WorldWideScience

Sample records for electronic excitation transfer

  1. The electronic couplings in electron transfer and excitation energy transfer.

    Science.gov (United States)

    Hsu, Chao-Ping

    2009-04-21

    The transport of charge via electrons and the transport of excitation energy via excitons are two processes of fundamental importance in diverse areas of research. Characterization of electron transfer (ET) and excitation energy transfer (EET) rates are essential for a full understanding of, for instance, biological systems (such as respiration and photosynthesis) and opto-electronic devices (which interconvert electric and light energy). In this Account, we examine one of the parameters, the electronic coupling factor, for which reliable values are critical in determining transfer rates. Although ET and EET are different processes, many strategies for calculating the couplings share common themes. We emphasize the similarities in basic assumptions between the computational methods for the ET and EET couplings, examine the differences, and summarize the properties, advantages, and limits of the different computational methods. The electronic coupling factor is an off-diagonal Hamiltonian matrix element between the initial and final diabatic states in the transport processes. ET coupling is essentially the interaction of the two molecular orbitals (MOs) where the electron occupancy is changed. Singlet excitation energy transfer (SEET), however, contains a Frster dipole-dipole coupling as its most important constituent. Triplet excitation energy transfer (TEET) involves an exchange of two electrons of different spin and energy; thus, it is like an overlap interaction of two pairs of MOs. Strategies for calculating ET and EET couplings can be classified as (1) energy-gap-based approaches, (2) direct calculation of the off-diagonal matrix elements, or (3) use of an additional operator to describe the extent of charge or excitation localization and to calculate the coupling value. Some of the difficulties in calculating the couplings were recently resolved. Methods were developed to remove the nondynamical correlation problem from the highly precise coupled cluster

  2. Electronic and Nuclear Factors in Charge and Excitation Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  3. [Electron transfer, ionization, and excitation in atomic collisions]: Progress report

    International Nuclear Information System (INIS)

    The fundamental processes of electron transfer, ionization, and excitation in ion-atom collisions are being studied. These collision processes are treated in the context of simple one- or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. As outlined in the original proposal, three coupled-state calculations are being carried out over the present three-year period: a Sturmian-pseudostate study of ionization in collisions between protons and the hydrogenic ions He+, Li2+, Be3+, ...; a triple-center, atomic-state study of ionization in collisions between α particles and H(ls) atoms and between protons and He+(ls) ions; and an atomic-state study of electron transfer and excitation in collisions between protons and neutral He atoms. 12 refs

  4. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.

    Science.gov (United States)

    Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I

    2015-02-12

    Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.

  5. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  6. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Michael, E-mail: mike.filatov@gmail.com [Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314 (United States); Huix-Rotllant, Miquel; Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main (Germany)

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  7. Superexchange coupling and electron transfer in globular proteins via polaron excitations.

    Science.gov (United States)

    Chuev, G N; Lakhno, V D; Ustitnin, M N

    2000-06-01

    The polaron approach is used to treat long-range electron transfersbetween globular proteins. A rate expression for the polaron transfer model is given along with a description of appropriate conditions forits use. Assuming that electrons transfer via a superexchange couplingdue to a polaron excitation, we have estimated the distance dependenceof the rate constant for the self-exchange reactions between globularproteins in solutions. The distance dependence of the polaron coupling andsolvent reorganization energy are provided as a basis forunderstanding and interpreting a long-range electron transfer experiment.The difficulties and problems of the polaron treatment of long-rangeelectron transfers are discussed, and suggestions for new experimentsare made.

  8. [Long-range electron transfer in globular proteins by polaron excitation].

    Science.gov (United States)

    Lakhno, V L; Chuev, G N

    1997-01-01

    Considering polaron model, we have calculated an electron state localized in the protein heme. Using these calculations: the electron density and electron energy, we estimated the self-exchange rate constant for cyt c (horse heart), its reorganization energy, matrix element, and dependence of this rate on the distance between hemes. The results are compared with the experimental data and other theoretical estimations. We discuss the role of polaron excitations in the long-range electron transfer in globular proteins.

  9. Nonlinear response of metal nanoparticles: Double plasmon excitation and electron transfer

    Science.gov (United States)

    Gao, Shiwu

    2015-06-01

    We investigate the dynamical response of a metal nanoparticle and the electron transfer to a molecule near its surface using time-dependent density functional theory. In addition to the linear response of the Mie resonance, double plasmon excitations and a low-frequency charge transfer band emerge and become prominent at high laser intensities. Both modes are nonlinear processes, which are derived from the re-excitation and decay of the primary plasmon mode, respectively. Our results shed light on the localised characters of the plasmon-molecule coupling and hot electron distributions. These findings have general implications to photoinduced phenomena in nanosystems.

  10. Nonlinear response of metal nanoparticles: Double plasmon excitation and electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shiwu [Beijing Computational Science Research Center, Zhongguancun Software Park II, 100094, Beijing (China)

    2015-06-21

    We investigate the dynamical response of a metal nanoparticle and the electron transfer to a molecule near its surface using time-dependent density functional theory. In addition to the linear response of the Mie resonance, double plasmon excitations and a low-frequency charge transfer band emerge and become prominent at high laser intensities. Both modes are nonlinear processes, which are derived from the re-excitation and decay of the primary plasmon mode, respectively. Our results shed light on the localised characters of the plasmon-molecule coupling and hot electron distributions. These findings have general implications to photoinduced phenomena in nanosystems.

  11. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid.

    Science.gov (United States)

    Rury, Aaron S; Sorenson, Shayne; Dawlaty, Jahan M

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm(-1) oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology. PMID:26979698

  12. Quenching of the excited state of hydrated Europium(III) ions by electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.

    1993-08-01

    This thesis explores the oxidation-reduction chemistry of the excited state of Eu(III) ions, *Eu{sub aq}{sup 3+}, in aqueous solutions. Evidence is presented for the quenching of *Eu{sup 3+} by reductive electron transfer. It is concluded that *Eu{sup 3+} is not a strong energy transfer reagent. The reactivity of *Eu{sub aq}{sup 3+} is compared with that of *UO{sub 2}{sup 2+}.

  13. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    Science.gov (United States)

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation. PMID:27472379

  14. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    Science.gov (United States)

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  15. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    International Nuclear Information System (INIS)

    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV2+, the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV+; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV2+ with rate constants of 2.8 x 109, 7.6 x 109, and 8.5 x 106M-1s-1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV+ to be severely diminished

  16. Excited state electron transfer from aminopyrene to graphene: a combined experimental and theoretical study.

    Science.gov (United States)

    Chakraborti, Himadri; Bramhaiah, Kommula; John, Neena Susan; Pal, Suman Kalyan

    2013-12-01

    The quenching of the fluorescence of 1-aminopyrene (1-Ap) by reduced graphene oxide (rGO) has been investigated using spectroscopic techniques. In spite of the upward curvature in the Stern-Volmer plot, the unchanged spectral signature of the absorption of 1-Ap in the presence of rGO and the decrease in fluorescence lifetime with increasing rGO concentration point toward the dynamic nature of the quenching. Detailed analysis of steady state and time-resolved spectroscopic data has shown that the quenching arises due to the photoinduced electron transfer from 1-Ap to rGO. This is again supported by estimating the Gibb's free energy change for the ground as well as excited state electron transfer. Ab initio calculations under the density functional theory (DFT) formalism reveal that the possibility of π-π stacking is very slim in the 1-Ap-rGO system and the electron density resides completely on 1-Ap in the highest occupied molecular orbital (HOMO) and on graphene in the lowest unoccupied molecular orbital (LUMO), supporting the experimental findings of the intermolecular electron transfer between 1-Ap and rGO in the excited state.

  17. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani A.

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  18. Laser-assisted ionization-excitation of helium by electron impact at large momentum transfer

    International Nuclear Information System (INIS)

    Ionization of a helium atom by electron impact in the presence of laser radiation is studied theoretically. The kinematic regime of high impact energy and large momentum transfer is considered. The S-matrix of the process is treated within the first Born and binary-encounter approximations. Triple differential cross sections are calculated for the cases when the residual He+ ion is left both in the ground (n=1) and in the first excited (n=2) states in the presence of a laser field with frequency ω = 1.55 eV and intensity I = 5*1011 W/cm2. The laser-assisted cross sections corresponding to n=2 are found to be more sensitive to the electron-electron correlations in helium than the field-free ones. (authors)

  19. Ultrafast electron transfer reactions initiated by excited CT states of push pull perylenes

    Science.gov (United States)

    Miller, Scott E.; Zhao, Yongyu; Schaller, Richard; Mulloni, Viviana; Just, Eric M.; Johnson, Robert C.; Wasielewski, Michael R.

    2002-01-01

    Two new chromophores that absorb in the visible spectrum, the 9-( N-pyrrolidinyl)- and 9-( N-piperidinyl)perylene-3,4-dicarboximides, 5PMI and 6PMI, respectively, were synthesized and shown to possess lowest excited singlet states with about 70% charge transfer (CT) character. Changing the ring size of the cyclic amine from 5 to 6 significantly changes the energies of the CT states, as well as the redox potentials of the chromophores. These chromophores were linked to pyromellitimide (PI) and 1,8:4,5-naphthalenediimide (NI) electron acceptors using a single N-N bond between their respective imides to yield the corresponding donor-acceptor dyads 5PMI-PI, 5PMI-NI, 6PMI-PI, and 6PMI-NI. The donors and acceptors in these molecules are positioned relative to one another in a rod-like arrangement at fixed distances and restricted orientations. The rates of charge separation and recombination were measured using transient absorption spectroscopy. These chromophores were also used to prepare rigid donor-acceptor triads 5PMI-PI-NI and 6PMI-PI-NI, which display one- or two-step electron transfer mechanisms that depend on solvent polarity. These compounds exhibit a broad range of structure and media driven changes in electron transfer mechanism.

  20. Orbital angular momentum transfer in the excitation of the 2/sup 1/P state of helium by electrons

    Energy Technology Data Exchange (ETDEWEB)

    Beijers, J.P.M.; Eck, J. van; Heideman, H.G.M.

    1984-04-28

    The orbital angular momentum transfer in the excitation of the 2/sup 1/P state of helium by electrons at incident electron energies of 50, 60 and 80 eV has been studied. This was done in an electron-photon coincidence experiment. At 80 eV the orbital angular momentum transferred by the electron to the atom appears to change sign at a certain scattering angle. At lower energies of 50 and 60 eV no sign reversal is observed.

  1. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    1995-01-01

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what exten

  2. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna

    DEFF Research Database (Denmark)

    Frigaard, N-U; Tokita, S; Matsuura, K

    1999-01-01

    , but not when BChl a was excited. The quenching of BChl c fluorescence induced by these quinones correlated with the inhibition of flash-induced cytochrome c oxidation. We concluded that the quinones inhibited electron transfer in the reaction center by specifically quenching the excitation energy in the BChl c......-hydroxy-1,4-naphthoquinone, or 4 microM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited......In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence...

  3. Hydrophobic Acceleration of Electron-Transfer Fluorescence Quenching Processes between Excited 1-Alkanoylperylenes and Ferrocene Derivatives

    Institute of Scientific and Technical Information of China (English)

    SHI, Ji-Liang

    2001-01-01

    Coaggregation-facilitated Electron-transfer (ET) fluorescence quenching processes between an excited 1-alkanoylperylene (Pe-n, n=4, 8, 12) as an acceptor and an 1-alkanoylferrocene (Fc-m, m=4, 8, 12, 16 ) or a 1,1-dialkanoyiferrocene (Fc-m-2, m=4, 8, 12, 16) as a donor have been investigated by means of fluorescence spectroscopy in dioxane (DX)H2O binary solvents of different φ values, where φ is the volume fraction of the organic component of an aquiorgano mixture. This is a first observation of an ET processes facilitated by hydrophobic-lipophilic interaction (HLI) with organometallic compounds as donors. Tne extent of HLI-driven coaggregation between the acceptor and the donor may be assessed from the efficiency of fluorescence quenching, i.e.,the slope B of Eq. ( 2 ). The chain-foldability effect and the intramolecular “self-satisfation” of HLI for Fc-m-2 have been observed. The experimental results show that the behavior of Fc-m as a quencher for fluorescence quenching of Pen* is rather similar to that of N-alkylsubstituend phenothiazine.

  4. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems

    Science.gov (United States)

    Huo, Pengfei; Coker, David F.

    2012-03-01

    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  5. Excited state electron transfer in systems with a well-defined geometry. [cyclophane

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, K.J.

    1980-12-01

    The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producing a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.

  6. Resonant electron transfer and L-shell excitation for 26Fe19+ and 30Zn23+ ions

    OpenAIRE

    RAMADAN, Hassan

    2012-01-01

    Resonant transfer and excitation (RTE) involving simultaneous electron capture and projectile L-shell excitation has been calculated for Fe19+ and Zn23+ ions, in charge states ranging from nitrogen-like to oxygen-like incident on molecular hydrogen over an energy range 0--250 MeV. By the same way the calculations have been performed with helium over an energy range 0--300 MeV. The calculations are carried out using the angular momentum average (AMA) scheme in the isolated resonance app...

  7. Evidence for resonance electron transfer in photon excited X-ray satellite spectra of fluorine compounds

    Indian Academy of Sciences (India)

    K Ram Narayana; B Seetharami Reddy; S S Raju; T Seshi Reddy; S Lakshmi Narayana; K Premachand; B M Rao; M V R Murti; L S Mombasawala

    2005-08-01

    The KL1/KL0 intensity ratio of fluorine is measured in five fluorine compounds with a crystal spectrometer. An anomalous reduction of this intensity ratio was observed in KF and SrF2, which is attributed to resonance electron transfer from the metal ion to the spectator vacancy in the fluorine ion. KL2/KL0 intensity ratio of fluorine is also measured. The measured relative intensities are compared with the theoretical estimates of Aberg.

  8. Chemical Physics Electrons and Excitations

    CERN Document Server

    Larsson, Sven

    2012-01-01

    A full understanding of modern chemistry is impossible without quantum theory. Since the advent of quantum mechanics in 1925, a number of chemical phenomena have been explained, such as electron transfer, excitation energy transfer, and other phenomena in photochemistry and photo-physics. Chemical bonds can now be accurately calculated with the help of a personal computer. Addressing students of theoretical and quantum chemistry and their counterparts in physics, Chemical Physics: Electrons and Excitations introduces chemical physics as a gateway to fields such as photo physics, solid-state ph

  9. Electron transfer between excited states of some sulfonated phtha-locyanines and tyrosine as well as trptophan in homogeneous aqueous solution and aqueous micellar media

    Institute of Scientific and Technical Information of China (English)

    张先付; 许慧君; 沈涛

    1995-01-01

    Rate constants for electron transfer between excited states of several tetrasulfonated phthalocyanines (MTSPC, M = H2, Zn, ClAl, ClGa) and tyrosine or trptophan have been measured in homogeneous aqueous and aqueous micellar media. Cationic micelles formed by surfactant cetyl trimethyl ammonium chloride (CTAC) promote the electron transfer reaction, whereas neutral micelles formed by Triton X-100 depress this process. The calculated free energy change shows that phthalocyanines act as electron donors in the electron transfer reaction of its excited singlet states with tyrosine or trptophan (Type Is), whereas they act as electron acceptors in the reaction of its excited triplet states with tyrosine or trptophan (type IT). The two different electron transfer processes involving singlet and triplet of sensitizer respectively compete with each other and form different intermediates which may induce the formation of different products. Factors that govern the importance of Type Is in the whole reaction includ

  10. Femtosecond insights into direct electron injection in dye anchored ZnO QDs following charge transfer excitation.

    Science.gov (United States)

    Kumar, Pushpendra; Kumar, Sunil; Ghosh, Subrata; Pal, Suman Kalyan

    2016-07-27

    The role of the charge transfer (CT) state in interfacial electron transfer in dye-sensitized semiconductor nanocrystals is still poorly understood. To address this problem, femtosecond transient absorption (TA) spectroscopy is used as a probe to investigate the electron injection across a newly synthesized coumarin dye (8-hydroxy-2-oxo-4-phenyl-2 benzo[h]chromene-3-carbonitrile, coded BC5) and ZnO quantum dots (QDs). Steady state and time-resolved spectroscopic measurements reveal that BC5 dye interacts strongly with ZnO QDs in the ground state forming a CT complex. The BC5-ZnO QD complex absorbs more towards red compared to only the dye and QDs, and emits fluorescence due to radiative recombination of photogenerated charges. The formation of charges following the excitation of the CT complex has been demonstrated by observing the signature of dye radical cations and electrons in the conduction band (CB) of the QDs in the TA spectra. The TA signals of these charges grow sharply as a result of ultrafast direct electron injection into the QD. We have monitored the complete dynamics of photogenerated charges by measuring the TA signals of the charges up to a couple of nanoseconds. The injected electrons that are free or shallowly trapped recombine with a time constant of 625 fs, whereas deeply trapped electrons disappear slowly (526 ps) via radiative recombination. Furthermore, theoretical studies based on ab initio calculations have been carried out to complement the experimental findings. PMID:27412034

  11. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  12. Description of electron transfer in the ground and excited states of organic donor–acceptor systems by single-reference and multi-reference density functional methods

    International Nuclear Information System (INIS)

    Electron transfer in the ground and excited states of a model donor–acceptor (D–A) system is investigated using the single-reference and multi-reference density functional theory (DFT) methods. To analyze the results of the calculations, a simple two-site multi-reference model was derived that predicts a stepwise electron transfer in the S0 state and a wave-like dependence of the S1 electron transfer on the external stimulus. The standard single-reference Kohn-Sham (KS) DFT approach and the time-dependent DFT (TDDFT) method failed to describe the correct dependence of the S0 and S1 electron transfer on the external electric field applied along the donor–acceptor system. The multi-reference DFT approach, the spin-restricted ensemble-referenced KS (REKS) method, was able to successfully reproduce the correct behavior of the S0 and S1 electron transfer on the applied field. The REKS method was benchmarked against experimentally measured gas phase charge transfer excitations in a series of organic donor–acceptor complexes and displayed its ability to describe this type of electronic transitions with a very high accuracy, mean absolute error of 0.05 eV with the use of the standard range separated density functionals. On the basis of the calculations undertaken in this work, it is suggested that the non-adiabatic coupling between the S0 and S1 states may interfere with the electron transfer in a weakly coupled donor–acceptor system. It is also suggested that the electronic excitation of a D+–A− system may play a dual role by assisting the further electron transfer at certain magnitudes of the applied electric field and causing the backward transfer at lower electric field strengths

  13. Excitation energy transfer in the photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Andrew N

    2012-09-25

    Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in the transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.

