WorldWideScience

Sample records for electronic imaging systems

  1. A radiation-tolerant electronic readout system for portal imaging

    Science.gov (United States)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  2. Development of a new electronic neutron imaging system

    CERN Document Server

    Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J

    1999-01-01

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...

  3. Development of a new electronic neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Brenizer, J.S. [Department of Mechanical, Aerospace and Nuclear Engineering, Thornton Hall, University of Virginia, Charlottesville, VA 22903-2442 (United States); Berger, H. [Industrial Quality, Inc., Gaithersburg, MD (United States); Gibbs, K.M. [Industrial Quality, Inc., Gaithersburg, MD (United States); Mengers, P. [Paultek Systems, Inc., Nevada City, CA (United States); Stebbings, C.T. [Department of Mechanical, Aerospace and Nuclear Engineering, Thornton Hall, University of Virginia, Charlottesville, VA 22903-2442 (United States); Polansky, D. [Industrial Quality, Inc., Gaithersburg, MD (United States); Rogerson, D.J. [Naval Air Warfare Center, China Lake, CA (United States)

    1999-11-03

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included {sup 6}Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifier, fiber optically coupled to a 1134 (h)x486 (v) frame transfer CCD camera. The camera system was designed to be compatible with a Navy-sponsored accelerator neutron source. The planned neutron source is an RF quadrupole accelerator that will provide a fast neutron flux of 10{sup 7} n/cm{sup 2}-s (at a source distance of 1 m) at an energy of about 2.2 MeV and a thermal neutron flux of 10{sup 6} n/cm{sup 2}-s at a source L/D ratio of 30. The electronic camera produced good quality real-time images at these neutron levels. On-chip integration could be used to improve image quality for low flux situations. The camera and accelerator combination provided a useful non-reactor neutron inspection system.

  4. Electronic bulletin board system for image and information exchange

    International Nuclear Information System (INIS)

    Halama, J.R.; Henkin, R.E.; Wagner, R.H.

    1990-01-01

    This paper provides nuclear medicine professionals access to an electronic bulletin board (EBB) for image and information exchange. EBB users access the system remotely via modem and personal computer. A public message board is maintained containing messages posted by users. New messages or replies to existing messages may be posted. A public library board contains documents and images for users to access by transmitting them locally for off-line review. Comments and replies may be posted in the library board. New files may be posted in the library at any time. The EBB programs were developed on a multi-user computer system, allowing simultaneous access of users and on-line conferencing among active users

  5. An electron beam imaging system for quality assurance in IORT

    Science.gov (United States)

    Casali, F.; Rossi, M.; Morigi, M. P.; Brancaccio, R.; Paltrinieri, E.; Bettuzzi, M.; Romani, D.; Ciocca, M.; Tosi, G.; Ronsivalle, C.; Vignati, M.

    2004-01-01

    Intraoperative radiation therapy is a special radiotherapy technique, which enables a high dose of radiation to be given in a single fraction during oncological surgery. The major stumbling block to the large-scale application of the technique is the transfer of the patient, with an open wound, from the operating room to the radiation therapy bunker, with the consequent organisational problems and the increased risk of infection. To overcome these limitations, in the last few years a new kind of linear accelerator, the Novac 7, conceived for direct use in the surgical room, has become available. Novac 7 can deliver electron beams of different energies (3, 5, 7 and 9 MeV), with a high dose rate (up to 20 Gy/min). The aim of this work, funded by ENEA in the framework of a research contract, is the development of an innovative system for on-line measurements of 2D dose distributions and electron beam characterisation, before radiotherapy treatment with Novac 7. The system is made up of the following components: (a) an electron-light converter; (b) a 14 bit cooled CCD camera; (c) a personal computer with an ad hoc written software for image acquisition and processing. The performances of the prototype have been characterised experimentally with different electron-light converters. Several tests have concerned the assessment of the detector response as a function of impulse number and electron beam energy. Finally, the experimental results concerning beam profiles have been compared with data acquired with other dosimetric techniques. The achieved results make it possible to say that the developed system is suitable for fast quality assurance measurements and verification of 2D dose distributions.

  6. Standards for electronic imaging for graphic arts systems

    Science.gov (United States)

    Dunn, S. T.; Dunn, Patrice M.

    1991-03-01

    This paper examines the development of electronic imaging standards by and for the graphic arts industry. Taken collectively this body of work is referred to as Digital Data Exchange Standards (DDES). Because these standards are being driven by market and user requirements there are several fundamental guiding principles to their development. This paper examines these and provides an overview to the technical developments undertaken by the accredited graphic arts industry standards committees to date.

  7. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  8. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    Directory of Open Access Journals (Sweden)

    Ken Smart

    2016-04-01

    Full Text Available A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode.

  9. A photomultiplier-based secondary electron imaging system for a nuclear microprobe

    International Nuclear Information System (INIS)

    Alves, L.C.; Breese, M.B.H.; Silva, M.F. da; Soares, J.C.

    2002-01-01

    The ability to define, or recognise particular regions of interest or surface features is vital to the analysis and interpretation of spatially-resolved images collected with a nuclear microprobe. However, good topographic image contrast is difficult to accomplish using PIXE or RBS images due to their inherent insensitivity to topography, lack of elemental variation or poor statistics. Topographic image contrast is commonly obtained in scanning electron microscopy (SEM) by detecting a large flux of secondary electrons produced by the focused keV electron beam. Similar systems have not been widely used on nuclear microprobes due to ion beam intensity fluctuations, which limit the minimum resolvable contrast and present a major limitation for this technique. This paper describes a secondary electron imaging system which has been developed on the Lisbon microprobe. It is based on a scintillator, a photomultiplier operated in a pulsed mode, a pulse shaping electronic chain and ADC, and requires no changes to the existing data acquisition system. Examples of the images obtained from materials such as patterned SiGe wafers and hydrogen-implanted silicon are given, and compared with SEM or optical images

  10. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Kim, J. B.; Lee, W.; Yun, G. S.; Park, H. K.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-01-01

    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  11. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  12. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  13. An asynchronous, pipelined, electronic acquisition system for Active Matrix Flat-Panel Imagers (AMFPIs)

    CERN Document Server

    Huang, W; Berry, J; Maolinbay, M; Martelli, C; Mody, P; Nassif, S; Yeakey, M

    1999-01-01

    The development of a full-custom electronic acquisition system designed for readout of large-area active matrix flat-panel imaging arrays is reported. The arrays, which comprise two-dimensional matrices of pixels utilizing amorphous silicon thin-film transistors, are themselves under development for a wide variety of X-ray imaging applications. The acquisition system was specifically designed to facilitate detailed, quantitative investigations of the properties of these novel imaging arrays and contains significant enhancements compared to a previously developed acquisition system. These enhancements include pipelined preamplifier circuits to allow faster readout speed, expanded addressing capabilities allowing a maximum of 4096 array data lines, and on-board summing of image frames. The values of many acquisition system parameters, including timings and voltages, may be specified and downloaded from a host computer. Once acquisition is enabled, the system operates asynchronously of its host computer. The sys...

  14. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  15. An asynchronous, pipelined, electronic acquisition system for Active Matrix Flat-Panel Imagers (AMFPIs)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W.; Antonuk, L.E. E-mail: antonuk@umich.edu; Berry, J.; Maolinbay, M.; Martelli, C.; Mody, P.; Nassif, S.; Yeakey, M

    1999-07-11

    The development of a full-custom electronic acquisition system designed for readout of large-area active matrix flat-panel imaging arrays is reported. The arrays, which comprise two-dimensional matrices of pixels utilizing amorphous silicon thin-film transistors, are themselves under development for a wide variety of X-ray imaging applications. The acquisition system was specifically designed to facilitate detailed, quantitative investigations of the properties of these novel imaging arrays and contains significant enhancements compared to a previously developed acquisition system. These enhancements include pipelined preamplifier circuits to allow faster readout speed, expanded addressing capabilities allowing a maximum of 4096 array data lines, and on-board summing of image frames. The values of many acquisition system parameters, including timings and voltages, may be specified and downloaded from a host computer. Once acquisition is enabled, the system operates asynchronously of its host computer. The system allows image capture in both radiographic mode (corresponding to the capture of individual X-ray images), and fluoroscopic mode (corresponding to the capture of a continual series of X-ray images). A detailed description of the system architecture and the underlying motivations for the design is reported in this paper. (author)

  16. ESTERR-PRO: A Setup Verification Software System Using Electronic Portal Imaging

    Directory of Open Access Journals (Sweden)

    Pantelis A. Asvestas

    2007-01-01

    Full Text Available The purpose of the paper is to present and evaluate the performance of a new software-based registration system for patient setup verification, during radiotherapy, using electronic portal images. The estimation of setup errors, using the proposed system, can be accomplished by means of two alternate registration methods. (a The portal image of the current fraction of the treatment is registered directly with the reference image (digitally reconstructed radiograph (DRR or simulator image using a modified manual technique. (b The portal image of the current fraction of the treatment is registered with the portal image of the first fraction of the treatment (reference portal image by applying a nearly automated technique based on self-organizing maps, whereas the reference portal has already been registered with a DRR or a simulator image. The proposed system was tested on phantom data and on data from six patients. The root mean square error (RMSE of the setup estimates was 0.8±0.3 (mean value ± standard deviation for the phantom data and 0.3±0.3 for the patient data, respectively, by applying the two methodologies. Furthermore, statistical analysis by means of the Wilcoxon nonparametric signed test showed that the results that were obtained by the two methods did not differ significantly (P value >0.05.

  17. Digital imaging and electronic patient records in pathology using an integrated department information system with PACS.

    Science.gov (United States)

    Kalinski, Thomas; Hofmann, Harald; Franke, Dagmar-Sybilla; Roessner, Albert

    2002-01-01

    Picture archiving and communication systems have been widely used in radiology thus far. Owing to the progress made in digital photo technology, their use in medicine opens up further opportunities. In the field of pathology, digital imaging offers new possiblities for the documentation of macroscopic and microscopic findings. Digital imaging has the advantage that the data is permanently and readily available, independent of conventional archives. In the past, PACS was a separate entity. Meanwhile, however, PACS has been integrated in DIS, the department information system, which was also run separately in former times. The combination of these two systems makes the administration of patient data, findings and images easier. Moreover, thanks to the introduction of special communication standards, a data exchange between different department information systems and hospital information systems (HIS) is possible. This provides the basis for a communication platform in medicine, constituting an electronic patient record (EPR) that permits an interdisciplinary treatment of patients by providing data of findings and images from clinics treating the same patient. As the pathologic diagnosis represents a central and often therapy-determining component, it is of utmost importance to add pathologic diagnoses to the EPR. Furthermore, the pathologist's work is considerably facilitated when he is able to retrieve additional data from the patient file. In this article, we describe our experience gained with the combined PACS and DIS systems recently installed at the Department of Pathology, University of Magdeburg. Moreover, we evaluate the current situation and future prospects for PACS in pathology.

  18. Electronic Referrals and Digital Imaging Systems in Ophthalmology: A Global Perspective.

    Science.gov (United States)

    Jeganathan, V Swetha E; Hall, H Nikki; Sanders, Roshini

    2017-01-01

    Ophthalmology departments face intensifying pressure to expedite sight-saving treatments and reduce the global burden of disease. The use of electronic communication systems, digital imaging, and redesigned service care models is imperative for addressing such demands. The recently developed Scottish Eyecare Integration Project involves an electronic referral system from community optometry to the hospital ophthalmology department using National Health Service (NHS) email with digital ophthalmic images attached, via a virtual private network connection. The benefits over the previous system include reduced waiting times, improved triage, e-diagnosis in 20% without the need for hospital attendance, and rapid electronic feedback to referrers. We draw on the experience of the Scottish Eyecare Integration Project and discuss the global applications of this and other advances in teleophthalmology. We focus particularly on the implications for management and screening of chronic disease, such as glaucoma and diabetic eye disease, and ophthalmic disease, such as retinopathy of prematurity where diagnosis is almost entirely and critically dependent on fundus appearance. Currently in Scotland, approximately 75% of all referrals are electronic from community to hospital. The Scottish Eyecare Integration Project is globally the first of its kind and unique in a national health service. Such speedy, safe, and efficient models of communication are geographically sensitive to service provision, especially in remote and rural regions. Along with advances in teleophthalmology, such systems promote the earlier detection of sight-threatening disease and safe follow-up of non-sight-threatening disease in the community. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  19. Theoretical analysis and experimental evaluation of a CsI(Tl) based electronic portal imaging system

    International Nuclear Information System (INIS)

    Sawant, Amit; Zeman, Herbert; Samant, Sanjiv; Lovhoiden, Gunnar; Weinberg, Brent; DiBianca, Frank

    2002-01-01

    This article discusses the design and analysis of a portal imaging system based on a thick transparent scintillator. A theoretical analysis using Monte Carlo simulation was performed to calculate the x-ray quantum detection efficiency (QDE), signal to noise ratio (SNR) and the zero frequency detective quantum efficiency [DQE(0)] of the system. A prototype electronic portal imaging device (EPID) was built, using a 12.7 mm thick, 20.32 cm diameter, CsI(Tl) scintillator, coupled to a liquid nitrogen cooled CCD TV camera. The system geometry of the prototype EPID was optimized to achieve high spatial resolution. The experimental evaluation of the prototype EPID involved the determination of contrast resolution, depth of focus, light scatter and mirror glare. Images of humanoid and contrast detail phantoms were acquired using the prototype EPID and were compared with those obtained using conventional and high contrast portal film and a commercial EPID. A theoretical analysis was also carried out for a proposed full field of view system using a large area, thinned CCD camera and a 12.7 mm thick CsI(Tl) crystal. Results indicate that this proposed design could achieve DQE(0) levels up to 11%, due to its order of magnitude higher QDE compared to phosphor screen-metal plate based EPID designs, as well as significantly higher light collection compared to conventional TV camera based systems

  20. The rapid secondary electron imaging system of the proton beam writer at CIBA

    International Nuclear Information System (INIS)

    Udalagama, C.N.B.; Bettiol, A.A.; Kan, J.A. van; Teo, E.J.; Watt, F.

    2007-01-01

    The recent years have witnessed a proliferation of research involving proton beam (p-beam) writing. This has prompted investigations into means of optimizing the process of p-beam writing so as to make it less time consuming and more efficient. One such avenue is the improvement of the pre-writing preparatory procedures that involves beam focusing and sample alignment which is centred on acquiring images of a resolution standard or sample. The conventional mode of imaging used up to now has utilized conventional nuclear microprobe signals that are of a pulsed nature and are inherently slow. In this work, we report the new imaging system that has been introduced, which uses proton induced secondary electrons. This in conjunction with software developed in-house that uses a National Instruments DAQ card with hardware triggering, facilitates large data transfer rates enabling rapid imaging. Frame rates as much as 10 frames/s have been achieved at an imaging resolution of 512 x 512 pixels

  1. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    Science.gov (United States)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  2. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  3. Electronic Document Imaging and Optical Storage Systems for Local Governments: An Introduction. Local Government Records Technical Information Series. Number 21.

    Science.gov (United States)

    Schwartz, Stanley F.

    This publication introduces electronic document imaging systems and provides guidance for local governments in New York in deciding whether such systems should be adopted for their own records and information management purposes. It advises local governments on how to develop plans for using such technology by discussing its advantages and…

  4. Assessment of a customised immobilisation system for head and neck IMRT using electronic portal imaging

    International Nuclear Information System (INIS)

    Humphreys, Mandy; Guerrero Urbano, M.Teressa; Mubata, Cefas; Miles, Elizabeth; Harrington, Kevin J.; Bidmead, Margaret; Nutting, Christopher M.

    2005-01-01

    Purpose: To evaluate set-up reproducibility of a cabulite shell and determine CTV-PTV margins for head and neck intensity-modulated-radiotherapy. Materials and methods: Twenty patients were entered into the study. A total of 354 anterior and lateral isocentric electronic portal images (EPIs) were compared to simulator reference images. Results: About 94% of all translational displacements were ≤3 mm, and 99% ≤5 mm. The overall systematic error was 0.9 mm (±1.0SD) in the Right-Left, 0.7 mm (±0.9SD) in the Superior-Inferior and -0.02 mm (±1.1SD) in the Anterior-Posterior directions. The corresponding SDs of the random errors were ±0.4, ±0.6 and ±0.7 mm. The estimated margins required from CTV-PTV were calculated according to the Van Herk formula was 2.9, 2.6 and 3.3 mm, respectively. Conclusions: This head and neck immobilisation system is of sufficient accuracy for its use with IMRT treatments and a 3 mm CTV-PTV margin has been adopted

  5. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    Science.gov (United States)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  6. Evaluation of IsoCal geometric calibration system for Varian linacs equipped with on-board imager and electronic portal imaging device imaging systems.

    Science.gov (United States)

    Gao, Song; Du, Weiliang; Balter, Peter; Munro, Peter; Jeung, Andrew

    2014-05-08

    The purpose of this study is to evaluate the accuracy and reproducibility of the IsoCal geometric calibration system for kilovoltage (kV) and megavoltage (MV) imagers on Varian C-series linear accelerators (linacs). IsoCal calibration starts by imaging a phantom and collimator plate using MV images with different collimator angles, as well as MV and kV images at different gantry angles. The software then identifies objects on the collimator plate and in the phantom to determine the location of the treatment isocenter and its relation to the MV and kV imager centers. It calculates offsets between the positions of the imaging panels and the treatment isocenter as a function of gantry angle and writes a correction file that can be applied to MV and kV systems to correct for those offsets in the position of the panels. We performed IsoCal calibration three times on each of five Varian C-series linacs, each time with an independent setup. We then compared the IsoCal calibrations with a simplified Winston-Lutz (WL)-based system and with a Varian cubic phantom (VC)-based system. The maximum IsoCal corrections ranged from 0.7 mm to 1.5 mm for MV and 0.9 mm to 1.8 mm for kV imagers across the five linacs. The variations in the three calibrations for each linac were less than 0.2 mm. Without IsoCal correction, the WL results showed discrepancies between the treatment isocenter and the imager center of 0.9 mm to 1.6 mm (for the MV imager) and 0.5 mm to 1.1 mm (for the kV imager); with IsoCal corrections applied, the differences were reduced to 0.2 mm to 0.6 mm (MV) and 0.3 mm to 0.6 mm (kV) across the five linacs. The VC system was not as precise as the WL system, but showed similar results, with discrepancies of less than 1.0 mm when the IsoCal corrections were applied. We conclude that IsoCal is an accurate and consistent method for calibration and periodic quality assurance of MV and kV imaging systems.

  7. Electronic portal imaging devices

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The topics discussed include, among others, the following: Role of portal imaging; Port films vs. EPID; Image guidance: Elekta volume view; Delivery verification; Automation tasks of portal imaging; Types of portal imaging (Fluorescent screen, mirror, and CCD camera-based imaging; Liquid ion chamber imaging; Amorpho-silicon portal imagers; Fluoroscopic portal imaging; Kodak CR reader; and Other types of portal imaging devices); QA of EPID; and Portal dosimetry (P.A.)

  8. SU-E-T-775: Use of Electronic Portal Imaging Device (EPID) for Quality Assurance (QA) of Electron Beams On Varian Truebeam System

    Energy Technology Data Exchange (ETDEWEB)

    Cai, B; Yaddanapudi, S; Sun, B; Li, H; Noel, C; Mutic, S; Goddu, S [Department of Radiation Oncology, Washington University in St Louis, St. Louis, MO (United States)

    2015-06-15

    Purpose: In a previous study we have demonstrated the feasibility of using EPID to QA electron beam parameters on a single Varian TrueBeam LINAC. This study aims to provide further investigation on (1) reproducibility of using EPID to detect electron beam energy changes on multiple machines and (2) evaluation of appropriate calibration methods to compare results from different EPIDs. Methods: Ad-hoc mode electron beam images were acquired in developer mode with XML code. Electron beam data were collected on a total of six machines from four institutions. A custom-designed double-wedge phantom was placed on the EPID detector. Two calibration methods - Pixel Sensitivity Map (PSM) and Large Source-to-Imager Distance Flood Field (LSID-FF) - were used. To test the sensitivity of EPID in detecting energy drifts, Bending Magnet Current (BMC) was detuned to invoke energy changes corresponding to ∼±1.5 mm change in R50% of PDD on two machines from two institutions. Percent depth ionization (PDI) curves were then analyzed and compared with the respective baseline images using LSID-FF calibration. For reproducibility testing, open field EPID images and images with a standard testing phantom were collected on multiple machines. Images with and without PSM correction for same energies on different machines were overlaid and compared. Results: Two pixel shifts were observed in PDI curve when energy changes exceeded the TG142 tolerance. PSM showed the potential to correct the differences in pixel response of different imagers. With PSM correction, the histogram of images differences obtained from different machines showed narrower distributions than those images without PSM correction. Conclusion: EPID is sensitive for electron energy changes and the results are reproducible on different machines. When overlaying images from different machines, PSM showed the ability to partially eliminate the intrinsic variation of various imagers. Research Funding from Varian Medical Systems

  9. A combined positron emission tomography (PET)- electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner.

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V; Guggilapu, Priyaankadevi; Bobko, Andrey A; Khramtsov, Valery V; Tseytlin, Oxana; Raylman, Raymond R

    2018-04-20

    The advent of hybrid scanners, combining complementary modalities, has revolutionized imaging; enhancing clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). The PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring parameters such as oxygenation and pH, for example. A combined PET/EPRI scanner has the promise to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. In this investigation, a prototype system was created by combing two existing scanners, modified for simultaneous imaging. Specifically, a silicon photomultiplier (SiPM) based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both PET and EPR tracers. The resulting images demonstrated the ability to obtain contemporaneous PET and ERP images without cross-modality interference. The next step in this project is the construction of pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically important parameters of tissue microenvironments. . © 2018 Institute of Physics and Engineering in Medicine.

  10. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  11. Medical high-resolution image sharing and electronic whiteboard system: A pure-web-based system for accessing and discussing lossless original images in telemedicine.

    Science.gov (United States)

    Qiao, Liang; Li, Ying; Chen, Xin; Yang, Sheng; Gao, Peng; Liu, Hongjun; Feng, Zhengquan; Nian, Yongjian; Qiu, Mingguo

    2015-09-01

    There are various medical image sharing and electronic whiteboard systems available for diagnosis and discussion purposes. However, most of these systems ask clients to install special software tools or web plug-ins to support whiteboard discussion, special medical image format, and customized decoding algorithm of data transmission of HRIs (high-resolution images). This limits the accessibility of the software running on different devices and operating systems. In this paper, we propose a solution based on pure web pages for medical HRIs lossless sharing and e-whiteboard discussion, and have set up a medical HRI sharing and e-whiteboard system, which has four-layered design: (1) HRIs access layer: we improved an tile-pyramid model named unbalanced ratio pyramid structure (URPS), to rapidly share lossless HRIs and to adapt to the reading habits of users; (2) format conversion layer: we designed a format conversion engine (FCE) on server side to real time convert and cache DICOM tiles which clients requesting with window-level parameters, to make browsers compatible and keep response efficiency to server-client; (3) business logic layer: we built a XML behavior relationship storage structure to store and share users' behavior, to keep real time co-browsing and discussion between clients; (4) web-user-interface layer: AJAX technology and Raphael toolkit were used to combine HTML and JavaScript to build client RIA (rich Internet application), to meet clients' desktop-like interaction on any pure webpage. This system can be used to quickly browse lossless HRIs, and support discussing and co-browsing smoothly on any web browser in a diversified network environment. The proposal methods can provide a way to share HRIs safely, and may be used in the field of regional health, telemedicine and remote education at a low cost. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: Funds were used to purchase a Renishaw inVia Reflex Spectrometer System for Raman and Photoluminescence spectral...Unlimited UU UU UU UU 05-01-2016 15-Aug-2014 14-Aug-2015 Final Report: Purchase of a Raman and Photoluminescence Imaging System for Characterization of...MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Raman spectroscopy

  13. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    Chen, Y.T.; La Taille, C. de; Suomijärvi, T.; Cao, Z.; Deligny, O.; Dulucq, F.; Ge, M.M.; Lhenry-Yvon, I.; Martin-Chassard, G.; Nguyen Trung, T.; Wanlin, E.; Xiao, G.; Yin, L.Q.; Yun Ky, B.; Zhang, L.; Zhang, H.Y.; Zhang, S.S.; Zhu, Z.

    2015-01-01

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs

  14. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  15. Development of an electronic medical report delivery system to 3G GSM mobile (cellular) phones for a medical imaging department.

    Science.gov (United States)

    Lim, Eugene Y; Lee, Chiang; Cai, Weidong; Feng, Dagan; Fulham, Michael

    2007-01-01

    Medical practice is characterized by a high degree of heterogeneity in collaborative and cooperative patient care. Fast and effective communication between medical practitioners can improve patient care. In medical imaging, the fast delivery of medical reports to referring medical practitioners is a major component of cooperative patient care. Recently, mobile phones have been actively deployed in telemedicine applications. The mobile phone is an ideal medium to achieve faster delivery of reports to the referring medical practitioners. In this study, we developed an electronic medical report delivery system from a medical imaging department to the mobile phones of the referring doctors. The system extracts a text summary of medical report and a screen capture of diagnostic medical image in JPEG format, which are transmitted to 3G GSM mobile phones.

  16. Development of Camera Electronics for the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Tajima, Hiroyasu

    2009-05-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. We have developed test systems for some of these concepts and are testing their performance. Here we present test results of the test systems.

  17. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    Science.gov (United States)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  18. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  19. Electron image reconstruction of helical protein assemblies

    International Nuclear Information System (INIS)

    Cremers, A.F.M.

    1980-01-01

    The analysis of projections of large ordered biological systems obtained by electron microscopy of negatively stained specimens is described. The biological structures amenable to this approach are constructed from a large number of identical protein molecules, which are arranged according to helical symmetry. Electron images of these structures generally contain sufficient information in order to calculate a three-dimensional density map. (Auth.)

  20. Imaging system

    International Nuclear Information System (INIS)

    Froggatt, R.J.

    1981-01-01

    The invention provides a two dimensional imaging system in which a pattern of radiation falling on the system is detected to give electrical signals for each of a plurality of strips across the pattern. The detection is repeated for different orientations of the strips and the whole processed by compensated back projection. For a shadow x-ray system a plurality of strip x-ray detectors are rotated on a turntable. For lower frequencies the pattern may be rotated with a Dove prism and the strips condensed to suit smaller detectors with a cylindrical lens. (author)

  1. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    IAS Admin

    is Professor of Chemistry at. IIT Madras. ... speeding up the CW imaging by special novel methods. How- ever, the ... presence of gradients which are applied in two or three dimen- sions and ... optics and mechanical engineer- ing stands for ...

  2. Imaging system

    International Nuclear Information System (INIS)

    Rushbrooke, J.G.; Ansorge, R.E.

    1987-01-01

    A moving object such as a container on a conveyor belt is imaged by an optical system onto a charge coupled device array in which the lines of the array are arranged perpendicular to the direction of motion of the object. The speed of movement of the object is sensed to generate electrical signals which are processed to provide shift signals enabling the shifting of data row to row in the array in synchronism with the movement of the container. The electrical charge associated with a given point on the array is transferred from one line to the other until it appears at the last line of the array, from which it is read out in known manner in conjunction with all other electrical charges associated with the row of charge coupled devices in the last line of the array. Due to the integrating effect achieved, the aperture of the imaging system can be much smaller than otherwise would be required, and/or the level of light illumination can be reduced. The imaging system can be applied to X-ray inspection devices, aerial surveillance or scanning of moving documents in copying processes. (author)

  3. Electronic payment systems

    OpenAIRE

    Mláka, Michal

    2010-01-01

    This bachelor thesis analysis issue of electronic payment systems. It discusses their use for payments on the internet and sending funds via e-mail. The first part is devoted to the theoretical definition and legislation of the issuance of electronic money and activities of electronic money institutions. The main part of the work clearly focuses on the use of e-wallets, which is an integral part of electronic payment systems. E-wallet of electronic payment system Moneybookers is considered as...

  4. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    International Nuclear Information System (INIS)

    Lim, Sangwook; Ma, Sun Young; Jeung, Tae Sig; Yi, Byong Yong; Lee, Sang Hoon; Lee, Suk; Cho, Sam Ju; Choi, Jinho

    2012-01-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  5. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangwook, E-mail: medicalphysics@hotmail.com [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Ma, Sun Young; Jeung, Tae Sig [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Lee, Sang Hoon [Department of Radiation Oncology, Cheil General Hospital and Women' s Healthcare Center, Kwandong University College of Medicine, Jung-gu, Seoul (Korea, Republic of); Lee, Suk [Department of Radiation Oncology, College of Medicine, Korea University, Seongbuk-gu, Seoul (Korea, Republic of); Cho, Sam Ju [Department of Radiation Oncology, Eulji University School of Medicine, Eulji General Hospital, Nowon-gu, Seoul (Korea, Republic of); Choi, Jinho [Department of Radiation Oncology, Gachon University of Medicine and Science, Namdong-gu, Incheon (Korea, Republic of)

    2012-10-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  6. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Science.gov (United States)

    2010-07-01

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-724] In the Matter of Certain Electronic Devices... AGENCY: U.S. International Trade Commission. ACTION: Institution of investigation pursuant to 19 U.S.C. 1337. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade...

