudes. The technique outlined here is demonstrated by data taken on a high-quality 50 μmx50 μm niobium-based STJ

  18. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  19. Characterizing the response of a scintillator-based detector to single electrons

    International Nuclear Information System (INIS)

    Sang, Xiahan; LeBeau, James M.

    2016-01-01

    Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8 fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. - Highlights: • We show that the statistical description of single electron response of scintillator based detectors can be measured using a combination of small beam currents and short dwell times. • The average intensity from the probability distribution function can be used to normalize STEM images regardless of beam current and contrast settings. • We obtain consistent QSTEM normalization results from the single electron method and the conventional detector scan method.

  20. Auxiliary controllers for data acquisition from scintillation detector electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Leonenko, D A; Rybakov, V G; Sen' ko, V A [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij

    1983-01-01

    Structural schemes of auxiliary controllers of three types ensuring compression, filtration and record in buffer storage of data from scintillation detectors electronic equipment are described. The electronics is made according to the CAMAC ideology. The KD-85 controller exercises data readout from analog-to-digital converters (ADC), subtraction of pedestal values, discrimination by the bottom level and record into the buffer storage module. The KD-86 controller summarizes data from all the ADC channels in a crate dicscriminates the summarized data by the upper and bottom levels, and rejects data classified as useless. The KD-90 controller ensures data reading from different modules of the crate according to preset code and records information in the buffer storage module. The considered controllers employ integral microcircuits of the K 155 series. At present the controllers are under experimental operation. Their utilization would permit to adopt new arrangement of data acquisition from experimental facilities in the nearest future and essentially increase the operating efficiency of these facilities.

  1. The coulometric electron capture detector and its application to the selected freons in water and air. Part of a coordinated programme on the analysis of organic compounds by electron capture gas chromatography

    International Nuclear Information System (INIS)

    Lasa, J.

    1981-01-01

    In developing the use of Freon-11 and Freon-12 as environmental tracers in aeronomy, oceanography and hydrology electron capture gas chromatography was used to measure the concentration changes. A detector in the coulometric mode was designed and operated as a solute switch. The detection limit was in the order of 0.2x10 -12 g for a modified head space method in handling aqueous samples. Theoretical analysis of the detector design and the effects of factors including pulsing period, flowrates of carrier gas and the radioactivity of the detector source were discussed and confirmed experimentally

  2. Free electron laser experiments using a long pulse induction linac

    International Nuclear Information System (INIS)

    Pasour, J.A.; Lucey, R.

    1983-01-01

    The NRL Long Pulse Induction Linac is being employed in a Free Electron Laser (FEL) experiment. The authors present results of beam transport and focusing experiments as well as measurements of the output radiation generated by various magnetic wigglers. The electron gun of the accelerator presently has a 17-cmdiam. cold cathode which is located in a nearly zero magnetic field (B /SUB z/ less than or equal to 5 G). The gun voltage is flat to within approx. = + or - 5% for 1.5 μsec with this graphite brush cathode. The beam is focused by a series of solenoidal coils as it propagates through the 4-m-long accelerator. 2 A solenoidal field which can be varied from 1-10 kG confines the beam in the FEL interaction region. Previous experiments were limited by poor beam transport, focusing, and matching into the relatively large solenoidal field in the FEL region. By smoothing the axial magnetic field profile in the accelerator and making a more adiabatic transition from the low field in the accelerator to the high field in the FEL, beam transport into the wiggler has been substantially improved. Currently, a 700 kV beam with I > 500 A and r /SUB b/ < 0.75 cm is transported through the FEL region. Beam transport is in qualitative agreement with envelope code calculations

  3. Response of multi-strip multi-gap resistive plate chamber using pulsed electron beam

    International Nuclear Information System (INIS)

    Datta Pramanik, U.; Chakraborty, S.; Rahaman, A.; Ray, J.; Chatterjee, S.; Bemmerer, D.; Elekes, Z.; Kempe, M.; Sobiella, M.; Stach, D.; Wagner, A.; Yakorev, D.; Leifels, Y.; Simon, H.

    2011-01-01

    A prototype of Multi-strip Multi-gap Resistive Plate Chamber (MMRPC) with active area 40 cm x 20 cm has been developed at SINP, Kolkata. Electron response of the developed detector was studied using the electron linac ELBE at Forschungszentrum Dresden-Rossendorf. The development of this detector started with the aim of developing a neutron detector but this ultrafast timing detector can be used efficiently for the purpose of medical imaging, security purpose and detection of minimum ionising particle. In this article detailed analysis of electron response to our developed MMRPC will be presented

  4. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S. [Department of Physics, Ewha Womans University,Seoul 120-750 (Korea, Republic of); Adhikari, G.; Adhikari, P. [Department of Physics, Sejong University,Seoul 143-747 (Korea, Republic of); Choi, S. [Department of Physics and Astronomy, Seoul National University,Seoul 151-747 (Korea, Republic of); Hahn, I.S. [Department of Science Education, Ewha Womans University,Seoul 120-750 (Korea, Republic of)

    2015-08-18

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a {sup 137}Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg⋅year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  5. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    International Nuclear Information System (INIS)

    Lee, H.S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I.S.

    2015-01-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137 Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg⋅year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  6. Single channel analog pulse processor Asic for gas proportional counters and SI detector

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sarkar, Soumen; Kataria, S.K.; Viyogi, Y.P.

    2005-01-01

    The paper presents the design and development of a single channel pulse processor in short Singleplex ASIC targeted for gas proportional counters/Si detectors. The design is optimized for the dynamic range of +500 fC to -500 fC with provision for externally adjusted pole-zero cancellation. A dedicated filter based on the de-convolution principle is used for the cancellation of the long hyperbolic signal tail produced by the slow drift of ions, typical in gas proportional with the filter time constants derived from the actual detector input signal shape. The pole-zero adjustment can be done by external dc voltage to achieve perfect base-line recovery to 1% after 5 μs. The simulated 0 pf noise is 500 e - rms for the peaking time of 1.2 μs with noise slope of 7e - -. The gain is 3.4 mv/fC over the entire linear dynamic range with power dissipation of 13 mW. This design is a modified version of Indiplex chip with features dynamic range equal gain on both polarities with nearly same noise and serves as diagnostic chip for Indiplex. The chip can be used for radiation monitoring instruments. (author)

  7. Large-Area Neutron Detector based on Li-6 Pulse Mode Ionization Chamber

    International Nuclear Information System (INIS)

    Chung, K.; Ianakiev, K.D.; Swinhoe, M.T.; Makela, M.F.

    2005-01-01

    Prototypes of a Li-6 Pulse Mode Ionization Chamber (LiPMIC) have been in development for the past two years for the purpose of providing large-area neutron detector. this system would be suitable for remote deployment for homeland security and counterterrorism needs at borders, ports, and nuclear facilities. A prototype of LiPMIC is expected to provide a similar level of performance to the current industry-standard, He-3 proportional counters, while keeping the initial cost of procurement down by an order of magnitude, especially where large numbers of detectors are required. The overall design aspect and the efficiency optimization process is discussed. Specifically, the MCNP simulations of a single-cell prototype were performed and benchmarked with the experimental results. MCNP simulations of a three dimensional array design show intrinsic efficiency comparable to that of an array of He-3 proportional counters. LiPMIC has shown steady progress toward fulfilling the design expectations and future design modification and optimization are discussed.

  8. Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; et al.

    2018-02-05

    We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statistics $^{39}$Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 $\\pm$ 0.04) cm$^2$/s for a selection of 140keV electron recoil events in 200V/cm drift field and 2.8kV/cm extraction field. To study the systematics of our measurement we examine datasets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 $\\pm$ 0.09) cm$^2$ /s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.

  9. A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy

    International Nuclear Information System (INIS)

    White, Travis L.; Miller, William H.

    1999-01-01

    Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2 (Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation

  10. Pulsed magnet for commutation of 15 MeV electron bunches

    International Nuclear Information System (INIS)

    Zav'yalov, V.V.; Semenov, V.K.

    1987-01-01

    The ironless magnet, which extracts certain current pulses from the pulsed microtron electron beam, is described. The 1.4 kGs working field is created in the 12 mm gap between two plane coils arranged inside a vacuum chamber. A simple generator of sinusoidal pulses with the 300 A amplitude and 66 μs duration is used for coil power supply. The power consumption is 660 W at the 400 Hz pulse repetition frequency

  11. A five-picosecond electron pulse from ANL (Argonne National Laboratory) L-Band Linac

    International Nuclear Information System (INIS)

    Cox, G.L.; Jonah, C.D.; Ficht, D.T.; Mavrogenes, G.S.; Sauer, M.C. Jr.

    1989-01-01

    The pulse-compression system of the Argonne National Laboratory Chemistry Division L-Band Linac, presented at the 1986 Linear Accelerator Conference at Stanford, California, has been completed. A five-picosecond-wide electron pulse containing 6 x 10 -9 coulomb charge has been achieved. Acceleration parameters and the pulse-width measurement technique are discussed, and future plans for the utilization of this pulse in radiation chemistry studies are presented. 5 refs., 4 figs

  12. Subnanosecond pulsing of an 1 MeV ELIT electron accelerator by beam deflection

    International Nuclear Information System (INIS)

    Vasserman, S.B.; Kuzenko, V.; Mehnert, R.; Hermann, R.

    1984-01-01

    Operation principle and performance of a beam deflection system developed for subnanosecond pulsing of an 1 MeV ELIT resonance transformer accelerator are described. Using this system a minimum pulse duration of 0.5 ns (FWHM) and a dose per pulse of about 20 Gy were obtained. As an example the fluorescence of cyclohexane excited by the subnanosecond electron pulse was measured. (author)

  13. Development of high current electron source using photoemission from metals with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Tsang, T.; Srinivasan-Rao, T.; Fischer, J.