  14. Electron-transfer fluorescence quenching processes in coaggregates between excited N-alkylcarbazoles as electron donors and 2, 4-dinitrophenyl carboxylates or pentafiuorophenyl carboxylates as acceptors

    Institute of Scientific and Technical Information of China (English)

    SHI, Ji-Liang; YI, Hu-Nan; XU, Jia-Yi; JIANG, Xi-Kui

    2000-01-01

    Electron-transfer processes facilitated by hydrophobiclipophilic interaction (HLI) between excited N-alkylcarbazoles (1-n, n=4, 8, 12, 16) as electron donors and 2,4dinnrophenyl carboxylates (2-n, n = 4, 8, 12, 16) or pentafluorophenyl carboxylates (3-n, n = 4, 8, 12, 16) as electron acceptors have been investigated by means of fluorescence spectroscopy in aqueous or aquiorgano binary mixtures.The fluorescence quenching of-n* by2-n or-n indicates that preassociation precedes the electron transfer. The extent of HLI-drtven coaggregation of the acceptor and the donor may be assessed from the B value of the equation I0/I = A + B [Q]. The chain-length effect and possibly also a chain-foldability effect, as well as the solvent aggregating power (SAgP)effect have been observed. Comparison of the quenching constants ( B ) for 1-n* /2-n combinations and 1-n* / 3-n combinations shows that the order of increasing B values for the quenching processes is 3-n < 2-n.

  15. Electron-Transfer Oxidation of Chlorophenols by Uranyl Ion Excited State in Aqueous Solution. Steady-State and Nanosecond Flash Photolysis Studies

    OpenAIRE

    Sarakha, Mohamed; Bolte, Michèle; Burrows, Hugh D.

    2000-01-01

    The oxidation of chlorophenols by photoexcited uranyl ion was studied in aqueous solution at concentrations where the ground-state interactions were negligible. Nanosecond flash photolysis showed that a clean electron-transfer process from the chlorophenols to the excited uranyl ion is involved. This is suggested to lead to the formation of a U(V)/chlorophenoxyl radical pair complex. The efficiency of this charge-transfer process is unity for the three chlorophenols. However, low product yiel...

  16. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  17. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    Science.gov (United States)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  18. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens;

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an......, associated with an excited-state intramolecular proton transfer process....

  19. Excited-State Deactivation of Adenine by Electron-Driven Proton-Transfer Reactions in Adenine-Water Clusters: A Computational Study.

    Science.gov (United States)

    Wu, Xiuxiu; Karsili, Tolga N V; Domcke, Wolfgang

    2016-05-01

    The reactivity of photoexcited 9H-adenine with hydrogen-bonded water molecules in the 9H-adenine-(H2 O)5 cluster is investigated by using ab initio electronic structure methods, focusing on the photoreactivity of the three basic sites of 9H-adenine. The energy profiles of excited-state reaction paths for electron/proton transfer from water to adenine are computed. For two of the three sites, a barrierless or nearly barrierless reaction path towards a low-lying S1 -S0 conical intersection is found. This reaction mechanism, which is specific for adenine in an aqueous environment, can explain the substantially shortened excited-state lifetime of 9H-adenine in water. Depending on the branching ratio of the nonadiabatic dynamics at the S1 -S0 conical intersection, the electron/proton transfer process can enhance the photostability of 9H-adenine in water or can lead to the generation of adenine-H(⋅) and OH(⋅) free radicals. Although the branching ratio is yet unknown, these findings indicate that adenine might have served as a catalyst for energy harvesting by water splitting in the early stages of the evolution of life. PMID:26833826

  20. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  1. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1995-01-01

    Advances in Electron Transfer Chemistry, Volume 4 presents the reaction mechanisms involving the movement of single electrons. This book discusses the electron transfer reactions in organic, biochemical, organometallic, and excited state systems. Organized into four chapters, this volume begins with an overview of the photochemical behavior of two classes of sulfonium salt derivatives. This text then examines the parameters that control the efficiencies for radical ion pair formation. Other chapters consider the progress in the development of parameters that control the dynamics and reaction p

  2. Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy.

    Science.gov (United States)

    Gryliuk, G; Rätsep, M; Hildebrandt, S; Irrgang, K-D; Eckert, H-J; Pieper, J

    2014-09-01

    In adaption to its specific environmental conditions, the cyanobacterium Acaryochloris marina developed two different types of light-harvesting complexes: chlorophyll-d-containing membrane-intrinsic complexes and phycocyanobilin (PCB) - containing phycobiliprotein (PBP) complexes. The latter complexes are believed to form a rod-shaped structure comprising three homo-hexamers of phycocyanin (PC), one hetero-hexamer of phycocyanin and allophycocyanin (APC) and probably a linker protein connecting the PBPs to the reaction centre. Excitation energy transfer and electron-vibrational coupling in PBPs have been investigated by selectively excited fluorescence spectra. The data reveal a rich spectral substructure with a total of five low-energy electronic states with fluorescence bands at 635nm, 645nm, 654nm, 659nm and a terminal emitter at about 673 nm. The electronic states at ~635 and 645 nm are tentatively attributed to PC and APC, respectively, while an apparent heterogeneity among PC subunits may also play a role. The other fluorescence bands may be associated with three different isoforms of the linker protein. Furthermore, a large number of vibrational features can be identified for each electronic state with intense phonon sidebands peaking at about 31 to 37cm⁻¹, which are among the highest phonon frequencies observed for photosynthetic antenna complexes. The corresponding Huang-Rhys factors S fall in the range between 0.98 (terminal emitter), 1.15 (APC), and 1.42 (PC). Two characteristic vibronic lines at about 1580 and 1634cm⁻¹ appear to reflect CNH⁺ and CC stretching modes of the PCB chromophore, respectively. The exact phonon and vibrational frequencies vary with electronic state implying that the respective PCB chromophores are bound to different protein environments. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. PMID:24560813

  3. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken-Hush and block diagonalization methods

    Science.gov (United States)

    Cave, Robert J.; Newton, Marshall D.

    1997-06-01

    Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken-Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene-Cl atom complex and its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn2OH2+. Both methods also yield a natural definition of the effective distance (rDA) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of rDA, generally based on molecular structure data.

  4. An accurate full-dimensional potential energy surface for H–Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption

    International Nuclear Information System (INIS)

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab

  5. An accurate full-dimensional potential energy surface for H–Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Svenja M.; Auerbach, Daniel J.; Kandratsenka, Alexander, E-mail: akandra@mpibpc.mpg.de [Institute for Physical Chemistry, Göttingen University, Tammannstr. 6, 37077 Göttingen (Germany); Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen (Germany); Wodtke, Alec M. [Institute for Physical Chemistry, Göttingen University, Tammannstr. 6, 37077 Göttingen (Germany); Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen (Germany); International Center for Advanced Studies of Energy Conversion, Göttingen University, Göttingen (Germany)

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  6. Entanglement entropy of electronic excitations.

    Science.gov (United States)

    Plasser, Felix

    2016-05-21

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  7. Photoselected electron transfer pathways in DNA photolyase

    OpenAIRE

    Prytkova, Tatiana R.; Beratan, David N.; Skourtis, Spiros S.

    2007-01-01

    Cyclobutane dimer photolyases are proteins that bind to UV-damaged DNA containing cyclobutane pyrimidine dimer lesions. They repair these lesions by photo-induced electron transfer. The electron donor cofactor of a photolyase is a two-electron-reduced flavin adenine dinucleotide (FADH−). When FADH− is photo-excited, it transfers an electron from an excited π → π* singlet state to the pyrimidine dimer lesion of DNA. We compute the lowest excited singlet states of FADH− using ab initio (time-de...

  8. Electron transfer in peptides.

    Science.gov (United States)

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  9. Excitation transfer in stacked quantum dot chains

    International Nuclear Information System (INIS)

    Stacked InAs quantum dot chains (QDCs) on InGaAs/GaAs cross-hatch pattern (CHP) templates yield a rich emission spectrum with an unusual carrier transfer characteristic compared to conventional quantum dot (QD) stacks. The photoluminescent spectra of the controlled, single QDC layer comprise multiple peaks from the orthogonal QDCs, the free-standing QDs, the CHP, the wetting layers and the GaAs substrate. When the QDC layers are stacked, employing a 10 nm GaAs spacer between adjacent QDC layers, the PL spectra are dominated by the top-most stack, indicating that the QDC layers are nominally uncoupled. Under high excitation power densities when the high-energy peaks of the top stack are saturated, however, low-energy PL peaks from the bottom stacks emerge as a result of carrier transfers across the GaAs spacers. These unique PL signatures contrast with the state-filling effects in conventional, coupled QD stacks and serve as a means to quickly assess the presence of electronic coupling in stacks of dissimilar-sized nanostructures. (paper)

  10. Relations among theories of excitation transfer

    International Nuclear Information System (INIS)

    Recent applications of the generalized master equation (GME) theory for the transfer of excitation interacting linearly with phonons results in revision of some previous conclusions about relations between GME and other advanced theories: Haken-Strobl-Reineker (HSR) stochastic Liouville equation (SLE) theory, Grover-Silbey (GS) microscopic theory and Continuous Time Random Walk (CTRW) method. Two-channel memory functions (MF) derived from first principles relate entirely to those corresponding to GS and HRS approaches and unify theories of the excitation transfer. Trapping effects have pronounced influence on MFs. Coherence effects in the excitation transfer lead to a strange behaviour of ''probabilities'' in CTRW. Kenkre-Knox (KK) correspondence between MF and spectral properties has a limited applicability. Decay time obtained in such a manner could have nothing to do with much longer real coherence time. (author). 69 refs

  11. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkab...

  12. Electron impact excitations of S2 molecules

    CERN Document Server

    Tashiro, Motomichi

    2007-01-01

    Low-energy electron impact excitations of S_2 molecules are studied using the fixed-bond R-matrix method based on state-averaged complete active space SCF orbitals. Integral cross sections are calculated for elastic electron collision as well as impact excitation of the 7 lowest excited electronic states. Also, differential cross sections are obtained for elastic collision and excitation of the a^1 Delta_g, b^1 Sigma_g^+ and B^3 Sigma_u^- states. The integrated cross section of optically allowed excitation of the B^3 Sigma_u^- state agrees reasonably well with the available theoretical result.

  13. Electron-impact excitation of krypton

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, G.D.; da Paixo, F.J.; Padial, N.T.

    1985-07-01

    First-order many-body theory has been used to calculate the differential, integrated, and momentum-transfer cross sections for the electron-impact excitation of the 5s'((1/2))/sub 1//sup 0/( /sup 1/P/sub 1/ ), 5s((3/2))/sub 1//sup 0/( /sup 3/P/sub 1/), 5s'((1/2))/sub 0//sup 0/( /sup 3/P/sub 0/), and 5s((3/2))/sub 2//sup 0/( /sup 3/P/sub 2/)= states of krypton for the incident energies of 20, 30, 50, 60, and 100 eV. Electron-photon coincidence parameters for the optically allowed states have been obtained. The results are compared to available experimental results.

  14. Symmetry characterization of electrons and lattice excitations

    OpenAIRE

    Schober H.

    2012-01-01

    Symmetry concerns all aspects of a physical system from the electronic orbitals to structural and magnetic excitations. In this article we will try to elaborate the fundamental connection between symmetry and excitations. As excitations are manyfold in physical systems it is impossible to treat them exhaustively. We thus concentrate on the two topics of Bloch electrons and phonons. These two examples are complementary in the sense that Bloch electrons describe single particles in an external ...

  15. Cross sections for electron impact excitation of molecules

    International Nuclear Information System (INIS)

    The discussion in this chapter is restricted to elastic scattering, rotational, vibrational, and electronic excitation and total scattering cross sections in electron molecule collisions. Experimental data on differential, integral and momentum transfer cross sections are surveyed and short remarks are made on experimental techniques and theoretical approaches used for generating cross section data. 11 references, 3 figures

  16. Transferred orbital angular momentum in the low-energy electron impact excitation of the {sup 1}S{sub 0}-{sup 1}P{sub 1} transition in barium

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.V.; Spanu, C.; Zetner, P.W. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB (Canada)

    2001-11-28

    Superelastic electron scattering involving the collisional de-excitation of laser-excited {sup 138}Ba(...6s6p {sup 1}P{sub 1}) atoms to the (...6s{sup 2} {sup 1}S{sub 0}) ground state has been used to measure electron impact coherence parameters for the related (...6s{sup 2} {sup 1}S{sub 0}) to (...6s6p {sup 1}P{sub 1}) inelastic process. Measurements of the orbital angular momentum transfer parameter, L{sub perp}{sup +}, were made for excitation at impact energies of 7, 8.5, 11 and 16 eV. Experimental data are compared with available theoretical results. (author)

  17. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Theophilou, Iris, E-mail: i.theophilou@fz-juelich.de [Peter Grunberg Institut (PGI) Forschungszentrum Jülich, D-52425 Jülich (Germany); Tassi, M.; Thanos, S. [Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, ‘Demokritos’ National Center for Scientific Research, 15310 Athens (Greece)

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  18. Electron energy distribution functions and fractional power transfer in “cold” and excited CO{sub 2} discharge and post discharge conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pietanza, L. D., E-mail: luciadaniela.pietanza@cnr.it; Colonna, G.; D' Ammando, G.; Laricchiuta, A.; Capitelli, M. [Nanotec-CNR, sect. Bari, via Amendola 122/D, 70126 Bari (Italy)

    2016-01-15

    A Boltzmann equation, in the presence of superelastic vibrational and electronic collisions and of electron-electron Coulomb collisions, has been solved in CO{sub 2} plasma in discharge and post discharge conditions. Superelastic vibrational collisions play an important role in affecting the electron energy distribution function (eedf) in a wide range of the reduced electric field E/N and of vibrational temperatures characterizing the vibrational modes of CO{sub 2}. An important result is the dependence of fractional power losses and of the relevant rate coefficients on the vibrational temperatures of the system. Superelastic electronic collisions, on the other hand, are the main processes affecting eedf and related quantities in the post discharge conditions (i.e., E/N = 0). In particular at low vibrational temperatures, the superelastic electronic collisions form an important plateau in the eedf, largely influencing the rate coefficients and the fractional power transfer.

  19. Vibrational control of electron-transfer reactions: a feasibility study for the fast coherent transfer regime.

    Science.gov (United States)

    Antoniou, P; Ma, Z; Zhang, P; Beratan, D N; Skourtis, S S

    2015-12-14

    Molecular vibrations and electron-vibrational interactions are central to the control of biomolecular electron and energy-transfer rates. The vibrational control of molecular electron-transfer reactions by infrared pulses may enable the precise probing of electronic-vibrational interactions and of their roles in determining electron-transfer mechanisms. This type of electron-transfer rate control is advantageous because it does not alter the electronic state of the molecular electron-transfer system or irreversibly change its molecular structure. For bridge-mediated electron-transfer reactions, infrared (vibrational) excitation of the bridge linking the electron donor to the electron acceptor was suggested as being capable of influencing the electron-transfer rate by modulating the bridge-mediated donor-to-acceptor electronic coupling. This kind of electron-transfer experiment has been realized, demonstrating that bridge-mediated electron-transfer rates can be changed by exciting vibrational modes of the bridge. Here, we use simple models and ab initio computations to explore the physical constraints on one's ability to vibrationally perturb electron-transfer rates using infrared excitation. These constraints stem from the nature of molecular vibrational spectra, the strengths of the electron-vibrational coupling, and the interaction between molecular vibrations and infrared radiation. With these constraints in mind, we suggest parameter regimes and molecular architectures that may enhance the vibrational control of electron transfer for fast coherent electron-transfer reactions.

  20. Modulating unimolecular charge transfer by exciting bridge vibrations.

    Science.gov (United States)

    Lin, Zhiwei; Lawrence, Candace M; Xiao, Dequan; Kireev, Victor V; Skourtis, Spiros S; Sessler, Jonathan L; Beratan, David N; Rubtsov, Igor V

    2009-12-23

    Ultrafast UV-vibrational spectroscopy was used to investigate how vibrational excitation of the bridge changes photoinduced electron transfer between donor (dimethylaniline) and acceptor (anthracene) moieties bridged by a guanosine-cytidine base pair (GC). The charge-separated (CS) state yield is found to be lowered by high-frequency bridge mode excitation. The effect is linked to a dynamic modulation of the donor-acceptor coupling interaction by weakening of H-bonding and/or by disruption of the bridging base-pair planarity.

  1. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    R S Swathi; K L Sebastian

    2012-01-01

    Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate -4. The process was found to be effective up to 30 which is well beyond the traditional FRET limit. In this report, we study the transfer of an amount of energy $\\hbar$ from a dye molecule to doped graphene. We find a crossover of the distance dependence of the rate from -4 to exponential as the Fermi level is increasingly shifted into the conduction band, with the crossover occurring at a shift of the Fermi level by an amount $\\hbar$ /2.

