WorldWideScience

Sample records for electronic property modifications

  1. Electronic properties of prismatic modifications of single-wall carbon nanotubes

    Science.gov (United States)

    Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.

    2018-01-01

    The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.

  2. Tuning electronic and magnetic properties of GaN nanosheets by surface modifications and nanosheet thickness.

    Science.gov (United States)

    Xiao, Meixia; Yao, Tingzhen; Ao, Zhimin; Wei, Peng; Wang, Danghui; Song, Haiyang

    2015-04-14

    Density-functional theory calculations are performed to investigate the effects of surface modifications and nanosheet thickness on the electronic and magnetic properties of gallium nitride (GaN) nanosheets (NSs). Unlike the bare GaN NSs terminating with polar surfaces, the systems with hydrogenated Ga (H-GaN), fluorinated Ga (F-GaN), and chlorinated Ga (Cl-GaN) preserve their initial wurtzite structures and exhibit ferromagnetic states. The abovementioned three different decorations on Ga atoms are energetically more favorable for thicker GaN NSs. Moreover, as the thickness increases, H-GaN and F-GaN NSs undergo semiconductor to metal and half-metal to metal transition, respectively, while Cl-GaN NSs remain completely metallic. The predicted diverse and tunable electronic and magnetic properties highlight the potential of GaN NSs for novel electronic and spintronic nanodevices.

  3. Electronic excitation induced modifications of optical and morphological properties of PCBM thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, T. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Singhal, R., E-mail: rsinghal.phy@mnit.ac.in [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Vishnoi, R. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Department of Physics, Vardhman (P.G.) College, Bijnor 246701, U.P. (India); Sharma, P. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Patra, A.; Chand, S. [National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Lakshmi, G.B.V.S. [Inter University Accelerator Centre, Post Box No. 10502, New Delhi 110067 (India); Biswas, S.K. [Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India)

    2016-07-15

    Highlights: • Spin casted PCBM thin films are irradiated by 90 MeV Ni{sup 7+} ion beam. • The decrease in band gap was found after irradiation. • There is a decomposition of molecular bond due to ion irradiation. • Roughness is also found to be dependent on incident ion fluence. - Abstract: Phenyl C{sub 61} butyric acid methyl ester (PCBM) is a fullerene derivative and most commonly used in organic photovoltaic devices both as electron acceptor and transporting material due to high electron mobility. PCBM is easy to spin caste on some substrate as it is soluble in chlorobenzene. In this study, the spin coated thin films of PCBM (on two different substrate, glass and double sided silicon) were irradiated using 90 MeV Ni{sup 7+} swift heavy ion beam at low fluences ranging from 1 × 10{sup 9} to 1 × 10{sup 11} ions/cm{sup 2} to study the effect of ion beam irradiation. The pristine and irradiated PCBM thin films were characterized by UV–visible absorption spectroscopy and fourier transform infrared spectroscopy (FTIR) to investigate the optical properties before and after irradiation. These thin films were further analyzed using atomic force microscopy (AFM) to investigate the morphological modifications which are induced by energetic ions. The variation in optical band gap after irradiation was measured using Tauc’s relation from UV–visible absorption spectra. A considerable change was observed with increasing fluence in optical band gap of irradiated thin films of PCBM with respect to the pristine film. The decrease in FTIR band intensity of C{sub 60} cage reveals the polymerization reaction due to high energy ion impact. The roughness is also found to be dependent on incident fluences. This study throws light for the application of PCBM in organic solar cells in form of ion irradiation induced nanowires of PCBM for efficient charge carrier transportation in active layer.

  4. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: asb_barc@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: dkaswal@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)

    2017-03-01

    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  5. Tunable Electronic and Topological Properties of Germanene by Functional Group Modification

    Directory of Open Access Journals (Sweden)

    Ceng-Ceng Ren

    2018-03-01

    Full Text Available Electronic and topological properties of two-dimensional germanene modified by functional group X (X = H, F, OH, CH3 at full coverage are studied with first-principles calculation. Without considering the effect of spin-orbit coupling (SOC, all functionalized configurations become semiconductors, removing the Dirac cone at K point in pristine germanene. We also find that their band gaps can be especially well tuned by an external strain. When the SOC is switched on, GeX (X = H, CH3 is a normal insulator and strain leads to a phase transition to a topological insulator (TI phase. However, GeX (X = F, OH becomes a TI with a large gap of 0.19 eV for X = F and 0.24 eV for X = OH, even without external strains. More interestingly, when all these functionalized monolayers form a bilayer structure, semiconductor-metal states are observed. All these results suggest a possible route of modulating the electronic properties of germanene and promote applications in nanoelectronics.

  6. 8 MeV electron beam induced modifications in the thermal, structural and electrical properties of nanophase CeO2 for potential electronics applications

    Science.gov (United States)

    Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas

    2018-06-01

    The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.

  7. Modification of the electronic properties of As2Se3 films by erbium using ion-plasma sputtering method

    International Nuclear Information System (INIS)

    Prikhodko, O.Yu.; Sarsembinov, Sh.Sh.; Ryaguzov, A.P.; Maksimova, S.Ya.; Chuprynin, A.S.

    2003-01-01

    At present one of the vital problems of semiconductor materials studies is production of new light emitting materials for fiber optics, namely for light-emitting diode, emitting at room temperature in the range of minimum absorption of quartz optic fiber. It is well-known that heterostructures based on amorphous semiconductors, containing large concentrations of rare-earth elements have such properties. The method of ion-plasma co-sputtering (IPCM) of the original and doping materials allows us to obtain amorphous semiconductor films with large impurity concentration. This method was used to produce amorphous films of chalcogenide vitreous semiconductors (ChVS), doped with impurities of different chemical nature. But the capability of IPCM for ChVS doping with rare-earth elements has not been studied well yet. Therefore it is interesting to obtain amorphous films of arsenic selenide doped with erbium using IPCM and study its electronic properties. The films were produced using high frequency (13.56 MHz) ion-plasma co-sputtering of combined target of vitreous As 2 Se 3 and a metal. The sputtering of the target was conducted in argon atmosphere. Er concentration in the films varied between 0 and 4 atomic percent. Amorphism of the structure of the obtained films was monitored using X-ray diffraction methods. Electrical and optical properties of Er-doped As 2 Se 3 films and the charge carrier transportation processes were studied. It was determined that doped films significantly differ from the pure ones in the values of main electronic parameters: conductivity, energy activation of conductivity, optical band-gap, drift mobility of electrons and holes and mobility activation energy. Note that common rules of change of electronic parameters of As 2 Se 3 films affected by Er doping agree with the rules, established during modification of As 2 Se 3 films with dopes of transition metals with incomplete 3d-shell (Fe, Ni). Analysis of the obtained results showed that doing

  8. Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties.

    Science.gov (United States)

    Linko, Veikko; Leppiniemi, Jenni; Paasonen, Seppo-Tapio; Hytönen, Vesa P; Toppari, J Jussi

    2011-07-08

    We present a novel, defined-size, small and rigid DNA template, a so-called B-A-B complex, based on DNA triple crossover motifs (TX tiles), which can be utilized in molecular scale patterning for nanoelectronics, plasmonics and sensing applications. The feasibility of the designed construct is demonstrated by functionalizing the TX tiles with one biotin-triethylene glycol (TEG) and efficiently decorating them with streptavidin, and furthermore by positioning and anchoring single thiol-modified B-A-B complexes to certain locations on a chip via dielectrophoretic trapping. Finally, we characterize the conductance properties of the non-functionalized construct, first by measuring DC conductivity and second by utilizing AC impedance spectroscopy in order to describe the conductivity mechanism of a single B-A-B complex using a detailed equivalent circuit model. This analysis also reveals further information about the conductivity of DNA structures in general.

  9. Semiconductor interfaces of polycrystalline CdTe thin-film solar cells. Characterization and modification of electronic properties

    International Nuclear Information System (INIS)

    Fritsche, J.

    2003-01-01

    In this thesis for the first time the electronic properties of the semiconductor interfaces in polycrystalline CdTe thin-film solar cells, as well as the morphological and electronic properties of the single semiconductor surfaces were systematically characterized by surface-sensitive measuring methods. The morphological surface properties were analyzed by scanning force microscopy. As substrate materials with SnO 2 /ITO covered glass was applied, where the CdS and CdTe layers were deposited. Furthermore the electronic and morphological material properties of differently treated SnO 2 surfaces were characterized. Beside the studies with scanning force microscopy sputtering depth profiles and X-ray photoelectron spectroscopy were measured

  10. Modifications in the structural and optical properties of nanocrystalline CaWO4 induced by 8 MeV electron beam irradiation

    International Nuclear Information System (INIS)

    Aloysius Sabu, N.; Priyanka, K.P.; Ganesh, Sanjeev; Varghese, Thomas

    2016-01-01

    In this article we report the post irradiation effects in the structural and optical properties of nanocrystalline calcium tungstate synthesized by chemical precipitation and heat treatment. The samples were subjected to different doses of high-energy electron beam obtained from an 8 MeV Microton. Investigations using X-ray diffraction, scanning electron microscopy and Raman spectra confirmed changes in particle size and structural parameters. However, no phase change was detected for irradiated samples. The stretching/compressive strain caused by high energy electrons is responsible for the slight shift in the XRD peaks of irradiated samples. Modifications in the morphology of different samples were confirmed by scanning electron microscopy. Ultraviolet-visible absorption studies showed variations in the optical band gap (4.08–4.25 eV) upon electron-beam irradiation. New photoluminescence behaviour in electron beam irradiated nanocrystalline CaWO 4 was evidenced. A blue shift of the PL peak with increase in intensity was observed in all the irradiated samples. - Highlights: • Calcium tungstate nanocrystals are synthesized by simple chemical precipitation method. • Electron beam induced modifications in the structural and optical properties are investigated. • New photoluminescence behaviour is evidenced due to beam irradiation.

  11. Laser induced local structural and property modifications in semiconductors for electronic and photonic superstructures - Silicon carbide to graphene conversion

    Science.gov (United States)

    Yue, Naili

    Graphene is a single atomic layer two-dimensional (2D) hexagonal crystal of carbon atoms with sp2-bonding. Because of its various special or unique properties, graphene has attracted huge attention and considerable interest in recent years. This PhD research work focuses on the development of a novel approach to fabricating graphene micro- and nano-structures using a 532 nm Nd:YAG laser, a technique based on local conversion of 3C-SiC thin film into graphene. Different from other reported laser-induced graphene on single crystalline 4H- or 6H- SiC, this study focus on 3C-SiC polycrystal film grown using MBE. Because the SiC thin film is grown on silicon wafer, this approach may potentially lead to various new technologies that are compatible with those of Si microelectronics for fabricating graphene-based electronic, optoelectronic, and photonic devices. The growth conditions for depositing 3C-SiC using MBE on Si wafers with three orientations, (100), (110), and (111), were evaluated and explored. The surface morphology and crystalline structure of 3C-SiC epilayer were investigated with SEM, AFM, XRD, μ-Raman, and TEM. The laser modification process to convert 3C-SiC into graphene layers has been developed and optimized by studying the quality dependence of the graphene layers on incident power, irradiation time, and surface morphology of the SiC film. The laser and power density used in this study which focused on thin film SiC was compared with those used in other related research works which focused on bulk SiC. The laser-induced graphene was characterized with μ-Raman, SEM/EDS, TEM, AFM, and, I-V curve tracer. Selective deposition of 3C-SiC thin film on patterned Si substrate with SiO2 as deposition mask has been demonstrated, which may allow the realization of graphene nanostructures (e.g., dots and ribbons) smaller than the diffraction limit spot size of the laser beam, down to the order of 100 nm. The electrical conductance of directly written graphene

  12. pH-Induced Surface Modification of Atomically Precise Silver Nanoclusters: An Approach for Tunable Optical and Electronic Properties

    KAUST Repository

    AbdulHalim, Lina G.

    2016-10-24

    Noble metal nanoclusters (NCs) play a pivotal role in bridging the gap between molecules and quantum dots. Fundamental understanding of the evolution of the structural, optical, and electronic properties of these materials in various environments is of paramount importance for many applications. Using state-of-the-art spectroscopy, we provide the first decisive experimental evidence that the structural, electronic, and optical properties of Ag-44(MNBA)(30) NCs can now be tailored by controlling the chemical environment. Infrared and photoelectron spectroscopies clearly indicate that there is a dimerization between two adjacent ligands capping the NCs that takes place upon lowering the pH from 13 to 7.

  13. Properties and modification of two-dimensional electronic states on noble metals; Eigenschaften und Modifikation zweidimensionaler Elektronenzustaende auf Edelmetallen

    Energy Technology Data Exchange (ETDEWEB)

    Forster, F.

    2007-07-06

    In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It chiefly focuses on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N=7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the

  14. Role of oxygen adsorption in modification of optical and surface electronic properties of MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kumar, Sanjeev; Mohanty, Tanuja

    2018-04-01

    In this work, the effect of surface oxidation of molybdenum disulfide (MoS2) nanosheets induced by hydrogen peroxide (H2O2) on the work function and bandgap of MoS2 has been investigated for tuning its optical and electronic properties. Transmission electron microscopy studies reveal the existence of varying morphologies of few layers of MoS2 as well as quantum dots due to the different absorbing effects of two mixed solvents on MoS2. The X-ray diffraction, electron paramagnetic resonance, and Raman studies indicate the presence of physical as well as chemical adsorption of oxygen atoms in MoS2. The photoluminescence spectra show the tuning of bandgap arising from the passivation of trapping centers leading to radiative recombination of excitons. The value of work function obtained from scanning Kelvin probe microscopy of MoS2 in mixed solvents of H2O2 and N-methyl-2-pyrrolidone increases with an increase in the concentration of H2O2. A linear relationship could be established between H2O2 content in mixed solvent and measured values of work function. This work gives the alternative route towards the commercial use of defect engineered transition metal dichalcogenide materials in diverse fields.

  15. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO4 by sulfur surface modification

    International Nuclear Information System (INIS)

    Xu, Guigui; Zhong, Kehua; Zhang, Jian-Min; Huang, Zhigao

    2014-01-01

    We present a first-principles calculation for the electronic and Li-ion diffusion properties of the LiFePO 4 (010) surface modified by sulfur. The calculated formation energy indicates that the sulfur adsorption on the (010) surface of the LiFePO 4 is energetically favored. Sulfur is found to form Fe-S bond with iron. A much narrower band gap (0.67 eV) of the sulfur surface-modified LiFePO 4 [S-LiFePO 4 (010)] is obtained, indicating the better electronic conductive properties. By the nudged elastic band method, our calculations show that the activation energy of Li ions diffusion along the one-dimensional channel on the surface can be effectively reduced by sulfur surface modification. In addition, the surface diffusion coefficient of S-LiFePO 4 (010) is estimated to be about 10 −11 (cm 2 /s) at room temperature, which implies that sulfur modification will give rise to a higher Li ion carrier mobility and enhanced electrochemical performance

  16. Tuning the electronic properties by width and length modifications of narrow-diameter carbon nanotubes for nanomedicine

    KAUST Repository

    Poater, Albert

    2012-10-01

    The distinctive characteristics of nanoparticles, resulting from properties that arise at the nano-scale, underlie their potential applications in the biomedical sector. However, the very same characteristics also result in widespread concerns about the potentially toxic effects of nanoparticles. Given the large number of nanoparticles that are being developed for possible biomedical use, there is a need to develop rapid screening methods based on in silico methods. This study illustrates the application of conceptual Density Functional Theory (DFT) to some carbon nanotubes (CNTs) optimized by means of static DFT calculations. The computational efforts are focused on the geometry of a family of packed narrow-diameter carbon nanotubes (CNTs) formed by units from four to twelve carbons evaluating the strength of the C-C bonds by means of Mayer Bond Orders (MBO). Thus, width and length are geometrical features that might be used to tune the electronic properties of the CNTs. At infinite length, partial semi-conductor characteristics are expected. © 2012 Bentham Science Publishers.

  17. Tuning the electronic properties by width and length modifications of narrow-diameter carbon nanotubes for nanomedicine

    KAUST Repository

    Poater, Albert; Saliner, Ana Gallegos; Cavallo, Luigi; Poch, Manel P.; Solà , Miquel; Worth, Andrew P.

    2012-01-01

    The distinctive characteristics of nanoparticles, resulting from properties that arise at the nano-scale, underlie their potential applications in the biomedical sector. However, the very same characteristics also result in widespread concerns about the potentially toxic effects of nanoparticles. Given the large number of nanoparticles that are being developed for possible biomedical use, there is a need to develop rapid screening methods based on in silico methods. This study illustrates the application of conceptual Density Functional Theory (DFT) to some carbon nanotubes (CNTs) optimized by means of static DFT calculations. The computational efforts are focused on the geometry of a family of packed narrow-diameter carbon nanotubes (CNTs) formed by units from four to twelve carbons evaluating the strength of the C-C bonds by means of Mayer Bond Orders (MBO). Thus, width and length are geometrical features that might be used to tune the electronic properties of the CNTs. At infinite length, partial semi-conductor characteristics are expected. © 2012 Bentham Science Publishers.

  18. In medium modification of nucleon electromagnetic properties

    International Nuclear Information System (INIS)

    Khanna, F.; Rakhimov, A.; Yakhsiev, U.

    1997-01-01

    Since nucleons are composite objects, their internal structure is expected to be changed by nuclear environment. A Skyrme like Lagrangian is proposed to consider such effects, namely the modification of electromagnetic (EM) properties of the nucleon. The static properties and EM form factors were obtained. It was shown that the charge radius of the nucleon increased in medium and the mass and axial coupling constant are reduced. The enhancement of magnetic moment of proton is smaller than that obtained in non-topological soliton model.Obtained results may be useful in electron nucleus scattering analysis.(A.A.D.)

  19. Effects of Rice Husk Modification with Liquid Natural Rubber and Exposure to Electron Beam Radiation on the Mechanical Properties of NR/ HDPE/ Rice Husk Composites

    International Nuclear Information System (INIS)

    Lane, C.E.; Ishak Ahmad; Ibrahim Abdullah; Dahlan Mohd

    2011-01-01

    Rice husk (RH) powder is a natural fibre capable of reinforcing natural rubber thermoplastic (TPNR) NR/ HDPE composites on specific modification of the particle surface. In this study the modification of RH powder involved pre-treatment with 5 % sodium hydroxide (NaOH) solution, soaking in LNR solution and exposure of LNR coated RH to electron beam (EB) irradiation. Preparation of NR/ HDPE/ RH composites was via melt-mixing in an internal mixer at predetermined conditions. Morphology study of the composites using scanning electron microscope (SEM) showed a homogeneous distribution of modified RH particles and particle-matrix interaction in the composite. Modified RH filled composites exhibited a significant change in mechanical properties. The maximum stress and impact strength were 6.7 MPa and 13.2 kJ/ m 2 , respectively at 20 kGy radiation, while the tensile modulus was 79 MPa at 30 kGy dose. The interfacial RH-TPNR interaction for the LNR-EB treated RH particles had improved in the EB dosage range of 20-30 kGy. However, over exposure to radiation caused degradation of rubber coat and interaction between particles to increase. Agglomeration of filler particles would occur and caused inhomogeneous distribution of filler in the composite. (author)

  20. Electron beam induced modification of grafted polyamides

    International Nuclear Information System (INIS)

    Timus, D.M.; Brasoveanu, M.M.; Bradley, D.A.; Popov, A.M.

    1998-01-01

    It is well known that irradiation, when applied on its own or in combination with other physical and chemical treatments, can manifest in radiation damage to materials. Radiation processing technology focuses upon producing favourable modification of materials through use of relatively high dose and dose rates. Current interest is in modifying the thermal and electrical properties of textured polymers in an effort to improve safety and wear comfort of clothing. No less important is the production of textiles which are safe to use, both in homes and offices. Present investigations provide additional data in support of findings which show that polyamides, a particular class of textured polymer, are amenable to radiation processing. Accelerated electron beam irradiation of sheets of polyamide fibre results in induced grafting of acrylic and methacrylic acids. The degree of grafting is critically dependent upon irradiation dose and the extent of monomers dilution. Of particular importance is the high correlation which is found between degree of grafting and a decrease in the softening rate of the modified polyamide. A systematic modification of electrical conductivity is also observed. (author)

  1. EG and G electron linac modifications

    International Nuclear Information System (INIS)

    Norris, N.J.; Detch, J.L.; Kocimski, S.M.; Sawyer, C.R.; Hudson, C.L.

    1986-01-01

    The electron linear accelerator at EG and G/EM, Santa Barbara Operations, installed in 1963, has been subsequently modified to produce short, intense beam pulses used in the test, calibration and development of many types of fast radiation detectors and systems. The first practical use of the single RF pulse operation, now used in many accelerators, was demonstrated on this accelerator in the late 60s. A major three-year modification, to replace obsolete equipment and bring all the subsystems up to the current state of the art, has increased the beam intensity, stability and reliability. These modifications are discussed

  2. EG and G electron linac modifications

    International Nuclear Information System (INIS)

    Norris, N.J.; Detch, J.L.; Kocimski, S.M.; Sawyer, C.R.; Hudson, C.L.

    1986-01-01

    A three-year modification of the EG and G electron linac has been performed to replace obsolete equipment and bring all subsystems up to the current state of the art. Components and subsystems were designed, constructed, and tested off-line to minimize interruption of experiments. The configuration of the modified linac is shown schematically, and performance characteristics are give. Each subsystem is described, including: the electron gun; solenoid focusing system; subharmonic bunchers; accelerating system; RF system; klystron modulators and power supplies; control system; beam handling system; vacuum system; and beam current monitors. 7 refs., 4 figs., 2 tabs

  3. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman

    2012-08-28

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical properties. We consider the combination of two distinct donors, where a central five-membered ring is fused on both sides by either a thiophene or a benzene ring, with 12 different acceptors linked to the donor either directly or through thienyl linkages. The interplay between the electron richness/deficiency of the subunits as well as the evolution of the frontier electronic levels of the isolated donors/acceptors plays a significant role in determining the electronic and optical properties of the copolymers. © 2012 American Chemical Society.

  4. Wettability Modification of Nanomaterials by Low-Energy Electron Flux

    Directory of Open Access Journals (Sweden)

    Torchinsky I

    2009-01-01

    Full Text Available Abstract Controllable modification of surface free energy and related properties (wettability, hygroscopicity, agglomeration, etc. of powders allows both understanding of fine physical mechanism acting on nanoparticle surfaces and improvement of their key characteristics in a number of nanotechnology applications. In this work, we report on the method we developed for electron-induced surface energy and modification of basic, related properties of powders of quite different physical origins such as diamond and ZnO. The applied technique has afforded gradual tuning of the surface free energy, resulting in a wide range of wettability modulation. In ZnO nanomaterial, the wettability has been strongly modified, while for the diamond particles identical electron treatment leads to a weak variation of the same property. Detailed investigation into electron-modified wettability properties has been performed by the use of capillary rise method using a few probing liquids. Basic thermodynamic approaches have been applied to calculations of components of solid–liquid interaction energy. We show that defect-free, low-energy electron treatment technique strongly varies elementary interface interactions and may be used for the development of new technology in the field of nanomaterials.

  5. Electron beam modification of vanadium dioxide oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Maksim; Velichko, Andrey; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander [Petrozavodsk State University, Petrozavodsk (Russian Federation)

    2017-03-15

    The paper presents the results of a study of electron-beam modification (EBM) of VO{sub 2}-switch I-V curve threshold parameters and the self-oscillation frequency of a circuit containing such a switching device. EBM in vacuum is reversible and the parameters are restored when exposed to air at pressure of 150 Pa. At EBM with a dose of 3 C cm{sup -2}, the voltages of switching-on (V{sub th}) and off (V{sub h}), as well as the OFF-state resistance R{sub off}, decrease down to 50% of the initial values, and the oscillation frequency increases by 30% at a dose of 0.7 C cm{sup -2}. Features of physics of EBM of an oscillator are outlined considering the contribution of the metal and semiconductor phases of the switching channel. Controlled modification allows EBM forming of switches with preset parameters. Also, it might be used in artificial oscillatory neural networks for pattern recognition based on frequency shift keying. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Electronic transport properties

    International Nuclear Information System (INIS)

    Young, W.H.

    1985-01-01

    The theory of the electron transport properties of liquid alkali metals is described. Conductivity coefficients, Boltzmann theory, Ziman theory, alkali form factors, Ziman theory and alkalis, Faber-Ziman alloy theory, Faber-Ziman theory and alkali-alkali methods, status of Ziman theory, and other transport properties, are all discussed. (UK)

  7. Modification of Structure and Tribological Properties of the Surface Layer of Metal-Ceramic Composite under Electron Irradiation in the Plasmas of Inert Gases

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.

    2018-01-01

    Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.

  8. Modification of the microstructure and electronic properties of rutile TiO_2 thin films with 79 MeV Br ion irradiation

    International Nuclear Information System (INIS)

    Rath, Haripriya; Dash, P.; Singh, U.P.; Avasthi, D.K.; Kanjilal, D.; Mishra, N.C.

    2015-01-01

    Modifications induced by 79 MeV Br ions in rutile titanium dioxide thin films, synthesized by dc magnetron sputtering are presented. Irradiations did not induce any new XRD peak corresponding to any other phase. The area and the width of the XRD peaks were considerably affected by irradiation, and peaks shifted to lower angles. But the samples retained their crystallinity at the highest fluence (1 × 10"1"3 ions cm"−"2) of irradiation even though the electronic energy loss of 79 MeV Br ions far exceeds the reported threshold value for amorphization of rutile TiO_2. Fitting of the fluence dependence of the XRD peak area to Poisson equation yielded the radius of ion tracks as 2.4 nm. Ion track radius obtained from the simulation based on the thermal spike model matches closely with that obtained from the fluence dependence of the area under XRD peaks. Williamson–Hall analysis of the XRD spectra indicated broadening and shifting of the peaks are a consequence of irradiation induced defect accumulation leading to microstrains, as was also indicated by Raman and UV–Visible absorption study.

  9. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations

    International Nuclear Information System (INIS)

    D'Orleans, C.

    2003-07-01

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co + ions have been implanted at 160 keV at fluences of 2.10 16 , 5.10 16 and 10 17 at/cm 2 , and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10 16 Co + /cm 2 at 77 K, to 9.7 nm at 10 17 Co + /cm 2 at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  10. Electron beam induced modification of poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Vasiljeva, I.V.; Mjakin, S.V.; Makarov, A.V.; Krasovsky, A.N.; Varlamov, A.V.

    2006-01-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  11. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  12. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  13. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman; Risko, Chad; Norton, Joseph E.; Bré das, Jean-Luc

    2012-01-01

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical

  14. Electron beam modification and crosslinking: Influence of nitrile and carboxyl contents and level of unsaturation on structure and properties of nitrile rubber

    International Nuclear Information System (INIS)

    Vijayabaskar, V.; Tikku, V.K.; Bhowmick, Anil K.

    2006-01-01

    The structural changes of nitrile rubber with varying nitrile contents, hydrogenated nitrile rubber and carboxylated nitrile rubber in the presence and absence of a polyfunctional monomer, namely trimethylolpropane triacrylate, at different doses of electron beam irradiation, were investigated with the help of FTIR spectroscopy (in the attenuated total reflectance mode), dynamic mechanical thermal analysis and sol-gel analysis. Solid-state NMR with gated high power decoupling technique was used to understand the mechanism of crosslinking of the irradiated samples. The allylic radicals generated in the butadiene chains react to form intermolecular crosslinkages. There was a significant decrease in the concentration of olefinic groups for the nitrile rubber on irradiation. This was also affirmed by the increase in the carbon resonances due to C-C linkages from the NMR technique, indicating more crosslinkages. The spectroscopic crosslink densities were determined and the results were compared with the swelling measurements. The variation in the crosslink clustering for rubbers with different acrylonitrile contents was explained using the NMR technique. The increase in crosslinking was also revealed by the increase in the percent gel content and dynamic storage moduli with radiation doses. The lifetime of spurs formed and the critical dose, an important criterion for overlapping of spurs, were determined for both the grafted and the ungrafted nitrile rubbers of different grades and compared using a mathematical model. The ratio of scissioning to crosslinking for nitrile rubber was determined using Charlesby-Pinner equation. The mechanical properties had also been studied for both the modified and the unmodified systems

  15. Modifications of poly (vinilydene fluoride) under electronic excitations produced by charged particles (heavy ions and electrons)

    International Nuclear Information System (INIS)

    Fina, A.

    1990-04-01

    Some of the physico-chemical properties of organic solids like conductivity or permeation can be improved by irradiation. The aim of this work is to characterize modifications induced in poly (vinylidene fluoride) films (PVDF) by charged particles (ions and electrons), with electronic stopping power, for doses ranging from zero to twenty G-Grays. Influence of dose, density of electronic excitations, and flux (in particles per square centimeter), and the nature of defects induced by the beam, were studied with two methods: X-ray Photoelectron Spectroscopy (or XPS) for surface analysis, and electron Spin Resonance (or ESR) to probe the bulk of the film. Three ranges of doses are revealed in view of experimental results. At lower doses, PVDF undergoes deshydrofluorination induced by desorption; it is a low modifications regime. For intermediate range doses, conjugated carbon backbones of polyene compounds are produced. At higher doses, intermolecular interactions between the resulting fragments give a crosslinked network. For the upper limit of doses used, bond breaking results in a non reversible degradation of PVDF. In this last situation, direct atomic displacement of target atoms, is not negligible [fr

  16. Electronic properties of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmany, H [ed.; Vienna Univ. (Austria). Inst. fuer Festkoerperphysik; Fink, J [ed.; Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik; Mehring, M [ed.; Stuttgart Univ. (Germany). Physikalisches Teilinstitut 2; Roth, S [ed.; Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C[sub 60] itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  17. Electronic properties of fullerenes

    International Nuclear Information System (INIS)

    Kuzmany, H.

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C 60 itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  18. Radiation modification of the properties of polypropylene

    Indian Academy of Sciences (India)

    ... were used to investigate some selected properties such as thermal properties, ... The properties of original and irradiated PP/15wt% CMC blend were investigated. ... 5, 10 and 20 kGy were subjected to biodegradation in soil burial tests for 6 ...

  19. Radiation modification of the properties of polypropylene ...

    Indian Academy of Sciences (India)

    Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Egypt. 2Radiation ... tions such as radiation sterilized medical and pharmaceutical ... extensively studied to extend the shelf life of food prod- ucts. ..... ond step is in the range of 210–305 ... effect of radiation on the thermal properties of PP/15wt%.

  20. Modifications of optical properties with ceramic coatings

    International Nuclear Information System (INIS)

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  1. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Tanigaki, Katsumi; Nouchi, Ryo; Yin Lichang

    2010-01-01

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  2. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaoyan; Tanigaki, Katsumi [Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Nouchi, Ryo [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8578 (Japan); Yin Lichang, E-mail: nouchi@sspns.phys.tohoku.ac.jp [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2010-11-26

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  3. Electronic properties of graphite

    International Nuclear Information System (INIS)

    Schneider, J.

    2010-10-01

    In this thesis, low-temperature magneto-transport (T ∼ 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magneto-transport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the SWM-model. The SWM-model is confirmed by detailed band structure calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B > 2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is constant. The second part of the thesis deals with high field magneto-transport of natural graphite in the magnetic field range 0 ≤ B ≤ 28 T. Both spin splitting of magneto-transport features in tilted field configuration and the onset of the charge density wave (CDW) phase for different temperatures with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman effect, the SWM calculations including the Fermi energy movement require a g-factor of g* equal to 2.5 ± 0.1 to reproduce the spin spilt features. The measurements of the charge density wave state confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of the magneto-transport measurements at low field. (author)

  4. Electron emission induced modifications in amorphous tetrahedral diamondlike carbon

    International Nuclear Information System (INIS)

    Mercer, T.W.; DiNardo, N.J.; Rothman, J.B.; Siegal, M.P.; Friedmann, T.A.; Martinez-Miranda, L.J.

    1998-01-01

    The cold-cathode electron emission properties of amorphous tetrahedral diamondlike carbon are promising for flat-panel display and vacuum microelectronics technologies. The onset of electron emission is, typically, preceded by open-quotes conditioningclose quotes where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, we combined the spatially localized field and current of a scanning tunneling microscope tip with high-spatial-resolution characterization. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially resolved electron-energy-loss spectroscopy indicates that the predominant bonding configuration changes from predominantly fourfold to threefold coordination. copyright 1998 American Institute of Physics

  5. Nitrogen induced modifications of MANOS memory properties

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaou, N., E-mail: n.nikolaou@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 10 Athens (Greece); Department of Physics, University of Patras, 265 04 Patras (Greece); Ioannou-Sougleridis, V.; Dimitrakis, P.; Normand, P. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 10 Athens (Greece); Skarlatos, D. [Department of Physics, University of Patras, 265 04 Patras (Greece); Giannakopoulos, K. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 10 Athens (Greece); Ladas, S. [Department of Chemical Engineering, University of Patras, 265 04 Patras (Greece); Pecassou, B.; BenAssayag, G. [CEMES-CNRS, Toulouse (France); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, Ravila 14c, EE-50411 Tartu (Estonia); Niinistö, J.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-12-15

    In this work we examine the structural and electrical properties including the memory performance of Al{sub 2}O{sub 3}/Si{sub 3}N{sub 4}/SiO{sub 2} dielectric stacks implanted with low-energy nitrogen ions and subsequently thermal annealed at 850 or 1050 °C for 15 min. X-ray photoelectron spectroscopy reveals that the concentration and the chemical state of the nitrogen atoms within the Al{sub 2}O{sub 3} layer depends on the post-implantation annealing (PIA) temperature. Memory testing, performed on platinum gate capacitors, shows that charge retention of the programmed states is significantly improved for the high-temperature PIA samples as compared to the non-implanted samples. While such an improvement is not detected for the low-temperature PIA samples, the latter exhibit enhanced hole charging and thus, increased erase efficiency. Overall, our results suggest that the transport properties which control the erase and the retention characteristics of the blocking Al{sub 2}O{sub 3} layer can be tailored by nitrogen implantation and the PIA conditions and can be used for memory performance optimization.

  6. Modification of meson properties in the vicinty of nuclei

    Directory of Open Access Journals (Sweden)

    Filip Peter

    2014-01-01

    Full Text Available We suggest that modification of meson properties (lifetimes and branching ratios can occur due to the interaction of constituent quark magnetic moments with strong magnetic fields present in the close vicinity of nuclei. A superposition of (J =0 and (J =1, mz =0 particle-antiparticle quantum states (as observed for ortho-Positronium may occur also in the case of quarkonium states J/Ψ, ηc ϒ, ηb in heavy ion collisions. We speculate on possible modification of η(548 meson properties (related to C parity and CP violation in strong magnetic fields which are present in the vicinity of nuclei.

  7. Study of Textile Surface Characteristic Modification by Using Electron Beam Radiation

    International Nuclear Information System (INIS)

    Iswani Gitawati; Rany Saptaaji

    2007-01-01

    The success of accelerator technology application in various field of industry, medical and pharmacy, environment, agricultural, food increase each year as the increasing of people needs, not excepted for surface treatment of fibers and textiles in textile industry. This writing aim is to asses the application of electron beam accelerator for textile surface treatment on finishing step. Surface treatment was done with electron beam low energy (100 - 500 keV), and because of its low penetration it was suitable used to gain the improvement of chemical, physical and mechanical properties of textile surface such as adhesion, wettability, printability, dyes-intake, crease recovery, wrinkle-resistance, flammability, abrasion resistance, soil and stain release to get better result. Modification of fibers and textiles surface properties on finishing process can be caused by crosslinking, grafting and degradation reactions. The assesment results showed that the greatest impact on commercial application of radiation in textiles were crease recovery and surface modification of wetting properties (soil and stain release). The radiation dose used for those purposes were 5 - 50 kGy. The bach process of graft textiles surface modification before and after irradiation by Co-60 source (gamma energies of 1.33 and 1.17 MeV) and continue process by electron beam were presented. The assesment results were reported in this paper. (author)

  8. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Einevoll, G.T.

    1991-02-01

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  9. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  10. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. Examples of thin film property modification by ion bombardment during deposition, including effects which are primarily compositional as well as those which are primarily structural are presented. The examples demonstrate the usefulness of ion beam techniques in identifying and controlling the fundamental deposition parameters. 68 refs.; 15 figs.; 1 table

  11. Thermophysical properties of solid lithium hydride and its isotopic modifications

    International Nuclear Information System (INIS)

    Mel'nikova, T.N.

    1981-01-01

    The theory of the anharmonic lattice is used to calculate the thermophysical properties (thermal expansivity, lattice constant, compressibility, and elastic moduli) of all the isotopic modifications of solid lithium hydride sup(6,7)Li(H,D,T) at temperatures up to the melting point. A general analysis of isotopic effects is carried out; in particular the reverse isotopic effect in the lattice constant is explained and the isotopic effect in melting is discussed. The results of the calculations agree with available experimental data and can be used for those isotopic modifications of lithium hydride for which there exist no experimental results. (author)

  12. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    Science.gov (United States)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  13. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-01-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm 2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance

  14. Electronic properties of physisorbed helium

    International Nuclear Information System (INIS)

    Kossler, Sarah

    2011-01-01

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  15. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  16. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations; Elaboration par implantation ionique de nanoparticules de cobalt dans la silice et modifications de leurs proprietes sous irradiation d'electrons et d'ions de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    D' Orleans, C

    2003-07-15

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co{sup +} ions have been implanted at 160 keV at fluences of 2.10{sup 16}, 5.10{sup 16} and 10{sup 17} at/cm{sup 2}, and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10{sup 16} Co{sup +}/cm{sup 2} at 77 K, to 9.7 nm at 10{sup 17} Co{sup +}/cm{sup 2} at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  17. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations; Elaboration par implantation ionique de nanoparticules de cobalt dans la silice et modifications de leurs proprietes sous irradiation d'electrons et d'ions de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    D' Orleans, C

    2003-07-15

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co{sup +} ions have been implanted at 160 keV at fluences of 2.10{sup 16}, 5.10{sup 16} and 10{sup 17} at/cm{sup 2}, and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10{sup 16} Co{sup +}/cm{sup 2} at 77 K, to 9.7 nm at 10{sup 17} Co{sup +}/cm{sup 2} at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  18. Electron grafted barrier coatings for packaging film modification

    International Nuclear Information System (INIS)

    Rangwalla, I.J.; Nablo, S.V.

    1993-01-01

    The O 2 barrier performance of organosilane films, coated, dried and electron beam grafted to polyolefin film has been studied. Excellent anti-scalping properties based upon limonene (dipentene) transmission measurements have also been observed. Results are also reported on O 2 permeability reduction when the process is applied to common barrier polymers such as EVOH and acrylonitrile. Experience with its in-line application on LDPE is discussed. (author)

  19. Chemical Modification of Semiconductor Surfaces for Molecular Electronics.

    Science.gov (United States)

    Vilan, Ayelet; Cahen, David

    2017-03-08

    Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

  20. Electronic properties of rippled graphene

    International Nuclear Information System (INIS)

    Gui Gui; Ma Zhenqiang; Zhong Jianxin

    2012-01-01

    Short range periodic ripples in graphene have been modeled. The electronic properties of the rippled graphene have been investigated using first-principles calculations. Compared with flat graphene, there is a band gap opening in rippled graphene. Generally, the value of energy gaps increases as the height of ripples increase, but it decreases as the range of ripples enlarges. The maximum value of energy gaps in rippled graphene can reach several hundred meV, which turns rippled graphene into a good semiconductor. As a result, the magnitude of energy gaps can be tuned effectively by controlling the range and height of ripples in graphene.

  1. Surface modification of the metal plates using continuous electron beam process (CEBP)

    International Nuclear Information System (INIS)

    Kim, Jisoo; Kim, Jin-Seok; Kang, Eun-Goo; Park, Hyung Wook

    2014-01-01

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined

  2. Surface modification of the metal plates using continuous electron beam process (CEBP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jisoo, E-mail: kimjisu16@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of); Kim, Jin-Seok, E-mail: totoro22@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Kang, Eun-Goo, E-mail: egkang@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Park, Hyung Wook, E-mail: hwpark@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of)

    2014-08-30

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined.

  3. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  4. Adsorbate-induced modification of electronic band structure of epitaxial Bi(111) films

    Energy Technology Data Exchange (ETDEWEB)

    Matetskiy, A.V., E-mail: mateckij@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Bondarenko, L.V.; Tupchaya, A.Y.; Gruznev, D.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Eremeev, S.V. [Institute of Strength Physics and Materials Science, 634021 Tomsk (Russian Federation); Tomsk State University, 634050 Tomsk (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-06-01

    Highlights: • Modification of electronic properties of ultrathin Bi films by adsorbates is demonstrated. • Due to electron doping from Cs adatoms, surface-state bands shift to higher binding energies. • As a result, only electron pockets are left in the Fermi map. • Tin acts as an acceptor dopant for Bi, shifting Fermi level upward. • As a result, only hole pockets are left in the Fermi map. - Abstract: Changes of the electronic band structure of Bi(111) films on Si(111) induced by Cs and Sn adsorption have been studied using angle-resolved photoemission spectroscopy and density functional theory calculations. It has been found that small amounts of Cs when it presents at the surface in a form of the adatom gas leads to shifting of the surface and quantum well states to the higher binding energies due to the electron donation from adsorbate to the Bi film. In contrast, adsorbed Sn dissolves into the Bi film bulk upon heating and acts as an acceptor dopant, that results in shifting of the surface and quantum well states upward to the lower binding energies. These results pave the way to manipulate with the Bi thin film electron band structure allowing to achieve a certain type of conductivity (electron or hole) with a single spin channel at the Fermi level making the adsorbate-modified Bi a reliable base for prospective spintronics applications.

  5. Observation of suprathermal electron fluxes during ionospheric modification experiments

    International Nuclear Information System (INIS)

    Fejer, J.A.; Sulzer, M.P.