    1990-10-01

    We summarize the studies of photoemission from metal photocathodes using picosecond pulses in the UV (4.66 eV) wavelength and femtosecond laser pulses in the visible (2 eV) wavelengths. To achieve high current density yield from metal photocathodes, multiphoton photoemission using femtosecond laser pulses are suggested. Electron yield improvement incorporating surface photoemission and surface plasmon resonance in metals and metal films are demonstrated. We examine the possibility of the nonlinear photoemission process overtaking the linear process, and identity some possible complexity. To extract the large amount of electrons free of space charge, a pulsed high voltage is designed; the results of the preliminary test are presented. Finally, for the first time, the width of the electron temporal profiles are measured, utilizing the nonlinear photoelectric effect, to below 100 fsec time regime. The results indicated that the electron pulse duration follows the laser pulses and are not limited by the material. 8 refs., 15 figs

  14. Red Shift and Broadening of Backward Harmonic Radiation from Electron Oscillations Driven by Femtosecond Laser Pulse

    International Nuclear Information System (INIS)

    Tian Youwei; Yu Wei; Lu Peixiang; Senecha, Vinod K; Han, Xu; Deng Degang; Li Ruxin; Xu Zhizhan

    2006-01-01

    The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled

  15. Two-Electron Time-Delay Interference in Atomic Double Ionization by Attosecond Pulses

    International Nuclear Information System (INIS)

    Palacios, A.; Rescigno, T. N.; McCurdy, C. W.

    2009-01-01

    A two-color two-photon atomic double ionization experiment using subfemtosecond uv pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.

  16. Two-electron time-delay interference in atomic double ionization by attosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, Thomas N

    2009-10-04

    A two-color two-photon atomic double ionization experiment using subfemtosecond UV pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.

  17. Signatures of collective electron dynamics in the angular distributions of electrons ejected during ultrashort laser pulse interactions with C+

    International Nuclear Information System (INIS)

    Lysaght, M A; Hutchinson, S; Van der Hart, H W

    2009-01-01

    We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C + driven by the repulsion of two equivalent p electrons. By studying the two-dimensional momentum distributions of the ejected electron as a function of the time-delay between an ultrashort pump pulse and an ionizing ultrashort probe pulse it is possible to track the collective dynamics inside the C + ion in the time domain.

  18. Design of Pixellated CMOS Photon Detector for Secondary Electron Detection in the Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Joon Huang Chuah

    2011-01-01

    Full Text Available This paper presents a novel method of detecting secondary electrons generated in the scanning electron microscope (SEM. The method suggests that the photomultiplier tube (PMT, traditionally used in the Everhart-Thornley (ET detector, is to be replaced with a configurable multipixel solid-state photon detector offering the advantages of smaller dimension, lower supply voltage and power requirements, and potentially cheaper product cost. The design of the proposed detector has been implemented using a standard 0.35 μm CMOS technology with optical enhancement. This microchip comprises main circuit constituents of an array of photodiodes connecting to respective noise-optimised transimpedance amplifiers (TIAs, a selector-combiner (SC circuit, and a postamplifier (PA. The design possesses the capability of detecting photons with low input optical power in the range of 1 nW with 100 μm × 100 μm sized photodiodes and achieves a total amplification of 180 dBΩ at the output.

  19. PERCEPTION LEVEL EVALUATION OF RADIO ELECTRONIC MEANS TO A PULSE OF ELECTROMAGNETIC RADIATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The method for evaluating the perception level of electronic means to pulsed electromagnetic radiation is consid- ered in this article. The electromagnetic wave penetration mechanism towards the elements of electronic systems and the impact on them are determined by the intensity of the radiation field on the elements of electronic systems. The impact of electromagnetic radiation pulses to the electronic systems refers to physical and analytical parameters of the relationship between exposure to pulses of electromagnetic radiation and the sample parameters of electronic systems. A physical and mathematical model of evaluating the perception level of electronic means to pulsed electromagnetic radiation is given. The developed model was based on the physics of electronics means failure which represents the description of electro- magnetic, electric and thermal processes that lead to the degradation of the original structure of the apparatus elements. The conditions that lead to the total equation electronic systems functional destruction when exposed to electromagnetic radia- tion pulses are described. The internal characteristics of the component elements that respond to the damaging effects are considered. The ratio for the power failure is determined. A thermal breakdown temperature versus pulse duration of expo- sure at various power levels is obtained. The way of evaluation the reliability of electronic systems when exposed to pulses of electromagnetic radiation as a destructive factor is obtained.

  20. Ignitor electrode system design for the pulses electron irradiators device

    International Nuclear Information System (INIS)

    Lely Susita RM; Ihwanul Aziz

    2016-01-01

    The designed ignitor electrode system is a system used to initiate the plasma discharge. It consists of two pieces which are placed on both side of the plasma vessel. Each of the ignitor electrode system consists of a cathode, an anode and insulator between the cathode and the anode. The best cathode material for ignitor electrode system is Mg due to its lowest ion erosion rate (γi =11.7 μg/C) and its low cohesive energy (1.51 eV). The specifications of ignitor electrode system designed for the pulse electron irradiators is as follow: Mg cathode materials in the form of rod having a diameter of 6.35 mm and length of 76.75 mm. Anode material are made of non magnetic of SS 304 cylinder shaped with an outer diameter of 88.53 mm, an inner diameter of 81.53 mm and a thickness of 3.50 mm. Insulating material between the cathode and the anode is made of teflon cylinder shaped, outer diameter of 9.50 mm, an inner diameter of 6.35 mm and a length of 30 mm. Based on the ignitor electrode system design, the next step is construction and function test of the ignitor electrode system. (author)

  1. Applications of pulsed intense relativistic electron beam to aquatic conservation

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Imada, Go

    2012-01-01

    In this study, we propose aquatic conservations by using a pulsed intense relativistic electron beam (PIREB). Treatments of introduced species and toxics azo dyes by irradiating PIREB are investigated in this report. Zooplankton contained in water have been inactivated by irradiation of PIREB. A treatment chamber is filled with a solution of 3-wt% salt in water containing Artemia larvae as zooplankton samples, and is irradiated using the PIREB (2 MeV, 0.4 kA, 140 ns). We found that up to 24% of the Artemia are inactivated by firing 10 shots of PIREB irradiation. It is found that pH changes did not affect to inactivate the Artemia larvae during the time scale of PIREB irradiation. The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by PIREB. An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  2. A high current, short pulse electron source for wakefield accelerators

    International Nuclear Information System (INIS)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  3. Measurements of electron drift velocity in isobutane using the pulsed Townsend technique

    International Nuclear Information System (INIS)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2010-01-01

    Full text. The electron drift velocity characterizes the electric conductivity of weakly ionized gases and is one of the most important transport parameters for simulation and modeling of radiation detectors and plasma discharges. This work presents the results of electron drift velocity as a function of the reduced electric field obtained in nitrogen and isobutane by the Pulsed Townsend technique. Due to its excellent timing properties, isobutane is a common component of standard mixtures used in RPCs (Resistive Plate Chambers), however, at moderate electric fields strength (50 Td 10 Ω·m). The fast electric signals generated is amplified and were digitalized in a 1 GHz bandwidth oscilloscope to measure the electrons transit time and to calculate the electron drift velocity in different gaps between anode and cathode. As the timing information presented in the fast electric signal originated in the anode is significant in our application, the amplifier circuit had to hold special features in order to preserve the signal shape. The linear amplifier used, based on the BGM1013 integrated circuit (Philips R), reaches up to 2.1 GHz bandwidth with 35.5 dB gain and was developed and built at Laboratory of Instrumentation and Experimental Particles Physics/Portugal. In order to validate this method, measurements were initially carried out in pure nitrogen, in reduced electric fields ranging from 148 to 194 Td. These results showed good agreement with those found in the literature for this largely investigated gas. The measurements of electron drift velocities in pure isobutane were performed as a function of reduced electric field from 190 to 211 Td. The results were concordant, within the experimental errors, with the values simulated by the Imonte (version 4.5) code and the data recently obtained by our group. (author)

  4. Optimization of the integration time of pulse shape analysis for dual-layer GSO detector with different amount of Ce

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi

    2008-01-01

    For a multi-layer depth-of-interaction (DOI) detector using different decay times, pulse shape analysis based on two different integration times is often used to distinguish scintillators in DOI direction. This method measures a partial integration and a full integration, and calculates the ratio of these two to obtain the pulse shape distribution. The full integration time is usually set to integrate full width of the scintillation pulse. However, the optimum partial integration time is not obvious for obtaining the best separation of the pulse shape distribution. To make it clear, a theoretical analysis and experiments were conducted for pulse shape analysis by changing the partial integration time using a scintillation detector of GSOs with different amount of Ce. A scintillation detector with 1-in. round photomultiplier tube (PMT) optically coupled GSO of 1.5 mol% (decay time: 35 ns) and that of 0.5 mol% (decay time: 60 ns) was used for the experiments. The signal from PMT was digitally integrated with partial (50-150 ns) and full (160 ns) integration times and ratio of these two was calculated to obtain the pulse shape distribution. In the theoretical analysis, partial integration time of 50 ns showed largest distance between two peaks of the pulse shape distribution. In the experiments, it showed maximum at 70-80 ns of partial integration time. The peak to valley ratio showed the maximum at 120-130 ns. Because the separation of two peaks is determined by the peak to valley ratio, we conclude the optimum partial integration time for these combinations of GSOs is around 120-130 ns, relatively longer than the expected value

  5. Vertically etched silicon nano-rods as a sensitive electron detector

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, M; Akbari, M; Soleimani-Amiri, S; Sadeghipari, M; Shahsafi, A; Akhavan Farahani, A; Mohajerzadeh, S

    2015-01-01

    We have used vertically etched silicon nano-rods to realize electron detectors suitable for scanning electron microscopes. The results of deep etching of silicon nano-structures are presented to achieve highly ordered arrays of nano-rods. The response of the electron detector to energy of the primary electron beam and the effects of various sizes and materials has been investigated, indicating its high sensitivity to secondary and back-scattered electrons. The miniaturized structure of this electron detector allows it to be placed in the vicinity of the specimen to improve the resolution and contrast. This detector collects electrons and converts the electron current to voltage directly by means of n-doped silicon nano-rods on a p-type silicon substrate. Silicon nano-rods enhance the surface-to-volume ratio of the detector as well as improving the yield of electron detection. The use of nano-structures and silicon nanowires as an electron detector has led to higher sensitivities than with micro-structures. (paper)

  6. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    International Nuclear Information System (INIS)

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  7. Synchronization circuit for shaping picosecond accelerated-electron pulses

    International Nuclear Information System (INIS)

    Pavlov, Y.S.; Solov'ev, N.G.; Tomnikov, A.P.