  2. Lifetime of electronic excitations in metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Quijada, M; Diez Muino, R; Echenique, P M [Centro de Fisica de Materiales CFM-Materials Physics Center MPC, Centro Mixto CSIC-UPV/EHU, Edificio Korta, Avenida de Tolosa 72, 20018 San Sebastian (Spain); Borisov, A G; Alonso, J A, E-mail: rdm@ehu.e [Donostia International Physics Center DIPC, P Manuel de Lardizabal 4, 20018 San Sebastian (Spain)

    2010-05-15

    Electronic excitations in metal particles with sizes up to a few nanometers are shown to have a one-electron character when a laser pulse is applied off the plasmon resonance. The calculated lifetimes of these excitations are in the femtosecond timescale but their values are substantially different from those in bulk. This deviation can be explained from the large weight of the excitation wave function in the nanoparticle surface region, where dynamic screening is significantly reduced. The well-known quadratic dependence of the lifetime with the excitation energy in bulk breaks down in these finite-size systems.

  3. Photoreduction of indigo dyes by electron donors. One- and two-electron-transfer reactions as a consequence of excited-state quenching

    Energy Technology Data Exchange (ETDEWEB)

    Schanze, K.S.; Lee, L.Y.C.; Giannotti, C.; Whitten, D.G.

    1986-05-14

    The indigoid dyes, thioindigo (TI), N,N'-diacetylindigo, (NDI) and oxalylindigo (OI), all undergo reduction upon irradiation of the dyes in the presence of electron donors such as triethylamine (TEA) or N-benzyl-1,4-dihydronicotinamide (BNAH). Product analysis by NMR and high-resolution mass spectrometry has shown that the products for TI and NDI are the formal H/sub 2/ adducts TIH/sub 2/ and NDIH/sub 2/; the product for OI has been shown to be the semireduced radical OIH which is readily detected by its characteristic ESR spectrum. Mechanistic studies have been carried out for the visible-light-induced reduction of the three dyes.

  4. Broadband visible light-harvesting naphthalenediimide (NDI) triad: study of the intra-/intermolecular energy/electron transfer and the triplet excited state.

    Science.gov (United States)

    Wu, Shuang; Zhong, Fangfang; Zhao, Jianzhang; Guo, Song; Yang, Wenbo; Fyles, Tom

    2015-05-21

    A triad based on naphthalenediimides (NDI) was prepared to study the intersystem crossing (ISC), the fluorescence-resonance-energy-transfer (FRET), as well as the photoinduced electron transfer (PET) processes. In the triad, the 2-bromo-6-alkylaminoNDI moiety was used as singlet energy donor and the spin converter, whereas 2,6-dialkylaminoNDI was used as the singlet/triplet energy acceptor. This unique structural protocol and thus alignment of the energy levels ensures the competing ISC and FRET in the triad. The photophysical properties of the triad and the reference compounds were studied with steady-state UV-vis absorption spectra, fluorescence spectra, nanosecond transient absorption spectra, cyclic voltammetry, and DFT/TDDFT calculations. FRET was confirmed with steady-state UV-vis absorption and fluorescence spectroscopy. Intramolecular electron transfer was observed in polar solvents, demonstrated by the quenching of both the fluorescence and triplet state of the energy acceptor. Nanosecond transient absorption spectroscopy shows that the T1 state of the triad is exclusively localized on the 2,6-dialkylaminoNDI moiety in the triad upon selective photoexcitation into the energy donor, which indicates the intramolecular triplet state energy transfer. The intermolecular triplet state energy transfer between the two reference compounds was investigated with nanosecond transient absorption spectroscopy. The photophysical properties were rationalized by TDDFT calculations. PMID:25919420

  5. Electron transfer in proteins.

    Science.gov (United States)

    Gray, H B; Winkler, J R

    1996-01-01

    Electron-transfer (ET) reactions are key steps in a diverse array of biological transformations ranging from photosynthesis to aerobic respiration. A powerful theoretical formalism has been developed that describes ET rates in terms of two parameters: the nuclear reorganization energy (lambda) and the electronic-coupling strength (HAB). Studies of ET reactions in ruthenium-modified proteins have probed lambda and HAB in several metalloproteins (cytochrome c, myoglobin, azurin). This work has shown that protein reorganization energies are sensitive to the medium surrounding the redox sites and that an aqueous environment, in particular, leads to large reorganization energies. Analyses of electronic-coupling strengths suggest that the efficiency of long-range ET depends on the protein secondary structure: beta sheets appear to mediate coupling more efficiently than alpha-helical structures, and hydrogen bonds play a critical role in both. PMID:8811189

  6. Symmetry characterization of electrons and lattice excitations

    Directory of Open Access Journals (Sweden)

    Schober H.

    2012-03-01

    Full Text Available Symmetry concerns all aspects of a physical system from the electronic orbitals to structural and magnetic excitations. In this article we will try to elaborate the fundamental connection between symmetry and excitations. As excitations are manyfold in physical systems it is impossible to treat them exhaustively. We thus concentrate on the two topics of Bloch electrons and phonons. These two examples are complementary in the sense that Bloch electrons describe single particles in an external periodic potential while phonons exemplify a decoupled system of interacting particles. The way we develop the argument gives as by-product a short account of molecular orbitals and molecular vibrations.

  7. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1993-01-01

    Advances in Electron Transfer Chemistry, Volume 3 presents studies that discuss findings in the various aspects of electron chemistry. The book is comprised of four chapters; each chapter reviews a work that tackles an issue in electron transfer chemistry. Chapter 1 discusses the photoinduced electron transfer in flexible biaryl donor-acceptor molecules. Chapter 2 tackles light-induced electron transfer in inorganic systems in homogeneous and heterogeneous phases. The book also covers internal geometry relaxation effects on electron transfer rates of amino-centered systems. The sequential elec

  8. Infrared emission from electronically excited biacetyl molecules

    NARCIS (Netherlands)

    Drent, E.; Kommandeur, J.

    1971-01-01

    The infrared emission of electronically excited biacetyl molecules in the gas phase at low pressure was observed. Some experimental details are given, and it is shown that the emission derives from biacetyl molecules in their triplet state. The emission is dependent on the wavelength of excitation.

  9. Nuclear excitation by electronic transition (NEET).

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Dunford, R. W.; Esbensen, H.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Ruett, U.; Southworth, S. H.

    1999-04-28

    We present a report on recent measurements using the Advanced Photon Source at Argonne National Laboratory to explore the phenomenon of Nuclear Excitation by Electronic Transition (NEET) in the {sup 189}Os atomic/nuclear system.

  10. Stimulated excitation electron microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Howie, A.

    2015-04-15

    Recent advances in instrumentation for electron optics and spectroscopy have prompted exploration of ultra-low excitations such as phonons, bond vibrations and Johnson noise. These can be excited not just with fast electrons but also thermally or by other external sources of radiation. The near-field theory of electron energy loss and gain provides a convenient platform for analysing these processes. Possibilities for selected phonon mapping and imaging are discussed. Effects should certainly be observable in atomic resolution structure imaging but diffraction contrast imaging could perhaps be more informative. Additional exciting prospects to be explored include the transition from phonon excitation to single atom recoil and the boosting of energy loss and gain signals with tuned laser illumination. - Highlights: • Electron energy gains and losses measure thermal or laser boosting of excitations. • Electron energy gains and losses are conveniently analysed by near field theory. • Diffraction contrast theory is relevant for phonon imaging by electrons. • The transition from phonon excitation to single atom recoil deserves study.

  11. Electron impact on excited helium

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Zhong, Z. [Institute of Atomic and Molecular Physics, National Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun, 130023 (China); Ratnavelu, K. [Department of Mathematics, University of Malaya, 59100, Kuala Lumpur (Malaysia); McCarthy, I.E. [School of Physical Sciences, The Flinders University of South Australia, GPO Box 2100, SA 5001 (Australia)

    1998-12-14

    Differential cross sections, integrated cross sections and ionization cross sections for electron scattering on the metastable level 2 {sup 3}S of helium are calculated at intermediate energies and compared with experimental measurements and other theoretical calculations. The method used is the coupled-channels optical method with an ab initio complex polarization potential. (author). Letter-to-the-editor.

  12. Resonant electron transfer between quantum dots

    OpenAIRE

    Openov, Leonid A.

    1999-01-01

    An interaction of electromagnetic field with a nanostructure composed of two quantum dots is studied theoretically. An effect of a resonant electron transfer between the localized low-lying states of quantum dots is predicted. A necessary condition for such an effect is the existence of an excited bound state whose energy lies close to the top of the barrier separating the quantum dots. This effect may be used to realize the reversible quantum logic gate NOT if the superposition of electron s...

  13. Excitation Energy-Transfer Dynamics of Brown Algal Photosynthetic Antennas.

    Science.gov (United States)

    Kosumi, D; Kita, M; Fujii, R; Sugisaki, M; Oka, N; Takaesu, Y; Taira, T; Iha, M; Hashimoto, H

    2012-09-20

    Fucoxanthin-chlorophyll-a/c protein (FCP) complexes from brown algae Cladosiphon okamuranus TOKIDA (Okinawa Mozuku in Japanese) contain the only species of carbonyl carotenoid, fucoxanthin, which exhibits spectral characteristics attributed to an intramolecular charge-transfer (ICT) property that arises in polar environments due to the presence of the carbonyl group in its polyene backbone. Here, we investigated the role of the ICT property of fucoxanthin in ultrafast energy transfer to chlorophyll-a/c in brown algal photosynthesis using femtosecond pump-probe spectroscopic measurements. The observed excited-state dynamics show that the ICT character of fucoxanthin in FCP extends its absorption band to longer wavelengths and enhances its electronic interaction with chlorophyll-a molecules, leading to efficient energy transfer from fucoxanthin to chlorophyll-a. PMID:26295888

  14. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe2/ sup *(1)/, Kr:O(21S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  15. Femtosecond excitation transfer processes in biliprotein trimers

    Science.gov (United States)

    Sharkov, A. V.; Khoroshilov, E. V.; Kryukov, I. V.; Palsson, Lars-Olof; Kryukov, P. G.; Fischer, R.; Scheer, Hella-Christin; Gillbro, Tomas

    1993-06-01

    Femtosecond processes in allophycocyanin, C-phycocyanin and phycoerythrocyanin trimers and monomers have been examined by means of polarization pump-probe technique. No femtosecond kinetics were observed in monomeric preparations. The isotropic absorption recovery kinetics with (tau) equals 440 +/- 50 fs which is not accompanied by anisotropy decay kinetics was obtained in allophycocyanin trimers at 612 nm. The conclusion about energy transfer between neighboring (alpha) 84 and (beta) 84 chromophores with different absorption spectra was made. The proposed model takes into account a stabilizing role of the linker peptide. Spectral and kinetic measurements were made in the 635 - 690 nm spectral region where the proposed acceptor should absorb. The bleaching of the 650-nm band occurs with a delay relative to the bleaching at 615 nm. Only a rise term was observed at 658 nm in consistence with the proposed model. Anisotropy values calculated around 650 nm at 3 ps after excitation are in the range 0.1 - 0.25 corresponding to an angle of 30 degree(s) - 45 degree(s) between the donor and acceptor transition dipole moments. A 500-fs absorption recovery and anisotropy decay process was obtained for C-phycocyanin trimers and explained by Forster energy transfer over 20.8 angstroms between neighboring (alpha) 84 and (beta) 84 chromophores of different monomeric subunits having similar absorption spectra and with a 65 degree(s) angle between their orientations. Energy transfer between violobilin ((alpha) 84) and phycocyanobilin ((beta) 84) chromophores was examined in donor and acceptor spectral regions of phycoerythrocyanin trimers, and was found to take 400 fs.

  16. Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy

    OpenAIRE

    Mančal T.; Milota F.; Hauer J; Christensson N.; Bixner O.; Lukeš V.; Kauffmann H. F.

    2013-01-01

    Two-dimensional electronic spectroscopy (2D-ES) is used to investigate ultrafast excited-state dynamics in a lutetium bisphthalocyanine dimer. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra. The combination of density matrix propagation and quantum chemical calculations results in a molecular view of the charge transfer dynamics and highlights the role of the counter-ion in providing an en...

  17. 激发态Cs2和H2的电子-振转能级的碰撞转移%The Electronic-to-Rovibrational Levels Energy Transfer between Electronically Excited Cs2 and H2

    Institute of Scientific and Technical Information of China (English)

    王青; 沈异凡; 戴康

    2011-01-01

    Using the CARS (coherent anti-Stokes Raman spectroscopy) detection technique, we have investigated the electronic-to-rovibrational levels energy transfer between electronically excited Cs2 and H2. In this CARS experiment, the S-branch(△v =1, △J =2) transition of H2 are excited by two laser pulses, the pump and the Stokes, respectively, centered at 532 and 716 nm. The internal state distribution of collisionally populated H2 has probed. The scanned CARS spectra reveal that during energy transfer processes H2molecules are produced only at the v= 1, J = 4,5 and v= 2, J= 3,4 rovibrational levels.From scanned CARS spectral peaks the population ratios are obtained. The n2/n1 ,n3/n1and n4/n1 are 6.34±1.27,3.66±0. 73 and 1.45±0.29,respectively, where n1 ,n2 ,n3 and n4 represent the number densities of H2 at the rovibrational levels(2,4), (2,3),(1,4) ,and (1,5), respectively. The relative fractions (<fv>: <fR>: <fr>) of average energy disposal are derived as (0.44, 0.06, 0.50), having major translational and vibrational en ergy release. Through shape simulation of the time-resolved CARS profiles under a sim-ple kinetic model at the experimental conditions of T= 523K and P= 2. 5 × 103 Pa, colli-sional transfer rate coefficients k1 = (6.0± 1.2) × 10-14 cm-3 s-1 and k2 = (4. 0± 0. 8) ×10-13 cm-3s-1 have obtained.%利用相干反斯托克斯拉曼光谱(CARS)探测技术,研究了激发态Cs2与H2间的电子-振转能级的碰撞转移.用波长为532 nm和中心波长为716 nm的两束激光同时聚焦到样品池中,扫描CARS谱确认了H2分子的S支(△v=1,△J=2)仅在v=1,J=4,5及v=2,J=3,4能级上有布居,用n1、n2、n3、n4、分别表示(2,4)、(2,3)、(1,4)及(1,5)上的粒子数密度.从CARS线的峰值得到n2/n1、n3/n1、n4/n1分别为6.34士1.27、3.66士0.73和1.45士0.29.转移能配置到振动、转动和平动的比例分别为0.44、0.06和0.50,能量主要分配在振动和平动上.在T=523 K和PPHZ=2.5×103Pa条件下,通

  18. Electron impact ionization and excitation of laser-excited atoms: investigation by means of electron spectrometry

    International Nuclear Information System (INIS)

    We have measured the electron spectra following the excitation and ionization of laser-excited atoms by impact of 1.5 keV electrons: 2p excitation and 2s ionization of Na(3p3/2), 1s excitation of Li(2p3/2) and 5p ionization of Ba(6s5d 1,3D). Except for Ba the intensities of ejected electrons are directly proportional to the cross sections of Auger and autoionizing states. Theoretical excitation cross sections (Na 2p, Li 1s) are obtained in first Born approximation including the full relaxation of the atomic electrons. Relative ionization cross sections (Na 2s, Ba 5p) are evaluated in sudden approximation as a two-step process: pure 2s(5p) ionization plus relaxation of the rest of the atomic electrons. The experimental spectra are compared to theoretical spectra

  19. Excitation energy transfer in chromophore aggregates within a dissipative medium

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Alexander S., E-mail: belov_as@mail.com [Chemistry Department, Moscow State University, Leninskie Gory 1/3, Moscow (Russian Federation); Eremin, Vadim V. [Chemistry Department, Moscow State University, Leninskie Gory 1/3, Moscow (Russian Federation)

    2012-10-01

    The Redfield theory-based model of excitation energy transfer in chromophore ensembles within dissipative environment is proposed. Application of the multipole expansion to an operator of interaction between the chromophore molecules and the environment together with some assumptions about the latter led to the closed-form expressions for the elements of the dissipation tensor. These expressions relate the rates of transition between eigenstates of a chromophore ensemble with the spectral and electronic properties of an environment and the chromophore molecules. For several model cases the exact solution of the Redfield equations was obtained. -- Highlights: ► A model for electronic relaxation dynamics in supramolecular ensembles is proposed. ► Closed-form expressions for relaxation rates are derived. ► Redfield equations are solved in closed form for several model systems. ► The effect of structural and electronic parameters on relaxation rates is discussed.