  7. Multispectral Panoramic Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  8. Novel digital K-edge imaging system with transition radiation from an 855-MeV electron beam

    CERN Document Server

    Hagenbuck, F; Clawiter, N; Euteneuer, H; Görgen, F; Holl, P; Johann, K; Kiser, K H; Kemmer, J; Kerschner, T; Kettig, O; Koch, H; Kube, G; Lauth, W; Mauhay, H; Schütrumpf, M; Stotter, R; Strüder, L; Walcher, T; Wilms, A; von Zanthier, C; Zemter, M

    2001-01-01

    A novel K-edge imaging method has been developed at the Mainz Microtron MAMI aiming at a very efficient use of the transition radiation (TR) flux generated by the external 855-MeV electron beam in a foil stack. A fan-like quasi-monochromatic hard X-ray beam is produced from the +or-1-mrad-wide TR cone with a highly oriented pyrolytic graphite (HOPG) crystal. The absorption of the object in front of a 30 mm*10 mm pn charge-coupled device (pn-CCD) photon detector is measured at every pixel by a broad-band energy scan around the K-absorption edge. This is accomplished by a synchronous variation of the lateral crystal position and the electron beam direction which defines also the direction of the TR cone. The system has been checked with a phantom consisting of a 2.5- mu m thick molybdenum sample embedded in a 136- or 272- mu m-thick copper bulk foil. A numerical analysis of the energy spectrum for every pixel demonstrates that data as far as +or-0.75 keV away from the K edge of molybdenum at 20 keV still improv...

  9. Impact of measuring electron tracks in high-resolution scientific charge-coupled devices within Compton imaging systems

    International Nuclear Information System (INIS)

    Chivers, D.H.; Coffer, A.; Plimley, B.; Vetter, K.

    2011-01-01

    We have implemented benchmarked models to determine the gain in sensitivity of electron-tracking based Compton imaging relative to conventional Compton imaging by the use of high-resolution scientific charge-coupled devices (CCD). These models are based on the recently demonstrated ability of electron-tracking based Compton imaging by using fully depleted scientific CCDs. Here we evaluate the gain in sensitivity by employing Monte Carlo simulations in combination with advanced charge transport models to calculate two-dimensional charge distributions corresponding to experimentally obtained tracks. In order to reconstruct the angle of the incident γ-ray, a trajectory determination algorithm was used on each track and integrated into a back-projection routine utilizing a geodesic-vertex ray tracing technique. Analysis was performed for incident γ-ray energies of 662 keV and results show an increase in sensitivity consistent with tracking of the Compton electron to approximately ±30 o .

  10. Protocol for the quality control systems of electronic portal imaging used in verification of radiotherapy treatment

    International Nuclear Information System (INIS)

    Silvestre, Ileana; Alfonso, Rodolfo; Garcia, Fernando

    2009-01-01

    Following the approach of quality control of radiotherapy equipment, conceived in the IAEA TECDOC-1151, we analyzed the different tests must be to an EPID to guarantee levels of accuracy required in the administration of radiation treatments, including the study of the impact of different parameters, geometric and dosimetric imaging, involved in the process. Established the types and frequency of checks, as well as procedures for their implementation, the allowable tolerances set of values records and forms for recording . Was carried out assessment protocol in various services based on amorphous silicon EPID for its applicability and scope. Was designed and validated in clinical practice protocol for EPID quality control, demonstrating its applicability with a minimum of material and human resources. It We concluded that with proper and systematic quality control program, tests including dosimetry, the EPID can provide valuable information about physico-beam dosimetry, and ensure adequate accuracy geometric in the patient's location. (author)

  11. Portable digital electronic radiography system

    International Nuclear Information System (INIS)

    Sawicka, B.D.

    1995-01-01

    Radiography is a standard nondestructive technique in the industrial testing of materials and components. It is routinely used during the construction, maintenance and repair of nuclear plants. Traditionally, radiography is performed using photographic film (film radiography, FR). Recent developments in solid-state area imaging radiation detectors, miniature electronics and computer software/hardware techniques have brought electronic alternatives to FR. In recent years various electronic radiography (ER) techniques have served as alternatives to FR, these proved beneficial in some applications. While originally developed to provide real time imaging, ER may offer other advantages over FR, depending on the application. Work was undertaken at CRL to review progress in ER techniques and evaluate the possibility of constructing a portable DER (digital electronic radiography) system, for the inspection of power plant components. A suitable DER technique has been developed and a proof of principle portable system constructed. As this paper demonstrates, a properly designed ER system can be small and compact, while providing radiographic examination with acceptable image quality and the benefits of ER imaging. The CRL DER system can operate with radioactive sources typical of FR. While it does not replace FR, our DER system is expected to be beneficial in specific applications for Candu maintenance, reducing cost, labour and time. Practical, cost saving applications of this system are expected to include valve monitoring and foreign object location during maintenance at Candu reactors

  12. Advances in imaging and electron physics

    CERN Document Server

    Hawkes, Peter W

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Continuation order customers for either of the original Advances will receiveVolume 90, the first combined volume.

  13. Advances in imaging and electron physics

    CERN Document Server

    Mulvey, Tom

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

  14. A reconfigurable image tube using an external electronic image readout

    Science.gov (United States)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  15. Electronic theodolite intersection systems

    OpenAIRE

    Bingley, R. M.

    1990-01-01

    The development of electronic surveying instruments, such as electronic theodolites, and concurrent advances in computer technology, has revolutionised engineering surveying; one of the more recent examples being the introduction of Electronic Theodolite Intersection Systems (ETISs). An ETIS consists of two or more electronic theodolites and a computer, with peripheral hardware and suitable software. The theoretical principles on which they are based have been known for a long time, but ...

  16. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, E., E-mail: erich.mueller@kit.edu; Gerthsen, D.

    2017-02-15

    The contrast of backscattered electron (BSE) images in scanning electron microscopy (SEM) depends on material parameters which can be exploited for composition quantification if some information on the material system is available. As an example, the In-concentration in thin In{sub x}Ga{sub 1−x}As layers embedded in a GaAs matrix is analyzed in this work. The spatial resolution of the technique is improved by using thin electron-transparent specimens instead of bulk samples. Although the BSEs are detected in a comparably small angular range by an annular semiconductor detector, the image intensity can be evaluated to determine the composition and local thickness of the specimen. The measured intensities are calibrated within one single image to eliminate the influence of the detection and amplification system. Quantification is performed by comparison of experimental and calculated data. Instead of using time-consuming Monte-Carlo simulations, an analytical model is applied for BSE-intensity calculations which considers single electron scattering and electron diffusion. - Highlights: • Sample thickness and composition are quantified by backscattered electron imaging. • A thin sample is used to achieve spatial resolution of few nanometers. • Calculations are carried out with a time-saving electron diffusion model. • Small differences in atomic number and density detected at low electron energies.

  17. High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images

    International Nuclear Information System (INIS)

    Zhao, Quantang; Cao, S.C.; Liu, M.; Sheng, X.K.; Wang, Y.R.; Zong, Y.; Zhang, X.M.; Jing, Y.; Cheng, R.; Zhao, Y.T.; Zhang, Z.M.; Du, Y.C.; Gai, W.

    2016-01-01

    A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.

  18. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  19. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2007-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set

  20. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2011-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea

  1. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics.

    Science.gov (United States)

    Hernández Vera, Rodrigo; Schwan, Emil; Fatsis-Kavalopoulos, Nikos; Kreuger, Johan

    2016-01-01

    Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community.

  2. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics

    Science.gov (United States)

    Schwan, Emil; Fatsis-Kavalopoulos, Nikos; Kreuger, Johan

    2016-01-01

    Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community. PMID:28002463

  3. Image formation and image analysis in electron microscopy

    International Nuclear Information System (INIS)

    Heel, M. van.

    1981-01-01

    This thesis covers various aspects of image formation and image analysis in electron microscopy. The imaging of relatively strong objects in partially coherent illumination, the coherence properties of thermionic emission sources and the detection of objects in quantum noise limited images are considered. IMAGIC, a fast, flexible and friendly image analysis software package is described. Intelligent averaging of molecular images is discussed. (C.F.)

  4. Development of the high-power THz spectroscopy and imaging systems on the basis of an S-band compact electron LINAC

    International Nuclear Information System (INIS)

    Kuroda, R.; Taira, Y.; Tanaka, M.; Toyokawa, H.; Yamada, K.; Kumaki, M.; Tachibana, M.; Sakaue, K.; Washio, M.

    2014-01-01

    The high-power terahertz time-domain spectroscopy (THz-TDS) and imaging systems have been developed on the basis of an S-band compact electron linac at AIST. Such high-power THz source is strongly expected for inspection of dangerous materials in the homeland security field. The high-power THz radiations are generated in two methods with the high-brightness ultra-short electron bunch. One is THz coherent synchrotron radiation (THz-CSR) for THz imaging applications. The other is THz coherent transition radiation (THz-CTR) for the THz spectroscopy. The THz-CTR time-domain spectroscopy (TDS) has been constructed with the EO sampling method and demonstrated in freq. range between 0.1-2 THz. The absorption measurements of drug samples have been successfully performed in atmosphere. In this symposium, we will describe details of the THz-CTR-TDS and imaging experiments and a future plan of the THz applications. (author)

  5. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  6. Electron cyclotron emission imaging in tokamak plasmas

    NARCIS (Netherlands)

    Munsat, T.; Domier, C.W.; Kong, X. Y.; Liang, T. R.; N C Luhmann Jr.,; Tobias, B. J.; Lee, W.; Park, H. K.; Yun, G.; Classen, I.G.J.; Donne, A. J. H.

    2010-01-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the

  7. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.

    Science.gov (United States)

    Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus

    2016-06-01

    The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

  8. Velocity slice imaging for dissociative electron attachment

    Science.gov (United States)

    Nandi, Dhananjay; Prabhudesai, Vaibhav S.; Krishnakumar, E.; Chatterjee, A.

    2005-05-01

    A velocity slice imaging method is developed for measuring the angular distribution of fragment negative ions arising from dissociative electron attachment (DEA) to molecules. A low energy pulsed electron gun, a pulsed field ion extraction, and a two-dimensional position sensitive detector consisting of microchannel plates and a wedge-and-strip anode are used for this purpose. Detection and storage of each ion separately for its position and flight time allows analysis of the data offline for any given time slice, without resorting to pulsing the detector bias. The performance of the system is evaluated by measuring the angular distribution of O- from O2 and comparing it with existing data obtained using conventional technique. The capability of this technique in obtaining forward and backward angular distribution data is shown to have helped in resolving one of the existing problems in the electron scattering on O2.

  9. Calibration for medium resolution off-axis electron holography using a flexible dual-lens imaging system in a JEOL ARM 200F microscope

    International Nuclear Information System (INIS)

    Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Mendoza-Santoyo, Fernando; Jose-Yacaman, Miguel; Ponce, Arturo

    2014-01-01

    In this work the calibration of a medium resolution off-axis electron holography using a dual-lens imaging system in a JEOL ARM 200F is shown. The objective dual-lens configuration allows adjusting the field of view from 35 nm to 2.5 μm. Subsequently, the parameters used in phase shift reconstruction were calibrated considering biprism voltage versus fringe spacing (σ) and versus fringe width (W). The reliability of the transmission electron microscope performance using these parameters was achieved using gold nanoparticles of known size and adjusting the excitation voltage of the lenses. - Highlights: • We presented the off-axis electron holography calibration in dual-lens mode of a JEOL ARM 200F. • We provide optimal conditions for a wide field of views varying the objective lens excitation. • The calibration was made using Au-nanoparticles controlling fringe width, spacing and contrast. • Application of electron holography to nanoparticles is also shown

  10. Calibration for medium resolution off-axis electron holography using a flexible dual-lens imaging system in a JEOL ARM 200F microscope.

    Science.gov (United States)

    Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Mendoza-Santoyo, Fernando; Jose-Yacaman, Miguel; Ponce, Arturo

    2014-12-01

    In this work the calibration of a medium resolution off-axis electron holography using a dual-lens imaging system in a JEOL ARM 200F is shown. The objective dual-lens configuration allows adjusting the field of view from 35nm to 2.5μm. Subsequently, the parameters used in phase shift reconstruction were calibrated considering biprism voltage versus fringe spacing (σ) and versus fringe width (W). The reliability of the transmission electron microscope performance using these parameters was achieved using gold nanoparticles of known size and adjusting the excitation voltage of the lenses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. BEPCII electronic logbook system

    International Nuclear Information System (INIS)

    Liu Shu; Zhao Jijiu; Wang Chunhong

    2007-01-01

    According to demands of BEPCII construction and future operation, we are going to supply an open electronic logbook platform for people to record their message in developing and running BEPCII, and browse the log-book on website. That gives people an open and transparent logbook, rather than traditional paper notebook. With the template of DESY's Elogbook, the BEPCII electronic logbook was developed, using the popular JSP technology to develop dynamic Web applications. This paper will introduce the development of BEPCII electronic logbook system. (authors)

  12. Electronic components and systems

    CERN Document Server

    Dennis, W H

    2013-01-01

    Electronic Components and Systems focuses on the principles and processes in the field of electronics and the integrated circuit. Covered in the book are basic aspects and physical fundamentals; different types of materials involved in the field; and passive and active electronic components such as capacitors, inductors, diodes, and transistors. Also covered in the book are topics such as the fabrication of semiconductors and integrated circuits; analog circuitry; digital logic technology; and microprocessors. The monograph is recommended for beginning electrical engineers who would like to kn

  13. Electronics a systems approach

    CERN Document Server

    Storey, Neil

    2017-01-01

    Electronics plays a central role in our everyday lives. It is at the heart of almost all of today's essential technology, from mobile phones to computers and from cars to power stations. As such, all engineers, scientists and technologists need to have a fundamental understanding of this exciting subject, and for many this will just be the beginning. Now in its sixth edition, Electronics: A Systems Approach provides an outstanding introduction to this fast-moving and important field. Comprehensively revised and updated to cover the latest developments in the world of electronics, the text continues to use Neil Storey's established and well-respected systems approach. It introduces the basic concepts first before progressing to a more advanced analysis, enabling you to contextualise what a system is designed to achieve before tackling the intricacies of designing or analysing its various components with confidence. This book is accompanied by a website which contains over 100 video tutorials to help explain ke...

  14. Mechanics of bioinspired imaging systems

    Directory of Open Access Journals (Sweden)

    Zhengwei Li

    2016-01-01

    Full Text Available Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics. Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates.

  15. Foucault imaging by using non-dedicated transmission electron microscope

    International Nuclear Information System (INIS)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-01-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  16. Foucault imaging by using non-dedicated transmission electron microscope

    Science.gov (United States)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  17. Foucault imaging by using non-dedicated transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  18. Programmable electronic safety systems

    International Nuclear Information System (INIS)

    Parry, R.R.

    1993-01-01

    Traditionally safety systems intended for protecting personnel from electrical and radiation hazards at particle accelerator laboratories have made extensive use of electromechanical relays. These systems have the advantage of high reliability and allow the designer to easily implement fail-safe circuits. Relay based systems are also typically simple to design, implement, and test. As systems, such as those presently under development at the Superconducting Super Collider Laboratory (SSCL), increase in size, and the number of monitored points escalates, relay based systems become cumbersome and inadequate. The move toward Programmable Electronic Safety Systems is becoming more widespread and accepted. In developing these systems there are numerous precautions the designer must be concerned with. Designing fail-safe electronic systems with predictable failure states is difficult at best. Redundancy and self-testing are prime examples of features that should be implemented to circumvent and/or detect failures. Programmable systems also require software which is yet another point of failure and a matter of great concern. Therefore the designer must be concerned with both hardware and software failures and build in the means to assure safe operation or shutdown during failures. This paper describes features that should be considered in developing safety systems and describes a system recently installed at the Accelerator Systems String Test (ASST) facility of the SSCL

  19. Programmable Electronic Safety Systems

    International Nuclear Information System (INIS)

    Parry, R.

    1993-05-01

    Traditionally safety systems intended for protecting personnel from electrical and radiation hazards at particle accelerator laboratories have made extensive use of electromechanical relays. These systems have the advantage of high reliability and allow the designer to easily implement failsafe circuits. Relay based systems are also typically simple to design, implement, and test. As systems, such as those presently under development at the Superconducting Super Collider Laboratory (SSCL), increase in size, and the number of monitored points escalates, relay based systems become cumbersome and inadequate. The move toward Programmable Electronic Safety Systems is becoming more widespread and accepted. In developing these systems there are numerous precautions the designer must be concerned with. Designing fail-safe electronic systems with predictable failure states is difficult at best. Redundancy and self-testing are prime examples of features that should be implemented to circumvent and/or detect failures. Programmable systems also require software which is yet another point of failure and a matter of great concern. Therefore the designer must be concerned with both hardware and software failures and build in the means to assure safe operation or shutdown during failures. This paper describes features that should be considered in developing safety systems and describes a system recently installed at the Accelerator Systems String Test (ASST) facility of the SSCL

  20. Fundamentals of electronic image processing

    CERN Document Server

    Weeks, Arthur R

    1996-01-01

    This book is directed to practicing engineers and scientists who need to understand the fundamentals of image processing theory and algorithms to perform their technical tasks. It is intended to fill the gap between existing high-level texts dedicated to specialists in the field and the need for a more practical, fundamental text on image processing. A variety of example images are used to enhance reader understanding of how particular image processing algorithms work.

  1. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  2. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  3. Electron-electron interactions in disordered systems

    CERN Document Server

    Efros, AL

    1985-01-01

    ``Electron-Electron Interactions in Disordered Systems'' deals with the interplay of disorder and the Coulomb interaction. Prominent experts give state-of-the-art reviews of the theoretical and experimental work in this field and make it clear that the interplay of the two effects is essential, especially in low-dimensional systems.

  4. Electron beam processing system

    International Nuclear Information System (INIS)

    Kashiwagi, Masayuki

    2004-01-01

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  5. Development of an image converter of radical design. [employing solid state electronics towards the production of an advanced engineering model camera system

    Science.gov (United States)

    Irwin, E. L.; Farnsworth, D. L.

    1972-01-01

    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.

  6. New image-stabilizing system

    Science.gov (United States)

    Zhao, Yuejin

    1996-06-01

    In this paper, a new method for image stabilization with a three-axis image- stabilizing reflecting prism assembly is presented, and the principle of image stabilization in this prism assembly, formulae for image stabilization and working formulae with an approximation up to the third power are given in detail. In this image-stabilizing system, a single chip microcomputer is used to calculate value of compensating angles and thus to control the prism assembly. Two gyroscopes act as sensors from which information of angular perturbation is obtained, three stepping motors drive the prism assembly to compensate for the movement of image produced by angular perturbation. The image-stabilizing device so established is a multifold system which involves optics, mechanics, electronics and computer.

  7. MO-FG-202-04: Gantry-Resolved Linac QA for VMAT: A Comprehensive and Efficient System Using An Electronic Portal Imaging Device

    Energy Technology Data Exchange (ETDEWEB)

    Zwan, B J [Central Coast Cancer Centre, Gosford, NSW (Australia); University of Newcastle, Newcastle, NSW (Australia); Barnes, M; Greer, P B [University of Newcastle, Newcastle, NSW (Australia); Calvary Mater Hospital, Newcastle, NSW (Australia); Hindmarsh, J; Seymour, E [Central Coast Cancer Centre, Gosford, NSW (Australia); O’Connor, D J [University of Newcastle, Newcastle, NSW (Australia); Keall, P J [University of Sydney, Camperdown, NSW (Australia)

    2016-06-15

    Purpose: To automate gantry-resolved linear accelerator (linac) quality assurance (QA) for volumetric modulated arc therapy (VMAT) using an electronic portal imaging device (EPID). Methods: A QA system for VMAT was developed that uses an EPID, frame-grabber assembly and in-house developed image processing software. The system relies solely on the analysis of EPID image frames acquired without the presence of a phantom. Images were acquired at 8.41 frames per second using a frame grabber and ancillary acquisition computer. Each image frame was tagged with a gantry angle from the linac’s on-board gantry angle encoder. Arc-dynamic QA plans were designed to assess the performance of each individual linac component during VMAT. By analysing each image frame acquired during the QA deliveries the following eight machine performance characteristics were measured as a function of gantry angle: MLC positional accuracy, MLC speed constancy, MLC acceleration constancy, MLC-gantry synchronisation, beam profile constancy, dose rate constancy, gantry speed constancy, dose-gantry angle synchronisation and mechanical sag. All tests were performed on a Varian iX linear accelerator equipped with a 120 leaf Millennium MLC and an aS1000 EPID (Varian Medical Systems, Palo Alto, CA, USA). Results: Machine performance parameters were measured as a function of gantry angle using EPID imaging and compared to machine log files and the treatment plan. Data acquisition is currently underway at 3 centres, incorporating 7 treatment units, at 2 weekly measurement intervals. Conclusion: The proposed system can be applied for streamlined linac QA and commissioning for VMAT. The set of test plans developed can be used to assess the performance of each individual components of the treatment machine during VMAT deliveries as a function of gantry angle. The methodology does not require the setup of any additional phantom or measurement equipment and the analysis is fully automated to allow for

  8. MO-FG-202-04: Gantry-Resolved Linac QA for VMAT: A Comprehensive and Efficient System Using An Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    Zwan, B J; Barnes, M; Greer, P B; Hindmarsh, J; Seymour, E; O’Connor, D J; Keall, P J

    2016-01-01

    Purpose: To automate gantry-resolved linear accelerator (linac) quality assurance (QA) for volumetric modulated arc therapy (VMAT) using an electronic portal imaging device (EPID). Methods: A QA system for VMAT was developed that uses an EPID, frame-grabber assembly and in-house developed image processing software. The system relies solely on the analysis of EPID image frames acquired without the presence of a phantom. Images were acquired at 8.41 frames per second using a frame grabber and ancillary acquisition computer. Each image frame was tagged with a gantry angle from the linac’s on-board gantry angle encoder. Arc-dynamic QA plans were designed to assess the performance of each individual linac component during VMAT. By analysing each image frame acquired during the QA deliveries the following eight machine performance characteristics were measured as a function of gantry angle: MLC positional accuracy, MLC speed constancy, MLC acceleration constancy, MLC-gantry synchronisation, beam profile constancy, dose rate constancy, gantry speed constancy, dose-gantry angle synchronisation and mechanical sag. All tests were performed on a Varian iX linear accelerator equipped with a 120 leaf Millennium MLC and an aS1000 EPID (Varian Medical Systems, Palo Alto, CA, USA). Results: Machine performance parameters were measured as a function of gantry angle using EPID imaging and compared to machine log files and the treatment plan. Data acquisition is currently underway at 3 centres, incorporating 7 treatment units, at 2 weekly measurement intervals. Conclusion: The proposed system can be applied for streamlined linac QA and commissioning for VMAT. The set of test plans developed can be used to assess the performance of each individual components of the treatment machine during VMAT deliveries as a function of gantry angle. The methodology does not require the setup of any additional phantom or measurement equipment and the analysis is fully automated to allow for

  9. OSPACS: Ultrasound image management system

    Directory of Open Access Journals (Sweden)

    Bessant Conrad

    2008-06-01

    Full Text Available Abstract Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system.

  10. Experimental image alignment system

    Science.gov (United States)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  11. Electronics for embedded systems

    CERN Document Server

    Bindal, Ahmet

    2017-01-01

    This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

  12. Development of a user-friendly system for image processing of electron microscopy by integrating a web browser and PIONE with Eos.

    Science.gov (United States)

    Tsukamoto, Takafumi; Yasunaga, Takuo

    2014-11-01

    Eos (Extensible object-oriented system) is one of the powerful applications for image processing of electron micrographs. In usual cases, Eos works with only character user interfaces (CUI) under the operating systems (OS) such as OS-X or Linux, not user-friendly. Thus, users of Eos need to be expert at image processing of electron micrographs, and have a little knowledge of computer science, as well. However, all the persons who require Eos does not an expert for CUI. Thus we extended Eos to a web system independent of OS with graphical user interfaces (GUI) by integrating web browser.Advantage to use web browser is not only to extend Eos with GUI, but also extend Eos to work under distributed computational environment. Using Ajax (Asynchronous JavaScript and XML) technology, we implemented more comfortable user-interface on web browser. Eos has more than 400 commands related to image processing for electron microscopy, and the usage of each command is different from each other. Since the beginning of development, Eos has managed their user-interface by using the interface definition file of "OptionControlFile" written in CSV (Comma-Separated Value) format, i.e., Each command has "OptionControlFile", which notes information for interface and its usage generation. Developed GUI system called "Zephyr" (Zone for Easy Processing of HYpermedia Resources) also accessed "OptionControlFIle" and produced a web user-interface automatically, because its mechanism is mature and convenient,The basic actions of client side system was implemented properly and can supply auto-generation of web-form, which has functions of execution, image preview, file-uploading to a web server. Thus the system can execute Eos commands with unique options for each commands, and process image analysis. There remain problems of image file format for visualization and workspace for analysis: The image file format information is useful to check whether the input/output file is correct and we also

  13. CMOS Image Sensors: Electronic Camera On A Chip

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  14. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  15. Multipurpose Hyperspectral Imaging System

    Science.gov (United States)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  16. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  17. High speed electronic imaging application in aeroballistic research

    International Nuclear Information System (INIS)

    Brown, R.R.; Parker, J.R.

    1984-01-01

    Physical and temporal restrictions imposed by modern aeroballistics have pushed imaging technology to the point where special photoconductive surfaces and high-speed support electronics are dictated. Specifications for these devices can be formulated by a methodical analysis of critical parameters and how they interact. In terms of system theory, system transfer functions and state equations can be used in optimal coupling of devices to maximize system performance. Application of these methods to electronic imaging at the Eglin Aeroballistics Research Facility is described in this report. 7 references, 14 figures, 1 table

  18. Electronic Nicotine Delivery Systems.

    Science.gov (United States)

    Walley, Susan C; Jenssen, Brian P

    2015-11-01

    Electronic nicotine delivery systems (ENDS) are rapidly growing in popularity among youth. ENDS are handheld devices that produce an aerosolized mixture from a solution typically containing concentrated nicotine, flavoring chemicals, and propylene glycol to be inhaled by the user. ENDS are marketed under a variety of names, most commonly electronic cigarettes and e-cigarettes. In 2014, more youth reported using ENDS than any other tobacco product. ENDS pose health risks to both users and nonusers. Nicotine, the major psychoactive ingredient in ENDS solutions, is both highly addictive and toxic. In addition to nicotine, other toxicants, carcinogens, and metal particles have been detected in solutions and aerosols of ENDS. Nonusers are involuntarily exposed to the emissions of these devices with secondhand and thirdhand aerosol. The concentrated and often flavored nicotine in ENDS solutions poses a poisoning risk for young children. Reports of acute nicotine toxicity from US poison control centers have been increasing, with at least 1 child death reported from unintentional exposure to a nicotine-containing ENDS solution. With flavors, design, and marketing that appeal to youth, ENDS threaten to renormalize and glamorize nicotine and tobacco product use. There is a critical need for ENDS regulation, legislative action, and counter promotion to protect youth. ENDS have the potential to addict a new generation of youth to nicotine and reverse more than 50 years of progress in tobacco control. Copyright © 2015 by the American Academy of Pediatrics.

  19. Cellular imaging electron tomography and related techniques

    CERN Document Server

    2018-01-01

    This book highlights important techniques for cellular imaging and covers the basics and applications of electron tomography and related techniques. In addition, it considers practical aspects and broadens the technological focus by incorporating techniques that are only now becoming accessible (e.g. block face imaging).  The first part of the book describes the electron microscopy 3D technique available to scientists around the world, allowing them to characterize organelles, cells and tissues. The major emphasis is on new technologies like scanning transmission electron microscopy (STEM) tomography, though the book also reviews some of the more proven technologies like electron tomography. In turn, the second part is dedicated to the reconstruction of data sets, signal improvement and interpretation.

  20. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  1. Imaging detectors and electronics - A view of the future

    International Nuclear Information System (INIS)

    Spieler, Helmuth

    2004-01-01

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays

  2. The application of similar image retrieval in electronic commerce.

    Science.gov (United States)

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  3. The Application of Similar Image Retrieval in Electronic Commerce

    Directory of Open Access Journals (Sweden)

    YuPing Hu

    2014-01-01

    Full Text Available Traditional online shopping platform (OSP, which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers’ experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  4. The Application of Similar Image Retrieval in Electronic Commerce

    Science.gov (United States)

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system. PMID:24883411

  5. Electron Holography Image Simulation of Nanoparticles

    NARCIS (Netherlands)

    Keimpema, K.; Raedt, H. De; Hosson, J.Th.M. De

    We discuss a real-space and a Fourier-space technique to compute numerically, the phase images observed by electron holography of nanoscale particles. An assessment of the applicability and accuracy of these techniques is made by calculating numerical results for simple geometries for which

  6. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    Science.gov (United States)

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  8. Reliability of electronic systems

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2001-01-01

    Reliability techniques have been developed subsequently as a need of the diverse engineering disciplines, nevertheless they are not few those that think they have been work a lot on reliability before the same word was used in the current context. Military, space and nuclear industries were the first ones that have been involved in this topic, however not only in these environments it is that it has been carried out this small great revolution in benefit of the increase of the reliability figures of the products of those industries, but rather it has extended to the whole industry. The fact of the massive production, characteristic of the current industries, drove four decades ago, to the fall of the reliability of its products, on one hand, because the massively itself and, for other, to the recently discovered and even not stabilized industrial techniques. Industry should be changed according to those two new requirements, creating products of medium complexity and assuring an enough reliability appropriated to production costs and controls. Reliability began to be integral part of the manufactured product. Facing this philosophy, the book describes reliability techniques applied to electronics systems and provides a coherent and rigorous framework for these diverse activities providing a unifying scientific basis for the entire subject. It consists of eight chapters plus a lot of statistical tables and an extensive annotated bibliography. Chapters embrace the following topics: 1- Introduction to Reliability; 2- Basic Mathematical Concepts; 3- Catastrophic Failure Models; 4-Parametric Failure Models; 5- Systems Reliability; 6- Reliability in Design and Project; 7- Reliability Tests; 8- Software Reliability. This book is in Spanish language and has a potentially diverse audience as a text book from academic to industrial courses. (author)

  9. Imaging systems and materials characterization

    International Nuclear Information System (INIS)

    Murr, L.E.