    1987-01-01

    The temporal behavior of backscatter by ionospheric Langmuir waves was observed with the 430-MHz radar at Arecibo while a powerful HF wave was cycled 2 s on, 3 s off. The time resolution was 0.1 s. Late at night, in the absence of photoelectrons, using an HF equivalent radiated power of 80 MW at 3.175 MHz, the initial enhancement of about 6% above system noise of the backscattered power with Doppler shifts between -3.75 and -3.85 MHz was reached about 0.25 s after switching on the HF transmitter. In the following second the enhancement gradually decreased to about 3% and remained there until switching off. During the late afternoon, in the presence of photoelectrons, using the same HF power at 5.1 MHz, an initial enhancement by 25% of the backscattered power with Doppler shifts between -5.25 and -5.35 MHz appeared within less than 0.1 s after switching on the HF transmitter. The incoherent backscatter by Langmuir waves enhanced by photoelectrons was already above system noise by a factor greatly in excess of 10 before switching on the HF transmitter; the 25% enhancement thus corresponds to an enhancement greatly in excess of 250% above system noise. The enhancement drops to less than one tenth of its original value in less than a second. The nighttime effect is attributed to multiple acceleration of electrons from the high-energy tail of the Maxwellian distribution. The daytime effect is believed to be due to a modification in the distribution function of photoelectrons

  6. Strain modification on electronic transport of the phosphorene nanoribbon

    Directory of Open Access Journals (Sweden)

    Yawen Yuan

    2017-07-01

    Full Text Available We demonstrate theoretically how local strains can be tailored to control quantum transport of carriers on monolayer armchair and zigzag phosphorene nanoribbon. We find that the electron tunneling is forbidden when the in-plane strain exceeds a critical value. The critical strain is different for different crystal orientation of the ribbons, widths, and incident energies. By tuning the Fermi energy and strain, the channels can be transited from opaque to transparent. Moreover, for the zigzag-phosphorene nanoribbon, the two-fold degenerate quasi-flat edge band splits completely under certain strain. These properties provide us an efficient way to control the transport of monolayer phosphorene-based microstructure.

  7. 78 FR 14835 - Investigations: Terminations, Modifications and Rulings: Certain Consumer Electronics and Display...

    Science.gov (United States)

    2013-03-07

    ..., Modifications and Rulings: Certain Consumer Electronics and Display Devices and Products Containing Same AGENCY... the sale within the United States after importation of certain consumer electronics devices and..., Washington; LG Electronics, Inc. of Seoul, South Korea; LG Electronics, Mobilecomm U.S.A., Inc. of San Diego...

  8. Effect of Aminosilane Modification on Nanocrystalline Cellulose Properties

    Directory of Open Access Journals (Sweden)

    Nurul Hanisah Mohd

    2016-01-01

    Full Text Available The application of renewable nanomaterials, like nanocrystalline cellulose (NCC, has recently been widely studied by many researchers. NCC has many benefits such as high aspect ratio, biodegradability, and high number of hydroxyl groups which offer great opportunities for modification. In this study, the NCC derived from empty fruit bunches (EFB was modified with aminosilane, 3-(2-aminoethylaminopropyl-dimethoxymethylsilane (AEAPDMS, and the characterization was performed to investigate the potential as carbon dioxide (CO2 capture. Modification of NCC with AEAPDMS was carried out in water/ethanol solvent (80/20 (v/v with a ratio of NCC to aminosilane of 1 : 1, 1 : 2, 1 : 3, and 1 : 4 w/w%. The effects of AEAPDMS on NCC were characterized using Fourier transform infrared (FTIR spectroscopy, thermogravimetric analysis (TGA, X-ray diffraction (XRD analysis, elemental analysis (CHNS, and transmission electron microscopy (TEM. The existence of AEAPDMS onto NCC was confirmed by ATR-FTIR spectroscopy as the new peaks of NH2 were bending and wagging, and Si-CH3 appeared. The thermal stability of NCC increased after modification due to the interaction with AEAPDMS. The elemental analysis result showed that the nitrogen content increased with an enhancement ratio of the modifiers. The XRD indicated that the crystallinity decreased while the rod-like geometry of NCC was maintained after amorphous AEAPDMS grafted on the NCC. Since AEAPDMS can be grafted on the NCC, the sample is applicable as CO2 capture.

  9. Surface-defect induced modifications in the optical properties of α-MnO_2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO_2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO_2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO_6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn"3"+) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO_2. These studies suggest that

  10. Medium Modifications of Hadron Properties and Partonic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, W. K.; Strauch, S.; Tsushima, K.

    2011-06-01

    Chiral symmetry is one of the most fundamental symmetries in QCD. It is closely connected to hadron properties in the nuclear medium via the reduction of the quark condensate , manifesting the partial restoration of chiral symmetry. To better understand this important issue, a number of Jefferson Lab experiments over the past decade have focused on understanding properties of mesons and nucleons in the nuclear medium, often benefiting from the high polarization and luminosity of the CEBAF accelerator. In particular, a novel, accurate, polarization transfer measurement technique revealed for the first time a strong indication that the bound proton electromagnetic form factors in 4He may be modified compared to those in the vacuum. Second, the photoproduction of vector mesons on various nuclei has been measured via their decay to e+e- to study possible in-medium effects on the properties of the rho meson. In this experiment, no significant mass shift and some broadening consistent with expected collisional broadening for the rho meson has been observed, providing tight constraints on model calculations. Finally, processes involving in-medium parton propagation have been studied. The medium modifications of the quark fragmentation functions have been extracted with much higher statistical accuracy than previously possible.

  11. Electron Beam Modification and Functionalization of MWNT for Covalent Dispersion into Polymeric Systems

    International Nuclear Information System (INIS)

    Palmese, G. R.

    2006-01-01

    The discovery of multiwalled carbon nanotubes (MWNT) and singlewalled nanotubes (SWNT) has allowed for the development of structural and conductive reinforcement fillers for polymers and electronic systems. Due to their small diameter, high aspect ratio, strength, and conductive and semi-conductive properties, nanotubes are excellent reinforcing fillers for systems requiring enhanced electrical or material properties and may disperse into such systems at low percolation concentrations. However, despite their potential for enhanced composites properties, van der Waals interactions between nanotubes as well as their highly stable graphitic structure render them insoluble in water, organic solvents and most monomers. As a result, nanotubes separate from solution, and their excellent material properties are not realized on a macroscopic scale. Furthermore, in order for nanotube-reinforced systems to be structurally enhanced (allowing for load transfer from the bulk material to the nanotube filler), covalent interactions between nanotubes and the polymer chains are preferred. Therefore, the development of nanotube-based polymer composites with improved mechanical properties and electrical conductivity requires the covalent dispersion of carbon nanotubes. In this work, we have developed a novel method of nanotube surface modification in which dry MWNT are irradiated with a high-energy electron-beam (EB) in ambient air environment. Raman spectroscopy was performed to characterize the influence of EB irradiation on nanotubes, namely, variance of the disorder, or D band (∼1360 cm - 1) with respect to the graphitic, or G, peak (∼1580 cm - 1). Spectra show increased deformation to the graphitic structure, as well as increased strain on the carbon-carbon bonds, weakening the nanotube. Transmission Electron Microscopy (TEM) confirms that nanotubes remain intact despite high EB dose. In addition, minimal surface deformation and length reduction occurred on irradiated MWNT

  12. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  13. Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.M., E-mail: shizm@imut.edu.cn; Wang, Q.; Zhao, G.; Zhang, R.Y.

    2015-02-25

    The effects of erbium (Er) modification on the microstructure and mechanical properties of A356 aluminum alloys were investigated using optical microscope, X-ray diffraction, scanning electronic microscope and mechanical testing. Experimental results show that additions of Er refined the α-Al grains and eutectic Si phases in its as-cast state; the addition of 0.3 wt% of Er has the best effects on them. The Fe-containing Al{sub 3}Er phases were introduced by the modifications; by a T6 treatment, the eutectic Si phases were further sphereodized; the large Al{sub 3}Er and β-Al{sub 5}FeSi phases were changed into fine particles and short rods; which enhanced the hardness of the alloys. The highest strength and elongation were obtained for the 0.3 wt% of Er-modified and T6-treated A356 alloy.

  14. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  15. Modification of C60/C70+Pd film structure under electric field influence during electron emission

    International Nuclear Information System (INIS)

    Czerwosz, E.; Dluzewski, P.; Kozlowski, M.

    2001-01-01

    We investigated the modification of structure of C 60 /C 70 +Pd films during cold electron emission from these films. Films were obtained by vacuum thermal deposition from two sources and were characterised before and after electron emission measurements by transmission electron microscopy and electron diffraction. Films were composed of nanocrystalline Pd objects dispersed in carbon/fullerenes matrix. I-V characteristics for electron emission were obtained in diode geometry with additionally applied voltage along the film surface. The modification of film structure occurred under applied electric field and the grouping of Pd nano crystals into bigger objects was observed

  16. Modifications of nucleons in nuclei in quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1988-01-01

    In inelastic electron scattering two scaling regions are observed in which the scattering is dominated by quasi-elastic scattering. For large momentum transfers, √Q 2 > 2 GeV/c, the scattering process is dominated by quasi-elastic scattering off quarks, whereas for √Q 2 ≅ 0.5 GeV/c the dominant contribution is quasi-elastic scattering off nucleons. This corresponds nicely to our first order picture of the nucleus consisting of nucleons, which in turn are composed of quarks. In the nucleon-scaling region, possible modifications of nucleon properties show up through a study of the Q 2 dependence and the relative strength of the transverse and longitudinal cross sections. Results of both inclusive (e,e') and exclusive (e,e'p) experiments in the quasi-elastic scattering region indeed show a behavior that could indicate modifications of intrinsic properties of individual nucleons in the nucleus, although the question remains if one has correctly disentangled the effects of the (long range) interactions between nucleons and those connected to the internal structure of nucleons. Even so, a simple (one-parameter) size rescaling for nucleons appears to be inconsistent with the data and also with some known conventional nuclear physics observables. Therefore the inclusion of two-nucleon correlations appears necessary in order to be able to understand the data. Such correlations can for instance be due to the effect of the Pauli principle on the quark level. (orig.)

  17. Enzymatic modification of egg lecithin to improve properties.

    Science.gov (United States)

    Asomaning, Justice; Curtis, Jonathan M

    2017-04-01

    This research studied the enzymatic modification of egg yolk phospholipids and its effect on physicochemical properties. Egg yolk lipids were extracted with food grade ethanol and egg phospholipids (ePL) produced by deoiling with acetone. Vegetable oils were used to interesterify ePL utilizing Lipozyme®: sn-1,3 specific lipase. The enzymatic interesterification resulted in a single phase liquid product, whereas simple blending of the ePL and vegetable oil resulted in a product with two phases. In addition solid fat content decreased by 50% at -10°C and 94% at 35°C when compared with egg yolk lipids extract. A decrease in melting temperature resulted from the interesterification process. Interesterification improved emulsion stability index when used as an emulsifier in oil-in-water emulsion and compared to the native and soy lecithin. Enzyme reusability test showed retention of 63% activity after 10 cycles. Overall, the properties of native egg phospholipids were significantly enhanced in a potentially useful manner through interesterification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. New electron-ion-plasma equipment for modification of materials and products surface

    International Nuclear Information System (INIS)

    Koval', N.N.

    2013-01-01

    Electron-ion-plasma treatment of materials and products, including surface clearing and activation, formation surface layers with changed chemical and phase structure, increased hardness and corrosion resistance; deposition of various functional coatings, has received a wide distribution in a science and industry. Widespread methods of ion-plasma modification of material and product surfaces are ion etching and activation, ion-plasma nitriding, arc or magnetron deposition of functional coatings, including nanostructured. The combination of above methods of surface modification allows essentially to improve exploitation properties of treated products and to optimize the characteristics of modified surfaces for concrete final requirements. For the purpose of a combination of various methods of ion-plasma treatment in a single work cycle at Institute of High Current Electronics of SB RAS (IHCE SB RAS) specialized technological equipment 'DUET', 'TRIO' and 'QUADRO' and 'KVINTA' have been developed. This equipment allow generating uniform low-temperature gas plasma at pressures of (0.1-1) Pa with concentration of (10 9 -10 11 ) cm -3 in volume of (0.1-1) m 3 . In the installations consistent realization of several various operations of materials and products treatment in a single work cycle is possible. The operations are preliminary heating and degassing, ion clearing, etching and activation of materials and products surface by plasma of arc discharges; chemicothermal treatment (nitriding) for formation of diffusion layer on a surface of treated sample using plasma of nonself-sustained low-pressure arc discharge; deposition of single- or multilayered superhard (≥40 GPa) nanocrystalline coatings on the basis of pure metals or their compounds (nitrides, carbides, carbonitrides) by the arc plasma-assisted method. For realization of the modes all installations are equipped by original sources of gas and metal plasma. Besides, in

  19. An electron beam irradiation method for modification of surface electrical resistivity of polyamides

    International Nuclear Information System (INIS)

    Brasoveanu, M. M.; Timus, D.; Nemtanu, M. R.

    2002-01-01

    The synthetic textiles which have mechanical and processing properties and a low price are very useful and consequently in high demand. The low antistatic qualities are an important disadvantage, but not impossible to eliminate. The aim of paper is the study of modification the antistatic properties of polyamide by grafting of monomers by irradiation. Twisted and unthermofixed polyamide-6 fibre from CFS Savinesti were investigated. The samples of polyamide were irradiated with an electron beam from the ALIN-7 linear accelerator of Electron Accelerators Laboratory of National Institute for Lasers, Plasma and Radiation Physics, Bucharest. Immediately after irradiation, the samples were measured by electron spin resonance (ESR). ESR spectra were recorded at room temperature using a Jeol spectrometer, JES-ME-3X, with 100 kHz modulation. In polyamide-6 at least two irradiation defect types occurred which present EPR signal by electron beam irradiation. Unstable centres of type A presenting an incompletely resolved hyperfine structure can be attributed to radicals -N-CH 2 - or -NH-CH-CH 2 -. Both radicals can present at room temperature a five-line spectrum like the radical formed in this work. First radical appears with very low probability and if the free bond is at one of carbon atoms then it will be stabilized immediately in a position from nitrogen. These type A radicals can appear in same zone and then they can react and form unsaturated bonds or bridge between the polymeric chains. Thus, it will appear the type B defects which were more stabile and without structure. On these double chains one can graft vinylic monomers even after time intervals longer from irradiation. (authors)

  20. Modification of the quantum mechanical flux formula for electron-hydrogen ionization through Bohm's velocity field

    Science.gov (United States)

    Randazzo, J. M.; Ancarani, L. U.

    2015-12-01

    For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.

  1. Rotary bending fatigue properties of Inconel 718 alloys by ultrasonic nanocrystal surface modification technique

    Directory of Open Access Journals (Sweden)

    Jun-Hyong Kim

    2015-08-01

    Full Text Available This study investigates the influence of ultrasonic nanocrystal surface modification (UNSM technique on fatigue properties of SAE AMS 5662 (solution treatment of Inconel 718 alloys. The fatigue properties of the specimens were investigated using a rotary bending fatigue tester. Results revealed that the UNSM-treated specimens showed longer fatigue life in comparison with those of the untreated specimens. The improvement in fatigue life of the UNSM-treated specimens is attributed mainly to the induced compressive residual stress, increased hardness, reduced roughness and refined grains at the top surface. Fractured surfaces were analysed using a scanning electron microscopy (SEM in order to give insight into the effectiveness of UNSM technique on fracture mechanisms and fatigue life.

  2. Effect of electric pulse modification on mircostructure and properties of Ni-rich Al-Si piston alloy

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2016-03-01

    Full Text Available In order to improve the properties of Ni-rich (2.5wt.% Al-Si piston alloy, electric pulse modification was applied in fabricating the Ni-rich Al-Si piston alloy in this study. The effect of electric pulse modification on the mechanical properties of the Ni-rich Al-Si piston alloy was studied using optical microscope (OM, scanning electron microscope (SEM, X-ray diffraction (XRD, microhardness measurement and tensile strength testing. The results showed that the microstructures of Ni-rich Al-Si piston alloy treated by electric pulse modification were refined, the solid solubility of Cu, Ni, Si, etc. in α-Al matrix was improved, and furthermore, the microhardness and high-temperature tensile strength were increased by 9.41% and 17.5%, respectively. The distribution of second phases was also more uniform compared with that of a non-modified sample.

  3. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Guo, Xiaowei; Momota, Sadao; Nitta, Noriko; Yamaguchi, Takaharu; Sato, Noriyuki; Tokaji, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  4. Profile modification and hot electron temperature from resonant absorption at modest intensity

    International Nuclear Information System (INIS)

    Albritton, J.R.; Langdon, A.B.

    1980-01-01

    Resonant absorption is investigated in expanding plasmas. The momentum deposition associated with the ejection of hot electrons toward low density via wavebreaking readily exceeds that of the incident laser radiation and results in significant modification of the density profile at critical. New scaling of hot electron temperature with laser and plasma parameters is presented

  5. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  6. Enhancing mechanical properties of chitosan films via modification with vanillin.

    Science.gov (United States)

    Zhang, Zhi-Hong; Han, Zhong; Zeng, Xin-An; Xiong, Xia-Yu; Liu, Yu-Jia

    2015-11-01

    The vanillin/chitosan composite films were prepared using the solvent evaporation method. The properties of the films including optical property, water vapor permeability (WVP), tensile strength (TS) and elongation at break (%E) were studied to investigate the effect of cross-linking agent of vanillin on chitosan films by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). Results showed that the TS of composite films increased by 53.3% and the WVP decreased by 36.5% compared with pure chitosan film that were due to the formation of the dense network structure by FT-IR spectra. There were almost no changes of the thermal stability of the composite films compared with the pure chitosan film by TGA analysis. In addition, from the SEM images, it could be seen that the film with addition of vanillin with 0.5-10% concentration exhibited good compatibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ion-beam modification of properties of metals and alloys

    International Nuclear Information System (INIS)

    Khodasevich, V.V.; Uglov, V.V.; Ponaryadov, V.V.; Zhukova, S.I.

    2002-01-01

    Physical fundaments for ion-beam modification and plasma-vacuum synthesis of new types of coatings and compounds in technically important metals and alloys were development as well as corresponding installation and technologies were created. (authors)

  8. Modification to the MAPS interview process and electronic form

    CERN Multimedia

    HR Department

    2006-01-01

    Based on the first year of experience with e-MAPS and the feedback from departmental users, a number of modifications to the MAPS interview process and the form have been introduced for the 2006 exercise. Definition of signatories The top of the form now also shows the name of the group leader and department head. This is especially useful in cases of detachment. Corrections can be made via the MAPS Coordinator. 'Send back' facility The possibility to send the MAPS report one step backwards is only available to the MAPS coordinators, i.e., from group leader to supervisor, from staff member to group leader, and from group leader to staff member. The form should only be sent back to correct factual errors or oversights, and any send backs will be tracked. Link 'training' part to 'training' application When entering a training objective for 2006, a search menu allows selection from various CERN internal training courses or from conferences. It remains important however to first read the description of the...

  9. Modification to the MAPS interview process and electronic form

    CERN Multimedia

    HR Department

    2006-01-01

    Based on the first year of experience with e-MAPS and the feedback from departmental users, a number of modifications to the MAPS interview process and form have been introduced for the 2006 exercise. Definition of signatories The top of the form now also shows the name of the Group Leader and Department Head. This is especially useful in cases of detachment. Corrections can be made via the MAPS Coordinator. 'Send back' facility The possibility to send the MAPS report one step backwards, i.e. from Group Leader to supervisor, from Staff Member to Group Leader, and from Group Leader to Staff Member is only available to the MAPS coordinators. The form should only be sent back to correct factual errors or oversights, and any send- backs will be recorded. Link between 'training' part and 'training' application When entering a training objective for 2006, a search menu allows selection from various CERN internal training courses or from conferences. It is still important, however, to first read the descri...

  10. Electron relaxation properties of Ar magnetron plasmas

    Science.gov (United States)

    Xinjing, CAI; Xinxin, WANG; Xiaobing, ZOU

    2018-03-01

    An understanding of electron relaxation properties in plasmas is of importance in the application of magnetrons. An improved multi-term approximation of the Boltzmann equation is employed to study electron transport and relaxation properties in plasmas. Elastic, inelastic and nonconservative collisions between electrons and neutral particles are considered. The expressions for the transport coefficients are obtained using the expansion coefficients and the collision operator term. Numerical solutions of the matrix equations for the expansion coefficients are also investigated. Benchmark calculations of the Reid model are presented to demonstrate the accuracy of the improved multi-term approximation. It is shown that the two-term approximation is generally not accurate enough and the magnetic fields can reduce the anisotropy of the velocity distribution function. The electron relaxation properties of Ar plasmas in magnetrons for various magnetic fields are studied. It is demonstrated that the energy parameters change more slowly than the momentum parameters.

  11. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian, E-mail: dazhijian.ripp@sinopec.com

    2016-09-30

    Highlights: • Hierarchical zeolite Y was prepared by citric acid treatment and alkaline treatment with NaOH&TBPH. • The addition of TBPH during desilication process transferred the bridge bonded OH− to the terminal P−OH group. • Moderate Brønsted acid sites could be created with phosphorus modification. • Zeolite with hierarchical porosity and appropriated acidities favored high conversion of 1,3,5-TIPB. - Abstract: The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH{sub 3}-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  12. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.

    Science.gov (United States)

    Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P

    2016-08-01

    In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Improvement of carbon fiber surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  14. Improving the antimicrobial properties of titanium condenser material by surface modification using nanotechnology

    International Nuclear Information System (INIS)

    George, Rani P.; Dash, S.; Krishnan, R.; Kamruddin, M.; Kalavathi, S.; Tyagi, A.K.; Manoharan, N.; Dayal, R.K.; Vishwakarma, Vinita; Theresa, Josephine

    2008-01-01

    Biofouling is one of the major problems faced by condenser materials of power plants using seawater for cooling. Fouling control strategies in condensers include a combination of mechanical and chemical treatments like sponge ball cleaning, back washing and chlorination. In general, numerous studies have shown that no routine treatment regime can successfully keep the condenser tube clean over a period extending to years. Surface properties of the substratum influence initial adhesion and growth of bacterial cells on materials, modification of the surface for mitigating microbial attachment is the need of the hour. Metal nanoparticles are known to exhibit enhanced physical and chemical properties when compared to their bulk counter parts because of their high surface to volume ratios. Metals like copper are very toxic to microorganisms and effectively kill most of the microbes by blocking the respiratory enzyme. Copper alloys with their excellent resistance to biofouling are used extensively for marine applications. However, they are prone to localized corrosion initiation and consequently are getting replaced by extremely corrosion resistant titanium. Still, the inertness and biocompatibility of titanium makes it very susceptible to biofouling. Hence, this study attempts to use nano technology methods of surface modification of titanium using thin film of copper and also multilayers and bilayers of copper and nickel. This is aimed at improving the antimicrobial properties of this condenser pipe material. These nano structured thin films have been grown on titanium substrate using pulsed DC magnetron-sputtering and pulsed laser deposition. The thin films were characterized using Atomic Force Microscopy (AFM), Glancing Incidence X-ray Diffraction (GIXRD) and scanning electron microscopy (SEM with EDAX analysis). Antimicrobial properties were evaluated by exposure studies in seawater and bacterial cultures and by post exposure analysis using culture and

  15. Modification of indole by electron-rich atoms and their application in novel electron donor materials

    Science.gov (United States)

    Zhang, Maolin; Qin, Guangjiong; Liu, Jialei; Zhen, Zhen; Fedorchuk, A. A.; Lakshminarayana, G.; Albassam, A. A.; El-Naggar, A. M.; Ozga, Katarzyna; Kityk, I. V.

    2017-08-01

    Novel nonlinear optical (NLO) chromophore based on 6-(pyrrolidin-1-yl)-1H-indole as the electron donor group was designed and synthesized. The molecular structure of this chromophore was characterized by 1H NMR spectra, 13C NMR spectra, and MS spectra. The delocalized energy level was estimated by UV-Vis. spectra. The thermal property was studied by thermogravimetric analysis (TGA). The poled films containing chromophores ZML-1 with a loading density of 10 wt% in amorphous polycarbonate (APC) afford an average electro-optic (EO) coefficient (r33) of 19 pm/V at 1310 nm. Compared to the reported aniline-based chromophore (r33 = 12 pm/V) analogues, chromophore ZML-1 exhibits enhanced electro-optical activity.

  16. Influence of Polylactide Modification with Blowing Agents on Selected Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Tor-Świątek

    2017-12-01

    Full Text Available Article presents research of modification of PLA with four types of chemical blowing agents with a different decomposition characteristic. The modification was done both cellular extrusion and injection molding processes. Obtained results shows that dosing blowing agents have the influence on mechanical properties and structure morphology of PLA. The differences in obtained results are also visible and significant between cellular processes.

  17. Influence of plasma modification on hygienic properties of textile fabrics with nonporous membrane coating

    Science.gov (United States)

    Voznesensky, E. F.; Ibragimov, R. G.; Vishnevskaya, O. V.; Sisoev, V. A.; Lutfullina, G. G.; Tihonova, N. V.

    2017-11-01

    The work investigated the possibility of using plasma modification to improve the hygienic properties of textile materials with nonporous membrane coating to improve vapor-, air-permeability and water-resistant. Determined that, after plasma modification changes degree of supramolecular orderliness of the polymers nonporous membrane coating and the base fabric.

  18. Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland); Tracz, Adam [Centre for Molecular and Macromolecular Studies of the Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź (Poland); Żenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland)

    2015-03-01

    The paper presents the results of studies to determine the applicability of plasma modification in the process of polylactide (PLA) surface preparation prior to the autocatalytic metallization. The polylactide plasma modification was carried out in an oxygen or nitrogen chemistry. The samples were tested with the following methods: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and electron spectrophotometry (XPS). Scanning electron microscopy and atomic force microscopy images were demonstrated. The results of surface free energy calculations, performed based on the results of the contact angle measurements have been presented. The results of the qualitative (degree of oxidation or nitridation) and quantitative analysis of the chemical composition of the polylactide surface layer have also been described. The results of the studies show that the DC plasma modification performed in the proposed condition is a suitable as a method of surface preparation for the polylactide metallization. - Highlights: • We modified polylactide surface layer with plasma generated in oxygen or nitrogen. • We tested selected properties and surface structure of modified samples. • DC plasma modification can be used to prepare the PLA surface for metallization. • For better results metallization should be preceded by sonication process.

  19. Magnetic properties of confined electron gas

    International Nuclear Information System (INIS)

    Felicio, J.R.D. de.

    1977-04-01

    The effects of confinement by a two or three-dimensional harmonic potential on the magnetic properties of a free electron gas are investigated using the grand-canonical ensemble framework. At high temperatures an extension of Darwin's, Felderhof and Raval's works is made taking into account spin effects at low temperature. A comprehensive description of the magnetic properties of a free electron gas is given. The system is regarded as finite, but the boundary condition psi=0 is not introduced. The limits of weak and strong confinement are also analysed [pt

  20. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Science.gov (United States)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-08-01

    High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  1. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...

  2. The Influence of Biochemical Modification on the Properties of Adhesive Compounds

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2016-12-01

    Full Text Available The main objective of this study was to determine the effect of biochemical modification of epoxy adhesive compounds on the mechanical properties of a cured adhesive exposed to various climatic factors. The epoxy adhesive was modified by lyophilized fungal metabolites and prepared by three methods. Additionally, the adhesive compound specimens were seasoned for two months at a temperature of 50 °C and 50% humidity in a climate test chamber, Espec SH 661. The tensile strength tests of the adhesive compounds were performed using a Zwick/Roell Z150 testing machine in compliance with the DIN EN ISO 527-1 standard. The examination of the adhesive specimens was performed using two microscopes: a LEO 912AB transmission electron microscope equipped with Quantax 200 for EDS X-ray spectroscopy and a Zeiss 510 META confocal microscope coupled to an AxioVert 200M. The experiments involved the use of a CT Skyscan 1172 tomograph. The results revealed that some mechanical properties of the modified adhesives were significantly affected by both the method of preparation of the adhesive compound and the content of the modifying agent. In addition, it was found that seasoning of the modified adhesives does not lead to a decrease in some of their mechanical properties.

  3. Direct Coupling of Electron Beam Irradiation and Polymer Extrusion for a Continuous Polymer Modification in Molten State

    International Nuclear Information System (INIS)

    Stephan, M.

    2006-01-01

    The new approach of an e-beam initiating of chemical reactions in polymers in molten state results in some innovative results. High temperature, intensive macromolecular mobility and the absence of any crystallinity are some reasons for achieving unexpected structures, processing behaviour and properties changes in such treated thermoplastics and rubbers. Examples are a much more effective crosslinking of polyethylene and special rubbers, long chain branching of polypropylene or a partial crosslinking of polysulfone. Additionally, most of these modification effects are also achievable by a direct coupling of electron beam irradiation and conventional polymer extrusion processing for a continuous polymer modification in molten state. For realizing this unique processing technique a special MOBILE RADIATION FACILITY (MOBRAD1/T) was designed, constructed and manufactured in the IPF Dresden at which a lab-scale single screw extruder was adapted direct to an electron beam accelerator to realize a prompt irradiation of extruded polymer melt profiles before there solidification. Surprisingly, as a result of these short-time-melt reactions some effective and new polymer modification effects were found and will be presented

  4. Surface modification, microstructure and mechanical properties of investment cast superalloy

    OpenAIRE

    M. Zielińska; K. Kubiak; J. Sieniawski

    2009-01-01

    Purpose: The aim of this work is to determine physical and chemical properties of cobalt aluminate (CoAl2O4) modifiers produced by different companies and the influence of different types of modifiers on the grain size, the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three diff...

  5. Modification to an Auger Electron Spectroscopy system for measuring segregation in a bi-crystal

    International Nuclear Information System (INIS)

    Jafta, C J; Roos, W D; Terblans, J J

    2013-01-01

    It is reported that different crystal surface orientations yield different segregation fluxes. Although there were a few attempts to confirm these predictions experimentally, it is very difficult to compare data without making a few assumptions. Parameters like temperature measurement, crystal history and spectrometer variables are all adding to the complexity of directly comparing the segregation behaviour from one crystal to another. This investigation makes use of a Cu bi-crystal, modifications to the scanning control unit of the AES electron beam to eliminate the difference in experimental parameters and specialized written software to automate the data acquisition process. This makes direct comparison of segregation parameters on two different orientations possible. The paper describes the electron beam modifications, experimental setup and procedures, as well as the software developed to control the electron beam and automate data acquisition.

  6. Modification of mechanical and thermal property of chitosan–starch blend films

    International Nuclear Information System (INIS)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M.E.; Khan, Ruhul A.; Dafader, N.C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-01-01

    Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively. - Highlights: ► Chitosan–starch blend films (thickness 0.2 mm) were prepared by casting. ► To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. ► Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. ► Properties of the modified films such as tensile strength, elongation at break, water uptake, TGA, DMA, SEM, FTIR were studied. ► Results indicate that modification of chitosan–starch film with mustard oil improved the properties of the blend films which could be further modified by HEMA using gamma radiation.

  7. The functional properties, modification and utilization of whey proteins

    Directory of Open Access Journals (Sweden)

    B. G. Venter

    1986-03-01

    Full Text Available Whey protein has an excellent nutritional value and exhibits a functional potential. In comparison with certain other food proteins, the whey protein content of essential amino acids is extremely favourable for human consumption. Depending on the heat-treatment history thereof, soluble whey proteins with utilizable functional properties, apart from high biological value, true digestibility, protein efficiency ratio and nett protein utilization, can be recovered. Various technological and chemical recovery processes have been designed. Chemically and enzymatically modified whey protein is manufactured to obtain technological and functional advantages. The important functional properties of whey proteins, namely hydration, gelation, emulsifying and foaming properties, are reviewed.

  8. Electronic properties of graphene antidot lattices

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.

    2009-01-01

    Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...

  9. Impact of polymer modification on mechanical and viscoelastic properties.

    Science.gov (United States)

    2015-10-01

    This study was initiated with the aim of evaluating the relative impact of different cross-linking agents : on the rheological and morphological properties of polymer modified asphalt binders (PMAs). To : complete this objective, two cross-linking ag...

  10. Defect creation by swift heavy ions: materials modifications in the electronic stopping power regime

    International Nuclear Information System (INIS)

    Toulemonde, M.

    1994-01-01

    The material modifications by swift heavy ions in the electronic stopping power regime are puzzling question: How the energy deposited on the electrons can induced material modifications? In order to answer to this question, the modifications induced in non-radiolytic materials are described and compared to the predictions. In first part the main experimental observations is presented taking into account the irradiation parameters. Then it is shown that the initial phases of the material are very important. Amorphous materials, whatever it is a metal, a semiconductor or an insulator, are till now all sensitive to the high electronic excitation induced by the slowing down of a swift heavy ion. All oxide materials, insulators or conductors, are also sensitive even the MgO, one of most famous exceptions. Crystalline metals or semiconductors are intermediate cases: some are insensitive like Cu and Si respectively while Fe and GeS are sensitive. The main feature is the different values of the electronic stopping power threshold of material modifications. The evolution of the damage creation is described showing that the damage morphology seems to be the same whatever the material is amorphous or crystalline. In second part a try of interpretation of the experimental results will be done on the behalf of the two following models: The Coulomb spike and the thermal spike models. It will be shown that there is some agreement with limited predictions made in the framework of the Coulomb spike model. But it appears that the thermal spike model can account for most of the experimental data using only one free parameter: The electron-phonon strength which is a physical characteristic of the irradiated material. (author). 4 figs., 1 tab., 64 refs

  11. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Congjin, E-mail: gxdxccj@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Xin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tong, Zhangfa [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Yue [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Li, Mingfei [Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H{sub 2}O{sub 2} concentration 1.0 mol l{sup −1}, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I{sub 2}). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N{sub 2} adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H{sub 2}O{sub 2} solution, the optimized conditions were found to be as follows: aqueous H{sub 2}O{sub 2} solution concentration 1.0 mol·l{sup −1}, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased

  12. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    International Nuclear Information System (INIS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-01-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H 2 O 2 . • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H 2 O 2 concentration 1.0 mol l −1 , modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I 2 ). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H 2 O 2 , and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N 2 adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H 2 O 2 solution, the optimized conditions were found to be as follows: aqueous H 2 O 2 solution concentration 1.0 mol·l −1 , modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC

  13. Electronic transport properties of phenylacetylene molecular junctions

    International Nuclear Information System (INIS)

    Liu Wen; Cheng Jie; Yan Cui-Xia; Li Hai-Hong; Wang Yong-Juan; Liu De-Sheng

    2011-01-01

    Electronic transport properties of a kind of phenylacetylene compound— (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism. The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V. The rectification effect is attributed to the asymmetry of the interface contacts. Moreover, at a bias voltage larger than 2.0 V, which is not referred to in a relevant experiment [Fang L, Park J Y, Ma H, Jen A K Y and Salmeron M 2007 Langmuir 23 11522], we find a negative differential resistance phenomenon. The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitals induced by the bias. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Surface-defect induced modifications in the optical properties of α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    John, Reenu Elizabeth [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); Chandran, Anoop [School of Pure and Applied Physics, MG University, Kottayam, Kerala 686560 (India); Thomas, Marykutty [Department of Physics, BCM College, Kottayam, Kerala 686001 (India); Jose, Joshy [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); George, K.C., E-mail: drkcgeorge@gmail.com [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India)

    2016-03-30

    Graphical abstract: - Highlights: • Alpha-MnO{sub 2} nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO{sub 2} nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO{sub 6} octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn{sup 3+}) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO{sub 2}. These

  15. Effects of surface atomistic modification on mechanical properties of gold nanowires

    International Nuclear Information System (INIS)

    Sun, Xiao-Yu; Xu, Yuanjie; Wang, Gang-Feng; Gu, Yuantong; Feng, Xi-Qiao

    2015-01-01

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties

  16. Electronic Properties of Disclinations in Carbon Nanostructures

    International Nuclear Information System (INIS)

    Sitenko, Yu.A.; Vlasii, N.D.; Sitenko, Yu.A.; Vlasii, N.D.

    2007-01-01

    The recent synthesis of strictly two-dimensional atomic crystals (monolayers of carbon atoms) is promising a wealth of new phenomena and possible applications in technology and industry. Such materials are characterized by the Dirac-type spectrum of quasiparticle excitations, yielding a unique example of the truly two-dimensional 'relativistic' electronic system which, in the presence of disclinations, possesses rather unusual properties. We consider the influence of disclinations on densities of states and induced vacuum quantum numbers in grapheme

  17. Electron Transport Properties of Ge nanowires

    Science.gov (United States)

    Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.

    2003-03-01

    Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.

  18. Milk whey protein modification by coffee-specific phenolics: effect on structural and functional properties.

    Science.gov (United States)

    Ali, Mostafa; Homann, Thomas; Khalil, Mahmoud; Kruse, Hans-Peter; Rawel, Harshadrai

    2013-07-17

    A suitable vehicle for integration of bioactive plant constituents is proposed. It involves modification of proteins using phenolics and applying these for protection of labile constituents. It dissects the noncovalent and covalent interactions of β-lactoglobulin with coffee-specific phenolics. Alkaline and polyphenol oxidase modulated covalent reactions were compared. Tryptic digestion combined with MALDI-TOF-MS provided tentative allocation of the modification type and site in the protein, and an in silico modeling of modified β-lactoglobulin is proposed. The modification delivers proteins with enhanced antioxidative properties. Changed structural properties and differences in solubility, surface hydrophobicity, and emulsification were observed. The polyphenol oxidase modulated reaction provides a modified β-lactoglobulin with a high antioxidative power, is thermally more stable, requires less energy to unfold, and, when emulsified with lutein esters, exhibits their higher stability against UV light. Thus, adaptation of this modification provides an innovative approach for functionalizing proteins and their uses in the food industry.

  19. Soil physical and hydraulic properties modification under Arachis ...

    African Journals Online (AJOL)

    A field study was carried out to determine the effects of 3 plant densities (33333, 66667 and 83333 plants/ha)on soil properties and water loss through evaporation from soils under 2 cultivars of Arachis hypogaeaL. (SAMNUT 10 and SAMNUT 21) and Arachis pintoi(PINTOI) in Ibadan, south western Nigeria. The experiment ...

  20. Effect of chemical modification on properties of hybrid fibre biocomposites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2008-02-01

    Full Text Available mechanical properties. The hardness and abrasion resistance of the untreated and treated composites were also analyzed. Surface characterization of treated and untreated sisal fibers by XPS showed the presence of numerous elements on the surface of the fiber...

  1. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    International Nuclear Information System (INIS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-01-01

    Titanic materials were synthesized by hydrothermal method of TiO 2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO 2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  2. Alteration of human serum albumin binding properties induced by modifications: A review

    Science.gov (United States)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  3. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  4. Modification of electrical properties of polymer membranes by ion implantation

    International Nuclear Information System (INIS)

    Dworecki, K.; Hasegawa, T.; Sudlitz, K.; Wasik, S.

    2000-01-01

    This paper presents an experimental study of the electrical properties of polymer ion irradiated polyethylene terephthalate (PET) membranes. The polymer samples have been implanted with a variety of ions (O 5+ , N 4+ , Kr 9+ ) by the energy of 10 keV/q up to doses of 10 15 ions/cm 2 and then they were polarized in an electric field of 4.16x10 6 V/m at non-isothermal conditions. The electrical properties and the changes in the chemical structure of implanted membrane were measured by conductivity and discharge currents and FTIR spectra. Electrical conductivity of the membranes PET increases to 1-3 orders of magnitude after implantation and is determined by the charge transport caused by free space charge and by thermal detrapping of charge carriers. The spectra of thermally induced discharge current (TDC) shows that ion irradiated PET membranes are characterized by high ability to accumulate charge

  5. Modification of magnetic properties of polyethyleneterephthalate by iron ion implantation

    International Nuclear Information System (INIS)

    Lukashevich, M.G.; Batlle, X.; Labarta, A.; Popok, V.N.; Zhikharev, V.A.; Khaibullin, R.I.; Odzhaev, V.B.

    2007-01-01

    Fe + ions (40 keV) were implanted into polyethyleneterephthalate (PET) films with fluences of (0.25-1.5) x 10 17 cm -2 . Magnetic properties of the synthesised Fe:PET composites were studied using superconducting quantum interference device (SQUID) technique in temperature range of 2-300 K. For range of fluences (0.5-0.75) x 10 17 cm -2 the samples reveal superparamagnetic behaviour at room temperature. At fluences above 0.75 x 10 17 cm -2 the strong increase of magnetisation and transition to ferromagnetic properties are registered. Analysis of the magnetic hysteresis loops suggests an easy plane magnetic anisotropy similar to that found for thin magnetic films. Zero-field-cooled (ZFC) and field-cooled (FC) temperature measurements of magnetisation are found to be in agreement with earlier observed formation of Fe nanoparticles (NPs) in the implanted layers. The growth and agglomeration of the NPs forming the quasi-continuous labyrinth-like structure in the polymer film at the highest implantation fluence of 1.5 x 10 17 cm -2 is an origin for the transition to the ferromagnetic properties

  6. Surface modification and antimicrobial properties of cellulose nanocrystals

    Science.gov (United States)

    Bespalova, Yulia A.

    Surface modification of cellulose nanocrystals (CNC) was performed by acetylation and subsequent reaction with various tertiary amines with different lengths of alkyl groups. Chloroacetic anhydride (95%) was used for acetylation. The acetylation of CNC was confirmed using IR spectroscopy. The bands associated with C=0 stretching (1740 cm-1) and C-Cl stretching (793 cm -1) was present in the acetylated CNC but they were absent in the neat CNC. It has been suggested that the primary hydroxyl groups of CNC are substituted by chloro acetyl groups during acetylation reaction. Subsequent reaction of chloro acetylated CNC with N, N - Dimethyl ethylamine, N, N - Dimethyl hexylamine, N, N - Dimethyl dodecylamine, N, N - Dimethyl hexadecylamine and N, N - Dimethyl decylamine formed quaternary ammonium salts. These quaternary ammonium salts were characterized by FTIR and solid state13C NMR spectroscopy. FTIR spectra of five types of quaternary ammonium salts of CNC are similar and they showed infrared bands at 2905 -1 and 2850 cm-1, attributed to symmetrical and unsymmetrical C-H stretching vibration. The absence of C-Cl band at 793 cm-1 proves that quaternary salt formation was successful. The 13C NMR spectrum of quaternary ammonium modified CNC with N, N - Dimethyl dodecylamine shows several additional resonances ranging from 14.5 ppm to 58.0 ppm when compared to 13C NMR spectrum of pure CNC. This evidence proves that long alkyl chains have been added to the pure CNC. The disc diffusion method confirmed that quaternary ammonium modified CNCs with a chain longer than ten carbons are effective antimicrobial agents against Staphylococcus aureus and E. coli bacteria. Pure CNC and quaternary ammonium modified CNCs with an alkyl chain length of ten or less were not able to inhibit bacteria growth.

  7. Precision shape modification of nanodevices with a low-energy electron beam

    Science.gov (United States)

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  8. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  9. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    International Nuclear Information System (INIS)

    Wang, C.X.; Lv, J.C.; Ren, Y.; Zhi, T.; Chen, J.Y.; Zhou, Q.Q.; Lu, Z.Q.; Gao, D.W.; Jin, L.M.