    1986-01-01

    The authors discuss a high-speed circuit for synchronization of trigger pulses of the deflector modulator of an accelerator with a given phase of rf voltage of 200 MHz. The measured time instability between the output trigger pulses of the circuit and the input rf voltage is ≤ + or - 0.05 nsec. The circuit is implemented by ECL integrated circuits of series K100 and K500, and operates in both the pulse (pulse duration 3 μsec and repetition frequency 400 Hz) and continuous modes

  8. Ultrashort and coherent single-electron pulses for diffraction at ultimate resolutions

    International Nuclear Information System (INIS)

    Kirchner, Friedrich Oscar

    2013-01-01

    Ultrafast electron diffraction is a powerful tool for studying structural dynamics with femtosecond temporal and sub-aangstroem spatial resolutions. It benefits from the high scattering cross-sections of electrons compared X-rays and allows the examination of thin samples, surfaces and gases. One of the main challenges in ultrafast electron diffraction is the generation of electron pulses with a short duration and a large transverse coherence. The former limits the temporal resolution of the experiment while the latter determines the maximum size of the scattering structures that can be studied. In this work, we strive to push the limits of electron diffraction towards higher temporal and spatial resolutions. The decisive step in our approach is to eliminate all detrimental effects caused by Coulomb repulsion between the electrons by reducing the number of electrons per pulse to one. In this situation, the electrons' longitudinal and transverse velocity distributions are determined solely by the photoemission process. By reducing the electron source size on the photocathode, we make use of the small transverse velocity spread to produce electron pulses with a transverse coherence length of 20 nm, which is about an order of magnitude larger than the reported values for comparable experiments. The energy distribution of an ensemble of single-electron pulses from a photoemission source is directly linked to the mismatch between the photon energy and the cathode's work function. This excess energy can be reduced by using a photon energy close to the material's work function. Using a tunable source of ultraviolet pulses, we demonstrate the reduction of the velocity spread of the electrons, resulting in a shorter duration of the electron pulses. The reduced electron pulse durations achieved by a tunable excitation or by other approaches require new characterization techniques for electron pulses. We developed a novel method for the characterization of electron pulses at

  9. TH-C-19A-03: Characterization of the Dose Per Pulse Dependence of Various Detectors Used in Quality Assurance of FFF Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Karan, T [Stronach Regional Cancer Center, Newmarket, ON (Canada); Viel, F; Atwal, P; Gete, E; Camborde, M; Horwood, R; Strgar, V; Duzenli, C [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2014-06-15

    Purpose: To present the dose per pulse dependence of various QA devices under Flattening Filter Free (FFF) conditions. Methods: Air and liquid filled ion chamber arrays, diode arrays, radiochromic film and optically stimulated luminescence detectors were investigated. All detectors were irradiated under similar conditions of varying dose per pulse on a TrueBeam linac. Dose per pulse was controlled by varying SSD from 70 to 160 cm providing a range from ~0.5 to ~3 mGy per pulse. MU rates of up to 2400 MU/min for 10X FFF and 1400 MU/min for the 6X FFF beam were used. Beam pulses were counted using the Profiler™ diode array and pulse timing was confirmed by examining linac node files. Delivered doses were calculated with the Eclipse™ treatment planning system. Results: The detectors show a range of behaviors depending on the detector type, as expected. Diode arrays show up to 4% change in sensitivity (sensitivity increases with increasing dose per pulse) over the range tested. Air and liquid ion chambers arrays show a change in sensitivity of up to 3% (air) and 6% (liquid) (sensitivity decreases with increasing dose per pulse) while film and OSLD do not demonstrate a dependence on dose per pulse. Conclusion: Dependence of detector response on dose per pulse varies considerably depending on detector design. Interplay between dose per pulse and MU rate also exists for some detectors. Due diligence is required to characterize detector response prior to implementation of a QA protocol for FFF treatment delivery. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. We intend to further investigate the implications of this for VMAT FFF patient specific quality assurance. T Karan and F Viel have received partial funding through the Varian Research program.

  10. TH-C-19A-03: Characterization of the Dose Per Pulse Dependence of Various Detectors Used in Quality Assurance of FFF Treatment Plans

    International Nuclear Information System (INIS)

    Karan, T; Viel, F; Atwal, P; Gete, E; Camborde, M; Horwood, R; Strgar, V; Duzenli, C

    2014-01-01

    Purpose: To present the dose per pulse dependence of various QA devices under Flattening Filter Free (FFF) conditions. Methods: Air and liquid filled ion chamber arrays, diode arrays, radiochromic film and optically stimulated luminescence detectors were investigated. All detectors were irradiated under similar conditions of varying dose per pulse on a TrueBeam linac. Dose per pulse was controlled by varying SSD from 70 to 160 cm providing a range from ~0.5 to ~3 mGy per pulse. MU rates of up to 2400 MU/min for 10X FFF and 1400 MU/min for the 6X FFF beam were used. Beam pulses were counted using the Profiler™ diode array and pulse timing was confirmed by examining linac node files. Delivered doses were calculated with the Eclipse™ treatment planning system. Results: The detectors show a range of behaviors depending on the detector type, as expected. Diode arrays show up to 4% change in sensitivity (sensitivity increases with increasing dose per pulse) over the range tested. Air and liquid ion chambers arrays show a change in sensitivity of up to 3% (air) and 6% (liquid) (sensitivity decreases with increasing dose per pulse) while film and OSLD do not demonstrate a dependence on dose per pulse. Conclusion: Dependence of detector response on dose per pulse varies considerably depending on detector design. Interplay between dose per pulse and MU rate also exists for some detectors. Due diligence is required to characterize detector response prior to implementation of a QA protocol for FFF treatment delivery. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. We intend to further investigate the implications of this for VMAT FFF patient specific quality assurance. T Karan and F Viel have received partial funding through the Varian Research program

  11. Isolated grid electron gun and pulser system for long/short pulse operation

    International Nuclear Information System (INIS)

    Koontz, R.F.; Feathers, L.; Kilbourne, C.; Leger, G.; McKinney, T.

    1984-04-01

    The new NPI gun at SLAC serves the dual functions of producing long pulse (up to 5 μsec, 180 pps) electron bursts for nuclear physics experiments, and also short (1 nsec) pulses for filling Stanford Synchrotron Radiation Laboratory (SSRL). This is accomplished by means of a newly designed, isolated grid gun, cathode pulsed with a solid state long pulse pulser, and grid pulsed with a fast recharging avalanche type short pulse (1 nsec) grid pulser. The grid pulser is bipolar so that a fast blackout notch can be placed in the long cathode pulse. This fast notch can be seen by Stanford Linear Collider (SLC) instrumentation and allows the long pulse beam to be computer controlled by SLC intensity and beam position monitors

  12. An isolated grid electron gun and pulser system for long/short pulse operation

    International Nuclear Information System (INIS)

    Koontz, R.F.; Feathers, L.; Kilbourne, C.; Leger, G.; McKinney, T.

    1984-01-01

    The new NPI gun at SLAC serves the dual functions of producing long pulse (up to 5 μsec, 180 pps) electron bursts for nuclear physics experiments, and also short ( 1 nsec) pulses for filling Stanford Synchrotron Radiation Laboratory (SSRL). This is accomplished by means of a newly designed, isolated grid gun, cathode pulsed with a solid state long pulse pulser, and grid pulsed with a fast recharging avalanche type short pulse (1 nsec) grid pulser. The grid pulser is bipolar so that a fast blackout notch can be placed in the long cathode pulse. This fast notch can be seen by Stanford Linear Collider (SLC) instrumentation and allows the long pulse beam to be computer controlled by SLC intensity and beam position monitors. (orig.)

  13. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    Science.gov (United States)

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  14. High-speed, multi-channel detector readout electronics for fast radiation detectors

    International Nuclear Information System (INIS)

    Hennig, Wolfgang

    2012-01-01

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications. The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the

  15. High-speed, multi-channel detector readout electronics for fast radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Wolfgang

    2012-06-22

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications.The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the SHARC

  16. Characterization of a pulsed mode high voltage power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Ghazali, A B; Ahmad, T S; Abdullah, N A

    2013-01-01

    This paper discusses the characterization of a pulsed mode high voltage power supply (HVPS) using LT1073 chip. The pulsed modulated signal generated from this chip is amplified using a step-up ferrite core transformer of 1:20 turn ratio and then further multiplied and converted into DC high voltage output using a diode-capacitor arrangement. The circuit is powered by a 9V alkaline battery but regulated at 5V supply. It was found that the output for this setup is 520V, 87 μA with 10% load regulation. This output is suitable to operate a pancake-type GM detector, typically model LND 7317 where the plateau is from 475V to 675V. It was also found that when a β-source with intensity of 120 cps is used, the power consumption of the circuit is 5 V, 10.1 mA only. When the battery was left 'on' for 40 hours continuously, the battery's voltage has dropped to 6.9V, meaning that the 5V supply as well as 520V output is still maintained. It is noted that the minimum output voltage of 475V has reached when the regulated supply has reduced to 4.6V and consequently the 9V battery dropped to 6.5V, and this had happened after approximately 3 days of continuous operation. The power efficiency for this circuitry was found to be 89.5%. This result has far better in performance since the commercial portable equipment of this type has normally specified that not less than 8 hours continuous operation only. On the circuit design for this power supply, it was found that the enveloped frequency is 133 Hz with approximately 50% duty cycle. The modulated frequency during 'on' state was found to be 256 KHz in which the majority of power consumption is required.