    2009-01-01

    This paper provides a broad background for the historical development and modern applications of light optical metallography, scanning and transmission electron microscopy, field-ion microscopy and several forms of scanning probe microscopes. Numerous case examples illustrating especially synergistic applications of these imaging systems are provided to demonstrate materials characterization especially in the context of structure-property-performance issues which define materials science and engineering

  10. Raster images vectorization system

    OpenAIRE

    Genytė, Jurgita

    2006-01-01

    The problem of raster images vectorization was analyzed and researched in this work. Existing vectorization systems are quite expensive, the results are inaccurate, and the manual vectorization of a large number of drafts is impossible. That‘s why our goal was to design and develop a new raster images vectorization system using our suggested automatic vectorization algorithm and the way to record results in a new universal vectorial file format. The work consists of these main parts: analysis...

  11. Novel electron gas systems

    International Nuclear Information System (INIS)

    Senatore, G.; Rapisarda, F.; Conti, S.

    1998-01-01

    We review recent progress on the physics of electrons in the bilayered electron gas, relevant to coupled quantum wells in GaAs/AIGaAs heterostructures. First we focus on the phase diagram of a symmetric bilayer at T = B = 0, obtained by diffusion Monte Carlo (DMC) simulations. It is found that inter-layer correlations stabilize crystalline structures at intermediate inter-layer separation, while favoring a liquid phase at smaller distance. Also, the available DMC evidence is in contrast with the recently (Hartree-Fock) predicted total charge transfer (TCT), whereby all the electron spontaneously jump in one layer. In fact, one can show that such a TCT state is never stable in the ideal bilayer with no tunneling. We finally comment on ongoing DMC investigations on the electron-hole bilayer, where excitonic condensation is expected to take place. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  12. Stepped scanner radiographic imaging system

    International Nuclear Information System (INIS)

    Lapidus, S.N.

    1981-01-01

    The imaging system includes a radiographic camera, a bed for supporting a subject in view of the camera, and a display system. The camera provides X and Y coordinate signals of each radiographic event. The position of the bed relative to the camera is altered sequentially by drive means, between each of a sequence of images provided by the camera. The sequentially occurring images are presented on the display system, each image being positioned on the display in correspondence with the location of the bed relative to the camera. The coordinates of each image point presented on the display is equal to the sum of the respective X and Y coordinate signals from the camera with X and Y coordinate signals provided by a timer which controls the drive means and defines the location of the bed relative to the camera. The camera is electronically decoupled from the display by a gate during movement of the bed relative to the camera from one location to the next location to prevent any smearing effect within the composite image presented on the display. (author)

  13. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  14. Electronic imaging applied to neutron radiography

    International Nuclear Information System (INIS)

    Garrett, D.A.; Bracher, D.A.

    1976-01-01

    A commercially - available image intensifier was used with a scan conversion memory and a mobile 252 Cf based neutron radiography system to obtain neutron radiographs on a television monitor in 0.5 minutes to 10.0 minutes

  15. Electronic Subsystems For Laser Communication System

    Science.gov (United States)

    Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael

    1992-01-01

    Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.

  16. Mechanical characterization of the Varian Exact-arm and R-arm support systems for eight aS500 electronic portal imaging devices

    International Nuclear Information System (INIS)

    Grattan, Mark W. D.; McGarry, Conor K.

    2010-01-01

    Purpose: The aim of this study is to compare the positioning accuracy at different gantry angles of two electronic portal imaging devices (EPIDs) support arm systems by using EPID difference images as a measure for displacement. This work presents a comparison of the mechanical performance of eight Varian aS500 (Varian Medical Systems, Palo Alto, CA) EPIDs, mounted using either the Varian Exact-arm or R-arm. Methods: The mechanical performance of the two arm systems was compared by investigating the variation in sensitivity with gantry angle, both before and after the EPID position was adjusted after gantry rotation. Positional errors were investigated by subtracting images from a reference image taken at gantry 0 deg., and the amplitude of the peaks and troughs at the field edges for longitudinal (radial) and lateral (transverse) profiles across the resulting image was related to the distance of displacement. Calibration curves based on a pixel-by-pixel shift were generated for each EPID and the Varian hand pendant accuracy was compared to the calibration data. Results: The response of the EPIDs was found to change with gantry rotation, with the largest difference at 180 deg. The Exact-arm was found to correct well for any displacement, while the R-arm tended to overcorrect following repositioning using the hand pendant. The calibration curves were consistent within each set of matched linacs, and the hand pendant accuracy was similar for both arm systems, although generally in different directions. With respect to gantry rotation effects, the mechanical performance of the Exact-arm systems was found to be much better than that of the R-arm systems. At gantry positions 90 deg., 270 deg., and 180 deg. the average misalignment in the longitudinal direction was +4.2±0.2, +1.8±1.6, and +7.4±0.5 mm for the R-arms, and +2.9±0.2, +2.1±0.8, and +4.9±0.7 mm for the Exact-arms. In the lateral direction the average positional errors were +2.1±0.4, -4.7±0.4, and -2.5

  17. [Electronic poison information management system].

    Science.gov (United States)

    Kabata, Piotr; Waldman, Wojciech; Kaletha, Krystian; Sein Anand, Jacek

    2013-01-01

    We describe deployment of electronic toxicological information database in poison control center of Pomeranian Center of Toxicology. System was based on Google Apps technology, by Google Inc., using electronic, web-based forms and data tables. During first 6 months from system deployment, we used it to archive 1471 poisoning cases, prepare monthly poisoning reports and facilitate statistical analysis of data. Electronic database usage made Poison Center work much easier.

  18. Imaging Electron Dynamics with Ultrashort Light Pulses: A Theory Perspective

    Directory of Open Access Journals (Sweden)

    Daria Popova-Gorelova

    2018-02-01

    Full Text Available A wide range of ultrafast phenomena in various atomic, molecular and condense matter systems is governed by electron dynamics. Therefore, the ability to image electronic motion in real space and real time would provide a deeper understanding of such processes and guide developments of tools to control them. Ultrashort light pulses, which can provide unprecedented time resolution approaching subfemtosecond time scale, are perspective to achieve real-time imaging of electron dynamics. This task is challenging not only from an experimental view, but also from a theory perspective, since standard theories describing light-matter interaction in a stationary regime can provide erroneous results in an ultrafast case as demonstrated by several theoretical studies. We review the theoretical framework based on quantum electrodynamics, which has been shown to be necessary for an accurate description of time-resolved imaging of electron dynamics with ultrashort light pulses. We compare the results of theoretical studies of time-resolved nonresonant and resonant X-ray scattering, and time- and angle-resolved photoelectron spectroscopy and show that the corresponding time-resolved signals encode analogous information about electron dynamics. Thereby, the information about an electronic system provided by these time-resolved techniques is different from the information provided by their time-independent analogues.

  19. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa; Sevilla, Galo Torres; Cordero, Marlon Diaz; Kutbee, Arwa T.

    2017-01-01

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications

  20. Electronic Resource Management Systems

    Directory of Open Access Journals (Sweden)

    Mark Ellingsen

    2004-10-01

    Full Text Available Computer applications which deal with electronic resource management (ERM are quite a recent development. They have grown out of the need to manage the burgeoning number of electronic resources particularly electronic journals. Typically, in the early years of e-journal acquisition, library staff provided an easy means of accessing these journals by providing an alphabetical list on a web page. Some went as far as categorising the e-journals by subject and then grouping the journals either on a single web page or by using multiple pages. It didn't take long before it was recognised that it would be more efficient to dynamically generate the pages from a database rather than to continually edit the pages manually. Of course, once the descriptive metadata for an electronic journal was held within a database the next logical step was to provide administrative forms whereby that metadata could be manipulated. This in turn led to demands for incorporating more information and more functionality into the developing application.

  1. Scorpion image segmentation system

    Science.gov (United States)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  2. A Document Imaging Technique for Implementing Electronic Loan Approval Process

    Directory of Open Access Journals (Sweden)

    J. Manikandan

    2015-04-01

    Full Text Available The image processing is one of the leading technologies of computer applications. Image processing is a type of signal processing, the input for image processor is an image or video frame and the output will be an image or subset of image [1]. Computer graphics and computer vision process uses an image processing techniques. Image processing systems are used in various environments like medical fields, computer-aided design (CAD, research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP [2]. Loan approval process has been tedious process, the E-LAP system attempts to reduce the complexity of loan approval process. Customers have to login to fill the loan application form online with all details and submit the form. The loan department then processes the submitted form and then sends an acknowledgement mail via the E-LAP to the requested customer with the details about list of documents required for the loan approval process [3]. The approaching customer can upload the scanned copies of all required documents. All this interaction between customer and bank take place using an E-LAP system.

  3. Incoherent imaging using dynamically scattered coherent electrons

    International Nuclear Information System (INIS)

    Nellist, P.D.; Pennycook, S.J.

    1999-01-01

    We use a Bloch wave approach to show that, even for coherent dynamical scattering from a stationary lattice with no absorption, annular dark-field imaging in a scanning transmission electron microscope gives a direct incoherent structure image of the atomic-column positions of a zone-axis-aligned crystal. Although many Bloch waves may be excited by the probe, the detector provides a filtering effect so that the 1s-type bound states are found to dominate the image contrast for typical experimental conditions. We also find that the column intensity is related to the transverse kinetic energy of the 1s states, which gives atomic number, Z, contrast. The additional effects of phonon scattering are discussed, in particular the reasons why phonon scattering is not a prerequisite for transverse incoherence. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. The ALS gun electronics system

    International Nuclear Information System (INIS)

    Lo, C.C.

    1993-01-01

    The ALS Gun Electronics system has been designed to accommodate the gun with a custom made socket and a high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters

  5. The ALS Gun Electronics system

    International Nuclear Information System (INIS)

    Lo, C.C.

    1993-05-01

    The ALS Gun Electronics system has been designed to accommodate gun with a custom made socket and high speed electronics circuit which is capable of producing single and multiple electron bunches with time jitters measured at better than 50 PS. The system generates the gated RF signal at ground level before sending it up to the 120 KV-biased gun deck via a fiber optic cable. The current pulse width as a function of grid bias, using an Eimac 8847A planar triode simulating an electron gun, was measured to show the relationship between the two parameters

  6. Quality assurance for electronic portal imaging devices

    International Nuclear Information System (INIS)

    Shalev, S.; Rajapakshe, R.; Gluhchev, G.; Luchka, K.

    1997-01-01

    Electronic portal imaging devices (EPIDS) are assuming an ever-increasing role in the verification of radiation treatment accuracy. They are used both in a passive capacity, for the determination of field displacement distributions (''setup errors''), and also in an active role whereby the patient setup is corrected on the basis of electronic portal images. In spite of their potential impact on the precision of patient treatment, there are few quality assurance procedures available, and most of the EPIDS in clinical use are subject, at best, to only perfunctory quality assurance. The goals of this work are (a) to develop an objective and reproducible test for EPID image quality on the factory floor and during installation of the EPID on site; (b) to provide the user with a simple and accurate tool for acceptance, commissioning, and routine quality control; and (c) to initiate regional, national and international collaboration in the implementation of standardized, objective, and automated quality assurance procedures. To this end we have developed an automated test in which a simple test object is imaged daily, and the spatial and contrast resolution of the EPID are automatically evaluated in terms of ''acceptable'', ''warning'' and ''stop'' criteria. Our experience over two years shows the test to be highly sensitive, reproducible, and inexpensive in time and effort. Inter-institutional trials are under way in Canada, US and Europe which indicate large variations in EPID image quality from one EPID to another, and from one center to another. We expect the new standardized quality assurance procedure to lead to improved, and consistent image quality, increased operator acceptance of the technology, and agreement on uniform standards by equipment suppliers and health care agencies. (author)

  7. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn

    2014-01-01

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  8. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  9. The role of electronic media in shaping the country's image

    Directory of Open Access Journals (Sweden)

    Azel Zhanibek

    2011-07-01

    Full Text Available This article discusses the influence of electronic media in the country to external image of Kazakhstan. Special attention is paid to the experience of various countries in promoting the country's image by electronic media.

  10. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  11. Electronic photography: a new age of medical imaging?

    Science.gov (United States)

    Tübergen, D; Manegold, B C

    1993-07-01

    This is a critical overview of present conceptions of the introduction of electronic photography in medicine. It is not a complete list of products, rather it is a description of how the requirements of the physician have influenced medical illustration in the past and will continue to do so in the future. Video systems are widely used in medicine. Besides the learning and teaching of effects of television, minimal invasive surgery (MIS) has become reality through endoscopy, rapidly accepted worldwide. Documentation of endoscopic procedures and their effects is becoming routine. Therefore, the conversion of complex optical information into binary units is a logical development to save space for storage. The reproduction, storage and transfer of detailed images is already realized by digital camera systems, photo CD, scanners and picture archiving and communicating system (PACS). Now electronic imaging in medicine has to be regarded as a matter of routine. The real impact of accelerated editing will be shown in the future.

  12. ELECTRONIC FILE MONITORING SYSTEM

    African Journals Online (AJOL)

    GBUBEMI

    2014-11-06

    Nov 6, 2014 ... The result of the developed system shows a simple and effective graphic user interface ... business transactions, decision-making records and storage of .... Start. Input username and password. Access denied was login.

  13. Vessel Electronic Reporting System (VERS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The VERS system is composed of a database and other related applications which facilitate the reporting of electronically collected research data via Fisheries...

  14. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  15. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  16. Radiographic imaging system

    International Nuclear Information System (INIS)

    Davis, L. Jr.; Barrett, H.H.

    1979-01-01

    This invention describes a system for imaging a subject, such as a human being, in which there has been injected a contrast agent which absorbs radiation of a predetermined frequency. The system utilizes a source of high energy radiation such as X or gamma radiation. The source is a composite of first and second radiating materials each of which is arranged in a predetermined pattern or code, each pattern having both luminous and dark regions. In one embodiment, the luminous regions of one pattern are in registration with the dark regions of the other pattern, these regions being spaced apart in an alternative embodiment. The characteristic frequencies of radiation emitted by the first and second materials are respectively lower and higher than the predetermined absorption frequency. A detector of radiation is positioned relative to the subject and the source such that radiation propagating through the subject is incident upon the detector. Since the absorption edge of the contrast agent lies between the two characteristic frequencies of radiation, radiation from the second material is preferentially absorbed by the contrast agent with the result that the contrast agent appears to be illuminated by a coded source while the remainder of the subject may be regarded as illuminated essentially by a uniform uncoded source. Imaging is accomplished by a decoding of a detected coded image. Substances within the subject having other absorption frequencies are not imaged since the radiations of both materials are essentially equally absorbed by the subject so that the source appears uncoded

  17. Component reliability for electronic systems

    CERN Document Server

    Bajenescu, Titu-Marius I

    2010-01-01

    The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.

  18. Fundamentals of electronic systems design

    CERN Document Server

    Lienig, Jens

    2017-01-01

    This textbook covers the design of electronic systems from the ground up, from drawing and CAD essentials to recycling requirements. Chapter by chapter, it deals with the challenges any modern system designer faces: the design process and its fundamentals, such as technical drawings and CAD, electronic system levels, assembly and packaging issues and appliance protection classes, reliability analysis, thermal management and cooling, electromagnetic compatibility (EMC), all the way to recycling requirements and environmental-friendly design principles. Enables readers to face various challenges of designing electronic systems, including coverage from various engineering disciplines; Written to be accessible to readers of varying backgrounds; Uses illustrations extensively to reinforce fundamental concepts; Organized to follow essential design process, although chapters are self-contained and can be read in any order.

  19. Analytical purpose electron backscattering system

    International Nuclear Information System (INIS)

    Desdin, L.; Padron, I.; Laria, J.

    1996-01-01

    In this work an analytical purposes electron backscattering system improved at the Center of Applied Studies for Nuclear Development is described. This system can be applied for fast, exact and nondestructive testing of binary and AL/Cu, AL/Ni in alloys and for other applications

  20. The PAUCam readout electronics system

    Science.gov (United States)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  1. Characterization of an electronic system for Image acquisition portal to open field dosimetry; Caracterizacao de um sistema eletronico de aquisicao de imagem portal para dosimetria em radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Barbi, Gustavo L.; Oliveira, Harley F.; Bertucci, Edenyse C.; Amaral, Leonardo L.; Borges, Leandro F., E-mail: gustavobarbi@usp.br [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Centro de Ciencias das Imagens e Fisica Medica

    2012-08-15

    The objective was to characterize and enable an electronic portal imaging device (EPID) to use like a portal dosimetry device - PDI, in non-transit mode, without interposition of scattering between the beam and EPID for measurement to open fields. The images as well as the DICOM header data are extracted from software ImageJ and the information are used in the basic algorithm for converting pixel to dose. The linearity and reproducibility of response were analyzed, and the maximum deviation found of 2,3% to 800 monitor units (MU) for linearity and -0,9% for reproducibility of signal measured daily. A 512x512 matrix with a resolution of 0,8mm was established to restore the shape of beam from the image. The field size dependence was evaluated, by obtaining the ratio of total scattering of ionization chamber and EPID. Finally, a calibration factor of 28470.88{+-}170.73 pixel/cGy was established for the central area of the image. Comparative analyzes between the PDI, radiochromic film and array of ionization chambers (MatriXX) showed good agreement for fields greater then 5 x 5 cm{sup 2} to reestablishment of form field and dose, however, for fields between 3x3 cm{sup 2} and 5x5 cm{sup 2}, the agreement to shape of beam was best established by film. (author)

  2. Secondary electron images obtained with a standard PEEM set up

    International Nuclear Information System (INIS)

    Benka, O.; Zeppenfeld, P.

    2004-01-01

    Secondary electron images excited by 3 to 4.3 keV electrons are obtained with a standard photoelectron electron emission microscope (PEEM) set up equipped with an imaging energy filter (IEF). The electron gun was mounted on a standard PEEM entrance flange at an angle of 25 o with respect to the sample surface. A low extraction voltage of 500 V was used to minimize the deflection of the electron beam by the PEEM extraction electrode. The secondary electron images are compared to photoelectron images excited by a standard 4.9 eV UV lamp. In the case of a Cu pattern on a Si substrate it is found that the lateral resolution without the IEF is about the same for electron and photon excitation but that the relative electron emission intensities are very different. The use of the IEF-reduces the lateral resolution. Images for secondary electron energies between eV 1 and eV 2 were obtained by setting the IEF to -V 1 and -V 2 ∼ -(V 1 + 5V) potentials and taking the difference of both images. Images up to 100 eV electron energies were recorded. The lateral resolution is in the range of μm. The material contrast obtained in these difference images are discussed in terms of a secondary electron and photoelectron emission model and secondary electron energy spectra measured with a LEED-Auger spectrometer. (author)

  3. Quality cost system in electronics

    International Nuclear Information System (INIS)

    Denzer, H.O.

    1978-01-01

    A description is presented of a formal cost of quality system used in an electronic manufacturing facility. The system elements and reports are illustrated. Examples of the use of a quality cost system to measure quality performance and to improve product quality are included. A comparison to industry averages for quality costs is made. The paper attempts to show that the collection and use of quality costs are an aid to management and can be accompanied by improved product quality

  4. An imaging informatics-based ePR (electronic patient record) system for providing decision support in evaluating dose optimization in stroke rehabilitation

    Science.gov (United States)

    Liu, Brent J.; Winstein, Carolee; Wang, Ximing; Konersman, Matt; Martinez, Clarisa; Schweighofer, Nicolas

    2012-02-01

    Stroke is one of the major causes of death and disability in America. After stroke, about 65% of survivors still suffer from severe paresis, while rehabilitation treatment strategy after stroke plays an essential role in recovery. Currently, there is a clinical trial (NIH award #HD065438) to determine the optimal dose of rehabilitation for persistent recovery of arm and hand paresis. For DOSE (Dose Optimization Stroke Evaluation), laboratory-based measurements, such as the Wolf Motor Function test, behavioral questionnaires (e.g. Motor Activity Log-MAL), and MR, DTI, and Transcranial Magnetic Stimulation (TMS) imaging studies are planned. Current data collection processes are tedious and reside in various standalone systems including hardcopy forms. In order to improve the efficiency of this clinical trial and facilitate decision support, a web-based imaging informatics system has been implemented together with utilizing mobile devices (eg, iPAD, tablet PC's, laptops) for collecting input data and integrating all multi-media data into a single system. The system aims to provide clinical imaging informatics management and a platform to develop tools to predict the treatment effect based on the imaging studies and the treatment dosage with mathematical models. Since there is a large amount of information to be recorded within the DOSE project, the system provides clinical data entry through mobile device applications thus allowing users to collect data at the point of patient interaction without typing into a desktop computer, which is inconvenient. Imaging analysis tools will also be developed for structural MRI, DTI, and TMS imaging studies that will be integrated within the system and correlated with the clinical and behavioral data. This system provides a research platform for future development of mathematical models to evaluate the differences between prediction and reality and thus improve and refine the models rapidly and efficiently.

  5. Heart Imaging System

    Science.gov (United States)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  6. Imaging Cytoskeleton Components by Electron Microscopy.

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  7. FTU bolometer electronic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Neri, Carlo; Florean, Marco; Ciccone, Giovanni [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: ► Design and realization of a new bolometer electronic system. ► Many improvements over the actual commercial system. ► Architecture based on digital electronic hardware with minimal analog front end. ► Auto off-set correction, real time visualization features and small system size. ► Test results for the electronic system. -- Abstract: The FTU (Frascati Tokamak Upgrade) requires a bolometer diagnostic in order to measure the total plasma radiation. The current diagnostic architecture is based on a full analog multichannel AC bolometer system, which uses a carrier frequency amplifier with a synchronous demodulation. Taking into account the technological upgrades in the field of electronics, it was decided to realize an upgrade for the bolometric electronic system by using a hybrid analog/digital implementation. The new system developed at the ENEA Frascati laboratories has many improvements, and mainly a massive system volume reduction, a good measurement linearity and a simplified use. The new hardware system consists of two subsystems: the Bolometer Digital Control and the Bolometer Analog System. The Bolometer Digital Control can control 16 bolometer bridges through the Bolometer Analog System. The Bolometer Digital Control, based on the FPGA architecture, is connected via Ethernet with a PC; therefore, it can receive commands settings from the PC and send the stream of bolometric measurements in real time to the PC. In order to solve the cross-talk between the bridges and the cables, each of the four bridges in the bolometer head receives a different synthesized excitation frequency. Since the system is fully controlled by a PC GUI (Graphic User Interface), it is very user friendly. Moreover, some useful features have been developed, such as: auto off-set correction, bridge amplitude regulation, software gain setting, real time visualization, frequency excitation selection and noise spectrum analyzer embedded function. In this paper, the

  8. System and method for compressive scanning electron microscopy

    Science.gov (United States)

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  9. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  10. Future directions in electronic image handling.

    Science.gov (United States)

    Lemke, H U

    1993-08-01

    After a relatively slow start compared with the United States and Japan, several projects are now being established in Europe that are aimed at the development of prototype systems for medical image processing and management. Frequently, this includes aspects of multimedia communication, as well as legal, ethical, and economic issues. Consideration is also often given to systems security, reliability, and data protection. All these projects are based on the application of modern computer and communication technologies. The following interesting conclusions can be drawn from these preliminary activities: 1. PACS and IMAC systems should not be regarded as products or devices, but as a means to improve the infrastructure in a given medical care environment. Sometimes this activity is also referred to as knowledge business. Individual components of these systems, for example image acquisition devices, networks, storage facilities, and medical workstations, should be provided with standard interfaces allowing a modular build-up and an easy adaptation to the specific conditions of clinical departments. 2. Digital luminescence radiography will further establish itself as a method for image acquisition and increasingly will replace analog radiologic methods. Consequently, digital processing, archiving, and communication will be a necessity for optimal patient care. 3. New network technologies and magnetic-optical storage media offer the possibility of an improved cost-effectiveness for communication and storage. They should therefore be considered an important factor in future economic considerations regarding health care services. 4. The practice of modern medicine is based on team-work; good communication among the parties concerned is a critical factor.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Tomographic imaging system

    International Nuclear Information System (INIS)

    Hayakawa, T.; Horiba, I.; Kohno, H.; Nakaya, C.; Sekihara, K.; Shiono, H.; Tomura, T.; Yamamoto, S.; Yanaka, S.

    1980-01-01

    A tomographic imaging system comprising: irradiating means for irradating a cross-section of an object under consideration with radiation rays from plural directions; detector means for detecting the radiation rays transmitted through the cross-section of said object to produce an output signal; first memory means for storing the output signal of said detector means; and an image jreconstructing section for performing a convolution integral operation on the contents of said first memory means by means of a first weighting function to reconstruct a three-dimensional image of the cross-section of said object, said image reconstructing section including (I) second memory means for storing a second weighting function, said second weighting function being provided with a predetermined positive and negative (N-1)th order when the output signal of said detector means produced by the irradiation of the cross-section of said object from one of said plural directions is sampled by N points, the value of the (N-1)th order of said second weighting function being an integration of said first weighting function from the (N-1)th order to positive infinity and the value of -(N-1)th order of said second weighting function being an integration of said first weighting function from the -(N-1)th order to negative infinity, (II) control means for successively reading out the contents of said first and second memory means, and (III) operational means for performing multiplying and summing operations on the read-out contents of said first and second memory means, said operational means producing the product of the values fo the (N-1)th and -(N-1)th orders of said second weighting function and a component of the output signal of said detector means relating to the radiation rays free from the absorption thereof by said object

  12. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.

    Science.gov (United States)

    Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga

    2013-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.

  13. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  14. Electronic document management systems: an overview.

    Science.gov (United States)

    Kohn, Deborah

    2002-08-01

    For over a decade, most health care information technology (IT) professionals erroneously learned that document imaging, which is one of the many component technologies of an electronic document management system (EDMS), is the only technology of an EDMS. In addition, many health care IT professionals erroneously believed that EDMSs have either a limited role or no place in IT environments. As a result, most health care IT professionals do not understand documents and unstructured data and their value as structured data partners in most aspects of transaction and information processing systems.

  15. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  16. Generative electronic background music system

    International Nuclear Information System (INIS)

    Mazurowski, Lukasz

    2015-01-01

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions

  17. Field reliability of electronic systems

    International Nuclear Information System (INIS)

    Elm, T.

    1984-02-01

    This report investigates, through several examples from the field, the reliability of electronic units in a broader sense. That is, it treats not just random parts failure, but also inadequate reliability design and (externally and internally) induced failures. The report is not meant to be merely an indication of the state of the art for the reliability prediction methods we know, but also as a contribution to the investigation of man-machine interplay in the operation and repair of electronic equipment. The report firmly links electronics reliability to safety and risk analyses approaches with a broader, system oriented view of reliability prediction and with postfailure stress analysis. It is intended to reveal, in a qualitative manner, the existence of symptom and cause patterns. It provides a background for further investigations to identify the detailed mechanisms of the faults and the remedical actions and precautions for achieving cost effective reliability. (author)

  18. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-11-23

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications. While there exist bulk material reduction methods to flex them, such thinned CMOS electronics are fragile and vulnerable to handling for high throughput manufacturing. Here, we show a fusion of a CMOS technology compatible fabrication process for flexible CMOS electronics, with inkjet and conductive cellulose based interconnects, followed by additive manufacturing (i.e. 3D printing based packaging) and finally roll-to-roll printing of packaged decal electronics (thin film transistors based circuit components and sensors) focusing on printed high performance flexible electronic systems. This work provides the most pragmatic route for packaged flexible electronic systems for wide ranging applications.

  19. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  20. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    International Nuclear Information System (INIS)

    Bradbury, S.M.; Rose, H.J.

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope

  1. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  2. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  3. Characteristics of different frequency ranges in scanning electron microscope images

    International Nuclear Information System (INIS)

    Sim, K. S.; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-01-01

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement

  4. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  5. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  6. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented

  7. High sensitivity optical molecular imaging system

    Science.gov (United States)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  8. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  9. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  10. A distortion correction method for image intensifier and electronic portal images used in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidis, G T; Geramani, K N; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Uzunoglu, N [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)

    1999-12-31

    At the most of radiation departments a simulator and an `on line` verification system of the treated volume, in form of an electronic portal imaging device (EPID), are available. Networking and digital handling (saving, archiving etc.) of the image information is a necessity in the image processing procedures in order to evaluate verification and simulation recordings at the computer screen. Distortion is on the other hand prerequisite for quantitative comparison of both image modalities. Another limitation factor, in order to make quantitative assertions, is the fact that the irradiation fields in radiotherapy are usually bigger than the field of view of an image intensifier. Several segments of the irradiation field must therefore be acquired. Using pattern recognition techniques these segments can be composed into a single image. In this paper a distortion correction method will be presented. The method is based upon a well defined Grid which is embedded during the registration process on the image. The video signal from the image intensifier is acquired and processed. The grid is then recognised using image processing techniques. Ideally if all grid points are recognised, various methods can be applied in order to correct the distortion. But in practice this is not the case. Overlapping structures (bones etc.) have as a consequence that not all of the grid points can be recognised. Mathematical models from the Graph theory are applied in order to reconstruct the whole grid. The deviation of the grid points positions from the rated value is then used to calculate correction coefficients. This method (well defined grid, grid recognition, correction factors) can also be applied in verification images from the EPID or in other image modalities, and therefore a quantitative comparison in radiation treatment is possible. The distortion correction method and the application on simulator images will be presented. (authors)

  11. Programmable trigger for electron pairs in ring image Cherenkov counters

    International Nuclear Information System (INIS)

    Glab, J.; Baur, R.; Manner, R.