    2015-01-01

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O 2 plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O 2 plasma treated and SWCNT coated PET fabric was better and worse than that of N 2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated

  10. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Science.gov (United States)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  11. Effects of Surface Modification of MWCNT on the Mechanical and Electrical Properties of Fluoro Elastomer/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2012-01-01

    Full Text Available Surface modification is a good way to improve the surface activity and interfacial strength of multiwalled carbon nanotubes (MWCNTs when used as fillers in the polymer composites. Among the reported methods for nanotube modification, mixed acid oxidation and plasma treatment is often used by introducing polar groups to the sidewall of MWCNT successfully. The purpose of this study is to evaluate the effect of different surface modification of MWCNT on the mechanical property and electrical conductivity of Fluoro-elastomer (FE/MWCNT nanocomposites. MWCNTs were surface modified by mixed oxidation and CF4 plasma treatment and then used to reinforce the fluoro elastomer (FE, a copolymer of trifluorochloroethylene and polyvinylidene fluoride. FE/MWCNT composite films were prepared from mixture solutions of ethylacetate and butylacetate, using untreated CNTs (UCNTs, acid-modified CNTs (ACNTs, and CF4 plasma-modified CNT (FCNTs. In each case, MWCNT content was 0.01 wt%, 0.05 wt%, 0.1 wt%, and 0.2 wt% with respect to the polymer. Morphology and mechanical properties were characterized by using scanning electron microscopy (SEM, Raman spectroscopy, as well as dynamic mechanical tests. The SEM results indicated that dispersion of ACNTs and especially FCNTs in FE was better than that of UCNTs. DMA indicated mechanical properties of FCNT composites were improved over ACNT and UCNT filled FE. The resulting electrical properties of the composites ranged from dielectric behavior to bulk conductivities of 10-2 Sm-1 and were found to depend strongly on the surface modification methods of MWCNTs.

  12. Search for modification of vector meson properties in nuclei

    International Nuclear Information System (INIS)

    Clarisse Tur

    2005-01-01

    QCD sum rules depict the atomic nucleus as being a medium with partially restored chiral symmetry. This property of the nucleus would imply that the properties of vector mesons, such as their mass and width, are modified when produced in the nuclear medium, since they are controlled by chiral symmetry and its spontaneous as well as explicit breaking in QCD. The g7 (or E01-112) experiment was therefore designed to look for medium effects on the properties of the light vector mesons (rho, omega, and phi) in photoproduction, through their rare leptonic decay into e+e-. This decay channel has been preferred to the two pion channel to avoid distorting the information by strong final interactions. The data for this experiment was taken in the fall of 2002 using the CLAS detector at the Jefferson Laboratory. A bremsstrahlung photon beam was sent on a target containing a liquid deuterium cell and several nuclear targets: C, Fe, Ti, and Pb. Remarkably clean e + e - invariant mass spectra were obtained thanks to the outstanding pion rejection with CLAS and its excellent mass resolution. They represent the first observation of the photoproduction of the rho, omega and phi mesons close to threshold via their rare decay into e+e-. A depletion of the omega and phi peaks was observed with increasing target density. This depletion was not seen as markedly in the simulations done using a code based on the BUU transport equations. The data was broken up per target and fitted using the unmodified rho, omega and phi invariant mass distributions from the BUU simulation code. The Dalitz decay contribution of the omega obtained with the same code as well as the combinatorial background shape from mixed e+e- events were also included in the fit. The overall quality of the fits is suggestive of no medium effects observed on the properties of the vector mesons from this data set. However the contribution from the Bethe-Heitler has to be fully understood and incorporated in the fits before a

  13. Electronic properties of a biased graphene bilayer

    International Nuclear Information System (INIS)

    Castro, Eduardo V; Lopes dos Santos, J M B; Novoselov, K S; Morozov, S V; Geim, A K; Peres, N M R; Nilsson, Johan; Castro Neto, A H; Guinea, F

    2010-01-01

    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and γ 4 (inter-layer), and the on-site energy Δ.

  14. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V.; Mandale, A.B.

    2002-01-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2 . Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping

  15. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    Science.gov (United States)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S. V.; Mandale, A. B.

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  16. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in; Mandale, A.B

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H{sub 2} and 75% N{sub 2}. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  17. Modification of sensing properties of metallophthalocyanine by an Ecr plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V.; Mandale, A.B

    2004-01-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2 . Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping. (author)

  18. Modification of gas diffusion layers properties to improve water management

    Directory of Open Access Journals (Sweden)

    Martin Tomas

    2017-09-01

    Full Text Available Abstract In this paper we report an approach to improve water management of commercial GDLs by introducing hydrophobicity patterns. Specifically, line and grid patterns have been created in the MPL side by laser radiation. For an in-depth investigation of these modified GDLs the current density distribution was monitored during fuel cell operation. Additionally, the physical properties of these materials were investigated by a number of ex situ methods such as Fourier transform infrared microscopy, electrochemical impedance spectroscopy and water vapor sorption. Furthermore, a comparison of the physical properties of the patterned GDLs with chemically modified GDLs (treated in H2SO4 and H2O2 is provided. Our results show a clearly improved homogeneity of current density distribution of the patterned GDLs compared to untreated GDLs. This observation is likely due to a reduced local hydrophobicity which facilitates water diffusion along the flow field of the fuel cell. However, performance of the fuel cell was not affected by the MPL irradiation. Graphical Abstract

  19. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  20. Fabrication and Electronic Properties of CZTSe

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Douglas M.; McCandless, Brian E.; Haight, Richard; Mitzi, David B.; Birkmire, Robert W.

    2014-06-09

    To solve the open circuit voltage limitation in Cu2ZnSn(SSe)4 further understanding of defects and the fundamental properties of the bulk material are needed. Although there are a number of literature reports of single crystals, the vast majority are made with a flux agent such as iodine which could potentially act as a dopant or affect defect properties in the material. In this report 2-5 mm single crystals of CZTSe of different compositions were achieved by solid state reaction of elements in a sealed ampoule below the melt temperature without a flux agent. The bulk composition of single crystals are compared to electronic and opto-electronic properties from Hall and photoluminescence (PL) measurements. Intergrain measurements showed record hole mobilities for pure CZTSe in excess of 100 cm2/Vs. PL intensity and uniformity were improved by removing inhomogeneities and surface phases through crystal polishing, followed by Br-methanol etching to remove polishing damage. Despite processing conditions more favorable to equilibrium crystal conditions, a broad PL peak is observed with significant luminescence below the band-gap similar to literature reports of band-tailing. A more detailed publication of results and further experiments will be reported in an upcoming Journal of Photovoltaics.

  1. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-01-01

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite

  2. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  3. Finite-size modifications of the magnetic properties of clusters

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Linderoth, Søren; Lindgård, Per-Anker

    1993-01-01

    relative to the bulk, and the consequent neutron-scattering cross section exhibits discretely spaced wave-vector-broadened eigenstates. The implications of the finite size on thermodynamic properties, like the temperature dependence of the magnetization and the critical temperature, are also elucidated. We...... find the temperature dependence of the cluster magnetization to be well described by an effective power law, M(mean) is-proportional-to 1 - BT(alpha), with a size-dependent, but structure-independent, exponent larger than the bulk value. The critical temperature of the clusters is calculated from...... the spin-wave spectrum by a method based on the correlation theory and the spherical approximation generalized to the case of finite systems. A size-dependent reduction of the critical temperature by up to 50% for the smallest clusters is found. The trends found for the model clusters are extrapolated...

  4. TANNED LEATHERS PROPERTIES MODIFICATION AS A RESULT OF ARTIFICIAL AGEING

    Directory of Open Access Journals (Sweden)

    ROŞU Dan

    2017-05-01

    Full Text Available Leather is a high tech material with different application fields, such as automotive, manufacturing of leatherwear articles or clothing and footwear. Leather is a biomaterial obtained by processing animal skins. Unfortunately, raw animal hides are practically inutilizable, due to their microbiological instability and are affected by rotting. Microbiological stability is achieved by tanning, when the protein is crosslinked, followed by drying. After crosslinking and drying, the new material shows the required properties of sustainability, availability and an esthetically pleasing aspect to the touch, making it available across its entire range of applications. From a structural point of view the animal skins are constituted of collagen, which is a fibrilar protein with a high degree of supramolecular organization in triple helix form that endows softness, elasticity and mechanical strength. High quality standards and lack of toxicity are required in all cases. Leather colour changes during exposure to light radiations are considered a consequence of the presence of some products with weak photochemical resistance during fabrication. The study aims to compare changes in properties of leathers obtained using mineral tanning agents such as Cr III salts and those obtained with the more environment-friendly technology using acid hydrolysis. Accelerated aging studies were conducted on tanned leathers by exposing the samples to UV radiation with different irradiation doses and two wavelengths (254 and 365 nm under controlled humidity and temperature conditions. Structural changes caused by irradiation were studied by FTIR. Colour changes on the sample surfaces were assessed during irradiation with the CIEL a*b* system. The colour parameters variation (L*, a*, b* and colour differences have been discussed in correlation with structural changes, tanning method and irradiation conditions.

  5. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M; Eckern, U; Romero, A H; Schwingenschlö gl, Udo

    2015-01-01

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  6. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M

    2015-12-21

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  7. Structural and electronic properties of thallium compounds

    International Nuclear Information System (INIS)

    Paliwal, Neetu; Srivastava, Vipul

    2016-01-01

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a_0), bulk modulus (B_0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  8. Structural and electronic properties of thallium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Neetu, E-mail: neetumanish@gmail.com [Department of Physics, AISECT University Bhopal, 464993 (India); Srivastava, Vipul [Department of Engineering Physics, NRI Institute of Research & Technology, Raisen Road, Bhopal, 462021 (India)

    2016-05-06

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  9. Tuning electron transport through a single molecular junction by bridge modification

    International Nuclear Information System (INIS)

    Li, Xiao-Fei; Qiu, Qi; Luo, Yi

    2014-01-01

    The possibility of controlling electron transport in a single molecular junction represents the ultimate goal of molecular electronics. Here, we report that the modification of bridging group makes it possible to improve the performance and obtain new functions in a single cross-conjugated molecular junction, designed from a recently synthesized bipolar molecule bithiophene naphthalene diimide. Our first principles results show that the bipolar characteristic remains after the molecule was modified and sandwiched between two metal electrodes. Rectifying is the intrinsic characteristic of the molecular junction and its performance can be enhanced by replacing the saturated bridging group with an unsaturated group. A further improvement of the rectifying and a robust negative differential resistance (NDR) behavior can be achieved by the modification of unsaturated bridge. It is revealed that the modification can induce a deviation angle about 4° between the donor and the acceptor π-conjugations, making it possible to enhance the communication between the two π systems. Meanwhile, the low energy frontier orbitals of the junction can move close to the Fermi level and encounter in energy at certain biases, thus a transport channel with a considerable transmission can be formed near the Fermi level only at a narrow bias regime, resulting in the improvement of rectifying and the robust NDR behavior. This finding could be useful for the design of single molecular devices.

  10. Dynamic properties of electrons in solids by neutron scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1980-12-01

    Illustrative cases of the use of neutron scattering in the study of the electronic properties of materials discussed here include scattering by localised electrons, narrow band materials and electron plasmas. (U.K.)

  11. Modification of polyimide wetting properties by laser ablated conical microstructures

    International Nuclear Information System (INIS)

    Least, Brandon T.; Willis, David A.

    2013-01-01

    Laser texturing of Kapton ® HN polyimide was performed by low-fluence ablation using a pulsed, frequency tripled (349 nm) Nd:YLF laser. The laser was scanned in two dimensions in order to generate texture over a large area. The laser overlap percentage and fluence were varied and the resulting texture was studied. The texture features were inspected by electron microscopy and energy dispersive X-Ray spectroscopy (EDS), while the static contact angle of de-ionized water was measured by a contact angle goniometer. Rounded bump features were formed at all fluences, which decreased in areal density with fluence and number of laser pulses. Conical microstructures or “cones” were also formed at most fluences. Cones were larger than the bumps and thus had lower areal density, which increased as a function of the number of laser pulses. The polyimide was hydrophilic before texturing, with a contact angle of approximately 76°. For most of the experimental conditions the contact angle increased as a result of texturing, with the contact angle exceeding 90° for some textured surfaces, and reaching values as high as 118°. In general, the surfaces with significant increases in contact angle had high density of texture features, either bumps or cones. The surfaces that experienced a decrease in contact angle generally had low density of texture features. The increase in contact angle from a wetting (θ 90°) cannot be explained by texturing alone. EDS measurements indicate that textured regions had higher carbon content than the untextured regions due to depletion of oxygen species. The increase in carbon content relative to the oxygen content increased the native contact angle of the surface, causing the transition from hydrophilic to hydrophobic behavior. The contact angle of a textured surface increased as the relative spacing of features (diameter to spacing) decreased.

  12. Modification of polyvinyl alcohol surface properties by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pukhova, I.V., E-mail: ivpuhova@mail.ru [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Kurzina, I.A. [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Savkin, K.P. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Laput, O.A. [National Research Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050 (Russian Federation); Oks, E.M. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation)

    2017-05-15

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 10{sup 14}, 1 × 10{sup 15} and 1 × 10{sup 16} ion/cm{sup 2} and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (−C=O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  13. Influence of titanium dioxide modification on the antibacterial properties

    Directory of Open Access Journals (Sweden)

    Rokicka Paulina

    2016-12-01

    Full Text Available Antibacterial properties of 15 titania photocatalysts, mono- and dual-modified with nitrogen and carbon were examined. Amorphous TiO2, supplied by Azoty Group Chemical Factory Police S.A., was used as titania source (Ar-TiO2, C-TiO2, N-TiO2 and N,C-TiO2 calcined at 300°C, 400°C, 500°C, 600°C, 700°C. The disinfection ability was examined against Escherichia coli K12 under irradiation with UV and artificial sunlight and in dark conditions. It has been found the development of new photocatalysts with enhanced interaction ability with microorganisms might be a useful strategy to improve disinfection method conducted under artificial sunlight irradiation. The efficiency of disinfection process conducted under artificial sunlight irradiation with carbon (C-TiO2 and carbon/nitrogen (N,C-TiO2 photocatalysts was similar as obtained under UV irradiation. Furthermore, during dark incubation, any toxicity of the photocatalyst was noted.

  14. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  15. Electron beam processing technology for modification of different types of cellulose pulps for production of derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Kukielka, A.; Mikolajczyk, W.; Starostka, P.; Stupinska, H.

    2002-01-01

    Institute of Nuclear Chemistry and Technology, Pulp and Paper Research Institute and Institute of Chemical Fibers carry out a joint research project in order to develop the radiation methods modification of cellulose pulps for production of cellulose derivatives such as carbamate (CC), carboxymethyl cellulose (CMC) and methylcellulose (MC). Three different types of textile pulps: Alicell (A); Borregaard (B), Ketchikan (K) and Kraft softwood (PSS) and hardwood (PSB) pulps have been irradiated with 10 MeV electron beam from LAE 13/9 linear accelerator with doses of 5, 10, 15, 20, 25 and 50 kGy. After electron beam treatment the samples of cellulose pulps have been examined by using of structural and physico-chemical methods. Electron paramagnetic resonance spectroscopy (EPR), gel permeation chromatography (GPC) and infrared spectroscopy (IRS) were applied for determination of structural changes in irradiated cellulose pulps. By means of analytical methods, such parameters as: viscosity, average degree of polymerization (DP) and α-cellulose contents were evaluated. Based on EPR and GPC investigations the relationship between concentrations of free radicals and decreasing polymerization degrees in electron beam treatment pulps has been confirmed. The carboxymethylcellulose, methylcellulose and cellulose carbamate were prepared using the raw material of radiation modified pulps. Positive results of investigations will allow for determination of optimum conditions for electron beam modification of selected cellulose paper and textile pulps. Such procedure leads to limit the amounts of chemical activators used in methods for preparation cellulose derivatives. The proposed electron beam technology is new approaches in technical solution and economic of process of cellulose derivatives preparation. (author)

  16. Electronic and transport properties of kinked graphene

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Toft; Gunst, Tue; Bøggild, Peter

    2013-01-01

    Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction for the ads......Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction...... for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%) for realistic radii of curvature (≈20 Å) and that adsorption along the linear bend leads to a stable linear kink. We compute the electronic transport properties of individual and multiple kink lines......, and demonstrate how these act as efficient barriers for electron transport. In particular, two parallel kink lines form a graphene pseudo-nanoribbon structure with a semimetallic/semiconducting electronic structure closely related to the corresponding isolated ribbons; the ribbon band gap translates...

  17. Electron beam deflection control system of a welding and surface modification installation

    Science.gov (United States)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  18. Electronic properties of lithium titanate ceramic

    International Nuclear Information System (INIS)

    Padilla-Campos, Luis; Buljan, Antonio

    2001-01-01

    Research on tritium breeder material is fundamental to the development of deuterium-tritium type fusion reactors for producing clean, non contaminating, electrical energy, since only energy and helium, a harmless gas, are produced from the fusion reaction. Lithium titanate ceramic is one of the possible candidates for the tritium breeder material. This last material is thought to form part of the first wall of the nucleus of the reactor which will provide the necessary tritium for the fusion and will also serve as a shield. Lithium titanate has advantageous characteristics compared to other materials. Some of these are low activation under the irradiation of neutrons, good thermal stability, high density of lithium atoms and relatively fast tritium release at low temperatures. However, there are still several physical and chemical properties with respect to the tritium release mechanism and mechanical properties that have not been studied at all. This work presents a theoretical study of the electronic properties of lithium titanate ceramic and the corresponding tritiated material. Band calculations using the Extended H kel Tight-Binding approach were carried out. Results show that after substituting lithium for tritium atoms, the electronic states for the latter appear in the middle of prohibited band gap which it is an indication that the tritiated material should behave as a semiconductor, contrary to Li 2 TiO 3 which is a dielectric isolator. A study was also carried out to determine the energetically most favorable sites for the substitution of lithium for tritium atoms. Additionally, we analyzed possible pathways for the diffusion of a tritium atom within the crystalline structure of the Li 2 TiO 3

  19. Electronic excitation induced modifications in elongated iron nanoparticle encapsulated multiwalled carbon nanotubes under ion irradiation

    Science.gov (United States)

    Saikiran, V.; Bazylewski, P.; Sameera, I.; Bhatia, Ravi; Pathak, A. P.; Prasad, V.; Chang, G. S.

    2018-05-01

    Multi-wall carbon nanotubes (MWCNT) filled with Fe nanorods were shown to have contracted and deformed under heavy ion irradiation. In this study, 120 MeV Ag and 80 MeV Ni ion irradiation was performed to study the deformation and defects induced in iron filled MWCNT under heavy ion irradiation. The structural modifications induced due to electronic excitation by ion irradiation were investigated employing high-resolution transmission electron microscopy, micro-Raman scattering experiments, and synchrotron-based X-ray absorption and emission spectroscopy. We understand that the ion irradiation causes modifications in the Fe nanorods which result in compressions and expansions of the nanotubes, and in turn leads to the buckling of MWCNT. The G band of the Raman spectra shifts slightly towards higher wavenumber and the shoulder G‧ band enhances with the increase of ion irradiation fluence, where the buckling wavelength depends on the radius 'r' of the nanotubes as exp[(r)0.5]. The intensity ratio of the D to G Raman modes initially decreases at the lowest fluence, and then it increases with the increase in ion fluence. The electron diffraction pattern and the high resolution images clearly show the presence of ion induced defects on the walls of the tube and encapsulated iron nanorods.

  20. Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments

    International Nuclear Information System (INIS)

    Gao Yukui

    2011-01-01

    Surface integrity changes of TA2 pure titanium including surface topography, microstructure and nanohardness distribution along surface layer were investigated by different techniques of low energy high current pulsed electron beam treatments (LEHCPEBTs). The surface topography was characterized by SEM. Moreover, the TEM observation and X-ray diffraction analysis were performed to reveal the surface modification mechanism of TA2 pure titanium by LEHCPEBTs. The surface roughness was modified by electron beam treatment and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM and TEM. The results show that the surface finish obtains good polishing quality and there is no phase transformation but the dislocations by LEHCPEBT. Furthermore, the nanohardness in the surface modified layer is improved. The remelt and fine-grain microstructure of surface layer caused by LEHCPEBTs are the main polishing mechanism and the reason of modification of surface topography and the increment in nanohardness is mainly due to the dislocations and fine grains in the modified layer induced by LEHCPEBT.

  1. Thermal-mechanical simulation of high-current pulsed electron beam surface modification process of pure aluminum

    International Nuclear Information System (INIS)

    Zou Jianxin; Qin Ying; Wu Aimin; Hao Shengzhi; Wang Xiaogang; Dong Chuang

    2004-01-01

    A mathematical physics model is established to describe the surface modification process of High Current Pulsed Electron Beams (HCPEB) of pure aluminum alloy. Computer simulation is used to reveal the phenomena of fast heating and cooling, melting, solidification, evaporation, and thermal stress wave associated with the HCPEB bombardment. The calculated melting depth is about 1-10 μm, which is close to the experimental results. The evaporated layer is at nanometer level, which can be omitted in the calculation of temperature field. The thermal stress wave, though as weak as about 0.1 MPa in peak amplitude (proportional to pulsed energy density), has strong impacts on material's structure and properties. (authors)

  2. Modification of the electronic transport in Au by prototypical impurities and interlayers

    KAUST Repository

    Fadlallah, Majida M.; Schuster, Cosima B.; Eckern, Ulrich; Schwingenschlö gl, Udo

    2010-01-01

    Electronic transport calculations for metallic interfaces based on density functional theory and a scattering theory on the Landauer-Büttiker level are presented. We study the modifications of the transport through Au due to prototypical impurities and interlayers. Our results show that the influence of S and Si impurities is well described in terms of simple vacancies. Metallic impurities and interlayers, on the other hand, have even more drastic effects, in particular when the Au s-d hybrid states at the Fermi energy are perturbed. The effects of a possible interface alloy formation are discussed in detail. © 2010 EPLA.

  3. Modification of graphite structure by irradiation, revealed by thermal oxidation. Examination by electronic microscopy

    International Nuclear Information System (INIS)

    Rouaud, Michel

    1969-01-01

    Based on the analysis of images obtained by electronic microscopy, this document reports the comparative study of the action of neutrons on three different graphites: a natural one (Ticonderoga) and two pyrolytic ones (Carbone-Lorraine and Raytheon). The approach is based on the modification of features of thermal oxidation of graphites by dry air after irradiation. Different corrosion features are identified. The author states that there seems to be a relationship between the number and shape of these features, and defects existing on the irradiated graphite before oxidation. For low doses, the feature aspect varies with depth at which oxidation occurs. For higher doses, the aspect remains the same [fr

  4. Modification of the electronic transport in Au by prototypical impurities and interlayers

    KAUST Repository

    Fadlallah, Majida M.

    2010-02-01

    Electronic transport calculations for metallic interfaces based on density functional theory and a scattering theory on the Landauer-Büttiker level are presented. We study the modifications of the transport through Au due to prototypical impurities and interlayers. Our results show that the influence of S and Si impurities is well described in terms of simple vacancies. Metallic impurities and interlayers, on the other hand, have even more drastic effects, in particular when the Au s-d hybrid states at the Fermi energy are perturbed. The effects of a possible interface alloy formation are discussed in detail. © 2010 EPLA.

  5. Modification of a scanning electron microscope for remote operation in a hot cell

    International Nuclear Information System (INIS)

    Reed, J.R.; Watson, H.E.; Smidt, F.A. Jr.

    1982-01-01

    Scanning electron microscopy (SEM) examination of broken fracture specimens is an essential part of the characterization of the failure mode of fracture toughness of specimens. The large specimen mass required for such examinations dictates the use of a shielded facility for performing such examinations on irradiated specimens. This report describes the modification of a commercial SEM for remote operation in a hot cell. The facility is used to examine specimens from several Navy and DOE-sponsored programs conducted at NRL which require the examination of radioactive materials

  6. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  7. Electronic and conformational properties of 2,3-benzodiazepine derivates

    International Nuclear Information System (INIS)

    Pelaggi, M.; Girlanda, R.; Chimirri, A.; Gitto, R.

    1996-01-01

    The molecular geometric and electronic structures of 2,3-benzodiazepine derivates have been studied by means of the MNDO-PM3 method. A number of electronic properties have been computed and examined in order to find indication of the role of the electronic characteristics of the different molecules and their pharmacological properties. Theoretical data indicate that both electronic and structural properties appear responsible for the varying degree of anticonvulsant activity exhibited by compounds 1-4

  8. Electronic and conformational properties of 2,3-benzodiazepine derivates

    Energy Technology Data Exchange (ETDEWEB)

    Pelaggi, M.; Girlanda, R. [Messina Univ. (Italy). Dip. di Fisica della Materia e Fisica dell`Ambiente; Chimirri, A.; Gitto, R. [Messina Univ. (Italy). Dip. Farmaco-Chimico

    1996-04-01

    The molecular geometric and electronic structures of 2,3-benzodiazepine derivates have been studied by means of the MNDO-PM3 method. A number of electronic properties have been computed and examined in order to find indication of the role of the electronic characteristics of the different molecules and their pharmacological properties. Theoretical data indicate that both electronic and structural properties appear responsible for the varying degree of anticonvulsant activity exhibited by compounds 1-4.

  9. Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Theppradit, Thawinan [Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2014-12-15

    The efficiency of modified silica (SiO{sub 2}) particles in the reinforcement of natural rubber (NR) vulcanizates was evaluated. The SiO{sub 2} particles were synthesized via a sol–gel reaction using tetraethyl orthosilicate as the precursor, and then the formed SiO{sub 2} particles were modified with methyl, vinyl or aminopropyl groups using methyltriethoxysilane, vinyltriethoxysilane or aminopropyltrimethoxysilane, respectively. Fourier transform infrared spectroscopy and elemental analysis confirmed the successful modification of the surface of the silica particles. The water contact angle measurement revealed the greater hydrophobicity of the three modified silica preparations compared to the unmodified SiO{sub 2}. NR vulcanizates filled with modified SiO{sub 2} particles were prepared and the mechanical, thermal and dynamic mechanical properties of composites were investigated. The morphology of composite materials was also investigated by scanning electron microscopy. The modified SiO{sub 2} particles were well dispersed in the NR matrix leading to the good compatibility between the rubber and filler, and so an improved cure, mechanical, thermal and dynamic mechanical properties of the composite vulcanizate materials. - Highlights: • Modification of SiO{sub 2} particles by MTES, VTES and APTES. • Improvement of hydrophobicity of SiO{sub 2} particle and compatibility between SiO{sub 2} and rubbery matrix. • Improvement of cure, mechanical, thermal, dynamic mechanical properties of NR vulcanizates.

  10. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    International Nuclear Information System (INIS)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-01-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  11. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    Science.gov (United States)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-05-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  12. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Gonzalez, G.; Krishnan, B.; Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K.; Shaji, S.

    2011-01-01

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  13. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Denise Ester O. [Polymer Research Laboratory, Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City 1101 Philippines (Philippines); Department of Chemical Engineering, University of the Philippines, Los Baños, College, Laguna 4031 Philippines (Philippines); Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T. [Polymer Research Laboratory, Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City 1101 Philippines (Philippines)

    2016-05-18

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  14. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  15. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Ota, Keishin, E-mail: ota@microphase.co.jp [Microphase Co., Ltd., Onigakubo 1147-9, Tsukuba, Ibaragi 300-2651 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Kunigami, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-15

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: Black-Right-Pointing-Pointer A modified phase-shifting electron holography was proposed. Black-Right-Pointing-Pointer The time variation of mean intensity and contrast of holograms were corrected. Black-Right-Pointing-Pointer These corrections lead to a great improvement of the resultant phase accuracy. Black-Right-Pointing-Pointer A phase accuracy of about 1/4000 rad was achieved from experimental results.

  16. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    International Nuclear Information System (INIS)

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki; Ota, Keishin; Matsuda, Tsuyoshi; Tonomura, Akira

    2012-01-01

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: ► A modified phase-shifting electron holography was proposed. ► The time variation of mean intensity and contrast of holograms were corrected. ► These corrections lead to a great improvement of the resultant phase accuracy. ► A phase accuracy of about 1/4000 rad was achieved from experimental results.

  17. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    Science.gov (United States)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  18. Properties of electronic emissions of semiconductors III-IV in a status of negative electron affinity

    International Nuclear Information System (INIS)

    Piaget, Claude

    1977-01-01

    This research thesis reports the use of various properties (electron emission, photo emission, secondary electron emission) to highlight the relationships between various solid properties (optical, electronic, structural properties), surfaces (clean or covered with adsorbates such as caesium and oxygen) and emission properties (quantum efficiency, energy distribution, and so on). The first part addresses applications, performance, physical properties and technological processes, and also problems related to the physics and chemistry of surfaces and adsorption layers. The second part reports a study of the main electron transport properties in emitters displaying a negative electron affinity, for example GaP. Some aspects of electron excitation by ultra-violet radiations and high energy electrons are studied from UV photo-emission properties and secondary electron emission. Then GaAs and similar pseudo-binary compounds are studied

  19. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    CERN Document Server

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  20. Modification of Color Centers by Electron Bombardment: Final Report CRADA No. TC-0460-93-A

    Energy Technology Data Exchange (ETDEWEB)

    Van Bibber, Karl [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alger, Don M. [Quali-Tech, Inc., Columbia, MO (United States)

    2000-11-30

    The purpose of the project was to: Identify those electron beam irradiation parameters most relevant to process quality and efficiency, to producing and modifying color centers in topaz. Develop and test improved radiation processing techniques, and evaluate their potential applicability to other types of semi-precious gems. Develop an optimized data base for the process and procedures for identifying and characterizing material from new and diverse sources. Transfer new processing technology to the private sector, and, until they are implemented industrially, to perform radiation dosing to partially satisfy existing excess demand. We planned to define the interaction between sample purity level, the physics of irradiation to achieve color cent-er modification on a reproducible basis and demonstration of the resulting process on a commercially viable basis. The primary deliverable was the increased knowledge base in terms of expanded understanding of the systematics of color center modification in materials, and an extensive database of electron beam parameters which would optimize the efficiency and quality of radiation processing of topaz from diverse sources. The radiation processing of these stones constitutes a deliverable to Quali-Tech by LLNL.

  1. Extraordinary electronic properties in uncommon structure types

    Science.gov (United States)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  2. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    Science.gov (United States)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  3. Electronic excitation induced structural and optical modifications in InGaN/GaN quantum well structures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Prabakaran, K.; Ramesh, R.; Jayasakthi, M.; Surender, S.; Pradeep, S. [Crystal Growth Centre, Anna University, Chennai (India); Balaji, M. [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai (India); Asokan, K. [Inter-University Accelerator Centre, New Delhi (India); Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai (India); Manonmaniam Sundaranar University, Tirunelveli (India)

    2017-03-01

    Highlights: • Effects on InGaN/GaN QW structures by Au{sup 7+} (100 MeV) ion have been investigated. • Structural defects of the irradiated InGaN/GaN QW structures are determined. • The intermixing effect in irradiated InGaN/GaN QW structures were understood. • Modified luminescence was observed in the PL spectra due to heavy ion irradiation. • Surface modification was observed due to the heavy ion irradiation. - Abstract: The present study focuses on the electronic excitation induced structural and optical properties of InGaN/GaN quantum well (QW) structures grown by metal organic chemical vapor deposition technique. These excitations were produced using Au{sup 7+} ion irradiation with 100 MeV energy. The X-ray rocking curves intensity and full width at half-maximum values corresponding to the planes of (0 0 0 2) and (1 0 −1 5) of the irradiated QW structures show the modifications in the screw and edge-type dislocation densities vary with the ion fluences. The structural characteristics using the reciprocal space mapping indicate the intermixing effects in InGaN/GaN QW structures. Atomic force microscopy images confirmed the presence of nanostructures and the surface modification due to heavy ion irradiation. The irradiated QW structures exhibited degraded photoluminescence intensity and a subsequent decrease in the yellow luminescence band intensity with the fluences of 1 × 10{sup 11} and 5 × 10{sup 12} ions/cm{sup 2} compared to the pristine QW structures.

  4. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties

    Directory of Open Access Journals (Sweden)

    Mirko eZaffagnini

    2013-11-01

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is a ubiquitous enzyme involved in glycolysis and shown, particularly in animal cells, to play additional roles in several unrelated non-metabolic processes such as control of gene expression and apoptosis. This functional versatility is regulated, in part at least, by redox post-translational modifications that alter GAPDH catalytic activity and influence the subcellular localization of the enzyme. In spite of the well established moonlighting (multifunctional properties of animal GAPDH, little is known about non-metabolic roles of GAPDH in plants. Plant cells contain several GAPDH isoforms with different catalytic and regulatory properties, located both in the cytoplasm and in plastids, and participating in glycolysis and the Calvin-Benson cycle. A general feature of all GAPDH proteins is the presence of an acidic catalytic cysteine in the active site that is overly sensitive to oxidative modifications, including glutathionylation and S-nitrosylation. In Arabidopsis, oxidatively-modified cytoplasmic GAPDH has been successfully used as a tool to investigate the role of reduced glutathione, thioredoxins and glutaredoxins in the control of different types of redox post-translational modifications. Oxidative modifications inhibit GAPDH activity, but might enable additional functions in plant cells. Mounting evidence support the concept that plant cytoplasmic GAPDH may fulfill alternative, non-metabolic functions that are triggered by redox post-translational modifications of the protein under stress conditions. The aim of this review is to detail the molecular mechanisms underlying the redox regulation of plant cytoplasmic GAPDH in the light of its crystal structure, and to provide a brief inventory of the well known redox-dependent multi-facetted properties of animal GAPDH, together with the emerging roles of oxidatively-modified GAPDH in stress signaling pathways in plants.

  5. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    Science.gov (United States)

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Use of modern methods of fibre surface modification to obtain the multifunctional properties of textile materials

    Directory of Open Access Journals (Sweden)

    Jocić Dragan

    2003-01-01

    Full Text Available The modern textile fibre treatments aim to obtain the required level of beneficial effect while attempting to confine the modification to the fibre surface. Recently, much attention has been focused on different physical methods of fibre surface modification, cold plasma treatment being considered as very useful. Moreover, there are efficient chemical methods available, such as peroxide, biopolymer and enzyme treatment. Some interesting combinations of these physical and chemical surface modification methods as means to modify fibre surface topography and thus controlling the surface-related properties of the fibre are presented in this paper. The properties obtained are discussed on the basis of the physico-chemical changes in the surface layer of the fibre, being assessed by wettability and contact angle measurements, as well as by FTIR-ATR and XPS analysis. The SEM and AFM technique are used to assess the changes in the fibre surface topography and to correlate these changes to the effectiveness, uniformity and severity of the textile fibre surface modification treatments.

  7. Electronic properties of superlattices on quantum rings.

    Science.gov (United States)

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  8. The Influence of Biochemical Modification on the Properties of Adhesive Compounds

    OpenAIRE

    Anna Rudawska; Izabela Haniecka; Magdalena Jaszek; Monika Osińska-Jaroszuk

    2016-01-01

    The main objective of this study was to determine the effect of biochemical modification of epoxy adhesive compounds on the mechanical properties of a cured adhesive exposed to various climatic factors. The epoxy adhesive was modified by lyophilized fungal metabolites and prepared by three methods. Additionally, the adhesive compound specimens were seasoned for two months at a temperature of 50 °C and 50% humidity in a climate test chamber, Espec SH 661. The tensile strength tests of the adh...

  9. Effect of chemical modification on reduction and sorptive properties of chars from hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Stanczyk, K.; Miga, K.; Fabis, G.; Jastrzab, K. [Polskiej Akademii Nauk, Gliwice (Poland)

    1998-01-01

    Hydropyrolysis of bituminous coal and lignite as way of synthesis of adsorbents has been applied. Chemical modification of chars based on simultaneous carbonization of coal and plastics containing sulfur and nitrogen has been carried out. It was stated that modified chars exhibit better reduction and sorptive properties than non-modified and that modified adsorbents made of lignite exceed commercial ones. 7 refs., 4 figs., 3 tabs.

  10. Electronic properties of high Tc superconductors

    International Nuclear Information System (INIS)

    Rojo, A.G.

    1989-01-01

    Using analytical and numerical methods, the electronic properties of the copper-oxygen plane in the normal phase of high Tc superconductors are described. Using the slave-boson technique in the saddle point, a theory of the metal insulator transition which generalizes the notions of a Mott insulator to the case of more than a single band for those planes is presented. A phase-diagram is obtained in the parameter space and effective masses, optical gaps and metallization are calculated as a function of the number of carriers. Based on the experimental evidence, the theory permits classification of superconducting compounds as charge transfer insulators in the stoichiometric case. The insulator state is characterized by a non-zero optical gap and a divergent effective mass which corresponds to the breakage of a Fermi-liquid scheme. The results obtained are applicable to metal-transition-oxides whose behaviour has been traditionally controversial and it is concluded that it is necessary to broaden the meaning of a Mott insulator to the case of more than a single band to better understand them. Based on the ideas of group renormalization in a real space, a lattice approximation is presented, which allows: a) To complement the treatment of slave-bosons in phase diagrams and optical gaps; b) Identification of an attraction mechanism between carriers originating from purely repulsive interactions. Numerical calculations in small clusters show the existence of a pairing mechanism showing a superconducting instability from a charge transfer insulator. (Author) [es

  11. Electronic properties of asymmetrical quantum dots dressed by laser field

    Energy Technology Data Exchange (ETDEWEB)

    Kibis, O.V. [Department of Applied and Theoretical Physics, Novosibirsk State Technical University, Karl Marx Avenue 20, 630092 Novosibirsk (Russian Federation); Slepyan, G.Ya.; Maksimenko, S.A. [Institute for Nuclear Problems, Belarus State University, Bobruyskaya St. 11, 220050 Minsk (Belarus); Hoffmann, A. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2012-05-15

    In the present paper, we demonstrate theoretically that the strong non-resonant interaction between asymmetrical quantum dots (QDs) and a laser field results in harmonic oscillations of their band gap. It is shown that such oscillations change the spectrum of elementary electron excitations in QDs: in the absence of the laser pumping there is only one resonant electron frequency, but QDs dressed by the laser field have a set of electron resonant frequencies. One expects that this modification of elementary electron excitations in QDs can be observable in optical experiments. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Modification of structure and properties of tin – fullerite films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2013-01-01

    By methods of raster electronic, atomic force and electronic force microscopy and X-ray diffraction the research of change of structure, phase composition and local electronic properties of the tin - fullerite films, subjected to implantation by B + ions (E = 80 keV, F = 5×10 17 ions/cm 2 ) are submitted. It is established, that as a result of boron ion implantation of two-layered tin - fullerite films, tin and fullerite interfusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with heterogeneous local electric properties. (authors)

  13. Enhanced Mechanical Properties of Poplar Wood by a Combined-Hydro-Thermo-Mechanical (CHTM) Modification

    OpenAIRE

    Houri Sharifnia; Behbood Mohebbi

    2011-01-01

    The current research explains an innovated technique to enhanced mechanice properties of poplar wood by combination of two modification techniques, hydrothermal and mechanical. Blocks of 50×55×500mm3 were cut from poplar wood and treated in a reactor at 120, 150 and 180°C for 30 min. Afterwards, the blocks were pressed at 180°C for 20 min at a pressure of 80 bar to achieve a compression set of 60% in radial direction. Density and bending properties (moduli of elasticity and rupture) as well a...

  14. Surface modification of additive manufactured metal products by an intense electron beam

    Science.gov (United States)

    Teresov, A. D.; Koval, N. N.; Ivanov, Yu F.; Petrikova, E. A.; Krysina, O. V.

    2017-11-01

    On the example of VT6 titanium alloy it is shown that successive surface modification of additive manufactured metal specimens in vacuum at an argon pressure of 3.5·10-2 by ten pulses with 200 μs, 45 J/cm2 and then by three pulses with 50 μm, 20 J/cm2 provides a considerable decrease in their porosity and surface roughness (20 times for Ra) while their surface microhardness, friction coefficient, and wear level remain almost unchanged. After electron beam irradiation, the ultimate tensile strength of the material increases 1.33 times, and its tensile strain 1.18 times. For specimens obtained by conventional metallurgy and irradiated in the same modes, no such effects are observed.

  15. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    International Nuclear Information System (INIS)

    Krumov, E.; Starbov, N.; Starbova, K.; Perea, A.; Solis, J.

    2009-01-01

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO 2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO 2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO 2 based thin film catalysts is discussed.

  16. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  17. Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2017-11-01

    Full Text Available This work focuses on the selectivity modification of ceramic membranes after a mild alkaline treatment. Filtration of pure salt-water solutions was carried out with commercial titania membranes before and after the treatment. After treatment, the rejection of NaF significantly decreased, while the rejection of NaCl and NaBr increased. Additionally, NaI and Na2SO4 remained close to zero. Pore size and electrical charge being almost unchanged, only significant modifications in the dielectric effects can explain this modification of selectivity. Therefore, the surface chemistry and the interaction (nature and magnitude with the solvent and with the species present in the solution appear to be modified by the alkaline treatment. This trend is also illustrated by discussing the electric and the dielectric properties that were numerically identified before and after treatment. The alkaline treatment significantly decreased the apparent dielectric constant of NaCl-water solution in the pore, highlighting the rejection of sodium chloride. Contrariwise, the modification of the surface chemistry increased the apparent dielectric constant of NaF-water solution by promoting fluoride transmission.