  17. Emission and electron transitions in an atom interacting with an ultrashort electromagnetic pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2003-01-01

    Electron transitions and emission of an atom interacting with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. The excitation and ionization probabilities are obtained as well as the spectra and cross sections of the reemission of such a pulse by atoms. By way of an example, one- and two-electron inelastic processes accompanying the interaction of ultrashort pulses with hydrogen- and helium-like atoms are considered. The developed technique makes it possible to take into account exactly the spatial nonuniformity of the ultrashort pulse field and photon momenta in the course of reemission

  18. The energy spectrum of the 'runaway' electrons from a high voltage pulsed discharge

    International Nuclear Information System (INIS)

    Ruset, C.

    1985-01-01

    Some experimental results are presented on the influence of the pressure upon the energy spectrum of the runaway electrons generated into a pulsed high voltage argon discharge. These electrons enter a state of continuous acceleration between two collisions with rapidly increasing free path. The applied discharge current varies from 10 to 300 A, the pulse time is about 800 ns. Relativistic effects are taken into consideration. Theoretical explanation is based on the pnenomenon of electron spreading on plasma oscillations. (D.Gy.)

  19. The chirped-pulse free-electron laser: Final technical report, September 1987--October 1988

    International Nuclear Information System (INIS)

    Moore, G.T.

    1989-01-01

    This is the final report of a theoretical and numerical investigation into the operation of pulsed free-electron lasers in which the electron energy depends on the time of injection into the wiggler. Such energy ''chirping'' over each of a train of electron micropulses injected into an FEL oscillator is expected to give rise to a laser pulse inside the optical resonator with a chirped carrier frequency ω/sub s/(/tau/). 8 refs., 7 figs

  20. Characterisation of a MOSFET-based detector for dose measurement under megavoltage electron beam radiotherapy

    Science.gov (United States)

    Jong, W. L.; Ung, N. M.; Tiong, A. H. L.; Rosenfeld, A. B.; Wong, J. H. D.

    2018-03-01

    The aim of this study is to investigate the fundamental dosimetric characteristics of the MOSkin detector for megavoltage electron beam dosimetry. The reproducibility, linearity, energy dependence, dose rate dependence, depth dose measurement, output factor measurement, and surface dose measurement under megavoltage electron beam were tested. The MOSkin detector showed excellent reproducibility (>98%) and linearity (R2= 1.00) up to 2000 cGy for 4-20 MeV electron beams. The MOSkin detector also showed minimal dose rate dependence (within ±3%) and energy dependence (within ±2%) over the clinical range of electron beams, except for an energy dependence at 4 MeV electron beam. An energy dependence correction factor of 1.075 is needed when the MOSkin detector is used for 4 MeV electron beam. The output factors measured by the MOSkin detector were within ±2% compared to those measured with the EBT3 film and CC13 chamber. The measured depth doses using the MOSkin detector agreed with those measured using the CC13 chamber, except at the build-up region due to the dose volume averaging effect of the CC13 chamber. For surface dose measurements, MOSkin measurements were in agreement within ±3% to those measured using EBT3 film. Measurements using the MOSkin detector were also compared to electron dose calculation algorithms namely the GGPB and eMC algorithms. Both algorithms were in agreement with measurements to within ±2% and ±4% for output factor (except for the 4 × 4 cm2 field size) and surface dose, respectively. With the uncertainties taken into account, the MOSkin detector was found to be a suitable detector for dose measurement under megavoltage electron beam. This has been demonstrated in the in vivo skin dose measurement on patients during electron boost to the breast tumour bed.

  1. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  2. Measurement of high-energy electrons by means of a Cherenkov detector in ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.Jjakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal)

    2010-10-15

    The paper concerns detectors of the Cherenkov radiation which can be used to measure high-energy electrons escaping from short-living plasma. Such detectors have high temporal (about 1 ns) and spatial (about 1 mm) resolution. The paper describes a Cherenkov-type detector which was designed, manufactured and installed in the ISTTOK tokamak in order to measure fast runaway electrons. The radiator of that detector was made of an aluminium nitride (AlN) tablet with a light-tight filter on its front surface. Cherenkov signals from the radiator were transmitted through an optical cable to a fast photomultiplier. It made possible to perform direct measurements of the runaway electrons of energy above 80 keV. The measured energy values and spatial characteristics of the recorded electrons appeared to be consistent with results of numerical modelling of the runaway electron generation process in the ISTTOK tokamak.

  3. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  4. Mean secondary electron yield of avalanche electrons in the channels of a microchannel plate detector

    International Nuclear Information System (INIS)

    Funsten, H.O.; Suszcynsky, D.M.; Harper, R.W.

    1996-01-01

    By modeling the statistical evolution of an avalanche created by 20 keV protons impacting the input surface of a z-stack microchannel plate (MCP) detector, the mean secondary electron yield γ C of avalanche electrons propagating through a MCP channel is measured to equal 1.37 for 760 V per MCP in the z stack. This value agrees with other studies that used MCP gain measurements to infer γ C . The technique described here to measure γ C is independent of gain saturation effects and simplifying assumptions used in the segmented dynode model, both of which can introduce errors when inferring γ C through gain measurements. copyright 1996 American Institute of Physics

  5. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Malcolm J., E-mail: m.joyce@lancaster.ac.uk [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Agar, Stewart [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Aspinall, Michael D. [Hybrid Instruments Ltd., Gordon Manley Building, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW (United Kingdom); Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom)

    2016-10-21

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×10{sup 7} per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm{sup 3} concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  6. Nuclear electronic equipment for control and monitoring boards. Susceptibility of nuclear electronic pulse equipment to interference

    International Nuclear Information System (INIS)

    Buisson, Jacques; Cochinal, R.; Duquesnoy, J.; Roquefort, H.

    1972-07-01

    The correct functioning of pulse measurement units in industrial environmental conditions where interference is high, frequently gives rise to many installation problems which are difficult to solve. This paper offers some recommendations with a view to minimising the effect to electric interference on electronic equipment and gives a test method which enables this effect to be assessed qualitatively. It has been devised for nuclear electronic instrumentation but it may also be applied to other equipment and in particular the test method may be used for other cases. After a few preliminaries on how interference acts and on the terminology, the design of the equipment and the recommended connections are mentioned. Test methods are then indicated, followed by various technical comments. (author) [fr

  7. Development of fountain detectors for spectroscopy of secondary electron in SEM

    Energy Technology Data Exchange (ETDEWEB)

    Agemura, Toshihide [University of Tsukuba (Japan); Iwai, Hideo [National Institute for Materials Science, Tsukuba (Japan); Sekiguchi, Takashi [University of Tsukuba (Japan); National Institute for Materials Science, Tsukuba (Japan)

    2017-07-15

    To image the variation of surface potential in semiconductors, energy selective secondary electron detector, named fountain detector (FD), was developed. Two types of grids, planar and spherical, were designed and the superiority of latter was demonstrated. The p-n junction of 4H-SiC was observed using spherical FD and the image was much clear than that using conventional detector. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The front-end (Level-0) electronics interface module for the LHCb RICH detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Bibby, J.H. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Brisbane, S. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Gibson, V. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Harnew, N. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Jones, M. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Libby, J. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)]. E-mail: j.libby1@physics.ox.ac.uk; Powell, A. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Newby, C. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Rotolo, N. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Smale, N. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Somerville, L.; Sullivan, P.; Topp-Jorgensen, S. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Wotton, S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wyllie, K. [CERN, CH-1211, Geneva 23 (Switzerland)

    2007-03-11

    The front-end (Level-0) electronics interface module for the LHCb Ring Imaging Cherenkov (RICH) detectors is described. This module integrates the novel hybrid photon detectors (HPDs), which instrument the RICH detectors, to the LHCb trigger, data acquisition (DAQ) and control systems. The system operates at 40 MHz with a first-level trigger rate of 1 MHz. The module design is presented and results are given for both laboratory and beam tests.

  9. The front-end (Level-0) electronics interface module for the LHCb RICH detectors

    International Nuclear Information System (INIS)

    Adinolfi, M.; Bibby, J.H.; Brisbane, S.; Gibson, V.; Harnew, N.; Jones, M.; Libby, J.; Powell, A.; Newby, C.; Rotolo, N.; Smale, N.; Somerville, L.; Sullivan, P.; Topp-Jorgensen, S.; Wotton, S.; Wyllie, K.

    2007-01-01

    The front-end (Level-0) electronics interface module for the LHCb Ring Imaging Cherenkov (RICH) detectors is described. This module integrates the novel hybrid photon detectors (HPDs), which instrument the RICH detectors, to the LHCb trigger, data acquisition (DAQ) and control systems. The system operates at 40 MHz with a first-level trigger rate of 1 MHz. The module design is presented and results are given for both laboratory and beam tests

  10. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  11. Technology for the compatible integration of silicon detectors with readout electronics

    International Nuclear Information System (INIS)

    Zimmer, G.

    1984-01-01

    Compatible integration of detectors and readout electronics on the same silicon substrate is of growing interest. As the methods of microelectronics technology have already been adapted for detector fabrication, a common technology basis for detectors and readout electronics is available. CMOS technology exhibits most attractive features for the compatible realization of readout electronics when advanced LSI processing steps are combined with detector requirements. The essential requirements for compatible integration are the availability of high resistivity (100)-oriented single crystalline silicon substrate, the formation of suitably doped areas for MOS circuits and the isolation of the low voltage circuit from the detector operated at much higher supply voltage. Junction isolation as a first approach based on present production technology and dielectric isolation based on an advanced SOI-LSI technology are discussed as the most promising solutions for present and future applications, respectively. (orig.)

  12. Cherenkov Ring Imaging Detector front-end electronics

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Marshall, D.; Muller, D.; Nagamine, T.; Oxoby, G.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Suekane, F.; Toge, N.; Va'Vra, J.; Williams, S.; Wilson, R.J.; Whitaker, J.S.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Morrison, R.; Witherell, M.; Yellin, S.; Coyle, P.; Coyne, D.; Spencer, E.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Yuta, H.

    1990-10-01

    The SLD Cherenkov Ring Imaging Detector use a proportional wire detector for which a single channel hybrid has been developed. It consists of a preamplifier, gain selectable amplifier, load driver amplifier, power switching, and precision calibrator. For this hybrid, a bipolar, semicustom integrated circuit has been designed which includes video operational amplifiers for two of the gain stages. This approach allows maximization of the detector volume, allows DC coupling, and enables gain selection. System tests show good noise performance, calibration precision, system linearity, and signal shape uniformity over the full dynamic range. 10 refs., 8 figs

  13. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    Science.gov (United States)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  14. Chapter 9: Electronics

    International Nuclear Information System (INIS)

    Grupen, Claus; Shwartz, Boris A.