    1990-01-01

    This paper describes a programmable trigger processor for the recognition of Cherenkov rings in a RICH counter. It identifies open electron pairs and suppresses close conversion and Dalitz pairs within 20 μs. More generally, the system can be used for correlating pixel images with pattern masks in order to locate all relatively well defined patterns of a certain type. The trigger processor consists of a systolic processor array of 160 x 176, i.e., 28,160 identical processing elements (PEs) that filter out open electron pairs, and a pseudo adder array that determines whether there was at least one such pair. The processor array is assembled of 20 x 22 VLSI chips containing 8 x 8 PEs each. The semi-custom chip has been developed in 2 μ CMOS standard cell technology

  12. An automatic chip structure optical inspection system for electronic components

    Science.gov (United States)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  13. Interlaboratory comparison of dicentric chromosome assay using electronically transmitted images

    International Nuclear Information System (INIS)

    Garcia, O.; Di Giorgio, M.; Vallerga, M. B.; Radl, A.; Taja, M. R.; Seoane, A.; De Luca, J.; Stuck Oliveira, M.; Valdivia, P.; Lamadrid, A. I.; Gonzalez, J. E.; Romero, I.; Mandina, T.; Pantelias, G.; Terzoudi, G.; Guerrero-Carbajal, C.; Arceo Maldonado, C.; Espinoza, M.; Oliveros, N.; Martinez-Lopez, W.; Di Tomaso, M. V.; Mendez-Acuna, L.; Puig, R.; Roy, L.; Barquinero, J. F.

    2013-01-01

    The bottleneck in data acquisition during biological dosimetry based on a dicentric assay is the need to score dicentrics in a large number of lymphocytes. One way to increase the capacity of a given laboratory is to use the ability of skilled operators from other laboratories. This can be done using image analysis systems and distributing images all around the world. Two exercises were conducted to test the efficiency of such an approach involving 10 laboratories. During the first exercise (E1), the participant laboratories analysed the same images derived from cells exposed to 0.5 and 3 Gy; 100 images were sent to all participants for both doses. Whatever the dose, only about half of the cells were complete with well-spread metaphases suitable for analysis. A coefficient of variation (CV) on the standard deviation of 15 % was obtained for both doses. The trueness was better for 3 Gy (0.6 %) than for 0.5 Gy (37.8 %). The number of estimated doses classified as satisfactory according to the z-score was 3 at 0.5 Gy and 8 at 3 Gy for 10 dose estimations. In the second exercise, an emergency situation was tested, each laboratory was required to score a different set of 50 images in 2 d extracted from 500 downloaded images derived from cells exposed to 0.5 Gy. Then the remaining 450 images had to be scored within a week. Using 50 different images, the CV on the estimated doses (79.2 %) was not as good as in E1, probably associated to a lower number of cells analysed (50 vs. 100) or from the fact that laboratories analysed a different set of images. The trueness for the dose was better after scoring 500 cells (22.5 %) than after 50 cells (26.8 %). For the 10 dose estimations, the number of doses classified as satisfactory according to the z-score was 9, for both 50 and 500 cells. Overall, the results obtained support the feasibility of networking using electronically transmitted images. However, before its implementation some issues should be elucidated, such as the

  14. Electronic structure of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha-Dasgupta, Tanusri

    2016-04-15

    Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.

  15. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  16. Central nervous system imaging

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Since its introduction in 1973, computed tomography (CT) of the brain has had a revolutionary impact on neuroradiologic diagnosis. It has largely replaced radionuclide brain imaging as the initial, noninvasive neurologic screening examination. Although conventional radionuclide brain imaging still contributes useful and unique diagnostic information in a few clinical situations, it appears that new technology and applications must be found if nuclear imaging is to play a prominent future role in neurologic diagnosis as it did in the past. One of the main advantages of CT over radionuclide brain imaging at present is CT's ability to demonstrate the size, shape, and position of the cerebral ventricles and subarachnoid spaces. Another important strength of CT is the ability to differentiate ischemic cerebral infarction from intracerebral hemorrhage. The overall sensitivity of CT in detecting intracranial neoplasms is also greater than that of radionuclide brain imaging, and CT is very useful in demonstrating the effects of head trauma. Magnetic resonance imaging appears superior to CT in the evaluation of neurologic disorders. A renewed interest in radionuclide brain imaging has developed because of recent advances in emission computed tomographic imaging. When tracer kinetic models are used, cerebral blood flow (CBF), blood volume, metabolic rate, and glucose and amino acid transport can be measured. Other applications involve investigation of receptor bindings, evaluation of the blood-brain barrier, brain blood-volume measurement, and cisternography

  17. Imaging electron flow from collimating contacts in graphene

    Science.gov (United States)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  18. Spatially modulated imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1975-01-01

    Noncoherent radiation, such as x-rays, is spatially coded, directed through an object and spatially detected to form a spatially coded pattern, from which an image of the object may be reconstructed. The x-ray source may be formed by x-ray fluorescence and substration of the holographic images formed by two sources having energy levels predominantly above and below the maximum absorption range of an agent in the object may be used to enhance contrast in the reproduced image. (Patent Office Record)

  19. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  20. High energy electron multibeam diffraction and imaging

    International Nuclear Information System (INIS)

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  1. Electronic noise in CT detectors: Impact on image noise and artifacts.

    Science.gov (United States)

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  2. A theory of electron baths: One-electron system dynamics

    International Nuclear Information System (INIS)

    McDowell, H.K.

    1992-01-01

    The second-quantized, many-electron, atomic, and molecular Hamiltonian is partitioned both by the identity or labeling of the spin orbitals and by the dynamics of the spin orbitals into a system coupled to a bath. The electron bath is treated by a molecular time scale generalized Langevin equation approach designed to include one-electron dynamics in the system dynamics. The bath is formulated as an equivalent chain of spin orbitals through the introduction of equivalent-chain annihilation and creation operators. Both the dynamics and the quantum grand canonical statistical properties of the electron bath are examined. Two versions for the statistical properties of the bath are pursued. Using a weak bath assumption, a bath statistical average is defined which allows one to achieve a reduced dynamics description of the electron system which is coupled to the electron bath. In a strong bath assumption effective Hamiltonians are obtained which reproduce the dynamics of the bath and which lead to the same results as found in the weak bath assumption. The effective (but exact) Hamiltonian is found to be a one-electron Hamiltonian. A reduced dynamics equation of motion for the system population matrix is derived and found to agree with a previous version. This equation of motion is useful for studying electron transfer in the system when coupled to an electron bath

  3. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  4. Front-end electronics for multichannel semiconductor detector systems

    CERN Document Server

    Grybos, P

    2010-01-01

    Front-end electronics for multichannel semiconductor detektor systems Volume 08, EuCARD Editorial Series on Accelerator Science and Technology The monograph is devoted to many different aspects related to front-end electronics for semiconductor detector systems, namely: − designing and testing silicon position sensitive detectors for HEP experiments and X-ray imaging applications, − designing and testing of multichannel readout electronics for semiconductor detectors used in X-ray imaging applications, especially for noise minimization, fast signal processing, crosstalk reduction and good matching performance, − optimization of semiconductor detection systems in respect to the effects of radiation damage. The monograph is the result mainly of the author's experience in the above-mentioned areas and it is an attempt of a comprehensive presentation of issues related to the position sensitive detection system working in a single photon counting mode and intended to X-ray imaging applications. The structure...

  5. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  6. Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning electron microscope

    Science.gov (United States)

    Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo

    2018-01-01

    In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.

  7. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  8. Imaging of osteo-odonto-keratoprosthesis by electron beam tomography

    OpenAIRE

    Fong, K C S; Ferrett, C G; Tandon, R; Paul, B; Herold, J; Liu, C S C

    2005-01-01

    Aim: To describe the experience of using electron beam tomography (EBT) in imaging of osteo-odonto-keratoprosthesis (OOKP) to identify early bone and dentine loss which may threaten the viability of the eye.

  9. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  10. Electronic viewbox: An integrated image diagnostic working station

    International Nuclear Information System (INIS)

    Minato, K.; Komori, M.; Hirakawa, A.; Kuwahara, M.; Yonekura, Y.; Torizuka, K.; Brill, A.B.

    1985-01-01

    Recent development in medical imaging technology have been introducing variety of digital images in clinical medicine, and handling these multi-modality digital images in one place is needed for efficient clinical diagnosis. The authors proposed a concept of an integrated image diagnostic working station, in which a physician can look into all clinical images, can select any key image for diagnosis and can read it in detail. A prototype working station named ''Electronic Viewbox'' has been developed for this purpose. It has three distinctive features. 1. The stored images of a patient are shown at a glance. In order to achieve this function, each original image is attached to a small image, where the data are compressed to reserve the essence of the image, and many of these small images are displayed on a CRT screen. This small image is used as an index for picking up a key image in the archived clinical images. 2. The working station is compact enough to be set on a desk. Only two CRTs and a pointing device are assembled. These two CRT screens are used mutually for retrieving key images and for displaying the original images. 3. All operations can be done interactively using cursor and icons

  11. Imaging electron wave functions inside open quantum rings.

    Science.gov (United States)

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  12. NOTE: A method for controlling image acquisition in electronic portal imaging devices

    Science.gov (United States)

    Glendinning, A. G.; Hunt, S. G.; Bonnett, D. E.

    2001-02-01

    Certain types of camera-based electronic portal imaging devices (EPIDs) which initiate image acquisition based on sensing a change in video level have been observed to trigger unreliably at the beginning of dynamic multileaf collimation sequences. A simple, novel means of controlling image acquisition with an Elekta linear accelerator (Elekta Oncology Systems, Crawley, UK) is proposed which is based on illumination of a photodetector (ORP-12, Silonex Inc., Plattsburgh, NY, USA) by the electron gun of the accelerator. By incorporating a simple trigger circuit it is possible to derive a beam on/off status signal which changes at least 100 ms before any dose is measured by the accelerator. The status signal does not return to the beam-off state until all dose has been delivered and is suitable for accelerator pulse repetition frequencies of 50-400 Hz. The status signal is thus a reliable means of indicating the initiation and termination of radiation exposure, and thus controlling image acquisition of such EPIDs for this application.

  13. Imaging with PET system

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    PET deals with biochemistry and metabolic changes that occur at molecular level. Hence, PET differs fundamentally from other imaging modalities. CT imaging is based on tissue density, whereas MRI conveys anatomic information based on proton density and proton relaxation dynamics. CT and MRI are useful in clinical diagnosis only when disease process has caused significant anatomic alterations. However, in most disease conditions chemical changes precede anatomic changes, that can be detected by PET technology. Thus, PET can provide earliest and unique information about ongoing disease process long before anatomic or structural changes take place. There is no other modality available at present that can replace PET technology. Although PET produces cross-sectional images like that obtained in MRI or CT, they represent circulation, function and metabolism, and not anatomic structure. PET is extremely sensitive measuring quantitatively concentration of tracers in nano to pico-molar range. Thus, PET enables merger of biochemistry and biology in medicine giving birth to molecular medicine that focuses on identifying the molecular errors of disease leading to developing molecular corrections including gene therapy. Molecular imaging with PET has been playing a role in examining the biological nature of a disease condition and its characterization to guide selection and evaluation of treatment. (author)

  14. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  15. A simple methodology for obtaining X-ray color images in scanning electron microscopy

    International Nuclear Information System (INIS)

    Veiga, M.M. da; Pietroluongo, L.R.V.

    1985-01-01

    A simple methodology for obtaining at least 3 elements X-ray images in only one photography is described. The fluorescent X-ray image is obtained from scanning electron microscopy with energy dispersion analysis system. The change of detector analytic channels, color cellophane foils and color films are used sequentially. (M.C.K.) [pt

  16. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  17. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  18. Analysis and modeling of electronic portal imaging exit dose measurements

    International Nuclear Information System (INIS)

    Pistorius, S.; Yeboah, C.

    1995-01-01

    In spite of the technical advances in treatment planning and delivery in recent years, it is still unclear whether the recommended accuracy in dose delivery is being achieved. Electronic portal imaging devices, now in routine use in many centres, have the potential for quantitative dosimetry. As part of a project which aims to develop an expert-system based On-line Dosimetric Verification (ODV) system we have investigated and modelled the dose deposited in the detector of a video based portal imaging system. Monte Carlo techniques were used to simulate gamma and x-ray beams in homogeneous slab phantom geometries. Exit doses and energy spectra were scored as a function of (i) slab thickness, (ii) field size and (iii) the air gap between the exit surface and the detector. The results confirm that in order to accurately calculate the dose in the high atomic number Gd 2 O 2 S detector for a range of air gaps, field sizes and slab thicknesses both the magnitude of the primary and scattered components and their effective energy need to be considered. An analytic, convolution based model which attempts to do this is proposed. The results of the simulation and the ability of the model to represent these data will be presented and discussed. This model is used to show that, after training, a back-propagation feed-forward cascade correlation neural network has the ability to identify and recognise the cause of, significant dosimetric errors

  19. Digital simulation of power electronic systems

    International Nuclear Information System (INIS)

    Mehring, P.; Jentsch, W.; John, G.; Kraemer, D.

    1981-01-01

    The following paper contains the final report on the NETSIM-Project. The purpose of this project is to develop a special digital simulation system, which could serve as a base for routine application of simulation in planning and development of power electronic systems. The project is realized in two steps. First a basic network analysis system is established. With this system the basic models and methods in treating power electronic networks could be probed. The resulting system is then integrated into a general digital simulation system for continous systems (CSSL-System). This integrated simulation system allows for convenient modeling and simulation of power electronic systems. (orig.) [de

  20. A literature review of electronic portal imaging for radiotherapy dosimetry

    NARCIS (Netherlands)

    van Elmpt, Wouter; McDermott, Leah; Nijsten, Sebastiaan; Wendling, Markus; Lambin, Philippe; Mijnheer, Ben

    2008-01-01

    Electronic portal imaging devices (EPIDs) have been the preferred tools for verification of patient positioning for radiotherapy in recent decades. Since EPID images contain dose information, many groups have investigated their use for radiotherapy dose measurement. With the introduction of the

  1. Evaluation of usefulness of portal image using Electronic Portal Imaging Device (EPID) in the patients who received pelvic radiation therapy

    International Nuclear Information System (INIS)

    Kim, Woo Chul; Kim, Heon Jong; Park, Seong Young; Cho, Young Kap; Loh, John J. K.; Park, Won; Suh, Chang Ok; Kim, Gwi Eon

    1998-01-01

    To evaluate the usefulness of electronic portal imaging device through objective compare of the images acquired using an EPID and a conventional port film. From Apr. to Oct. 1997, a total of 150 sets of images from 20 patients who received radiation therapy in the pelvis area were evaluated in the Inha University Hospital and Severance Hospital. A dual image recording technique was devised to obtain both electronic portal images and port film images simultaneously with one treatment course. We did not perform double exposure. Five to ten images were acquired from each patient. All images were acquired from posteroanterior (PA) view except images from two patients. A dose rate of 100-300 MU/min and a 10-MV X-ray beam were used and 2-10 MUs were required to produce a verification image during treatment. Kodak diagnostic film with metal/film imaging cassette which was located on the top of the EPID detector was used for the port film. The source to detector distance was 140 cm. Eight anatomical landmarks (pelvic brim, sacrum, acetabulum, iliopectineal line, symphysis, ischium, obturator foramen, sacroiliac joint) were assessed. Four radiation oncologist joined to evaluate each image. The individual landmarks in the port film or in the EPID were rated-very clear (1), clear (2), visible (3), notclear (4), not visible (5). Using an video camera based EPID system, there was no difference of image quality between no enhanced EPID images and port film images. However, when we provided some change with window level for the portal image, the visibility of the sacrum and obturator foramen was improved in the portal images than in the port film images. All anatomical landmarks were more visible in the portal images than in the port film when we applied the CLAHE mode enhancement. The images acquired using an matrix ion chamber type EPID were also improved image quality after window level adjustment. The quality of image acquired using an electronic portal imaging device was

  2. Electron accelerating unit for streak image tubes

    Indian Academy of Sciences (India)

    The simulation results show that the accelerating unit improves both the spatial and temporal .... This electron emission process is simulated as a statistical sample in terms of Monte ... solver using above method in MATLAB language. First the .... semiconductors and insulators: Models and measurements. J. Phys. Rev.

  3. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...

  4. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  5. [Electronic Device for Retinal and Iris Imaging].

    Science.gov (United States)

    Drahanský, M; Kolář, R; Mňuk, T

    This paper describes design and construction of a new device for automatic capturing of eye retina and iris. This device has two possible ways of utilization - either for biometric purposes (persons recognition on the base of their eye characteristics) or for medical purposes as supporting diagnostic device. eye retina, eye iris, device, acquisition, image.

  6. The electronic system of Beijing spectrometer

    International Nuclear Information System (INIS)

    Xi Deming

    1990-01-01

    Beijing Spectrometer (BES) in an experimental facility of high energy physics on Beijing Electron Positron Collider (BEPC). A brief description including the global design, the read out circuits, the performances and the recent status of its electronic system is presented

  7. Stereoscopic medical imaging collaboration system

    Science.gov (United States)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  8. Recent developments of MR imaging system and future trends

    International Nuclear Information System (INIS)

    Fujieda, Kunimi

    1996-01-01

    Because MR imaging technique has no limitation of slice direction, uses none of mechanically moving components and can employ electronic scanning method for data acquisition, the most advanced electronics and CPU techniques have been applied to develop MR imaging systems. Along with pursuance of better equipment performance as clinical diagnostic equipment, cost reduction, improvement of operability and safety, easy siting, comfortable examination and economical operation cost by remarkable reduction of running cost have become important factors in development of MR imaging system. From this viewpoint, MR imaging systems incorporating an open gantry with a relatively low field strength and of vertical field system have been developed recently and they are being accepted as clinically useful equipment. The vertical field, open gantry system has an optimum structure capable of performing interventional imaging, thus clinical application of the system have been actively attempted. Thanks to recent development of various MRI techniques, image quality quite acceptable for routine clinical diagnosis can now be obtained by using the systems with permanent magnet and resistive magnet. Thus, it is considered that evaluation of not only equipment performance but also the total performances of the MR imaging system as described above will become important. The MR imaging technique has a possibility to substitute itself for other conventional imaging modalities because the technique can visualize physiological and metabolic functions in addition to morphological imaging. It is expected that application of MR imaging modality will be further expanded by continuous investigation of applicable clinical fields and development of imaging technologies. (J.P.N.)

  9. Micro-Electronic Nose System

    Science.gov (United States)

    Zee, Frank C.

    2011-12-01

    The ability to "smell" various gas vapors and complex odors is important for many applications such as environmental monitoring for detecting toxic gases as well as quality control in the processing of food, cosmetics, and other chemical products for commercial industries. Mimicking the architecture of the biological nose, a miniature electronic nose system was designed and developed consisting of an array of sensor devices, signal-processing circuits, and software pattern-recognition algorithms. The array of sensors used polymer/carbon-black composite thin-films, which would swell or expand reversibly and reproducibly and cause a resistance change upon exposure to a wide variety of gases. Two types of sensor devices were fabricated using silicon micromachining techniques to form "wells" that confined the polymer/carbon-black to a small and specific area. The first type of sensor device formed the "well" by etching into the silicon substrate using bulk micromachining. The second type built a high-aspect-ratio "well" on the surface of a silicon wafer using SU-8 photoresist. Two sizes of "wells" were fabricated: 500 x 600 mum² and 250 x 250 mum². Custom signal-processing circuits were implemented on a printed circuit board and as an application-specific integrated-circuit (ASIC) chip. The circuits were not only able to measure and amplify the small resistance changes, which corresponded to small ppm (parts-per-million) changes in gas concentrations, but were also adaptable to accommodate the various characteristics of the different thin-films. Since the thin-films were not specific to any one particular gas vapor, an array of sensors each containing a different thin-film was used to produce a distributed response pattern when exposed to a gas vapor. Pattern recognition, including a clustering algorithm and two artificial neural network algorithms, was used to classify the response pattern and identify the gas vapor or odor. Two gas experiments were performed, one

  10. Miniaturized Airborne Imaging Central Server System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  11. Miniaturized Airborne Imaging Central Server System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  12. Imaging the motion of electrons across semiconductor heterojunctions

    Science.gov (United States)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  13. Current profile reconstruction using electron temperature imaging diagnostics

    International Nuclear Information System (INIS)

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.F.; Finkenthal, M.; Pacella, D.; Kaita, R.; Stratton, B.; Sabbagh, S.

    2004-01-01

    Flux surface shape information can be used to constrain the current profile for reconstruction of the plasma equilibrium. One method of inferring flux surface shape relies on plasma x-ray emission; however, deviations from the flux surfaces due to impurity and density asymmetries complicate the interpretation. Electron isotherm surfaces should correspond well to the plasma flux surfaces, and equilibrium constraint modeling using this isotherm information constrains the current profile. The KFIT code is used to assess the profile uncertainty and to optimize the number, location and SNR required for the Te detectors. As Te imaging detectors we consider tangentially viewing, vertically spaced, linear gas electron multiplier arrays operated in pulse height analysis (PHA) mode and multifoil soft x-ray arrays. Isoflux coordinate sets provided by T e measurements offer a strong constraint on the equilibrium reconstruction in both a stacked horizontal array configuration and a crossed horizontal and vertical beam system, with q 0 determined to within ±4%. The required SNR can be provided with either PHA or multicolor diagnostic techniques, though the multicolor system requires ∼x4 better statistics for comparable final errors

  14. Scanning tunnelling microscope imaging of nanoscale electron density gradients on the surface of GaAs

    International Nuclear Information System (INIS)

    Hamilton, B; Jacobs, J; Missous, M

    2003-01-01

    This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined

  15. Vertical one-dimensional electron cyclotron emission imaging diagnostic for HT-7 tokamak

    International Nuclear Information System (INIS)

    Wang Jun; Xu Xiaoyuan; Wen Yizhi; Yu Changxuan; Wan Baonian; Luhmann, N.C.; Wang, Jian; Xia, Z.G.

    2005-01-01

    A vertical resolved 16-channel electron cyclotron emission imaging (ECEI) diagnostic has been developed and installed on the HT7 Tokamak for measuring plasma electron cyclotron emission with a temporal resolution of 0.5 us. The system is working on a fixed frequency 97.5 GHz in the first stage. The sample volumes of the system are aligned vertically with a vertical channel spacing of 11 mm, and can be shifted across the plasma cross-section by varying the toroidal magnetic field. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array and an optical imaging system. The focus location may be shifted horizontally via translation of one of the optical imaging elements. The detail of the system design and laboratory testing of the ECE Imaging optics are presented, together with HT7 plasma data. (author)

  16. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  17. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  18. A PET imaging system dedicated to mammography

    CERN Document Server

    Varela, J

    2007-01-01

    The imaging system Clear-PEM for positron emission mammography, under development within the framework of the Crystal Clear Collaboration at CERN, is presented. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes (APD) and readout by a fast low-noise electronic system. A dedicated digital trigger and data acquisition system is used for on-line selection of coincidence events with high efficiency, large bandwidth and negligible dead-time. The detector module performance was characterized in detail.

  19. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  20. Image timing and detector performance of a matrix ion-chamber electronic portal imaging device

    International Nuclear Information System (INIS)

    Greer, P.

    1996-01-01

    The Oncology Centre of Auckland Hospital recently purchased a Varian PortalVision TM electronic portal imaging device (EPID). Image acquisition times, input-output characteristics and contrast-detail curves of this matrix liquid ion-chamber EPID have been measured to examine the variation in imaging performance with acquisition mode. The variation in detector performance with acquisition mode has been examined. The HV cycle time can be increased to improve image quality. Consideration should be given to the acquisition mode and HV cycle time used when imaging to ensure adequate imaging performance with reasonable imaging time. (author)

  1. Image processing of small protein-crystals in electron microscopy

    International Nuclear Information System (INIS)

    Feinberg, D.A.

    1978-11-01

    This electron microscope study was undertaken to determine whether high resolution reconstructed images could be obtained from statistically noisy micrographs by the super-position of several small areas of images of well-ordered crystals of biological macromolecules. Methods of rotational and translational alignment which use Fourier space data were demonstrated to be superior to methods which use Real space image data. After alignment, the addition of the diffraction patterns of four small areas did not produce higher resolution because of unexpected image distortion effects. A method was developed to determine the location of the distortion origin and the coefficients of spiral distortion and pincushion/barrel distortion in order to make future correction of distortions in electron microscope images of large area crystals

  2. Algorithms for contrast enhancement of electronic portal images

    International Nuclear Information System (INIS)

    Díez, S.; Sánchez, S.

    2015-01-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results. - Highlights: • Two Algorithms are implemented to improve the contrast of Electronic Portal Images. • The multi-leaf and conformed beam are automatically segmented into Portal Images. • Hidden anatomical and bony structures in portal images are revealed. • The task related to the patient setup verification is facilitated by the contrast enhancement then achieved.

  3. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  4. Survey of standards for electronic image displays

    Science.gov (United States)

    Rowe, William A.

    1996-02-01

    Electronic visual displays have been evolving from the 1960's basis of cathode ray tube (CRT) technology. Now, many other technologies are also available, including both flat panels and projection displays. Standards for these displays are being developed at both the national level and the international levels. Standards activity within the United States is in its infancy and is fragmented according to the inclination of each of the standards developing organizations. The latest round of flat panel display technology was primarily developed in Japan. Initially standards arose from component vendor-to-OEM customer relationships. As a result, Japanese standards for components are the best developed. The Electronics Industries Association of Japan (EIAJ) is providing their standards to the International Electrotechnical Commission (IEC) for adoption. On the international level, professional societies such as the human factors society (hfs) and the International Organization for Standardization (ISO) have completed major standards, hfs developed the first ergonomic standard hfs-100 and the ISO has developed some sections of a broader ergonomic standard ISO 9241. This paper addresses the organization of standards activity. Active organizations and their areas of focus are identified. The major standards that have been completed or are in development are described. Finally, suggestions for improving the this standards activity are proposed.

  5. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  6. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  7. Survey of electronic payment methods and systems

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Helme, A.; Verbraeck, A.

    1996-01-01

    In this paper an overview of electronic payment methods and systems is given. This survey is done as part of the Moby Dick project. Electronic payment systems can be grouped into three broad classes: traditional money transactions, digital currency and creditdebit payments. Such payment systems have

  8. Professional Acceptance Of Electronic Images In Radiologic Practice

    Science.gov (United States)

    Gitlin, Joseph N.; Curtis, David J.; Kerlin, Barbara D.; Olmsted, William W.

    1983-05-01

    During the past four years, a large number of radiographic images have been interpreted in both film and video modes in an effort to determine the utility of digital/analogue systems in general practice. With the cooperation of the Department of Defense, the MITRE Corporation, and several university-based radiology departments, the Public Health Service has participated in laboratory experiments and a teleradiology field trial to meet this objective. During the field trial, 30 radiologists participated in the interpretation of more than 4,000 diagnostic x-ray examinations that were performed at distant clinics, digitized, and transmitted to a medical center for interpretation on video monitors. As part of the evaluation, all of the participating radiologists and the attending physicians at the clinics were queried regarding the teleradiology system, particularly with respect to the diagnostic quality of the electronic images. The original films for each of the 4,000 examinations were read independently, and the findings and impressions from each mode were compared to identify discrepancies. In addition, a sample of 530 cases was reviewed and interpreted by a consensus panel to measure the accuracy of findings and impressions of both film and video readings. The sample has been retained in an automated archive for future study at the National Center of Devices and Radiological Health facilities in Rockville, Maryland. The studies include a comparison of diagnostic findings and impressions from 1024 x 1024 matrices with those obtained from the 512 x 512 format used in the field trial. The archive also provides a database for determining the effect of data compression techniques on diagnostic interpretations and establishing the utility of image processing algorithms. The paper will include an analysis of the final results of the field trial and preliminary findings from the ongoing studies using the archive of cases at the National Center for Devices and Radiological

  9. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  10. ATR/OTR-SY Tank Camera Purge System and in Tank Color Video Imaging System

    International Nuclear Information System (INIS)

    Werry, S.M.

    1995-01-01

    This procedure will document the satisfactory operation of the 101-SY tank Camera Purge System (CPS) and 101-SY in tank Color Camera Video Imaging System (CCVIS). Included in the CPRS is the nitrogen purging system safety interlock which shuts down all the color video imaging system electronics within the 101-SY tank vapor space during loss of nitrogen purge pressure

  11. Markov random field based automatic image alignment for electron tomography.

    Science.gov (United States)

    Amat, Fernando; Moussavi, Farshid; Comolli, Luis R; Elidan, Gal; Downing, Kenneth H; Horowitz, Mark

    2008-03-01

    We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.