  18. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    Science.gov (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Radiation modification and interaction mechanism of polypropylene and polyethylene by protons and electrons

    International Nuclear Information System (INIS)

    Wang Guanghou

    1988-10-01

    A systematic investigation of radiation effects on isotactic polypropylene (PP) and low-density polyethylene (PE) films by protons and electrons is reported. Electrons can make polyethylene cross-linked and polypropylene crached while protons can improve the PP mechanical properties and deteriorate polyethylene with increasing the irradiation dose. The structural analysis shows that conversion between α and β phases occurs and the crystallinity remains constant in the electron-irradiated polypropylene whereas the network structure is formed by allyl-type radicals in the e - -irradiated polyethylene. The infrared spectra indicate that conformational changes have taken place in the polypropylene under proton bombardment, such as the transition from an ordered to a disordered state in the crystalline region, the formation of double bonds as well as trans-conformations. This leads to the cross-linking between macromolecules of polypropylene at the proper irradiation doses, thus enhancing its mechanical properties. The cross-linking of polypropylene by proton bombardment observed and its properties may have some potential applications

  20. Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and Photovoltaics

    KAUST Repository

    Ezzeddine, Alaa

    2015-10-01

    Ever since their discovery, Carbon nanotubes (CNTs) have been renowned to be potential candidates for a variety of applications. Nevertheless, the difficulties accompanied with their dispersion and poor solubility in various solvents have hindered CNTs potential applications. As a result, studies have been developed to address the dispersion problem. The solution is in modifying the surfaces of the nanotubes covalently or non-covalently with a desired dispersant. Various materials have been employed for this purpose out of which polymers are the most common. Non-covalent functionalization of CNTs via polymer wrapping represents an attractive method to obtain a stable and homogenous CNTs dispersion. This method is able to change the surface properties of the nanotubes without destroying their intrinsic structure and preserving their properties. This thesis explores and studies the surface modification and solublization of pristine single and multiwalled carbon nanotubes via a simple solution mixing technique through non-covalent interactions of CNTs with various anionic and cationic conjugated polyelectrolytes (CPEs). The work includes studying the interaction of various poly(phenylene ethynylene) electrolytes with MWCNTs and an imidazolium functionalized poly(3-hexylthiophene) with SWCNTs. Our work here focuses on the noncovalent modifications of carbon nanotubes using novel CPEs in order to use these resulting CPE/CNT complexes in various applications. Upon modifying the CNTs with the CPEs, the resulting CPE/CNT complex has been proven to be easily dispersed in various organic and aqueous solution with excellent homogeneity and stability for several months. This complex was then used as a nanofiller and was dispersed in another polymer matrix (poly(methyl methacrylate), PMMA). The PMMA/CPE/CNT composite materials were cast or electrospun depending on their desired application. The presence of the CPE modified CNTs in the polymer matrix has been proven to enhance

  1. Improvement of carbon fibre surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Eddy Segura Pino; Luci Diva Brocardo Machado; Claudia Giovedi

    2006-01-01

    dose rate of 44.81 kGy·s -1 to obtain equal entrance-equal exit dose in the sample. Overall doses applied were 20, 50, 80, 100, 200, 300, 400 and 500 kGy. EB radiation was applied on the carbon fiber itself before preparing test specimens. Blank samples for mechanical test were made with carbon fiber rovings that were not irradiated. Tensile strength measurements were carried out with resin-impregnated thermal cured specimens according to ASTM D4018, to overcome the difficulties to perform mechanical tests directly with carbon filaments. For impregnation, the resin formulation was commercial epoxy, a hardner and an accelerator for thermally cured. Tensile measurements were performed using an Instron Universal testing machine model 4206 with extensometer in accordance to ASTM E 83. SEM micrographs of the fiber surfaces from fractured samples were obtained using a scanning electron microscope model JXA-6400 (JEOL). Experimental results have shown that EB irradiation improved the tensile strength of carbon fibers samples.The behavior of the mechanical performance as a function of radiation dose is presented in Figure 1. The maximum value in tensile strength (7%) was reached at about 250 kGy, in comparison with the tensile strength of carbon fiber roving samples without irradiation. For samples irradiated with doses over 250 kGy, the values of tensile strength decrease, possibly due to degradation of the sizing material. These results indicate modifications on the carbon fiber surface characteristics and improvement in the fiber-matrix adhesion properties. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. Test specimens from non-irradiated carbon fibers presented a highly scattered aspect with many separated filaments giving a very disordered aspect. On the other hand, test specimens prepared from irradiated carbon fiber have shown a more organized morphology, with high number of

  2. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  3. The effects of high electronic energy loss on the chemical modification of polyimide

    CERN Document Server

    SunYouMei; Jin Yun Fan; Liu Chang Long; LiuJie; Wang Zhi Guang; Zhang Qi; Zhu Zhi Yong

    2002-01-01

    In order to observe the role of electronic energy loss (dE/dX) sub e on chemical modification of polyimide (PI), the multi-layer stacks (corresponding to different dE/dX) were irradiated by different swift heavy ions (1.37 GeV Ar sup 4 sup 0 , 1.98 GeV Kr sup 8 sup 4 , 1.755 GeV Xe sup 1 sup 3 sup 6 and 2.636 GeV U sup 2 sup 3 sup 8) under vacuum and room temperature. The chemical changes of modified PI films were studied by Fourier transform infrared (FTIR) and ultraviolet/visible (UV/Vis) absorption spectroscopy. The degradation of PI was investigated in the fluence range from 1x10 sup 1 sup 0 to 5.5x10 sup 1 sup 2 ions/cm sup 2 and different electronic energy loss from 0.77 to 11.5 keV/nm. The FTIR results show the absorbance of the typical function group decrease exponentially as a function of fluence. The alkyne end group was found after irradiation and its formation radii were 5.6 and 5.9 nm corresponding to 8.8 and 11.5 keV/nm Xe irradiation respectively. UV/Vis analysis indicates the radiation induced...

  4. Improvement of the luminescent properties of cadmium sulfide quantum dots by a post-synthesis modification

    Energy Technology Data Exchange (ETDEWEB)

    López, Israel; Gómez, Idalia, E-mail: maria.gomezd@uanl.edu.mx

    2014-11-15

    Here the improvement of the luminescent properties of CdS quantum dots by a post-synthesis modification with aqueous solutions of NaOH at different concentrations is presented. The CdS quantum dots were synthesized by a microwave-assisted method using citrate ions as stabilizer. The addition of the hydroxide ions increased the intensity of the orange-red emission by about 80%. Besides, a violet-blue emission was achieved by means of this post-synthesis modification. The hydroxide ions control the precipitation equilibria of the CdS and Cd(OH){sub 2}, dissolving and precipitating the surface of the quantum dots. The NaOH treatment increases the number of traps, which produces less band-edge and more deep-trap emission, which explains the decrease and increase in the intensity of the violet-blue and orange-red emissions, respectively.

  5. Improvement of the luminescent properties of cadmium sulfide quantum dots by a post-synthesis modification

    International Nuclear Information System (INIS)

    López, Israel; Gómez, Idalia

    2014-01-01

    Here the improvement of the luminescent properties of CdS quantum dots by a post-synthesis modification with aqueous solutions of NaOH at different concentrations is presented. The CdS quantum dots were synthesized by a microwave-assisted method using citrate ions as stabilizer. The addition of the hydroxide ions increased the intensity of the orange-red emission by about 80%. Besides, a violet-blue emission was achieved by means of this post-synthesis modification. The hydroxide ions control the precipitation equilibria of the CdS and Cd(OH) 2 , dissolving and precipitating the surface of the quantum dots. The NaOH treatment increases the number of traps, which produces less band-edge and more deep-trap emission, which explains the decrease and increase in the intensity of the violet-blue and orange-red emissions, respectively

  6. Effect of thermal modification on the physical properties of juvenile and mature woods of Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Fred Willians Calonego

    Full Text Available This study aimed to evaluate the effect of thermal treatment on the physical properties of juvenile and mature woods of Eucalyptus grandis. Boards were taken from 30-year-old E. grandis trees. The boards were thermally modified at 180 °C in the Laboratory of Wood Drying and Preservation at UNESP, Botucatu, Sao Paulo state, Brazil. The results showed that thermal modification caused: (1 decrease of 6.8% in the density at 0% equilibrium moisture content of mature wood; (2 significant decreases of 14.7% and 35.6% in the maximum volumetric swellings of juvenile and mature woods, respectively; (3 significant decreases of 13.7% and 21.3% in the equilibrium moisture content of juvenile and mature woods, respectively. The influence of thermal modification in juvenile wood was lower than in mature wood and caused greater uniformity in the physical variations between these types of wood in E. grandis.

  7. Effects of deformation on the electronic properties of B-C-N nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S., E-mail: sazevedo@fisica.ufpb.br [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58059-900 Joao Pessoa-PB (Brazil); Rosas, A. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58059-900 Joao Pessoa-PB (Brazil); Machado, M. [Departamento de Fisica, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900 Pelotas-RS (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitoria da Conquista, Av. Amazonas 3150, 45030-220 Vitoria da Conquista-BA (Brazil); Chacham, H. [Departamento de Fisica, ICEX, Universidade Federal de Minas Gerais, Caixa Postal 702, 30123-970 Belo Horizonte-MG (Brazil)

    2013-01-15

    We apply first-principles methods, using density functional theory, to investigate the effects of flattening deformation on the electronic properties of BC{sub 2}N and C-doped BNNTs. Four different types of BC{sub 2}N structures are considered. Two of them are semiconductors, and the radial compression produces a significant reduction of the energy band gap. The other two types of structures are metallic, and the effect of radial compression is quite distinct. For one of them it is found the opening of a small band gap, and for the other one no changes are observed. For C-doped tubes, it is also found that the electronic properties undergo significant modifications when subjected to radial compression. - Graphical Abstract: We apply first-principles methods, using density functional theory, to investigate the effects of flattening deformation on the electronic properties of BC{sub 2}N and C-doped BNNTs. Four different types of BC{sub 2}N structures are considered. Two of them are semiconductors, and the radial compression produces a significant reduction of the energy band gap. The other two types of structures are metallic, and the effect of radial compression is quite distinct. For one of them it is found the opening of a small band gap, and for the other one no changes are observed. For C-doped tubes, it is also found that the electronic properties undergo significant modifications when subjected to radial compression. Highlights: Black-Right-Pointing-Pointer We investigated electronic properties of flattened BC{sub 2}N nanotubes. Black-Right-Pointing-Pointer The electronic states depend strongly on compression. Black-Right-Pointing-Pointer It is studied flattened BN nanotubes doped with a carbon atom. Black-Right-Pointing-Pointer The flattened C-doped structures, presents a significant reduction of the gap.

  8. Effects of nuclear elastic scattering and modifications of ion-electron equilibration power on advanced-fuel burns

    International Nuclear Information System (INIS)

    Galambos, J.D.

    1983-01-01

    The effects of Nuclear Elastic Scattering (NES) of fusion products and modifications of the ion-electron equilibration power on D-T and D-based advanced-fuel fusion plasmas are presented here. The processes causing the modifications to the equilibration power included here are: (1) depletion of low-energy electrons by Coulomb collisions with the ions; and (2) magnetic field effects on the energy transfer between the ions and the electrons. Both NES and the equilibration modifications affect the flow of power to the plasma ions, which is an important factor in the analysis of advanced-fuels. A Hot Ion Mode (HIM) analysis was used to investigate the changes in the minimum ignition requirements for Cat-D and D- 3 He plasmas, due to the changes in the allowable T/sub i/T/sub e/ for ignition from NES and equilibration modifications. Both of these effects have the strongest influence on the ignition requirements for high temperature (>50 keV), low beta (<15%) plasmas, where the cyclotron radiation power loss from the electrons (which is particularly sensitive to changes in the electron temperature) is large

  9. Modification of optical and electrical properties of chemical bath deposited SnS using O{sub 2} plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, A. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Martínez, H., E-mail: hm@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Calixto-Rodríguez, M. [Centro de Investigación en Energía, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Avellaneda, D. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, México (Mexico); Reyes, P.G. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Flores, O. [Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico)

    2013-06-15

    In this paper, we report modifications of structural and optical, electrical properties that occur in tin sulphide (SnS) treated in O{sub 2} plasma. The SnS thin films were deposited by chemical bath deposition technique. The samples were treated in an O{sub 2} plasma discharge at 3 Torr of pressure discharge, a discharge voltage of 2.5 kV and 20 mA of discharge current. The prepared and treated thin films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The photoconductivity and electrical effects of SnS have been studied. The SnS thin films had an orthorhombic crystalline structure. With the plasma treatment the optical gap and electrical properties of the SnS films changed from 1.61 to 1.84 eV, for 3.9 × 10{sup 5} to 10.42 Ω cm, respectively. These changes can be attributed to an increase in electron density, percolation effects due to porosity, surface degradation/etching that is an increase in surface roughness, where some structural changes related to crystallinity occurs like a high grain size as revealed by SEM images.

  10. Enhancement of Nutritional and Antioxidant Properties of Peanut Meal by Bio-modification with Bacillus licheniformis.

    Science.gov (United States)

    Yang, Xinjian; Teng, Da; Wang, Xiumin; Guan, Qingfeng; Mao, Ruoyu; Hao, Ya; Wang, Jianhua

    2016-11-01

    Peanut meal (PM) is limited in practical use (feed or food) from imbalance of amino acid profile and denaturation of protein. Fermentation was used to promote its nutritional and functional properties by single-factor experiments and orthogonal experiments. Results showed that the nutritional properties of fermented peanut meal (crude protein content, dry matter content, ash content, acid soluble oligopeptides content, in vitro digestibility, and content of organic acids) had a significant increase (P implied that the nutritional and antioxidant properties of peanut meal were improved effectively by biological modification, which could be valuable in terms of nutrition and protein resources. It is great of importance to meet requirement of raw materials for husbandry in China when facing a huge lacking of feedstuff, especially for protein feed with an over 80 % import amount depending from other countries yearly.

  11. Fundamental Studies of Irradiation-Induced Modifications in Microstructural Evolution and Mechanical Properties of Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Heuser, Brent; Hosemann, Peter; Liu, Xiang

    2018-04-24

    This final technical report summarizes the research performed during October 2014 and December 2017, with a focus on investigating the radiation-induced microstructural and mechanical property modifications in optimized advanced alloys for sodium-cooled fast reactor (SFR) structural applications. To accomplish these objectives, the radiation responses of several different advanced alloys, including austenitic steel Alloy 709 (A709) and 316H, and ferritic/ martensitic Fe–9Cr steels T91 and G92, were investigated using a combination of microstructure characterizations and nanoindentation measurements. Different types of irradiation, including ex situ bulk ion irradiation and in situ transmission electron microscopy (TEM) ion irradiation, were employed in this study. Radiation-induced dislocations, precipitates, and voids were characterized by TEM. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and/or atom probe tomography (APT) were used to study radiation-induced segregation and precipitation. Nanoindentation was used for hardness measurements to study irradiation hardening. Austenitic A709 and 316H was bulk-irradiated by 3.5 MeV Fe++ ions to up to 150 peak dpa at 400, 500, and 600°. Compared to neutron-irradiated stainless steel (SS) 316, the Frank loop density of ion-irradiated A709 shows similar dose dependence at 400°, but very different temperature dependence. Due to the noticeable difference in the initial microstructure of A709 and 316H, no systematic comparison on the Frank loops in A709 vs 316H was made. It would be helpful that future ion irradiation study on 316 stainless steel could be conducted to directly compare the temperature dependence of Frank loop density in ion-irradiated 316 SS with that in neutron-irradiated 316 SS. In addition, future neutron irradiation on A709 at 400–600° at relative high dose (>10 dpa) can be carried out to compare with ion-irradiated A709. The radiation

  12. Effect of Rice Husk Surface Modification by LENR the on Mechanical Properties of NR/ HDPE Reinforced Rice Husk Composite

    International Nuclear Information System (INIS)

    Rahmadini Syafri; Ishak Ahmad; Ibrahim Abdullah

    2011-01-01

    Surface modification of rice husk (RH) with alkali pre-treatment (NaOH solution 5 % w/ v) was carried out at the initial state to investigate the effect of surface treatment of fibre on the surface interaction between fibre and rubber. Further modification of RH surfaces after alkali treatment was using Liquid Epoxidized Natural Rubber (LENR) coating at three concentrations, 5 %, 10 %, and 20 % wt LENR solution in toluene. Interfacial morphology and chemical reactions between RH fibre and rubber were analyzed by FTIR and Scanning Electron Microscope (SEM). It was found that 10 % wt LENR solution gave the optimum interaction between fibre and rubber. Matrix and composite blends derived from 60 % natural rubber (NR), 40 % high density polyethylene (HDPE) reinforced with RH fibre were prepared using an internal mixer (Brabender Plasticoder). Result showed that pre-treatment of RH treated with 5 % NaOH followed by treatment with 10 % LENR solution given the maximum interaction between fibre and matrix that gave rise to better mechanical properties of the composites. (author)

  13. Effect of modification with 1,4-α-glucan branching enzyme on the rheological properties of cassava starch.

    Science.gov (United States)

    Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng

    2017-10-01

    Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nano-diamonds surface modifications: understanding of electron exchange mechanisms and evidence of a therapeutic effect

    International Nuclear Information System (INIS)

    Petit, Tristan

    2013-01-01

    In this thesis, a therapeutic effect of nano-diamonds (NDs) has been evidenced by investigating the role of NDs surface chemistry on their electronic properties. More precisely, the generation of reactive oxygen species from detonation NDs under ionizing radiation, which could improve current radiotherapy treatments, has been demonstrated. To this end, surface treatments facilitating electron transfer from NDs to their environment, namely hydrogenation and surface graphitization, were developed. Experimental conditions ensuring an efficient hydrogenation by hydrogen plasma were determined under ultrahigh vacuum, before being used to prepare large quantities of NDs in powder phase. A similar procedure was applied to the surface graphitization of NDs, performed by annealing under vacuum at high temperature. The impact of such surface treatments on the electronic interaction properties of NDs has been investigated under ambient air and after dispersion in water. These surface treatments induce a positive Zeta potential to NDs in water, which origin has been discussed. Finally, their interactions with human tumor cells were observed. Radiosensitization of tumor cells using NDs under gamma irradiation was demonstrated, opening new perspectives for NDs in nano-medicine. (author) [fr

  15. Electronic excitation induced modification in fullerene C{sub 70} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pooja [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Singhal, R., E-mail: rsinghal.phy@mnit.ac.in [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Banerjee, M.K. [Department of Metallurgical & Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India); Vishnoi, R. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Department of Physics, Vardhman - PG College, Bijnor 246701, UP (India); Kaushik, R. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 (India); Department of Physics, Shri K.K. Jain - PG College, Khatauli, UP (India); Singh, F. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2016-07-15

    Fullerene C{sub 70} thin films were deposited by resistive heating on glass substrates and the thickness were approximated to be 150 nm. The effect of energy deposition by 55 MeV Si ions on the optical and structural properties of the prepared thin film samples is investigated. The samples were irradiated with 55 MeV Si ions within fluence range from 1 × 10{sup 12} to 3 × 10{sup 13} ions/cm{sup 2}. For optical studies, the pristine and the Si ion irradiated samples are examined by UV–visible absorption spectroscopy and Raman spectroscopy. UV–visible absorption studies reveal that the absorption peaks of irradiated samples decrease with a decrease in the band gap of the thin films. The damage cross-section (σ) and radius of damaged cylindrical zone (r) are determined as ∼0.6 × 10{sup −13} cm{sup 2} and ∼1.41 nm, respectively from the Raman spectra. Raman studies also suggest that at higher fluence (up to 3 × 10{sup 13} ions/cm{sup 2}), the damage caused by the SHI results in partial amorphization of fullerene C{sub 70} thin film. Modification in the surface properties has been investigated by atomic force microscopy; it has revealed that the roughness decreases and average particle size increases with the increase in fluences.

  16. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    International Nuclear Information System (INIS)

    Nikolaev, A.G.; Yushkov, G.Yu.; Oks, E.M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E.S.; Brown, I.G.

    2014-01-01

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material

  17. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  18. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Harnisch, Jennifer Anne [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  19. Valence electronic properties of porphyrin derivatives.

    Science.gov (United States)

    Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P

    2010-09-28

    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.

  20. The electronic properties of mixed metal oxides

    International Nuclear Information System (INIS)

    Cussen, E.J.

    1999-01-01

    The properties of Fe and Mn in a variety of perovskite-related crystal structures have been studied by X-ray and neutron diffraction, magnetometry, high resolution electron microscopy and Moessbauer spectroscopy. The structure of Sr 2 FeTaO 6 is of the GdFeO 3 type with a disordered arrangement of Fe and Ta over the octahedrally coordinated sites in contrast to the partial ordering, 0.795(6)Fe/0.205(6)Sb, observed in Sr 2 FeSbO 6 . Sr 2 FeTaO 6 is a spin glass below 23 K whereas Sr 2 FeSbO 6 forms a type I antiferromagnetically ordered phase below T N = 37(2) K with an ordered moment of 3.06(9) μ B Fe -1 at 1.5 K on the Fe-rich site. Susceptibility measurements in the magnetically dilute series Sr 2 Fe 1-x Ga x TaO 6 indicate that magnetic ordering in these Fe 3+ perovskites is partially controlled by next-nearest-neighbour superexchange. A new 15R perovskite structure containing face-sharing dimers of octahedra linked to one another by vertices or bridging octahedra has been - found for the composition SrMn 0.915(5) Fe 0.085(5) O 2.979(3) . The Mn 4+ cations align antiferromagnetically below T N = 220(5) K showing an ordered moment of 2.25(3) μ B at 3 K. The Fe cations remain disordered to 3 K. This composition forms a 6-layered hexagonal perovskite in the temperature range 1200 6 Mn 4 MO 15 (M = Cu, Zn) form pseudo 1-dimensional phases related to Ba 6 Ni 5 O 15 . The trigonal prismatic sites in this structure are preferentially occupied by Zn/Cu; the latter is displaced from the centre of the trigonal prism to give pseudo square-planar coordination. At 1.7 K antiferromagnetic superexchange within a highly frustrated crystal structure leads to a magnetic structure exhibiting rotation of 120 deg. between spins in neighbouring chains. The magnetic moments refined to 0.7(1) and 0.6(1) μ B per octahedral site in the Cu and Zn compounds respectively. The magnetic susceptibilities have been rationalised in terms of 1-dimensional ordering of the octahedrally

  1. Functional significance of O-GlcNAc modification in regulating neuronal properties.

    Science.gov (United States)

    Hwang, Hongik; Rhim, Hyewhon

    2018-03-01

    Post-translational modifications (PTMs) covalently modify proteins and diversify protein functions. Along with protein phosphorylation, another common PTM is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and/or threonine residues. O-GlcNAc modification is similar to phosphorylation in that it occurs to serine and threonine residues and cycles on and off with a similar time scale. However, a striking difference is that the addition and removal of the O-GlcNAc moiety on all substrates are mediated by the two enzymes regardless of proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation can interact or potentially compete with phosphorylation on serine and threonine residues, and thus serves as an important molecular mechanism to modulate protein functions and activation. However, it has been challenging to address the role of O-GlcNAc modification in regulating protein functions at the molecular level due to the lack of convenient tools to determine the sites and degrees of O-GlcNAcylation. Studies in this field have only begun to expand significantly thanks to the recent advances in detection and manipulation methods such as quantitative proteomics and highly selective small-molecule inhibitors for OGT and OGA. Interestingly, multiple brain regions, especially hippocampus, express high levels of both OGT and OGA, and a number of neuron-specific proteins have been reported to undergo O-GlcNAcylation. This review aims to discuss the recent updates concerning the impacts of O-GlcNAc modification on neuronal functions at multiple levels ranging from intrinsic neuronal properties to synaptic plasticity and animal behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Correlation of CVD Diamond Electron Emission with Film Properties

    Science.gov (United States)

    Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.

    1996-03-01

    Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.

  3. Effect of electron beam on the properties of electron-acoustic rogue waves

    Science.gov (United States)

    El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.

    2015-04-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  4. Effects of the Nanostructured Fe-V-Nb Modificators on the Microstructure and Mechanical Properties of Si-Mn Steel

    Directory of Open Access Journals (Sweden)

    Tiebao Wang

    2012-01-01

    Full Text Available The nanostructured Fe-V-Nb master alloy was prepared in vacuum rapid quenching furnace and then was added in the steel melts as modificators before casting. Next, the effects of the nanostructured Fe-V-Nb modificators on the microstructure and mechanical properties of the steel were studied. The results show that the grain size of the steel has been effectively refined, which is mainly because the dispersed nanoscale particles can produce more nucleation sites during the solidification of the liquid steel. Tensile properties and fracture morphology reveal that the yield strength and toughness of the steel modified by nanostructured Fe-V-Nb modificators are better than that of the microalloyed steel. TEM analysis shows that vanadium and niobium in the modificators exist in the form of (V, Nb C which effectively increases the nucleation rate and leads to better mechanical properties of the steel.

  5. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guili [Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Chen, Wei Ning, E-mail: WNChen@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore)

    2017-03-15

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  6. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    International Nuclear Information System (INIS)

    Zhao, Guili; Chen, Wei Ning

    2017-01-01

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  7. The effect of halloysite modification combined with in situ matrix modifications on the structure and properties of polypropylene/halloysite nanocomposites

    Directory of Open Access Journals (Sweden)

    V. Khunova

    2013-05-01

    Full Text Available The effect of various modifications/intercalations of halloysite and the combination of these modifications with in situ PP matrix modification was investigated with respect to the structure and properties of the polypropylene/halloysite nanocomposites. Hexadecyl-tri-methyl-ammonium-bromide (HEDA, 3-aminopropyltrimethoxysilane and urea were used as the intercalators/modifiers. The best intercalation was found for urea, although an unexpected insignificant impact on the mechanical properties also resulted as a consequence of the urea polarity and the significant decrease in PP crystallinity. However, the simultaneous application of 4,4!-diphenylmethylene dimaleinimide (DBMI brought about an increase in the mechanical behavior by increasing the halloysite/PP affinity as a result of in situ matrix modification. This effect was further supported by coupling between the PP and halloysite (HNT in the system containing urea-intercalated HNT. This can be explained by the occurrence of a urea-supported reaction between the imide ring of DBMI and the OH groups of the HNT, which resulted in the best mechanical behaviors achieved in this study.

  8. Surface modification and electrochemical properties of activated carbons for supercapacitor electrodes

    Science.gov (United States)

    Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing

    2015-12-01

    Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.

  9. Influence of Carbide Modifications on the Mechanical Properties of Ultra-High-Strength Stainless Steels

    Science.gov (United States)

    Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub

    2017-10-01

    The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.

  10. Fracture properties of high-strength concrete obtained by direct modification of structure

    Directory of Open Access Journals (Sweden)

    Solodkyy Serhiy

    2017-01-01

    Full Text Available High-strength concrete is effectively used worldwide in the last three decades, but it is more brittle in comparison with normal strength concretes. Partial substitution of cement in concrete by active mineral additives and usage of chemical admixture of plasticizing and air-entraining action can considerably change their fracture properties. The obtained results show that the increase of the fracture properties is observed in concretes modified with chemical admixtures incorporating mineral additives such as zeolite and limestone due to consolidation of the concrete microstructure. Densification takes place as a result of limiting the amount of calcium hydroxide (CH due to its reaction with active silica included in the zeolite and the formation of larger amounts of hydrated calcium silicates of tobermorite type as well as calcium hydroaluminate and hydrocarboaluminate with the simultaneous adsorption modification of hydrated products by chemical admixtures.

  11. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  12. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    Science.gov (United States)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  13. Effect of pH on Physicochemical Properties of Cassava Starch Modification Using Ozone

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Nowadays, starch modification is carried out in order to change the native properties into the better ones, such as high stability, brightness, and better texture. The objectives of this study are to investigate the effect of pH on carboxyl content, swelling power, and water solubility of starch. This research was divided into two main stages, i.e. starch modification by ozone oxidation and analysis. The physicochemical properties of modified cassava starch were investigated under various reaction pH of 7-10 and the reaction time between 0-240 minutes. Reaction condition at pH 10 provided the higher value of carboxyl content and water solubility, but the lower of swelling power. This increase in solubility indicates that the modified oxidation starch readily dissolves in water, due to its small size granules and high amylose content. The significant changes of both parameters were achieved in the first 120 minutes of ozone reaction times. The graphic pattern of water solubility was in contrast with swelling power.

  14. Electronic and magnetic properties of TTF and TCNQ covered Co thin films

    Energy Technology Data Exchange (ETDEWEB)

    Geijn, Elmer van, E-mail: e.vangeijn@utwente.nl; Wang, Kai; Jong, Michel P. de [NanoElectronics Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2016-05-07

    Interfacial effects like orbital hybridization and charge transfer strongly influence the transfer of spins from ferromagnetic metals to organic semiconductors and can lead to the formation of interfacial states with distinct magnetic properties. The changes in the electronic and magnetic properties of a thin Co film upon adsorption of a layer of either the molecular organic electron donor tetrathiafulvalene (TTF) or the acceptor tetracyanoquinodimethane (TCNQ) have been investigated by X-ray absorption spectroscopy and X-ray magnetic circular dichroism using synchrotron radiation. Clear differences between the spectra of the adsorbed molecules and the neutral molecules show the hybridization of the molecular orbitals with the Co interface. Deposition of both organic materials leads to a small increase of the ratio of the orbital magnetic moment to the spin magnetic moment of the Co atoms at the interface. The main effect of overlayer deposition is a modification of the magnetic hysteresis of the Co film: The TCNQ slightly reduces the coercivity of the Co, while the TTF increases the coercivity by a factor of ∼1.5. These complementary effects of either a molecular organic electron donor or acceptor on the interfacial properties of a metal ferromagnetic thin film are a promising result for the controlled modification of the magnetic structure of hybrid interfaces.

  15. Spectrum properties of electrons in solids

    International Nuclear Information System (INIS)

    Avron, J.

    1975-11-01

    The electron spectra in the one-particle Bloch model is discussed. The presence of hamiltonian bands is proved, especially for the Dirac and Schrodinger hamiltonians. The analyticity of the quasimomentum k is described as well as the stability of the bands in singular disturbances. (B.G.)

  16. Size-dependent electronic properties of metal nanostructures

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Size-dependent electronic properties of metal nanostructures. G.U. Kulkarni. Chemistry and Physics of Materials Unit. Jawaharlal Nehru Centre for Advanced Scientific Research. Bangalore, India. kulkarni@jncasr.ac.in.

  17. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jiwuer, Jilili

    2016-01-01

    Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors

  18. Density functional study of : Electronic and optical properties

    Indian Academy of Sciences (India)

    K C Bhamu

    3Department of Physics, Swami Keshvanand Insitute of Technology, Management and Gramothan, ... Published online 20 June 2017. Abstract. This paper focusses on the electronic and optical properties of scandium-based silver delafossite.

  19. Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

    International Nuclear Information System (INIS)

    Dagli, Ozlem; Gok, Rabia; Bahat, Mehmet; Ozbay, Akif

    2016-01-01

    Geometry optimization, electronic and nonlinear optical properties of isomers of furyloxazole and thienyloxazole molecules are carried out at the B3LYP/6-311++G(2d,p) level. The conformational analysis of 12 compounds have been studied as a function of torsional angle between rings. Electronic and NLO properties such as dipole moment, energy gap, polarizability and first hyperpolarizability were also calculated. (paper)

  20. The electronic properties of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Barker, J.A.

    2000-10-01

    This work is an investigation into the electronic behaviour of semiconductor quantum dots, particularly self-assembled quantum dot arrays. Processor-efficient models are developed to describe the electronic structure of dots, deriving analytic formulae for the strain tensor, piezoelectric distribution and diffusion- induced evolution of the confinement potential, for dots of arbitrary initial shape and composition profile. These models are then applied to experimental data. Transitions due to individual quantum dots have a narrow linewidth as a result of their discrete density of states. By contrast, quantum dot arrays exhibit inhomogeneous broadening which is generally attributed to size variations between the individual dots in the ensemble. Interpreting the results of double resonance spectroscopy, it is seen that variation in the indium composition of the nominally InAs dots is also present. This result also explains the otherwise confusing relationship between the spread in the ground-state and excited-state transition energies. Careful analysis shows that, in addition to the variations in size and composition, some other as yet unidentified broadening mechanism must also be present. The influence of rapid thermal annealing on dot electronic structure is also considered, finding that the experimentally observed blue-shift and narrowing of the photoluminescence linewidth may both be explained in terms of normal In/Ga interdiffusion. InAs/GaAs self-assembled quantum dots are commonly assumed to have a pyramidal geometry, so that we would expect the energy separation of the ground-state electron and hole levels in the dot to be largest at a positive applied field. This should also be the case for any dot of uniform composition whose shape tapers inwards from base to top, counter to the results of experimental Stark-shift spectroscopy which show a peak transition energy at a negative applied field. It is demonstrated that this inversion of the ground state

  1. influence of the substitution on the electronic properties of perylene ...

    African Journals Online (AJOL)

    Preferred Customer

    The higher performance found in single crystal OFETs compared to thin-film. OFETs is related to the high ... Influence of substitution on electronic properties of perylene-3,4:9,10-bis(dicarboximides). Bull. Chem. Soc. .... be good n-type materials for OFETs due to the efficient electron injection from common gold electrode, ca.

  2. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites.

    Science.gov (United States)

    Yoonessi, Mitra; Lebrón-Colón, Marisabel; Scheiman, Daniel; Meador, Michael A

    2014-10-08

    Surface functionalization of pretreated carbon nanotubes (CNT) using aromatic, aliphatic, and aliphatic ether diamines was performed. The pretreatment of the CNT consisted of either acid- or photo-oxidation. The acid treated CNT had a higher initial oxygen content compared to the photo-oxidized CNT and this resulted in a higher density of functionalization. X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) were used to verify the presence of the oxygenated and amine moieties on the CNT surfaces. Epoxy/0.1 wt % CNT nanocomposites were prepared using the functionalized CNT and the bulk properties of the nanocomposites were examined. Macroscale correlations between the interfacial modification and bulk dynamic mechanical and thermal properties were observed. The amine modified epoxy/CNT nanocomposites exhibited up to a 1.9-fold improvement in storage modulus (G') below the glass transition (Tg) and up to an almost 4-fold increase above the Tg. They also exhibited a 3-10 °C increase in the glass transition temperature. The aromatic diamine surface modified epoxy/CNT nanocomposites resulted in the largest increase in shear moduli below and above the Tg and the largest increase in the Tg. Surface examination of the nanocomposites with scanning electron microscopy (SEM) revealed indications of a greater adhesion of the epoxy resin matrix to the CNT, most likely due to the covalent bonding.

  3. Optical properties of pH-sensitive carbon-dots with different modifications

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Weiguang, E-mail: 11236095@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Wu, Huizhen, E-mail: hzwu@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Ye, Zhenyu, E-mail: yzheny@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Ruifeng, E-mail: hbrook@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Xu, Tianning, E-mail: xtn9886@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Zhang, Bingpo, E-mail: 11006080@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-04-15

    Carbon dots with unique characters of chemical inertness, low cytotoxicity and good biocompatibility, demonstrate important applications in biology and optoelectronics. In this paper we report the optical properties of pH-sensitive carbon dots with different surface modifications. The as-prepared carbon dots can be well dispersed in water by modifying with acid, alkali or metal ions though they tend to form a suspension when being directly dispersed in water. We find that the carbon dots dispersed in water show a new emission and absorption character which is tunable due to the pH-sensitive nature. It is firstly proved that the addition of bivalent copper ions offers a high color contrast for visual colorimetric assays for pH measurement. The effect of surface defects with different modification on the performances of the carbon dots is also explored with a core–shell model. The hydro-dispersed carbon dots can be potentially utilized for cellular imaging or metal ion probes in biochemistry. -- Highlights: • The dispersibility in water of as-prepared carbon dots is effectively improved by the addition of acid, alkali or metal ions. • The effect of hydrolysis on the optical properties of the carbon dots is studied. • The luminescent carbon dots show a pH-sensitive fluorescence and absorption property. • The addition of bivalent copper ions in the post-treated carbon dots offers a high color contrast for visual colorimetric assays for pH measurement. • The effect of surface defects and ligands on the performances of the carbon dots is also explored.

  4. Plasma-nitride α-βTi alloy: layer characterization and mechanical properties modification

    International Nuclear Information System (INIS)

    Raveh, A.; Bussiba, A.; Bettelheim, A.; Katz, Y.

    1993-01-01

    Beyond continuous efforts to develop advanced processing methods or new directions in surface modification, the foundations for assessment of appropriate surface layers still remain very challenging. In this context, Ti-6Al-4V α-β alloy was investigated mainly after plasma nitriding by nitrogen or by a nitrogen mixture with hydrogen and/or argon. The current study objectives consist in gradually developing some aspects of the microstructure and property relationship. As such, the study centred on the characterization of refined layers as well as confronting critical questions of how layers and interfacial microstructure might affect the near-surface mechanical properties (i.e. microhardness, fatigue resistance and erosion). In particular, the effects on fatigue behaviour are emphasized by utilizing single edge notched specimens and fatigue stepdown techniques. It is found that two distinct sublayers, comprising δ-TiN and δ-TiN + ε-Ti 2 N phases, were formed with alloying elements in a segregated zone, followed by a solid solution of N in the Ti. Here, the far field affected zone extended up to about 20 μm. It was observed that the formation of the uppermost sublayer (δ-TiN phase) with a composition including H, NH, and N, as well as Ti depleted of Al and V, has a strong effect on the layer properties. A microhardness value as high as 29.4 GPa (3000 kgf mm -2 ) was obtained with significant improvements in the erosion resistance and fatigue life. It was found that in some controlled plasma nitriding conditions the fatigue life for crack initiation increased by more than a factor of 3. Accordingly, the cyclic crack initiation behaviour is described, revealing substantial influences due to crack tip field perturbations, or fracture resistance modifications. Finally, the role of extrinsic crack tip shielding effects as related to closure or to the local effective driving force for microcracking onset is elaborated. (orig.)

  5. ELECTRONIC PUBLISHING AND THE EVOLVING INTERNATIONAL INTELLECTUAL PROPERTY REGIME

    OpenAIRE

    D. Langenberg

    2000-01-01

    As we leave the Industrial Age behind us and move into the Information Age, the transition from “bricks and mortar” commerce to electronic commerce and from paper to electronic publishing pose major challenges for international intellectual property regimes. Electronic commerce has taken off. Whatever concerns about consumer acceptance there were five years ago have given way to “click and mortar” business models where e-commerce has an established role complementing traditional commerce. The...

  6. Surface modification of glass beads with glutaraldehyde: Characterization and their adsorption property for metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Mustafa; Can, Keziban; Akin, Ilker; Arslan, Gulsin [Department of Chemistry, Selcuk University, 42031, Konya (Turkey); Tor, Ali, E-mail: ali.alitor@gmail.com [Department of Environmental Engineering, Selcuk University, Engineering Faculty, Campus, 42031, Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Department of Chemistry, Selcuk University, 42031, Konya (Turkey)

    2009-11-15

    In this study, a new material that adsorbs the metal ions was prepared by modification of the glass beads surfaces with glutaraldehyde. First, the glass beads were etched with 4 M NaOH solution. Then, they were reacted with 3-aminopropyl-triethoxysilane (APTES). Finally, silanized glass beads were treated with 25% of glutaraldehyde solution. The characterization studies by using Fourier Transform Infrared Spectroscopy (FT-IR), Thermal Gravimetric Analysis (TGA), elemental analysis and Scanning Electron Microscopy (SEM) indicated that modification of the glass bead surfaces was successfully performed. The adsorption studies exhibited that the modified glass beads could be efficiently used for the removal of the metal cations and anion (chromate ion) from aqueous solutions via chelation and ion-exchange mechanisms. For both Pb(II) and Cr(VI), selected as model ions, the adsorption equilibrium was achieved in 60 min and adsorption of both ions followed the second-order kinetic model. It was found that the sorption data was better represented by the Freundlich isotherm in comparison to the Langmuir and Redlich-Peterson isotherm models. The maximum adsorption capacities for Pb(II) and Cr(VI) were 9.947 and 11.571 mg/g, respectively. The regeneration studies also showed that modified glass beads could be re-used for the adsorption of Pb(II) and Cr(VI) from aqueous solutions over three cycles.

  7. Modification of Cell Wall Polysaccharides during Drying Process Affects Texture Properties of Apple Chips

    Directory of Open Access Journals (Sweden)

    Min Xiao

    2018-01-01

    Full Text Available The influences of hot air drying (AD, medium- and short-wave infrared drying (IR, instant controlled pressure drop drying (DIC, and vacuum freeze drying (FD on cell wall polysaccharide modification were studied, and the relationship between the modifications and texture properties was analyzed. The results showed that the DIC treated apple chips exhibited the highest crispness (92 and excellent honeycomb-like structure among all the dried samples, whereas the FD dried apple chips had low crispness (10, the minimum hardness (17.4 N, and the highest volume ratio (0.76 and rehydration ratio (7.55. Remarkable decreases in the contents of total galacturonic acid and the amounts of water extractable pectin (WEP were found in all the dried apple chips as compared with the fresh materials. The highest retention of WEP fraction (102.7 mg/g AIR was observed in the FD dried apple chips, which may lead to a low structural rigidity and may be partially responsible for the lower hardness of the FD apple chips. In addition, the crispness of the apple chips obtained by DIC treatment, as well as AD and IR at 90°C, was higher than that of the samples obtained from the other drying processes, which might be due to the severe degradation of pectic polysaccharides, considering the results of the amounts of pectic fractions, the molar mass distribution, and concentrations of the WEP fractions. Overall, the data suggested that the modifications of pectic polysaccharides of apple chips, including the amount of the pectic fractions and their structural characteristics and the extent of degradation, significantly affect the texture of apple chips.

  8. Electron spin resonance dosimetric properties of bone

    International Nuclear Information System (INIS)

    Caracelli, I.; Terrile, M.C.; Mascarenhas, S.

    1986-01-01

    The characteristics of electron spin resonance (ESR) dosimetry using bovine bone samples are described. The number of paramagnetic centers created by gamma radiation in the inorganic bone matrix was measured as a function of absorbed dose. The minimum detectable dose was 0.5 Gy for 60Co gamma rays. The response was linear up to the maximum dose studied (30 Gy) and independent of dose rate up to the maximum dose rate used (1.67 Gy min-1). For different bone samples the reproducibility was 5%. This method may be valuable for nuclear accident dosimetry

  9. Electronic and magnetic properties of ultrathin rhodium nanowires

    CERN Document Server

    Wang Bao Lin; Ren-Yun; Sun Hou Qian; Chen Xiao Shuang; Zhao Ji Jun

    2003-01-01

    The structures of ultrathin rhodium nanowires are studied using empirical molecular dynamics simulations with a genetic algorithm. Helical multishell cylindrical and pentagonal packing structures are found. The electronic and magnetic properties of the rhodium nanowires are calculated using an spd tight-binding Hamiltonian in the unrestricted Hartree-Fock approximation. The average magnetic moment and electronic density of states are obtained. Our results indicate that the electronic and magnetic properties of the rhodium nanowires depend not only on the size of the wire but also on the atomic structure. In particular, centred pentagonal and hexagonal structures can be unusually ferromagnetic.

  10. Influence of soy protein’s structural modifications on their microencapsulation properties: a-tocopherol microparticles preparation

    OpenAIRE

    Nesterenko, Alla; Alric, Isabelle; Silvestre, Françoise; Durrieu, Vanessa

    2012-01-01

    Enzymatic and chemical modifications of soy protein isolate (SPI) were studied in order to improve SPI properties for their use as wall material for a-tocopherol microencapsulation by spray-drying. The structural modifications of SPI by enzymatic hydrolysis and/or N-acylation were carried out in aqueous media without any use of organic solvent neither surfactant. Emulsions from aqueous solutions of native or modified SPI and hydrophobic a-tocopherol, were prepared and spray-dri...