  20. Electron-impact vibrational excitation of cyclopropane.

    Science.gov (United States)

    Čurík, R; Čársky, P; Allan, M

    2015-04-14

    We report a very detailed test of the ab initio discrete momentum representation (DMR) method of calculating vibrational excitation of polyatomic molecules by electron impact, by comparison of its results with an extensive set of experimental data, covering the entire range of scattering angles from 10° to 180° and electron energies from 0.4 to 20 eV. The DMR calculations were carried out by solving the two-channel Lippmann-Schwinger equation in the momentum space, and the interaction between the scattered electron and the target molecule was described by exact static-exchange potential corrected by a density functional theory (DFT) correlation-polarization interaction that models target's response to the field of incoming electron. The theory is found to quantitatively reproduce the measured spectra for all normal modes, even at the difficult conditions of extreme angles and at low energies, and thus provides full understanding of the excitation mechanism. It is shown that the overlap of individual vibrational bands caused by limited experimental resolution and rotational excitation must be properly taken into account for correct comparison of experiment and theory. By doing so, an apparent discrepancy between published experimental data could be reconciled. A substantial cross section is found for excitation of the non-symmetric HCH twisting mode ν4 of A1 (″) symmetry by the 5.5 eV A2 (') resonance, surprisingly because the currently accepted selection rules predict this process to be forbidden. The DMR theory shows that the excitation is caused by an incoming electron in an f-wave of A2 (') symmetry which causes excitation of the non-symmetric HCH twisting mode ν4 of the A1 (″) symmetry and departs in p- and f-waves of A2 (″) symmetry. PMID:25877583

  1. Electron impact cross sections of vibrationally and electronically excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung-Sik, E-mail: jsyoon@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2, Osikdo-Dong, Gunsan, Jeollabuk-Do, 573-540 (Korea, Republic of); Song, Mi-Young; Kwon, Deuk-Chul; Choi, Heechol [Plasma Technology Research Center, National Fusion Research Institute, 814-2, Osikdo-Dong, Gunsan, Jeollabuk-Do, 573-540 (Korea, Republic of); Kim, Chang-Geun [National Center for Standard Reference Data, Korea Research Institute of Standards and Science, Doryong-Dong, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kumar, Vijay [B-82, Aarohi Twin Bungalows, Near Govt. Tubewell, Bopal, Ahmedabad-380058 (India)

    2014-10-30

    It is well known that the electron impact cross sections for elastic and inelastic processes for the vibrationally and electronically excited molecules are predominantly different than those for molecules in the ground state. Collisions of low energy electrons with excited molecules play an important role in explaining the behavior of gas discharges in laser and plasma physics, in planetary atmospheres, stars, and interstellar medium and in plasmas widely used in the fabrication of microelectronics. This explains as to why there is a need for having validated sets of electron impact cross sections for different processes. This work reviews the subject of electron collisions with vibrationally and electronically excited molecules in a comprehensive way. The survey has been carried out for a few excited molecules such as H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT, N{sub 2}, O{sub 2}, and CO{sub 2}. This review includes the discussion on the methods to produce and detect vibrationally and electronically excited molecules. We will take up the cross section data available in the literature for such molecules on electron scattering, dissociation, ionization and attachment processes and will discuss, evaluate and well-validate the same wherever and whenever possible.

  2. Coherence in electron-impact excitation of helium

    International Nuclear Information System (INIS)

    This thesis describes an experimental study into the electron-impact excitation to the 33P, 31D and 33D states of Helium. The scattered electron and the photon, emitted by the excited atom, are measured in coincidence. The parameters, which can be varied, are the scattering angle and the kinetic energy of the projectile. Two parameters, which are used to characterize the excited state, are the angular momentum transferred to the atom, L perpendicular, and the alignment angle γ. It is shown that results of measurements on 31D excitation with photon detection perpendicular to the scattering plane do not agree in the small scattering angle region with any of the model calculations currently available. Remarkable is the sign of L perpendicular, which appears to start of negatively at 60 eV. It is shown that for 33P excitation the predicted large value of γ is indeed found experimentally. This supports the suggestion that exchange scattering is underestimated in model calculations for 1P excitation. Another result is that for 1P and 3P excitation the behaviour of L perpendicular as a function of the scattering angle can be related at different impact energies with the help of a partial wave expansion. A scaling relation can be formulated for the behaviour of L perpendicular. The influence of a negative ion resonance to excitation of the 33D state is investigated. Both in coincidence and non-coincidence measurements the presence of the resonance yields information on both the direct and indirect excitation of the 33D state. It is shown that the coincident measurement gives an unique opportunity to determine the excited 33D state completely. Results of measurements with photon detection in the scattering plane are given. They supplement previous 31D and 33D results and allow physical parameters, such as L perpendicular and γ, to be obtained. (H.W.). 132 refs.; 20 figs.; 18 tabs

  3. Thermal electronic excitations in liquid metals

    OpenAIRE

    Chisolm, Eric D.; Bock, Nicolas; Rudin, Sven P.; Wallace, Duane C.

    2013-01-01

    Thermal electronic excitations in metal crystals are calculated by starting with a reference structure for the nuclei: the crystal structure of the appropriate phase. Here we explain the corresponding theory for metal liquids, starting with an appropriate reference structure for a liquid. We explain the significance of these structures, and we briefly review how to find them and calculate their properties. Then we examine the electronic densities of states for liquid structures of Na, Al, and...

  4. Excitations and benchmark ensemble density functional theory for two electrons

    CERN Document Server

    Pribram-Jones, Aurora; Trail, John R; Burke, Kieron; Needs, Richard J; Ullrich, Carsten A

    2014-01-01

    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange (SEHX), is derived. Exact conditions that are proven include the signs of the correlation energy components, the virial theorem for both exchange and correlation, and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.

  5. [Electron transfer between globular proteins. Evaluation of a matrix element].

    Science.gov (United States)

    Lakhno, V D; Chuev, G N; Ustinin, M N

    1998-01-01

    The dependence of the matrix element of the probability of interprotein electron transfer on the mutual orientation of the donor and acceptor centers and the distance between them was calculated. The calculations were made under the assumption that electron transfer proceeds mainly by a collective excitation of polaron nature, like a solvated electron state. The results obtained are consistent with experimental data and indicate the nonexponential behavior of this dependence in the case when the distance transfer is less than 20 A.

  6. How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules.

    Science.gov (United States)

    Shi, Tian; Li, Hao; Tretiak, Sergei; Chernyak, Vladimir Y

    2014-11-20

    Effects of disorder and exciton-phonon interactions are the major factors controlling photoinduced dynamics and energy-transfer processes in conjugated organic semiconductors, thus defining their electronic functionality. All-atom quantum-chemical simulations are potentially capable of describing such phenomena in complex "soft" organic structures, yet they are frequently computationally restrictive. Here we efficiently characterize how electronic excitations in branched conjugated molecules interact with molecular distortions using the exciton scattering (ES) approach as a fundamental principle combined with effective tight-binding models. Molecule geometry deformations are incorporated to the ES view of electronic excitations by identifying the dependence of the Frenkel-type exciton Hamiltonian parameters on the characteristic geometry parameters. We illustrate our methodology using two examples of intermolecular distortions, bond length alternation and single bond rotation, which constitute vibrational degrees of freedom strongly coupled to the electronic system in a variety of conjugated systems. The effect on excited-state electronic structures has been attributed to localized variation of exciton on-site energies and couplings. As a result, modifications of the entire electronic spectra due to geometric distortions can be efficiently and accurately accounted for with negligible numerical cost. The presented approach can be potentially extended to model electronic structures and photoinduced processes in bulk amorphous polymer materials.

  7. Electron-excited hydrogen and helium collisions

    International Nuclear Information System (INIS)

    The Multichannel Eikonal Treatment (MET) is modified so as to facilitate highly accurate description of various asymptotic long range dipole couplings important in electron excited atom collisions. MET is applied to excitation in e-H(2s), e-H(2p), e-He(2 /sup 1,3/S) and e-He(2 /sup 1,3/P) collisions at intermediate energies. Integral and differential cross sections together with various coherence and alignment parameters for the radiative decay of the n=2 and 3 collisionally-excited P and D states of H and He are determined from MET with 10 channels associated with n = 1, 2, and 3 sublevels. Comparison is made with various recent measurements

  8. Electron spectroscopy of collisional excited atoms

    International Nuclear Information System (INIS)

    In this thesis measurements are described in which coincidences are detected between scattered projectiles and emitted electrons. This yields information on two-electron excitation processes. In order to show what can be learnt from coincidence experiments a detailed theoretical analysis is given. The transition amplitudes, which contain all the information, are introduced (ch.2). In ch.3 the experimental set-up is shown. The results for the Li+-He system are shown in ch. 7 and are compared with predictions based on the Molecular-Orbitalmodel which however does not account for two-excitation mechanisms. With the transition amplitudes also the wave function of the excited atom has been completely determined. In ch.8 the shape of the electron cloud, induced by the collision, is derived from the amplitudes. The relation between the oscillatory motion of this cloud after the collision and the correlation between the two electrons of the excited atom is discussed. In ch. 6 it is shown that the broad structures in the non-coincident energy spectra of the Li+-He system are erroneously interpretated as a result of electron emission from the (Li-He)+-quasimolecule. A model is presented which explains, based on the results obtained from the coincidence measurements, these broad structures. In ch. 4 the Post-Collision Interaction process is treated. It is shown that for high-energy collisions, in contrast with general assumptions, PCI is important. In ch. 5 the importance of PCI-processes in photoionization of atoms, followed by Auger decay, are studied. From the formulas derived in ch. 4 simple analytical results are obtained. These are applied to recent experiments and good agreement is achieved. 140 refs.; 55 figs.; 9 tabs

  9. Concepts of Highly Excited Electronic Systems

    Science.gov (United States)

    Berakdar, Jamal

    2003-05-01

    Knowledge of the excitation characteristics of matter is decisive for the descriptions of a variety of dynamical processes, which are of significant technological interest. E.g. transport properties and the optical response are controlled by the excitation spectrum. This self-contained work is a coherent presentation of the quantum theory of correlated few-particle excitations in electronic systems. It begins with a compact resume of the quantum mechanics of single particle excitations. Particular emphasis is put on Green function methods, which offer a natural tool to unravel the relations between the physics of small and large electronic systems. The book contains explicit expressions for the Coulomb Green function of two charge particles and a generalization to three-body systems. Techniques for the many-body Green function of finite systems are introduced and some explicit calculations of the Green functions are given. Concrete examples are provided and the theories are contrasted with experimental data, when available. The second volume presents an up-to-date selection of applications of the developed concepts and a comparison with available experiments is made

  10. Search for excited electrons at HERA

    Science.gov (United States)

    H1 Collaboration; Adloff, C.; Andreev, V.; Andrieu, B.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Belousov, A.; Berger, Ch.; Berndt, T.; Bizot, J. C.; Böhme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Bröker, H.-B.; Brown, D. P.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Clarke, D.; Collard, C.; Contreras, J. G.; Coppens, Y. R.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J. D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flügge, G.; Fomenko, A.; Foresti, I.; Formánek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grässler, H.; Greenshaw, T.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K. H.; Hladký, J.; Höting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hurling, S.; Ibbotson, M.; Işsever, Ç.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C.; Johnson, D. P.; Jones, M. A. S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I. R.; Kiesling, C.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Krüger, K.; Kuhr, T.; Lamb, D.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leißner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Lüders, S.; Lüke, D.; Lytkin, L.; Malden, N.; Malinovski, E.; Mangano, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Mondragon, M. N.; Moreau, F.; Morozov, A.; Morris, J. V.; Müller, K.; Murín, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, P. R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J. E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J. P.; Pitzl, D.; Pöschl, R.; Potachnikova, I.; Povh, B.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schätzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schöning, A.; Schörner, T.; Schröder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlák, K.; Sefkow, F.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchetchelnitski, S.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J. E.; Tzamariudaki, E.; Uraev, A.; Urban, M.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.-G.; Wissing, Ch.; Wobisch, M.; Woehrling, E.-E.; Wünsch, E.; Wyatt, A. C.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zur Nedden, M.

    2002-11-01

    A search for excited electron (e*) production is described in which the electroweak decays e*-->eγ, e*-->eZ and e*-->νW are considered. The data used correspond to an integrated luminosity of 120 pb-1 taken in e+/-p collisions from 1994 to 2000 with the H1 detector at HERA at centre-of-mass energies of 300 and 318 GeV. No evidence for a signal is found. Mass dependent exclusion limits are derived for the ratio of the couplings to the compositeness scale, /f/Λ. These limits extend the excluded region to higher masses than has been possible in previous direct searches for excited electrons.

  11. Electromagnetic Instabilities Excited by Electron Temperature Anisotropy

    Institute of Scientific and Technical Information of China (English)

    陆全明; 王连启; 周艳; 王水

    2004-01-01

    One-dimensional particle-in-cell simulations are performed to investigate the nonlinear evolution of electromagnetic instabilities excited by the electron temperature anisotropy in homogeneous plasmas with different parameters. The results show that the electron temperature anisotropy can excite the two right-hand electromagnetic instabilities, one has the frequency higher than Ωe, the other is the whistler instability with larger amplitude,and its frequency is below Ωe. Their dispersion relations are consistent with the prediction from the cold plasma theory. In the initial growth stage (prediction from linear theory), the frequency of the dominant mode (the mode whose amplitude is large enough) of the whistler wave almost does not change, but in the saturation stage the situation is different. In the case that the ratio of electron plasma frequency to cyclotron frequency is larger than 1, the frequency of the dominant mode of the whistler wave drifts from high to low continuously. However, for the case of the ratio smaller than 1, besides the original dominant mode of the whistler wave whose frequency is about 2.6ωe, another dominant mode whose frequency is about 1.55ωe also begins to be excited at definite time,and its amplitude increases with time until it exceeds the original dominant mode.

  12. Electron impact excitation of SF6

    Science.gov (United States)

    Trajmar, S.; Chutjian, A.

    1977-01-01

    A study of the electron impact energy-loss spectrum of SF6 under both optical (low scattering angle, high impact energy) and non-optical conditions (high scattering angle, low impact energy) has revealed a number of electronic excitation processes. With the help of theoretical calculations, several of these transitions have been assigned and approximate cross sections associated with four features have been determined. In addition, a strong resonance at 12 eV has been observed in both elastic and vibrationally inelastic (delta E = 0.092 eV) channels.

  13. Inner Shell Excitations of Lithium Studied by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei-Chun; ZHU Lin-Fan; XU Ke-Zun

    2008-01-01

    Electron energy loss spectra for the inner shell excitations of atomic lithium are measured at an incident electron energy of 2500eV and scattering angles of 0°, 2°, 4° and 6°. Two optically forbidden transitions of (1s2s2)2S and (1s2s3S)3s2 S are observed. The generalized oscillator strength ratios for 1s(2s2p3P)2 P0 to 1s(2s2p1P)2P0 were determined, and they are independent of the momentum transfer.

  14. Electronic fund transfer & the "unbanked"

    OpenAIRE

    Luxman Nathan

    1998-01-01

    As the Federal Government moves to switch most federal payments from paper check delivery to Direct Deposit by January 2, 1999, the Electronic Fund Transfer Initiative (EFT) attempts to educate consumers and serve the "unbanked."

  15. Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mančal T.

    2013-03-01

    Full Text Available Two-dimensional electronic spectroscopy (2D-ES is used to investigate ultrafast excited-state dynamics in a lutetium bisphthalocyanine dimer. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra. The combination of density matrix propagation and quantum chemical calculations results in a molecular view of the charge transfer dynamics and highlights the role of the counter-ion in providing an energetic perturbation which promotes charge transfer across the complex.

  16. Effect of electron excitation on radiation damage in fce metals

    Science.gov (United States)

    Iwase, A.; Iwata, T.

    1994-05-01

    Defect production, radiation annealing and defect recovery are studied in several fcc metals (Al, Cu, Ni, Ag and Pt) irradiated with low-energy (˜ 1 MeV) and high-energy (˜ 100 MeV) ions. Irradiation of the metals with strong electron-lattice interaction (Al, Ni and Pt) by ˜ 100 MeV ions causes an anomalous reduction, or even a complete disappearance of stage-I recovery. This experimental result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of single interstitials. This effect is also observed in Ni as a large cross section for radiation annealing, and a decrease of the damage efficiency. On the other hand, in Cu and Ag thin foils, we find that lattice defects are produced not only through elastic interactions, but also through a process strongly associated with electron excitation. In the latter process, the defect production cross section is proportional to Se1.7 in Cu and Se1.5 in Ag. The nearly quadratic dependence of the cross section on Se suggests that the mutual Coulomb repulsion of ions positively charged by electron excitation causes the defect production.

  17. Chemical excitation of electrons: A dark path to melanoma.

    Science.gov (United States)

    Premi, Sanjay; Brash, Douglas E

    2016-08-01

    Sunlight's ultraviolet wavelengths induce cyclobutane pyrimidine dimers (CPDs), which then cause mutations that lead to melanoma or to cancers of skin keratinocytes. In pigmented melanocytes, we found that CPDs arise both instantaneously and for hours after UV exposure ends. Remarkably, the CPDs arising in the dark originate by a novel pathway that resembles bioluminescence but does not end in light: First, UV activates the enzymes nitric oxide synthase (NOS) and NADPH oxidase (NOX), which generate the radicals nitric oxide (NO) and superoxide (O2(-)); these combine to form the powerful oxidant peroxynitrite (ONOO(-)). A fragment of the skin pigment melanin is then oxidized, exciting an electron to an energy level so high that it is rarely seen in biology. This process of chemically exciting electrons, termed "chemiexcitation", is used by fireflies to generate light but it had never been seen in mammalian cells. In melanocytes, the energy transfers radiationlessly to DNA, inducing CPDs. Chemiexcitation is a new source of genome instability, and it calls attention to endogenous mechanisms of genome maintenance that prevent electronic excitation or dissipate the energy of excited states. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. PMID:27262612

  18. An excitable electronic circuit as a sensory neuron model

    CERN Document Server

    Medeiros, Bruno N S; Mindlin, Gabriel B; Copelli, Mauro; Leite, José R Rios

    2011-01-01

    An electronic circuit device, inspired on the FitzHugh-Nagumo model of neuronal excitability, was constructed and shown to operate with characteristics compatible with those of biological sensory neurons. The nonlinear dynamical model of the electronics quantitatively reproduces the experimental observations on the circuit, including the Hopf bifurcation at the onset of tonic spiking. Moreover, we have implemented an analog noise generator as a source to study the variability of the spike trains. When the circuit is in the excitable regime, coherence resonance is observed. At sufficiently low noise intensity the spike trains have Poisson statistics, as in many biological neurons. The transfer function of the stochastic spike trains has a dynamic range of 6 dB, close to experimental values for real olfactory receptor neurons.