  12. Electronic Official Personnel Folder System

    Data.gov (United States)

    US Agency for International Development — The eOPF is a digital recreation of paper personnel folder that stores electronic personnel data spanning an individual's Federal career. eOPF allows employees to...

  13. An XCT image database system

    International Nuclear Information System (INIS)

    Komori, Masaru; Minato, Kotaro; Koide, Harutoshi; Hirakawa, Akina; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Yamasaki, Tetsuo; Kuwahara, Michiyoshi.

    1984-01-01

    In this paper, an expansion of X-ray CT (XCT) examination history database to XCT image database is discussed. The XCT examination history database has been constructed and used for daily examination and investigation in our hospital. This database consists of alpha-numeric information (locations, diagnosis and so on) of more than 15,000 cases, and for some of them, we add tree structured image data which has a flexibility for various types of image data. This database system is written by MUMPS database manipulation language. (author)

  14. High intensity radiation imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1976-01-01

    A nuclear imaging system is described for mapping a spatially distributed source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound in which the nuclear energy is spatially coded by a zone plate positioned between the source and a spatial detector, and a half tone screen is positioned between the source and the zone plate to increase the definition of the image

  15. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  16. Simulations of the ILC Electron Gun and Electron Bunching System

    International Nuclear Information System (INIS)

    Haakonsen, C.B.; McGill U.

    2006-01-01

    The International Linear Collider (ILC) is a proposed electron-positron collider, expected to provide insight into important questions in particle physics. A part of the global R and D effort for the ILC is the design of its electron gun and electron bunching system. The present design of the bunching system has two sub-harmonic bunchers, one operating at 108 MHz and one at 433MHz, and two 5-cell 1.3 GHz (L-band) bunchers. This bunching system has previously been simulated using the Phase and Radial Motion in Electron Linear Accelerators (PARMELA) software, and those simulations indicated that the design provides sufficient bunching and acceleration. Due to the complicated dynamics governing the electrons in the bunching system we decided to verify and expand the PARMELA results using the more recent and independent simulation software General Particle Tracer (GPT). GPT tracks the motion and interactions of a set of macro particles, each of which represent a number of electrons, and provides a variety of analysis capabilities. To provide initial conditions for the macro particles, a method was developed for deriving the initial conditions from detailed simulations of particle trajectories in the electron gun. These simulations were performed using the Egun software. For realistic simulation of the L-band bunching cavities, their electric and magnetic fields were calculated using the Superfish software and imported into GPT. The GPT simulations arrived at similar results to the PARMELA simulations for sub-harmonic bunching. However, using GPT it was impossible to achieve an efficient bunching performance of the first L-band bunching cavity. To correct this, the first L-band buncher cell was decoupled from the remaining 4 cells and driven as an independent cavity. Using this modification we attained results similar to the PARMELA simulations. Although the modified bunching system design performed as required, the modifications are technically challenging to implement

  17. Importance of daily electronic portal imaging in radiotherapy

    International Nuclear Information System (INIS)

    Bell, L. J.; Shakespeare, T. P.; Willis, A.

    2008-01-01

    Full text: An audit was conducted on 20 randomly selected patients who had daily electronic portal imaging during the course of their radiotherapy treatment. The daily images were reviewed to determine whether they were within tolerance according to departmental protocol. If they were not, the actions that were taken were documented. Four treatment areas (spine, chest, breast and prostate) were compared among five patients belonging to each of these categories. The patients were also categorized according to their treatment intent (radical or palliative). A total of 889 electronic portal images of 475 fractions were audited and 33.5% of all fractions were outside tolerance. It was found that 95% of patients needed an action during their treatment and 80% of the patients needed a treatment centre move during the course of their treatment. We found that errors occurred throughout the treatment and it was not possible to predict patients who could have daily imaging omitted. Concordance between radiation therapists and radiation oncologists for identification of error was also investigated. Despite the use of familiar electronic portal imaging protocols, image reviewers (radiation therapists and radiation oncologists) disagreed in interpretation 10% of the time. Our results support the hypothesis that daily imaging may be a useful tool for patients undergoing radiotherapy and that imaging may be ideally carried out before each fraction. Image assessments would be ideally carried out by a team approach, with all images reviewed by both radiation therapists and radiation oncologists. This approach has significant resource implications and may require review of current Medicare and Health Program Grant reimbursements.

  18. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1984-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions and image interpretation in transmission electron mic­ roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek­ tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec­ trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresne...

  19. Automatic solar image motion measurements. [electronic disk flux monitoring

    Science.gov (United States)

    Colgate, S. A.; Moore, E. P.

    1975-01-01

    The solar seeing image motion has been monitored electronically and absolutely with a 25 cm telescope at three sites along the ridge at the southern end of the Magdalena Mountains west of Socorro, New Mexico. The uncorrelated component of the variations of the optical flux from two points at opposite limbs of the solar disk was continually monitored in 3 frequencies centered at 0.3, 3 and 30 Hz. The frequency band of maximum signal centered at 3 Hz showed the average absolute value of image motion to be somewhat less than 2sec. The observer estimates of combined blurring and image motion were well correlated with electronically measured image motion, but the observer estimates gave a factor 2 larger value.

  20. Characterization of encapsulated quantum dots via electron channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deitz, Julia I.; McComb, David W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Carnevale, Santino D. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); De Graef, Marc [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Grassman, Tyler J., E-mail: grassman.5@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-08-08

    A method for characterization of encapsulated epitaxial quantum dots (QD) in plan-view geometry using electron channeling contrast imaging (ECCI) is presented. The efficacy of the method, which requires minimal sample preparation, is demonstrated with proof-of-concept data from encapsulated (sub-surface) epitaxial InAs QDs within a GaAs matrix. Imaging of the QDs under multiple diffraction conditions is presented, establishing that ECCI can provide effectively identical visualization capabilities as conventional two-beam transmission electron microscopy. This method facilitates rapid, non-destructive characterization of sub-surface QDs giving immediate access to valuable nanostructural information.

  1. Orientation-dependent imaging of electronically excited quantum dots

    Science.gov (United States)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  2. Imaging the motion of electrons in 2D semiconductor heterostructures

    Science.gov (United States)

    Dani, Keshav

    Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.

  3. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  4. Implementation of an Electronic Medical Records System

    Science.gov (United States)

    2008-05-07

    Hartman, MAJ Roddex Barlow , CPT Christopher Besser and Capt Michael Emerson...thank you I am truly honored to call each of you my friends. Electronic... abnormal findings are addressed. 18 Electronic Medical Record Implementation Barriers of the Electronic Medical Records System There are several...examination findings • Psychological and social assessment findings N. The system provides a flexible mechanism for retrieval of encounter

  5. A high sensitivity imaging detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Henderson, R.

    1995-01-01

    A camera for electron microscopy based on a low readout noise cooled-CCD is described in this paper. The primary purpose of this camera is to record electron diffraction from ordered arrays of proteins but also has potential applications in imaging, electron tomography and for the automatic alignment of the electron microscope. Electrons (energy similar 120 kV) which are scattered by the specimen to form the image, which is normally recorded on film, are converted to visible photons in a polycrystalline phosphor and the resulting image is stored on the CCD (EEV 05-20, 1152 by 814, 22.5 μm square pixels). The main advantages of using CCDs include a large dynamic range, very good linearity and the possibility of immediate access to the data which is in a digitised form capable of further processing on-line during the experiment. We have built specially designed CCD ''drive'' electronics in a VME crate, interfaced to a Sun Sparcstation, for controlling the CCD operations. Data reduction programs have been installed, previously used off-line, to speed up data processing, and provide analysed data within a few minutes after the exposure. (orig.)

  6. High perveance electron gun for the electron cooling system

    International Nuclear Information System (INIS)

    Korotaev, Yu.; Meshkov, I.; Petrov, A.; Sidorin, A.; Smirnov, A.; Syresin, E.; Titkova, I.

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 μA/V 3/2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual)

  7. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  8. An electronic pan/tilt/magnify and rotate camera system

    International Nuclear Information System (INIS)

    Zimmermann, S.; Martin, H.L.

    1992-01-01

    A new camera system has been developed for omnidirectional image-viewing applications that provides pan, tilt, magnify, and rotational orientation within a hemispherical field of view (FOV) without any moving parts. The imaging device is based on the fact that the image from a fish-eye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high-speed electronic circuitry. More specifically, an incoming fish-eye image from any image acquisition source is captured in the memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment. As a result, this device can accomplish the functions of pan, tilt, rotation, and magnification throughout a hemispherical FOV without the need for any mechanical devices. Multiple images, each with different image magnifications and pan-tilt-rotate parameters, can be obtained from a single camera

  9. Intellectual system for images restoration

    Science.gov (United States)

    Mardare, Igor

    2005-02-01

    Intelligence systems on basis of artificial neural networks and associative memory allow to solve effectively problems of recognition and restoration of images. However, within analytical technologies there are no dominating approaches of deciding of intellectual problems. Choice of the best technology depends on nature of problem, features of objects, volume of represented information about the object, number of classes of objects, etc. It is required to determine opportunities, preconditions and field of application of neural networks and associative memory for decision of problem of restoration of images and to use their supplementary benefits for further development of intelligence systems.

  10. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  11. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system

  12. Reliability of power electronic converter systems

    CERN Document Server

    Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael

    2016-01-01

    This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.

  13. Stepped scanner radiographic imaging system using edge blending

    International Nuclear Information System (INIS)

    Lapidus, S.N.

    1984-01-01

    An imaging system is described which includes a radiographic camera, a bed for supporting a subject in view of the camera, and a display system. The camera provides X and Y coordinate signals for each radiographic event. The position of the bed relative to the camera is altered stepwise and a sequence of images is provided by the camera each image being positioned on a display system in correspondence with the location of the bed relative to the camera. The camera is electronically decoupled from the display by a gate during movement of the bed relative to the camera from one location to the next location to prevent any smearing effect within the composite image presented on the display. The edges of contiguous images making up the composite image are blended by electronically adjusting their boundary regions so as to provide overlapping or interlocking. (author)

  14. The Groningen image processing system

    International Nuclear Information System (INIS)

    Allen, R.J.; Ekers, R.D.; Terlouw, J.P.

    1985-01-01

    This paper describes an interactive, integrated software and hardware computer system for the reduction and analysis of astronomical images. A short historical introduction is presented before some examples of the astonomical data currently handled by the system are shown. A description is given of the present hardware and software structure. The system is illustrated by describing its appearance to the user, to the applications programmer, and to the system manager. Some quantitative information on the size and cost of the system is given, and its good and bad features are discussed

  15. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.

    Science.gov (United States)

    Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y

    2011-06-01

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  17. Imaging of tissue sections with very slow electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Nebesářová, J.; Vancová, M. [Biology Centre AS CR, v.v.i., Branišovská 31, 37005 České Budějovice (Czech Republic); Paták, A.; Müllerová, I. [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic)

    2015-01-15

    The examination of thin sections of tissues with electron microscopes is an indispensable tool. Being composed of light elements, samples of living matter illuminated with electrons at the usual high energies of tens or even hundreds of kiloelectronvolts provide very low image contrasts in transmission or scanning transmission electron microscopes. Therefore, heavy metal salts are added to the specimen during preparation procedures (post-fixation with osmium tetroxide or staining). However, these procedures can modify or obscure the ultrastructural details of cells. Here we show that the energy of electrons used for the scanned transmission imaging of tissue sections can be reduced to mere hundreds or even tens of electronvolts and can produce extremely high contrast even for samples free of any metal salts. We found that when biasing a sufficiently thin tissue section sample to a high negative potential in a scanning transmission electron microscope, thereby reducing the energy of the electrons landing on the sample, and collecting the transmitted electrons with a grounded detector, we obtain a high contrast revealing structure details not enhanced by heavy atoms. Moreover, bombardment with slow electrons sensitively depolymerises the resin in which the tissue is embedded, thereby enhancing the transmitted signal with no observable loss of structure details. The use of low-energy electrons requires ultrathin sections of a thickness of less than 10 nm, but their preparation is now possible. Ultralow energy STEM provides a tool enabling the observation of very thin biological samples without any staining. This method should also be advantageous for examination of 2D crystals, thin films of polymers, polymer blends, etc. - Highlights: • Sections of a thickness below 10 nm were imaged in STEM at hundreds and tens of eV. • Image contrast grows steeply with decreasing electron energy in the STEM. • Very slow electrons provide high contrast for samples free of

  18. Superior MR images with electronically tuned and decoupled surface coils

    International Nuclear Information System (INIS)

    Ingwersen, H.; Freisen, L.; Friedrich, A.; Kess, H.; Krause, N.; Meissner, R.; Popp, W.

    1987-01-01

    In order to gain free positioning of surface coils in linearly polarized transmitting coils, it is absolutely necessary to electronically decouple both coils. For circularly polarized transmitting coils, decoupling is necessary in any case. In addition to the decoupling circuit automatic electronic tuning of the surface coils is used to gain the bast ratio of signal to noise. This combination of electronically decoupling and tuning of the surface coils yields intrinsic patient safety concerning local power deposition as well as free positioning and easy handling at the same time. Block diagrams, circuit schemes, and MR images obtained with several different surface coils are shown

  19. Musashi dynamic image processing system

    International Nuclear Information System (INIS)

    Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira

    1992-01-01

    In order to produce transmitted neutron dynamic images using neutron radiography, a real time system called Musashi dynamic image processing system (MDIPS) was developed to collect, process, display and record image data. The block diagram of the MDIPS is shown. The system consists of a highly sensitive, high resolution TV camera driven by a custom-made scanner, a TV camera deflection controller for optimal scanning, which adjusts to the luminous intensity and the moving speed of an object, a real-time corrector to perform the real time correction of dark current, shading distortion and field intensity fluctuation, a real time filter for increasing the image signal to noise ratio, a video recording unit and a pseudocolor monitor to realize recording in commercially available products and monitoring by means of the CRTs in standard TV scanning, respectively. The TV camera and the TV camera deflection controller utilized for producing still images can be applied to this case. The block diagram of the real-time corrector is shown. Its performance is explained. Linear filters and ranked order filters were developed. (K.I.)

  20. Secondary-electron-bremsstrahlung imaging for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Mitsutaka; Nagao, Yuto [Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki, Gunma (Japan); Ando, Koki; Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-Ku, Nagoya, Aichi (Japan); Kataoka, Jun [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo (Japan); Kawachi, Naoki [Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki, Gunma (Japan)

    2016-10-11

    A feasibility study on an imaging technique of a therapeutic proton-beam trajectory using a gamma camera by measuring secondary electron bremsstrahlung (SEB) was performed by means of Monte Carlo simulations and a beam-irradiation experiment. From the simulation and experimental results, it was found that a significant amount of SEB yield exists between the beam-injection surface and the range position along the beam axis and the beam trajectory is clearly imaged by the SEB yield. It is concluded that the SEB imaging is a promising technique for monitoring of therapeutic proton-beam trajectories.

  1. The radiation isocenter verification using an electronic system of image portal; Verificacion del isocentro de radiacion utilizando un sistema electronico de imagen portal

    Energy Technology Data Exchange (ETDEWEB)

    Merino Gestoso, J. A.; Portas Ferradas, B. C.; Rosa Menendez, P.; Chapel Gomez, M. L.; Fernandez Cerezo, S.; Vazquez Varela, P.

    2013-07-01

    In this paper we present a procedure optimized for verification the isocenter of radiation with respect to the rotation of the gantry and the turn isocentric table of two accelerators SIEMENS, ONCOR and ARTISTE with a mannequin developed in our service and analyzing the images acquired with the EPID from each of the teams. (Author)

  2. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  3. 3D Backscatter Imaging System

    Science.gov (United States)

    Whitaker, Ross (Inventor); Turner, D. Clark (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  4. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Comparison of Electron Imaging Modes for Dimensional Measurements in the Scanning Electron Microscope.

    Science.gov (United States)

    Postek, Michael T; Vladár, András E; Villarrubia, John S; Muto, Atsushi

    2016-08-01

    Dimensional measurements from secondary electron (SE) images were compared with those from backscattered electron (BSE) and low-loss electron (LLE) images. With the commonly used 50% threshold criterion, the lines consistently appeared larger in the SE images. As the images were acquired simultaneously by an instrument with the capability to operate detectors for both signals at the same time, the differences cannot be explained by the assumption that contamination or drift between images affected the SE, BSE, or LLE images differently. Simulations with JMONSEL, an electron microscope simulator, indicate that the nanometer-scale differences observed on this sample can be explained by the different convolution effects of a beam with finite size on signals with different symmetry (the SE signal's characteristic peak versus the BSE or LLE signal's characteristic step). This effect is too small to explain the >100 nm discrepancies that were observed in earlier work on different samples. Additional modeling indicates that those discrepancies can be explained by the much larger sidewall angles of the earlier samples, coupled with the different response of SE versus BSE/LLE profiles to such wall angles.

  6. Electronic roentgenographic images in presurgical X-ray diagnostics

    International Nuclear Information System (INIS)

    Haendle, J.; Hohmann, D.; Maass, W.; Siemens A.G., Erlangen

    1981-01-01

    An essential part of radiation exposure in surgery is due to devices and results from the required radiation time interval for continuous X-ray play-back up to the point at which all diagnostically relevant information can be retrieved from the screening image. With single-image storage and short exposure times as well as instant image play-back, this superfluous i.e. redundant radiation can be avoided. The electronic X-ray image is realized by means of a laboratory prototype and evaluated in hospitals. There is a report on clinical results and new technical developments. Remarkable are: the high radiation reduction that could be obtained, the problem - free instant image technique, and especially the advantages of automated exposure in direct film settings. The positive results yield the basis for the product development. (orig./MG) [de

  7. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  8. 77 FR 38829 - Certain Electronic Imaging Devices; Institution of Investigation

    Science.gov (United States)

    2012-06-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-850] Certain Electronic Imaging Devices; Institution of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 23, 2012...

  9. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruct...

  10. Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy.

    Science.gov (United States)

    Jung, Min Kyo; Mun, Ji Young

    2018-01-04

    Exosomes are nano-sized extracellular vesicles secreted by body fluids and are known to represent the characteristics of cells that secrete them. The contents and morphology of the secreted vesicles reflect cell behavior or physiological status, for example cell growth, migration, cleavage, and death. The exosomes' role may depend highly on size, and the size of exosomes varies from 30 to 300 nm. The most widely used method for exosome imaging is negative staining, while other results are based on Cryo-Transmission Electron Microscopy, Scanning Electron Microscopy, and Atomic Force Microscopy. The typical exosome's morphology assessed through negative staining is a cup-shape, but further details are not yet clear. An exosome well-characterized through structural study is necessary particular in medical and pharmaceutical fields. Therefore, function-dependent morphology should be verified by electron microscopy techniques such as labeling a specific protein in the detailed structure of exosome. To observe detailed structure, ultrathin sectioned images and negative stained images of exosomes were compared. In this protocol, we suggest transmission electron microscopy for the imaging of exosomes including negative staining, whole mount immuno-staining, block preparation, thin section, and immuno-gold labelling.

  11. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    Science.gov (United States)

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Imaging Systems in TLE Research

    DEFF Research Database (Denmark)

    Allin, Thomas Højgaard; Neubert, Torsten; Laursen, Steen

    2006-01-01

    documented using the right equipment in the right way. This chapter provides an introduction to the concepts of low light imagers, and how they can be successfully applied in TLE research. As examples, we describe the 2003 and 2004 Spritewatch systems, which integrate low-light cameras with a digital...

  13. Electronics Related to Nuclear Medicine Imaging Devices. Chapter 7

    Energy Technology Data Exchange (ETDEWEB)

    Ott, R. J. [Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Surrey (United Kingdom); Stephenson, R. [Rutherford Appleton Laboratory, Oxfordshire (United Kingdom)

    2014-12-15

    Nuclear medicine imaging is generally based on the detection of X rays and γ rays emitted by radionuclides injected into a patient. In the previous chapter, the methods used to detect these photons were described, based most commonly on a scintillation counter although there are imaging devices that use either gas filled ionization detectors or semiconductors. Whatever device is used, nuclear medicine images are produced from a very limited number of photons, due mainly to the level of radioactivity that can be safely injected into a patient. Hence, nuclear medicine images are usually made from many orders of magnitude fewer photons than X ray computed tomography (CT) images, for example. However, as the information produced is essentially functional in nature compared to the anatomical detail of CT, the apparently poorer image quality is overcome by the nature of the information produced. The low levels of photons detected in nuclear medicine means that photon counting can be performed. Here each photon is detected and analysed individually, which is especially valuable, for example, in enabling scattered photons to be rejected. This is in contrast to X ray imaging where images are produced by integrating the flux entering the detectors. Photon counting, however, places a heavy burden on the electronics used for nuclear medicine imaging in terms of electronic noise and stability. This chapter will discuss how the signals produced in the primary photon detection process can be converted into pulses providing spatial, energy and timing information, and how this information is used to produce both qualitative and quantitative images.

  14. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  15. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  16. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei; Cheng, Bin; Liu, Wei-Ting; Tsai, Meng-Lin; He, Jr-Hau; Chuvilin, Andrey

    2017-01-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  17. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  18. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  19. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.

    1980-01-01

    This project deals with imaging systems in nuclear medicine and image evaluation and is presented as four subprojects. The goal of the first subproject is to improve diagnositc image quality by development of a general computer code for optimizing collimator design. The second subproject deals with a secondary emission and fluorescence technique for thyroid scanning while the third subproject emphasizes the need for more sophisticated image processing systems such as coherent optical spatial filtering systems and digital image processing. The fourth subproject presents a new approach for processing image data by taking into account the energy of each detected gamma-ray photon

  20. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    International Nuclear Information System (INIS)

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  1. Analysis of patient setup accuracy using electronic portal imaging device

    International Nuclear Information System (INIS)

    Onogi, Yuzo; Aoki, Yukimasa; Nakagawa, Keiichi

    1996-01-01

    Radiation therapy is performed in many fractions, and accurate patient setup is very important. This is more significant nowadays because treatment planning and radiation therapy are more precisely performed. Electronic portal imaging devices and automatic image comparison algorithms let us analyze setup deviations quantitatively. With such in mind we developed a simple image comparison algorithm. Using 2459 electronic verification images (335 ports, 123 treatment sites) generated during the past three years at our institute, we evaluated the results of the algorithm, and analyzed setup deviations according to the area irradiated, use of a fixing device (shell), and arm position. Calculated setup deviation was verified visually and their fitness was classified into good, fair, bad, and incomplete. The result was 40%, 14%, 22%, 24% respectively. Using calculated deviations classified as good (994 images), we analyzed setup deviations. Overall setup deviations described in 1 SD along axes x, y, z, was 1.9 mm, 2.5 mm, 1.7 mm respectively. We classified these deviations into systematic and random components, and found that random error was predominant in our institute. The setup deviations along axis y (cranio-caudal direction) showed larger distribution when treatment was performed with the shell. Deviations along y (cranio-caudal) and z (anterior-posterior) had larger distribution when treatment occurred with the patient's arm elevated. There was a significant time-trend error, whose deviations become greater with time. Within all evaluated ports, 30% showed a time-trend error. Using an electronic portal imaging device and automatic image comparison algorithm, we are able to analyze setup deviations more precisely and improve setup method based on objective criteria. (author)

  2. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  3. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    Science.gov (United States)

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  4. Imaging quasiperiodic electronic states in a synthetic Penrose tiling

    Science.gov (United States)

    Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.

    2017-06-01

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  5. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  6. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  7. Design of electron detection system for pulse electron irradiator

    International Nuclear Information System (INIS)

    Anjar Anggraini H; Agus Purwadi; Lely Susita RM; Bambang Siswanto; Agus Wijayanto

    2016-01-01

    Design of electron detection system for pulse electron irradiator has been conducted on the Plasma Cathode Electron Source by Rogowski coil technique. Rogowski coil has ability to capture the induced magnetic field of the electric current, subsequent induced magnetic field will provide voltage after passing integrator. This diagnostic used combination of copper wire, ferrite and RC integrator. The design depends on the pulse width and the value of plasma current that passes through the coil, thus the number of windings, coil area and integrator can be designed. For plasma spots current of IDPS expected to be 10 A and pulse width 10 μs the Rogowski coil using MnZn ferrite with inductance L = 0.275 mH and permeability μr = 200 H/m. For the current of plasma arc ADPS expected to be 100 A and pulse width 100 μs by using inductance L=1.9634 mH and permeability μr = 6256 H/m. Electron current in extraction system expected to be 30 A and pulse width 100 μs the Rogowski coil using inductance L=51.749 mH and permeability μr= 4987 H/m. Design integrator used is the type of RC integrator. (author)

  8. Prospective clinical evaluation of an electronic portal imaging device

    International Nuclear Information System (INIS)

    Michalski, Jeff M.; Graham, Mary V.; Bosch, Walter R.; Wong, John; Gerber, Russell L.; Cheng, Abel; Tinger, Alfred; Valicenti, Richard K.

    1996-01-01

    Purpose: To determine whether the clinical implementation of an electronic portal imaging device can improve the precision of daily external beam radiotherapy. Methods and Materials: In 1991, an electronic portal imaging device was installed on a dual energy linear accelerator in our clinic. After training the radiotherapy technologists in the acquisition and evaluation of portal images, we performed a randomized study to determine whether online observation, interruption, and intervention would result in more precise daily setup. The patients were randomized to one of two groups: those whose treatments were actively monitored by the radiotherapy technologists and those that were imaged but not monitored. The treating technologists were instructed to correct the following treatment errors: (a) field placement error (FPE) > 1 cm; (b) incorrect block; (c) incorrect collimator setting; (d) absent customized block. Time of treatment delivery was recorded by our patient tracking and billing computers and compared to a matched set of patients not participating in the study. After the patients radiation therapy course was completed, an offline analysis of the patient setup error was planned. Results: Thirty-two patients were treated to 34 anatomical sites in this study. In 893 treatment sessions, 1,873 fields were treated (1,089 fields monitored and 794 fields unmonitored). Ninety percent of the treated fields had at least one image stored for offline analysis. Eighty-seven percent of these images were analyzed offline. Of the 1,011 fields imaged in the monitored arm, only 14 (1.4%) had an intervention recorded by the technologist. Despite infrequent online intervention, offline analysis demonstrated that the incidence of FPE > 10 mm in the monitored and unmonitored groups was 56 out of 881 (6.1%) and 95 out of 595 (11.2%), respectively; p 10 mm was confined to the pelvic fields. The time to treat patients in this study was 10.78 min (monitored) and 10.10 min (unmonitored

  9. Electronic construction collaboration system : phase III.

    Science.gov (United States)

    2011-12-01

    This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Br...

  10. Electronic states in systems of reduced dimensionality

    International Nuclear Information System (INIS)

    Ulloa, S.E.

    1992-01-01

    This report briefly discusses the following research: magnetically modulated systems, inelastic magnetotunneling, ballistic transport review, screening in reduced dimensions, raman and electron energy loss spectroscopy; and ballistic quantum interference effects. (LSP)

  11. Preparation of targets using electron gun systems

    International Nuclear Information System (INIS)

    Maier-Komor, P.

    1975-01-01

    Most targets of isotopes with very low vapor pressure can only be fabricated by vacuum deposition using an electron gun system or a heavy ion sputtering system. Heavy ion sputtering is a very new technique with many unsolved problems. Therefore it seems to be easier to work with an electron gun. Different commercially available electron guns, which are all designed for the high evaporation rates used in industry, are examined for their qualification in processing small amounts of material as used in fabrication of isotope targets. Electron backscattering and the associated efficiency of the electron beam power is strongly dependent on the atomic number Z of the evaporant and the incident angle of the electron beam on the surface of the evaporant. This dependence leads also to the undesired effects to the target layers from electrons and ions. Some precautions are necessary against the effects of the electrons and ions, which are formed in the plasma directly over the beam impact point. Beam power and beam density have to be chosen to get a constant evaporation rate and a low enough condensation rate in order not to overheat the target substrates. To evaporate some metals it may be helpful to pulse the electron beam

  12. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  13. Periodic quality control of a linear accelerator using electronic portal imaging

    International Nuclear Information System (INIS)

    Planes Meseguer, D.; Dorado Rodriguez, M. P.; Esposito, R. D.

    2011-01-01

    In this paper we present our solution for the realization of the monthly periodic quality control (CP) geometry - mechanical and multi leaf collimator (MLC), using the electronic system for portal imaging (EPI). We have developed specific programs created with free software. The monitoring results are automatically stored on our web server, along with other information generated in our service.

  14. GEOREFERENCED IMAGE SYSTEM WITH DRONES

    Directory of Open Access Journals (Sweden)

    Héctor A. Pérez-Sánchez

    2017-07-01

    Full Text Available This paper has as general purpose develop and implementation of a system that allows the generation of flight routes for a drone, the acquisition of geographic location information (GPS during the flight and taking photographs of points of interest for creating georeferenced images, same that will be used to generate KML files (Keyhole Markup Language for the representation of geographical data in three dimensions to be displayed on the Google Earth tool.

  15. Pico-femtosecond image-tube photography in quantum electronics

    International Nuclear Information System (INIS)

    Schelev, M Ya

    2001-01-01

    The possibility of experimental achievement of the time resolution of image-converter tubes (ICTs) corresponding to the theoretical limit of 10 fs is considered as applied to quantum electronics problems. A new generation of ICTs with a temporal resolution of 200 - 500 fs has been developed for recording femtosecond laser radiation. The entirely new devices based on time-analysing ICTs such as femtosecond photoelectronic diffractometers, have been created for studying the dynamics of phase transitions in substances using diffrac-tion of electrons with energies ranging from 20 to 40 keV. (femtosecond technologies)

  16. Exploding and Imaging of Electron Bubbles in Liquid Helium

    Science.gov (United States)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2017-06-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  17. Dynamism in Electronic Performance Support Systems.