    2006-01-01

    Sophisticated front-end electronics are a key part of practically all modern radiation detector systems. This chapter introduces the basic principles and their implementation. Topics include signal acquisition, electronic noise, pulse shaping (analog and digital), and data readout techniques

  15. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  16. Discussion on the electronic problems of straw vertex detector

    International Nuclear Information System (INIS)

    Xi Deming

    1992-01-01

    The measurement of the characteristic time of the output waveform of straw vertex detector, the design of its high resolution and high counting rate readout system and the problems of the charge and time calibrations are discussed

  17. Concept for an Electron Ion Collider (EIC) detector built around the BaBar solenoid

    OpenAIRE

    PHENIX Collaboration; Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.

    2014-01-01

    The PHENIX collaboration presents here a concept for a detector at a future Electron Ion Collider (EIC). The EIC detector proposed here, referred to as ePHENIX, will have excellent performance for a broad range of exciting EIC physics measurements, providing powerful investigations not currently available that will dramatically advance our understanding of how quantum chromodynamics binds the proton and forms nuclear matter.

  18. A Large-Acceptance Detector System for Electron Scattering from Polarized Internal targets.

    NARCIS (Netherlands)

    Passchier, E.; Bouwhuis, M.; Choi, S.; Zhou, Z.L.; Alarcon, R.; Anghinolfi, M.; Botto, T.; van den Brand, J.F.J.; Bulten, H.J.; Dimitroyannis, D.; Doets, M.; Ent, R.; Ferro Luzzi, M.M.E.; Higinbotham, D.W.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Nikolenko, D.; Nooren, G.J.; Papadakis, N.; Passchier, I.; Popov, S.G.; Rachek, I.; Ripani, M.; Steijger, J.J.M.; Taiuti, M.; Vodinas, N.; de Vries, H.

    1997-01-01

    The design and the performance of a non-magnetic detector setup for internal target physics at the NIKHEF electron-scattering facility is described. The detector setup, used in the first internal-target experiment at the AmPS ring, measures the spin dependence in the elastic and break-up reaction

  19. Particle identification using digital pulse shape discrimination in a nTD silicon detector with a 1 GHz sampling digitizer

    Science.gov (United States)

    Mahata, K.; Shrivastava, A.; Gore, J. A.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Kumar, A.; Gupta, S.; Patale, P.

    2018-06-01

    In beam test experiments have been carried out for particle identification using digital pulse shape analysis in a 500 μm thick Neutron Transmutation Doped (nTD) silicon detector with an indigenously developed FPGA based 12 bit resolution, 1 GHz sampling digitizer. The nTD Si detector was used in a low-field injection setup to detect light heavy-ions produced in reactions of ∼ 5 MeV/A 7Li and 12C beams on different targets. Pulse height, rise time and current maximum have been obtained from the digitized charge output of a high bandwidth charge and current sensitive pre-amplifier. Good isotopic separation have been achieved using only the digitized charge output in case of light heavy-ions. The setup can be used for charged particle spectroscopy in nuclear reactions involving light heavy-ions around the Coulomb barrier energies.

  20. Measurement stand for diagnosis of semiconductor detectors based on IBM PC/XT computer (4-way spectrometric analysis of pulses)

    International Nuclear Information System (INIS)

    Gruszecki, M.

    1990-01-01

    The technical assumptions and partial realization of our technological stand for quality inspection of semiconductor detectors for ionizing radiation manufactured in the INP in Cracow are described. To increase the efficiency of the measurements simultaneous checking of 4 semiconductor chips or finished products is suggested. In order to justify this measurement technique a review of possible variants of the measurement apparatus is presented for the systems consisting of home made units. Comparative parameters for the component modules and for complete measuring systems are given. The construction and operation of data acquisition system based on IBM PC/XT are described. The system ensures simultaneous registration of pulses obtained from 4 detectors with maximal rate of up to 500 x 10 3 pulses/s. 42 refs., 6 figs., 3 tabs. (author)

  1. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    Science.gov (United States)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  2. Electron laser acceleration in vacuum by a quadratically chirped laser pulse

    International Nuclear Information System (INIS)

    Salamin, Yousef I; Jisrawi, Najeh M

    2014-01-01

    Single MeV electrons in vacuum subjected to single high-intensity quadratically chirped laser pulses are shown to gain multi-GeV energies. The laser pulses are modelled by finite-duration trapezoidal and cos  2 pulse-shapes and the equations of motion are solved numerically. It is found that, typically, the maximum energy gain from interaction with a quadratic chirp is about half of what would be gained from a linear chirp. (paper)

  3. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    International Nuclear Information System (INIS)

    Lim, Heuijin; Jeong, Dong Hyeok; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-01-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun

  4. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  5. Detection of secondary electrons with pixelated hybrid semiconductor detectors; Sekundaerelektronennachweis mit pixelierten hybriden Halbleiterdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, Ulrike Sonja

    2011-09-14

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10{sup -5} mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm{sup 2} area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm{sup 2}. To achieve this, a new photocathode was mounted in a shorter distance to the detector. The

  6. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    Science.gov (United States)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing the CryoAC particle rejection efficiency.

  7. Extraction of a long-pulsed intense electron beam from a pulsed plasma based on hollow cathode discharge

    International Nuclear Information System (INIS)

    Uramoto, Johshin.

    1977-05-01

    An intense electron beam (up to 1.0 kV, 0.8 kA in 0.8 cm phi) is extracted along a uniform magnetic field with a long decay time (up to 2 msec) from a pulsed high density plasma source which is produced with a fast rise time (< 100 μsec) by a secondary discharge based on a dc hollow cathode discharge. Through a back stream of ionized ions from a beam-extracting anode region where a neutral gas is fed, a space charge limit of the electron beam is so reduced that the beam current is determined by an initially injected electron flux and concentrated in a central aperture of the extracting anode. Moreover, the beam pulse width is much extended by the neutral gas feed into the anode space. (auth.)

  8. Dynamic pulse difference circuit

    International Nuclear Information System (INIS)

    Erickson, G.L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry is disclosed which comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter

  9. Measurements of picosecond pulses of a high-current electron accelerator

    International Nuclear Information System (INIS)

    Zheltov, K.A.; Petrenko, A.N.; Turundaevskaya, I.G.; Shalimanov, V.F.

    1997-01-01

    The duration of a picosecond high-current accelerator electron beam pulse duration is measured and its shape is determined using a measuring line, comprising a Faraday cup, a radiofrequency cable of minor length and a wide-band SRG-7 oscillograph. The procedure of data reconstruction according to regularization method is applied to determine the actual shape of the pulse measured

  10. Polymerization of polyethers initiated by irradiation with high power pulsed electron beams

    International Nuclear Information System (INIS)

    Gerber, V.D.; Tolkachev, V.S.; Chmukh, V.N.

    1982-01-01

    Air oxygen effect on thin-layer polymerization of polyethers, initiated by irradiation with powerful pulse electron beams is studied using the method of IR-spectrophotometry. The analysis of experimental data has shown that in polyether surface layer polymerization is suppressed by oxygen, concentration of which in the layer remains stable at the expense of diffusion from air during two consequent irradiation pulses

  11. The EMP excitation of radiation by the pulsed relativistic electron beam

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Sidelnikov, G.L.

    1996-01-01

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs

  12. Implications of electron attachment to highly-excited states in pulsed-power discharges

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Univ. of Tennessee, Knoxville, TN

    1997-01-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H 2 discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing

  13. The EMP excitation of radiation by the pulsed relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.

  14. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    Directory of Open Access Journals (Sweden)

    R.P. Kelley

    2015-03-01

    Full Text Available An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  15. Proof of Principle for Electronic Collimation of a Gamma Ray Detector

    Science.gov (United States)

    2016-01-01

    Approved for public release; distribution is unlimited. ERDC TN-EQT-16-1 January 2016 Proof of Principle for Electronic Collimation of a Gamma...in achieving the proof of principle of the technique, which is intended to be further developed. A gamma ray detector system utilizing electronic...waveforms from longitudinal (along the axis) waveforms yield proof of principle . TECHNOLOGY DESCRIPTION: The component detector technologies were

  16. Application of the A/E pulse shape discrimination method to first Ge-76 enriched BEGe detectors operated in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea; Agostini, Matteo; Budjas, Dusan; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    In 2013 the Gerda experiment will be upgraded to its second phase with more than double of the current {sup 76}Ge mass. The additional diodes are custom made Broad Energy Germanium (BEGe) detectors. This design has been chosen to enhance the pulse shape discrimination (PSD) capability, with respect to the Phase I coaxial detectors. The goal of Phase II is to improve by one order of magnitude the current background index; the PSD will bring a major contribution to this result. Since summer 2012 the first set of five enriched BEGe detectors are operated in Gerda Phase I. This offers us the possibility to test the PSD performances and the signal analysis in an environment as close as possible to the Gerda Phase II configuration. In this talk I present the A/E analysis, the calibration of the cut parameters and the results in terms of background reduction for the data taken with these enriched BEGe.