  19. Photoinduced energy and electron transfer in rubrene-benzoquinone and rubrene-porphyrin systems

    KAUST Repository

    Khan, Jafar Iqbal

    2014-11-01

    Excited-state electron and energy transfer from singlet excited rubrene (Ru) to benzoquinone (BQ) and tetra-(4-aminophenyl) porphyrin (TAPP) were investigated by steady-state absorption and emission, time-resolved transient absorption, and femtosecond (fs)-nanosecond (ns) fluorescence spectroscopy. The low reduction potential of BQ provides the high probability of electron transfer from the excited Ru to BQ. Steady-state and time-resolved results confirm such an excited electron transfer scenario. On the other hand, strong spectral overlap between the emission of Ru and absorption of TAPP suggests that energy transfer is a possible deactivation pathway of the Ru excited state.

  20. Ultrafast electron injection into photo-excited organic molecules.

    Science.gov (United States)

    Cvetko, Dean; Fratesi, Guido; Kladnik, Gregor; Cossaro, Albano; Brivio, Gian Paolo; Venkataraman, Latha; Morgante, Alberto

    2016-08-10

    Charge transfer rates at metal/organic interfaces affect the efficiencies of devices for organic based electronics and photovoltaics. A quantitative study of electron transfer rates, which take place on the femtosecond timescale, is often difficult, especially since in most systems the molecular adsorption geometry is unknown. Here, we use X-ray resonant photoemission spectroscopy to measure ultrafast charge transfer rates across pyridine/Au(111) interfaces while also controlling the molecular orientation on the metal. We demonstrate that a bi-directional charge transfer across the molecule/metal interface is enabled upon creation of a core-exciton on the molecule with a rate that has a strong dependence on the molecular adsorption angle. Through density functional theory calculations, we show that the alignment of molecular levels relative to the metal Fermi level is dramatically altered when a core-hole is created on the molecule, allowing the lowest unoccupied molecular orbital to fall partially below the metal Fermi level. We also calculate charge transfer rates as a function of molecular adsorption geometry and find a trend that agrees with the experiment. These findings thus give insight into the charge transfer dynamics of a photo-excited molecule on a metal surface. PMID:27444572

  1. Effects of Herzberg--Teller vibronic coupling on coherent excitation energy transfer

    CERN Document Server

    Zhang, Hou-Dao; Xu, Rui-Xue; Yan, YiJing

    2016-01-01

    In this work, we study the effects of non-Condon vibronic coupling on the quantum coherence of excitation energy transfer, via the exact dissipaton-equation-of-motion (DEOM) evaluations on excitonic model systems. Field-triggered excitation energy transfer dynamics and two dimensional coherent spectroscopy are simulated for both Condon and non-Condon vibronic couplings. Our results clearly demonstrate that the non-Condon vibronic coupling intensifies the dynamical electronic-vibrational energy transfer and enhances the total system-and-bath quantum coherence. Moreover, the hybrid bath dynamics for non-Condon effects enriches the theoretical calculation, and further sheds light on the interpretation of the experimental nonlinear spectroscopy.

  2. Plasmonic coupling and long-range transfer of an excitation along a DNA nanowire.

    Science.gov (United States)

    Toppari, J Jussi; Wirth, Janina; Garwe, Frank; Stranik, Ondrej; Csaki, Andrea; Bergmann, Joachim; Paa, Wolfgang; Fritzsche, Wolfgang

    2013-02-26

    We demonstrate an excitation transfer along a fluorescently labeled dsDNA nanowire over a length of several micrometers. Launching of the excitation is done by exciting a localized surface plasmon mode of a 40 nm silver nanoparticle by 800 nm femtosecond laser pulses via two-photon absorption. The plasmonic mode is subsequently coupled or transformed to excitation in the nanowire in contact with the particle and propagated along it, inducing bleaching of the dyes on its way. In situ as well as ex situ fluorescence microscopy is utilized to observe the phenomenon. In addition, transfer of the excitation along the nanowire to another nanoparticle over a separation of 5.7 μm was clearly observed. The nature of the excitation coupling and transfer could not be fully resolved here, but injection of an electron into the DNA from the excited nanoparticle and subsequent coupled transfer of charge (Dexter) and delocalized exciton (Frenkel) is the most probable mechanism. However, a direct plasmonic or optical coupling and energy transfer along the nanowire cannot be totally ruled out either. By further studies the observed phenomenon could be utilized in novel molecular systems, providing a long-needed communication method between molecular devices. PMID:23305550

  3. [Electron transfer between globular proteins. Dependence of the rate of transfer on distance].

    Science.gov (United States)

    Lakhno, V D; Chuev, G N; Ustinin, M N; Komarov, V M

    1998-01-01

    Based on the assumption that electron transfer between globular proteins occurs by a collective excitation of polaron type, the dependence of the rate of this process on the distance between the donor and acceptor centers with regard to their detailed electron structure was calculated. The electron structure of the heme was calculated by the quantum-chemical MNDO-PM3 method. The results were compared with experimental data on interprotein and intraglobular electron transfer. It is shown that, in the framework of this model, the electron transfer is not exponential and does not require a particular transfer pathway since the whole protein macromolecule is involved in the formation of the electron excited state.

  4. Reactive scattering of electronically excited alkali atoms with molecules

    International Nuclear Information System (INIS)

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl- repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O2 is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO2 is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed

  5. Vibronic speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex

    CERN Document Server

    Nalbach, P; Thorwart, M

    2013-01-01

    We show that the efficient excitation energy transfer in the Fenna-Matthews-Olson molecular aggregate under realistic physiological conditions is fueled by underdamped vibrations of the embedding proteins. For this, we present numerically exact results for the quantum dynamics of the excitons in the presence of nonadiabatic vibrational states in the Fenna-Matthews-Olson aggregate employing a environmental fluctuation spectral function derived from experiments. Assuming the prominent 180 cm$^{-1}$ vibrational mode to be underdamped, we observe, on the one hand, besides vibrational coherent oscillations between different excitation levels of the vibration also prolonged electronic coherent oscillations between the initially excited site and its neighbours. On the other hand, however, the underdamped vibrations provide additional channels for the excitation energy transfer and by this increase the transfer speed by up to $30\\%$ .

  6. Transient negative photoconductance in a charge transfer double quantum well under optical intersubband excitation

    Science.gov (United States)

    Rüfenacht, M.; Tsujino, S.; Sakaki, H.

    1998-06-01

    Recently, it was shown that an electron-hole radiative recombination is induced by a mid-infrared light exciting an intersubband transition in a charge transfer double quantum well (CTDQW). This recombination was attributed to an upstream transfer of electrons from an electron-rich well to a hole-rich well. In this study, we investigated the electrical response of a CTDQW under intersubband optical excitation, and found that a positive photocurrent, opposite in sign and proportional to the applied electric field, accompanies the intersubband-transition-induced luminescence (ITIL) signal. A negative photocurrent component was also observed and attributed to heating processes. This work brings a further evidence of the ITIL process and shows that an important proportion of the carriers are consumed by the transfer of electrons.

  7. Calculation of nuclear excitation in an electron transition

    Energy Technology Data Exchange (ETDEWEB)

    Pisk, K. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Kaliman, Z. (Rijeka Univ. (Yugoslavia). Faculty of Pedagogics); Logan, B.A. (Ottawa Univ., ON (Canada). Ottawa-Carleton Centre for Physics)

    1989-11-06

    We have made a theoretical investigation of nuclear excitation during an electron transition (NEET). Our approach allows us to express the NEET probabilities in terms of the excited nuclear level width, the energy difference between the nuclear and electron transition, the Coulomb interaction between the initial electron states, and the electron level width. A comparison is made with the available experimental results. (orig.).

  8. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    , we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  9. Excited State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following Electronic Excitation.

    Science.gov (United States)

    Féraud, Géraldine; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe; Grégoire, Gilles; Soorkia, Satchin

    2015-06-11

    The electronic spectroscopy and the electronic excited state properties of cold protonated phenylalanine and protonated tyrosine have been revisited on a large spectral domain and interpreted by comparison with ab initio calculations. The protonated species are stored in a cryogenically cooled Paul trap, maintained at ∼10 K, and the parent and all the photofragment ions are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species with an improved mass resolution compared to what is routinely achieved with a quadrupole mass spectrometer. These new results emphasize the competition around the band origin between two proton transfer reactions from the ammonium group toward either the aromatic chromophore or the carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state with higher charge transfer states, the positions and coupling of which depend on the conformation of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation channels that supports the conformer selectivity observed in the photofragmentation spectra of protonated tyrosine and phenylalanine.

  10. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    CERN Document Server

    Magadur, G; Alain-Rizzo, V; Voisin, C; Roussignol, Ph; Deleporte, E; Delaire, J A

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching of the TPPS emission while the photoluminescence intensity of the nanotubes is enhanced when the excitation laser is in resonance with the porphyrin absorption band. This reveals an efficient excitation transfer from the TPPS to the carbon nanotube.

  11. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.

    Science.gov (United States)

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  12. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  13. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria

    CERN Document Server

    Fujita, Takatoshi; Saikin, Semion K; Brookes, Jennifer C; Aspuru-Guzik, Alan

    2013-01-01

    Chlorosomes are the largest and most efficient natural light-harvesting antenna systems. They contain thousands of pigment molecules - bacteriochlorophylls (BChls)- that are organized into supramolecular aggregates and form a very efficient network for excitonic energy migration. Here, we present a theoretical study of excitation energy transfer (EET) in the chlorosome based on experimental evidence of the molecular assembly. Our model for the exciton dynamics throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of supramolecular structure, and electronic structure calculations of the excited states. The simulation results reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to se...

  14. The mechanism of electronic excitation in the bacterial bioluminescent reaction

    International Nuclear Information System (INIS)

    The current state of the problem of formation of the electron-excited product in the chemiluminescent reaction that underlies the bacterial luminescence is analysed. Various schemes of chemical transformations capable of producing a bacterial bioluminescence emitter are presented. The problem of excitation of secondary emitters is considered; two possible mechanisms of their excitation are analysed.

  15. Resonant Transfer Excitation of Fluorine-Like Mo33+ Ion

    Science.gov (United States)

    Ramadan, Hassan; Elkilany, Sabbah

    2010-07-01

    Dielectronic recombination (DR) cross sections (σDR) and rate coefficients (αDR) for Mo33+ are calculated using the angular momentum average scheme (AMA). Moreover, the resonant transfer excitation followed by X-ray emission (RTEX) cross sections (σ RTEX) for the collision of Mo33+ with H2 and He targets are calculated and studied. The calculations of the cross sections are performed for both K- and L-shell excitations. A smooth change with the temperatures for αDR is found for all kinds of excitations. The rates for K-shell excitation are very small in comparison with the rates for Lshell excitation. The RTEX cross sections for Mo33+ ions are obtained from their corresponding DR cross sections by the method of folding in the impulse approximation (IMA). σ RTEX for the K-shell excitation shows two overlapped peaks which may be attributed to the two groups in this excitation process. The present calculations are considered as a database for future comparison with theoretical and experimental data using other coupling schemes. Multiple Auger channels are complicating the dependence of the cross sections on principal quantum numbers.

  16. Convoy electron emission following ionization of highly-charged ions excited by resonant coherent excitation

    Science.gov (United States)

    Suda, S.; Nakano, Y.; Metoki, K.; Shindo, T.; Ohtsuki, S.; Azuma, T.; Hatakeyama, A.; Komaki, K.; Nakai, Y.; Takada, E.; Murakami, T.

    2012-11-01

    Projectile ionization of highly-charged Ar and Fe ions in the excited states passing relativistically fast through a thin crystalline foil was experimentally studied. We selectively controlled the population of the excited states of the projectiles, and their alignment by choosing a specific m-state through three-dimensional resonant coherent excitation technique by periodical electric fields in a crystalline. We measured energy-differential spectra of electron emission released from projectiles at zero degree. Under the resonance condition, we found an evident enhancement of the convoy electron yield, which reflects the electron momentum distribution of the initial bound state of the excited ions.

  17. Photoinitiated electron transfer in multichromophoric species: Synthetic tetrads and pentads

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This project involves the design, synthesis and study of molecules which mimic some of the important aspects of photosynthetic electron and energy transfer. This research project is leading to a better understanding of the energy conserving steps of photosynthesis via the study of synthetic model systems which abstract features of the natural photosynthetic apparatus. The knowledge gained from these studies will aid in the design of artificial photosynthetic reaction centers which employ the basic chemistry and physics of photosynthesis to help meet mankind`s energy needs. The approach to artificial photosynthesis employed in this project is to use synthetic pigments, electron donors, and electron acceptors similar to those found in biological reaction centers, but to replace the protein component with covalent bonds. These chemical linkages determine the electronic coupling between the various moieties by controlling separation, relative orientation, and overlap of electronic orbitals. The model systems are designed to mimic the following aspects of natural photosynthetic electron transfer: electron donation from a tetrapyrrole excited single state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties. In addition, they mimic carotenoid antenna function in photosynthesis (singlet-singlet energy transfer from carotenoid polyenes to chlorophyll) and carotenoid photoprotection from singlet oxygen damage (triplet-triplet energy transfer from chlorophyll to carotenoids).

  18. Theory of nuclear excitation by electron capture for heavy ions

    OpenAIRE

    Gagyi-Palffy, Adriana

    2006-01-01

    The resonant process of nuclear excitation by electron capture (NEEC) in collisions involving highly-charged ions has been investigated theoretically. NEEC is a rare recombination process in which a free electron is captured into a bound shell of an ion with the simultaneous excitation of the nucleus. Total cross sections for NEEC followed by the radiative decay of the excited nucleus are presented for various collision systems. The possibility to observe the NEEC in scattering experiments wi...

  19. Electronic excitations in fast ion-solid collisions

    Energy Technology Data Exchange (ETDEWEB)

    Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (USA). Dept. of Physics and Astronomy Oak Ridge National Lab., TN (USA))

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs.

  20. Search for Excited Electrons in ep Collisions at HERA

    CERN Document Server

    Aaron, F D; Andreev, V; Antunovic, B; Aplin, S; Asmone, A; Astvatsatourov, A; Bacchetta, A; Backovic, S; Baghdasaryan, A; Baranov, P; Barrelet, E; Bartel, Wulfrin; Beckingham, M; Begzsuren, K; Behnke, O; Belousov, A; Berger, N; Bizot, J C; Boenig, M O; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deák, M; De Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; de Roeck, A; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Essenov, S; Falkiewicz, A; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Finke, L; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Glushkov, I; Görlich, L; Goettlich, M; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Hansson, M; Helebrant, C; Henderson, R C W; Henschel, H; Herrera-Corral, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hovhannisyan, A; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jemanov, V; Jonsson, L; Johnson, D P; Jung, A W; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knutsson, A; Kogler, R; Korbel, V; Kostka, P; Krämer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Krüger, K; Kutak, K; Landon, M P J; Lange, W; Lastoviicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; López-Fernandez, R; Lubimov, V; Lucaci-Timoce, A I; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, L; Martyn, H U; Maxfield, S J; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Mudrinic, M; Müller, K; Murn, P; Nankov, K; Naroska, B; Naumann, T; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagouliasl, I; Pandurovic, M; Papadopouloul, T; Pascaud, C; Patel, G D; Pejchal, O; Peng, H; Pérez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Salvaire, F; Sankey, D P C; Sauter, M; Sauvan, E; Schmidt, S; Schmitt, S; Schmitz, C; Schoeffel, L; Schöning, A; Schultz-Coulon, H C; Sefkow, F; Shaw-West, R N; Shevyakov, I; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, I; Smirnov, P; Soloviev, Yu; Sopicki, P; South, D; Spaskov, V; Specka, A; Staykova, Z; Steder, M; Stella, B; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truöl, P; Tsakov, I; Tseepeldorj, B; Tsurin, I; Turnau, J; Tzamariudaki, E; Urban, K; Valkárová, A; Vallée, C; Van Mechelen, P; VargasTrevino, A; Vazdik, Ya; Vinokurova, S; Volchinski, V; Wegener, D; Wessels, M; Wissing, C; Wünsch, E; Yeganov, V; Zácek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zhu, Y C; Zimmermann, T; Zohrabyan, H; Zomer, F

    2008-01-01

    A search for excited electrons is performed using the full $e^{\\pm}p$ data sample collected by the H1 experiment at HERA, corresponding to a total luminosity of 475 pb$^{-1}$. The electroweak decays of excited electrons ${e}^{*}\\to{e}{\\gamma}$, ${e}^{*}\\to{e}Z$ and ${e}^{*}{\\to}\

  1. Heterostructure Intervalley Transferred Electron Effects

    Institute of Scientific and Technical Information of China (English)

    XUE Fang-Shi

    2001-01-01

    A Gunn active layer is used as an X electron probe to detect the X tunnelling current in the GaAs-AlAs heterostructure, from which a new heterostructure intervalley transferred electron (HITE) device is obtained. In the 8 mm band, the highest pulse output power of these diodes is 2.65 W and the highest conversion efficiency is 18%. The dc and rf performance of the HITE devices was simulated by the band mixing resonant tunnelling theory and Monte Carlo transport simulation. The HITE effect has transformed the transit-time dipole-layer mode in the Gunn diode into a relaxation oscillation mode in the HITE device. From the comparison of simulated results to the measured data, the HITE effect is demonstrated straightforwardly

  2. Photoinduced electron transfer processes in homogeneous and microheterogeneous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whitten, D.G.