  11. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    Science.gov (United States)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  12. Free volume modifications in chalcone chromophore doped PMMA films by electron irradiation: Positron annihilation study

    Science.gov (United States)

    Ismayil; Ravindrachary, V.; Praveena, S. D.; Mahesha, M. G.

    2018-03-01

    The free volume related fluorescence behaviour in electron beam irradiated chalcone chromophore doped Poly(methyl methacrylate) (PMMA) composite films have been studied using FTIR, UV-Visible, XRD and Positron Annihilation techniques. From the FTIR spectral study it is found that the formation of polarons and bipolaron takes place due to cross linking as well as chain scission processes at lower and higher doses respectively. It reveals that the formation of various polaronic defect levels upon irradiation is responsible for the creation of three optical energy band gaps within the polymer films as obtained from UV-Visible spectra. The crosslinking process at lower doses increases the distance between the pendant groups to reduce the interchain distance and chain scission process at higher doses decreases interchain separation to enhance the number of polarons in the polymer composites as suggested by XRD studies. The fluorescence studies show the enhancement of fluorescence emission at lower doses and reduction at higher doses under electron irradiation. The positron annihilation study suggests that the low radiation doses induce crosslinking which affect the free volume properties and in turn hinders the chalcone molecular rotation within the polymer composite. At higher doses chain scission process support polymer matrix relaxation and facilitates non-radiative transition of the chromophore upon excitation. This study shows that fluorescence enhancement and mobility of chromophore within the polymer matrix is directly related to the free volume around it.

  13. Electron beam initiated modification of acrylic elastomer in presence of polyfunctional monomers

    International Nuclear Information System (INIS)

    Vijayabaskar, V.; Bhattacharya, S.; Tikku, V.K.; Bhowmick, A.K.

    2004-01-01

    The structural changes of an acrylic rubber (ACM) in presence and absence of polyfunctional monomers like trimethylolpropane triacrylate, tripropyleneglycol diacrylate, trimethylolmethane tetraacrylate and trimethylolpropane trimethacrylate at different doses of electron beam (EB) irradiations were investigated with the help of FTIR spectroscopy (in the attenuated total reflectance mode) and sol-gel analysis. As the radiation dose increases, the concentration of carbonyl group increases in the ACM rubber due to aerial oxidation. This is corroborated from the increase in the absorbance values at 1734 and 1160 cm -1 , which are due to carbonyl and C-O-C stretching frequencies, respectively. The increase in crosslinking is revealed by the increase in percentage gel content with radiation dose. The lifetime of spurs formed and the critical dose, an important criterion for overlapping of spurs have been determined for both grafted and ungrafted ACM rubber using a mathematical model. The predominance of crosslinking by electronic stopping with energetic EB projectile and the increase in effective radius of crosslinking have also been verified by this model. The doses at which the synergistic occurrence of both dislinking and endlinking steps originate have been calculated using linear energy transfer of EB. The ratio of scissioning to crosslinking for ACM rubber has been determined by using Charlesby-Pinner equation. The mechanical properties have been studied for different modified and unmodified systems and the tensile strength is found to increase with grafting of polyfunctional monomers

  14. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds

    Science.gov (United States)

    Jafri, S. Hassan M.; Löfås, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-09-01

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with ω-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  15. Electronic and ground state properties of ThTe

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Purvee, E-mail: purveebhardwaj@gmail.com; Singh, Sadhna, E-mail: drsadhna100@gmail.com [High Pressure Research Lab. Department of Physics Barkatullah University, Bhopal (MP) 462026 (India)

    2016-05-06

    The electronic properties of ThTe in cesium chloride (CsCl, B2) structure are investigated in the present paper. To study the ground state properties of thorium chalcogenide, the first principle calculations have been calculated. The bulk properties, including lattice constant, bulk modulus and its pressure derivative are obtained. The calculated equilibrium structural parameters are in good agreement with the available experimental and theoretical results.

  16. Variable electronic properties of lateral phosphorene-graphene heterostructures.

    Science.gov (United States)

    Tian, Xiaoqing; Liu, Lin; Du, Yu; Gu, Juan; Xu, Jian-Bin; Yakobson, Boris I

    2015-12-21

    Phosphorene and graphene have a tiny lattice mismatch along the armchair direction, which can result in an atomically sharp in-plane interface. The electronic properties of the lateral heterostructures of phosphorene/graphene are investigated by the first-principles method. Here, we demonstrate that the electronic properties of this type of heterostructure can be highly tunable by the quantum size effects and the externally applied electric field (Eext). At strong Eext, Dirac Fermions can be developed with Fermi velocities around one order smaller than that of graphene. Undoped and hydrogen doped configurations demonstrate three drastically different electronic phases, which reveal the strongly tunable potential of this type of heterostructure. Graphene is a naturally better electrode for phosphorene. The transport properties of two-probe devices of graphene/phosphorene/graphene exhibit tunnelling transport characteristics. Given these results, it is expected that in-plane heterostructures of phosphorene/graphene will present abundant opportunities for applications in optoelectronic and electronic devices.

  17. Electronic structure and properties of superheavy elements

    International Nuclear Information System (INIS)

    Pershina, V.

    2015-01-01

    Spectacular developments in the relativistic quantum theory and computational algorithms in the last few decades allowed for accurate calculations of properties of the superheavy elements (SHE) and their compounds. Often conducted in a close link to the experimental research, these investigations helped predict and interpret an outcome of sophisticated and expensive experiments with single atoms. Most of the works, particularly those related to the experimental studies, are overviewed in this publication. The role of relativistic effects being of paramount importance for the heaviest elements is elucidated.

  18. Atomic structures and electronic properties of phosphorene grain boundaries

    International Nuclear Information System (INIS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun; Zhang, Junfeng

    2016-01-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials. (paper)

  19. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile: Pt. 1

    International Nuclear Information System (INIS)

    Kiatkamjornwong, S.; Nakason, C.; Chvajarempun, J.

    1993-01-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85 o C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminium foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis. (author)

  20. Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin

    DEFF Research Database (Denmark)

    Dominiak, Malgorzata Maria; Marie Søndergaard, Karen; Wichmann, Jesper

    2014-01-01

    pectin. The most efficient enzyme preparation was Laminex C2K derived from Penicillium funiculosum which, during 4 h treatment at pH 3.5, 50 °C, released pectin with similar yield (23% w/w), molecular weight (69 kDa), and functional properties e.g. gelling, stabilization of acidified milk drinks...... and viscosity as the classically acid-extracted pectins (8 h treatment at 70 °C, pH ... at higher temperatures. The Laminex CK2 extracted pectin polymers were not sensitive to the presence of Ca2+ ions, they formed a gel at low pH in the presence of sugar and were able to stabilize acidified milk drinks. Further modification by enzymatic de-esterification of the pectin extracted with Laminex C...

  1. Biophysical mechanisms of modification of skin optical properties in the UV wavelength range with nanoparticles

    Science.gov (United States)

    Popov, A. P.; Priezzhev, A. V.; Lademann, J.; Myllylä, R.

    2009-05-01

    In this paper, by means of the Mie theory and Monte Carlo simulations we investigate modification of optical properties of the superficial layer of human skin (stratum corneum) for 310- and 400-nm ultraviolet (UV) radiation by embedding of 35-200-nm-sized particles of titanium dioxide (TiO2) and silicon (Si). Problem of skin protection against UV light is of major importance due to increased frequency of skin cancer provoked by excessive doses of accepted UV radiation. For 310-nm light, the optimal sizes of the TiO2 and Si particles are found to be 62 and 55 nm, respectively, and for 400-nm radiation, 122 and 70 nm, respectively.

  2. Biophysical mechanisms of modification of skin optical properties in the UV wavelength range with nanoparticles

    International Nuclear Information System (INIS)

    Popov, A. P.; Priezzhev, A. V.; Lademann, J.; Myllylae, R.

    2009-01-01

    In this paper, by means of the Mie theory and Monte Carlo simulations we investigate modification of optical properties of the superficial layer of human skin (stratum corneum) for 310- and 400-nm ultraviolet (UV) radiation by embedding of 35-200-nm-sized particles of titanium dioxide (TiO 2 ) and silicon (Si). Problem of skin protection against UV light is of major importance due to increased frequency of skin cancer provoked by excessive doses of accepted UV radiation. For 310-nm light, the optimal sizes of the TiO 2 and Si particles are found to be 62 and 55 nm, respectively, and for 400-nm radiation, 122 and 70 nm, respectively.

  3. Investigation of electronic transport properties of some liquid transition metals

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    We investigated electronic transport properties of some liquid transition metals (V, Cr, Mn, Fe, Co and Pt) using Ziman formalism. Our parameter free model potential which is realized on ionic and atomic radius has been incorporated with the Hard Sphere Yukawa (HSY) reference system to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data with in addition experimental values are profoundly promising to the researchers working in this field. Also, we conclude that our newly constructed parameter free model potential is capable to explain the aforesaid electronic transport properties.

  4. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    Science.gov (United States)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  5. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene

    International Nuclear Information System (INIS)

    Jing, Yu; Tang, Qing; He, Peng; Zhou, Zhen; Shen, Panwen

    2015-01-01

    Systematical computations on the density functional theory were performed to investigate the adsorption of three typical organic molecules, tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF), on the surface of phosphorene monolayers and thicker layers. There exist considerable charge transfer and strong non-covalent interaction between these molecules and phosphorene. In particular, the band gap of phosphorene decreases dramatically due to the molecular modification and can be further tuned by applying an external electric field. Meanwhile, surface molecular modification has proven to be an effective way to enhance the light harvesting of phosphorene in different directions. Our results predict a flexible method toward modulating the electronic and optical properties of phosphorene and shed light on its experimental applications. (paper)

  6. Electrical properties of gallium arsenide irradiated with electrons and neutrons

    International Nuclear Information System (INIS)

    Kol'chenko, T.I.; Lomako, V.M.

    1975-01-01

    A study was made of changes in the electrical properties of GaAs doped with Te, S, Se, Si, Ge, Sn (n 0 approximately 10 16 -10 18 cm -3 ) and irradiated either with 2.5-28 MeV electrons or with fast reactor neutrons. An analysis of changes in the electron density indicated that the rate of carrier removal by electron bombardment was independent of the dopant but was governed by isolated radiation defects. The change in the mobility due to irradiation with 2.5-10 MeV electrons was also governed by isolated defects. When the electron energy was increased to 28 MeV the main contribution to the change in the mobility was made by defect clusters. In the neutron-irradiation case the changes in the carrier density and mobility were mainly due to defect clusters and the nature of changes in the electrical properties was again independent of the dopant

  7. Electronic structure and optical properties of solid C60

    International Nuclear Information System (INIS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.

    2009-01-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .

  8. Modification to an Auger Electron Spectroscopy system for measuring segregation in a bi-crystal

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-03-01

    Full Text Available . Parameters like temperature measurement, crystal history and spectrometer variables are all adding to the complexity of directly comparing the segregation behaviour from one crystal to another. This investigation makes use of a Cu bi-crystal, modifications...

  9. Photochemical modification of magnetic properties in organic low-dimensional conductors

    International Nuclear Information System (INIS)

    Naito, Toshio; Kakizaki, Akihiro; Wakeshima, Makoto; Hinatsu, Yukio; Inabe, Tamotsu

    2009-01-01

    Magnetic properties of organic charge transfer salts Ag(DX) 2 (DX=2,5-dihalogeno-N,N'-dicyanoquinonediimine; X=Cl, Br, I) were modified by UV irradiation from paramagnetism to diamagnetism in an irreversible way. The temperature dependence of susceptibility revealed that such change in magnetic behavior could be continuously controlled by the duration of irradiation. The observation with scanning electron microprobe revealed that the original appearance of samples, e.g. black well-defined needle-shaped shiny single crystals, remained after irradiation irrespective of the irradiation conditions and the duration. Thermochemical analysis and X-ray diffraction study demonstrated that the change in the physical properties were due to (partial) decomposition of Ag(DX) 2 to AgX, which was incorporated in the original Ag(DX) 2 lattices. Because the physical properties of low-dimensional organic conductors are very sensitive to lattice defects, even a small amount of AgX could effectively modify the electronic properties of Ag(DX) 2 without making the original crystalline appearance collapse. - Graphical abstract: By UV irradiation with appropriate masks, a part of single crystal of organic conductors irreversibly turned diamagnetic retaining their original crystalline shapes.

  10. Self-assembled InAs quantum dots. Properties, modification and emission processes

    International Nuclear Information System (INIS)

    Schramm, A.

    2007-01-01

    In this thesis, structural, optical as well as electronic properties of self-assembled InAs quantum dots (QD) were studied by means of atomic force microscopy (AFM), photoluminescence (PL), capacitance spectroscopy (CV) and capacitance transient spectroscopy (DLTS). The quantum dots were grown with molecular beam epitaxy (MBE) and embedded in Schottky diodes for electrical characterization. In this work growth aspects as well as the electronic structures of QD were discussed. By varying the QD growth parameters it is possible to control the structural, and thus the optical and electronic properties of QD. Two methods are presented. Adjusting the QD growth temperature leads either to small QD with a high areal density or to high QDs with a low density. The structural changes of the QD are reflected in the changes of the optical and electronic properties. The second method is to introduce a growth interruption after capping the QD with thin cap layers. It was shown that capping with AlAs leads to a well-developed alternative to control the QD height and thus the ground-state energies of the QD. A post-growth method modifying the QD properties ist rapid thermal annealing (RTA). Raising the RTA temperature causes a lifting of the QD energy states with respect to the GaAs band edge energy due to In/Ga intermixing processes. A further main part of this work covers the emission processes of charge carriers in QD. Thermal emission, thermally assisted tunneling, and pure tunneling emission are studied by capacitance transient spectroscopy techniques. In DLTS experiments a strong impact of the electric field on the activation energies of electrons was found interfering the correct determination of the QD level energies. This behaviour can be explained by a thermally assisted tunneling model. A modified model taking the Coulomb interaction of occupied QD into account describes the emission rates of the electrons. In order to avoid several emission pathes in the experiments

  11. EFFECT OF TEMPERATURE AND pH OF MODIFICATION PROCESS ON THE PHYSICAL-MECHANICAL PROPERTIES OF MODIFIED CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Yudi Wicaksono

    2016-11-01

    Full Text Available The use of cassava starch for excipient in the manufacturing of the tablet has some problems, especially on physical-mechanical properties. The purpose of this study was to determine the effect of the differentness of temperature and pH in the process of modification on the physical-mechanical properties of modified cassava starch. Modifications were performed by suspending cassava starch into a solution of 3 % (w/v PVP K30. The effect of the difference of temperature was observed at temperatures of 25; 45 and 65 0C, while the effect of the difference of pH was observed at pH of 4.0; 7.0 and 12.0. The results showed that the temperature and pH did not affect the physical-mechanical properties of the modified cassava starch. Modification of cassava starch at pH and temperature of 7.0 and 45 0C was produced modified cassava starch with the most excellent solubility, while the best swelling power were formed by the modification process at pH and temperature of 7.0 and 25 0C. Overall, the most excellent compression properties of modified cassava starch resulted from the modification process at pH 12.

  12. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam); Tran, Van-Thanh [Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City (Viet Nam); Duan, Wei [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Phuong Ha-Lien, E-mail: phuong.tran1@deakin.edu.au [School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria (Australia); Tran, Thao Truong-Dinh, E-mail: ttdthao@hcmiu.edu.vn [Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-10-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  13. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice

    International Nuclear Information System (INIS)

    Ngo, Vuong Duy; Luu, Thinh Duc; Van Vo, Toi; Tran, Van-Thanh; Duan, Wei; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-01-01

    The aim of this study was to investigate the effect of modification processes on physical properties and explain the mechanism of sustained drug release from modified rice (MR). Various types of Vietnamese rice were introduced in the study as the matrices of sustained release dosage form. Rice was thermally modified in water for a determined temperature at different times with a simple process. Then tablets containing MR and isradipine, the model drug, were prepared to investigate the capability of sustained drug release. Scanning electron microscopy (SEM) was used to determine different morphologies between MR formulations. Flow property of MR was analyzed by Hausner ratio and Carr's indices. The dissolution rate and swelling/erosion behaviors of tablets were evaluated at pH 1.2 and pH 6.8 at 37 ± 0.5 °C. The matrix tablet containing MR showed a sustained release as compared to the control. The SEM analyses and swelling/erosion studies indicated that the morphology as well as swelling/erosion rate of MR were modulated by modification time, drying method and incubation. It was found that the modification process was crucial because it could highly affect the granule morphologies and hence, leading to the change of flowability and swelling/erosion capacity for sustained release of drug. - Highlights: • Modification process affected granule morphologies and flowability of modified rice. • Modification process affected swelling/erosion capacity for drug sustained release. • Freeze-drying could decrease the erosion as well as increase the swelling rate.

  14. Electron spectroscopic study of electronic and morphological modifications of the WSe{sub 2} surface induced by Rb adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Jens

    2010-07-20

    The rubidium-covered surface of the semiconducting transition metal dichalcogenide tungsten diselenide (WSe{sub 2}) is examined using photoelectron spectroscopy (PES) and photoemission electron microscopy (PEEM). Adsorbed Rb is known to induce a variety of effects in this system concerning electronic, structural, and mechanical properties. In this work, the surface potential created by charge transfer upon Rb deposition is examined in thermal equilibrium (band bending) and stationary non-equilibrium (surface photovoltage (SPV) effect), which is induced by the absorption of light. It is shown that combined measurements and numerical simulations of the SPV effect as a function of the photon flux can be exploited for the estimation of many material parameters of the system, especially of the unoccupied adsorbate state. Issues of extending a conventional photoelectron spectrometer setup by a secondary light source will be discussed in the context of simulations and calibration measurements. The customization of an existing theoretical model of the SPV effect for the WSe{sub 2}: Rb system is introduced, and a comprehensive validation of the obtained predictions is given in the context of experimental data. In addition, the self-organized formation of Rb domains at room temperature was examined by application of spatially resolved XPS spectroscopy using the PEEM setup at the end station of beamline UE49/PGMa at the BESSY II synchrotron facility. From the obtained results, the arrangement of Rb in surface lattices can be concluded. Furthermore, an X-Ray absorption study of self-organized nanostructure networks, aiming at the chemical characterization, is presented. Based on the interpretation of the examined structures as tension-induced cracks, a statistical approach to analyzing large-scale features was pursued. First accordance with the predictions made by a primitive, mechanical model of crack creation developed here gives gives some evidence for the validity of the

  15. Electron spectroscopic study of electronic and morphological modifications of the WSe2 surface induced by Rb adsorption

    International Nuclear Information System (INIS)

    Buck, Jens

    2010-01-01

    The rubidium-covered surface of the semiconducting transition metal dichalcogenide tungsten diselenide (WSe 2 ) is examined using photoelectron spectroscopy (PES) and photoemission electron microscopy (PEEM). Adsorbed Rb is known to induce a variety of effects in this system concerning electronic, structural, and mechanical properties. In this work, the surface potential created by charge transfer upon Rb deposition is examined in thermal equilibrium (band bending) and stationary non-equilibrium (surface photovoltage (SPV) effect), which is induced by the absorption of light. It is shown that combined measurements and numerical simulations of the SPV effect as a function of the photon flux can be exploited for the estimation of many material parameters of the system, especially of the unoccupied adsorbate state. Issues of extending a conventional photoelectron spectrometer setup by a secondary light source will be discussed in the context of simulations and calibration measurements. The customization of an existing theoretical model of the SPV effect for the WSe 2 : Rb system is introduced, and a comprehensive validation of the obtained predictions is given in the context of experimental data. In addition, the self-organized formation of Rb domains at room temperature was examined by application of spatially resolved XPS spectroscopy using the PEEM setup at the end station of beamline UE49/PGMa at the BESSY II synchrotron facility. From the obtained results, the arrangement of Rb in surface lattices can be concluded. Furthermore, an X-Ray absorption study of self-organized nanostructure networks, aiming at the chemical characterization, is presented. Based on the interpretation of the examined structures as tension-induced cracks, a statistical approach to analyzing large-scale features was pursued. First accordance with the predictions made by a primitive, mechanical model of crack creation developed here gives gives some evidence for the validity of the proposed

  16. Electronic transport properties of nanostructured MnSi-films

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.

    2018-05-01

    MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.

  17. SURFACE MODIFICATION OF SUGARCANE BAGASSE CELLULOSE AND ITS EFFECT ON MECHANICAL AND WATER ABSORPTION PROPERTIES OF SUGARCANE BAGASSE CELLULOSE/ HDPE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Daniella Regina Mulinari

    2010-05-01

    Full Text Available Cellulose fibres from sugarcane bagasse were bleached and modified by zirconium oxychloride in order to improve the mechanical properties of composites with high density polyethylene (HDPE. The mechanical properties of the composites prepared from chemically modified cellulose fibres were found to increase compared to those of bleached fibres. Tensile strengths of the composites showed a decreasing trend with increasing filler content. However, the values for the chemically modified cellulose fibres/HDPE composites at all mixing ratios were found to be higher than that of neat HDPE. Results of water immersion tests showed that the water absorption affected the mechanical properties. The fracture surfaces of the composites were recorded using scanning electron microscopy (SEM. The SEM micrographs revealed that interfacial bonding between the modified filler and the matrix was significantly improved by the fibre modification.

  18. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties

    Directory of Open Access Journals (Sweden)

    Marzaioli V

    2014-06-01

    Full Text Available Viviana Marzaioli,1 Juan Antonio Aguilar-Pimente,1,2 Ingrid Weichenmeier,1 Georg Luxenhofer,3 Martin Wiemann,4 Robert Landsiedel,5 Wendel Wohlleben,5 Stefanie Eiden,6 Martin Mempel,7 Heidrun Behrendt,1 Carsten Schmidt-Weber,1 Jan Gutermuth,1,8 Francesca Alessandrini1 1Center of Allergy and Environment (ZAUM, Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL, Munich, Germany; 2Department of Dermatology and Allergy Biederstein, Technische Universität München (TUM and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany, 3Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; 4IBE R&D gGmbH, Münster, Germany; 5BASF, Ludwigshafen, Germany; 6Bayer Technology Services, Leverkusen, Germany; 7Department of Dermatology, Venereology and Allergology, Universitätsmedizin Göttingen (UMG, Göttingen, Germany; 8Department of Dermatology, Vrije Universiteit Brussel, Brussels, Belgium Background: Silica (SiO2 nanoparticles (NPs are widely used in diverse industrial and biomedical applications. Their applicability depends on surface modifications, which can limit potential health problems. Objective: To assess the potential impact of SiO2 NP exposure and NPs chemical modifications in allergic airway inflammation. Methods: Mice were sensitized by five repetitive intraperitoneal injections of ovalbumin/aluminum hydroxide (1 µg over 42 days, then intratracheally instilled with plain or modified SiO2 NPs (50 µg/mouse, and subsequently aerosol challenged for 20 minutes with ovalbumin. One or 5 days later, allergic inflammation was evaluated by cell differentiation of bronchoalveolar lavage fluid, lung function and gene expression and histopathology, as well as electron and confocal microscopy of pulmonary tissue. Results: Plain SiO2 NPs induced proinflammatory and immunomodulatory effects in vivo

  19. Modification of alternative additives and their effect on the rubber properties

    Directory of Open Access Journals (Sweden)

    Ondrušová Darina

    2018-01-01

    Full Text Available The present paper deals with a targeted modification of two kinds of alternative additives - waste from glass production and natural mineral filler and explores their effect on the properties of polymeric materials. In the function of first alternative filler was used sludge from weighing the ingredients of glass batch in the glass production. The second used was natural aluminosilicate material based on zeolite (clinoptilolite. These alternative fillers have been modified in order to increase its efficiency, using the silanes: 3-aminopropyl-triethoxysilane, bis(triethoxysilylpropyl-tetrasulfide and 3-(triethoxysilylpropyl-methacrylate. In the case of alternative filler based on zeolite the influence of silanization conditions on the filler efficiency have been also studied. Prepared modified fillers were mixed into rubber compounds as partial replacement of commonly used filler – carbon black. The influence of prepared fillers on rheology and curing characteristics of rubber compounds and also on physical and mechanical properties of vulcanizates has been studied. Obtained results of measured characteristics of polymeric systems containing prepared alternative fillers were compared with the results obtained in the case of reference rubber compound with a commertially used filler – carbon black.

  20. Beam-induced magnetic property modifications: Basics, nanostructure fabrication and potential applications

    International Nuclear Information System (INIS)

    Devolder, T.; Bernas, H.; Ravelosona, D.; Chappert, C.; Pizzini, S.; Vogel, J.; Ferre, J.; Jamet, J.-P.; Chen, Y.; Mathet, V.

    2001-01-01

    We have developed an irradiation technique that allows us to tune the magnetic properties of thin films without affecting their roughness. We discuss the mechanisms involved and the applications. He + ion irradiation of Co/Pt multilayers lowers their magnetic anisotropy in a controlled way, reducing the coercive force and then leading to in-plane magnetization. By X-ray reflectometry, we study how irradiation-induced structural modifications correlate with magnetic properties. We also report the L1 0 chemical ordering of FePt by irradiation at 280 deg. C, and the consequent increase of magnetic anisotropy. Planar magnetic patterning at the sub 50 nm scale can be achieved when the irradiation is performed through a mask. New magnetic behaviors result from the fabrication process. They appear to arise from collateral damage. We model these effects in the case of SiO 2 and W masks. The planarity of irradiation-induced patterning and its ability to independently control nanostructure size and coercivity make it very appealing for magnetic recording on nanostructured media. Finally, possible applications to the granular media used in current hard disk drive storage technology are discussed

  1. Annealing effect on the microstructure modification and tribological properties of amorphous carbon nitride films

    Science.gov (United States)

    Wang, Zhou; Wang, Chengbing; Wang, Qi; Zhang, Junyan

    2008-10-01

    The influences of thermal annealing on the microstructural and tribological properties of amorphous carbon nitride films were investigated. X-ray photoelectron spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrometer were utilized to characterize bond configuration and chemical state of the films. The results indicated that at low annealing temperatures (200 and 300 °C), the volatile species and surface contamination are easily dissociated without obvious bulk modification; while at high annealing temperatures (400 and 500 °C), the microstructure of carbon nitride films changed and favored a graphitization process, which indicated the growth of more graphitic film structures. The faint Raman signal of C≡N decreased with annealing temperature (TA) and completely disappeared at TA of 500 °C, indicating that nitrile bonds were thermal unstable under high temperature. Surprisingly, the tribological properties of the films showed a remarkably decreasing in friction coefficient as the TA increased; it is attributed to the graphitization of carbon nitride films during thermal annealing, which favored transfer film formation between the carbon nitride films and counterface materials. The transfer films benefit the decrease in coefficient of friction.

  2. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.

    Science.gov (United States)

    Preis, Itan; Abramson, Miron; Shoseyov, Oded

    2018-04-01

    Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

  3. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    International Nuclear Information System (INIS)

    Kido, H; Takahashi, M; Tani, J; Abe, N; Tsukamoto, M

    2011-01-01

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 μm in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10 5 Ωcm to 3.2x10 -1 Ωcm at 56 W, 2.8x10 -1 Ωcm at 91 W, and 2.0x10 -1 Ωcm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10 17 cm -3 at 56 W, 7.2x10 17 cm -3 at 91 W, and 1.9x10 18 cm -3 at 126 W.

  4. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kido, H; Takahashi, M; Tani, J [Electronic Materials Research Division, Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Abe, N; Tsukamoto, M, E-mail: kido@omtri.or.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-05-15

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 {mu}m in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10{sup 5} {Omega}cm to 3.2x10{sup -1} {Omega}cm at 56 W, 2.8x10{sup -1} {Omega}cm at 91 W, and 2.0x10{sup -1} {Omega}cm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10{sup 17} cm{sup -3} at 56 W, 7.2x10{sup 17} cm{sup -3} at 91 W, and 1.9x10{sup 18} cm{sup -3} at 126 W.

  5. Electron beam technology for modifying the functional properties of maize starch

    International Nuclear Information System (INIS)

    Nemtanu, M.R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P.K.W.; Popescu, M.I.; Mitru, E.

    2007-01-01

    Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch

  6. Polystyrene-Poly(methyl methacrylate) Silver Nanocomposites: Significant Modification of the Thermal and Electrical Properties by Microwave Irradiation.

    Science.gov (United States)

    Alsharaeh, Edreese H

    2016-06-13

    This work compares the preparation of nanocomposites of polystyrene (PS), poly(methyl methacrylate) (PMMA), and PSMMA co-polymer containing silver nanoparticles (AgNPs) using in situ bulk polymerization with and without microwave irradiation (MWI). The AgNPs prepared were embedded within the polymer matrix. A modification in the thermal stability of the PS/Ag, PMMA/Ag, and PSMMA/Ag nanocomposites using MWI and in situ was observed compared with that of neat PSMMA, PS, and PMMA. In particular, PS/Ag, and PSMMA/Ag nanocomposites used in situ showed better thermal stability than MWI, while PMMA/Ag nanocomposites showed improved thermal stability. The electrical conductivity of the PS/Ag, PMMA/Ag, and PSMMA/Ag composites prepared by MWI revealed a percolation behavior when 20% AgNPs were used as a filler, and the conductivity of the nanocomposites increased to 103 S/cm, 33 S/cm, and 40 mS/cm, respectively. This enhancement might be due to the good dispersion of the AgNPs within the polymer matrix, which increased the interfacial interaction between the polymer and AgNPs. The polymer/Ag nanocomposites developed with tunable thermal and electrical properties could be used as conductive materials for electronic device applications.

  7. Rheological and mechanical properties of polyamide 6 modified by electron-beam initiated mediation process

    International Nuclear Information System (INIS)

    Shin, Boo Young; Kim, Jae Hong

    2015-01-01

    Polyamide (PA6) has been modified by electron-beam initiated mediator process to improve drawbacks of PA6. Glycidyl methacrylate (GMA) was chosen as a reactive mediator for modification process of PA6. The mixture of the PA6 and GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam irradiation at various doses at room temperature. The modified PA6 were characterized by observing rheological and mechanical properties and compared virgin PA6. Thermal properties, water absorption, and gel fraction were also investigated. Tight gel was not found even when PA6 was irradiated at 200 kGy. Complex viscosity and storage modulus of PA6 were remarkably increased by electron-beam irradiation with medium of GMA. Maximum increase in complex viscosity was 75 times higher than virgin PA6 at 0.1 rad/s when it was irradiated at 200 kGy with the GMA. Mechanical properties were also improved without scarifying of processability. The reaction mechanisms for the mediation process with the reactive mediator of GMA were estimated to elucidate the cause of significantly enhanced rheological and mechanical properties without loss of thermoplasticity. - Highlights: • PA6 was modified by the electron-beam initiated mediation process. • Maximum increase in complex viscosity of modified PA6 was 75 times higher than virgin PA6 at 0.1 rad/s. • Mechanical properties were improved without scarifying of processability. • The GMA as a mediator played a key role in the electron-beam initiated mediation process

  8. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  9. Optical properties and electron transport in low-dimensional nanostructures

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2011-01-01

    Roč. 54, 2-2 (2011), s. 4-13 ISSN 0021-3411 R&D Projects: GA MŠk(CZ) OC10007 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505 Keywords : quantum dots * electron -photon interaction * optical properties * electron relaxation * DNA molecule Subject RIV: BE - The oretical Physics http://elibrary.ru/contents.asp?issueid=1010336

  10. Electronic properties of graphene-based bilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.com [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); Sboychakov, A.O. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Rakhmanov, A.L. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); All-Russia Research Institute of Automatics, Moscow, 127055 (Russian Federation); Nori, Franco, E-mail: fnori@riken.jp [CEMS, RIKEN, Saitama 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2016-08-23

    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin–orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  11. Fundamentals of the Physics of Solids Volume 2: Electronic Properties

    CERN Document Server

    Sólyom, Jenő

    2009-01-01

    This book is the second of a single-authored, three-volume series that aims to deliver a comprehensive and self-contained account of the vast field of solid-state physics. It goes far beyond most classic texts in the presentation of the properties of solids and experimentally observed phenomena, along with the basic concepts and theoretical methods used to understand them and the essential features of various experimental techniques. The first volume deals with the atomic and magnetic structure and dynamics of solids, the second with those electronic properties that can be understood in the one-particle approximation, and the third with the effects due to interactions and correlations between electrons. This volume is devoted to the electronic properties of metals and semiconductors in the independent-electron approximation. After a brief discussion of the free-electron models by Drude and Sommerfeld, the methods for calculating and measuring the band structure of Bloch electrons moving in the periodic potent...

  12. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  13. Modification of mechanical and thermal property of chitosan-starch blend films

    Science.gov (United States)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M. E.; Khan, Ruhul A.; Dafader, N. C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-10-01

    Chitosan-starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan-starch films, glycerol and mustard oil of different composition were used. Chitosan-starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan-starch films. Water uptake of the films reduced significantly than the pure chitosan-starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.

  14. Electronic structure properties of UO2 as a Mott insulator

    Science.gov (United States)

    Sheykhi, Samira; Payami, Mahmoud

    2018-06-01

    In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.

  15. Electronic properties of bromine-doped carbon nanotubes

    CERN Document Server

    Jhi, S H; Cohen, M L

    2002-01-01

    Intercalation of bromine molecules (Br2) into single-wall carbon nanotube (SWNT) ropes is studied using the ab initio pseudopotential density functional method. Electronic and vibrational properties of the SWNT and Br2 are studied for various bromine concentrations. A drastic change in the charge transfer, bromine stretching-mode, and bromine bond-length is observed when the bromine-bromine distance decreases. Calculated electronic structures show that, at high bromine concentrations, the bromine ppsigma level broadens due to the interbromine interaction. These states overlap with the electronic bands of the SWNT near the Fermi level which results in a substantial charge transfer from carbon to bromine.

  16. Correlating substituent parameter values to electron transport properties of molecules

    International Nuclear Information System (INIS)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-01-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values (σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared (R 2 ) of 0.863

  17. Charge-transfer properties in the gas electron multiplier

    International Nuclear Information System (INIS)

    Han, Sanghyo; Kim, Yongkyun; Cho, Hyosung

    2004-01-01

    The charge transfer properties of a gas electron multiplier (GEM) were systematically investigated over a broad range of electric field configurations. The electron collection efficiency and the charge sharing were found to depend on the external fields, as well as on the GEM voltage. The electron collection efficiency increased with the collection field up to 90%, but was essentially independent of the drift field strength. A double conical GEM has a 10% gain increase with time due to surface charging by avalanche ions whereas this effect was eliminated with the cylindrical GEM. The positive-ion feedback is also estimated. (author)

  18. One-Electron Theory of Metals. Cohesive and Structural Properties

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    The work described in the report r.nd the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from selfconsistent electronic-structure calculations performed...... by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth...

  19. Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pramod, S.L. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ravikirana [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Physics and Nanotechnology, SRM University, Chennai 603203 (India); Rao, A.K. Prasada [College of Engineering and Design, Alliance University, Bengaluru 562106 (India); Murty, B.S., E-mail: murty@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Bakshi, Srinivasa R., E-mail: sbakshi@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-09-30

    Effect of Sc addition and T6 aging treatment on the secondary dendritic arm spacing (SDAS), modification of eutectic Si morphology, β-Al{sub 5}FeSiand π-Al{sub 8}Mg{sub 3}Si{sub 6}Fe{sub 1} phases and its effect on mechanical properties in A356 alloy has been investigated. Addition of 0.4 wt%Sc in A356 alloy resulted in a 50%reduction in the secondary dendritic arm spacing (SDAS). Sc addition changed the morphology of eutectic Si from plate like to fibrous and globular. The needle like morphology of β-Al{sub 5}FeSi phase in A356 alloy changed to Al{sub 5}Fe(Si,Sc) phase having smaller size and irregular morphology. Transmission electron microscopy (TEM) diffraction pattern and Energy dispersive spectroscopy (EDS) analysis revealed the presence of β-Al{sub 5}FeSiand π-Al{sub 8}Mg{sub 3}Si{sub 6}Fe{sub 1} phases in A356 alloy which changed to β-Al{sub 5}Fe(Si,Sc), π-Al{sub 8}Mg{sub 3}(Si,Sc){sub 6}Fe{sub 1} and additional V-AlSi{sub 2}Sc{sub 2}phase was observed in Sc containing alloys. Addition of 0.4 wt%Sc to A356 alloy improved its Vickers hardness, Ultimate tensile strength (UTS), Yield strength (YS) and ductility by 20%, 25%, 20% and 30% respectively. Artificial aging treatment resulted in significant improvement in the tensile properties for both A356 and Sc added A356 alloys.

  20. Enhanced PL and EL properties of Alq3/nano-TiO2 with the modification of 8-vinyl POSS

    Science.gov (United States)

    Li, Jie; Xie, Bing; Xia, Kai; Zhao, Chunmao; Li, Yingchun; Hu, Shengliang

    2018-04-01

    In this study, tris (8-hydroxyquinoline) aluminum/nano-titanium dioxide (Alq3/nano-TiO2) composites were synthesized using a simply in-situ process with 8-vinyl polyhedral oligomeric silsesquioxane (POSS) as a modifier. The as-prepared Alq3/nano-TiO2 composites were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible (UV-vis) absorption spectra. The effect of modification on luminescence properties for the samples was studied by photoluminescence (PL) spectra, electroluminescence (EL) spectra and time-resolved luminescence decay curves. Organic light emitting diodes (OLEDs) with the corresponded emitting layer structure were investigated. The results show that the amphiphilicity of the 8-vinyl POSS leads to well-dispersion state of the nano-TiO2 in the Alq3. Adding a proper weight percentage of 8-vinyl POSS is beneficial for the PL and EL properties enhancement of the composites. OLED using the Alq3/nano-TiO2 with 1 wt% 8-vinyl POSS emitting layer has the low turn-on voltage (4.7 V at 1 cd/m2), high maximum luminance (7463 cd/m2 at 8.75 V), and high luminous efficiency (1.13 cd/A at 100 mA/cm2). Adding 1 wt% 8-vinyl POSS in Alq3/nano-TiO2 can increase the EL intensity by a factor of 37.1 at 8 V. These values are better than those for OLEDs using the Alq3 emitting layer. The increase in luminance and current efficiency stability can be attributed to the energy transfer process between the Alq3 and the nano-TiO2, and the suppression of the self-quenching by caged 8-vinyl POSS molecules.

  1. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: amanov_a@yahoo.com [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of); Cho, In-Sik [R& D Group, Mbrosia Co., Ltd., Asan 336-708 (Korea, Republic of); Pyun, Young-Sik [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • A nanostructured surface was produced by UNSM technique. • Porosities were eliminated from the surface by UNSM technique. • Extremely high hardness obtained at the top surface after UNSM treatment. • Friction and wear behavior was improved by UNSM technique. • Resistance to scratch behavior was improved by UNSM technique. - Abstract: A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  2. Wood Modification at High Temperature and Pressurized Steam: a Relational Model of Mechanical Properties Based on a Neural Network

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2015-07-01

    Full Text Available Thermally modified wood has high dimensional stability and biological durability.But if the process parameters of thermal modification are not appropriate, then there will be a decline in the physical properties of wood.A neural network algorithm was employed in this study to establish the relationship between the process parameters of high-temperature and high-pressure thermal modification and the mechanical properties of the wood. Three important parameters: temperature, relative humidity, and treatment time, were considered as the inputs to the neural network. Back propagation (BP neural network and radial basis function (RBF neural network models for prediction were built and compared. The comparison showed that the RBF neural network model had advantages in network structure, convergence speed, and generalization capacity. On this basis, the inverse model, reflecting the relationship between the process parameters and the mechanical properties of wood, was established. Given the desired mechanical properties of the wood, the thermal modification process parameters could be inversely optimized and predicted. The results indicated that the model has good learning ability and generalization capacity. This is of great importance for the theoretical and applicational studies of the thermal modification of wood.

  3. Evaluation of the electron beam radiation effects on the mechanical properties of the polypropylene

    International Nuclear Information System (INIS)

    Souza, Clecia M.; Moura, Esperidiana A.B.; Chinellato, Anne

    2009-01-01

    This paper studied the electron beam radiation effects on the mechanical properties of the polypropylene (PP) resin. The PP resin was submitted to 150-250 kGy radiation dose, at the dose rate of 14 kGy/s, room temperature and presence of air, using a 1.5 MeV electron accelerator. After the irradiation, the irradiated and non irradiated resin samples were submitted to the mechanical testes of traction resistance and impact Izod resistance. The results shown that the traction resistance at drainage of PP samples have not experienced significant modifications (p < 0.05) after the irradiation. However, the original PP rupture resistance (non irradiated samples) presented a gain up to 100 % as function of the applied radiation dose; the percentage of deformation in the rupture presented a reduction up to 65 % and the Izod impact resistance presented a reduction up to 70 % with the increase of the radiation dose (p < 0.05)

  4. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    Science.gov (United States)

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Properties of Commercial PVC Films with Respect to Electron Dosimetry

    DEFF Research Database (Denmark)

    Miller, Arne; Liqing, Xie

    The properties of three commercially available polyvinyl chloride (PVC) film supplies and one made without additives were tested with respect to their application as routine dose monitors at electron accelerators. Dose fractionation was found to increase the response and the post-irradiation heat...

  6. Anomalous optical and electronic properties of dense sodium

    International Nuclear Information System (INIS)

    Li Dafang; Liu Hanyu; Wang Baotian; Shi Hongliang; Zhu Shaoping; Yan Jun; Zhang Ping

    2010-01-01

    Based on the density functional theory, we systematically study the optical and electronic properties of the insulating dense sodium phase (Na-hp4) reported recently (Ma et al., 2009). The structure is found optically anisotropic. Through Bader analysis, we conclude that ionicity exists in the structure and becomes stronger with increasing pressure.

  7. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented ...

  8. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.

  9. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  10. Morphology and electronic properties of the pentacene on cobalt interface

    NARCIS (Netherlands)

    Tiba, M. V.; Koopmans, B.; Jonkman, Harry; de Jonge, W.J.M.

    2006-01-01

    In this paper, we report the structural and electronic properties of pentacene thin films grown on a polycrystalline Co film using atomic force microscopy and ultraviolet photoemission spectroscopy (UPS), respectively. Investigation of this type of interface is of importance for the engineering of

  11. Electronic structure and optical properties of thorium monopnictides

    Indian Academy of Sciences (India)

    Unknown

    Indian Academy of Sciences. 165. Electronic structure and optical properties of thorium monopnictides. S KUMAR* and S AULUCK†. Physics Department, Institute of Engineering and Technology, M.J.P. Rohilkhand University, Bareilly 243 006,. India. †Department of Physics, Indian Institute of Technology, Roorkee 247 667, ...