  17. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  18. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  19. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  20. Observation of meander pattern in signals from superconducting MgB{sub 2} detector by scanning pulsed laser imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takekazu, E-mail: ishida@center.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Yagi, Ikutaro; Yoshioka, Naohito; Huy, Ho Thanh [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Yotsuya, Tsutomu [Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 2-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Shimakage, Hisashi [Department of Electrical and Electronic Engineering, College of Engineering, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Miki, Shigehito [Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2429 (Japan); Wang, Zhen [Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2429 (Japan)

    2013-01-15

    Highlights: ► We fabricate a superconducting MgB{sub 2} meander detector as a solid-state neutron detector. ► MgB{sub 2} detector uses XYZ stage, optical fiber and focused lens to scan as a microscope. ► The 6 μm line-and-space in meandering pattern can be resolved in signals against pulsed laser. -- Abstract: Superconducting MgB{sub 2} meander detector has been imaged by scanning a spot of 1.5-μm focused pulsed laser. The superconducting detector using high-quality {sup 10}B-enriched MgB{sub 2} thin films at higher operating temperatures has been fabricated to utilize a resistance change induced by the nuclear energy of {sup 10}B and neutron. The MgB{sub 2} detector consists of a 200-nm-thick MgB{sub 2} thin-film meander line, a 300-nm-thick SiO protective layer, and 150-nm-thick Nb electrodes with 1-μm MgB{sub 2} wires. The devices were placed in a 4 K refrigerator to control at a certain temperature below T{sub c}. A scanning laser spot can be used by the combination of the XYZ piezo-drive stage and an optical fibre with an aspheric focused lens. The measurement system is fully controlled by LabVIEW based software. We succeeded in observing a line-and-space image of a meandering pattern by analysing response signals.

  1. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  2. Femtosecond and Subfemtosecond X-Ray Pulses from a SASE Based Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P

    2004-03-10

    We propose a novel method to generate femtosecond and sub-femtosecond photon pulses in a free electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 femtosecond in duration containing about 1010 transversely coherent photons.

  3. Monitoring of energetic characteristics of electron beams during formation of high-power pulsed bremsstrahlung

    International Nuclear Information System (INIS)

    Ivaschenko, D.M.; Mordasov, N.G.; Chlenov, A.M.

    2005-01-01

    A method and a device for monitoring the dynamic and integrated characteristics of high-power electron and bremsstrahlung beams of the pulse accelerators are proposed. The transfer functions for various types of a target in operating conditions of the pulse accelerator UIN-10 are presented. Possibilities if the integrated diagnostics of acceleration rate of the electron beams with simultaneous testing of the bremsstrahlung parameters as a local field point beyond the converting target are shown [ru

  4. Parallel and pipelined front-end for multi-element silicon detectors in scanning electron microscopy

    International Nuclear Information System (INIS)

    Boulin, C.; Epstein, A.

    1992-01-01

    This paper discusses a silicon quadrant detector (128 elements) implemented as an electron detector in a Scanning Transmission Electron Microscope. As the electron beam scans over the sample, electrons are counted during each pixel. The authors developed an ASIC for the multichannel counting system. The digital front-end carries out the readout of all elements, in four groups, and uses these data to compute linear combinations to generate up to eight simultaneous images. For the preprocessing the authors implemented a parallel and pipelined system. Dedicated software tools were developed to generate the programs for all the processors. These tools are transparently accessed by the user via a user friendly interface

  5. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, G; Li, X; Kirkland, A [Department of Materials, University of Oxford, Parks Road, Oxford, 0X1 3PH (United Kingdom)], E-mail: grigore.moldovan@materials.ox.ac.uk

    2008-08-15

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  6. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    Science.gov (United States)

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Application of MSM InP detectors to the measurement of pulsed X-ray radiation

    Czech Academy of Sciences Publication Activity Database

    Ryc, L.; Dobrzanski, L.; Dubecký, L.; Kaczmarczyk, J.; Pfeifer, Miroslav; Riesz, F.; Slysz, W.; Surma, B.

    2008-01-01

    Roč. 163, 4-6 (2008), 559-567 ISSN 1042-0150 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : InP detector * X-ray detector * picosecond detector * laser plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.415, year: 2008

  8. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Measurements of electron drift velocity in isobutane using the pulsed Townsend technique

    Energy Technology Data Exchange (ETDEWEB)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2010-07-01

    Full text. The electron drift velocity characterizes the electric conductivity of weakly ionized gases and is one of the most important transport parameters for simulation and modeling of radiation detectors and plasma discharges. This work presents the results of electron drift velocity as a function of the reduced electric field obtained in nitrogen and isobutane by the Pulsed Townsend technique. Due to its excellent timing properties, isobutane is a common component of standard mixtures used in RPCs (Resistive Plate Chambers), however, at moderate electric fields strength (50 Td <= E/N <= 200 Td), there are insufficient data available in literature for this gas. In our experimental apparatus, electrons are liberated from an aluminum cathode (40mm diameter) due to the incidence of a nitrogen laser beam (MNL202-LD LTB) and are accelerated by the applied electric field toward the anode, made of a high resistivity glass (2 x 10{sup 10} {Omega}{center_dot}m). The fast electric signals generated is amplified and were digitalized in a 1 GHz bandwidth oscilloscope to measure the electrons transit time and to calculate the electron drift velocity in different gaps between anode and cathode. As the timing information presented in the fast electric signal originated in the anode is significant in our application, the amplifier circuit had to hold special features in order to preserve the signal shape. The linear amplifier used, based on the BGM1013 integrated circuit (Philips R), reaches up to 2.1 GHz bandwidth with 35.5 dB gain and was developed and built at Laboratory of Instrumentation and Experimental Particles Physics/Portugal. In order to validate this method, measurements were initially carried out in pure nitrogen, in reduced electric fields ranging from 148 to 194 Td. These results showed good agreement with those found in the literature for this largely investigated gas. The measurements of electron drift velocities in pure isobutane were performed as a function

  10. Notification determining technical standards concerning prevention of radiation injuries by electron capture detectors for gas chromatography

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law on the prevention of radiation injuries by radioisotopes, the ordinance and the regulation for the execution of the law. This rule is applied to electron capture detectors for gas chromatography under the law. Basic terms are defined, such as detector radiation source, detector container and carrier gas. The detectors shall consist of detector radiation sources and containers, and the containers must be such that the radiation sources can not be easily taken away and never cause the danger to fall off. The induction and discharge mouths of the detector containers shall be shut tightly with caps, etc. The main structures and radiation sources of detectors shall be made of materials, which are difficult to corrode, and do not melt and easily cause chemical change below 800 deg. C. Detector radiation sources shall be made of metals plated with nickel 63 less than 20 milli-curie. The radiation dose rate on the surface of a detector shall be shielded to less than 0.06 milli-rem an hour. The temperature of detectors and carrier gas shall not exceed 350 deg. C. Corrosive gas shall not be used as carrier gas. The period of effective indication is 5 years. The method of washing, and the conditions of leak, heat-resistance and shock-resistance examinations are defined, respectively. (Okada, K.)

  11. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    International Nuclear Information System (INIS)

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-01-01

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame

  12. Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals

    International Nuclear Information System (INIS)

    Giri, Ashutosh; Hopkins, Patrick E.

    2015-01-01

    Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states

  13. A sub-picosecond pulsed 5 MeV electron beam system

    International Nuclear Information System (INIS)

    Farrell, J. Paul; Batchelor, K.; Meshkovsky, I.; Pavlishin, I.; Lekomtsev, V.; Dyublov, A.; Inochkin, M.; Srinivasan-Rao, T.

    2001-01-01

    Laser excited pulsed, electron beam systems that operate at energies from 1 MeV up to 5 MeV and pulse width from 0.1 to 100 ps are described. The systems consist of a high voltage pulser and a coaxial laser triggered gas or liquid spark gap. The spark gap discharges into a pulse forming line designed to produce and maintain a flat voltage pulse for 1 ns duration on the cathode of a photodiode. A synchronized laser is used to illuminate the photocathode with a laser pulse to produce an electron beam with very high brightness, short duration, and current at or near the space charge limit. Operation of the system is described and preliminary test measurements of voltages, synchronization, and jitter are presented for a 5 MeV system. Applications in chemistry, and accelerator research are briefly discussed

  14. Numerical Investigation on Electron and Ion Transmission of GEM-based Detectors

    Science.gov (United States)

    Bhattacharya, Purba; Sahoo, Sumanya Sekhar; Biswas, Saikat; Mohanty, Bedangadas; Majumdar, Nayana; Mukhopadhyay, Supratik

    2018-02-01

    ALICE at the LHC is planning a major upgrade of its detector systems, including the TPC, to cope with an increase of the LHC luminosity after 2018. Different R&D activities are currently concentrated on the adoption of the Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The major challenge is to have low ion feedback in the drift volume as well as to ensure a collection of good percentage of primary electrons in the signal generation process. In the present work, Garfield simulation framework has been adopted to numerically estimate the electron transparency and ion backflow fraction of GEM-based detectors. In this process, extensive simulations have been carried out to enrich our understanding of the complex physical processes occurring within single, triple and quadruple GEM detectors. A detailed study has been performed to observe the effect of detector geometry, field configuration and magnetic field on the above mentioned characteristics.

  15. Electron drift time in silicon drift detectors: A technique for high precision measurement of electron drift mobility

    International Nuclear Information System (INIS)

    Castoldi, A.; Rehak, P.

    1995-01-01

    This paper presents a precise absolute measurement of the drift velocity and mobility of electrons in high resistivity silicon at room temperature. The electron velocity is obtained from the differential measurement of the drift time of an electron cloud in a silicon drift detector. The main features of the transport scheme of this class of detectors are: the high uniformity of the electron motion, the transport of the signal electrons entirely contained in the high-purity bulk, the low noise timing due to the very small anode capacitance (typical value 100 fF), and the possibility to measure different drift distances, up to the wafer diameter, in the same semiconductor sample. These features make the silicon drift detector an optimal device for high precision measurements of carrier drift properties. The electron drift velocity and mobility in a 10 kΩ cm NTD n-type silicon wafer have been measured as a function of the electric field in the range of possible operation of a typical drift detector (167--633 V/cm). The electron ohmic mobility is found to be 1394 cm 2 /V s. The measurement precision is better than 1%. copyright 1995 American Institute of Physics

  16. Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse

    Energy Technology Data Exchange (ETDEWEB)

    Laitano, R F [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia, c.p. 2400 Rome (Italy); Guerra, A S [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia, c.p. 2400 Rome (Italy); Pimpinella, M [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia, c.p. 2400 Rome (Italy); Caporali, C [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia, c.p. 2400 Rome (Italy); Petrucci, A [A.C.O. S. Filippo Neri, U.O. Fisica Sanitaria, Rome (Italy)

    2006-12-21

    The correction for charge recombination was determined for different plane-parallel ionization chambers exposed to clinical electron beams with low and high dose per pulse, respectively. The electron energy was nearly the same (about 7 and 9 MeV) for any of the beams used. Boag's two-voltage analysis (TVA) was used to determine the correction for ion losses, k{sub s}, relevant to each chamber considered. The presence of free electrons in the air of the chamber cavity was accounted for in determining k{sub s} by TVA. The determination of k{sub s} was made on the basis of the models for ion recombination proposed in past years by Boag, Hochhaeuser and Balk to account for the presence of free electrons. The absorbed dose measurements in both low-dose-per-pulse (less than 0.3 mGy per pulse) and high-dose-per-pulse (20-120 mGy per pulse range) electron beams were compared with ferrous sulphate chemical dosimetry, a method independent of the dose per pulse. The results of the comparison support the conclusion that one of the models is more adequate to correct for ion recombination, even in high-dose-per-pulse conditions, provided that the fraction of free electrons is properly assessed. In this respect the drift velocity and the time constant for attachment of electrons in the air of the chamber cavity are rather critical parameters because of their dependence on chamber dimensions and operational conditions. Finally, a determination of the factor k{sub s} was also made by zero extrapolation of the 1/Q versus 1/V saturation curves, leading to the conclusion that this method does not provide consistent results in high-dose-per-pulse beams.