    1991-10-01

    The focus of the work described in this report is on single electron transfer reactions of excited states which culminate in the formation of stable or metastable even electron species. For the most part the studies have involved even electron organic substrates which are thus converted photochemically to odd electron species and then at some stage reconvert to even electron products. These reactions generally fall into two rather different categories. In one set of studies we have examined reactions in which the metastable reagents generated by single electron transfer quenching of an excited state undergo novel fragmentation reactions, chiefly involving C-C bond cleavage. These reactions often culminate in novel and potentially useful chemical reactions and frequently have the potential for leading to new chemical products otherwise unaffordable by conventional reaction paths. In a rather different investigation we have also studied reactions in which single electron transfer quenching of an excited state is followed by subsequent reactions which lead reversibly to metastable two electron products which, often stable in themselves, can nonetheless be reacted with each other or with other reagents to regenerate the starting materials with release of energy. 66 refs., 9 figs., 1 tab.

  3. Initial state dependence of convoy electrons emitted from the excited ions by resonant coherent excitation

    Science.gov (United States)

    Azuma, T.; Nakano, Y.; Metoki, K.; Hatakeyama, A.; Nakai, Y.; Komaki, K.; Yamazaki, Y.; Takada, E.; Murakami, T.

    2009-11-01

    Convoy electrons emitted from 416 MeV/u heliumlike Ar16+ ions excited by three-dimensional resonant coherent excitation (3D-RCE) have been explored. The 1s electron in the ground state was excited to the 2p state by a periodic crystal field during the passage through a Si crystal and released into the continuum by collisions with target atoms to form a cusp-shaped peak in the energy distribution, referred to as convoy electron. Under the resonance condition, we found not only enhancement of the convoy electron yield but also significant narrowing in the energy distribution, reflecting the initial bound state momentum distribution of the excited ions. This suggests that RCE is well-suited to study fast ion collisions involving the specific excited state.

  4. Plasmoelectronics: coupling plasmonic excitation with electron flow.

    Science.gov (United States)

    Warren, Scott C; Walker, David A; Grzybowski, Bartosz A

    2012-06-19

    Explorations of the coupling of light and charge via localized surface plasmons have led to the discovery that plasmonic excitation can influence macroscopic flows of charge and, conversely, that charging events can change the plasmonic excitation. We discuss recent theory and experiments in the emerging field of plasmoelectronics, with particular emphasis on the application of these materials to challenges in nanotechnology, energy use, and sensing. PMID:22385329

  5. Light induced electron transfer reactions of metal complexes

    International Nuclear Information System (INIS)

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  6. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  7. Phonon-assisted excitation energy transfer in photosynthetic systems

    Science.gov (United States)

    Chen, Hao; Wang, Xin; Fang, Ai-Ping; Li, Hong-Rong

    2016-09-01

    The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest. This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems. Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems, in which one of them is coupled to a high-energy vibrational mode, we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame. The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor, the original detuned energy transfer becomes resonant energy transfer. In addition, the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically. It is found that, the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode, as well as the vibrational frequency. The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system. Results obtained in this article are not only helpful to understand the natural photosynthesis, but also offer an optimal design principle for artificial photosynthesis. Project supported by the National Natural Science Foundation of China (Grant No. 11174233).

  8. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    International Nuclear Information System (INIS)

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom ''sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly

  9. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  10. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  11. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria.

    Science.gov (United States)

    Fujita, Takatoshi; Huh, Joonsuk; Saikin, Semion K; Brookes, Jennifer C; Aspuru-Guzik, Alán

    2014-06-01

    We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments. PMID:24504540

  12. Hydrogen-bonded Intramolecular Charge Transfer Excited State of Dimethylaminobenzophenone using Time Dependent Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    Yu-ling Chu; Zhong Yang; Zhe-feng Pan; Jing Liu; Yue-yi Han; Yong Ding; Peng Song

    2012-01-01

    Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophenone (DMABP) and its hydrogen-bonded DMABP-MeOH dimer.It is found that,in nonpolar aprotic solvent,the transitions from S0 to S1 and S2 states of DMABP have both n→π* and π→π* characters,with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group.But when the intermolecular hydrogen bond C=O…H-O is formed,the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two lowlying electronically excited states increases.To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state,the potential energy curves for conformational relaxation are calculated.The formation of twisted intramolecular charge transfer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process.In addition,the decay of the S1 state of DMABP-MeOH dimer to the ground state,through nonradiative intermolecular hydrogen bond stretching vibrations,is facilitated by the formation of the hydrogen bond between DMABP and alcohols.

  13. Role of pigment-protein coupling and pathways of excitation energy transfer in FMO complex

    CERN Document Server

    Singh, Davinder

    2016-01-01

    We theoretically investigate the effect of different pigment-protein couplings and the role of quantum interference among different energy transfer channels in excitation energy transfer (EET) in FMO complex. We employ the non-Markovian master equation that allows the use of different values of pigment-protein couplings and cut-off frequencies for different BChla sites, in the adiabatic limit of electron transfer in FMO complex. Several pathways of EET are identified and investigated using a realistic set of pigment-pigment couplings and the site energy of each BChla site. We analyze that it is the destructive interference between different channels of a particular pathway that is responsible for the time-scales of oscillations of excitation energy as observed in the recent experiments.

  14. Electron transfer at sensitized semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, M.T.

    1977-03-01

    Electron transfer from the excited state of sensitizing dyes to the conduction band of semiconductors has been studied through photoelectrochemical techniques. Two systems were analyzed in detail: rhodamine B on ZnO and rose bengal on TiO/sub 2/. Prior to electrochemical experimentation, the adsorption characteristics of these dyes were investigated using ZnO, ZnS, and TiO/sub 2/ single crystals as substrates. Absorbance measurements of the adsorbed dye were taken as a function of the solution concentration of the dye. Adsorption isotherms heats of adsorption were also established; they were similar to literature data reported for adsorption of these dyes on powdered substrates. Using the absorbance data, the quantum efficiency for photoinjection of electrons from rhodamine B into a ZnO electrode was determined to be 2.7 x 10/sup -2/. This value was independent of the dye surface concentration down to 50% coverage of the electrode. With the assumption that not all of the rhodamine B adsorbed on the electrode has the same rate of electron injection, a kinetic model for the time decay of the photocurrent was developed; data were analyzed according to this theory. A rate constant for photoreduction of the adsorbed dye was determined for the reducing agents. 86 references.

  15. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  16. Theoretical Studies of Chemical Reactions following Electronic Excitation

    Science.gov (United States)

    Chaban, Galina M.

    2003-01-01

    The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.

  17. Modeling coherent excitation energy transfer in photosynthetic light harvesting systems

    Science.gov (United States)

    Huo, Pengfei

    2011-12-01

    Recent non-linear spectroscopy experiments suggest the excitation energy transfer in some biological light harvesting systems initially occurs coherently. Treating such processes brings significant challenge for conventional theoretical tools that usually involve different approximations. In this dissertation, the recently developed Iterative Linearized Density Matrix (ILDM) propagation scheme, which is non-perturbative and non-Markovian is extended to study coherent excitation energy transfer in various light harvesting complexes. It is demonstrated that the ILDM approach can successfully describe the coherent beating of the site populations on model systems and gives quantitative agreement with both experimental results and the results of other theoretical methods have been developed recently to going beyond the usual approximations, thus providing a new reliable theoretical tool to study this phenomenon. This approach is used to investigate the excited energy transfer dynamics in various experimentally studied bacteria light harvesting complexes, such as Fenna-Matthews-Olsen (FMO) complex, Phycocyanin 645 (PC645). In these model calculations, quantitative agreement is found between computed de-coherence times and quantum beating pattens observed in the non-linear spectroscopy. As a result of these studies, it is concluded that the stochastic resonance behavior is important in determining the optimal throughput. To begin addressing possible mechanics for observed long de-coherence time, various models which include correlation between site energy fluctuations as well as correlation between site energy and inter-site coupling are developed. The influence of both types of correlation on the coherence and transfer rate is explored using with a two state system-bath hamiltonian parametrized to model the reaction center of Rhodobacter sphaeroides bacteria. To overcome the disadvantages of a fully reduced approach or a full propagation method, a brownian dynamics

  18. Superconductivity and charge transfer excitations in high T c superconductors

    Science.gov (United States)

    Balseiro, C. A.; Alascio, B.; Gagliano, E.; Rojo, A.

    We present some numerical results to show that in a simple model which includes Cu3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters. Nous présentons des résultats numériques qui montrent que dans un modèle simple, incluant les orbitales 3d du cuivre et 2p de l'oxygène, avec une interaction coulombienne interatomique et intra-atomique, les trous peuvent s'apparier à cause des excitations de transfert de charge. Nous présentons aussi une approximation simple pour obtenir un Hamiltonien effectif contenant une interaction entre particules qui peut être attractive pour certaines valeurs des paramètres microscopiques.

  19. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    KAUST Repository

    Song, Yin

    2015-06-07

    © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  20. Photoinduced electron transfers with carbon dots

    OpenAIRE

    Wang, Xin; Cao, Li; Lu, Fushen; Meziani, Mohammed J.; Li, Heting; Qi, Gang; Zhou, Bing; Harruff, Barbara A.; Kermarrec, Fabien; Sun, Ya-Ping

    2009-01-01

    The photoluminescence in carbon dots (surface-passivated small carbon nanoparticles) could be quenched efficiently by electron acceptor or donor molecules in solution, namely that photo-excited carbon dots are both excellent electron donors and excellent electron acceptors, thus offering new opportunities for their potential uses in light energy conversion and related applications.

  1. Electron excitation from ground state to first excited state: Bohmian mechanics method

    Science.gov (United States)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  2. Coherent excitation with short electron pulses

    Science.gov (United States)

    Guertler, Andreas; Robicheaux, Francis; Noordam, Bart

    2000-06-01

    [1pt] The probability for a transition within an atom to be driven by a collision with a long pulse of electrons is proportional to the electron flux with the proportionality factor being the cross section for this transition. Recently it was shown [1] that for electron pulses shorter than the orbit time of the electron in the atom, a contribution of coherent scattering plays a role, which is proportional to the differential cross section in forward direction and the square of the electron flux. To investigate this effect, we are developing a picosecond electron gun [2]. Collision experiments will be done with Rydberg states in lithium around n=40 with Kepler orbit times in the order of 10 ps. For picosecond electron pulses, a quadratic dependance of the transition probability on the electron flux is expected in contrast to the linear dependance expected for nanosecond electron pulses. [1pt] References [1pt] [1] F. Robicheaux and L. D. Noordam, submitted to Phys. Rev. Lett. [1pt] [2] F. Robicheaux, G. M. Lankhuijzen, and L. D. Noordam, JOSA B 15, 1 (1998)

  3. Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems

    Science.gov (United States)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2016-08-01

    A fundamental theory is developed for describing laser-driven resonance energy transfer (RET) in dimensionally constrained nanostructures within the framework of quantum electrodynamics. The process of RET communicates electronic excitation between suitably disposed emitter and detector particles in close proximity, activated by the initial excitation of the emitter. Here, we demonstrate that the transfer rate can be significantly increased by propagation of an auxiliary laser beam through a pair of nanostructure particles. This is due to the higher order perturbative contribution to the Förster-type RET, in which laser field is applied to stimulate the energy transfer process. We construct a detailed picture of how excitation energy transfer is affected by an off-resonant radiation field, which includes the derivation of second and fourth order quantum amplitudes. The analysis delivers detailed results for the dependence of the transfer rates on orientational, distance, and laser intensity factor, providing a comprehensive fundamental understanding of laser-driven RET in nanostructures. The results of the derivations demonstrate that the geometry of the system exercises considerable control over the laser-assisted RET mechanism. Thus, under favorable conformational conditions and relative spacing of donor-acceptor nanostructures, the effect of the auxiliary laser beam is shown to produce up to 70% enhancement in the energy migration rate. This degree of control allows optical switching applications to be identified.

  4. Optimization of Plasmon Decay Through Scattering and Hot Electron Transfer

    Science.gov (United States)

    DeJarnette, Drew

    Light incident on metal nanoparticles induce localized surface oscillations of conductive electrons, called plasmons, which is a means to control and manipulate light. Excited plasmons decay as either thermal energy as absorbed phonons or electromagnetic energy as scattered photons. An additional decay pathway for plasmons can exist for gold nanoparticles situated on graphene. Excited plasmons can decay directly to the graphene as through hot electron transfer. This dissertation begins by computational analysis of plasmon resonance energy and bandwidth as a function of particle size, shape, and dielectric environment in addition to diffractive coupled in lattices creating a Fano resonance. With this knowledge, plasmon resonance was probed with incident electrons using electron energy loss spectroscopy in a transmission electron microscope. Nanoparticles were fabricated using electron beam lithography on 50 nanometer thick silicon nitride with some particles fabricated with a graphene layer between the silicon nitride and metal structure. Plasmon resonance was compared between ellipses on and off graphene to characterize hot electron transfer as a means of plasmon decay. It was observed that the presence of graphene caused plasmon energy to decrease by as much as 9.8% and bandwidth to increase by 25%. Assuming the increased bandwidth was solely from electron transfer as an additional plasmon decay route, a 20% efficiency of plasmon decay to graphene was calculated for the particular ellipses analyzed.

  5. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis;

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  6. Vibration-assisted resonance in photosynthetic excitation energy transfer

    CERN Document Server

    Irish, E K; Lovett, B W

    2013-01-01

    Coherent quantum energy transfer, as observed in photosynthetic pigment-protein complexes, is inhibited by energetic disorder. While this difficulty can be overcome to some extent by the addition of environmental noise, it has recently has begun to be appreciated that discrete intra- and/or intermolecular vibrational modes may play an important role in quantum dynamics. We present a microscopic mechanism by which intramolecular vibrational modes create resonant energy transfer pathways, enhancing the efficiency of both coherent and dephasing-assisted transfer. The principles of this vibration-assisted resonance are illustrated in a simple model based on one energy-transfer branch of the well-characterised Fenna-Matthews-Olson complex. Despite its simplicity, this model captures the interplay between strong electronic coupling that produces delocalised exciton states and resonance-enhanced weak coupling to local vibrational modes. Analytical and numerical results show that intramolecular vibrations can enhance...

  7. Electron-impact excitation of ions

    International Nuclear Information System (INIS)

    A review of electron-ion beam experiments is given. Techniques, difficulties, and present trends in this area are discussed. Measured cross sections are compared with theoretical results and the current level of agreement is assessed. 74 references

  8. Theoretical Investigation on Triplet Excitation Energy Transfer in Fluorene Dimer

    Institute of Scientific and Technical Information of China (English)

    Yu-bing Si; Xin-xin Zhong; Wei-wei Zhang; Yi Zhao

    2011-01-01

    Triplet-triplet energy transfer in fluorene dimer is investigated by combining rate theories with electronic structure calculations.The two key parameters for the control of energy transfer,electronic conpling and reorganization energy,are calculated based on the diabatic states constructed by the constrained density functional theory.The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation.Succeedingly,the diagonal and off-diagonal fluctuations of thc Hamiltonian are mapped from the correlation functions of those parameters,and the rate is then estimated both from the perturbation theory and wavepacket diffusion method.The results manifest that both the static and dynamic fluctuations enhance the rate significantly,but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.

  9. Momentum-Dependent Charge Transfer Excitations in Sr{sub {bold 2}}CuO {sub {bold 2}}Cl{sub {bold 2}} Angle-Resolved Electron Energy Loss Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Y.; Zhang, F.C.; Dravid, V.P.; Ng, K.K.; Klein, M.V.; Schnatterly, S.E.; Miller, L.L. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)]|[Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208 (United States)]|[Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States)]|[Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)]|[Department of Physics, Science and Technology Center for Superconductivity, University of Illinois, Urbana, Illinois 61801 (United States)]|[Department of Physics, University of Virginia, Charlottesville, Virginia 22901 (United States)]|[Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)

    1996-08-01

    Electron-hole pair excitations in the insulating cuprates Sr{sub 2}CuO{sub 2}Cl{sub 2} were investigated by angle-resolved electron energy loss spectroscopy. The optically allowed and optically forbidden transitions were observed to be strongly anisotropic in Cu-O{sub 2} plane. The former show a large energy dispersion {approximately}1.5 eV along [110], and the latter appear at a higher energy position ({approximately}4.5 eV) only along [100], but not along [110]. We interpret these results as transitions involving excitons. A small exciton model is examined to explain both the observed features. {copyright} {ital 1996 The American Physical Society.}

  10. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  11. An Exciting Aspect of Nanotechnology: Unimolecular Electronics

    Directory of Open Access Journals (Sweden)

    Metzger R. M.

    2013-08-01

    Full Text Available This is a brief update on our experimental work towards better one-molecule-thick monolayer rectifiers of electrical current, and on theoretical progress towards a one-molecule amplifier of electrical current. This program aims to provide electronic devices at the 2 to 3 nm level, as a dramatic advance towards practical integrated circuits of the future.

  12. Electron-driven excitations and dissociation of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Greg [Univ. of California, Davis, CA (United States); Orel, Ann E. [Univ. of California, Davis, CA (United States)

    2015-02-13

    This program studied how energy is interchanged in electron and photon collisions with molecules leading to ex-citation and dissociation. Modern ab initio techniques, both for the photoionization and electron scattering, and the subsequent nuclear dynamics studies, are used to accurately treat these problems. This work addresses vibrational ex-citation and dissociative attachment following electron impact, and the dynamics following inner shell photoionzation. These problems are ones for which a full multi-dimensional treatment of the nuclear dynamics is essential and where non-adiabatic effects are expected to be important.