    Science.gov (United States)

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  18. Electron correlation energy in confined two-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)

    2010-09-27

    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.

  19. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....

  20. Immunocytochemistry by electron spectroscopic imaging using a homogeneously boronated peptide.

    Science.gov (United States)

    Kessels, M M; Qualmann, B; Klobasa, F; Sierralta, W D

    1996-05-01

    A linear all-L-oligopeptide containing five carboranyl amino acids (corresponding to 50 boron atoms) was synthesized and specifically attached to the free thiol group of monovalent antibody fragments F(ab)'. The boronated immunoreagent was used for the direct post-embedding detection of somatotrophic hormone in ultrathin sections of porcine pituitary embedded in Spurr resin. The specific boron-labelling of secretory vesicles in somatotrophs was detected by electron spectroscopic imaging and confirmed by conventional immunogold labelling run in parallel. In comparison with immunogold, boron-labelled F(ab)'-fragments showed higher tagging frequencies, as was expected; the small uncharged immunoreagents have an elongated shape and carry the antigen-combining structure and the detection tag at opposite ends, thus allowing for high spatial resolution in electron spectroscopic imaging.

  1. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya

    2018-01-01

    Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i...

  2. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  3. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....

  4. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  5. Image and information management system

    Science.gov (United States)

    Robertson, Tina L. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Kent, Peter C. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)

    2009-01-01

    A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places ''hot spots'', or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.

  6. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  7. Whole body imaging system mechanism

    International Nuclear Information System (INIS)

    Carman, R.W.; Doherty, E.J.

    1980-01-01

    A radioisotope scanning apparatus for use in nuclear medicine is described in detail. The apparatus enables the quantification and spatial location of the radioactivity in a body section of a patient to be determined with high sensitivity. It consists of an array of highly focussed collimators arranged such that adjacent collimators move in the same circumferential but opposite radial directions. The explicit movements of the gantry are described in detail and may be controlled by a general purpose computer. The use of highly focussed collimators allows both a reasonable solid angle of acceptance and also high target to background images; additionally, dual radionuclide pharmaceutical studies can be performed simultaneously. It is claimed that the high sensitivity of the system permits the early diagnosis of pathological changes and the images obtained show accurately the location and shape of physiological abnormalities. (U.K.)

  8. Low energy electron point source microscopy: beyond imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andre; Goelzhaeuser, Armin [Physics of Supramolecular Systems and Surfaces, University of Bielefeld, Postfach 100131, 33501 Bielefeld (Germany)

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes. (topical review)

  9. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    1979-01-01

    A system with improved count rate capability for detecting the radioactive distribution of positron events within an organ of interest in a living subject is described. Objects of the invention include improving the scintillation crystal and pulse processing electronics, avoiding the limitations of collimators and provide an Arger camera positron imaging system that avoids the use of collimators. (U.K.)

  10. Design of low noise imaging system

    Science.gov (United States)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.

  11. Image BOSS: a biomedical object storage system

    Science.gov (United States)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  12. Control system in the technological electron linacs

    International Nuclear Information System (INIS)

    Boriskin, V.N.; Akchurin, Yu.I.; Bahmetev, N.N.; Gurin, V.A.

    1999-01-01

    The special system has been developed for linac control.It controls the electron beam current,the energy and the position,protects the accelerating and scanning systems from the damage caused by the beam;blocks the modulator and the klystron amplifier in the case of intolerable operating modes;regulates the phase and power of the HF signals in the injecting system and also regulates the source power currents in the magnetic system

  13. The Intelligent Technologies of Electronic Information System

    Science.gov (United States)

    Li, Xianyu

    2017-08-01

    Based upon the synopsis of system intelligence and information services, this paper puts forward the attributes and the logic structure of information service, sets forth intelligent technology framework of electronic information system, and presents a series of measures, such as optimizing business information flow, advancing data decision capability, improving information fusion precision, strengthening deep learning application and enhancing prognostic and health management, and demonstrates system operation effectiveness. This will benefit the enhancement of system intelligence.

  14. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  15. Image enhancement in photoemission electron microscopy by means of imaging time-of-flight analysis

    International Nuclear Information System (INIS)

    Oelsner, A.; Krasyuk, A.; Fecher, G.H.; Schneider, C.M.; Schoenhense, G.

    2004-01-01

    Photoemission electron microscopy (PEEM) is widely used in combination with synchrotron sources as a powerful tool to observe chemical and magnetic properties of metal and semiconductor surfaces. Presently, the resolution limit of these instruments using soft-X-ray excitation is limited to about 50 nm, because of the chromatic aberration of the electron optics used. Various sophisticated approaches have thus been reported for enhancing the spatial resolution in photoemission electron microscopy. This work demonstrates the use of a simple imaging energy filter based on electron time-of-flight (ToF) selection. The spatial resolution could be improved dramatically, even though the instrument was optimized using a rather large contrast aperture of 50 μm. A special (x, y, t)-resolving delayline detector was used as the imaging unit of this ToF-PEEM. It is operated in phase with the time structure of the synchrotron source, cutting time intervals from the raw image-forming data set in order to reduce the electron energy width contributing to the final images

  16. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  17. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  18. Electron-optical systems for Mott polarimeters

    International Nuclear Information System (INIS)

    Fishkova, T.Ya.; Mamaev, Yu.A.; Ovsyannikova, I.P.; Petrov, V.N.; Shpak, E.V.

    1994-01-01

    Electron-optical systems, forming polarized electron beams from solid and gaseous sources at a Mott detector with operating potentials of 20 and 50 kV, have been theoretically investigated. The integral EOS creates a beam <2.6 nm in diameter at the target of the Mott detector for secondary electrons with energies of 1-20 eV and exit angles of 0 -60 . The differential EOS provides an energy resolution of 2-6% within the range of 3-2000 eV, the illumination being 5-13% for a 4π angle; at the target of the Mott detector it creates a beam of 1-6 mm in diameter. Both systems have been constructed at the laboratory of Spin-polarized Electron Spectroscopy (Department of Experimental Physics) at St. Petersburg State Technical University. ((orig.))

  19. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  20. Neural Network for Nanoscience Scanning Electron Microscope Image Recognition.

    Science.gov (United States)

    Modarres, Mohammad Hadi; Aversa, Rossella; Cozzini, Stefano; Ciancio, Regina; Leto, Angelo; Brandino, Giuseppe Piero

    2017-10-16

    In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.

  1. Programmable electronic system design & verification utilizing DFM

    NARCIS (Netherlands)

    Houtermans, M.J.M.; Apostolakis, G.E.; Brombacher, A.C.; Karydas, D.M.

    2000-01-01

    The objective of this paper is to demonstrate the use of the Dynamic Flowgraph Methodology (DIM) during the design and verification of programmable electronic safety-related systems. The safety system consists of hardware as well as software. This paper explains and demonstrates the use of DIM to

  2. Design management of electronic data interchange systems

    NARCIS (Netherlands)

    Heck, van H.W.G.M.

    1993-01-01

    This study deals with the management of the design process of Electronic Data Interchange (EDI) systems. Its objectives are (1) to investigate the design process of EDI systems from a practical and theoretical perspective; (2) to develop a model to describe factors relevant to EDI

  3. Electron-phonon interactions in correlated systems

    International Nuclear Information System (INIS)

    Wysokinski, K.I.

    1996-01-01

    There exist attempts to describe the superconducting mechanism operating in HTS as based on antiferromagnetic fluctuations. It is not our intention to dwell on the superconducting mechanism, even though this is very a important issue. The main aim is to discuss the problem of interplay between electron-phonon and electron-electron interactions in correlated systems. We believe such analysis can be of importance for various materials and not only HTS'S. We shall however mainly refer to experiments on this last class of superconductors. Severe complications are to be expected by studying the problem. As is well known electron correlations are very important in narrow band systems, where the relevant electronic scale E F is quite small. In those circumstances, the phonon energy scale ω D is of comparable magnitude, with the ratio ω D /E F of order 1 signalling a possible break down of the Migdal - Eliashberg description of the electron-phonon interaction in metals. Here we shall assume the validity of the Migdal-Eliashberg approximation and concentrate on the mutual influence of electron and phonon subsystems. In the next section we shall discuss experimental motivation for and theoretical work related to the present problem. Section 3 contains a brief discussion of our theory. It is a self-consistent theory a la Migdal with strong correlations treated with an auxiliary boson technique. We conclude with results and their discussion. (orig.)

  4. Electron-ion-x-ray spectrometer system

    International Nuclear Information System (INIS)

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.

    1993-01-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays

  5. Electron localization in one-dimensional systems

    International Nuclear Information System (INIS)

    Chao, K.A.

    1984-01-01

    The pure regional localization and the global localization have been investigated via the inverse participation ratio and te moment analysis. If the envelop function of a localized state is more complicated than the simple exponential function e sup(-r/xi), the inverse participation ratio is inadequate to describe the localization properties of an electron. This is the case discovered recently in a stereo-irregular chain fo atoms including the electron-electron interaction and the structure disorder. The localization properties in this system are analysed in terms of the moments. (Author) [pt

  6. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  7. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation

    Science.gov (United States)

    Hilsabeck, T. J.; Nagel, S. R.; Hares, J. D.; Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Dymoke-Bradshaw, A. K. L.; Piston, K.; Chung, T. M.

    2017-02-01

    Laser driven inertial confinement fusion (ICF) plasmas typically have burn durations on the order of 100 ps. Time resolved imaging of the x-ray self emission during the hot spot formation is an important diagnostic tool which gives information on implosion symmetry, transient features and stagnation time. Traditional x-ray gated imagers for ICF use microchannel plate detectors to obtain gate widths of 40-100 ps. The development of electron pulse-dilation imaging has enabled a 10X improvement in temporal resolution over legacy instruments. In this technique, the incoming x-ray image is converted to electrons at a photocathode. The electrons are accelerated with a time-varying potential that leads to temporal expansion as the electron signal transits the tube. This expanded signal is recorded with a gated detector and the effective temporal resolution of the composite system can be as low as several picoseconds. An instrument based on this principle, known as the Dilation X-ray Imager (DIXI) has been constructed and fielded at the National Ignition Facility. Design features and experimental results from DIXI will be presented.

  8. Bio-integrated electronics and sensor systems

    Science.gov (United States)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  9. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  10. Electron imaging with Medipix2 hybrid pixel detector

    International Nuclear Information System (INIS)

    McMullan, G.; Cattermole, D.M.; Chen, S.; Henderson, R.; Llopart, X.; Summerfield, C.; Tlustos, L.; Faruqi, A.R.

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μmx55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach ∼85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach ∼35% of that expected for a perfect detector (4/π 2 ). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses

  11. Electron imaging with Medipix2 hybrid pixel detector.

    Science.gov (United States)

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  12. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  13. Dancing with the Electrons: Time-Domain and CW In Vivo EPR Imaging

    Directory of Open Access Journals (Sweden)

    Murali C. Krishna

    2008-01-01

    Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T2* or T2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo. We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the (unpaired electrons’, metaphorically speaking.

  14. Dancing with the Electrons: Time-Domain and CW EPR Imaging

    Directory of Open Access Journals (Sweden)

    Sankaran Subramanian

    2008-01-01

    Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T 2 * or T 2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo . We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the ( unpaired electrons’, metaphorically speaking.

  15. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. A Flexible Electronic Commerce Recommendation System

    Science.gov (United States)

    Gong, Songjie

    Recommendation systems have become very popular in E-commerce websites. Many of the largest commerce websites are already using recommender technologies to help their customers find products to purchase. An electronic commerce recommendation system learns from a customer and recommends products that the customer will find most valuable from among the available products. But most recommendation methods are hard-wired into the system and they support only fixed recommendations. This paper presented a framework of flexible electronic commerce recommendation system. The framework is composed by user model interface, recommendation engine, recommendation strategy model, recommendation technology group, user interest model and database interface. In the recommender strategy model, the method can be collaborative filtering, content-based filtering, mining associate rules method, knowledge-based filtering method or the mixed method. The system mapped the implementation and demand through strategy model, and the whole system would be design as standard parts to adapt to the change of the recommendation strategy.

  17. Collimation system for electron arc therapy

    International Nuclear Information System (INIS)

    Brunelli, R.J.; Carter, J.C.

    1984-01-01

    An electron collimation system for electron arc therapy treatments consists of a slit collimation system which is movable with the electron beam applicator and is designed to allow for dose compensation in the sagittal direction and a hoop-and-clamp assembly for final field shaping. By correctly designing the shape of the slit in the former and properly adjusting the components of the latter, it is possible to accomplish quite uniform shielding without causing any weight of the shielding material to rest on the patient. The slit collimation system has a specially shaped aperture for confining the radiation beam. The hoop-and-clamp assembly has hoops and clamps which locate shielding over the patient's body. The shielding locating clamps are adjustably movable radially with respect to the hoops. (author)

  18. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  19. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-05-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.

  20. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  1. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  2. Suppression of COTR in electron beam imaging diagnosis at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Minjie

    2012-05-15

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  3. Suppression of COTR in electron beam imaging diagnosis at FLASH

    International Nuclear Information System (INIS)

    Yan, Minjie

    2011-12-01

    The Free-Electron Laser in Hamburg (FLASH) demands electron beams with high peak current to generate high-brilliant, coherent X-ray pulses. Magnetic chicanes are used for longitudinal compression of the electron bunches to achieve the required high peak current. During bunch compression process, microstructures with a modulation length comparable to the visible light can be induced inside the bunch. This leads to coherent emission of optical transition radiation (OTR), which may impede the widely used beam diagnostic based on OTR imaging. In this thesis, two methods of using incoherent scintillation light are proposed to circumvent the problem of coherence effects in beam imaging diagnostics. The method of temporal separation has been proved experimentally to have successfully suppressed coherence effects. The longitudinal beam profiles measured using this method are in good agreement with reference measurements, verifying further the reliability of the method. The method of spatial separation has been investigated in preparation studies, from which an improved experimental setup has been designed.

  4. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    Science.gov (United States)

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  5. The second generation of electronic blasting systems

    Energy Technology Data Exchange (ETDEWEB)

    Hammelmann, F.; Petzold, J. [Dynamit Nobel GmbH (Germany)

    2001-07-01

    8 years after the market introduction of the first commercial electronic detonator - DYNATRONIC - the paper describes a new area of electronic blasting systems Made in Germany: i-kon. The results of a joint development between Dynamit Nobel and Orica is a unique universal electronic detonator, which is as simple to use as a standard non-electric detonator. The delay time or delay interval is not factory preprogrammed and the system is not based on a numbered system like conventional detonators. The miner or Blaster decides on site which delay timing he likes to use and is programming the whole blast on site. The new i-kon system allows delay times between 0 and 8000 ms by increments of 1 ms. With the control equipment it is possible to blast up to 1600 detonators in a single blast. The paper describes the construction and functionality of this new electronic blasting system - manufactured and developed by Precision Blasting Systems, a joint venture between Orica and Dynamic Nobel. (orig.)

  6. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  7. A comparison between the electronic magnification (EM) and true magnification (TM) of breast phantom images using a CDMAM phantom

    International Nuclear Information System (INIS)

    Vahey, Karou; Ryan, Elaine; McLean, Don; Poulos, Ann; Rickard, Mary

    2012-01-01

    Purpose: To provide a comparison between the image quality of electronically magnified (EM) and geometric, or true, magnification (TM) mammographic images. Materials and methods: One Computed Radiography (CR), one Digital Radiography (DR) and two screen–film (S–F) imaging systems were investigated. A Contrast-Detail Mammography (CDMAM) phantom was used as a test object. Three contact images and three sets of TM images with a magnification factor of 1.8 were taken on all systems. Software was used to zoom the contact images by a factor of 1.8 to produce EM images. Two observers evaluated all of the images. An Image Quality Figure and contrast detail curve were used to analyze the observer data and Mann–Whitney U-tests were performed to determine the statistical significance of the results. Results: No significant differences were found between soft copy and hard copy for any imaging modality. No significant difference in contrast detail detectability (CDD) was seen between EM images from the two digital systems and TM images on S–F systems. The results for the DR EM images and S–F TM images also showed no differences. The CDD of DR TM images was significantly better than both EM and S–F TM images. Conclusion: Digitally zoomed images offer the same level of CDD as S–F TM images, and so may be viably used in their place. DR systems offer greater CDD than conventional S–F images, when comparing the TM images. This implies that doses can be greatly reduced for TM views using DR systems, while maintaining acceptable image quality.

  8. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  9. Electronic system of TBR tokamak device

    International Nuclear Information System (INIS)

    Silva, R.P. da.

    1980-01-01

    The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author) [pt

  10. An image correlation procedure for digitally reconstructed radiographs and electronic portal images

    International Nuclear Information System (INIS)

    Dong, Lei; Boyer, Arthur L.

    1995-01-01

    Purpose: To study a procedure that uses megavoltage digitally reconstructed radiographs (DRRs) calculated from patient's three-dimensional (3D) computed tomography (CT) data as a reference image for correlation with on-line electronic portal images (EPIs) to detect patient setup errors. Methods and Materials: Megavoltage DRRs were generated by ray tracing through a modified volumetric CT data set in which CT numbers were converted into linear attenuation coefficients for the therapeutic beam energy. The DRR transmission image was transformed to the grayscale window of the EPI by a histogram-matching technique. An alternative approach was to calibrate the transmission DRR using a measured response curve of the electronic portal imaging device (EPID). This forces the calculated transmission fluence values to be distributed in the same range as that of the EPID image. A cross-correlation technique was used to determine the degree of alignment of the patient anatomy found in the EPID image relative to the reference DRR. Results: Phantom studies demonstrated that the correlation procedure had a standard deviation of 0.5 mm and 0.5 deg. in aligning translational shifts and in-plane rotations. Systematic errors were found between a reference DRR and a reference EPID image. The automated grayscale image-correlation process was completed within 3 s on a workstation computer or 12 s on a PC. Conclusion: The alignment procedure allows the direct comparison of a patient's treatment portal designed with a 3D planning computer with a patient's on-line portal image acquired at the treatment unit. The image registration process is automated to the extent that it requires minimal user intervention, and it is fast and accurate enough for on-line clinical applications

  11. Method of fabricating a cooled electronic system

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  12. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.; Tsui, B.

    1981-01-01

    A general computer code to simulate the imaging properties of existing and hypothetical imaging systems viewing realistic source distributions within non-uniform media. Such a code allows comparative evaluations of existing and hypothetical systems, and optimization of critical parameters of system design by maximizing the signal-to-noise ratio. To be most useful, such a code allows simulation of conventional scintillation scanners and cameras as well as single-photon and position tomographic systems

  13. Highly integrated image sensors enable low-cost imaging systems

    Science.gov (United States)

    Gallagher, Paul K.; Lake, Don; Chalmers, David; Hurwitz, J. E. D.

    1997-09-01

    The highest barriers to wide scale implementation of vision systems have been cost. This is closely followed by the level of difficulty of putting a complete imaging system together. As anyone who has every been in the position of creating a vision system knows, the various bits and pieces supplied by the many vendors are not under any type of standardization control. In short, unless you are an expert in imaging, electrical interfacing, computers, digital signal processing, and high speed storage techniques, you will likely spend more money trying to do it yourself rather than to buy the exceedingly expensive systems available. Another alternative is making headway into the imaging market however. The growing investment in highly integrated CMOS based imagers is addressing both the cost and the system integration difficulties. This paper discusses the benefits gained from CMOS based imaging, and how these benefits are already being applied.

  14. Automatic control variac system for electronic accelerator

    International Nuclear Information System (INIS)

    Zhang Shuocheng; Wang Dan; Jing Lan; Qiao Weimin; Ma Yunhai

    2006-01-01

    An automatic control variac system is designed in order to satisfy the controlling requirement of the electronic accelerator developed by the Institute. Both design and operational principles, structure of the system as well as the software of industrial PC and micro controller unit are described. The interfaces of the control module are RS232 and RS485. A fiber optical interface (FOC) could be set up if an industrial FOC network is necessary, which will extend the filed of its application and make the communication of the system better. It is shown in practice that the system can adjust the variac output voltage automatically and assure the accurate and automatic control of the electronic accelerator. The system is designed in accordance with the general design principles and possesses the merits such as easy operation and maintenance, good expansibility, and low cost, thus it could also be used in other industrial branches. (authors)

  15. Electronic warfare receivers and receiving systems

    CERN Document Server

    Poisel, Richard A

    2014-01-01

    Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o

  16. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  17. Critical issues in an electronic documentation system.

    Science.gov (United States)

    Weir, Charlene R; Nebeker, Jonathan R

    2007-10-11

    The Veterans Health Administration (VHA), of the U.S. Department of Veteran Affairs has instituted a medical record (EMR) that includes electronic documentation of all narrative components of the medical record. To support clinicians using the system, multiple efforts have been instituted to ease the creation of narrative reports. Although electronic documentation is easier to read and improves access to information, it also may create new and additional hazards for users. This study is the first step in a series of studies to evaluate the issues surrounding the creation and use of electronic documentation. Eighty-eight providers across multiple clinical roles were interviewed in 10 primary care sites in the VA system. Interviews were tape-recorded, transcribed and qualitatively analyzed for themes. In addition, specific questions were asked about perceived harm due to electronic documentation practices. Five themes relating to difficulties with electronic documentation were identified: 1) information overload; 2) hidden information; 3) lack of trust; 4) communication; 5) decision-making. Three providers reported that they knew of an incident where current documentation practices had caused patient harm and over 75% of respondents reported significant mis-trust of the system.

  18. Handheld microwave bomb-detecting imaging system

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  19. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  20. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    Science.gov (United States)

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Application of FPGA's in Flexible Analogue Electronic Image Generator Design

    Directory of Open Access Journals (Sweden)

    Peter Kulla

    2006-01-01

    Full Text Available This paper focuses on usage of the FPGAs (Field Programmable Gate Arrays Xilinx as a part of our more complex workdedicated to design of flexible analogue electronic images generator for application in TV measurement technique or/and TV servicetechnique or/and education process. The FPGAs performs here the role of component colour R, G, B, synchronization and blanking signals source. These signals are next processed and amplified in other parts of the generator as NTSC/PAL source encoder and RF modulator. The main aim of this paper is to show the possibilities how with suitable development software use a FPGAs in analog TV technology.

  2. Ultrafast molecular imaging by laser-induced electron diffraction

    International Nuclear Information System (INIS)

    Peters, M.; Nguyen-Dang, T. T.; Cornaggia, C.; Saugout, S.; Charron, E.; Keller, A.; Atabek, O.

    2011-01-01

    We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO 2 molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  3. Diagnostic medical imaging systems. X-ray radiography and angiography, computerized tomography, nuclear medicine, NMR imaging, sonography, integrated image information systems. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Morneburg, H.

    1995-01-01

    This third edition is based on major review and updating work. Many recent developments have been included, as for instance novel systems for fluoroscopy and mammography, spiral CT and electron beam CT, nuclear medical tomography ( SPECT and PET), novel techniques for fast NMR imaging, spectral and colour coded duplex sonography, as well as a new chapter on integrated image information systems, including network installations. (orig.) [de

  4. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  5. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    Science.gov (United States)

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. ELECTRONIC PAYMENT SYSTEM AND ITS PROTECTION

    Directory of Open Access Journals (Sweden)

    Miroslav Milutinovic

    2015-01-01

    Full Text Available All developed countries are in transition from the IT economy to a web economy - the biggest technological innovation that will have a long-term positive effect on the formation of the economic growth rate, the major structural changes and on the differentiated effects on the economic areas that are, at a faster or a slower rate, being included in this technological change. The electronic commerce or e-commerce has a huge potential for development. The electronic commerce between the companies (B-2-B is significantly greater compared to retail electronic commerce (B-2-C. In both spheres of trade, the Internet is used as a platform for the transfer of information and for concluding business deals. Market economy requires Accelerated Payment Processing which is achieved by introducing and improving the electronic payment procedures. There is an emphasized dichotomy between the two spheres of the payment system: large-value and small-value payments. The large value payment systems can be described as the arteries of the payment system, and the small-value transfer systems as a complex network of veins that bind the entire economy.

  7. Accounting Systems and the Electronic Office.

    Science.gov (United States)

    Gafney, Leo

    1986-01-01

    Discusses a systems approach to accounting instruction and examines it from the viewpoint of four components: people (titles and responsibilities, importance of interaction), forms (nonpaper records such as microfiche, floppy disks, hard disks), procedures (for example, electronic funds transfer), and technology (for example, electronic…

  8. Support system of electronic health cards

    Directory of Open Access Journals (Sweden)

    Yu. L. Nechiporenko

    2013-02-01

    Full Text Available Made the survey online sources regarding the specification of functions of systems support electronic medical records. Given the tendency to attract mobile devices to conduct an array of medical data expedient development of EHR, which can be installed on a personal mobile device.

  9. Radiation from systems with relativistic electrons

    International Nuclear Information System (INIS)

    Ternov, I.M.; Khalilov, V.R.; Bagrov, V.G.; Nikitin, M.M.

    1980-01-01

    Different methods of generation of electromagnetic radiation in the course of electron motion in external electromagnetic fields are considered. Singularities of ''free electron lasers'' (FEL), synchrotronous, ondulator and Compton radiation sources are discussed. The effect of induced radiation of electrons moving in a magnetic field is studied on the basis of the quantum theory methods. The results obtained are compared with the results of the classical theory. The theoretical and experimental results of the main singularities of the ondulator radiation (OR) are presented. It is shown that when the recoil effects are negligible and nonequidistancy of the energy spectrum of an electron in a magnetic field is of an error character, the results for the dose rate calculated by the quantum and classical theory methods completely coincide in the range of great filling numbers. Both in the quantum and classical theories the effects of the induced radiation of electrons moving in external electromagnetic fields (nonstationary in a general case) of a rather general type depend on two main mechanisms, which are nonequidistancy of the energy spectrum and the recoil effect (the quantum theory); appearance of phase and longitudinal electron bunching under the effect of an alternating radiation field (the classical theory). On the basis of the investigations the conclusion is made that OR can be successfully used for measuring the charged particle beam parameters (dispersion of angular spread and the absolute energy), as well as for measuring the amplitude of the magnetic field intensity in a space-periodic system

  10. Dose patient verification during treatment using an amorphous silicon electronic portal imaging device in radiotherapy

    International Nuclear Information System (INIS)

    Berger, Lucie

    2006-01-01

    Today, amorphous silicon electronic portal imaging devices (aSi EPID) are currently used to check the accuracy of patient positioning. However, they are not use for dose reconstruction yet and more investigations are required to allow the use of an aSi EPID for routine dosimetric verification. The aim of this work is first to study the dosimetric characteristics of the EPID available at the Institut Curie and then, to check patient dose during treatment using these EPID. First, performance optimization of the Varian aS500 EPID system is studied. Then, a quality assurance system is set up in order to certify the image quality on a daily basis. An additional study on the dosimetric performance of the aS500 EPID is monitored to assess operational stability for dosimetry applications. Electronic portal imaging device is also a useful tool to improve IMRT quality control. The validation and the quality assurance of a portal dose image prediction system for IMRT pre-treatment quality control are performed. All dynamic IMRT fields are verified in clinical routine with the new method based on portal dosimetry. Finally, a new formalism for in vivo dosimetry using transit dose measured with EPID is developed and validated. The absolute dose measurement issue using aSi EPID is described and the midplane dose determination using in vivo dose measurements in combination with portal imaging is used with 3D-conformal-radiation therapy. (author) [fr

  11. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.; Radwan, Ahmed Gomaa; Abdel Haleem, Sherif H.; Barakat, Mohamed L.

    2014-01-01

    single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved

  12. Soft errors in modern electronic systems

    CERN Document Server

    Nicolaidis, Michael

    2010-01-01

    This book provides a comprehensive presentation of the most advanced research results and technological developments enabling understanding, qualifying and mitigating the soft errors effect in advanced electronics, including the fundamental physical mechanisms of radiation induced soft errors, the various steps that lead to a system failure, the modelling and simulation of soft error at various levels (including physical, electrical, netlist, event driven, RTL, and system level modelling and simulation), hardware fault injection, accelerated radiation testing and natural environment testing, s

  13. Electron and nuclear spin system polarization in semiconductors by light

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, B; Flejsher, V

    1981-02-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation.

  14. False colour backscatter electron images and their application during electron microprobe analysis of ores and host rocks

    International Nuclear Information System (INIS)

    Cousens, D.R.; French, D.H.; Ramsden, A.R.

    1989-01-01

    The limited contrast range of conventional black and white imaging does not enable full use to be made of the dynamic range of the video signal obtained from a scanning electron microscope or microprobe. The use of false colour substantially increases the information that can be derived from such images enabling relationships to be displayed that cannot be observed in black and white. This capability is now used extensively in combination with quantitative electron microprobe analysis as a research tool for ore characterization and host rocks studies related to minerals exploration in the CSIRO Div.sion of Exploration Geoscience. Thus the CAMEBAX scanning electron microprobe has been modified to allow digital images acquisition and software (IMAGE) developed which allows false colour backscatter electron (BSE) images to be obtained during the course of routine electron microprobe analysis. 1 fig

  15. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B., E-mail: bjtobias@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y. [University of California at Davis, Davis, California 95616 (United States)

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  16. Objective analysis of image quality of video image capture systems

    Science.gov (United States)

    Rowberg, Alan H.