  12. Tailoring electronic properties of multilayer phosphorene by siliconization

    Science.gov (United States)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn V.; Radchenko, Ihor; Wu, Ping; Persson, Clas

    Controlling a thickness dependence of electronic properties for two-dimensional (2d) materials is among primary goals for their large-scale applications. Herein, employing a first-principles computational approach, we predict that Si interaction with multilayer phosphorene (2d-P) can result in the formation of highly stable 2d-SiP and 2d-SiP$_2$ compounds with a weak interlayer interaction. Our analysis demonstrates that these systems are semiconductors with band gap energies that can be governed by varying the thickness and stacking order. Specifically, siliconization of phosphorene allows to design 2d-SiP$_x$ materials with significantly weaker thickness dependence of electronic properties than that in 2d-P and to develop ways for their tailoring. We also reveal the spatial dependence of electronic properties for 2d-SiP$_x$ highlighting difference in effective band gaps for different layers. Particularly, our results show that central layers in the multilayer 2d systems determine overall electronic properties, while the role of the outermost layers is noticeably smaller.

  13. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.

    Science.gov (United States)

    Kim, Songkil; Russell, Michael; Kulkarni, Dhaval D; Henry, Mathias; Kim, Steve; Naik, Rajesh R; Voevodin, Andrey A; Jang, Seung Soon; Tsukruk, Vladimir V; Fedorov, Andrei G

    2016-01-26

    Interfacial contact of two-dimensional graphene with three-dimensional metal electrodes is crucial to engineering high-performance graphene-based nanodevices with superior performance. Here, we report on the development of a rapid "nanowelding" method for enhancing properties of interface to graphene buried under metal electrodes using a focused electron beam induced deposition (FEBID). High energy electron irradiation activates two-dimensional graphene structure by generation of structural defects at the interface to metal contacts with subsequent strong bonding via FEBID of an atomically thin graphitic interlayer formed by low energy secondary electron-assisted dissociation of entrapped hydrocarbon contaminants. Comprehensive investigation is conducted to demonstrate formation of the FEBID graphitic interlayer and its impact on contact properties of graphene devices achieved via strong electromechanical coupling at graphene-metal interfaces. Reduction of the device electrical resistance by ∼50% at a Dirac point and by ∼30% at the gate voltage far from the Dirac point is obtained with concurrent improvement in thermomechanical reliability of the contact interface. Importantly, the process is rapid and has an excellent insertion potential into a conventional fabrication workflow of graphene-based nanodevices through single-step postprocessing modification of interfacial properties at the buried heterogeneous contact.

  14. Modification of mechanical properties of single crystal aluminum oxide by ion beam induced structural changes

    International Nuclear Information System (INIS)

    Ensinger, W.; Nowak, R.; Horino, Y.; Baba, K.

    1993-01-01

    The mechanical behaviour of ceramics is essentially determined by their surface qualities. As a surface modification technique, ion implantation provides the possibility to modify the mechanical properties of ceramics. Highly energetic ions are implanted into the near-surface region of a material and modify its composition and structure. Ions of aluminum, oxygen, nickel and tantalum were implanted into single-crystal α-aluminum oxide. Three-point bending tests showed that an increase in flexural strength of up to 30% could be obtained after implantation of aluminum and oxygen. Nickel and tantalum ion implantation increased the fracture toughness. Indentation tests with Knoop and Vickers diamonds and comparison of the lengths of the developed radial cracks showed that ion implantation leads to a reaction in cracking. The observed effects are assigned to radiation induced structural changes of the ceramic. Ion bombardment leads to radiation damage and formation of compressive stress. In case of tantalum implantation, the implanted near-surface zone becomes amorphous. These effects make the ceramic more resistant to fracture. (orig.)

  15. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    Science.gov (United States)

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  16. Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification

    Science.gov (United States)

    Hu, Linna; Wang, Guangxiu; Cao, Rong; Yang, Chun; Chen, Xi

    2014-10-01

    Hydrophobic barium sulfate aggregates were fabricated by the direction of cocoate anions. At 30 °C, when the weight ratio of sodium cocoate to BaSO4 particles was 2.0 wt.%, the active ratio of the product reached 99.43% and the contact angle was greater than 120°. This method could not only simplify the complex modification process, but reduce energy consumption. The surface morphology, chemical structure and composition of BaSO4 aggregates were characterized by SEM, XRD, and FTIR. The results indicated that the as-synthesized BaSO4 particles were almond-liked and were composed of many interconnected nanoballs and that their surfaces were affected by cocoate anions. The adsorption of cocoate anions reversed the charge and weakened the surface polarity of BaSO4 particles, driving the formation of aggregates. And cocoate anions induced a change of the BaSO4 particles surface from hydrophilic to hydrophobic by a self-assembly and transformation process. Due to the self-assembled structure and the surface hydrophobicity, when adding the hydrophobic BaSO4 into PVC, the mechanical properties of PVC composite materials were significantly improved.

  17. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference.

    Science.gov (United States)

    Hatada, Mika; Loew, Noya; Inose-Takahashi, Yuka; Okuda-Shimazaki, Junko; Tsugawa, Wakako; Mulchandani, Ashok; Sode, Koji

    2018-06-01

    Enzyme based electrochemical biosensors are divided into three generations according to their type of electron transfer from the cofactors of the enzymes to the electrodes. Although the 3rd generation sensors using direct electron transfer (DET) type enzymes are ideal, the number of enzyme types which possess DET ability is limited. In this study, we report of a glucose sensor using mediator-modified glucose dehydrogenase (GDH), that was fabricated by a new quick-and-easy method using the pre-functionalized amine reactive phenazine ethosulfate (arPES). Thus mediator-modified GDH obtained the ability to transfer electrons to bulky electron acceptors as well as electrodes. The concentration of glucose was successfully measured using electrodes with immobilized PES-modified GDH, without addition of external electron mediators. Therefore, continuous monitoring systems can be developed based on this "2.5th generation" electron transfer principle utilizing quasi-DET. Furthermore, we successfully modified two other diagnostically relevant enzymes, glucoside 3-dehydrogenase and lactate oxidase, with PES. Therefore, various kinds of diagnostic enzymes can achieve quasi-DET ability simply by modification with arPES, suggesting that continuous monitoring systems based on the 2.5th generation principle can be developed for various target molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Modification of the method of polarized orbitals for electron--alkali-metal scattering: Application to e-Li

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Temkin, A.; Silver, A.; Sullivan, E.C.

    1978-01-01

    The method of polarized orbitals is modified to treat low-energy scattering of electrons from highly polarizable systems, specifically alkali-metal atoms. The modification is carried out in the particular context of the e-Li system, but the procedure is general; it consists of modifying the polarized orbital, so that when used in the otherwise orthodox form of the method, it gives (i) the correct electron affinity of the negative ion (in this case Li - ), (ii) the proper (i.e., Levinson-Swan) number of nodes of the associated zero-energy scattering orbital, and (iii) the correct polarizability. A procedure is devised whereby the scattering length can be calculated from the (known) electron affinity without solving the bound-state equation. Using this procedure we adduce a 1 S scattering length of 8.69a 0 . (The 3 S scattering length is -9.22a 0 .) The above modifications can also be carried out in the (lesser) exchange adiabatic approximation. However, they lead to qualitatively incorrect 3 S phase shifts. The modified polarized-orbital phase shifts are qualitatively similar to close-coupling and elaborate variational calculations. Quantitative differences from the latter calculations, however, remain; they are manifested most noticeably in the very-low-energy total and differential spin-flip cross sections

  19. Information System of Resolution of Procedural Incidents and Management of the Modifications Made to the Electronic Court Registration

    Directory of Open Access Journals (Sweden)

    Ştefan Gheorghe PENTIUC

    2011-01-01

    Full Text Available This information system was made for its use by the staff responsible for random distribution of cases to the courts. The Information System of Resolution of Procedural Incidents and Management of the Modifications Made to the Electronic Court Registration consists of three new developed modules: the management module is a Web application which chronicles the modifications made in the electronic court registration, regarding the random assignment of cases,the resolution of procedural incidents, which is a Web service whose logic implements a logic Semantic Web application and the module of confirming judges which is a windows service running on the judges’ workstations. The Web service implements a Semantic Web application which processes the knowledgebase achieved through OWL ontology (Ontology Web Language by applying inferences leading to the correct solution. If this does not solve the problem, a set of associated Jena rules are used to infer and generate new knowledge. It also uses the SPARQL(SPARQL Protocol and RDF Query Language language that allows queries on the knowledge,similar to the classic query languages of databases. The novelty of the new conceived, designed and implemented system consists in accessing the domain knowledge as a web service to solve the procedural incidents occurred in electronic court registration.

  20. Machine learning of molecular electronic properties in chemical compound space

    Science.gov (United States)

    Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

    2013-09-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

  1. Machine learning of molecular electronic properties in chemical compound space

    International Nuclear Information System (INIS)

    Montavon, Grégoire; Müller, Klaus-Robert; Rupp, Matthias; Gobre, Vivekanand; Hansen, Katja; Tkatchenko, Alexandre; Vazquez-Mayagoitia, Alvaro; Anatole von Lilienfeld, O

    2013-01-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure–property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost. (paper)

  2. Substitutionally doped phosphorene: electronic properties and gas sensing.

    Science.gov (United States)

    Suvansinpan, Nawat; Hussain, Fayyaz; Zhang, Gang; Chiu, Cheng Hsin; Cai, Yongqing; Zhang, Yong-Wei

    2016-02-12

    Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Modification of biological objects in water media by CO2-laser radiation

    Science.gov (United States)

    Baranov, G. A.; Belyaev, A. A.; Onikienko, S. B.; Smirnov, S. A.; Khukharev, V. V.

    2005-09-01

    The modification of biological objects (polysaccharides and cells) by CO2-laser radiation in water added drop by drop into the interaction region is studied theoretically and experimentally. Calculations are performed by using the models describing gas-dynamic and heterogeneous processes caused by absorption of laser radiation by water drops. It is found experimentally that the laser modification of polysaccharides leads to the formation of low-molecular derivatives with immunostimulating properties. A dose of the product of laser activation of the yeast culture Saccharamyces cerevisiae prevented the development of a toxic emphysema in mice and protected them against lethal grippe and also prevented a decrease of survival rate, increased the average life, and prevented the development of metabolic and immune disorders in mice exposed to sublethal gamma-radiation doses.

  4. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.; Rose, D.V.; Swanekamp, S.B.

    1996-01-01

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs

  5. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, D; Cooperstein, G [Naval Research Laboratory, Washington, DC (United States); Rose, D V; Swanekamp, S B [JAYCOR, Vienna, VA (United States)

    1997-12-31

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs.

  6. Intellectual property in consumer electronics, software and technology startups

    CERN Document Server

    Halt, Jr , Gerald B; Stiles, Amber R; Fesnak, Robert

    2014-01-01

    This book provides a comprehensive guide to procuring, utilizing and monetizing intellectual property rights, tailored for readers in the high-tech consumer electronics and software industries, as well as technology startups.  Numerous, real examples, case studies and scenarios are incorporated throughout the book to illustrate the topics discussed.  Readers will learn what to consider throughout the various creative phases of a product’s lifespan from initial research and development initiatives through post-production.  Readers will gain an understanding of the intellectual property protections afforded to U.S. corporations, methods to pro-actively reduce potential problems, and guidelines for future considerations to reduce legal spending, prevent IP theft, and allow for greater profitability from corporate innovation and inventiveness. • Offers a comprehensive guide to intellectual property for readers in high-tech consumer electronics, software and technology startups; • Uses real case studies...

  7. Modifications resulting in significant increases in the beam usage time of a 60 keV electron beam welder

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Harrison, J.L.

    1976-01-01

    Short beam usage times were encountered using a 60 keV electron beam welder. These short times were the direct result of a buildup of a reaction product (WO 2 . 90 ) that occurred on graphite washers which housed the tungsten emitter plate. While it was not possible to prevent the reaction product, its growth rate was sufficiently altered by changing graphite materials and minor design changes of the washers. With these modifications beam usage times increased from an original 40 min to approximately 675 min

  8. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    Science.gov (United States)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  9. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Rosenberg, R.A.

    2003-01-01

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  10. Magnetic and electronic properties of some actinide intermetallic compounds

    International Nuclear Information System (INIS)

    Yaar, Ilan

    1992-06-01

    The electronic structure and magnetic properties of the light actinide intermetallic compounds are often related to interplay between localized and itinerant (band like) behavior of the 5f- electrons. In the present work, the properties of some actinide, mainly Np, intermetallic compounds were studied by Mossbauer effect, ac and dc susceptibility, X-ray and Neutron diffraction techniques. 1. NpX 2 (X=Ga,Si) - Both compounds order ferromagnetically at TC=55(2) and 48(2) K respectively. A comparison of our data with the results for other NpX 2 (X=Al,As,Sb,Tl) compounds indicates that NpGa 2 is a highly localized 5f electron system, whereas in NpSi 2 the 5f electrons are partially delocalized. The magnetic properties of NpX 2 compounds can neither be consistently explained within the conventional crystal electric field picture (CEF) nor by takink into account hybridization dressing of local spin density models. 2. NpX 3 (X=Ga,Si,In,Al) in the cubic AuCu 3 (Pm3m) crystallographic structure - From the Mossbauer isomer shift (IS) data we argue that the Np ion in the NpX 3 family is close to the formal 3+ (5I 4 ) charge state. The magnetic moment of the Np in NpSi 3 is totally suppressed whereas in NpGa 3 and NpAl 3 a localized (narrow band) moment is established. However, in NpIn 3 at 4.2 K, a modulated magnetic moment (0-1.5μB) is observed. Comparing the magnetic behavior of the NpX 3 family (X=Si,Ge,Ga, Al,In and Sn), we find an impressive variation of the magnetic properties, from temperature independent paramagnetism (TIP), localized and modulated ordered moments, to the formation of a concentrated Kondo lattice. Hybridization of 5f electrons with ligand electrons appears to play a crucial role in establishing these magnetic properties. However, at present a consistent theoretical picture can not be drawn. 3. XFe 4 Al 8 (X=Ho,Np,U) spin galss (SG) systems in the ThMn 12 (I 4 /mmm) crystallographic structure - Localized and itinerant behaviour of the f electrons

  11. First principles study of electronic properties, interband transitions and electron energy loss of α-graphyne

    Science.gov (United States)

    Behzad, Somayeh

    2016-04-01

    The electronic and optical properties of α-graphyne sheet are investigated by using density functional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. The optical properties of the α-graphyne sheet such as dielectric function, refraction index, electron energy loss function, reflectivity, absorption coefficient and extinction index are calculated for both parallel and perpendicular electric field polarizations. The optical spectra are strongly anisotropic along these two polarizations. For (E ∥ x), absorption edge is at 0 eV, while there is no absorption below 8 eV for (E ∥ z).

  12. Investigations on the optical, thermal and surface modifications of electron irradiated L-threonine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, G.; Gokul Raj, S. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India); Bogle, K.A.; Dhole, S.D.; Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Mohan, R. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India)], E-mail: professormohan@yahoo.co.in

    2008-06-15

    L-Threonine single crystals have been irradiated by 6 MeV electrons. Irradiated crystals at various electron fluences were subjected to various techniques such as UV-vis-NIR, atomic force microscopy (AFM) and thermomechanical analyses. Thermal strength of the irradiated crystals has also been studied through differential scanning calorimetry (DSC) measurements. The results have been discussed in detail.

  13. Methods of modification and investigations of properties of fuel UO2

    International Nuclear Information System (INIS)

    Kurina, I.; Popov, V.; Rogov, S.; Dvoryashin, A.; Serebrennikova, O.

    2009-01-01

    In the SSC RF-IPPE the researches are carried out directed towards the uranium dioxide fuel pellets modification with the purpose of improvement of their performance parameters (increase of thermal conductivity, growth of grain for decrease gas release, decrease of interaction with coolant). The following technological methods of manufacturing of modified pellets UO 2 were used: 1) The water method including precipitation of Ammonium Polyuranate (APU) with manufacturing of simultaneously coarse and super dispersed particles, and also coprecipitation APU with additives (Cr, Ti, etc.), with the after calcination of powders, reduction to UO 2 pressing and sintering of pellets; 2) A method including addition of chemical reagent containing ammonia to the powder UO 2 manufactured under the dry or water technology; mechanical mixture; pressing and sintering of pellets. Application of the specified up methods makes manufacturing the UO 2 fuel pellets having the properties differing from pellets manufactured by industrial technology. Conclusions: 1) Properties of powders and the pellets manufactured by different technologies considerably differ; 2) Precipitate manufactured by water industrial technology, consists of phase NH 3 ·3UO 3 ·5H 2 O whereas the precipitate manufactured by nanotechnology contains in addition phase NH 3 ·2UO 3 ·3H 2 O; 3) Powders of U 3 O 8 manufactured by water nanotechnology have particles size 300-500 nm and ultra dispersive particles size ∼70-75 nm; 4) Powder UO 2 obtained by water nanotechnology differs by greater activity because all phase changes under oxidation result at lower temperatures; 5) Basic differences of properties of modified UO 2 pellets was established: decreasing of defects inside and on grains boundaries, minor porosity (pore size 0,05-0,5 μm), presence of pore of spherical form, presence of additional chemical bond U-U (presence of metal clusters), polyvalence of U; 6) Methods including addition of Cr and Ti under

  14. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  15. Carbon nanotube on Si(001): structural and electronic properties

    International Nuclear Information System (INIS)

    Orellana, W.; Fazzio, A.; Miwa, R.W.

    2003-01-01

    Full text: The promising nanoscale technology based on carbon nanotubes has attracted much attention due to the unique electronic, chemical and mechanical properties of the nanotubes. Single-wall carbon nanotubes (SWCNs) provide an ideal atomically uniform one dimensional (1D) conductors, having a strong electronic confinement around its circumference, which can be retained up to room temperature[1]. This interesting property may lead one to consider SWCNs as 1D conductors for the development of nanoscale electronic devices. In this work the structural and electronic properties of the contact between a metallic (6,6) SWCN adsorbed on a silicon (001) surface are studied from first-principles total-energy calculations. We consider two adsorption sites for the tube on the Si(001) surface: on the top of the Si-dimer rows and on the surface 'trench' between two consecutive dimer rows. Our results show a chemical bond between the nanotube and Si(001) when the tube is located along the 'trench', which corresponds to the only bound structure. We find a binding energy per tube length of 0.21 eV/angstrom. We also verified that the binding energy depends on the rotation of the tube. Typically, a rotation of 15 deg can reduce the binding energy up to 0.07 eV/angstrom. Our calculated electronic properties indicate that the most stable structure shows a subband associated to the tube/surface bond that cross the Fermi level. This result indicates an enhanced metallic behavior along the tube/surface contact characterizing a 1D quantum wire. The charge transfer between the Si surface and the tube is also discussed. [1] Z. Yao, C. Dekker, and P. Avouris in Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris Eds., (Springer, Berlin 2001), p. 147. (author)

  16. Electronic properties and phase transitions in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Panich, A M

    2008-01-01

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX 2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX 2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  17. Measurements of Lunar Dust Charging Properties by Electron Impact

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  18. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xincheng [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China); Jiang Jianchun, E-mail: lhs_ac2011@yahoo.cn [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China); Sun Kang; Xie Xinping; Hu Yiming [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China)

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  19. Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities

    International Nuclear Information System (INIS)

    Gao, Yu-kui

    2013-01-01

    Highlights: •The hardness changes were determined by nanoindention method. •The surface integrity changes were investigated by different techniques. •The mechanism was analyzed based on AFM and TEM investigations. -- Abstract: Surface changes including surface topography and nanohardness distribution along surface layer were investigated for TC4 titanium alloy by different energy densities of high current pulsed electron beam (HCPEB). The surface topography was characterized by SEM and AFM, and cross-sectional TEM observation was performed to reveal the surface modification mechanism of TC4 titanium alloy by HCPEB. The surface roughness was modified by HCPEB and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM. The fine grain structure inherited from the rapid solidification of the melted layer as well as the strain hardening of the sub-surface are two of the factors responsible the increase in nanohardness

  20. Electronic, mechanical and dielectric properties of silicane under tensile strain

    International Nuclear Information System (INIS)

    Jamdagni, Pooja; Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-01-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices

  1. Acoustic and electronic properties of one-dimensional quasicrystals

    International Nuclear Information System (INIS)

    Nori, F.; Rodriguez, J.P.

    1986-01-01

    We study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical (nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra exhibit a self-similar hierarchy of gaps and many localized states in the gaps. We study quasiperiodic structures with any number of layers and several types of boundary conditions. We discuss the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs superlattices. We predict the existence of many gap states localized at the surfaces

  2. Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surface

    DEFF Research Database (Denmark)

    Sørensen, Signe Grønborg; Füchtbauer, Henrik Gøbel; Tuxen, Anders Kyrme

    2014-01-01

    When transition metal sulfides such as MoS2 are present in the single-layer form, the electronic properties change in fundamental ways, enabling them to be used, e.g., in two-dimensional semiconductor electronics, optoelectronics, and light harvesting. The change is related to a subtle modification...... with scanning tunneling microscopy and X-ray photoelectron spectroscopy characterization of two-dimensional single-layer islands of MoS2 synthesized directly on a gold single crystal substrate. Thanks to a periodic modulation of the atom stacking induced by the lattice mismatch, we observe a structural buckling...

  3. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    Science.gov (United States)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  4. Modifications in concrete superficial properties due to the use of different formworkrelease agents and plastic additives

    Directory of Open Access Journals (Sweden)

    Beltramone, A.

    2003-06-01

    Full Text Available The actual research study, carried out in the Laboratory of Construction Materials of the ETSAM., analyses the modifications in superficial properties (regarding colour and texture of grey Portland cement mortars due to the use of different formworks release agents (car oil, mineral oil and paraffin and to the addition of plastic superplasticiser to the mixture (Bettor and Sika trademarks. Once the test samples were obtained, a digital registration was made by giving them values in terms of colour and texture observed changes using computer programmes, referring those values to the test specimen (only cement, no additives. A migration of the polymeric particles of the additives towards the surface was observed, presenting the following modifications: Colour: darker hues than those of the test specimen sample were registered in the specimens with additives. Texture: the texture of the test specimen containing additives such as modified polycarboxilic ethers, polycarboxilic ethers; modified organic polymers and modified synthetic melamine were much smoother than the one in test specimen. Test specimens containing melamine, condensed naftalensulphate and polycarboxilic derivatives were a bit rougher but still smoother than the test specimen. The same variation of results as for the colour properties was obtained for the texture as regards to the use of formworks release agents, varying from smoothest to roughest with the car oil.

    El presente estudio experimental, realizado en las instalaciones del Laboratorio de Materiales de Construcción de la ETSAM, analiza las modificaciones de las propiedades superficiales observadas (en cuanto a color y textura en morteros de cemento portland gris, por la utilización de desencofrantes diversos (aceite de automóvil, aceite mineral y desencofrante parafínico, y la incorporación de aditivos superfluidificantes plásticos en la mezcla (de las marcas Bettor y Sika. Una vez obtenidas las diferentes

  5. Modification of NSSC pulp broke fibers using layering method and investigating its effect on paper properties

    Directory of Open Access Journals (Sweden)

    hamidreza rudi

    2016-12-01

    Full Text Available In the current study, modification of NSSC pulp broke fibers was done by forming starch polymeric multilayers, using Layer-by-Layer (LbL layering method. After fiber slushing and preparation of pulp suspension with 0.5% consistency and conductivity formation of about 437 µS/cm, adding water solution of 1 mM NaCl, the experiments of fibers treatment were conducted to build the polymeric layers (up to 5 consecutive layers. Afterward, water retention value (WRV of fibers was calculated in samples to evaluate the influence of this method on fibers hydrophilicity. The fibers were then used to prepare standard handsheets (60±3g/m2 and the physical and strength properties of sheets were evaluated as a function of the number of layers deposited on the fibers. The results showed that the WRV index of the fibers was improved by the LbL treatment of NSSC broke pulp fibers, due to the increase in starch electrostatic absorption. Successive variation in paper apparent density increase and paper thickness decrease confirmed the construction of starch multilayers on the surface of broke fibers. Formation of such multilayers on broke fibers has led to considerable improvement in tensile index (from 13.21 N.m/g to 30.65 N.m/g and burst index (from 1.23 kPa.m2/g to 2.36 kPa.m2/g. Also, the prepared SEM micrographs approve the sheet web compaction and paper mechanical improvement resulted due to an increase in inter-fiber bonding.

  6. Electronic pairing mechanism due to band modification with increasing pair number

    International Nuclear Information System (INIS)

    Mizia, J.

    1995-01-01

    It is shown that a shift of an electron band with electron occupation number n, which is changing during the transition to the superconducting state, can lower the total energy of the system. In fact it will bring a negative contribution to the pairing potential, which is proportional to the product of the electron band shift with occupation number and the charge transfer during the transition to the superconducting state. The shift of the electron band comes from the change of stresses and the change of correlation effects in the CuO 2 plane with n, that in turn is caused by the changing oxygen concentration. This model explains the phenomenological success of Hirsch's model, which gives no explanation how the band shift in energy can give rise to superconductivity. (orig.)

  7. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  8. Modification of the Absorption Edge of GaAs Arising from Hot-Electron Effects

    DEFF Research Database (Denmark)

    McGroddy, J. C.; Christensen, Ove

    1973-01-01

    We have observed a large enhancement of the electric-field-induced optical absorption arising from hot-electron effects in n-type GaAs at 77 K. The magnitude and field dependence of the enhancement can be approximately accounted for by a theory attributing the effect to broadening of the final...... states of the optical transitions by interaction with the nonequilibrium optical phonons produced by the hot electrons....

  9. Electronic and chemical properties of barium and indium clusters

    International Nuclear Information System (INIS)

    Onwuagba, B.N.

    1992-11-01

    The ground state electronic and chemical properties of divalent barium and trivalent indium are investigated in a self-consistent manner using the spin-polarized local density approximation in the framework of Density Functional Theory. A jellium model is adopted in the spirit of Gunnarsson and Lundqvist exchange and correlation energies and the calculated properties primarily associated with the s-p orbitals in barium and p orbitals in indium provide deepened insight towards the understanding of the mechanisms to the magic numbers in both clusters. (author). 21 refs, 5 figs

  10. Exploring the morphological and electronic properties of silicene superstructures

    International Nuclear Information System (INIS)

    Grazianetti, Carlo; Chiappe, Daniele; Cinquanta, Eugenio; Tallarida, Grazia; Fanciulli, Marco; Molle, Alessandro

    2014-01-01

    Silicene, the Si counterpart of graphene, grows on Ag(111) forming domains. Investigation, by means of scanning tunneling microscopy, of morphological properties is carried out by considering post-deposition process. Particular attention is here addressed to the post-deposition annealing temperature, which plays an important role in determining the resulting morphology. On the other hand, electronic properties are probed by scanning tunneling spectroscopy and a position-dependent local density of states results, which can be understood in terms of symmetry breaking in the honeycomb lattice.

  11. Exploring the morphological and electronic properties of silicene superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Grazianetti, Carlo, E-mail: carlo.grazianetti@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 53, I-20126 Milano, MI (Italy); Chiappe, Daniele; Cinquanta, Eugenio; Tallarida, Grazia [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Fanciulli, Marco [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 53, I-20126 Milano, MI (Italy); Molle, Alessandro, E-mail: alessandro.molle@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy)

    2014-02-01

    Silicene, the Si counterpart of graphene, grows on Ag(111) forming domains. Investigation, by means of scanning tunneling microscopy, of morphological properties is carried out by considering post-deposition process. Particular attention is here addressed to the post-deposition annealing temperature, which plays an important role in determining the resulting morphology. On the other hand, electronic properties are probed by scanning tunneling spectroscopy and a position-dependent local density of states results, which can be understood in terms of symmetry breaking in the honeycomb lattice.

  12. PHB/bentonite compounds: Effect of clay modification and thermal aging on properties

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Tatiara G.; Costa, Anna Raffaela M.; Canedo, Eduardo L.; Carvalho, Laura H. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Wellen, Renate M.R., E-mail: tatiaraalmeida@gmail.com [Universidade Federal da Paraíba (UFPB), João Pessoa, PB (Brazil)

    2017-11-15

    Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115 deg C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging. (author)

  13. PHB/bentonite compounds: Effect of clay modification and thermal aging on properties

    International Nuclear Information System (INIS)

    Almeida, Tatiara G.; Costa, Anna Raffaela M.; Canedo, Eduardo L.; Carvalho, Laura H.; Wellen, Renate M.R.

    2017-01-01

    Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115 deg C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging. (author)

  14. Modification of magnetoresistance and magnetic properties of Ni thin films by adding Dy interlayer

    Science.gov (United States)

    Vorobiov, S. I.; Shabelnyk, T. M.; Shutylieva, O. V.; Pazukha, I. M.; Chornous, A. M.

    2018-03-01

    The paper reports the influence of dysprosium (Dy) interlayer addition on structure, magnetoresistance and magnetic properties of nickel (Ni) thin films. Trilayer film systems Ni/Dy/Ni have been prepared by alternate electron-beam evaporation. It is demonstrated that all as-prepared and annealed Ni thin films have face-centered cubic structure. The composition of the samples after addition of the Dy interlayer corresponds to the combination of face-centered cubic (Ni) and hexagonal close-packed (Dy) structures. The structure of Ni/Dy/Ni film systems changes from amorphous to polycrystalline when Dy interlayer thickness (t Dy) is more than 15 nm. The value of magnetoresistance increases with the adding the Dy interlayer in both longitudinal and transverse geometries, meanwhile the anisotropic character of magnetoresistance field dependences retained. The saturation and reversal magnetizations are reduced with the increasing of the Dy thickness interlayer, while the coercivity takes the minimum value at t Dy = 15 nm. The following increasing of t Dy leads to increasing of coercivity near to three times. This result indicates the influence of the crystal structure on the magnetic properties of Ni thin films at adding Dy interlayer.

  15. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia

    2002-01-01

    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  16. Study of electronic and structural properties of CaS

    International Nuclear Information System (INIS)

    Mirfenderski, M.; Akbarzdeh, H.; Mokhtari, A.

    2003-01-01

    The electronic and structural properties of CaS are calculated using full potential linearized augmented plane wave method within the local density approximation and generalized gradient approximation for the exchange -correlation energy. For both structures, NaCl structure (B1) and CsCl structure (B2), the obtained values for lattice parameters, bulk modulus and its pressure derivative and transition pressure are in reasonable agreement with the experimental values. For electronic properties, the obtained value for band gap is smaller than the experimental value as well as other calculated results based on density functional theory. Engel and Vosko calculated an exchange potential for some atoms within the so-called optimize-potential model and then used the virial relation and constructed a new exchange-correlation functional. We used that functional and obtained reasonable results for band gap. Finally we investigated the possibility for a third phase ( Zinc Blend structure) for this crystal

  17. Structural and electronic properties of GaAsBi

    International Nuclear Information System (INIS)

    Achour, H.; Louhibi, S.; Amrani, B.; Tebboune, A.; Sekkal, N.

    2008-05-01

    The structural and electronic properties of the GaAs 1-x Bi x ternary alloy are investigated by means of two first principles and full potential methods, the linear augmented plane waves (FPLAPW) method and a recent version of the full potential linear muffin-tin orbitals method (FPLMTO) which enables an accurate treatment of the interstitial regions. In particular, we have found that the maximal GaBi mole fraction x for which GaBixAs 1-x remains a semiconductor is probably around x = 0.5. The electronic properties of (GaAs) m /(GaBi) n quantum well superlattices (SLs) have also been calculated and it is found that such SLs are semiconductors when m is larger or equal to n. (author)

  18. Elastic properties and electron transport in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, Vadim

    2013-02-22

    The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It

  19. Electronic Properties of Corrugated Graphene, the Heisenberg Principle and Wormhole Geometry in Solid State

    International Nuclear Information System (INIS)

    Atanasov, Victor; Saxena, Avadh

    2010-12-01

    Adopting a purely two dimensional relativistic equation for graphene's carriers contradicts the Heisenberg uncertainty principle since it requires setting off-the-surface coordinate of a three-dimensional wavefunction to zero. Here we present a theoretical framework for describing graphene's massless relativistic carriers in accordance with this most fundamental of all quantum principles. A gradual confining procedure is used to restrict the dynamics onto a surface and in the process the embedding of this surface into the three dimensional world is accounted for. As a result an invariant geometric potential arises which scales linearly with the Mean curvature and shifts the Fermi energy of the material proportional to bending. Strain induced modification of the electronic properties or 'straintronics' is clearly an important field of study in graphene. This opens a venue to producing electronic devices, MEMS and NEMS where the electronic properties are controlled by geometric means and no additional alteration of graphene is necessary. The appearance of this geometric potential also provides us with clues as to how quantum dynamics looks like in the curved space-time of general relativity. In this context, we explore a two-dimensional cross-section of the wormhole geometry realized with graphene as a solid state thought experiment. (author)

  20. Electronic structure and magnetic properties of Pd sub(3)Fe

    International Nuclear Information System (INIS)

    Kuhnen, C.A.

    1988-01-01

    In this work we study the electronic and magnetic properties of the Pd sub(3)Fe alloy. For the ordered phase of Pd sub(3)Fe we employed the Linear Muffin-Tin Orbitals Method, with the atomic sphere approximation, which is a first principles method and includes spin polarization. The theoretical results for the thermal and magnetic properties show good agreement with experience. Here we explain the formation of the localized magnetic moments from completely itinerant electrons. We investigate the influence of the hydrogen in the physical properties of the compound Pd sub(3)Fe, where we obtain a drastic reduction in the magnetic moments at the Pd and Fe sites. This reduction is confirmed by experience. The self consistent potentials of the Pd sub(3)Fe compound were used for an analysis of the influence of the disorder in the electronic structure of Pd sub(3)Fe alloy. To this end, we employ a spin polarized version of the Green's Function Method with the Coherent Potential Approximation (or KKR-CPA). The results obtained show that in random ferromagnetic alloys different degrees of disorder occurs for the different spin directions. The formation of the magnetic moments in these alloys were explained from the existence of 'virtual crystal' states for spin up electrons and 'split band' states for spin down electrons. Finally we employ the muffin-tin orbitals to calculate the X-ray photoemission spectra of the Pd sub(3)Fe and Pd sub(3)FeH compounds, which allows us a direct comparison between theory and experiment. (author)

  1. Size-dependent electronic properties of metal nanostructures

    Indian Academy of Sciences (India)

    Table of contents. Size-dependent electronic properties of metal nanostructures · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Nanocrystalline film at liquid-liquid interface · Slide 21 · Slide 22.

  2. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  3. Local electronic and electrical properties of functionalized graphene nano flakes

    International Nuclear Information System (INIS)

    Chutia, Arunabhiram; Sahnoun, Riadh; Deka, Ramesh C.; Zhu, Zhigang; Tsuboi, Hideyuki; Takaba, Hiromitsu; Miyamoto, Akira

    2011-01-01

    Based on experimental findings models of amorphous graphene related carbon materials were generated using graphene nano flakes. On the optimized structures detailed local electronic properties were investigated using density functional theory. The electrical conductivities of all these models were also estimated using an in-house program based on tight-binding method. The calculated electrical conductivity values of all the models agreed well with the trend of calculated energy gap and graphitic character.

  4. Structural and electronic properties of L-amino acids

    Science.gov (United States)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  5. Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons

    Science.gov (United States)

    Meng, Fanchen; Chen, Xiangnan; Sun, Songsong; He, Jian

    2017-07-01

    The groundbreaking works in graphene and graphene nanoribbons (GNRs) over the past decade, and the very recent discovery of borophene naturally draw attention to the yet-to-be-explored borophene nanoribbons (BNRs). We herein report a density functional theory (DFT) study of the electronic and magnetic properties of BNRs. The foci are the impact of orientation (denoted as BxNRs and ByNRs with their respective periodic orientations along x- and y-axis), ribbon width (Nx, Ny=4-15), and hydrogenation effects on the geometric, electronic and magnetic properties of BNRs. We found that the anisotropic quasi-planar geometric structure of BNR and the edge states largely govern its electronic and magnetic properties. In particular, pristine ByNRs adopt a magnetic ground state, either anti-ferromagnetic (AFM) or ferromagnetic (FM) depending on the ribbon width, while pristine BxNRs are non-magnetic (NM). Upon hydrogenation, all BNRs exhibit NM. Interestingly, both pristine and hydrogenated ByNRs undergo a metal-semiconductor-metal transition at Ny=7, while all BxNRs remain metallic.

  6. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  7. Electronic properties of carbon nanotubes with polygonized cross sections

    International Nuclear Information System (INIS)

    Charlier, J.; Lambin, P.; Ebbesen, T.

    1996-01-01

    The electronic properties of carbon nanotubes having polygonized cross sections instead of purely circular ones, such as recently observed using transmission electron microscopy, are investigated with plane-wave ab initio pseudopotential local-density-functional calculations and simple tight-binding models. Strong σ * -π * hybridization effects occur in zigzag nanotubes due to the high curvature located near the edges of the polygonal cross-section prism. These effects, combined with a lowering of symmetry, dramatically affect the electronic properties of the nanotubes. It is found that modified low-lying conduction-band states are introduced either into the bandgap of insulating nanotubes, or below the degenerate states that form the top of the valence band of metallic nanotubes, leading the corresponding nanostructures to be metals, semimetals, or at least very-small-gap semiconductors. The degree of the polygon representing the cross section of the tube, and the sharpness of the edge angles, are found to be major factors in the hybridization effect, and consequently govern the electronic behavior at the Fermi level. copyright 1996 The American Physical Society

  8. Investigation of electrophysical properties of allotropic modifications of carbon in the range of temperatures 140-400 K

    Science.gov (United States)

    Goshev, A. A.; Eseev, M. K.; Volkov, A. S.; Lyah, N. L.

    2017-09-01

    The paper presents the results of the investigation of allotropic modifications of carbon (coal, graphite, fullerenes, CNTs. Dependences of conductivity on the field frequency in the temperature range 140-400 K are presented. The characteristic features associated with the structure and types of hybridization are revealed. Calculation of the activation energy of carriers was performed. As well article presents experimental study of electrical properties of polymeric composites, reinforced different types of allotropic modifications of carbon (CNTs, graphite, fullerenes, coal) in alternating electrical field in frequency band from 0.01 Hz to 10 MHz. The threshold of percolation of polymer composites with various types of additives and their influence for conduction properties was estimated.

  9. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Nam; Lee, Seung Min; Mishra, Anurag [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-01-01

    Recently, non-equilibrium atmospheric pressure plasma, especially those operated at low gas temperatures, have become a topic of great interest for the processing of flexible and printed electronic devices due to several benefits such as the reduction of process and reactor costs, the employment of easy-to-handle apparatuses and the easier integration into continuous production lines. In this review, several types of typical atmospheric pressure plasma sources have been addressed, and the processes including surface treatment, texturing and sintering for application to flexible and printed electronic devices have been discussed.

  10. Modification of Electron Cyclotron Maser Operation by Application of an External Signal.

    Science.gov (United States)

    1987-03-31

    start-up phase jitter in the presence of this external priming signal can be estimated by using the method of David [30]. A lumped circuit representation...27. K.E. Kreischer, R.J. Temkin, H.R. Fetterman , and W.I. Mulligan, IEEE Trans. Microwave Theory Tech. MTT-32, 481 (1984). 28. I.G. Zarnitsyna and G.S...Nusinovich, Radiophys. Quant. Electron. 17, 1418 (1974). 29. G.S. Nusinovich, Radiophys. Quant. Electron. 19, 1301 (1976). 30. E.E. David Jr., Proc

  11. A new contribution to the nuclear modification factor of non-photonic electrons in Au + Au collisions at √sNN = 200 GeV

    International Nuclear Information System (INIS)

    Martinez-Garcia, G.; Gadrat, S.; Crochet, P.

    2007-02-01

    We investigate the effect of the so-called anomalous baryon/meson enhancement to the nuclear modification factor of non-photonic electrons in Au+Au collisions at √s NN = 200 GeV. It is demonstrated that an enhancement of the charm baryon/meson ratio, as it is observed for non-strange and strange hadrons, can be responsible for a part of the amplitude of the nuclear modification factor of non-photonic electrons. About half of the measured suppression of non-photonic electrons in the 2 - 4 GeV/c p t range can be explained by a charm baryon/meson enhancement of 5. This contribution to the non-photonic electron nuclear modification factor has nothing to do with heavy quark energy loss. (authors)

  12. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  13. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaescu, Dan, E-mail: Dan.Nicolaescu@kt2.ecs.kyoto-u.ac.jp [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Sakai, Shigeki [Nissin Ion Equipment Co., Ltd., 575 Kuze Tonoshiro-cho, Minami-ku, Kyoto 601-8205 (Japan); Gotoh, Yasuhito [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ishikawa, Junzo [Department of Electronics and Information Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2011-07-21

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy ({sup 11}B{sup +}, {sup 31}P{sup +},{sup 75}As{sup +}, E{sub ion}=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  14. Modification of a scanning electron microscope to produce Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Kapp, Oscar H.; Sun, Yin-e; Kim, Kwang-Je; Crewe, Albert V.