  13. Femtosecond laser pulse control of electron transfer processes

    Science.gov (United States)

    Mančal, Tomáš; Kleinekathöfer, Ulrich; May, Volkhard

    2002-07-01

    Laser-pulse guided ultrafast electron transfer (ET) is studied theoretically for different types of donor-acceptor systems. The pulse initiates an optical transition from the electronic ground state into an excited state and controls the ET. The computations concentrate on systems where (a) the excited state (donor) is coupled to an acceptor level and where (b) the ET proceeds as an internal conversion from the excited state to the ground state. For both examples the manifold of vibrational coordinates is mapped on a single reaction coordinate coupled to a dissipative reservoir of further coordinates. Utilizing the methods of dissipative quantum dynamics combined with the optimal control (OC) scheme, it is demonstrated that control fields really exist which drive the ET in the required manner. Various properties of the OC algorithm are discussed when applied to dissipative dynamics and a scheme is proposed to avoid pinning in a local extremum.

  14. Vibrational dynamics in photoinduced electron transfer. Progress report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Spears, K.G.

    1993-09-08

    Objective is to perform a new type of measurement for optically excited electron transfer processes that can provide unique experimental insight into the molecular mechanism of electron transfer. Measurements of optically excited electron transfer are done with picosecond infrared (IR) absorption spectroscopy to monitor the vibrational motions of the molecules immediately after electron transfer. Theory and experiment suggest that molecular vibrations and distortions are important controlling elements for electron transfer, and direct information has yet to be obtained on these elements of electron transfer mechanisms. The second period of funding has been dedicated to finishing technique development and performing studies of electron transfer in ion pair systems to identify if vibrational dependent electron transfer rates are present in this system. We have succeeded in measuring, for the first time, electron transfer rates as a function of vibrational state in an ion pair complex in solution. In a different area of electron transfer research we have proposed a new mechanism of solvent gated electron transfer.

  15. Two-photon Induced Hot Electron Transfer to a Single Molecule in a Scanning Tunneling Microscope

    OpenAIRE

    Wu, Shiwei; Ho, Wilson

    2010-01-01

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photo-excited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization me...

  16. Calculations for electron-impact excitation and ionization of beryllium

    CERN Document Server

    Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor

    2016-01-01

    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...

  17. Excited-State-Proton-Transfer-Triggered Fluorescence Resonance Energy Transfer: from 2-Naphthylamine to Phenosafranin

    Science.gov (United States)

    Ghosh, Debanjana; Bose, Debosreeta; Sarkar, Deboleena; Chattopadhyay, Nitin

    2009-09-01

    Excited-state proton transfer (ESPT) and fluorescence resonance energy transfer (FRET) have been linearly coupled leading to an efficient pH-sensitive energy transfer from 2-naphthylamine (2NA) to a potentially bioactive cationic phenazinium dye, phenosafranin (PSF). The prototropic product produced exclusively from the photoexcited 2NA in the presence of added alkali serves as the donor for the energy transfer process. The energy transfer process is turned on at pH ≥ 12, whereas the process is turned off at a pH lower than that. Within the range of pH 12 to 13, the energy transfer efficiency (E) has been shown to follow a linear relation with the solution pH establishing the governing role of pH of the solution on the energy transfer process. The energy transfer follows a long-range dipole-dipole interaction mechanism. The critical energy transfer distance (R0) and the distance between the acceptor and the donor (r) have been determined for the ESPT-promoted FRET process at an optimum pH of 13. The present study involving the coupled processes is simple but has its implication due to its potential to be exploited for designing a pH-sensitive molecular switch.

  18. Modelling the effects of electronic excitations in ionic-covalent materials

    International Nuclear Information System (INIS)

    High energy radiation events in ionic and covalent materials can lead to highly excited electronic configurations which, over time, relax to the ground state, either radiatively by emitting photons, or non-radiatively. Non-radiative relaxation involves the transfer of energy to the lattice and this can result in lattice heating, defect formation or even phase changes. The effects of the relaxation mechanisms on the atomic configuration are challenging to model accurately by standard methods. The situation is further complicated by interactions between electronic excitations and pre-existing defects, possibly created by other radiation events. In this paper we describe a range of mechanisms by which the electronic energy is transferred to the lattice and the resulting effects on the atomic configuration, along with the different techniques that are used to model these effects.

  19. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  20. Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles

    Science.gov (United States)

    Zdyb, Agata; Krawczyk, Stanisław

    2016-03-01

    Adsorption of quercetin on colloidal titanium dioxide nanoparticles in ethanol and its excited-state electronic structure were investigated by means of electronic and vibrational spectroscopies. The changes in electronic charge redistribution as reflected by the dipole moment difference, ∆μ, between the ground and excited electronic states were measured with electroabsorption spectroscopy and analyzed using results of TD DFT computations. Adsorption of quercetin causes a red shift of its absorption spectrum. Raman spectra of quercetin analyzed with reference to analogous data for morin indicate binding of quercetin through the hydroxy groups of the catechol moiety. The difference dipole moment, which is 5.5 D in free quercetin, increases to 11.8 D in opposite direction in adsorbed quercetin, and is associated with charge-transfer to the Ti atom. The computed transition energy, intensity, vector Δμ and molecular orbitals involved in the electronic transition at different molecular configurations indicate a bidentate chelating mode of binding of quercetin.

  1. Infrared multiphoton excitation and inverse electronic relaxation in SO2

    International Nuclear Information System (INIS)

    Visible luminescence (lambda=270--470 nm) has been observed from S16O2 and S18O2 at pressures of 0.2 to 20 Torr following irradiation by an intense infrared laser (lambda=9.3 μm). Our experiments show that the luminescence is not due to dielectric breakdown or recombination of dissociation fragments, but rather is fluorescence from the first excited singlet states of SO2 following inverse electronic relaxation from highly excited vibrational levels of the ground electronic state. Crossover from the ground to excited electronic states may also be collisionally assisted. Spectroscopic and kinetic measurements are consistent with previous studies on 1B1 emission from SO2. The pressure dependence of the fluorescence yield exhibits two distinct pressure regimes, while the dependence of visible emission on laser pump wavelength follows the small signal infrared absorption spectrum. The threshold for detection of fluorescence is 17--20 J/cm2 with 9.3 μm radiation as the excitation source. These observations are discussed in terms of recently proposed theories which describe the photophysics of vibrationally excited states coupled to a radiative continuum through higher electronic states

  2. Theoretical study of intermolecular energy transfer involving electronically excited molecules: He(/sup 1/S) + H/sub 2/(B /sup 1/. sigma. /sub u//sup +/). [Solution for coupled channel equations

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, R.M.

    1986-11-01

    To further understanding of gas phase collision dynamics involving electronically-excited molecules, a fully quantum mechanical study of He + H/sub 2/(B /sup 1/..sigma../sub u//sup +/) was undertaken. Iterative natural orbital configuration interaction (CI) calculations were performed to obtain the interaction potential between He and H/sub 2/(B /sup 1/..sigma../sub u//sup +/). The potential energy surface (PES) is highly anisotropic and has a van der Waals well of about 0.03 eV for C/sub 2v/ approach. Avoided PES crossings occur with He + H/sub 2/(E,F /sup 1/..sigma../sub g//sup +/) and with He + H/sub 2/(X /sup 1/..sigma../sub g//sup +/) and cause a local maximum and a deep minimum in the He + H/sub 2/(B /sup 1/..sigma../sub u//sup +/) PES, respectively. The crossing with He + H/sub 2/(X /sup 1/..sigma../sub g//sup +/) provides a mechanism for fluorescence quenching. The computed CI energies were combined with previous multi-reference double excitation CI calculations and fit with analytic functions for convenience in scattering calculations. Accurate dipole polarizabilities and quadrupole moment of H/sub 2/(B /sup 1/..sigma../sub u//sup +/) were computed for use in the multipole expansion, which is the analytic form of the long-range PES. 129 refs., 28 figs., 35 tabs.

  3. Efficient laser desorption ionization mass spectrometry of polycyclic aromatic hydrocarbons using excitation energy transfer from anthracene

    International Nuclear Information System (INIS)

    Highlights: ► Femtomolar detection of PAHs such as perylene and benzopyrene was achieved. ► Photoexcited anthracene molecules transferred their energy to PAHs. ► Electronically excited PAHs were then excited to be ions. ► Two-photon ionization process was necessary to complete the ionization process. ► The number of defect sites could be reduced by the annealing procedure. - Abstract: Polycyclic aromatic hydrocarbons (PAHs), such as perylene and benzopyrene, doped at amounts on the order of femtomol (∼10−15 mol) in anthracene crystals could be detected by laser desorption ionization mass spectrometry. Sensitivity was roughly 103 times higher than that of LDI method in our experimental conditions. It was revealed from the excitation power dependence of the peak intensity of PAHs on the mass spectra that two-photon excitation in one UV pulse was necessary to complete the ionization process. It was also clarified that the number of defect sites that trap excitons generated in anthracene crystals could be reduced by the annealing procedure, by which an efficient energy transfer between anthracene and PAHs became possible

  4. Ro-vibrational excitation of HCl by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Padial, N.T.; Norcross, D.W.

    1984-03-01

    Ab initio calculations of cross sections for simultaneous rotational and vibrational excitation of HCl by low-energy electrons have been made in the multipole-extracted adiabatic-nuclei approximation. These calculations employed a free-electron-gas model of the exchange interaction, and represent the first application of a new parameter-free model of the correlation-polarization interaction to vibrational excitation. The cross sections increase by an order of magnitude with the inclusion of this interaction, which is much more important for vibrationally inelastic than elastic collisions. 22 references.

  5. Ro-vibrational excitation of HCl by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Padial, N.T.; Norcross, D.W.

    1984-03-01

    Ab initio calculations of cross sections for simultaneous rotational and vibrational excitation of HCl by low-energy electrons have been made in the multipole-extracted adiabatic-nuclei (MEAN) approximation. These calculations employed a free-electron-gas model of the exchange interaction, and represent the first application of a new parameter-free model of the correlation-polarization interaction to vibrational excitation. The cross sections increase by an order of magnitude with the inclusion of this interaction, which is much more important for vibrationally inelastic than elastic collisions.

  6. Relation between Nonlinear Optical Properties of Push-Pull Molecules and Metric of Charge Transfer Excitations.

    Science.gov (United States)

    List, Nanna Holmgaard; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Bartkowiak, Wojciech; Ågren, Hans

    2015-09-01

    We establish the relationships between the metric of charge transfer excitation (Δr) for the bright ππ* state and the two-photon absorption probability as well as the first hyperpolarizability for two families of push-pull π-conjugated systems. As previously demonstrated by Guido et al. (J. Chem. Theory Comput. 2013, 9, 3118-3126), Δr is a measure for the average hole-electron distance upon excitation and can be used to discriminate between short- and long-range electronic excitations. We indicate two new benefits from using this metric for the analyses of nonlinear optical properties of push-pull systems. First, the two-photon absorption probability and the first hyperpolarizability are found to be interrelated through Δr; if β ∼ (Δr)(k), then roughly, δ(TPA) ∼ (Δr)(k+1). Second, a simple power relation between Δr and the molecular hyperpolarizabilities of push-pull systems offers the possibility of estimating properties for longer molecular chains without performing calculations of high-order response functions explicitly. We further demonstrate how to link the hyperpolarizabilities with the chain length of the push-pull π-conjugated systems through the metric of charge transfer. PMID:26575913

  7. Ultrafast coherent dynamics of nonadiabatically coupled quasi-degenerate excited states in molecules: Population and vibrational coherence transfers

    International Nuclear Information System (INIS)

    Graphical abstract: Temporal behaviors due to quantum mechanical interferences between the nonadiabatically coupled quasi-degenerate excited states (b and c) after a coherent excitation. Highlights: ► A nonadiabatic theory of quasi-degenerate π-electronic states in aromatic molecules. ► Quantum interferences between the nonadiabatically-coupled π-electronic states. ► Analysis of time-dependent vibrational coherence transfer via nonadiabatic couplings. - Abstract: Results of a theoretical study of ultrafast coherent dynamics of nonadiabatically coupled quasi-degenerate π-electronic excited states of molecules were presented. Analytical expressions for temporal behaviors of population and vibrational coherence were derived using a simplified model to clarify the quantum mechanical interferences between the two coherently excited electronic states, which appeared in the nuclear wavepacket simulations [M. Kanno, H. Kono, Y. Fujimura, S.H. Lin, Phys. Rev. Lett 104 (2010) 108302]. The photon-polarization direction of the linearly polarized laser, which controls the populations of the two quasi-degenerate electronic states, determines constructive or destructive interference. Features of the vibrational coherence transfer between the two coupled quasi-electronic states through nonadiabatic couplings are also presented. Information on both the transition frequency and nonadiabatic coupling matrix element between the two states can be obtained by analyzing signals of two kinds of quantum beats before and after transfer through nonadiabatic coupling.

  8. Modified linear response for time-dependent density-functional theory: Application to Rydberg and charge-transfer excitations

    International Nuclear Information System (INIS)

    We present an improved ab initio time-dependent density-functional theory (TDDFT) approach to electronic excitations. A conventional TDDFT scheme within the local-density approximation (LDA) inaccurately predicts Rydberg and charge-transfer excitation energies, mainly because the electron-hole (e-h) interaction is inappropriately described in these excitations, as can be found by analyzing the linear response formula [M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996)]. When the formula is averaged over the electron occupation, the inappropriate e-h interaction within LDA is corrected to become explicitly similar to that of the exact exchange system. As anticipated from the similarity, our proposed scheme of modified linear response greatly improves the prediction of the problematic excitations, which are exemplified for typical molecules

  9. Inelastic electron scattering at low momentum transfer

    International Nuclear Information System (INIS)

    Recent advances of high energy resolution (ΔE approx. 30 keV FWHM) inelastic electron scattering at low momentum transfer (q -1) using selected experimental data from the Darmstadt electron linear accelerator are discussed. Strong emphasis is given to a comparison of the data with theoretical nuclear model predictions. Of the low multipolarity electric transitions investigated, as examples only E1 transitions to unnatural parity states in 11B and E2 transitions of the very fragmented isoscalar quadrupole giant resonance in 208Pb are considered. In 11B the role of the Os hole in the configuration of the 1/2+, 3/2+ and 5/2+ states is quantitatively determined via an interference mechanism in the transition probability. By comparison of the high resolution data with RPA calculations the E2 EWSR in 208Pb is found to be much less exhausted than anticipated from previous medium energy resolution (e,e) and hadron scattering experiments. In the case of M1 transitions it is shown that the simplest idealized independent particle shell-model prediction breaks down badly. In 28Si, ground-state correlations influence largely the detected M1 strength and such ground-state correlations are also responsible for the occurence of a strong M1 transition to a state at Ex = 10.319 MeV in 40Ca. In 90Zr only about 10% of the theoretically expected M1 strength is seen in (e,e) and in 140Ce and 208Pb none (detection limit 1-2 μ2K). In the case of 208Pb high resolution spectra exist now up to an excitation energy of Ex = approx. 12MeV. The continuous decrease of the M1 strength with mass number is corroborated by the behaviour of strong but very fragmented M2 transitions which are detected in 28Si, 90Zr, 140Ce and 208Pb concentrated at an excitation energy E x approx. 44A-1/3MeV. In 90Zr, the distribution of spacings and widths of the many Jπ = 2 states are consistent with a Wigner and Porter-Thomas distribution, respectively. (orig.) 891 KBE/orig. 892 ARA

  10. Transfer matrices and excitations with matrix product states

    Science.gov (United States)

    Zauner, V.; Draxler, D.; Vanderstraeten, L.; Degroote, M.; Haegeman, J.; Rams, M. M.; Stojevic, V.; Schuch, N.; Verstraete, F.

    2015-05-01

    We use the formalism of tensor network states to investigate the relation between static correlation functions in the ground state of local quantum many-body Hamiltonians and the dispersion relations of the corresponding low-energy excitations. In particular, we show that the matrix product state transfer matrix (MPS-TM)—a central object in the computation of static correlation functions—provides important information about the location and magnitude of the minima of the low-energy dispersion relation(s), and we present supporting numerical data for one-dimensional lattice and continuum models as well as two-dimensional lattice models on a cylinder. We elaborate on the peculiar structure of the MPS-TM’s eigenspectrum and give several arguments for the close relation between the structure of the low-energy spectrum of the system and the form of the static correlation functions. Finally, we discuss how the MPS-TM connects to the exact quantum transfer matrix of the model at zero temperature. We present a renormalization group argument for obtaining finite bond dimension approximations of the MPS, which allows one to reinterpret variational MPS techniques (such as the density matrix renormalization group) as an application of Wilson’s numerical renormalization group along the virtual (imaginary time) dimension of the system.

  11. Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation.