    1990-07-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give

  17. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: k.grzelakowski@opticon-nanotechnology.com

    2016-05-15

    Since its introduction the importance of complementary k{sub ||}-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800 eV electron beam from an “in-lens” electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered k{sub ǁ}-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. - Highlights: • A novel concept of the electron sample illumination with “in-lens” e- gun is realized. • Quasi-simultaneous energy selective observation of the real- and k-space in EELS mode. • Observation of the energy filtered Auger electron diffraction at Cs atoms on Mo(110). • Energy-loss, Auger and secondary electron momentum microscopy is realized.

  18. Laser system for a subpicosecond electron linac

    International Nuclear Information System (INIS)

    Crowell, R. A.

    1998-01-01

    At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions

  19. Electron dynamics inside short-coherence systems

    International Nuclear Information System (INIS)

    Ferrari, Giulio; Bordone, Paolo; Jacoboni, Carlo

    2006-01-01

    We present theoretical results on electron dynamics inside nanometric systems, where the coherence of the electron ensemble is maintained in a very short region. The contacts are supposed to spoil such a coherence, therefore the interference processes between the carrier wavefunction and the internal potential profile can be affected by the proximity of the contacts. The problem has been analysed by using the Wigner-function formalism. For very short devices, transport properties, such as tunnelling through potential barriers, are significantly influenced by the distance between the contacts

  20. The electron-neutrino system, ch. 3

    International Nuclear Information System (INIS)

    Kox, A.J.

    1976-01-01

    Relativistic kinetic gas theory is applied to a mixture of electrons and electronic neutrinos. The phenomena of diffusion are especially studied in this system, assuming properties comparable to those of the universe in the lepton era as assumed in the hot big bang theory: a hot (Tapproximately 10 12 K), dense (n = 10 38 ) mixture, colliding elastically. An expression for the diffusion coefficient is derived and numerical values are computed as a function of the reduced temperature z -1 = kT/mc 2 , assuming equal number densities

  1. Characterization of lens based photoacoustic imaging system

    Directory of Open Access Journals (Sweden)

    Kalloor Joseph Francis

    2017-12-01

    Full Text Available Some of the challenges in translating photoacoustic (PA imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF. Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  2. Characterization of lens based photoacoustic imaging system.

    Science.gov (United States)

    Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2017-12-01

    Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  3. Analysis of image plane's Illumination in Image-forming System

    International Nuclear Information System (INIS)

    Duan Lihua; Zeng Yan'an; Zhang Nanyangsheng; Wang Zhiguo; Yin Shiliang

    2011-01-01

    In the detection of optical radiation, the detecting accuracy is affected by optic power distribution of the detector's surface to a large extent. In addition, in the image-forming system, the quality of the image is greatly determined by the uniformity of the image's illumination distribution. However, in the practical optical system, affected by the factors such as field of view, false light and off axis and so on, the distribution of the image's illumination tends to be non uniform, so it is necessary to discuss the image plane's illumination in image-forming systems. In order to analyze the characteristics of the image-forming system at a full range, on the basis of photometry, the formulas to calculate the illumination of the imaging plane have been summarized by the numbers. Moreover, the relationship between the horizontal offset of the light source and the illumination of the image has been discussed in detail. After that, the influence of some key factors such as aperture angle, off-axis distance and horizontal offset on illumination of the image has been brought forward. Through numerical simulation, various theoretical curves of those key factors have been given. The results of the numerical simulation show that it is recommended to aggrandize the diameter of the exit pupil to increase the illumination of the image. The angle of view plays a negative role in the illumination distribution of the image, that is, the uniformity of the illumination distribution can be enhanced by compressing the angle of view. Lastly, it is proved that telecentric optical design is an effective way to advance the uniformity of the illumination distribution.

  4. The effects of radiation on electronic systems

    International Nuclear Information System (INIS)

    Messenger, G.C.; Ash, M.S.

    1986-01-01

    This book is the first unified treatment of the analysis and design methods for protection of principally electronic systems from the deleterious effects of nuclear and electro-magnetic radiation. Coverage spans from a detailed description of the nuclear radiation sources to pertinent semiconductor physics, then to hardness assurance. This work combines the disciplines of solid state physics, semiconductor physics, circuit engineering, nuclear physics, together with electronics and electromagnetic theory into a book that can be used as a text with problems at the end of the majority of the chapters. Written by veterans in the field, the most significant feature of this book is its comprehensive treatment of the phenomena involved. This treatment includes the analysis and design of the effect of nuclear radiation on electronic systems from the experimental, theoretical, and engineering viewpoints. Unique pedagogical attempts are employed to make the material more understandable from the position of an enlightened engineering and scientific readership whose task is the design and analysis of radiation hardened electronic systems

  5. Fluoroscopic Imaging Systems. Chapter 8

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A. K. [University of Texas MD Anderson Cancer Center, Houston (United States)

    2014-09-15

    Fluoroscopy refers to the use of an X ray beam and a suitable image receptor for viewing images of processes or instruments in the body in real time. Fluoroscopic imaging trades the high signal to noise ratio (SNR) of radiography for high temporal resolution, as factors that maintain patient dose at an acceptable level must be used.

  6. Programmable electronic system for analog and digital gamma cameras modernization

    International Nuclear Information System (INIS)

    Osorio Deliz, J. F.; Diaz Garcia, A.; Arista Omeu, E. J.

    2013-01-01

    At present the use of analog and digital gamma cameras is continuously increasing in developing countries. Many of them still largely rely in old hardware electronics, which in many cases limits their use in actual nuclear medicine diagnostic studies. For this reason worldwide there are different medical equipment manufacturing companies engaged into partial or total Gamma Cameras modernization. Nevertheless in several occasions acquisition prices are not affordable for developing countries. This work describes the basic features of a programmable electronic system that allows improving acquisitions functions and processing of analog and digital gamma cameras. This system is based on an electronic board for the acquisition and digitization of nuclear pulses which have been generated by gamma camera detector. It comprises a hardware interface with PC and the associated software to fully signal processing. Signal shaping and image processing are included. The extensive use of reference tables in the processing and signal imaging software allowed the optimization of the processing speed. Time design and system cost were also decreased. (Author)

  7. Calibration of imaging plates to electrons between 40 and 180 MeV

    International Nuclear Information System (INIS)

    Rabhi, N.; Batani, D.; Boutoux, G.; Ducret, J.-E.; Bohacek, K.; Guillaume, E.; Thaury, C.; Jakubowska, K.; Thfoin, I.

    2016-01-01

    This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d’Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate charge calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.

  8. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  9. Robust image alignment for cryogenic transmission electron microscopy.

    Science.gov (United States)

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Method for secure electronic voting system: face recognition based approach

    Science.gov (United States)

    Alim, M. Affan; Baig, Misbah M.; Mehboob, Shahzain; Naseem, Imran

    2017-06-01

    In this paper, we propose a framework for low cost secure electronic voting system based on face recognition. Essentially Local Binary Pattern (LBP) is used for face feature characterization in texture format followed by chi-square distribution is used for image classification. Two parallel systems are developed based on smart phone and web applications for face learning and verification modules. The proposed system has two tire security levels by using person ID followed by face verification. Essentially class specific threshold is associated for controlling the security level of face verification. Our system is evaluated three standard databases and one real home based database and achieve the satisfactory recognition accuracies. Consequently our propose system provides secure, hassle free voting system and less intrusive compare with other biometrics.

  11. Development and clinical implementation of an enhanced display algorithm for use in networked electronic portal imaging

    International Nuclear Information System (INIS)

    Heuvel, Frank van den; Han, Ihn; Chungbin, Suzanne; Strowbridge, Amy; Tekyi-Mensah, Sam; Ragan, Don P.

    1999-01-01

    Purpose: To introduce and clinically validate a preprocessing algorithm that allows clinical images from an electronic portal imaging device (EPID) to be displayed on any computer monitor, without loss of clinical usability. The introduction of such a system frees EPI systems from the constraints of fixed viewing workstations and increases mobility of the images in a department. Methods and Materials: The preprocessing algorithm, together with its variable parameters is introduced. Clinically, the algorithm is tested using an observer study of 316 EPID images of the pelvic region in the framework of treatment of carcinoma of the cervix and endometrium. Both anterior-posterior (AP/PA) and latero-lateral (LAT) images were used. The images scored were taken from six different patients, five of whom were obese, female, and postmenopausal. The result is tentatively compared with results from other groups. The scoring system, based on the number of visible landmarks in the port, is proposed and validated. Validation was performed by having the observer panel score images with artificially induced noise levels. A comparative study was undertaken with a standard automatic window and leveling display technique. Finally, some case studies using different image sites and EPI detectors are presented. Results: The image quality for all images in this study was deemed to be clinically useful (mean score > 1). Most of the images received a score which was second highest (AP/PA landmarks ≥ 6 and LAT landmarks ≥ 5). Obesity, which has been an important factor determining the image quality, was not seen to be a factor here. Compared to standard techniques a highly significant improvement was determined with regard to clinical usefulness. The algorithm performs fast (less than 9 seconds) and needs no additional user interaction in most of the cases. The algorithm works well on both direct detection portal imagers and camera-based imagers whether analog or digital cameras

  12. Development of Geometrical Quality Control Real-time Analysis Program using an Electronic Portal Imaging

    International Nuclear Information System (INIS)

    Lee, Sang Rok; Jung, Kyung Yong; Jang, Min Sun; Lee, Byung Gu; Kwon, Young Ho

    2012-01-01

    To develop a geometrical quality control real-time analysis program using an electronic portal imaging to replace film evaluation method. A geometrical quality control item was established with the Eclipse treatment planning system (Version 8.1, Varian, USA) after the Electronic Portal Imaging Device (EPID) took care of the problems occurring from the fixed substructure of the linear accelerator (CL-iX, Varian, USA). Electronic portal image (single exposure before plan) was created at the treatment room's 4DTC (Version 10.2, Varian, USA) and a beam was irradiated in accordance with each item. The gaining the entire electronic portal imaging at the Off-line review and was evaluated by a self-developed geometrical quality control real-time analysis program. As for evaluation methods, the intra-fraction error was analyzed by executing 5 times in a row under identical conditions and procedures on the same day, and in order to confirm the infer-fraction error, it was executed for 10 days under identical conditions of all procedures and was compared with the film evaluation method using an Iso-align quality control device. Measurement and analysis time was measured by sorting the time into from the device setup to data achievement and the time amount after the time until the completion of analysis and the convenience of the users and execution processes were compared. The intra-fraction error values for each average 0.1, 0.2, 0.3, 0.2 mm at light-radiation field coincidence, collimator rotation axis, couch rotation axis and gantry rotation axis. By checking the infer-fraction error through 10 days of continuous quality control, the error values obtained were average 1.7, 1.4, 0.7, 1.1 mm for each item. Also, the measurement times were average 36 minutes, 15 minutes for the film evaluation method and electronic portal imaging system, and the analysis times were average 30 minutes, 22 minutes. When conducting a geometrical quality control using an electronic portal imaging

  13. Electronic hand-drafting and picture management system.

    Science.gov (United States)

    Yang, Tsung-Han; Ku, Cheng-Yuan; Yen, David C; Hsieh, Wen-Huai

    2012-08-01

    The Department of Health of Executive Yuan in Taiwan (R.O.C.) is implementing a five-stage project entitled Electronic Medical Record (EMR) converting all health records from written to electronic form. Traditionally, physicians record patients' symptoms, related examinations, and suggested treatments on paper medical records. Currently when implementing the EMR, all text files and image files in the Hospital Information System (HIS) and Picture Archiving and Communication Systems (PACS) are kept separate. The current medical system environment is unable to combine text files, hand-drafted files, and photographs in the same system, so it is difficult to support physicians with the recording of medical data. Furthermore, in surgical and other related departments, physicians need immediate access to medical records in order to understand the details of a patient's condition. In order to address these problems, the Department of Health has implemented an EMR project, with the primary goal of building an electronic hand-drafting and picture management system (HDP system) that can be used by medical personnel to record medical information in a convenient way. This system can simultaneously edit text files, hand-drafted files, and image files and then integrate these data into Portable Document Format (PDF) files. In addition, the output is designed to fit a variety of formats in order to meet various laws and regulations. By combining the HDP system with HIS and PACS, the applicability can be enhanced to fit various scenarios and can assist the medical industry in moving into the final phase of EMR.

  14. Test software for BESIII MDC electronics system

    International Nuclear Information System (INIS)

    Zhang Hongyu; Sheng Huayi; Zhu Haitao; Ji Xiaolu; Zhao Dongxu

    2006-01-01

    This paper presents the design of Test System Software for BESIII MDC Electronics. Two kinds of test systems, SBS VP7 based and PowerPC based systems, and their corresponding test software are introduced. The software is developed in LabVIEW 7.1 and Microsoft Visual C++ 6.0, some test functions of the software, as well as their user interfaces, are described in detail. The software has been applied in hardware debugging, performance test and long term stability test. (authors)

  15. System for Cooling of Electronic Components

    Science.gov (United States)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  16. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  17. Zope based electronic operation log system - Zlog

    International Nuclear Information System (INIS)

    Yoshii, K.; Satoh, Y.; Kitabayashi, T.

    2004-01-01

    Since January 2004, the Zope based electronic operation logging system, named Zlog, has been running at the KEKB and AR accelerator facilities. Since Zope is the python based open source web application server software and python language is familiar for the members in the KEKB accelerator control group, we have developed the Zlog system rapidly. In this paper, we report the development history and the present status of Zlog system. Also we show some general plug-in components, called Zope products, have been useful for our Zlog development. (author)

  18. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  19. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    Science.gov (United States)

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  20. Transfer function analysis of radiographic imaging systems

    International Nuclear Information System (INIS)

    Metz, C.E.; Doi, K.

    1979-01-01

    The theoretical and experimental aspects of the techniques of transfer function analysis used in radiographic imaging systems are reviewed. The mathematical principles of transfer function analysis are developed for linear, shift-invariant imaging systems, for the relation between object and image and for the image due to a sinusoidal plane wave object. The other basic mathematical principle discussed is 'Fourier analysis' and its application to an input function. Other aspects of transfer function analysis included are alternative expressions for the 'optical transfer function' of imaging systems and expressions are derived for both serial and parallel transfer image sub-systems. The applications of transfer function analysis to radiographic imaging systems are discussed in relation to the linearisation of the radiographic imaging system, the object, the geometrical unsharpness, the screen-film system unsharpness, other unsharpness effects and finally noise analysis. It is concluded that extensive theoretical, computer simulation and experimental studies have demonstrated that the techniques of transfer function analysis provide an accurate and reliable means for predicting and understanding the effects of various radiographic imaging system components in most practical diagnostic medical imaging situations. (U.K.)

  1. DIANE stationary neutron radiography system image quality and industrial applications

    International Nuclear Information System (INIS)

    Cluzeau, S.; Huet, J.; Tourneur, P. le

    1994-01-01

    The SODERN neutron radiography laboratory has operated since February 1993 using a sealed tube generator (GENIE 46). An experimental programme of characterization (dosimetry, spectroscopy) has confirmed the expected performances concerning: neutron flux intensity, neutron energy range, residual gamma flux. Results are given in a specific report [2]. This paper is devoted to the image performance reporting. ASTM and specific indicators have been used to test the image quality with various converters and films. The corresponding modulation transfer functions are to be determined from image processing. Some industrial applications have demonstrated the capabilities of the system: corrosion detection in aircraft parts, ammunitions filling testing, detection of polymer lacks in sandwich steel sheets, detection of moisture in a probe for geophysics, residual ceramic cores imaging in turbine blades. Various computerized electronic imaging systems will be tested to improve the industrial capabilities. (orig.)

  2. Multispectral system for medical fluorescence imaging

    International Nuclear Information System (INIS)

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  3. Electron Radiation Belts of the Solar System

    Science.gov (United States)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  4. Quantum frustrated and correlated electron systems

    Directory of Open Access Journals (Sweden)

    P Thalmeier

    2008-06-01

    Full Text Available  Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

  5. 3D images and expert system

    International Nuclear Information System (INIS)

    Hasegawa, Jun-ichi

    1998-01-01

    This paper presents an expert system called 3D-IMPRESS for supporting applications of three dimensional (3D) image processing. This system can automatically construct a 3D image processing procedure based on a pictorial example of the goal given by a user. In the paper, to evaluate the performance of the system, it was applied to construction of procedures for extracting specific component figures from practical chest X-ray CT images. (author)

  6. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  7. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-10-14

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  8. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.; Cordero, Marlon D.; Nassar, Joanna M.; Hanna, Amir; Kutbee, Arwa T.; Carreno, Armando Arpys Arevalo; Hussain, Muhammad Mustafa

    2016-01-01

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  9. XUV free-electron laser-based projection lithography systems

    Energy Technology Data Exchange (ETDEWEB)

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  10. Electronic Document Management Using Inverted Files System

    Science.gov (United States)

    Suhartono, Derwin; Setiawan, Erwin; Irwanto, Djon

    2014-03-01

    The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.

  11. Electronic Document Management Using Inverted Files System

    Directory of Open Access Journals (Sweden)

    Suhartono Derwin

    2014-03-01

    Full Text Available The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.

  12. Image-based electronic patient records for secured collaborative medical applications.

    Science.gov (United States)

    Zhang, Jianguo; Sun, Jianyong; Yang, Yuanyuan; Liang, Chenwen; Yao, Yihong; Cai, Weihua; Jin, Jin; Zhang, Guozhen; Sun, Kun

    2005-01-01

    We developed a Web-based system to interactively display image-based electronic patient records (EPR) for secured intranet and Internet collaborative medical applications. The system consists of four major components: EPR DICOM gateway (EPR-GW), Image-based EPR repository server (EPR-Server), Web Server and EPR DICOM viewer (EPR-Viewer). In the EPR-GW and EPR-Viewer, the security modules of Digital Signature and Authentication are integrated to perform the security processing on the EPR data with integrity and authenticity. The privacy of EPR in data communication and exchanging is provided by SSL/TLS-based secure communication. This presentation gave a new approach to create and manage image-based EPR from actual patient records, and also presented a way to use Web technology and DICOM standard to build an open architecture for collaborative medical applications.

  13. Flow imaging of the cardiovascular system using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Sakakibara, Makoto; Sunami, Yuko

    1988-01-01

    Blood flow images by magnetic resonance imaging (MRI) using a 0.25 T unit were evaluated for nine normal volunteers and 108 subjects with a variety of cardiovascular abnormalities. Using the non-gated short-spin echo (SE) technique, blood flow in the cardiovascular systems was not imaged in the normal volunteers. Using end-systolic and end-diastolic SE techniques for the normal subjects, blood flow in the cardiac chambers was not clearly imaged. Blood flow in the ascending aorta and aortic arch often did not appear in the gated SE images of the normal subjects. However, blood flow in the descending aorta was often observed in the gated SE images. Blood flow imaging was demonstrated by both non-gated and gated SE techniques in regions where blood flow was relatively slow; for example, in the left atrium of mitral stenosis, in an aortic aneurysm, in a false lumen of an aortic dissection, and in the left ventricle having old myocardial infarction. Using the non-gated inversion recovery (IR) technique, no blood flow was imaged in the cardiovascular system except in the left atrium of one case with mitral stenosis. Using the non-gated short SE technique, there was good correlation between the thrombus formation and the presence of blood flow images in the left atria of 17 patients with mitral stenosis, and in the aneurysmal portions of the aorta or in the false lumens of aortic dissection of 18 patients. It was suggested that mural thrombi in such diseases were related to the relatively slow blood flow. Blood flow imaging easily distinguished stagnant blood flow from mural thrombi using non-gated short SE, end-systolic SE, and IR techniques. Thus, blood flow imaging using MRI should become an important means of evaluating the cardiovascular system. (author)

  14. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  15. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  16. Excitation and characterization of image potential state electrons on quasi-free-standing graphene

    Science.gov (United States)

    Lin, Yi; Li, Yunzhe; Sadowski, Jerzy T.; Jin, Wencan; Dadap, Jerry I.; Hybertsen, Mark S.; Osgood, Richard M.

    2018-04-01

    We investigate the band structure of image potential states in quasi-free-standing graphene (QFG) monolayer islands using angle-resolved two-photon-photoemission spectroscopy. Direct probing by low-energy electron diffraction shows that QFG is formed following oxygen intercalation into the graphene-Ir(111) interface. Despite the apparent decoupling of the monolayer graphene from the Ir substrate, we find that the binding energy of the n =1 image potential state on these QFG islands increases by 0.17 eV, as compared to the original Gr/Ir(111) interface. We use calculations based on density-functional theory to construct an empirical, one-dimensional potential that quantitatively reproduces the image potential state binding energy and links the changes in the interface structure to the shift in energy. Specifically, two factors contribute comparably to this energy shift: a deeper potential well arising from the presence of intercalated oxygen adatoms and a wider potential well associated with the increase in the graphene-Ir distance. While image potential states have not been observed previously on QFG by photoemission, our paper now demonstrates that they may be strongly excited in a well-defined QFG system produced by oxygen intercalation. This opens an opportunity for studying the surface electron dynamics in QFG systems, beyond those found in typical nonintercalated graphene-on-substrate systems.

  17. Dynamic MR imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Shah, A.S.; Hylton, H.; Hentz, V.R.; Schattner, P.

    1991-01-01

    This paper reports on dynamic MR imaging which is an MR technique that allows imaging of the musculoskeletal system in motion. Current methods for observing the articulation of muscles and joints are limited to acquisition of stationary images at different spatial orientations. These images are then replayed from computer memory to simulate motion. Unlike stationary acquisition, dynamic MR imaging allows the volume of interest to be subjected to motion and dynamic stress, which is important for detecting stress-induced pathology. To demonstrate the utility of dynamic MR imaging, a system for imaging a moving wrist has been developed. The system consists of apparatus capable of providing simultaneous radialulnar deviation and flexion-extension, and hardware for system control and acquisition gating. The apparatus is mounted on the patient bed and is transferable to a variety of standard clinical MR imaging systems. Images were obtained during motion, and the ability of dynamic MR imaging to accurately image the moving wrist with very little motion artifact was demonstrated

  18. Secondary electron images obtained with a standard photoelectron emission microscope set-up

    International Nuclear Information System (INIS)

    Benka, Oswald; Zeppenfeld, Peter

    2005-01-01

    The first results of secondary electron images excited by 3-4.3 keV electrons are presented. The images are obtained with a standard FOCUS-PEEM set-up equipped with an imaging energy filter (IEF). The electron gun was mounted on a standard PEEM entrance flange at an angle of 25 deg. with respect to the sample surface. A low extraction voltage of 500 V was used to minimize the deflection of the electron beam by the PEEM extraction electrode. The secondary electron images are compared to photoelectron images excited by a standard 4.9 eV UV lamp. In the case of a Cu pattern on a Si substrate it is found that the lateral resolution without the IEF is about the same for electron and photon excitation but that the relative electron emission intensities are very different. The use of the IEF reduces the lateral resolution. Images for secondary electron energies between eV 1 and eV 2 were obtained by setting the IEF to -V 1 and -V 2 ∼-(V 1 +5V) potentials and taking the difference of both images. Images up to 100 eV electron energies were recorded. The material contrast obtained in these difference images is discussed in terms of a secondary electron and photoelectron emission model and secondary electron energy spectra measured with a LEED-Auger spectrometer

  19. Electronic circuits for communications systems: A compilation

    Science.gov (United States)

    1972-01-01

    The compilation of electronic circuits for communications systems is divided into thirteen basic categories, each representing an area of circuit design and application. The compilation items are moderately complex and, as such, would appeal to the applications engineer. However, the rationale for the selection criteria was tailored so that the circuits would reflect fundamental design principles and applications, with an additional requirement for simplicity whenever possible.

  20. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  1. Developments of optical fast-gated imaging systems

    International Nuclear Information System (INIS)

    Koehler, H.A.; Kotecki, D.

    1984-08-01

    Several fast-gated imaging systems to measure ultra-fast single-transient data have been developed for time-resolved imaging of pulsed radiation sources. These systems were designed to achieve image recording times of 1 to 3 ms and dynamic ranges of >200:1 to produce large two-dimensional images (greater than or equal to 10 4 spatial points) of 1 to 2 ns exposure and small two-dimensional images (less than or equal to 200 spatial points) of less than or equal to 0.5 ns exposure. Both MCP intensified solid-state two-dimensional framing cameras and streak camera/solid-state camera systems were used; the framing camera system provides snap shots with high spatial resolution whereas the streak camera system provides for limited spatial points each with high temporal resolution. Applications of these systems include electron-beam, x-ray, gamma-ray, and neutron diagnostics. This report reviews the characteristics of the major components of fast-gated imaging systems developed at Lawrence Livermore National Laboratory. System performances are described in view of major experiments, and the diagnostic requirements of new experiments in atomic physics (x-ray lasers) and nuclear physics (fusion) are indicated

  2. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  3. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.D.

    1994-01-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  4. Advanced electronics for the CTF MEG system.

    Science.gov (United States)

    McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A

    2004-11-30

    Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.

  5. Design of the BEPCII electron gun system

    International Nuclear Information System (INIS)

    Liu Bo; Gu Mengping; Chi Yunlong

    2006-01-01

    BEPCII upgrading project needs a new high current electron gun. The design stage such as physical design, mechanical design and control system design of this new electron gun is described. The emission current is designed to be higher than 10 A for the pulse width of 1 ns with repetition rate of 50 Hz. The gun will operate with a pulsed high voltage power supply which can provide up to 200 kV high voltage. Computer simulations and optimizations have been carried out in the design stage, including the gun geometry and beam transport. EGUN and DGUN codes are used to simulate the gun geometry, and the results show that the perveance is about 0.22 μA·V -3/2 , and the emittance at gun exit is about 16 π·mm·mrad. PARMELA code shows that the electron beam can be easily transported to the end of the first accelerating tube with a capture efficiency of 67% and root mean square emittance of 25 mm·mrad. New scheme of the gun control system based on EPICS is also presented. Two-bunch operation mode and 2.5 μs long pulse operation mode are available in the control system. (authors)

  6. Advances in imaging and electron physics optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Invaluable reference and guide for physicists, engineers and mathematicians.

  7. Advances in imaging and electron physics optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contributions from leading international scholars and industry experts * Discusses hot topic areas and presents current and future research trends * Invaluable reference and guide for physicists, engineers and mathematicians.

  8. Fabrication and electronic transport studies of single nanocrystal systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, David Louis [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  9. Electron radiography

    Science.gov (United States)

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  10. ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Shishkina

    2011-11-01

    Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.

  11. Development of HF-systems for electron storage systems

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Popkov, Yu.P.; Reva, S.N.; Telegin, Yu.N.

    1999-01-01

    Development of HF systems for electron storages is described. Its final task is construction of 100 kW HF station at 699,3 MHz frequency consisting from low-power HF system, klystron amplifier, wave line for HF power transmission and accelerating section. Functional parameters of HF station are given

  12. Effects of electron-electron interactions on electronic transport in disordered systems

    International Nuclear Information System (INIS)

    Foley, Simon Timothy

    2002-01-01

    This thesis is concerned with the role of electron-electron interactions on electronic transport in disordered systems. We first consider a novel non-linear sigma model in order to microscopically treat the effects of disorder and electronic interaction. We successfully reproduce the perturbative results for the zero-bias anomaly and the interaction correction to the conductivity in a weakly disordered system, and discuss possible directions for future work. Secondly we consider the fluctuations of the dephasing rate for a closed diffusive and quantum dot system. Using the Keldysh technique we derive an expression for the inelastic scattering rate with which we self-consistently obtain the fluctuations in the dephasing rate. For the diffusive regime we find the relative fluctuations is given by F ∼ (L φ /L) 2 /g 2 , where g is the dimensionless conductance, L φ is the dephasing length and L is the sample size. For the quantum dot regime we find a perturbative divergence due to the presence of the zero mode. By mapping divergent diagrams to those for the two-level correlation function, we conjecture the existence of an exact relation between the two. Finally we discuss the consequences of this relation. (author)

  13. Cherenkov Ring Imaging Detector front-end electronics

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Marshall, D.; Muller, D.; Nagamine, T.; Oxoby, G.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Suekane, F.; Toge, N.; Va'Vra, J.; Williams, S.; Wilson, R.J.; Whitaker, J.S.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Morrison, R.; Witherell, M.; Yellin, S.; Coyle, P.; Coyne, D.; Spencer, E.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Yuta, H.

    1990-10-01

    The SLD Cherenkov Ring Imaging Detector use a proportional wire detector for which a single channel hybrid has been developed. It consists of a preamplifier, gain selectable amplifier, load driver amplifier, power switching, and precision calibrator. For this hybrid, a bipolar, semicustom integrated circuit has been designed which includes video operational amplifiers for two of the gain stages. This approach allows maximization of the detector volume, allows DC coupling, and enables gain selection. System tests show good noise performance, calibration precision, system linearity, and signal shape uniformity over the full dynamic range. 10 refs., 8 figs

  14. 42 CFR 456.722 - Electronic claims management system.

    Science.gov (United States)

    2010-10-01

    ... Electronic Claims Management System for Outpatient Drug Claims § 456.722 Electronic claims management system...'s Medicaid Management Information System (MMIS) applicable to prescription drugs. (ii) Notifying the... 42 Public Health 4 2010-10-01 2010-10-01 false Electronic claims management system. 456.722...