  17. Neutron detection time distributions of multisphere LiI detectors and AB rem meter at a 20 MeV electron linac

    International Nuclear Information System (INIS)

    Liu, J.C.; Rokni, S.; Vylet, V.; Arora, R.; Semones, E.; Justus, A.

    1997-01-01

    Neutron detection time distribution is an important factor for the dead-time correction for moderator type neutron detectors used in pulsed radiation fields. Measurements of the neutron detection time distributions of multisphere LiL detectors (2''3'' , 5'', 8'', 10'' and 12'' in diameter) and an AB rem meter were made inside an ANL 20 MeV electron linac room. Calculations of the neutron detection time distributions were also made using Monte Carlo codes. The first step was to calculate the neutron energy spectra at the target and detector positions, using a coupled EGS4-MORSE code with a giant-resonant photoneutron generation scheme. The calculated detector spectrum was found in agreement with the multisphere measurements. Then, neutrons hitting the detector surface were scored as a function of energy and the travel time in the room using MCNP. Finally, the above neutron fluence as a function of energy and travel time was used as the source term, and the neutrons detected by 6 Li or 10 B in the sensor were scored as a function of detection time for each detector using MCNP. The calculations of the detection time distributions agree with the measurements. The results also show that the detection time distributions of detectors with large moderators depend mainly on the moderator thickness and neutron spectrum. However, for small detectors, the neutron travel time in the field is also crucial. Therefore, all four factors (neutron spectrum, neutron travel time in the field, detector moderator thickness and detector response function) may play inter-related roles in the detection time distribution of moderator type detectors. (Author)

  18. Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector

    International Nuclear Information System (INIS)

    McMullan, G.; Faruqi, A.R.; Henderson, R.; Guerrini, N.; Turchetta, R.; Jacobs, A.; Hoften, G. van

    2009-01-01

    The advantages of backthinning monolithic active pixel sensors (MAPS) based on complementary metal oxide semiconductor (CMOS) direct electron detectors for electron microscopy have been discussed previously; they include better spatial resolution (modulation transfer function or MTF) and efficiency at all spatial frequencies (detective quantum efficiency or DQE). It was suggested that a 'thin' CMOS detector would have the most outstanding properties because of a reduction in the proportion of backscattered electrons. In this paper we show, theoretically (using Monte Carlo simulations of electron trajectories) and experimentally that this is indeed the case. The modulation transfer functions of prototype backthinned CMOS direct electron detectors have been measured at 300 keV. At zero spatial frequency, in non-backthinned 700-μm-thick detectors, the backscattered component makes up over 40% of the total signal but, by backthinning to 100, 50 or 35 μm, this can be reduced to 25%, 15% and 10%, respectively. For the 35 μm backthinned detector, this reduction in backscatter increases the MTF by 40% for spatial frequencies between 0.1 and 1.0 Nyquist. As discussed in the main text, reducing backscattering in backthinned detectors should also improve DQE.

  19. Electron Hole Plasma in Solids Induced by Ultrashort XUV Laser Pulses

    International Nuclear Information System (INIS)

    Rethfeld, B.; Medvedev, N.

    2013-01-01

    Irradiation of solids with ultrashort XUV laser pulses leads to an excitation of electrons from the valence band and deeper shells to the conduction band leading to a nonequilibrium highly energetic electron hole plasma. We investigate the transient electron dynamics in a solid semiconductor and metal (silicon and aluminum, respectively) under irradiation with a femtosecond VUV to XUV laser pulse as used in experiments with the Free Electron Laser FLASH at DESY in Hamburg, Germany. Applying the Asymptotical Trajectory Monte-Carlo technique, we obtain the transient energy distribution of the excited and ionized electrons within the solid. Photon absorption by electrons in different bands and secondary excitation and ionization processes are simulated event by event. The method was extended in order to take into account the electronic band structure and Pauli's principle for electrons in the conduction band. In this talk we review our results on the dynamics of the transient electron-hole plasma, in particular its transient density and energy distribution in dependence on laser and material parameters. For semiconductors we introduce the concept of an ''effective energy gap'' for collective electronic excitation, which can be applied to estimate the free electron density after high-intensity ultrashort XUV laser pulse irradiation. For aluminum we demonstrate that the electronic spectra depend on the relaxation kinetics of the excited electronic subsystem. Experimentally observed spectra of emitted photons from irradiated aluminum can be explained well with our results. (author)

  20. Pulsed high-current electron source: Final report

    International Nuclear Information System (INIS)

    Spindt, C.A.

    1988-10-01

    The objective of this investigation was to investigate ways to realize the cathode's potential as a source for high power pulse operation. The questions that needed to be studied were those of large area coverage, maximum emission that the cathode arrays are capable of producing practically, uniformity of emission over large areas, and the ability to operate with high voltage anodes. 9 figs

  1. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  2. Relativistic electron drift in overdense plasma produced by a superintense femtosecond laser pulse

    International Nuclear Information System (INIS)

    Rastunkov, V.S.; Krainov, V.P.

    2004-01-01

    The general peculiarities of electron motion in the skin layer at the irradiation of overdense plasma by a superintense linearly polarized laser pulse of femtosecond duration are considered. The quiver electron energy is assumed to be a relativistic quantity. Relativistic electron drift along the propagation of laser radiation produced by a magnetic part of a laser field remains after the end of the laser pulse, unlike the relativistic drift of a free electron in underdense plasma. As a result, the penetration depth is much larger than the classical skin depth. The conclusion has been made that the drift velocity is a nonrelativistic quantity even at the peak laser intensity of 10 21 W/cm 2 . The time at which an electron penetrates into field-free matter from the skin layer is much less than the pulse duration

  3. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  4. Electron spectroscopy using a multi-detector array

    International Nuclear Information System (INIS)

    Butler, P.A.; Cann, K.J.; Trzaska, W.H.

    1996-01-01

    A description is given of the novel electron spectrometer SACRED, which uses a multi-element Si array to detect cascades of conversion electrons. Its application to the study of deformed structures in 222 Th is described. (orig.)

  5. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.

    Science.gov (United States)

    Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo

    2012-01-01

    The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  6. Pulse radiolysis with (sub) nanosecond time resolution using a 3 MV electron accelerator

    International Nuclear Information System (INIS)

    Luthjens, L.H.

    1986-01-01

    In this thesis the development of equipment for pulse radiolysis is described and the application of the technique to time-resolved measurements of the fluorescence emission of excited states formed after irradiation of some alkanes is dealt with. A review is given of the development of the pulsed 3MV Van de Graaf electron accelerator for the generation of subnanosecond electron beam pulses and of the development of the equipment for optical detection as accomplished by the author. The initial stage of a further development for shorter pulses and higher time resolution is briefly discussed. A collection of papers on the development of apparatus and a collection of papers dealing with the results obtained from measurements of the fluorescence of excited states, formed by the recombination of electrons and ions in irradiated alkanes such as cyclohexane and the decalines, are included. (Auth.)

  7. A high efficiency superconducting nanowire single electron detector

    NARCIS (Netherlands)

    Rosticher, M.; Ladan, F.R.; Maneval, J.P.; Dorenbos, S.N.; Zijlstra, T.; Klapwijk, T.M.; Zwiller, V.; Lupa?cu, A.; Nogues, G.

    2010-01-01

    We report the detection of single electrons using a Nb0.7Ti0.3N superconducting wire deposited on an oxidized silicon substrate. While it is known that this device is sensitive to single photons, we show that it also detects single electrons with kilo-electron-volt energy emitted from the cathode of

  8. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    Science.gov (United States)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  9. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-01-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm 2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance

  10. Measurements of absorbed energy distributions in water from pulsed electron beams

    International Nuclear Information System (INIS)

    Devanney, J.A.

    1974-01-01

    An evaluation of the use of a holographic interferometer to measure the energy deposition as a function of depth in water from pulsed electron beams, together with a brief description of the interferometer and the technique of generating a hologram are presented. The holographic interferometer is used to measure the energy deposition as a function of depth in water from various pulsed beams of monoenergetic electrons in the energy range from 1.0 to 2.5 MeV. These results are compared to those computed by using a Monte Carlo radiation transport code, ETRAN-15, for the same electron energies. After the discrepancies between the measured and computed results are evaluated, reasonable agreement is found between the measured and computed absorbed energy distributions as a function of depth in water. An evalutation of the response of the interferometer as a function of electron intensities is performed. A comparison among four energy deposition curves that result from the irradiation of water with pulsed electron beams from a Febetron accelerator, model 705, is presented. These pulsed beams were produced by the same vacuum diode with the same charging voltage. The results indicate that the energy distribution of the electrons in the pulsed beam is not always constant. A comparison of the energy deposition curves that result from the irradiation of water with electron pulses from different vacuum diodes but the same charging voltage is presented. These results indicate again that the energy distribution of the electrons in the pulsed beam may vary between vacuum diodes. These differences would not be realized by using a totally absorbing metal calorimeter and Faraday Cup

  11. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    Science.gov (United States)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  12. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    International Nuclear Information System (INIS)

    Brown, R.A.