    2004-01-01

    We have modified a scanning electron microscope (SEM) in an attempt to produce a miniature free electron laser that can produce radiation in the far infrared region, which is difficult to obtain otherwise. This device is similar to the instrument studied by the Dartmouth group and functions on the basic principles first described by Smith and Purcell. The electron beam of the SEM is passed over a metal grating and should be capable of producing photons either in the spontaneous emission regime or in the superradiance regime if the electron beam is sufficiently bright. The instrument is capable of being continuously tuned by virtue of the period of the metal grating and the choice of accelerating voltage. The emitted Smith-Purcell photons exit the instrument via a polyethylene window and are detected by an infrared bolometer. Although we have obtained power levels exceeding nanowatts in the spontaneous emission regime, we have thus far not been able to detect a clear example of superradiance

  15. Structure modifications in silikon irradiated by ultra-short pulses of XUV free electron laser

    Czech Academy of Sciences Publication Activity Database

    Pelka, J. B.; Andrejczuk, A.; Reniewicz, H.; Schell, N.; Krzywinski, J.; Sobierajski, R.; Wawro, A.; Zytkiewicz, Z. R.; Klinger, D.; Juha, Libor

    2004-01-01

    Roč. 382, - (2004), s. 264-270 ISSN 0925-8388 R&D Projects: GA MŠk 1P04LA235; GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010914 Keywords : XUV ablation * free electron laser Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.562, year: 2004

  16. Electronic and Optical Properties of Twisted Bilayer Graphene

    Science.gov (United States)

    Huang, Shengqiang

    The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion

  17. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    Perovskite oxides have the general chemical formula ABO3, where A is a rare-earth or alkali-metal cation and B is a transition metal cation. Perovskite oxides can be formed with a variety of constituent elements and exhibit a wide range of properties ranging from insulators, metals to even superconductors. With the development of growth and characterization techniques, more information on their physical and chemical properties has been revealed, which diversified their technological applications. Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors and spintronics. There is not only the technological importance but also the need to understand the fundamental mechanisms of the unusual magnetic and transport properties that drive enormous attention. Manganites combined with other perovskite oxides are gaining interest due to novel properties especially at the interface, such as interfacial ferromagnetism, exchange bias, interfacial conductivity. Doped manganites exhibit diverse electrical properties as compared to the parent compounds. For instance, hole doped La0.7Sr0.3MnO3 is a ferromagnetic metal, whereas LaMnO3 is an antiferromagnetic insulator. Since manganites are strongly correlated systems, heterojunctions composed of manganites and other perovskite oxides are sunject to complex coupling of the spin, orbit, charge, and lattice degrees of freedom and exhibit unique electronic, magnetic, and transport properties. Electronic reconstructions, O defects, doping, intersite disorder, magnetic proximity, magnetic exchange, and polar catastrophe are some effects to explain these interfacial phenomena. In our work we use first-principles calculations to study the structural, electronic, and magnetic properties of manganite based superlattices. Firstly, we investigate the electronic

  18. Modifications in optical and structural properties of PMMA/PCTFE blend films as a function of PCTFE concentration

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J., E-mail: jtripathi00@gmail.com [Dept. of Physics, ISLE, IPS Academy, Indore (India); Sharma, A. [Dept. of Physics, Manipal University Jaipur, Jaipur (India); Tripathi, S. [UGC-DAE Consortium for Scientific Research, Indore (India); Bisen, R. [Dept. of Physics, ISLE, IPS Academy, Indore (India); Agrawal, A. [Dept. of Elect. and Commun., Global Engineering College, Jabalpur (India)

    2017-06-15

    The poly (methyl methacrylate) (PMMA) polymer blend films were prepared by solution casting method with varying PolyChloroTriFluoroEthylene (PCTFE) concentrations (1–5 wt %). The crystallinity, bonding behavior and disorder in the films were investigated with X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV–visible and ellipsometry techniques, while surface morphology was studied using Atomic force microscopy (AFM). The nanocrystalline nature of PMMA is seen to be preserved in the blends although there are clear indications of bond modifications. The addition of PCTFE results in the improvement of overall crystallinity of the films via the interaction among PMMA and degraded PCTFE molecules when the films are casted from diluted solutions. In agreement, corresponding disorder in terms of Urbach energy shows a decreasing trend upon inclusion of more and more PCTFE molecules. Micro-Raman spectra are dominated by fluorescence background, which is proposed as arising from degraded PCTFE. Supporting this, FTIR spectra also shows modifications in bonding as a function of PCTFE percentage, but this bond modification is not enough to produce refractive index variation in the sample, which is dominated by the host PMMA contribution for all the PCTFE concentrations. The study suggests the useful range of PCTFE concentration in which PMMA host properties can be modified for optimizing optical and structural properties without much degradation of PCTFE. - Highlights: • PMMA blend films with varying PCTFE concentrations (1–5 wt%) were prepared. • Nanocrystalline nature of PMMA is preserved in spite of bond modifications. • Addition of PCTFE results in improvement of overall crystallinity of the films. • Urbach energy shows a decreasing Disorder upon inclusion of more PCTFE molecules. • FTIR spectra show bond modifications without changing refractive index.

  19. Hydration effects on the electronic properties of eumelanin building blocks

    International Nuclear Information System (INIS)

    Assis Oliveira, Leonardo Bruno; Fonseca, Tertius L.; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio

    2016-01-01

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  20. Hydration effects on the electronic properties of eumelanin building blocks

    Energy Technology Data Exchange (ETDEWEB)

    Assis Oliveira, Leonardo Bruno [Instituto de Física da Universidade Federal de Goiás, 74690-900 Goiânia, GO (Brazil); Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO (Brazil); Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO (Brazil); Fonseca, Tertius L. [Instituto de Física da Universidade Federal de Goiás, 74690-900 Goiânia, GO (Brazil); Costa Cabral, Benedito J., E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Coutinho, Kaline; Canuto, Sylvio [Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  1. Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger.

    Science.gov (United States)

    Siddiqui; Saqib; Rashid; Rajoka

    2000-10-01

    Carboxymethylcellulase (CMCase) from Aspergillus niger NIAB280 was purified by a combination of ammonium sulphate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography on FPLC with 9-folds increase in specific activity. Native and subunit molecular weights were found to be 36 kDa each. The purified CMCase was modified by 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) in the presence of glycinamide for 15 min (GAM15) and glycinamide plus cellobiose for 75 min (GAM75). Similarly, the enzyme was modified by EDC in the presence of ethylenediamine dihydrochloride plus cellobiose for 75 min (EDAM75). The neutralization (GAM15 and GAM75) and reversal (EDAM75) of negative charges of carboxyl groups of CMCase had profound effect on the specificity constant (k(cat)/K(m)), pH optima, pK(a)'s of the active-site residues and thermodynamic parameters of activation. The specificity constants of native, GAM15, GAM75, and EDAM75 were 143, 340, 804, and 48, respectively. The enthalpy of activation (DeltaH(#)) of Carboxymethylcellulose (CMC) hydrolysis of native (50 and 15 kJ mol(-1)) and GAM15 (41 and 16 kJ mol(-1)) were biphasic whereas those of GAM75 (43 kJ mol(-1)) and EDAM75 (41 k J mol(-1)) were monophasic. Similarly, the entropy of activation (DeltaS(#)) of CMC hydrolysis of native (-61 and -173 J mol(-1) K(-1)) and GAM15 (-91 and -171 J mol(-1) K(-1)) were biphasic whereas those of GAM75 (-82 J mol(-1) K(-1)) and EDAM75 (-106 J mol(-1) K(-1)) were monophasic. The pH optima/pK(a)'s of both acidic and basic limbs of charge neutralized CMCases increased compared with those of native enzyme. The CMCase modification in the presence of glycinamide and absence of cellobiose at different pH's periodically activated and inhibited the enzyme activity indicating conformational changes. We believe that the alteration of the surface charges resulted in gross movement of loops that surround the catalytic pocket, thereby inducing changes in the vicinity

  2. Correlation properties of surface and percolation transfer of electrons

    International Nuclear Information System (INIS)

    Bakunin, O.G.

    2002-01-01

    In this work was received equation, connecting correlatively properties of surface with electrons distribution function. Usually for equilibrium is necessary a large number of collisions. Collisions are 'destroying' correlations. In case rare collisions large importance have correlations and 'memory' effects. Non-Markov's character of emitting particles by surface lead to strongly nonequilibrium condition of 'gas'. Here kinetic equation of diffusive form does not apply. Classical kinetic equation are described only conditions near to equilibrium. This work offers to use ideas anomal diffusion in phase-space. The correlation properties of surface describe by correlations of velocities of emitting electrons: B(t). We offer to use functional equation for probability collision instead of kinetic equation: ∫ 0 ν 0 W noncoll F(ν) dv = 1 - B(t). This functional allow to consider 'memory' effects. It is important for consideration of electrons and clusters near surfaces. Distribution function become direct connected with correlations. In classical Kubo-Mory theory of transfer is necessary to get nondivergences integral: D ∝ ∫ 0 ∞ B(t). In considering case we can use even 'power function'. It was used 'slow' correlation function as Kohlraush in calculations. The information about kinetics and correlations properties are containing in one functional equation. It was received solution of this equation in form Levy function: F(ν) ∝ 1/ν α exp(-1/ν). The solution of this form can not be get with help asymptotic methods of kinetic theory. Asymptotics of solution have scale-invariant character F(V) ∝ 1/V α . This indicate on fractal properties phase-space. (author)

  3. Quasiparticle properties of a coupled quantum-wire electron-phonon system

    DEFF Research Database (Denmark)

    Hwang, E. H.; Hu, Ben Yu-Kuang; Sarma, S. Das

    1996-01-01

    We study leading-order many-body effects of longitudinal-optical phonons on electronic properties of one-dimensional quantum-wire systems. We calculate the quasiparticle properties of a weakly polar one-dimensional electron gas in the presence of both electron-phonon and electron-electron interac......We study leading-order many-body effects of longitudinal-optical phonons on electronic properties of one-dimensional quantum-wire systems. We calculate the quasiparticle properties of a weakly polar one-dimensional electron gas in the presence of both electron-phonon and electron......-electron interactions, The leading-order dynamical screening approximation (GW approximation) is used to obtain the electron self-energy, the quasiparticle spectral function, and the quasiparticle damping rate in our calculation by treating electrons and phonons on an equal footing. Our theory includes effects (within...... theoretical results for quasiparticle properties....

  4. Local Electronic And Dielectric Properties at Nanosized Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonnell, Dawn A. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-02-23

    Final Report to the Department of Energy for period 6/1/2000 to 11/30/2014 for Grant # DE-FG02-00ER45813-A000 to the University of Pennsylvania Local Electronic And Dielectric Properties at Nanosized Interfaces PI: Dawn Bonnell The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability to examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell

  5. Modification of the ionosphere by VLF wave-induced electron precipitation

    International Nuclear Information System (INIS)

    Doolittle, J.H.

    1982-01-01

    Very low frequency (VLF) waves propagating in the whistler mode in the magnetosphere are known to cause precipitation of energetic electrons at middle latitudes. The interactions between the waves and electrons trapped in the magnetic field are believed to occur through cyclotron resonance. As a monochromatic wave propagates along a field line, the condition for resonance can be satisfied by electrons of a minimum energy at the equator and higher energies at increasing latitudes. Resonant interactions occurring in a field aligned region extending several thousand kilometers on both sides of the equator can therefore result in a precipitation flux with a wide range of energies. Electrons which are scattered into the loss cone will collide with the constituents of the ionosphere, causing additional ionization optical emissions, x-rays and heating. A computational technique is introduced which allows the temporal shape of pulse of precipitation to be modeled. A realistic energy distribution is used to weigh the contribution to the total precipitation energy flux resulting from resonant interactions in each segment of the duct. Wave growth along the path is found to affect the shape of the pulse. In its simplest application, the model sets limits on the time window in which a precipitation event can occur. The model arrival times are shown to agree with experimental correlations of VLF waves and effects of precipitation occurring on three occasions, thus supporting the assumption, that the precipitation results from cyclotron resonant scattering. Various techniques that have been employed for detecting wave-induced precipitation are compared. A quantitative analysis of the use of an HF radar for this purpose is introduced, based on the changes in the phase and group paths of the radar signals that are reflected from the perturbed ionosphere

  6. SHI induced modification in structural, optical, dielectric and thermal properties of poly ethylene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Gnansagar B.; Bhavsar, Shilpa [Department of Physics, The M.S. University of Baroda, Vadodara 390002 (India); Singh, N.L., E-mail: nl.singh-phy@msubaroda.ac.in [Department of Physics, The M.S. University of Baroda, Vadodara 390002 (India); Singh, F.; Kulriya, P.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2016-07-15

    Poly ethylene oxide (PEO) films were synthesized by solution cast method. These self-standing films were exposed with 60 MeV C{sup +5} ion and 100 MeV Ni{sup +7} ion at different fluences. SHI induced effect was investigated by employing various techniques. The crystalline size decreased upon irradiation as observed from XRD analysis. FTIR analysis reveals the decrement in the peak intensity upon irradiation. Tauc’s method was used to determine the optical band gap (E{sub g}), which shows decreasing trends with increase of fluence. The dielectric properties were investigated in the frequency range 10 Hz to 10 MHz for unirradiated and irradiated films. The dielectric constant remains same for the broad-spectrum of frequency and increases at lower frequency. The dielectric loss also moderately influence as a function of frequency due to irradiation. DSC analysis validated the results of XRD. Scanning electron microscopy (SEM) reveals that there is significant change in the surface morphology due to irradiation.

  7. Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer

    Directory of Open Access Journals (Sweden)

    Fray Miroslawa El

    2015-12-01

    Full Text Available In this paper we report a study on influence of radio-frequency (RF plasma induced with electron cyclotron resonance (ECR on multiblock copolymer containing butylene terephthalate hard segments (PBT and butylene dilinoleate (BDLA soft segments. The changes in thermal properties were studied by DSC. The changes in wettability of PBT-BDLA surfaces were studied by water contact angle (WCA. We found that ECR-RF plasma surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confirmed that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be beneficial for increased cell adhesion in future biomedical applications of these materials.

  8. Modification of the properties of porous silicon on adsorption of iodine molecules

    International Nuclear Information System (INIS)

    Vorontsov, A. S.; Osminkina, L. A.; Tkachenko, A. E.; Konstantinova, E. A.; Elenskii, V. G.; Timoshenko, V. Yu.; Kashkarov, P. K.

    2007-01-01

    Infrared spectroscopy and electron spin resonance measurements are used to study the properties of porous silicon layers on adsorption of the I 2 iodine molecules. The layers are formed on the p-an n-Si single-crystal wafers. It is established that, in the atmosphere of I 2 molecules, the charge-carrier concentration in the layers produced on the p-type wafers can be noticeably increased: the concentration of holes can attain values on the order of ∼10 18 -10 19 cm -3 . In porous silicon layers formed on the n-type wafers, the adsorption-induced inversion of the type of charge carriers and the partial substitution of silicon-hydrogen bonds by silicon-iodine bonds are observed. A decrease in the concentration of surface paramagnetic defects, P b centers, is observed in the samples with adsorbed iodine. The experimental data are interpreted in the context of the model in which it is assumed that both deep and shallow acceptor states are formed at the surface of silicon nanocrystals upon the adsorption of I 2 molecules

  9. Design of materials configurations for enhanced phononic and electronic properties

    Science.gov (United States)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  10. Electronic structure and physicochemical properties of selected penicillins

    Science.gov (United States)

    Soriano-Correa, Catalina; Ruiz, Juan F. Sánchez; Raya, A.; Esquivel, Rodolfo O.

    Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree-Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full ?-lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6? (in contrast with previous studies focused at the 3? substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the ?-lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules.

  11. Physical characterization of functionalized spider silk: electronic and sensing properties

    Directory of Open Access Journals (Sweden)

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    Full Text Available This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline and amorphous (helical structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size, on the process of pyrolization (suppressing mass loss rates and on the resulting carbonized fiber structure (that becomes more robust against bending and strain. The effects of iodine doping and other functional parameters (vacuum and thin film coating motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  12. Physical characterization of functionalized spider silk: electronic and sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Steven, Eden; Brooks, James S [Department of Physics and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Park, Jin Gyu [FAMU-FSU Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, Florida State University, 2005 Levy Ave., Tallahassee, FL 32310 (United States); Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G [FAMU-FSU Department of Chemical and Biomedical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Branco Lopes, Elsa [Departamento de Quimica, Instituto Tecnologico e Nuclear/CFMC-UL, P-2686-953 Sacavem (Portugal); Englander, Ongi, E-mail: esteven@magnet.fsu.edu [FAMU-FSU Department of Mechanical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, Florida 32310 (United States)

    2011-10-15

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of {beta}-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and {beta}-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of {beta}-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  13. Physical characterization of functionalized spider silk: electronic and sensing properties

    International Nuclear Information System (INIS)

    Steven, Eden; Brooks, James S; Park, Jin Gyu; Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G; Branco Lopes, Elsa; Englander, Ongi

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  14. Electronic and optical properties of diamond/organic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, Wojciech; Garrido, Jose; Niedermeier, Martin; Stutzmann, Martin [Walter Schottky Institute, TU Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Williams, Oliver; Haenen, Ken [Institute for Materials Research, University of Hasselt, Wetenschapspark 1, BE-3590 Diepenbeek (Belgium)

    2007-07-01

    Different diamond substrates (single crystalline: SCD, poly-crystalline: PCD and nano-crystalline: NCD) were used to investigate the electronic and optical properties of the diamond/organic semiconductor heterostructures. Layers of a poly[ethynyl-(2-decyloxy-5methoxy)benzene] - PEB, pentacene and 4-nitro-biphenyl-4-diazonium cations - Ph-Ph-NO{sub 2} were prepared by spin coating, thermal evaporation and grafting, respectively. The measurements of the electronic transport along the organic layer were performed using a Hg probe as well as Hall effect measurements in the temperature range 70-400 K. The I-V characteristics of the B-doped diamond/organic semiconductor heterostructures were measured at room temperature by means of the Hg probe. Undoped IIa and undoped PCD films were used for a study of the optical and optoelectronic properties of prepared heterostructures. The influence of the organic layer homogeneity and layer thickness on the optical properties will be discussed. Furthermore, preliminary data on perpendicular and parallel transport in the heterostructures layer will be reported.

  15. Electronic and thermodynamic properties of transition metal elements and compounds

    International Nuclear Information System (INIS)

    Haeglund, J.

    1993-01-01

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC 1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  16. Modification of Electrical Properties of Thin La0.67Ca0.33MnO3 Films by Pulsed Thermocycling

    Directory of Open Access Journals (Sweden)

    Fiodoras ANISIMOVAS

    2012-09-01

    Full Text Available Highly resistive states were formed in nonhomogeneous thin La0.67Ca0.33MnO3 films at 80 K temperature after resistance switching induced by the pulsed thermocycling. Heating up to room temperature does not destroy the resistive states. They demonstrate high values of electroresistance at applied pulsed electric field. It was registered formation of novel highly resistive state by resistance switching at 130 K in Tm region. We suppose that local temperature increase in the film is responsible for the formation of the resistive states in both cases and present a plausible explanation of the obtained results. The method of cyclic nanosecond temperature increase and decrease can be useful for modification of material properties having strongly correlated electron system and of ferroelectrics. Questions of practical realization of proposed method are discussed.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2427

  17. Modification of doping front migration in electrochemical devices and application to organic electronics

    International Nuclear Information System (INIS)

    Nolte, Marius; Wan Xianglong; Kopp, Olga; Hermes, Ina; Panz, Jan; Rahmanian, Afsaneh; Knoll, Meinhard

    2011-01-01

    Research highlights: → In this paper we demonstrate several ways of tuning the doping front migration process in polymer electronic multilayer structures for the first time. By altering the migration layer thickness the migration velocity may be controlled and it is possible to switch between migration mechanisms. The mechanism of delamination produces rapid jumps in migration velocity, while the addition of 2-hydroxyethylcellulose (HEC) can inhibit this effect. In case of vapor activation the migration velocity may be influenced by the relative humidity or by varying the concentration of hygroscopic salts added to the migration layer. The migration mechanisms can be explained in terms of diffusion, capillary transport, and delamination. Tuning the migration process may be used to construct polymer electronic structures such as enhancement and depletion type pseudo transistors and electrical switches (ON-OFF and OFF-ON) with an improved switching time of several minutes. The doping front width is determined by microscopic optical absorption spectroscopy and can be controlled by the concentration of the doping solution. In case of low concentrations the electrochromic effect of the double front is observed. - Abstract: We demonstrate several methods of modifying the doping front migration process in multilayer structures, enabling control of migration velocity and switching between different migration mechanisms. Sharp jumps in migration velocity may be induced using a delamination effect. The influence of migration layer thickness and composition is examined. Migration velocity may also be influenced by exposing the system to a defined relative humidity or by varying the concentration of a hygroscopic salt in the migration layer. The migration mechanisms can be explained in terms of diffusion, capillary transport, and delamination. By tailoring the migration process a variety of polymer electronic structures such as pseudo transistors (enhancement and depletion

  18. Electron microscopy analyses and electrical properties of the layered Bi2WO6 phase

    International Nuclear Information System (INIS)

    Taoufyq, A.; Ait Ahsaine, H.; Patout, L.; Benlhachemi, A.; Ezahri, M.

    2013-01-01

    The bismuth tungstate Bi 2 WO 6 was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2 1 non centrosymmetric space group previously proposed for this phase. The layers Bi 2 O 2 2+ and WO 4 2− have been directly evidenced from the HRTEM images. The electrical properties of Bi 2 WO 6 compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi 2 WO 6 phase, with a representation of the cell dimensions (b and c vectors). The Bi 2 O 2 2+ and WO 4 2− sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi 2 WO 6 . • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification

  19. Electronic and magnetic properties of intermetallic compound YCo5

    International Nuclear Information System (INIS)

    Zhang, G.W.; Feng, Y.P.; Ong, C.K.

    1998-01-01

    The electronic and magnetic properties of the intermetallic compound YCo 5 have been studied using density functional theory with the local spin density approximation. The calculated magnetic moments of Y, Co(2c) and Co(3g) are -0.61, 1.68 and 2.04 μ B , respectively, and the total magnetic moment is about 8.87 μ B per formula unit, which agrees well with the previous experimental results. The dependence of the magnetic moments of Y, Co(2c) and Co(3g) on the lattice spacing has been investigated. The local electronic structure of Y, Co(2c) and Co(3g) are discussed in detail. The local magnetic susceptibilities of Y, Co(2c) and Co(3g) are calculated. Based on our results, YCo 5 was found to have characteristic of a strong ferromagnet. (orig.)

  20. Electronic, phononic, and thermoelectric properties of graphyne sheets

    International Nuclear Information System (INIS)

    Sevinçli, Hâldun; Sevik, Cem

    2014-01-01

    Electron, phonon, and thermoelectric transport properties of α-, β-, γ-, and 6,6,12-graphyne sheets are compared and contrasted with those of graphene. α-, β-, and 6,6,12-graphynes, with direction dependent Dirac dispersions, have higher electronic transmittance than graphene. γ-graphyne also attains better electrical conduction than graphene except at its band gap. Vibrationally, graphene conducts heat much more efficiently than graphynes, a behavior beyond an atomic density differences explanation. Seebeck coefficients of the considered Dirac materials are similar but thermoelectric power factors decrease with increasing effective speeds of light. γ-graphyne yields the highest thermoelectric efficiency with a thermoelectric figure of merit as high as ZT = 0.45, almost an order of magnitude higher than that of graphene

  1. Electronic properties of Be and Al by Compton scattering technique

    International Nuclear Information System (INIS)

    Aguiar, J.C.; Di Rocco, H.O.

    2011-01-01

    In this work, electronic properties of beryllium and aluminum are examined by using Compton scattering technique. The method is based on the irradiation of samples using a beam narrow of mono- energetic photons of 59.54 keV product of radioactive decay of Am -241 . Scattered radiation is collected by a high resolution semiconductor detector positioned at an angle of 90°. The measured spectrum is commonly called Compton profile and contains useful information about the electronic structure of the material. The experimental results are compared with theoretical calculations such as density functional theory showing a good agreement. However, these results show some discrepancies with many libraries used in codes such as Monte Carlo simulation. Since these libraries are based on the values tabulated by Biggs, Mendelsohn and Mann 1975 thus overestimating the scattered radiation on the material. (authors) [es

  2. Electronic structure and optical properties of metal doped tetraphenylporphyrins

    Science.gov (United States)

    Shah, Esha V.; Roy, Debesh R.

    2018-05-01

    A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.

  3. Electronic transport properties of carbon nanotube metal-semiconductor-metal

    Directory of Open Access Journals (Sweden)

    F Khoeini

    2008-07-01

    Full Text Available  In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function method, in which the local density of states(LDOS in the metallic section to semi-conducting section, and muli-channel conductance of the system are calculated in the coherent and linear response regime, numerically. Also we have introduced a circuit model for the system and investigated its current. The theoretical results obtained, can be a base, for developments in designing nano-electronic devices.

  4. Electronic properties of polycrystalline graphene under large local strain

    International Nuclear Information System (INIS)

    He, Xin; Tang, Ning; Duan, Junxi; Mei, Fuhong; Meng, Hu; Lu, Fangchao; Xu, Fujun; Yang, Xuelin; Gao, Li; Wang, Xinqiang; Shen, Bo; Ge, Weikun

    2014-01-01

    To explore the transport properties of polycrystalline graphene under large tensile strain, a strain device has been fabricated using piezocrystal to load local strain onto graphene, up to 22.5%. Ionic liquid gate whose capability of tuning carrier density being much higher than that of a solid gate is used to survey the transfer characteristics of the deformed graphene. The conductance of the Dirac point and field effect mobility of electrons and holes is found to decrease with increasing strain, which is attributed to the scattering of the graphene grain boundaries, the strain induced change of band structure, and defects. However, the transport gap is still not opened. Our study is helpful to evaluate the application of graphene in stretchable electronics.

  5. Enhanced flashover strength in polyethylene nanodielectrics by secondary electron emission modification

    Directory of Open Access Journals (Sweden)

    Weiwang Wang

    2016-04-01

    Full Text Available This work studies the correlation between secondary electron emission (SEE characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.

  6. Surface modification of an aluminum alloy by electron beam introducing TiCN nanoparticles

    Science.gov (United States)

    Kolev, M.; Dimitrova, R.; Parshorov, St.; Valkov, St.; Lazarova, R.; Petrov, P.

    2018-03-01

    TiCN nanopowder deposited in an appropriate way on the surface of an AlSi12Cu2NiMg substrate was incorporated in the matrix using an electron beam technology. The samples were studied by means of light microscopy, SEM, and EDX; their microhardness was also determined. The formation was found of a uniform and dense coating with a thickness of 7 – 10 μgm with a good adherence to the substrate. A modified zone appeared under the coating with a thickness of 100 – 150 μgm containing dendrites of an α-solid solution and a fine eutectic between them, as well as primary silicon crystals. The microhardness of this modified zone was up to 2.4 times higher than that of the matrix. The results of SEM and EDX studies revealed unambiguously the presence of titanium in the coating and in the zones below it. Obviously, the electron beam treatment resulted in the TiCN nanoparticles penetrating into the coating and the substrate immediately below the coating.

  7. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  8. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  9. Electronic properties of pristine and modified single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kharlamova, M V

    2013-01-01

    The current status of research on the electronic properties of filled single-walled carbon nanotubes (SWCNTs) is reviewed. SWCNT atomic structure and electronic properties are described, and their correlation is discussed. Methods for modifying the electronic properties of SWCNTs are considered. SWCNT filling materials are systematized. Experimental and theoretical data on the electronic properties of filled SWCNTs are analyzed. Possible application areas for filled SWCNTs are explored. (reviews of topical problems)

  10. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  11. Investigation of new superhard carbon allotropes with promising electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Yulia A.; Kvashnin, Alexander G. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny (Russian Federation); Sorokin, Pavel B., E-mail: psorokin@iph.krasn.ru [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny (Russian Federation); Emanuel Institute of Biochemical Physics of RAS, 4 Kosigina St., Moscow 119334 (Russian Federation)

    2013-11-14

    During the systematic search for a new superhard carbon allotrope, we predicted three structures with promising physical properties. Our electronic structure calculations show that these materials have a semiconducting band gap and a high carrier mobility comparable with diamond. The simulated x-ray diffraction patterns of the proposed materials are in a good agreement with the experimental X-ray spectra. Evaluated phase transition pressures from graphite to the new proposed carbon phases are smaller than 25 GPa and close to the experimental values.

  12. Structural, electronic and optical properties of carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M L [California Univ., Berkeley (United States). Dept. of Physics

    1996-05-01

    Carbon nitride was proposed as a superhard material and a structural prototype, {beta}-C{sub 3}N{sub 4}, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that {beta}-C{sub 3}N{sub 4} will have a minimum gap which is indirect at 6.4{+-}0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented. (orig.)

  13. Electronic properties of single-walled chiral carbon nanotube

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Nkrumah, G.

    2001-09-01

    The electronic properties of single-walled chiral carbon nanotube has been studied using the model based on infinitely long carbon atoms wrapped along a base helix of single-walled carbon nanotubes(SWNTs). The problem is solved semiclassically, and current density J, resistivity ρ, thermopower α z , and electrical power factor P calculated. It is noted that the current density j displays negative differential conductivity, whiles the resistivity ρ increases with increasing electrical field. ρ also slowly increases at low temperatures and then gradually increases with increasing temperature. The thermopower α z shows interesting behaviour. Very intriguing is the electrical power factor which shows relatively large values. (author)

  14. Quantum oscillations and the electronic transport properties in multichain nanorings

    International Nuclear Information System (INIS)

    Racolta, D.

    2009-01-01

    We consider a system of multichain nanorings in static electric and magnetic field. The magnetic field induces characteristic phase changes. These phase shifts produce interference phenomena in the case of nanosystems for which the coherence length is larger than the sample dimension. We obtain energy solutions that are dependent on the number of sites N α characterizing a chain, of phase on the phase φ α and on the applied voltage. We found rich oscillations structures exhibited by the magnetic flux and we established the transmission probability. This proceeds by applying Landauer conductance formulae which opens the way to study electronic transport properties. (authors)

  15. Stability and electronic properties of silicene on WSe2

    KAUST Repository

    Zhu, Jiajie

    2015-03-17

    Many semiconducting substrates, such as GaS and MgBr2, have been explored for silicene. However, large lattice mismatches, complicated control of terminal layers and small band gaps are critical limiting factors. First-principles results on the stability and electronic properties of silicene on WSe2 show that the energy barriers for lateral translation between the two subsystems are very small due to weak van der Waals interactions. For the same reason, the Dirac physics of silicene is preserved. It turns out that the induced band gap is sufficient to withstand thermal fluctuations. This journal is © The Royal Society of Chemistry 2015.

  16. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    1990-01-01

    The current technological revolution in the development of computing devices has created a demand for a textbook on the quantum theory of the electronic and optical properties of semiconductors and semiconductor devices. This book successfully fulfills this need. Based on lectures given by the authors, it is a comprehensive introduction for researchers or graduate-level students to the subject. Certain sections can also serve as a graduate-level textbook for use in solid state physics courses or for more specialized courses. The final chapters establish a direct link to current research in sem

  17. Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard

    2010-07-27

    Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.

  18. Swift heavy ion induced modification in morphological and physico-chemical properties of tin oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Manoj Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India)

    2013-11-15

    Nanocomposite thin films of tin oxide (SnO{sub 2})/titanium oxide (TiO{sub 2}) were grown on silicon (1 0 0) substrates by electron beam evaporation deposition technique using sintered nanocomposite pellet of SnO{sub 2}/TiO{sub 2} in the percentage ratio of 95:5. Sintering of the nanocomposite pellet was done at 1300 °C for 24 h. The thicknesses of these films were measured to be 100 nm during deposition using piezo-sensor attached to the deposition chamber. TiO{sub 2} doped SnO{sub 2} nanocomposite films were irradiated by 100 MeV Au{sup 8+} ion beam at fluence range varying from 1 × 10{sup 11} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2} at Inter University Accelerator Center (IUAC), New Delhi, India. Chemical properties of pristine and ion irradiation modified thin films were characterized by Fourier Transform Infrared (FTIR) spectroscopy. FTIR peak at 610 cm{sup −1} confirms the presence of O–Sn–O bridge of tin (IV) oxide signifying the composite nature of pristine and irradiated thin films. Atomic Force Microscope (AFM) in tapping mode was used to study the surface morphology and grain growth due to swift heavy ion irradiation at different fluencies. Grain size calculations obtained from sectional analysis of AFM images were compared with results obtained from Glancing Angle X-ray Diffraction (GAXRD) measurements using Scherrer’s formulae. Phase transformation due to irradiation was observed from Glancing Angle X-ray Diffraction (GAXRD) results. The prominent 2θ peaks observed in GAXRD spectrum are at 30.67°, 32.08°, 43.91°, 44.91° and 52.35° in the irradiated films.

  19. BaCO3 mediated modifications in structural and magnetic properties of natural nanoferrites

    Science.gov (United States)

    Widanarto, W.; Jandra, M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.

    2015-04-01

    Preparing M-type barium hexaferrite and improving the magnetic response of natural ferrites by incorporating barium carbonate (BaCO3) is ever-demanding. Series of barium carbonate doped ferrites with composition (100-x)Fe3O4·xBaCO3 (x=0, 10, 20, 30 wt%) are prepared through solid state reaction method and sintered gradually at temperatures of 800 and 1000 °C. Nanoparticles of natural ferrite and commercial BaCO3 are used as raw materials. Impacts of BaCO3 on structural and magnetic properties of these synthesized ferrites are inspected. The obtained ferrites are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) at room temperature. Uniform barium hexaferrite particles in terms of both morphology and size are not achieved. The average crystallite size of BaFe12O19 is observed to be within 30-600 nm. The sintering process results phase transformation from Fe3O4 (magnetite) to α-Fe2O3 (hematite) and the formation of hexagonal barium ferrite crystals. The occurrence of barium crystal is found to enhance with the increase of BaCO3 concentrations up to 20 wt% and suddenly drop at 30 wt%. Saturation and remanent magnetization of the doped ferrites are significantly augmented up to 16.37 and 8.92 emu g-1, respectively compared to their pure counterpart. Furthermore, the coercivity field is slightly decreased as BaCO3 concentrations are increased. BaCO3 mediated improvements in the magnetic response of natural ferrites are demonstrated.

  20. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    Science.gov (United States)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  1. Synthesis of nanoscale copper nitride thin film and modification of the surface under high electronic excitation.

    Science.gov (United States)

    Ghosh, S; Tripathi, A; Ganesan, V; Avasthi, D K

    2008-05-01

    Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.

  2. Stability and electronic properties of low-dimensional nanostructures

    Science.gov (United States)

    Guan, Jie

    As the devices used in daily life become smaller and more concentrated, traditional three-dimensional (3D) bulk materials have reached their limit in size. Low-dimensional nanomaterials have been attracting more attention in research and getting widely applied in many industrial fields because of their atomic-level size, unique advanced properties, and varied nanostructures. In this thesis, I have studied the stability and mechanical and electronic properties of zero-dimensional (0D) structures including carbon fullerenes, nanotori, metallofullerenes and phosphorus fullerenes, one-dimensional (1D) structures including carbon nanotubes and phosphorus nanotubes, as well as two-dimensional (2D) structures including layered transition metal dichalcogenides (TMDs), phosphorene and phosphorus carbide (PC). I first briefly introduce the scientific background and the motivation of all the work in this thesis. Then the computational techniques, mainly density functional theory (DFT), are reviewed in Chapter 2. In Chapter 3, I investigate the stability and electronic structure of endohedral rare-earth metallofullerene La C60 and the trifluoromethylized La C60(CF3)n with n ≤ 5. Odd n is preferred due to the closed-shell electronic configuration or large HOMO-LUMO gap, which is also meaningful for the separation of C 60-based metallofullerenes. Mechanical and electronic properties of layered materials including TMDs and black phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting WSe2 bilayer is investigated and besides a rigid band shift associated with charge transfer, the presence of NbSe2 does not modify the electronic structure of WSe2. Structural similarity and small lattice mismatch results in the heterojunction being capable of efficiently transferring charge acrossthe interface. In Chapter 5, I investigate the dependence of stability and electronic band structure on the in-layer strain in bulk black phosphorus. In Chapters 6, 7 and

  3. Influence of Low-Frequency Vibration and Modification on Solidification and Mechanical Properties of Al-Si Casting Alloy.

    Science.gov (United States)

    Selivorstov, Vadim; Dotsenko, Yuri; Borodianskiy, Konstantin

    2017-05-20

    One of the major aims of the modern materials foundry industry is the achievement of advanced mechanical properties of metals, especially of light non-ferrous alloys such as aluminum. Usually an alloying process is applied to obtain the required properties of aluminum alloys. However, the presented work describes an alternative approach through the application of vibration treatment, modification by ultrafine powder and a combination of these two methods. Microstructural studies followed by image analysis revealed the refinement of α-Al grains with an increase in the Si network area around them. As evidence, the improvement of the mechanical properties of Al casting alloy was detected. It was found that the alloys subjected to the vibration treatment displayed an increase in tensile and yield strengths by 20% and 10%, respectively.

  4. Examination and Mitigation of Electron Interception Processes in Dye-sensitized Solar Cells through Redox Shuttle and Photoelectrode Modification

    Science.gov (United States)

    Hoffeditz, William Lawrence

    With the dual challenges of meeting global energy demand and mitigating anthropogenic climate change, significant effort is being applied to generating power from renewable sources. The dye-sensitized solar cell (DSC) is a photovoltaic technology capable of generating electricity from sunlight, but suffers losses in efficiency due to deleterious electron transfer processes. Controlling these processes is essential if DSCs are to continue to advance, and this dissertation focuses on isolation, interrogation, and mitigation of these processes via controllable inorganic redox/coordination chemistry and atomic layer deposition (ALD). The redox shuttle is often the subject of innovation in DSCs, the goal being to increase obtainable photovoltage without sacrificing photocurrent. A copper redox shuttle with a favorable (II/I) redox potential for DSC use and intriguing inner-sphere reorganization energy was investigated. The shuttle completely replaces its tetradentate coordinating ligand upon oxidation with multiple pyridine molecules. This new species displays markedly slower electron interception, necessitating fabrication of a new counter electrode in order for the shuttle to function. Upon reduction, the tetradentate ligand re-coordinates, creating a dual-species shuttle that outperforms either species as a Cu(II/I) shuttle in isolation. Photoelectrode modification is also the subject of innovation in DSCs. ALD is ideally suited for this type of innovation as it can coat high aspect surfaces with metal-oxide films of uniform thickness. The ALD post-treatment technique is described and used to deposit Al2O3 around a TiO2 adsorbed zinc-porphyrin dye. This technique is shown to prevent dye degradation from ambient air and/or light. Additionally, the architecture allows the study of dye-influenced electron interception processes. It was found that the presence of dye increased interception, which was attributed to dye-mediated electron hopping and/or superexchange

  5. Effect of thermal and chemical modifications on the mechanical and release properties of paracetamol tablet formulations containing corn, cassava and sweet potato starches as filler-binders

    Directory of Open Access Journals (Sweden)

    Mariam Vbamiunomhene Lawal

    2015-07-01

    Conclusions: Modification of the experimental starches improved the mechanical and release properties of directly compressed paracetamol tablet formulations. Thus, they can be developed for use as pharmaceutical excipients in specific formulations.

  6. Electronic properties of a new structured Sin/O superlattice

    Directory of Open Access Journals (Sweden)

    S. Yu

    2016-11-01

    Full Text Available Silicon is a material which dominants the semiconductor industry and has a well-established processing technology based on it. However, silicon has an indirect-bandgap and is not efficient in light emitting. This limits its applications in optoelectronics. In this paper, we proposed a new structural model for the silicon-based superlattice, i.e., the Sin/O one. The model consists of alternating films of n-layers of Si and a monolayer of oxygen along z-direction, together with a surface cell of Si(001 (2×1 reconstruction in the x-y plane. The importance of employing such a Si(001 (2×1 reconstruction is that all the electrons at interface can be strongly bonded. Our results showed interesting electronic properties, e.g., the band folding and large band gap of bulk Si, when the thickness of the silicon layers was increased (but still thin. Our structure might also offer other interesting properties.

  7. Strain, stabilities and electronic properties of hexagonal BN bilayers

    Science.gov (United States)

    Fujimoto, Yoshitaka; Saito, Susumu

    Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.

  8. Electronic and magnetic properties of MnAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi 46000 (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O; El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-03-15

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles.

  9. Electronic and magnetic properties of MnAu nanoparticles

    International Nuclear Information System (INIS)

    Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O; El moussaoui, H.

    2014-01-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles

  10. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  11. Mechanical properties and electronic structures of Fe-Al intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua, E-mail: jiangyehua@kmust.edu.cn; Zhou, Rong; Feng, Jing, E-mail: jingfeng@kmust.edu.cn

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe{sub 3}Al, FeAl, FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe{sub 2}Al{sub 5} has the lowest formation enthalpy, which shows the Fe{sub 2}Al{sub 5} is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young’s modulus and anisotropic index. Fe{sub 3}Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong’s modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  12. Thermal equilibrium properties of an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Davidson, R.C.; Uhm, H.S.

    1979-01-01

    The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0

  13. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    International Nuclear Information System (INIS)

    Tiznado-Orozco, Gaby E.; Reyes-Gasga, José; Elefterie, Florina; Beyens, Christophe; Maschke, Ulrich; Brès, Etienne F.

    2015-01-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time

  14. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  15. Modification of the surface properties of a polyimide film during irradiation with polychromic light

    International Nuclear Information System (INIS)

    Rosu, Liliana; Sava, Ion; Rosu, Dan

    2011-01-01

    The behaviour of a polyimide film with the aromatic structure during the exposure to UV light with λ > 290 nm was studied. Significant changes in color surface and gloss surface were identified during irradiation. Sample became lighten and less glossy after exposure to the light. These modifications were correlated with the structural changes in FTIR spectra. Based on changes in FTIR spectra recorded during irradiation, a mechanism for the photochemical degradation of polyimide film was proposed.

  16. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Kraaer, Jens; Tougaard, Sven

    2014-01-01

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  17. Modifying the Electronic Properties of Nano-Structures Using Strain

    International Nuclear Information System (INIS)

    Lamba, V K; Engles, D

    2012-01-01

    We used density-functional theory based Non equilibrium green function simulations to study the effects of strain and quantum confinement on the electronic properties of Germanium and Silicon NWs along the [110] direction, such as the energy gap and the effective masses of the electron and hole. The diameters of the NWs being studied in a range of 3-20 Å. On basis of our calculation we conclude that the Ge [110] NWs possess a direct band gap, while Si [110] NWs possess indirect band gap at nanoscale. The band gap is almost a linear function of strain when the diameter of Ge NWs D 15 Å; and for Si it is linear in behaviour. On doping silicon wire we found that the bandgap shows parabolic behaviour for change in strain. We also concluded that the band gap and the effective masses of charge carries (i.e. electron and hole) changes by applying the strain to the NWs. Our results suggested that strain can be used to tune the band structures of NWs, which may help in de sign of future nanoelectronic devices.