  15. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    International Nuclear Information System (INIS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztaray, Balint; Baer, Tomas

    2009-01-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm -1 field, which enables the direct measurement of rate constants in the 10 3 -10 7 s -1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  16. Digital image information systems in radiology

    International Nuclear Information System (INIS)

    Greinacher, C.F.C.; Luetke, B.; Seufert, G.

    1987-01-01

    About 25% of all patient examinations are performed digitally in a today's radiological department. A computerized system is described that supports generation, transport, interpretation and archiving of digital radiological images (Picture Archiving and Communication System PACS). The technical features concerning image communication via local area networks, image storage on magnetic and optical media and digital workstations for image display and manipulation are described. A structured system architecture is introduced. It allows flexible adaption to individual organizations and minimizes the requirements of the communication network. (orig.) [de

  17. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent. (paper)

  18. The fluid systems for the SLD Cherenkov ring imaging detector

    International Nuclear Information System (INIS)

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C 2 H 6 + TMAE), radiator gas (C 5 F 12 + N 2 ) and radiator liquid (C 6 F 14 ). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported

  19. Electronic Integrated Disease Surveillance System and Pathogen Asset Control System

    Directory of Open Access Journals (Sweden)

    Tom G. Wahl

    2012-06-01

    Full Text Available Electronic Integrated Disease Surveillance System (EIDSS has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS. Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP sponsored by the US Defense Threat Reduction Agency (DTRA.

  20. Electronic integrated disease surveillance system and pathogen asset control system.

    Science.gov (United States)

    Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K

    2012-06-20

    Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA).

  1. Generation of complete electronic nuclear medicine reports including static, dynamic and gated images

    International Nuclear Information System (INIS)

    Beretta, M.; Pilon, R.; Mut, F.

    2002-01-01

    Aim: To develop a procedure for the creation of nuclear medicine reports containing static and dynamic images. The reason for implementing this technique is the lack of adequate solutions for an electronic format of nuclear medicine results allowing for rapid transmission via e-mail, specially in the case of dynamic and gated SPECT studies, since functional data is best presented in dynamic mode. Material and Methods: Clinical images were acquired in static, whole body, dynamic and gated mode, corresponding to bone studies, diuretic renogram, radionuclide cystography and gated perfusion SPECT, as well as respective time-activity curves. Image files were imported from a dedicated nuclear medicine computer system (Elscint XPert) to a Windows-based PC through a standard ethernet network with TCP-IP communications protocol, using a software developed by us which permits the conversion from the manufacturer's original format into a bitmap format (.bmp) compatible with commercially available PC software. For cardiac perfusion studies, background was subtracted prior to transferring to reduce the amount of information in the file; this was not done for other type of studies because useful data could be eliminated. Dynamic images were then processed using commercial software to create animated files and stored in .gif format. Static images were re-sized and stored in .jpg format. Original color or gray scale was always preserved. All the graphic material was then merged with a previously prepared report text using HTML format. The report also contained reference diagrams to facilitate interpretation. The whole report was then compressed into a self-extractable file, ready to be sent by electronic mail. Reception of the material was visually checked for data integrity including image quality by two experienced nuclear medicine physicians. Results: The report presented allows for simultaneous visualization of the text, diagrams and images either static, dynamic, gated or

  2. Overview of the data acquisition electronics system design for the SLAC Linear Collider Detector (SLD)

    International Nuclear Information System (INIS)

    Larsen, R.S.

    1985-09-01

    The SLD Detector will contain five major electronics subsystems: Vertex, Drift, Liquid Argon Calorimeter, Cerenkov Ring Imaging, and Warm Iron Calorimeter. To implement the approximately 170,000 channels of electronics, extensive miniaturization and heavy use of multiplexing techniques are required. Design criteria for each subsystem, overall system architecture, and the R and D program are described

  3. Electron density profile in multilayer systems

    International Nuclear Information System (INIS)

    Toekesi, K.

    2004-01-01

    Complete text of publication follows. Electron energy loss spectroscopy (EELS) has been used extensively to study the multilayer systems, where the thickness of layers are in the nanometer range. These studies has received considerable attention because of its technological interest, for example in the nanotechnology. On the most fundamental level, its importance is derived from the basic physics that is involved. One key quantities of interest is the response of a many-body system to an external perturbation: How act and how modify the interface between the solid-solid or solid-vacuum the excitations in the solid and in the vicinity of the interfaces. In this work, as a starting point of such investigations we calculated the electron density profile for multilayer systems. Our approach employs the time-dependent density functional theory (TDDFT), that is, the solution of a time-dependent Schroedinger equation in which the potential and forces are determined selfconsistently from the dynamics governed by the Schroedinger equation. We treat the problem in TDDFT at the level of the local-density approximation (LDA). Later, the comparison of experimentally obtained loss functions and the theory, based on our TDDFT calculations can provide deeper understanding of surface physics. We performed the calculations for half-infinite samples characterized by r s =1.642 and r s =1.997. We also performed the calculations for double layer systems. The substrate was characterized by r s =1.997 and the coverage by r s =1.642. Fig. 1. shows the obtained electron density profile in LDA approximation. Because of the sharp cutoff of electronic wave vectors at the Fermi surface, the densities in the interior exhibit slowly decaying Friedel oscillations. To highlight the Friedel oscillation we enlarged the electron density profile in Fig. 1a. and Fig. 1b. The work was supported by the Hungarian Scientific Research Found: OTKA No. T038016, the grant 'Bolyai' from the Hungarian Academy of

  4. Imaging of the peripheral vascular system

    International Nuclear Information System (INIS)

    Gould, S.A.; Pond, G.D.; Pinsky, S.; Moss, G.S.; Srikantaswamy, S.; Ryo, U.Y.

    1984-01-01

    This book is limited neither to the peripheral vascular system nor to diagnostic imaging techniques. Its 18 chapters cover nonimaging blood-flow techniques (Doppler ultrasound, plethysmography) as well as noninvasive and invasive imaging techniques (ultrasound, computed tomography, radionuclide digital-subtraction angiography, and contrast angiography). These are applied not only to the peripheral vascular system but also to the aorta and vena cava

  5. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  6. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  7. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    International Nuclear Information System (INIS)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol

    2010-01-01

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  8. IDAPS (Image Data Automated Processing System) System Description

    Science.gov (United States)

    1988-06-24

    This document describes the physical configuration and components used in the image processing system referred to as IDAPS (Image Data Automated ... Processing System). This system was developed by the Environmental Research Institute of Michigan (ERIM) for Eglin Air Force Base. The system is designed

  9. Strongly Correlated Electron Systems: An Operatorial Perspective

    Science.gov (United States)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.

  10. Free radicals imaged in vivo in the rat by using proton-electron double-resonance imaging

    International Nuclear Information System (INIS)

    Lurie, D.J.; Nicholson, Ian; Foster, M.A.; Mallard, J.R.

    1990-01-01

    A new technique called proton-electron double-resonance imaging is described for imaging free radicals in aqueous samples. The method is a combination of proton NMR imaging with nuclear electron double resonance. The results of using this technique to image free radicals in vivo in the rat are presented. Rats were injected intravenously with a nitroxide free radical solution and a series of images was obtained from which the clearance of the free radical through the liver and kidneys could be observed. (author)

  11. Advanced millimeter wave imaging systems

    Science.gov (United States)

    Schuchardt, J. M.; Gagliano, J. A.; Stratigos, J. A.; Webb, L. L.; Newton, J. M.

    1980-01-01

    Unique techniques are being utilized to develop self-contained imaging radiometers operating at single and multiple frequencies near 35, 95 and 183 GHz. These techniques include medium to large antennas for high spatial resolution, lowloss open structures for RF confinemnt and calibration, wide bandwidths for good sensitivity plus total automation of the unit operation and data collection. Applications include: detection of severe storms, imaging of motor vehicles, and the remote sensing of changes in material properties.

  12. Iodine filter imaging system for subtraction angiography using synchrotron radiation

    Science.gov (United States)

    Umetani, K.; Ueda, K.; Takeda, T.; Itai, Y.; Akisada, M.; Nakajima, T.

    1993-11-01

    A new type of real-time imaging system was developed for transvenous coronary angiography. A combination of an iodine filter and a single energy broad-bandwidth X-ray produces two-energy images for the iodine K-edge subtraction technique. X-ray images are sequentially converted to visible images by an X-ray image intensifier. By synchronizing the timing of the movement of the iodine filter into and out of the X-ray beam, two output images of the image intensifier are focused side by side on the photoconductive layer of a camera tube by an oscillating mirror. Both images are read out by electron beam scanning of a 1050-scanning-line video camera within a camera frame time of 66.7 ms. One hundred ninety two pairs of iodine-filtered and non-iodine-filtered images are stored in the frame memory at a rate of 15 pairs/s. In vivo subtracted images of coronary arteries in dogs were obtained in the form of motion pictures.

  13. Computer experiments on the imaging of point defects with the conventional transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Krakow, W [Xerox Corp., Rochester, N.Y. (USA)

    1978-02-01

    To aid in the interpretation of high resolution electron micrographs of defect structures in crystals, computer-simulated dark-field electron micrographs have been obtained for a variety of point defects in metals. Interpretation of these images in terms of atomic positions and atom correlations becomes straightforward, and it is a simple matter to distinguish between real structural information and image artifacts produced by the phase contrast mechanism in the electron optical imaging process.

  14. An adaptive optics imaging system designed for clinical use

    Science.gov (United States)

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  15. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  16. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    International Nuclear Information System (INIS)

    Lee, Z.; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-01-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions

  17. Development of a THz spectroscopic imaging system

    International Nuclear Information System (INIS)

    Usami, M; Iwamoto, T; Fukasawa, R; Tani, M; Watanabe, M; Sakai, K

    2002-01-01

    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated

  18. Clinical software for MR imaging system, 4

    International Nuclear Information System (INIS)

    Shimizu, Koji; Kasai, Akira; Okamura, Shoichi

    1992-01-01

    Magnetic resonance imaging continues to elicit new application software through the recent technological advances of MR equipment. This paper describes several applications of our newly developed clinical software. The fast SE sequence (RISE) has proved to reduce routine examination time and to improve image quality, and ultra-fast FE sequence (SMASH) was found to extend the diagnostic capabilities in the field of cardiac study. Diffusion/perfusion imaging achieved in our MR system showed significant promise for providing novel information regarding tissue characterization. Furthermore, Image quality and practicalities of MR angiography have been improved by advanced imaging sequences and sophisticated post-processing software. (author)

  19. New Electron Gun System for BEPCII

    CERN Document Server

    Liu, Bo; Long Chi, Yun; Zhang, Chuang

    2005-01-01

    The new electron gun system for BEPCII has been put into operation since Nov. 2004. The article describes the design, experiment and operation of this new system. The design current of the gun is 10 A for the pulse lengths of 1 ns, 2.5 ns and 1 μs with repetition rate of 50 Hz. The gun is operated with a pulsed high voltage power supply which can provide up to 200 kV high voltage. Computer simulations have been carried out in the design stage, including simulation of the gun geometry and beam transportation. Some important relation curves are obtained during the experiment. Two-bunch operation is available and some elementary tests have been performed. New scheme of the gun control system based on EPICS is also presented. The real operation shows that the design and manufacturing is basically successful.

  20. Online Voting System Based on Image Steganography and Visual Cryptography

    Directory of Open Access Journals (Sweden)

    Biju Issac

    2017-01-01

    Full Text Available This paper discusses the implementation of an online voting system based on image steganography and visual cryptography. The system was implemented in Java EE on a web-based interface, with MySQL database server and Glassfish application server as the backend. After considering the requirements of an online voting system, current technologies on electronic voting schemes in published literature were examined. Next, the cryptographic and steganography techniques best suited for the requirements of the voting system were chosen, and the software was implemented. We have incorporated in our system techniques like the password hashed based scheme, visual cryptography, F5 image steganography and threshold decryption cryptosystem. The analysis, design and implementation phase of the software development of the voting system is discussed in detail. We have also used a questionnaire survey and did the user acceptance testing of the system.

  1. A Picture is Worth 1,000 Words. The Use of Clinical Images in Electronic Medical Records.

    Science.gov (United States)

    Ai, Angela C; Maloney, Francine L; Hickman, Thu-Trang; Wilcox, Allison R; Ramelson, Harley; Wright, Adam

    2017-07-12

    To understand how clinicians utilize image uploading tools in a home grown electronic health records (EHR) system. A content analysis of patient notes containing non-radiological images from the EHR was conducted. Images from 4,000 random notes from July 1, 2009 - June 30, 2010 were reviewed and manually coded. Codes were assigned to four properties of the image: (1) image type, (2) role of image uploader (e.g. MD, NP, PA, RN), (3) practice type (e.g. internal medicine, dermatology, ophthalmology), and (4) image subject. 3,815 images from image-containing notes stored in the EHR were reviewed and manually coded. Of those images, 32.8% were clinical and 66.2% were non-clinical. The most common types of the clinical images were photographs (38.0%), diagrams (19.1%), and scanned documents (14.4%). MDs uploaded 67.9% of clinical images, followed by RNs with 10.2%, and genetic counselors with 6.8%. Dermatology (34.9%), ophthalmology (16.1%), and general surgery (10.8%) uploaded the most clinical images. The content of clinical images referencing body parts varied, with 49.8% of those images focusing on the head and neck region, 15.3% focusing on the thorax, and 13.8% focusing on the lower extremities. The diversity of image types, content, and uploaders within a home grown EHR system reflected the versatility and importance of the image uploading tool. Understanding how users utilize image uploading tools in a clinical setting highlights important considerations for designing better EHR tools and the importance of interoperability between EHR systems and other health technology.

  2. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  3. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  4. Electron scattering and few nucleon systems

    International Nuclear Information System (INIS)

    Frois, B.

    1983-08-01

    Recent result obtained by electron scattering in the few-nucleon systems (A 3 He charge and magnetic form factors are discussed. New theoretical results indicate that three body forces improve considerably the saturation properties of 3 He, 4 He and nuclear matter, but are not able to reconcile experiment and theory for the charge form factors of 3 He and 4 He. Calculations of meson exchange effects with different theoretical approaches bring the theory into reasonable agreement with the experimental charge and magnetic form factor fo 3 He. Recent results of the measurements of the two and three body break-up of 3 He are discussed

  5. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  6. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  7. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  8. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  9. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Teruo, E-mail: t.hashimoto@manchester.ac.uk; Thompson, George E.; Zhou, Xiaorong; Withers, Philip J.

    2016-04-15

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. - Highlights: • The roughness of the ultramicrotomed block face of AA2024 in Al area was 1.2 nm. • Surface texture associated with chattering was evident in grains with 45° diamond knife. • A 76° rake angle minimises the stress on the block face. • Using the oscillating knife with a cutting speed of 0.04 mms{sup −1} minimised the surface texture. • A variety of material applications were presented.

  10. Deeply trapped electrons in imaging plates and their utilization for extending the dynamic range

    International Nuclear Information System (INIS)

    Ohuchi, Hiroko; Kondo, Yasuhiro

    2010-01-01

    The absorption spectra of deep centers in an imaging plate (IP) made of BaFBr 0:85 I 0:15 :Eu 2+ have been studied in the ultraviolet region. Electrons trapped in deep centers are considered to be the cause of unerasable and reappearing latent images in IPs over-irradiated with X-rays. Deep centers showed a dominant peak at around 320 nm, followed by two small peaks at around 345 and 380 nm. By utilizing deeply trapped electrons, we have attempted to extend the dynamic range of an IP. The IP was irradiated by 150-kV X-rays with doses from 8.07 mGy to 80.7 Gy. Reading out the latent image by the stimulation of Eu 2+ luminescence with a 633-nm He-Ne laser light from a conventional Fuji reader showed a linear relationship with irradiated dose up to 0.8 Gy, but then becoming non-linear. After fully erasing with visible light, unerasable latent images were read out using 635-nm semi-conductor laser light combined with a photon-counting detection system. The dose-response curve so obtained gave a further two orders of magnitude extending the dynamic range up to 80.7 Gy. Comprehensive results indicate that electrons supplied from deep centers to the F centers provided the extended dynamic range after the F centers became saturated. Based on these facts, a model of the excitation of deeply trapped electrons and PSL processes is proposed.

  11. A gamma cammera image processing system

    International Nuclear Information System (INIS)

    Chen Weihua; Mei Jufang; Jiang Wenchuan; Guo Zhenxiang

    1987-01-01

    A microcomputer based gamma camera image processing system has been introduced. Comparing with other systems, the feature of this system is that an inexpensive microcomputer has been combined with specially developed hardware, such as, data acquisition controller, data processor and dynamic display controller, ect. Thus the process of picture processing has been speeded up and the function expense ratio of the system raised

  12. Advanced image display systems in radiology

    International Nuclear Information System (INIS)

    Wendler, T.

    1987-01-01

    Advanced image display systems for the fully digital diagnostic imaging departments of the future will be far more than simple replacements of the traditional film-viewing equipment. The new capabilities of very high resolution and highly dynamic displays offer a userfriendly and problem-oriented way of image interpretation. Advanced harware-, software- and human-machine interaction-concepts have been outlined. A scenario for a future way of handling and displaying images, reflecting a new image viewing paradigm in radiology is sketched which has been realized in an experimental image workstation model in the laboratory which, despite its technical complexity, offers a consistent strategy for fast and convenient interaction with image objects. The perspective of knowledge based techniques for workstation control software with object-oriented programming environments and user- and task-adaptive behavior leads to more advanced display properties and a new quality of userfriendliness. 2 refs.; 5 figs

  13. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    CERN Document Server

    Slutskin, A A; Pepper, M

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...

  14. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    Science.gov (United States)

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  15. Superconductivity in strongly correlated electron systems: successes and open questions

    International Nuclear Information System (INIS)

    Shastry, B. Sriram

    2000-01-01

    Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems

  16. MONSOON Image Acquisition System | CTIO

    Science.gov (United States)

    Staff CTIO History CTIO Directors Historic Highlights Site Description Contact Us Astronomers Observing Contact Acknowledgments TS4 History ISPI ISPI Exposure Time Calculator OSIRIS Spartan Optical Imagers single detector to very large focal planes made from arrays of detectors. The basic hierarchy of a

  17. Complexity in electronic negotiation support systems.

    Science.gov (United States)

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  18. Energy transformation in molecular electronic systems

    International Nuclear Information System (INIS)

    Kasha, M.

    1985-01-01

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species 1 Δ/sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on π-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs

  19. Devices for Evaluating Imaging Systems. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Demirkaya, O.; Al-Mazrou, R. [Department of Biomedical Physics, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2014-12-15

    A quality management system (QMS) has three main components: (a) Quality assurance (QA); (b) Quality improvement; (c) Quality control (QC). The aim of a QMS is to ensure that the deliverables meet the requirements set forth by the users. The deliverables can be, in general, all the services provided in a nuclear medicine department, and the diagnostic imaging services in particular. In this section, the primary focus is the diagnostic imaging equipment and images produced by them.

  20. Imaging of dopaminergic system in movement disorders

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluated the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaging are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD

  1. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  2. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  3. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    Science.gov (United States)

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Electron spectroscopic imaging of antigens by reaction with boronated antibodies.

    Science.gov (United States)

    Qualmann, B; Kessels, M M; Klobasa, F; Jungblut, P W; Sierralta, W D

    1996-07-01

    Two small homogeneous markers for electron spectroscopic imaging (ESI) containing eight dodecaborane cages linked to a poly-alpha, epsilon-L-lysine dendrimer were synthesized; one of these was made water soluble by the attachment of a polyether. The markers were coupled to the sulfhydryl group of (monovalent) antibody fragments (Fab') by a homobifunctional cross-linker. While the coupling ratios of the poorly water-soluble compound did not exceed 20%, the polyether-containing variant reacted quantitatively. Its suitability for immunolabelling was tested in a study of the mechanism of the transcellular transport of an administered heterologous protein (bovine serum albumin, BSA) through ileal enterocytes of newborn piglets by endocytotic vesicles in comparison to conventional immunogold reagents. The post-embedding technique was employed. The boronated Fab' gave rise to considerably higher tagging frequencies than seen with immunogold, as could be expected from its form- and size-related physical advantages and the dense packing of BSA in the vesicles. The new probe, carrying the antigen-combining cleft at one end and the boron clusters at the opposite end of the oval-shaped conjugate, add to the potential of ESI-based immunocytochemistry.

  5. Imaging of osteo-odonto-keratoprosthesis by electron beam tomography.

    Science.gov (United States)

    Fong, K C S; Ferrett, C G; Tandon, R; Paul, B; Herold, J; Liu, C S C

    2005-08-01

    To describe the experience of using electron beam tomography (EBT) in imaging of osteo-odonto-keratoprosthesis (OOKP) to identify early bone and dentine loss which may threaten the viability of the eye. Seven patients with an OOKP in one eye underwent EBT. The OOKP lamina dimensions were measured on EBT and compared to the manual measurements at the time of surgery. There was a high degree of resolution of the OOKP lamina noted with EBT. In particular, it identified three patients with a marked degree of thinning of the lamina edges. Two of these patients had OOKP that were allografts. The mean time from surgery to examination was 3.6 years (range 1.2-5 years) while the mean age of the patients was 56 years (range 31-79 years). It is important to monitor regularly the dimensions and stability of the OOKP lamina as it will help detect cases that are at risk of extrusion of the optical cylinder and consequent endophthalmitis. Prophylactic measures can then be taken to prevent such serious complications from occurring. In this series, the authors found EBT to have excellent resolution and speed and they would support regular scanning of the OOKP lamina in all patients.

  6. Educational Systems Design Implications of Electronic Publishing.

    Science.gov (United States)

    Romiszowski, Alexander J.

    1994-01-01

    Discussion of electronic publishing focuses on the four main purposes of media in general: communication, entertainment, motivation, and education. Highlights include electronic journals and books; hypertext; user control; computer graphics and animation; electronic games; virtual reality; multimedia; electronic performance support;…

  7. An electronic image processing device featuring continuously selectable two-dimensional bipolar filter functions and real-time operation

    International Nuclear Information System (INIS)

    Charleston, B.D.; Beckman, F.H.; Franco, M.J.; Charleston, D.B.

    1981-01-01

    A versatile electronic-analogue image processing system has been developed for use in improving the quality of various types of images with emphasis on those encountered in experimental and diagnostic medicine. The operational principle utilizes spatial filtering which selectively controls the contrast of an image according to the spatial frequency content of relevant and non-relevant features of the image. Noise can be reduced or eliminated by selectively lowering the contrast of information in the high spatial frequency range. Edge sharpness can be enhanced by accentuating the upper midrange spatial frequencies. Both methods of spatial frequency control may be adjusted continuously in the same image to obtain maximum visibility of the features of interest. A precision video camera is used to view medical diagnostic images, either prints, transparencies or CRT displays. The output of the camera provides the analogue input signal for both the electronic processing system and the video display of the unprocessed image. The video signal input to the electronic processing system is processed by a two-dimensional spatial convolution operation. The system employs charged-coupled devices (CCDs), both tapped analogue delay lines (TADs) and serial analogue delay lines (SADs), to store information in the form of analogue potentials which are constantly being updated as new sampled analogue data arrive at the input. This information is convolved with a programmed bipolar radially symmetrical hexagonal function which may be controlled and varied at each radius by the operator in real-time by adjusting a set of front panel controls or by a programmed microprocessor control. Two TV monitors are used, one for processed image display and the other for constant reference to the original image. The working prototype has a full-screen display matrix size of 200 picture elements per horizontal line by 240 lines. The matrix can be expanded vertically and horizontally for the

  8. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...

  9. Image based rendering of iterated function systems

    NARCIS (Netherlands)

    Wijk, van J.J.; Saupe, D.

    2004-01-01

    A fast method to generate fractal imagery is presented. Iterated function systems (IFS) are based on repeatedly copying transformed images. We show that this can be directly translated into standard graphics operations: Each image is generated by texture mapping and blending copies of the previous

  10. A proposed intracortical visual prosthesis image processing system.

    Science.gov (United States)

    Srivastava, N R; Troyk, P

    2005-01-01

    It has been a goal of neuroprosthesis researchers to develop a system, which could provide artifical vision to a large population of individuals with blindness. It has been demonstrated by earlier researches that stimulating the visual cortex area electrically can evoke spatial visual percepts, i.e. phosphenes. The goal of visual cortex prosthesis is to stimulate the visual cortex area and generate a visual perception in real time to restore vision. Even though the normal working of the visual system is not been completely understood, the existing knowledge has inspired research groups to develop strategies to develop visual cortex prosthesis which can help blind patients in their daily activities. A major limitation in this work is the development of an image proceessing system for converting an electronic image, as captured by a camera, into a real-time data stream for stimulation of the implanted electrodes. This paper proposes a system, which will capture the image using a camera and use a dedicated hardware real time image processor to deliver electrical pulses to intracortical electrodes. This system has to be flexible enough to adapt to individual patients and to various strategies of image reconstruction. Here we consider a preliminary architecture for this system.

  11. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  12. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    Science.gov (United States)

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Use of a line-pair resolution phantom for comprehensive quality assurance of electronic portal imaging devices based on fundamental imaging metrics

    International Nuclear Information System (INIS)

    Gopal, Arun; Samant, Sanjiv S.

    2009-01-01

    Image guided radiation therapy solutions based on megavoltage computed tomography (MVCT) involve the extension of electronic portal imaging devices (EPIDs) from their traditional role of weekly localization imaging and planar dose mapping to volumetric imaging for 3D setup and dose verification. To sustain the potential advantages of MVCT, EPIDs are required to provide improved levels of portal image quality. Therefore, it is vital that the performance of EPIDs in clinical use is maintained at an optimal level through regular and rigorous quality assurance (QA). Traditionally, portal imaging QA has been carried out by imaging calibrated line-pair and contrast resolution phantoms and obtaining arbitrarily defined QA indices that are usually dependent on imaging conditions and merely indicate relative trends in imaging performance. They are not adequately sensitive to all aspects of image quality unlike fundamental imaging metrics such as the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) that are widely used to characterize detector performance in radiographic imaging and would be ideal for QA purposes. However, due to the difficulty of performing conventional MTF measurements, they have not been used for routine clinical QA. The authors present a simple and quick QA methodology based on obtaining the MTF, NPS, and DQE of a megavoltage imager by imaging standard open fields and a bar-pattern QA phantom containing 2 mm thick tungsten line-pair bar resolution targets. Our bar-pattern based MTF measurement features a novel zero-frequency normalization scheme that eliminates normalization errors typically associated with traditional bar-pattern measurements at megavoltage x-ray energies. The bar-pattern QA phantom and open-field images are used in conjunction with an automated image analysis algorithm that quickly computes the MTF, NPS, and DQE of an EPID system. Our approach combines the fundamental advantages of

  14. In situ Charge Density Imaging of Metamaterials made with Switchable Two dimensionalElectron Gas at Oxide Heterointerfaces

    Science.gov (United States)

    2017-11-28

    engineering of complex oxide systems. This work has been accepted for publication in Nature Nanotechnology (“Direct Imaging of the Electron Liquid at Oxide...mail address: eom@engr.wisc.edu - Institution: University of Wisconsin-Madison - Mailing Address: 2166 ECB, 1550 Engineering Drive, Madison, WI 53706...Interfaces” K. Song et al., in press, Nature Nanotechnology (2018)) Figure 1. Direct imaging of the 2DELs at oxide interfaces. a, b, 2-D surface

  15. Sampling system for in vivo ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jorgen Arendt; Mathorne, Jan

    1991-01-01

    Newly developed algorithms for processing medical ultrasound images use the high frequency sampled transducer signal. This paper describes demands imposed on a sampling system suitable for acquiring such data and gives details about a prototype constructed. It acquires full clinical images...... at a sampling frequency of 20 MHz with a resolution of 12 bits. The prototype can be used for real time image processing. An example of a clinical in vivo image is shown and various aspects of the data acquisition process are discussed....

  16. 77 FR 31875 - Certain Electronic Imaging Devices; Notice of Receipt of Complaint; Solicitation of Comments...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices; Notice of... Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the Commission is...

  17. 77 FR 32995 - Certain Electronic Imaging Devices Corrected: Notice of Receipt of Complaint; Solicitation of...

    Science.gov (United States)

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices Corrected.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the...

  18. Four-Mirror Freeform Reflective Imaging Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Central Objectives: The research involves a revelation of the solution space for revolutionary families of four-mirror freeform reflective imaging systems. A...

  19. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  20. Shimadzu magnetic resonance imaging system, SMT-50

    International Nuclear Information System (INIS)

    Oikawa, Shiro; Nishida, Takayuki; Fujio, Yasuo

    1986-01-01

    The magnetic resonance imaging (MRI) system, as a new modality of medical imaging, has already been put to practical applications on many clinical sites, through which a lot of clinical data has been accumulated. It can offer a powerful new probe of internal anatomy of the human body and its functions. Now that the MRI has established its effectiveness in diagnosis, a really practical MRI system which features high efficiency and economical design with high patient throughput is strongly called for. Introduced in this article is a superconductive magnet MRI system, SMT-50, operating at 5000 Gauss. It has realized an excellent diagnostic capability with such functions as multi-slice multi-echo imaging, high sensitive, surface coil technique and so on. High resolution image display (1024 x 1024 pixcel) unit and separate console system (viewing console and scanning console) will assist high patient throughput. The outline of the SMT-50 and its clinical data are reported here. (author)