    1994-01-01

    Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures

  13. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    Science.gov (United States)

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  14. Overview of the data acquisition electronics system design for the SLAC Linear Collider Detector (SLD)

    International Nuclear Information System (INIS)

    Larsen, R.S.

    1985-09-01

    The SLD Detector will contain five major electronics subsystems: Vertex, Drift, Liquid Argon Calorimeter, Cerenkov Ring Imaging, and Warm Iron Calorimeter. To implement the approximately 170,000 channels of electronics, extensive miniaturization and heavy use of multiplexing techniques are required. Design criteria for each subsystem, overall system architecture, and the R and D program are described

  15. Application of Faraday cup array detector in measurement of electron-beam distribution homogeneity

    International Nuclear Information System (INIS)

    Xu Zhiguo; Wang Jinchuan; Xiao Guoqing; Guo Zhongyan; Wu Lijie; Mao Ruishi; Zhang Li

    2005-01-01

    It is described that a kind of Faraday cup array detector, which consists of Faraday cup, suppressor electrode insulation PCB board, Base etc. The homogeneity of electron-beam distribution is measured and the absorbed dose for the irradiated sample is calculated. The results above provide the important parameters for the irradiation experiment and the improvement for the quality of electron beam. (authors)

  16. Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martin–Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-03-09

    Detailed measurements of the electron performance of the ATLAS detector at the LHC are reported, using decays of the Z, W and J/psi particles. Data collected in 2010 at sqrt(s)=7 TeV are used, corresponding to an integrated luminosity of almost 40 pb^-1. The inter-alignment of the inner detector and the electromagnetic calorimeter, the determination of the electron energy scale and resolution, and the performance in terms of response uniformity and linearity are discussed. The electron identification, reconstruction and trigger efficiencies, as well as the charge misidentification probability, are also presented.

  17. Investigation of depth-of-interaction by pulse shape discrimination in multicrystal detectors read out by avalanche photodiodes

    International Nuclear Information System (INIS)

    Saoudi, A.; Pepin, C.M.; Dion, F.; Bentourkia, M.; Lecomte, R.; Dautet, H.

    1999-01-01

    The measurement of depth of interaction (DOI) within detectors is necessary to improve resolution uniformity across the FOV of small diameter PET scanners. DOI encoding by pulse shape discrimination (PSD) has definite advantages as it requires only one readout per pixel and it allows DOI measurement of photoelectric and Compton events. The PSD time characteristics of various scintillators were studied with avalanche photodiodes (APD) and the identification capability was tested in multi-crystal assemblies with up to four scintillators. In the PSD time spectrum of an APD-GSO/LSO/BGO/CsI(Tl) assembly, four distinct time peaks at 45, 26, 88 and 150 ns relative to a fast test pulse, having resolution of 10.6, 5.2, 20 and 27 ns, can be easily separated. Whereas the number and position of scintillators in the multi-crystal assemblies affect detector performance, the ability to identify crystals is not compromised. Compton events have a significant effect on PSD accuracy, suggesting that photopeak energy gating should be used for better crystal identification. However, more sophisticated PSD techniques using parametric time-energy histograms can also improve crystal identification in cases where PSD time or energy discrimination alone is inadequate. These results confirm the feasibility of PSD DOI encoding with APD-based detectors for PET

  18. An Improved Nuclear Recoil Calibration in the LUX Detector Using a Pulsed D-D Neutron Generator

    Science.gov (United States)

    Huang, Dongqing

    2017-01-01

    The LUX dark matter search experiment is a 370 kg (250 kg active mass) two-_phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The first absolute charge (Qy) and light (Ly) measurement performed in situ in the LUX detector with a D-D calibration technique for nuclear recoil spanning 0.7 to 74 keV and 1.1 to 74 keV respectively have been reported in. The D-D calibration has subsequently been further improved by incorporating pulsing technique, i.e. the D-D neutron production is concentrated within narrow pulses (20 us / 250 Hz) with the timing information recorded. This technique allows the suppression of accidental backgrounds in D-D neutron data and also provides increased sensitivity for the lower energy NR calibrations. I will report the improved NR absolute Qy and Ly measurements using the pulsed D-D calibration technique performed in situ in the LUX detector. Brown University, Large Underground Xenon(LUX) Collaboration.

  19. Investigating Pulsed Discharge Polarity Employing Solid-State Pulsed Power Electronics

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    condition plays an important role in maintaining the desired performance. Investigating the system parameters contributed to the generated pulses is an effective way in improving the system performance further ahead. One of these parameters is discharge polarity which has received less attention....... In this paper, effects of applied voltage polarity on plasma discharge have been investigated in different mediums at atmospheric pressure. The experiments have been conducted based on high voltage DC power supply and high voltage pulse generator for point-to-point and point-to-plane geometries. Furthermore......, the influence of electric field distribution is analyzed using Finite Element simulations for the employed geometries and mediums. The experimental and simulation results have verified the important role of the applied voltage polarity, employed geometry and medium of the system on plasma generation....

  20. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  1. Ultrafast electron field emission from gold resonant antennas studied by two terahertz pulse experiments

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew C.

    2015-01-01

    Summary form only given. Ultrafast electron field emission from gold resonant antennas induced by strong terahertz (THz) transient is investigated using two THz pulse experiments. It is shown that UV emission from nitrogen plasma generated by liberated electrons is a good indication of the local...

  2. Instantaneous nonvertical electronic transitions with shaped femtosecond laser pulses: Is it possible?

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2003-01-01

    In molecular electronic transitions, a vertical transition can be induced by an ultrashort laser pulse. That is, a replica of the initial nuclear state-times the transition dipole moment of the electronic transition-can be created instantaneously (on the time scale of nuclear motion) in the excited...

  3. Dynamical fragmentation and very high speed projection of micro-particulates with a pulsed electrons generator

    International Nuclear Information System (INIS)

    Cassany, B.; Courchinoux, R.; Bertron, I.; Malaise, F.; Hebert, D.

    2003-01-01

    This paper shows how to use a pulsed electrons beam to simulate the dynamical fragmentation of copper sheets and to eject diamond, tantalum and tungsten micro-particulates at very high speed (∼1000 m/s). These experiments were performed with the electrons generator CESAR of CEA/CESTA (France). (J.S.)

  4. Method of summation of amplitudes of coinciding pulses from Ge(Li) detectors used to study cascades of gamma-transitions in (n,#betta#) reaction

    International Nuclear Information System (INIS)

    Bogdzel', A.A.; Vasil'eva, Eh.V.; Elizarov, O.I.

    1982-01-01

    Main performanes and peculiarities of spectrometer based on the coincidence pulse amplitude total-count method and containing two Ge(La) detectors with transmission neutron spectrometer - IBR-30 pulse reactor are considered. It is shown on the 35 Cl(n, #betta#) reaction that the method of summalion of amplitudes of coinciding pulses from the Ge(Li) detector can be used to study the cascades of two #betta#-transitions with a total energy similar to the neutron binding energy. The shape of the response function of this spectrometer was studied versus the energies of #betta#-transition cascades

  5. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  6. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    Directory of Open Access Journals (Sweden)

    J. G. H. Franssen

    2017-07-01

    Full Text Available We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps but hot (∼104 K electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K and ultrafast (∼25 ps electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales.

  7. 150 keV intense electron beam accelerator system with high repeated pulse

    International Nuclear Information System (INIS)

    Qi, Zhang; Tixing, Li; Hongfang, Tang; Nenggiao, Xia; Zhigin, Wang; Baohong, Zheng

    1993-01-01

    A 150 keV electron beam accelerator system has been developed for wide application of high power particle beams. The new wire-ion-plasma electron gun has been adopted. The parameters are as follows: Output energy - 130-150 keV; Electron beam density - 250 mA/cm 2 ; Pulse duration - 1 μs; Pulse rate 100 pps; Section of electron beam - 5 x 50 cm 2 . This equipment can be used to study repeated pulse CO 2 laser, to be a preionizer of high power discharge excimer laser and to perform radiation curing process, and so on. The first part contains principle and design consideration. Next is a description of experimental arrangement. The remainder is devoted to describing experimental results and its application

  8. Ecton processes in the generation of pulsed runaway electron beams in a gas discharge

    Science.gov (United States)

    Mesyats, G. A.

    2017-09-01

    As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.

  9. Laser wakefield electron acceleration. A novel approach employing supersonic microjets and few-cycle laser pulses

    International Nuclear Information System (INIS)

    Schmid, Karl

    2011-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams. (orig.)

  10. One-electron propagation in Fermi, Pasta, Ulam disordered chains with Gaussian acoustic pulse pumping

    Science.gov (United States)

    Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.

    In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.

  11. Trigger electronics of the new Fluorescence Detectors of the Telescope Array Experiment

    International Nuclear Information System (INIS)

    Tameda, Yuichiro; Taketa, Akimichi; Smith, Jeremy D.; Tanaka, Manobu; Fukushima, Masaki; Jui, Charles C.H.; Kadota, Ken'ichi; Kakimoto, Fumio; Matsuda, Takeshi; Matthews, John N.; Ogio, Shoichi; Sagawa, Hiroyuki; Sakurai, Nobuyuki; Shibata, Tatsunobu; Takeda, Masahiro; Thomas, Stanton B.; Tokuno, Hisao; Tsunesada, Yoshiki

    2009-01-01

    The Telescope Array Project is an experiment designed to observe Ultra High Energy Cosmic Rays via a 'hybrid' detection technique utilizing both fluorescence light detectors (FDs) and scintillator surface particle detectors (SDs). We have installed three FD stations and 507 SDs in the Utah desert, and initiated observations from March 2008. The northern FD station reuses 14 telescopes from the High Resolution Fly's Eye, HiRes-I station. Each of the two southern FD stations contains 12 new telescopes utilizing new FADC electronics. Each telescope is instrumented with a camera composed of 256 PMTs. Since the de