  18. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    International Nuclear Information System (INIS)

    Bai Liqiang; Zhu Liangjun; Min Sijia; Liu Lin; Cai Yurong; Yao Juming

    2008-01-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH 2 )-NGIVKAGPAIAVLGEAAL-CONH 2 , using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  19. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    Science.gov (United States)

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  20. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Liqiang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Zhu Liangjun; Min Sijia [College of Animal Sciences, Zhejiang University, Hangzhou 310029 (China); Liu Lin; Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao Juming [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)], E-mail: yaoj@zstu.edu.cn

    2008-03-15

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH{sub 2})-NGIVKAGPAIAVLGEAAL-CONH{sub 2}, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  1. Effect of Surface Modification of Palygorskite on the Properties of Polypropylene/Polypropylene-g-Maleic Anhydride/Palygorskite Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Cisneros-Rosado

    2017-01-01

    Full Text Available The effect of surface modification of palygorskite (Pal on filler dispersion and on the mechanical and thermal properties of polypropylene (PP/polypropylene grafted maleic anhydride (PP-g-MAH/palygorskite (Pal nanocomposites was evaluated. A natural Pal mineral was purified and individually surface modified with hexadecyl tributyl phosphonium bromide and (3-Aminopropyltrimethoxysilane; the pristine and modified Pals were melt-compounded with PP to produce nanocomposites using PP-g-MAH as compatibilizer. The grafting of Pal surface was verified by FT-IR and the change in surface hydrophilicity was estimated by the contact angle of sessile drops of ethylene glycol on Pal tablets. The extent of Pal dispersion and the degree of improvement in both the mechanical and thermal properties were related to the surface treatment of Pal. Modified Pals were better dispersed during melt processing and improved Young’s modulus and strength; however, maximum deformation tended to decrease. The thermal stability of PP/PP-g-MAH/Pal nanocomposites was considerably improved with the content of modified Pals. The degree of crystallinity increased with Pal content, regardless of the surface modification. Surfactant modified Pal exhibited better results in comparison with silane Pal; it is possible that longer alkyl chains from surfactant molecules promoted interactions with polymer chains, thereby improving nanofiller dispersion and enhancing the properties.

  2. Ultrafast laser induced electronic and structural modifications in bulk fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Mishchik, K.; D' Amico, C.; Velpula, P. K.; Mauclair, C.; Boukenter, A.; Ouerdane, Y.; Stoian, R. [Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, 42000 Saint Etienne (France)

    2013-10-07

    Ultrashort laser pulses can modify the inner structure of fused silica, generating refractive index changes varying from soft positive (type I) light guiding forms to negative (type II) values with void presence and anisotropic sub-wavelength modulation. We investigate electronic and structural material changes in the type I to type II transition via coherent and incoherent secondary light emission reflecting free carrier behavior and post-irradiation material relaxation in the index change patterns. Using phase contrast microscopy, photoluminescence, and Raman spectroscopy, we determine in a space-resolved manner defect formation, redistribution and spatial segregation, and glass network reorganization paths in conditions marking the changeover between type I and type II photoinscription regimes. We first show characteristic patterns of second harmonic generation in type I and type II traces, indicating the collective involvement of free carriers and polarization memory. Second, incoherent photoemission from resonantly and non-resonantly excited defect states reveals accumulation of non-bridging oxygen hole centers (NBOHCs) in positive index domains and oxygen deficiency centers (ODCs) with O{sub 2}{sup −} ions segregation in void-like regions and in the nanostructured domains, reflecting the interaction strength. Complementary Raman investigations put into evidence signatures of the different environments where photo-chemical densification (bond rearrangements) and mechanical effects can be indicated. NBOHCs setting in before visible index changes serve as precursors for subsequent compaction build-up, indicating a scenario of cold, defect-assisted densification for the soft type I irradiation regime. Additionally, we observe hydrodynamic effects and severe bond-breaking in type II zones with indications of phase transition. These observations illuminate densification paths in fused silica in low power irradiation regimes, and equally in energetic ranges

  3. Modification of anisotropic plasma diffusion via auxiliary electrons emitted by a carbon nanotubes-based electron gun in an electron cyclotron resonance ion source.

    Science.gov (United States)

    Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T

    2012-02-01

    The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.

  4. Modification of dielectric function and electronic structure of the alloys at the phase transformation amorphous-crystalline state

    International Nuclear Information System (INIS)

    Belij, M.U.; Poperenko, L.V.; Shajkevich, I.A.; Karpusha, V.D.; Kravets, V.G.

    1989-01-01

    The relation between the features of the optical spectrum and the electronic structure parameters for non-crystalline nickel- and iron-based alloys is not yet precisely found. Therefore the main purpose of the study consists in investigation of the basic metal band structure modification at metalloid alloying. The density of electron states N(E) and structural parameters of amorphous alloys nickel-M, iron-M, Fe-TM-M (M - metalloid B,Si,C; TM - transition metal 3d (Ti,V,Cr,Mn,Co,Ni), 4d (Nb,Mo), 5d (Hf,Ta,W) and their transformation changes from amorphous (AS) to crystalline state (CS) have been determined. The methods of ellipsometry, Auger-spectroscopy and X-ray absorption spectroscopy are used. The function N(E) of the Ni- and Fe-based alloys has shown 4 density-of-states peaks, one of them located above the Fermi level E F and the others - below it. The observed features of the absorbed spectra of Ni-M (M = B,P) are related both to the interband transition from the levels falling into the occupied peaks of N(E) to the levels at E F , and to the 1-peak-states. When B increases the distance between 1-peak and E F decreases. With introduction of the TM atoms into Fe-B the impurities states related to them are formed above E F . From the X-ray data the cluster with nonhomogeneous electronic density for FeBSi (7.0 nm) and FeNbBSi (7.0 and 4.2 nm along and transverse to foil respectively) are estimated. The frequencies of relaxation and plasma oscillations are also calculated. (author)

  5. [Physical properties of f electron systems]: Progress report, February 1987-January 1988

    International Nuclear Information System (INIS)

    Riseborough, P.S.

    1988-01-01

    This paper discusses the progress in research on f electron systems. The major properties discussed in this paper are: magnetic properties, transport properties, heavy fermion superconductivity, and photo-emission spectroscopy

  6. Electronic Structure Properties and a Bonding Model of Thermoelectric Half-Heusler and Boride Phases

    Science.gov (United States)

    Simonson, Jack William

    Half-Heusler alloys MNiSn and MCoSb (M = Ti, Zr, Hf) and layered boride intermetallics with structure types YCrB4 and Er 3CrB7 were designed, synthesized, and characterized. The thermoelectric properties of these two classes of alloys were measured from room temperature to 1100 K with the intent of indirectly studying their electronic structure properties and gauging not only their suitability but that of related alloys for high temperature thermoelectric power generation. In the case of the half-Heusler alloys, transition metals were substituted to both the M and Ni/Co sites to study the resultant modifications of the d-orbital-rich portion of the electronic structure near the Fermi energy. This modification and subsequent pinning of the Fermi energy within the gap is discussed herein in terms of first principles electronic structure calculations from the literature. In the half-Heusler alloys, it was found that substitution of transition metals invariably led to a decrease in the thermopower, while the resistivity typically maintained its semiconducting trend. On the other hand, Sn doping in MCoSb type alloys -- a dopant that has been known for some time to be efficient -- was shown to result in high ZT at temperatures in excess of 1000 K. Moreover, the band gaps of the transition metal-doped alloys measured in this work offer insight into the discrepancy between the predicted and measured band gaps in the undoped parent compositions. In the case of the layered boride alloys, on the other hand, few electronic calculations have been published, thus prompting the generalization of a well-known electron counting rule -- which is typically used to study molecular organometallics, boranes, and metallocenes -- to predict the trends in the densities of states of crystalline solids that possess the requisite deltahedral bonding geometry. In accordance with these generalized electronic counting rules, alloys of the form RMB4 (R = Y, Gd, Ho; M = Cr, Mo, W) were measured to

  7. Fracture toughness properties of similar and dissimilar electron beam welds

    International Nuclear Information System (INIS)

    Kocak, M.; Junghans, E.

    1994-01-01

    The weldability aspects, tensile and Crack Tip Opening Displacement (CTOD) toughness properties of 9Cr1MoNbV (P91) martensitic steel with austenitic 316L steel were evaluated for electron beam (EB) welds on 35 mm thick pates. The effects of mechanical heterogeneity (mis-matching) at the vicinity of the crack tip of dissimilar three point bend specimens on the CTOD fracture toughness values was also discussed. The CTOD tests were performed on similar and dissimilar EB welds of austenitic and tempered martensitic P91 steels at room temperature. Dilution of austenitic with martensitic steel resulted in predominantly martensitic EB weld metal, exhibiting rather high yield strength and hardness. Nevertheless, the weld metal produced high CTOD toughness values due to the beneficial effect of the lower strength austenitic steel part of the specimen in which crack deviation occured (mis-match effect). The coarse grained HAZ of the P91 steel side exhibits extremely poor CTOD toughness properties in the as-welded condition at room temperature. The CTOD values obtained are believed to be representing the intrinsic property of this zone since the distance of the crack tip to the weaker austenitic steel part of the SENB specimens was too large to cause an effective stress relaxation at the crack tip. Further post weld heat treatment at 750 C for two hours improved the CTOD toughness marginally. (orig.)

  8. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  9. Electronic property measurements for piezoelectric ceramics. Technical notes

    International Nuclear Information System (INIS)

    Cain, M.; Stewart, M.; Gee, M.

    1998-01-01

    A series of measurement notes are presented, with emphasis placed on the technical nature of the testing methodology, for the determination of key electronic properties for piezoelectric ceramic materials that are used as sensors and actuators. The report is segmented into 'sections' that may be read independently from the rest of the report. The following measurement issues are discussed: Polarisation/Electric field (PE) loop measurements including a discussion of commercial and an in-house constructed system that measures PE loops; Dielectric measurements at low and high stress application, including some thermal and stress dependency modelling of piezo materials properties, developed at NPL; Strain measurement techniques developed at CMMT; Charge measurement techniques suitable for PE loop and other data acquisition; PE loop measurement and software analysis developed at CMMT and Manchester University. The primary objective of this report is to provide a framework on which the remainder of the testing procedures are to be developed for measurements of piezoelectric properties at high stress and stress rate. These procedures will be the subject of a future publication. (author)

  10. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    International Nuclear Information System (INIS)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K.S.S.; Majali, A.B.; Tikku, V.K.

    2002-01-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer

  11. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    Science.gov (United States)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.

    2002-12-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.

  12. Organic/metal interfaces. Electronic and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Duhm, Steffen

    2008-07-17

    This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron acceptors, (iii) the role of thermodynamic equilibrium at organic/ organic homo-interfaces and (iv) the correlation of interfacial electronic structure and bonding distance. To address these issues a broad experimental approach was necessary: mainly ultraviolet photoelectron spectroscopy was used, supported by X-ray photoelectron spectroscopy, metastable atom electron spectroscopy, X-ray diffraction and X-ray standing waves, to examine vacuum sublimed thin films of conjugated organic molecules (COMs) in ultrahigh vacuum. (i) A novel approach is presented to explain the phenomenon that the ionization energy in molecular assemblies is orientation dependent. It is demonstrated that this is due to a macroscopic impact of intramolecular dipoles on the ionization energy in molecular assemblies. Furthermore, the correlation of molecular orientation and conformation has been studied in detail for COMs on various substrates. (ii) A new approach was developed to tune hole injection barriers ({delta}{sub h}) at organic/metal interfaces by adsorbing a (sub-) monolayer of an organic electron acceptor on the metal electrode. Charge transfer from the metal to the acceptor leads to a chemisorbed layer, which reduces {delta}{sub h} to the COM overlayer. This concept was tested with three acceptors and a lowering of {delta}{sub h} of up to 1.2 eV could be observed. (iii) A transition from vacuum-level alignment to molecular level pinning at the homo-interface between a lying monolayer and standing multilayers of a COM was observed, which depended on the amount of a pre-deposited acceptor. The

  13. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)

    Science.gov (United States)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-01

    Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  14. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    Science.gov (United States)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  15. Effect of protonation on the electronic properties of DNA base pairs: applications for molecular electronics.

    Science.gov (United States)

    Mallajosyula, Sairam S; Pati, Swapan K

    2007-10-11

    Protonation of DNA basepairs is a reversible phenomenon that can be controlled by tuning the pH of the system. Under mild acidic conditions, the hydrogen-bonding pattern of the DNA basepairs undergoes a change. We study the effect of protonation on the electronic properties of the DNA basepairs to probe for possible molecular electronics applications. We find that, under mild acidic pH conditions, the A:T basepair shows excellent rectification behavior that is, however, absent in the G:C basepair. The mechanism of rectification has been discussed using a simple chemical potential model. We also consider the noncanonical A:A basepair and find that it can be used as efficient pH dependent molecular switch. The switching action in the A:A basepair is explained in the light of pi-pi interactions, which lead to efficient delocalization over the entire basepair.

  16. Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)

    2014-01-17

    Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.

  17. Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method

    Directory of Open Access Journals (Sweden)

    E Ghasemikhah

    2012-03-01

    Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.

  18. Effects of electron beam irradiation on tribological and physico-chemical properties of Polyoxymethylene copolymer (POM-C)

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Shahinur; Shaislamov, Ulugbek; Yang, Jong-Keun [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Kim, Jong-Kuk [Plasma Processing Laboratory, Division of Surface Technology, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-Gu, Changwon, Kyungnam 641-010 (Korea, Republic of); Yu, Young Hun [Department of Physics, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Choi, Sooseok [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Lee, Heon-Ju, E-mail: hjlee@jejunu.ac.kr [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of)

    2016-11-15

    Highlights: • Electron beam dose irradiation effect on tribology of POM-C was investigated. • Raman and FTIR-ATR spectra confirm the chemical structural modification. • 1 MeV, 100 kGy dose irradiation induced well suited carbonization and hydrophobicity. • Well suited carbonization and hydrophobicity reduced friction coefficient. - Abstract: Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 kGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using pin on disk tribometer, Raman spectroscopy, FTIR-ATR, gel content analysis, SEM-EDS (scanning electron microscopy-energy dispersive spectroscopy), surface profiler and contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in decrease of the friction coefficient of POM-C block due to well suited carbonization, cross-linking, free radicals formation and partial physical modification. It also showed the lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation dose at 200 kGy resulted in increase of friction coefficient due to less effective cross-linking, but the irradiation doses at 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The degree of improvement for tribological attribute relies on the electron beam surface dose delivered (energy and dose rate).

  19. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  20. Modelling of electronic and vibrational properties of carbon nanostructures

    Science.gov (United States)

    Margine, Elena Roxana

    The main goals of this dissertation work are the analysis and prediction of the properties of nanoscale carbon materials which hold great potential for nanotechnological applications such as strong conductive composites, field-effect transistors, diodes, rechargeable batteries, etc. Some of these exciting applications are already being actively developed, however their design via trial-and-error experimentation is often difficult and expensive. State-of-the-art simulation methods can be used as a powerful tool to streamline the path to practical implementations. In this thesis I use ab initio quantum-mechanical calculations to explore the response of nanoscale carbon materials to doping. A brief overview of the theoretical methods and of some basic concepts on carbon nanotubes are given in the first two chapters. In Chapter 3 we study the effect of doping in double-walled carbon nanotubes. These systems can be considered as nanoscale capacitors since they have two conducting (or semi-conducting) shells. The experimental work of our collaborators demonstrated for the first time that such a capacitor can be realized by the adsorption of bromine anions at the surface of the outer tube. Our theoretical analysis of the experimental results revealed that this quantum system, surprisingly, behaves exactly as the classical Faraday cage: the electric charge always resides on the outside surface of the conductor, even when the pristine tubes are not metallic. In Chapter 4 I present our findings on the phonon frequencies' response to electron doping in single-walled carbon nanotubes. It is well established that when graphite is doped with electrons, carbon-carbon bonds lengthen and all vibrational frequencies soften. However, in semiconducting carbon nanotubes, the frequency of one mode increases at low levels of alkali doping. Having carefully modelled the process with ab initio methods we conclude that the unusual behavior of the vibrational mode depends on which electronic

  1. How modification of accessible lysines to phenylalanine modulates the structural and functional properties of horseradish peroxidase: a simulation study.

    Directory of Open Access Journals (Sweden)

    Leila Navapour

    Full Text Available Horseradish Peroxidase (HRP is one of the most studied peroxidases and a great number of chemical modifications and genetic manipulations have been carried out on its surface accessible residues to improve its stability and catalytic efficiency necessary for biotechnological applications. Most of the stabilized derivatives of HRP reported to date have involved chemical or genetic modifications of three surface-exposed lysines (K174, K232 and K241. In this computational study, we altered these lysines to phenylalanine residues to model those chemical modifications or genetic manipulations in which these positively charged lysines are converted to aromatic hydrophobic residues. Simulation results implied that upon these substitutions, the protein structure becomes less flexible. Stability gains are likely to be achieved due to the increased number of stable hydrogen bonds, improved heme-protein interactions and more integrated proximal Ca2+ binding pocket. We also found a new persistent hydrogen bond between the protein moiety (F174 and the heme prosthetic group as well as two stitching hydrogen bonds between the connecting loops GH and F'F″ in mutated HRP. However, detailed analysis of functionally related structural properties and dynamical features suggests reduced reactivity of the enzyme toward its substrates. Molecular dynamics simulations showed that substitutions narrow the bottle neck entry of peroxide substrate access channel and reduce the surface accessibility of the distal histidine (H42 and heme prosthetic group to the peroxide and aromatic substrates, respectively. Results also demonstrated that the area and volume of the aromatic-substrate binding pocket are significantly decreased upon modifications. Moreover, the hydrophobic patch functioning as a binding site or trap for reducing aromatic substrates is shrunk in mutated enzyme. Together, the results of this simulation study could provide possible structural clues to explain

  2. Towards Liquid Chromatography Time-Scale Peptide Sequencing and Characterization of Post-Translational Modifications in the Negative-Ion Mode Using Electron Detachment Dissociation Tandem Mass Spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Hørning, Ole B; Jensen, Søren S

    2008-01-01

    Electron detachment dissociation (EDD) of peptide poly-anions is gentle towards post-translational modifications (PTMs) and produces predictable and interpretable fragment ion types (a., x ions). However, EDD is considered an inefficient fragmentation technique and has not yet been implemented...... coverage and extended PTM characterization the new regime of EDD in combination with other ion-electron fragmentation techniques in the positive-ion mode is a step towards a more comprehensive strategy of analysis in proteome research....

  3. Modification of PTFE nanopowder by controlled electron beam irradiation: A useful approach for the development of PTFE coupled EPDM compounds

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Low-temperature reactive mixing of controlled electron beam modified Polytetrafluoroethylene (PTFE nanopowder with Ethylene-Propylene-Diene-Monomer (EPDM rubber produced PTFE coupled EPDM rubber compounds with desired physical properties. The radiation-induced chemical alterations in PTFE nanopowder, determined by electron spin resonance (ESR and Fourier transform infrared (FTIR spectroscopy, showed increasing concentration of radicals and carboxylic groups (–COOH with increasing irradiation dose. The morphological variations of the PTFE nanopowder including its decreasing mean agglomerate size with the absorbed dose was investigated by particle size and scanning electron microscopy (SEM analysis. With increasing absorbed dose the wettability of the modified PTFE nanopowder determined by contact angle method increased in accordance with the (–COOH concentration. Transmission electron microscopy (TEM showed that modified PTFE nanopowder is obviously enwrapped by EPDM. This leads to a characteristic compatible interphase around the modified PTFE. Crystallization studies by differential scanning calorimetry (DSC also revealed the existence of a compatible interphase in the modified PTFE coupled EPDM.

  4. Electronic structure and properties of uranyl compounds. Problems of electron-donor conception

    International Nuclear Information System (INIS)

    Glebov, V.A.

    1982-01-01

    Comparison of the series of the ligand mutual substitution in the uranyl compounds with the ligand series of d-elements and with the uranyl ''covalent model'', is made. The data on ionization potentials of the ligand higher valent levels and on the structure of some uranyl nitrate compounds are considered. It is concluded that the mechanism of the ligand effect on the properties of uranyl grouping is more complex, than it is supposed in the traditional representations on the nature of electron-donor interactions in the uranyl compounds

  5. Studies on Solid Wood. II. The Influence of Chemical Modifications on Viscoelastic Properties

    DEFF Research Database (Denmark)

    Bjørkmann, Anders; Salmén, Lennart

    2000-01-01

    The relation between the properties of wood polymers and those of the composite material of wood is a subject that has been of interest for a long time. In order to increase oar knowledge in this matter, changes of wood properties have been studied on samples of spruce and birch, subjected to var...

  6. Understanding the Effect of Ni on Mechanical and Wear Properties of Low-Carbon Steel from a View-Point of Electron Work Function

    Science.gov (United States)

    Lu, Hao; Huang, Xiaochen; Hou, Runfang; Li, D. Y.

    2018-04-01

    Electron work function (EWF) is correlated to intrinsic properties of metallic materials and can be an alternative parameter to obtain supplementary clues for guiding material design and modification. A higher EWF corresponds to a more stable electronic state, leading to higher resistance to any attempt to change the material structure and properties. In this study, effects of Ni as a solute with a higher EWF on mechanical, electrochemical, and tribological properties of low-carbon steel were investigated. Added Ni, which has more valence electrons, enhanced the electrons-nuclei interaction in the steel, corresponding to higher EWF. As a result, the Ni-added steel showed increased mechanical strength and corrosion resistance, resulting in higher resistances to wear and corrosive wear. Mechanism for the improvements is elucidated through analyzing EWF-related variations in Young's modulus, hardness, corrosion potential, and tribological behavior.

  7. Electronic Properties of Graphene-PtSe2 Contacts.

    Science.gov (United States)

    Sattar, Shahid; Schwingenschlögl, Udo

    2017-05-10

    In this article, we study the electronic properties of graphene in contact with monolayer and bilayer PtSe 2 using first-principles calculations. It turns out that there is no charge transfer between the components because of the weak van der Waals interaction. We calculate the work functions of monolayer and bilayer PtSe 2 and analyze the band bending at the contact with graphene. The formation of an n-type Schottky contact with monolayer PtSe 2 and a p-type Schottky contact with bilayer PtSe 2 is demonstrated. The Schottky barrier height is very low in the bilayer case and can be reduced to zero by 0.8% biaxial tensile strain.

  8. Electronic Properties of Graphene–PtSe2 Contacts

    KAUST Repository

    Sattar, Shahid

    2017-04-26

    In this article, we study the electronic properties of graphene in contact with monolayer and bilayer PtSe2 using first-principles calculations. It turns out that there is no charge transfer between the components because of the weak van der Waals interaction. We calculate the work functions of monolayer and bilayer PtSe2 and analyze the band bending at the contact with graphene. The formation of an n-type Schottky contact with monolayer PtSe2 and a p-type Schottky contact with bilayer PtSe2 is demonstrated. The Schottky barrier height is very low in the bilayer case and can be reduced to zero by 0.8% biaxial tensile strain.

  9. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    International Nuclear Information System (INIS)

    Zhang Ying; Cao Juexian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an sp 2 -to-sp 3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes

  10. Electronic Properties of Graphene–PtSe2 Contacts

    KAUST Repository

    Sattar, Shahid; Schwingenschlö gl, Udo

    2017-01-01

    In this article, we study the electronic properties of graphene in contact with monolayer and bilayer PtSe2 using first-principles calculations. It turns out that there is no charge transfer between the components because of the weak van der Waals interaction. We calculate the work functions of monolayer and bilayer PtSe2 and analyze the band bending at the contact with graphene. The formation of an n-type Schottky contact with monolayer PtSe2 and a p-type Schottky contact with bilayer PtSe2 is demonstrated. The Schottky barrier height is very low in the bilayer case and can be reduced to zero by 0.8% biaxial tensile strain.

  11. Electronic properties of field aligned CrO2 powders

    International Nuclear Information System (INIS)

    Tripathy, D.; Adeyeye, A.O.

    2005-01-01

    We have investigated in detail the electronic transport properties of half metallic CrO 2 powder-based devices, fabricated using optical lithography and field alignment technique. A transition in the conduction mechanism from spin-dependent intergranular tunneling to inelastic hopping was observed at 215 K. This transition temperature shifts to 230 K in the presence of 10 kOe field cooling due to reduction of the spin-independent hopping conductance channel. I-V characteristics exhibit strong temperature dependence and are non-linear even at room temperature. Our experimental results are in good agreement with a simple theoretical model. A novel 'double switching' phenomenon was observed in the I-V curves below the transition temperature

  12. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    International Nuclear Information System (INIS)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs

  13. A DFT-D study of structural and energetic properties of TiO2 modifications

    International Nuclear Information System (INIS)

    Moellmann, Jonas; Ehrlich, Stephan; Tonner, Ralf; Grimme, Stefan

    2012-01-01

    The structures and relative energies of the three naturally occurring modifications of titanium dioxide (rutile, brookite and anatase) were investigated. For an accurate description, atom-pairwise dispersion-corrected density functional theory (DFT-D) was applied. The DFT-D3 scheme was extended non-empirically to improve the description of Ti atoms in bulk systems. New dispersion coefficients were derived from TDDFT calculations for electrostatically embedded TiO 2 clusters. The dispersion coefficient C 6 TiTi is reduced by a factor of 18 compared to the free atom. The three TiO 2 modifications were optimized in periodic plane-wave calculations with dispersion-corrected GGA (PBE, revPBE) and hybrid density functionals (PBE0, revPBE0). The calculated lattice parameters are in good agreement with experimental data, in particular the dispersion-corrected PBE0 and revPBE0 hybrid functionals. Although the observed relative stabilities could not be reproduced in all cases, dispersion corrections improve the results. For an accurate description of bulk metal oxides, London dispersion is a prominent force that should not be neglected when energies and structures are computed with DFT. Additionally, the influence of dispersion interactions on the relaxation of the TiO 2 (110) surface is investigated.

  14. Edge effects on the electronic properties of phosphorene nanoribbons

    International Nuclear Information System (INIS)

    Peng, Xihong; Copple, Andrew; Wei, Qun

    2014-01-01

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p z orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  15. Electronic and magnetic properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  16. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  17. Structural and electronic properties of La C[sub 82

    Energy Technology Data Exchange (ETDEWEB)

    Laasonen, K.; Andreoni, W.; Parrinello, M. (Zurich Research Lab., Rueschlikon (Switzerland))

    1992-12-18

    The structural and electronic properties of the La C[sub 82] fullerene have been investigated by means of the Car-Parrinello method, which is based on the local density approximation of the density functional theory. The topological arrangement of the C[sub 82] cage was assumed to be a C[sub 3v] symmetry isomer. Three configurations were considered, one with the lanthanum atom at the center of the cluster, one with it along the threefold axis, and one with it at a low-symmetry, highly coordinated site. The structure was fully relaxed and it was found that the last of these configurations is energetically preferred. In this position, the lanthanum atom is nearly in a La[sup 3+] state and the unpaired electron is somewhat delocalized on the cage, in agreement with available experimental data. This arrangement suggests that the chemical shifts of the 5s and 5p lanthanum states can be used as a structural probe and as a way of further validating this picture. It is argued that this conclusion is not affected by the assumed fullerene structure.

  18. Edge effects on the electronic properties of phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xihong, E-mail: xihong.peng@asu.edu [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); Copple, Andrew [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Wei, Qun [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China)

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  19. Electronic, structural, and optical properties of crystalline yttria

    International Nuclear Information System (INIS)

    Xu, Y.; Gu, Z.; Ching, W.Y.

    1997-01-01

    The electronic structure of crystalline Y 2 O 3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom- and orbital-resolved partial DOS, effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B ' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Γ is obtained which increases with pressure at a rate of dE g /dP=0.012eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y 2 O 3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of var-epsilon(0)=3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Γ between the top of the valence band and the bottom of the conduction band may be symmetry forbidden. copyright 1997 The American Physical Society

  20. Modification of H2O adsorbed Si(100)-(2 x 1) surface by photon and electron beam

    International Nuclear Information System (INIS)

    Moon, S.W.; Chung, S.M.; Hwang, C.C.; Ihm, K.W.; Kang, T.-H.; Chen, C.H.; Park, C.-Y.

    2004-01-01

    Full text: Oxidation of silicon has been the subject of intense scientific and technological interest due to the several uses of thin oxide films as insulating layers in microelectronic devices. The great strides have been made in understanding about the formation and thermal evolution of the Si/SiO 2 interface. In this presentation, we provide synchrotron radiation photoemission spectroscopy (SRPES) and photoemission electron microscope (PEEM) results, showing how a H 2 O adsorbed Si(100) surface evolves into an ultra-thin silicon oxide m when exposed to monochromatized synchrotron radiation and electron beam at room temperature. All SRPES, PEEM experiments have been performed at the beam line, 4B1, of Pohang Light Source (PLS) in Korea. Water dissociates into OH(a) and H(a) species upon adsorption on the Si(100)-(2 - 1) at room temperature. The bonding (b 2 ) and antibonding (a 1 ) OH orbital and the oxygen lone pair orbital (b 1 ) from the dissociated OH and H species has been identified in ultraviolet photoemission spectra (UPS). These structures gradually changed and a new silicon oxide peak appeared with the photon/E-beam irradiation. This indicates that the H 2 O adsorbed on Si surface transforms into a thin silicon oxide film by photon/E-beam irradiation. We have shown in our PEEM images that one can make micro-patterns on silicon surface by using the photon induced surface modification. The fabricated patterns can be clearly identified through the inverse contrast images between photon exposed region and unexposed one. The near edge x-ray absorption fine structure (NEXAFS) results revealed that the OH adsorbed Si surface transforms into a thin silicon oxide film by photon irradiation

  1. Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells.

    Science.gov (United States)

    Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas

    2014-07-21

    We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.

  2. Correlated electronic properties of different SrIrO{sub 3}/SrTiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kraberger, Gernot J.; Aichhorn, Markus [Institute of Theoretical and Computational Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2016-07-01

    Strontium iridates are materials that combine strong electronic correlations with pronounced spin-orbit coupling, giving rise to fascinating physical properties. Strategies to purposefully influence and design these materials are a crucial step to further advance this field. A highly promising candidate for achieving this goal is the formation of heterostructures with other materials. Motivated by this quest, we perform calculations within the DFT+DMFT framework to investigate how the geometry of heterostructures of perovskite SrIrO{sub 3} with SrTiO{sub 3} influences their correlated electronic structure. We explore the differences between (001)- and (111)-stacked heterostructures, where the latter are particularly interesting because they form buckled honeycomb lattices that have non-trivial topological properties. For the (001)-heterostructures the effect of varying the thickness of the SrIrO{sub 3} layers, and thus their effective dimensionality, are studied. As an important ingredient we have to consider the effect of lattice distortions - in the form of a rotation of the oxygen cages - on the electronic correlations. We argue how the interplay of all these factors together allows a targeted modification of the electronic properties of the material.

  3. Geometry, electronic structures and optical properties of phosphorus nanotubes

    International Nuclear Information System (INIS)

    Hu, Tao; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Using a first principles approach, we investigated the geometry, electronic structures, and optical properties of phosphorus nanotubes (PNTs). Two possible 1D configurations, the so-called α-PNTs and β-PNTs, are proposed, which are structurally related to blue and black phosphorus monolayers, respectively. Hereby, we predict that both armchair and zigzag geometries can be synthesized in α-PNTs, but the zigzag form of β-PNT is highly unfavorable because of large strain and conformation energies. The band gap of α-PNTs is expected to be ∼2.67 eV, and this is insensitive to the chirality when the tube’s inner diameter is larger than 1.3 nm, while the armchair β-PNTs have a much smaller band gap. Interestingly, we find nearly flat band structures in the zigzag α-PNT system. This may indicate that an excited particle–hole pair has a huge effective mass. We also find asymmetric optical properties with respect to the polarization direction. The armchair α-PNT for parallel polarization shows a large refractive index of 2.6 near the ultraviolet wavelength, and also we find that the refractive index can be even smaller than 1 in certain frequency ranges. The zigzag tubes show very weak reflectivity for parallel polarization, while the armchair tube displays high reflectivity. (paper)

  4. Electronic properties of disordered Weyl semimetals at charge neutrality

    Science.gov (United States)

    Holder, Tobias; Huang, Chia-Wei; Ostrovsky, Pavel M.

    2017-11-01

    Weyl semimetals have been intensely studied as a three-dimensional realization of a Dirac-like excitation spectrum where the conduction bands and valence bands touch at isolated Weyl points in momentum space. Like in graphene, this property entails various peculiar electronic properties. However, recent theoretical studies have suggested that resonant scattering from rare regions can give rise to a nonzero density of states even at charge neutrality. Here, we give a detailed account of this effect and demonstrate how the semimetallic nature is suppressed at the lowest scales. To this end, we develop a self-consistent T -matrix approach to investigate the density of states beyond the limit of weak disorder. Our results show a nonvanishing density of states at the Weyl point, which exhibits a nonanalytic dependence on the impurity density. This unusually strong effect of rare regions leads to a revised estimate for the conductivity close to the Weyl point and emphasizes possible deviations from semimetallic behavior in dirty Weyl semimetals at charge neutrality even with very low impurity concentration.

  5. Electronic properties and optical absorption of a phosphorene quantum dot

    Science.gov (United States)

    Liang, F. X.; Ren, Y. H.; Zhang, X. D.; Jiang, Z. T.

    2018-03-01

    Using the tight-binding Hamiltonian approach, we theoretically study the electronic and optical properties of a triangular phosphorene quantum dot (PQD) including one normal zigzag edge and two skewed armchair edges (ZAA-PQD). It is shown that the energy spectrum can be classified into the filled band (FB), the zero-energy band (ZB), and the unfilled band (UB). Numerical calculations of the FB, ZB, and UB probability distributions show that the FB and the UB correspond to the bulk states, while the ZB corresponds to the edge states, which appear on all of the three edges of the ZAA-PQD sharply different from the other PQDs. We also find that the strains and the electric fields can affect the energy levels inhomogeneously. Then the optical properties of the ZAA-PQD are investigated. There appear some strong low-energy optical absorption peaks indicating its sensitive low-energy optical response that is absent in other PQDs. Moreover, the strains and the electric fields can make inhomogeneous influences on the optical spectrum of the ZAA-PQD. This work may provide a useful reference for designing the electrical, mechanical, and optical PQD devices.

  6. Accuracy of the FY 1999 Additions, Deletions, and Modifications to the Military Departments' Real Property Databases

    National Research Council Canada - National Science Library

    Lane, F

    2000-01-01

    This report is the third in a series of reports on accounting for property, plant, and equipment, and was performed in support of the Chief Financial Officers Act of 1990, as amended by the Federal...

  7. Electron beam irradiation and addition of poly(vinyl alcohol) affect gelatin based-films properties

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Mastro, Nelida L. del

    2015-01-01

    Gelatin is a mixture of high molecular weight polypeptides, product of denaturation, and partial structural degradation of collagen, and one of the first materials employed as biomaterials. Aqueous solutions of gelatin (10%), glycerin as plasticizer and poly(vinyl alcohol) (PVA) up to 10% were prepared in a water bath at 70 deg C under constant stirring. Films were irradiated with 10 and 20 kGy using an electron beam accelerator, dose rate of 22.4 kGy s -1 , energy 1.407 MeV, at room temperature, in the presence of air. After irradiation, mechanical properties, color measurements, water absorption, moisture and film solubility were analyzed. The films showed an improvement in maximum force to rupture the film with increase of the irradiation dose. The higher the puncture force to rupture the lower the elongation at break. Colorimetric tests showed significant differences between samples, and also differences depending of the applied radiation dose, and analyzed color parameter. In water absorption tests a decrease of absorption percentage was found with the increase of the dose for PVA free and 5% PVA samples. The addition of PVA increased the water absorption for all applied doses. The modifications in gelatin colloids can be appointed to radiation-induced crosslinking. Also, the PVA concentration in the samples influenced the resultant material properties. (author)

  8. Electron beam irradiation and addition of poly(vinyl alcohol) affect gelatin based-films properties

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Mastro, Nelida L. del, E-mail: pinamura@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Gelatin is a mixture of high molecular weight polypeptides, product of denaturation, and partial structural degradation of collagen, and one of the first materials employed as biomaterials. Aqueous solutions of gelatin (10%), glycerin as plasticizer and poly(vinyl alcohol) (PVA) up to 10% were prepared in a water bath at 70 deg C under constant stirring. Films were irradiated with 10 and 20 kGy using an electron beam accelerator, dose rate of 22.4 kGy s{sup -1}, energy 1.407 MeV, at room temperature, in the presence of air. After irradiation, mechanical properties, color measurements, water absorption, moisture and film solubility were analyzed. The films showed an improvement in maximum force to rupture the film with increase of the irradiation dose. The higher the puncture force to rupture the lower the elongation at break. Colorimetric tests showed significant differences between samples, and also differences depending of the applied radiation dose, and analyzed color parameter. In water absorption tests a decrease of absorption percentage was found with the increase of the dose for PVA free and 5% PVA samples. The addition of PVA increased the water absorption for all applied doses. The modifications in gelatin colloids can be appointed to radiation-induced crosslinking. Also, the PVA concentration in the samples influenced the resultant material properties. (author)

  9. Pd-catalyzed terpolymerization of alkynes, CO, and ethylene: Modification of thermal property of polyketones

    International Nuclear Information System (INIS)

    Lim, Yu Na; Cho, Yu Jin; Jang, Hye Young

    2016-01-01

    The terpolymerization of CO, ethylene, and additional olefins varies the properties of polyketones depending on olefins. In this study, monomer candidates for the terpolymerization of polyketones were expanded to alkynes, in addition to olefins. Thermal properties of polyketones were modified by adding aromatic alkynes during Pd-catalyzed terpolymerization with CO and ethylene. The Tm values of terpolymers were reduced to 192–215°C

  10. The Effect of HCWA-PFA Hybrid Geopolymer Modification on the Properties of Soil

    OpenAIRE

    Hassian F.F.; Cheah C.C.

    2014-01-01

    This study investigated the performance of the properties of foamed concrete when replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with Ordinary Portland Cement (OPC) as well as samples containing 10%, 15% and 20% silica fume were prepared. Three mechanical property parameters of foamed concrete containing different percentages of silica fume were studied: compressive strength, flexural strength and splitting tensile strength. Silica fu...

  11. Pd-catalyzed terpolymerization of alkynes, CO, and ethylene: Modification of thermal property of polyketones

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yu Na; Cho, Yu Jin; Jang, Hye Young [Div. of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    The terpolymerization of CO, ethylene, and additional olefins varies the properties of polyketones depending on olefins. In this study, monomer candidates for the terpolymerization of polyketones were expanded to alkynes, in addition to olefins. Thermal properties of polyketones were modified by adding aromatic alkynes during Pd-catalyzed terpolymerization with CO and ethylene. The Tm values of terpolymers were reduced to 192–215°C.

  12. Modifying the electronic and optical properties of carbon nanotubes

    Science.gov (United States)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III

  13. Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available A new treating method using sodium hydroxide (NaOH and Maleic anhydride-grafted polypropylene (MPP emulsion was introduced to treat jute fiber mat in order to enhance the performance of jute/polypropylene (PP composite prepared by film stacking method. The surface modifications of jute fiber mat have been found to be very effective in improving the fiber-matrix adhesion. It was shown that treatments changed not only the surface topography but also the distribution of diameter and strength for the jute fibers, which was analyzed by using a two-parameter Weibull distribution model. Consequently, the interfacial shear strength, flexural and tensile strength of the composites all increased, but the impact strength decreased slightly. These results have demonstrated a new approach to use natural materials to enhance the mechanical performances of composites.

  14. Impact of electronic modification of the chelating benzylidene ligand in cis-dichloro-configured second-generation olefin metathesis catalysts on their activity

    KAUST Repository

    Pump, Eva; Poater, Albert; Zirngast, Michaela; Torvisco, Ana; Fischer, Roland C.; Cavallo, Luigi; Slugovc, Christian

    2014-01-01

    A series of electronically modified second-generation cis-dichloro ruthenium ester chelating benzylidene complexes was prepared, characterized, and benchmarked in a typical ring-opening metathesis polymerization (ROMP) experiment. The electronic tuning of the parent chelating benzylidene ligand (2-ethyl ester benzylidene) was achieved by substitution at the 4- and 5-positions with electron-withdrawing nitro or electron-donating methoxy groups. The effect of the electronic tuning on the cis-trans isomerization process was studied experimentally and theoretically. Density functional theory calculations clearly revealed the influence of electronic modification on the relative stability between the cis and trans isomers, which is decisive for the activity of the studied compounds as initiators in ROMP. © 2014 American Chemical Society.

  15. Impact of electronic modification of the chelating benzylidene ligand in cis-dichloro-configured second-generation olefin metathesis catalysts on their activity

    KAUST Repository

    Pump, Eva

    2014-06-09

    A series of electronically modified second-generation cis-dichloro ruthenium ester chelating benzylidene complexes was prepared, characterized, and benchmarked in a typical ring-opening metathesis polymerization (ROMP) experiment. The electronic tuning of the parent chelating benzylidene ligand (2-ethyl ester benzylidene) was achieved by substitution at the 4- and 5-positions with electron-withdrawing nitro or electron-donating methoxy groups. The effect of the electronic tuning on the cis-trans isomerization process was studied experimentally and theoretically. Density functional theory calculations clearly revealed the influence of electronic modification on the relative stability between the cis and trans isomers, which is decisive for the activity of the studied compounds as initiators in ROMP. © 2014 American Chemical Society.

  16. Modeling and Modification of the Electromagnetic Properties of Advanced Composite Materials.

    Science.gov (United States)

    1980-01-01

    Direction 𔃾 into x tpaper L2JI F L TRANSVERSE CONDuCTIVmf !( oDK FIGUR 1-2 ’I I _ _ _ _ _ _ _ _ _ _ _ _ _ _ T-1 14 Pe’u are the electron, hole mobilities and...Otte and Lipsitt [4]. One of the conclusions of (5] is to characterize CYD boron as a collection of small crystallites of the 3-rhombohedral form

  17. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    Science.gov (United States)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the

  18. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Li; Qu, Wenjie; Liu, Fang; Zhao, Taolin; Zhang, Xiaoxiao; Chen, Renjie; Wu, Feng

    2014-01-01

    Highlights: • A method is designed to synthesize a λ-MnO 2 ion-sieve for lithium ions adsorption. • Ultrasonic treatment with acid is highly efficient for lithium ions extraction. • Surface modification by CeO 2 is used to improve the adsorption capacity. • A 0.5 wt.% CeO 2 -coated ion-sieve shows the best adsorption properties. • λ-MnO 2 ion-sieves are promising for recovering scarce lithium resources. - Abstract: Spinel λ-MnO 2 ion-sieves are promising materials because of their high selectivity toward lithium ions, and this can be applied to the recovery of lithium from spent lithium ion batteries. However, manganese dissolution loss during the delithiation of LiMn 2 O 4 causes a decrease in adsorption capacity and poor cycling stability for these ion-sieves. To improve the lithium adsorption properties of λ-MnO 2 ion-sieves, surface modification with a CeO 2 coating was studied using hydrothermal-heterogeneous nucleation. The structure, morphology and composition of the synthesized materials were determined by XRD, SEM, TEM and EDS. The effect of hydrothermal synthesis conditions and the amount of CeO 2 coating on the adsorption performance of λ-MnO 2 were also investigated. A 0.5 wt.% CeO 2 -coated ion-sieve was synthesized by heating at 120 °C for 3 h and it had better adsorption properties than the bare samples. The effect of ultrasonic treatment on the lithium extraction ratio from LiMn 2 O 4 upon acid treatment at various temperatures was studied and the resu