    Science.gov (United States)

    Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura

    2016-02-01

    A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications. PMID:26794241

  12. Electronic and photophysical properties of 2-(2′-hydroxyphenyl)benzoxazole and its derivatives enhancing in the excited-state intramolecular proton transfer processes: A TD-DFT study on substitution effect

    Energy Technology Data Exchange (ETDEWEB)

    Daengngern, Rathawat; Kungwan, Nawee, E-mail: naweekung@gmail.com

    2015-11-15

    The effect of electron donating and withdrawing substituents on the enol absorption and keto emission spectra of 2-(2′-hydroxyphenyl)benzoxazole (HBO) and its derivatives has been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The enol absorption spectra of HBO were simulated by using five different DFTs with various exchange-correlation functions to validate a suitable functional prior to being further used as a method of choice to study the effect of substituents on the spectral characteristics of HBO derivatives. The popular B3LYP (Becke, three-parameter, Lee–Yang–Parr) exchange-correlation functional is found to provide the best desirable result in predicting the absorption spectrum close to experimental data. In the ground state, enol forms of HBO and its derivatives are more stable than those of keto forms, while in the first lowest excited state, keto forms are found to be more stable than their enol forms. Overall, simulated absorption and emission spectra of HBO and its derivatives from TD-B3LYP calculations are in good agreement with the experimental data. For enol, absorption maxima of HBO derivatives having electron-withdrawing groups are red-shift corresponding to their lower HOMO–LUMO energy gaps compared to that of HBO. For keto emission, HBO having electron donating groups (m-MeHBO and MHBO) and withdrawing group (CNHBO) at 4′-position on the phenol fragment as well as electron donating groups (HBOMe and HBOM) at 6-position on the benzoxazole fragment make the position of keto emission peak shift to shorter wavelength (blue-shift). However, HBO derivatives with electron withdrawing groups (HBOF, HBOCl, HBOA and HBOE) at 6-position give redshifted emission compared to the parent compound (HBO). The type of substituent on both 4′- and 6-positions certainly has a pronounced effect on the absorption and emission spectra of HBO derivatives. - Highlights: • Simulated spectra

  13. Theoretical Study on Inner Shell Electron Impact Excitation of Lithium

    Institute of Scientific and Technical Information of China (English)

    YANG Ning-Xuan; DONG Chen-Zhong; JIANG Jun

    2009-01-01

    Cross sections for electron impact excitation of lithium from the ground state ls22s to the excited states 1s2s2,1s2p2,1s2snp (n = 2-5),1s2sns (n = 3-5),1s2pns (n = 3-5),and 1s2pnp (n=3-5) are calculated by using a full relativistic distorted wave method.The latest experimental electron energy loss spectra for inner-shell electron excitations of lithium at a given incident electron energy of 2500 eV[Chin.Phys.Lett.25 (2008) 3649]have been reproduced by the present theoretical investigation excellently.At the same time,the structures of electron energy loss spectra of lithium at low incident electron energy are also predicted theoretically,it is found that the electron energy loss spectra in the energy region of 55-57eV show two-peak structures.

  14. Excited state intramolecular proton transfer and charge transfer dynamics of a 2-(2'-hydroxyphenyl)benzoxazole derivative in solution.

    Science.gov (United States)

    Kim, Chul Hoon; Park, Jaehun; Seo, Jangwon; Park, Soo Young; Joo, Taiha

    2010-05-13

    Excited state intramolecular proton transfer (ESIPT) and subsequent intramolecular charge transfer (ICT) dynamics of a 2-(2'-hydroxyphenyl)benzoxazole derivative conjugated with an electron withdrawing group (HBOCE) in solutions and a polymer film has been investigated by femtosecond time-resolved fluorescence (TRF) and TRF spectra measurements without the conventional spectral reconstruction method. TRF with high enough resolution (benzoxazole groups is invoked to account for the dispersive ESIPT dynamics in liquids. From the TRF spectra of both the enol and keto isomers, we have identified the ICT reaction of the keto isomer occurring subsequent to the ESIPT. The ICT proceeds also by two time constants of near instantaneous and 2.7 ps. Since the ICT dynamics of HBOCE is rather close to the polar solvation dynamics, we argue that the ICT is barrierless and determined mostly by the solvent fluctuation.

  15. Dissociative excitation and fragmentation of S8 by electron impact.

    Science.gov (United States)

    Brotton, S J; McConkey, J W

    2011-05-28

    The vacuum-ultraviolet emission spectrum from 136 nm to 168 nm following the dissociative excitation of a predominantly S(8) target by electron impact at 100 eV incident energy was measured. The relative cross sections for the dominant multiplets at 138.9, 142.9, 147.9, and 166.7 nm are presented. Excitation functions are shown for electron-impact energies from below threshold to 360 eV for the two most prominent emissions at 142.5 nm and 147.4 nm. Five thresholds are clearly apparent in both excitation functions. For the four highest energy channels, the energy separation between the adjacent thresholds is approximately constant and the cross sections reduce regularly as the threshold energies increase. We suggest possible fragmentation pathways of the dissociating S(8) molecule that reproduce the energies of our observed thresholds.

  16. Wave packet dynamics in molecular excited electronic states

    International Nuclear Information System (INIS)

    We theoretically explore the use of UV pump – UV probe schemes to resolve in time the dynamics of nuclear wave packets in excited electronic states of the hydrogen molecule. The pump pulse ignites the dynamics in singly excited states, that will be probed after a given time delay by a second identical pulse that will ionize the molecule. The field-free molecular dynamics is first explored by analyizing the autocorrelation function for the pumped wave packet and the excitation probabilities. We investigate both energy and angle differential ionization probabilities and demonstrate that the asymmetry induced in the electron angular distributions gives a direct map of the time evolution of the pumped wave packet

  17. Charge-Transfer Excitations in the Model Superconductor HgBa$_2$CuO$_{\\bf 4+\\delta}$

    OpenAIRE

    L. Lu; Zhao, X.; Chabot-Couture, G.; Hancock, J. N.; Kaneko, N; Vajk, O. P.; Yu, G.; Grenier, S.; Kim, Y. J.; Casa, D.; Gog, T.; Greven, M.

    2005-01-01

    We report a Cu $K$-edge resonant inelastic x-ray scattering (RIXS) study of charge-transfer excitations in the 2-8 eV range in the structurally simple compound HgBa$_2$CuO$_{4+\\delta}$ at optimal doping ($T_{\\rm c} = 96.5 $ K). The spectra exhibit a significant dependence on the incident photon energy which we carefully utilize to resolve a multiplet of weakly-dispersive ($ < 0.5$ eV) electron-hole excitations, including a mode at 2 eV. The observation of this 2 eV excitation suggests the exi...

  18. Nuclear excitation in positron-K-electron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Kaliman, Z.; Pisk, K.; Logan, B.A.

    1987-05-01

    We have calculated the cross section for nuclear excitation during positron-K-electron annihilation. The calculations allow for the effect of the nuclear Coulomb field and for relativistic effects. The results are compared to earlier predictions which were derived using the Born approximation, and to renormalized Born approximation predictions. Our calculated cross sections are well below the available experimental values.

  19. Investigations of ultrafast dynamics in electronically excited alkylbenzenes

    Directory of Open Access Journals (Sweden)

    Maksyutenko P.

    2013-03-01

    Full Text Available We investigate ultrafast dynamics in electronically excited states of some typical alkylbenzenes by time-resolved two-colour four wave mixing and velocity map imaging as complementary methods. In this context an upgraded double-sided time-resolved velocity map imaging setup is also proposed.

  20. Heat Transfer Augmentation for Electronic Cooling

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2012-01-01

    Full Text Available Problem statement: The performance of electronic devices has been improving along with the rapid technology development. Cooling of electronic systems is consequently essential in controlling the component temperature and avoiding any hot spot. The study aims to review the present electronic cooling methods which are widely used in electronic devices. Approach: There are several methods to cool down the electronics components such as the pin-fin heat sink, confined jet impingement, heat pipe, micro heat sink and so on. Results: The cooling techniques can obviously increase heat transfer rate. Nonetheless, for active and passive cooling methods the pressure drop could extremely rise, when the heat transfer rate is increased. Conclusion: When the cooling techniques are used, it is clearly seen that the heat transfer increases with pressure drop. To avoid excessive expense due to high pressure drop, optimization method is required to obtain optimum cost and cooling rate.

  1. The particle-hole map: a computational tool to visualize electronic excitations

    CERN Document Server

    Li, Yonghui

    2015-01-01

    We introduce the particle-hole map (PHM), a visualization tool to analyze electronic excitations in molecules in the time or frequency domain, to be used in conjunction with time-dependent density-functional theory (TDDFT) or other ab initio methods. The purpose of the PHM is to give detailed insight into electronic excitation processes which is not obtainable from local visualization methods such as transition densities, density differences, or natural transition orbitals. The PHM is defined as a nonlocal function of two spatial variables and provides information about the origins, destinations, and connections of charge fluctuations during an excitation process; it is particularly valuable to analyze charge-transfer excitonic processes. In contrast with the transition density matrix, the PHM has a statistical interpretation involving joint probabilities of individual states and their transitions, it satisfies several sum rules and exact conditions, and it is easier to read and interpret. We discuss and illu...

  2. Low Temperature Electronic Transport and Electron Transfer through Organic Macromolecules

    CERN Document Server

    Zimbovskaya, N A

    2002-01-01

    It is shown that at low temperatures and moderate electron dephasing the electron transmission function reveales a structure containing information about donor/acceptor sites effectively participating in the electron transfer (ET) processes and primary pathways of electrons tunneling through molecular bridges in macromolecules. This important information can be obtained as a result of analysis of experimental low temperature current-voltage characteristics for chosen molecules.

  3. Strong Alignment Observed in Resonant Transfer and Excitation for U91+ on H2

    Institute of Scientific and Technical Information of China (English)

    MaXinwen; P.H.Mokler; F.Bosch; A.Gumberidze; C.Kozhuharov; D.Liesen; D.Sierpowski; Z.Stachura; Th.Stohlker; A.Warczak

    2003-01-01

    For the heaviest and simplest atomic system resonant transfer and excitation involving the innermost shell shave been investigated . We measured for H-like U91.+ projectiles the KLjLj-RTE Using a H(2) gas target providing the narrowest possible Compton profile for atomically confined quasi-free target electrons. We studied the emission patterns of the cascade decay of doubly excited He-like U90+ ions where the first hypersatellite (Kαi-H) and the second satellite (Kαi′-S) transitions are energetically separated . Although the REC cascadecontributions to the satellite lines (Kαi′-S) dominate, the RTE contributions could be isolated. In particular,the hypersatellite (Kαi-H) transitions are free of REC contributions - neglecting possible small interference effects.

  4. Distributed Multipolar Expansion Approach to Calculation of Excitation Energy Transfer Couplings.

    Science.gov (United States)

    Błasiak, Bartosz; Maj, Michał; Cho, Minhaeng; Góra, Robert W

    2015-07-14

    We propose a new approach for estimating the electrostatic part of the excitation energy transfer (EET) coupling between electronically excited chromophores based on the transition density-derived cumulative atomic multipole moments (TrCAMM). In this approach, the transition potential of a chromophore is expressed in terms of truncated distributed multipolar expansion and analytical formulas for the TrCAMMs are derived. The accuracy and computational feasibility of the proposed approach is tested against the exact Coulombic couplings, and various multipole expansion truncation schemes are analyzed. The results of preliminary calculations show that the TrCAMM approach is capable of reproducing the exact Coulombic EET couplings accurately and efficiently and is superior to other widely used schemes: the transition charges from electrostatic potential (TrESP) and the transition density cube (TDC) method.

  5. Cold transfer between deformed, Coulomb excited nuclei; Kalter Transfer zwischen deformierten, Coulomb-angeregten Kernen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H.

    1998-12-31

    The scattering system {sup 162}Dy {yields} {sup 116}Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high {gamma}-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in {sup 162}Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  6. 75 FR 66644 - Electronic Fund Transfers

    Science.gov (United States)

    2010-10-29

    .... ACTION: Final rule. SUMMARY: The Board is amending Regulation E, which implements the Electronic Fund Transfer Act, and the official staff commentary to the regulation, in order to implement legislation that... Card Act) was signed into law.\\1\\ Section 401 of the Credit Card Act amended the Electronic...

  7. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Verma

    2016-03-01

    Full Text Available We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps followed by decay (≈390 ps to the corresponding ground state.

  8. Dynamics of two-electron excitations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, C.D.; Menzel, A.; Frigo, S.P. [Univ. of Central Florida, Orlando, FL (United States)] [and others

    1997-04-01

    Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.

  9. Electron excitation rates among fine structure levels in O III

    International Nuclear Information System (INIS)

    Electron collision strengths have been calculated for 146 transitions among the fine-structure levels in O III using a suitable transformation of LS coupling reactance matrix elements computed with the R-matrix method. These have been obtained at a fine energy grid in an energy region below 5.16 Ry and are found to be varying with electron energy, exhibiting a complicated resonance structure in almost the entire energy range. These have been averaged over a Maxwellian distribution of electron energies to get the effective collision strengths which are very simply related to the excitation and the de-excitation rate coefficients. The results are tabulated in a temperature region below 60,000 K. These are the first extensive results in the literature and are believed to be highly useful for astrophysical plasma diagnostics

  10. Electron collisions and internal excitation in stored molecular ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Buhr, H.

    2006-07-26

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He{sup +}{sub 2}. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He{sup +}{sub 2}, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD{sup +} is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  11. Electron collisions and internal excitation in stored molecular ion beams

    International Nuclear Information System (INIS)

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He+2. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He+2, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD+ is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  12. Searching for nuclear excitation by electronic transition in U-235

    Science.gov (United States)

    Chodash, P.; Norman, E. B.; Swanberg, E.; Burke, J. T.; Casperson, R. J.; Wilks, S.

    2012-10-01

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. NEET can occur when a nuclear transition closely matches the energy and multipolarity of an electronic transition. U-235 has a 1/2+ isomeric state that decays to the 7/2- ground state with a transition energy of 77 eV and a half life of 26 minutes. Theory predicts that electronic transitions exist within a partially ionized uranium plasma that would allow NEET to occur. The NEET process would excite U-235 into its isomeric state and then it will subsequently decay to the ground state via internal conversion. It is currently not known if this excitation occurs in U-235 and at what rate. In order to generate the uranium plasma with the correct conditions, a high power Q-switched Nd:YAG laser will irradiate a sample of highly enriched uranium. The resulting plasma will be collected on a catcher foil and counted using a microchannel plate detector. Current progress on the experiment will be presented.

  13. Electron transfer across a thermal gradient.

    Science.gov (United States)

    Craven, Galen T; Nitzan, Abraham

    2016-08-23

    Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor-acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086

  14. Excitement tem-horn antenna by impulsive relativistic electron beam

    CERN Document Server

    Balakirev, V A; Egorov, A M; Lonin, Y F

    2000-01-01

    In the given operation the opportunity of reception powerful electromagnetic irradiation (EMI) is observationally explored by excitation by a impulsive relativistic electronic beam (IREB) of a TEM-horn antenna. It is revealed, that at such expedient of excitation of the TEM-horn antenna, the signal of radiation of the antenna contains three various components caused by oscillation of radiation by forward front IREB, high-voltage discharge between plates irradiation of TEM-horn antenna a and resonant properties of the antenna devices.

  15. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus;

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... nm. We argue that excitation of this mode, featuring very strong absorption, has a crucial role in experimental realizations of non-resonant light absorption by ultra-sharp convex grooves with fabrication-induced asymmetry. The occurrence of the antisymmetric GSP mode along with the fundamental GSP...

  16. An RF excited plasma cathode electron beam gun design

    OpenAIRE

    Del Pozo, S.; Ribton, C; Smith, DR

    2014-01-01

    A plasma cathode electron beam (EB) gun is presented in this work. A radio frequency (RF) excited plasma at 84 MHz was used as the electron source to produce a beam power of up to 3.2 kW at -60 kV accelerating voltage. The pressure in the plasma chamber is approximately 1 mbar. The electrons are extracted from the plasma chamber to the vacuum chamber (at 10-5 mbar) through a diaphragm with a 0.5 mm diameter nozzle. Advantages over thermionic cathode guns were demonstrated empirically. Mainten...

  17. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru

    2002-01-01

    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  18. Defect production and annihilation in metals through electronic excitation by energetic heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Defect production, radiation annealing and defect recovery are studied in Ni and Cu irradiated with low-energy ({approx}1-MeV) and high-energy ({approx}100-MeV) ions. Irradiation of Ni with {approx}100-MeV ions causes an anomalous reduction, or even a complete disappearance of the stage-I recovery. This result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of the stage-I interstitials. This effect is also observed in Ni as a large radiation annealing during 100-MeV heavy ion irradiation. On the other hand, in Cu thin foils, we find the defect production process strongly associated with electron excitation, where the defect production cross section is nearly proportional to S{sub e}{sup 2}. (author)

  19. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yin [Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada); Hellmann, Christoph; Stingelin, Natalie [Department of Materials and Centre for Plastic Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Scholes, Gregory D., E-mail: gscholes@princeton.edu [Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada); Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544 (United States)

    2015-06-07

    Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S(λ{sub 1},T{sup ~}{sub 2},λ{sub 3})) along the population time (T{sup ~}{sub 2}) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S(λ{sub 1},ν{sup ~}{sub 2},λ{sub 3})). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ν{sup ~}{sub 2}) in the rephasing beating map and at negative frequency (−ν{sup ~}{sub 2}) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  20. Vibrational relaxation pathways in the electronic excited state of carotenoid

    International Nuclear Information System (INIS)

    The intra- and inter-molecular vibrational relaxation in the electronic excited state (1Bu+) of spheroidene derivative (the number of conjugated double bonds, n=8) has been investigated at room temperature by means of femtosecond time-resolved fluorescence spectroscopy based on an optical-Kerr-gate technique. Depending on the photo-excitation either to the 1Bu+(v=1) or 1Bu+(v=2) vibronic level, remarkable differences were observed in hot luminescence spectra related to the vibrational relaxation process of high- and low-frequency modes. Under the excitation to the 1Bu+(v=2) state hot luminescence from the 1Bu+(v=1) state was observed as a dominant feature of the time-resolved spectra while the dynamic Stokes shift originating from the low-frequency-modes dynamics was clearly observed under the excitation to the 1Bu+(v=1). These observations of the excitation energy dependence of time-resolved fluorescence spectra were discussed by analyzing the Franck-Condon factors of transitions from v=0,1, and 2 levels of high-frequency modes

  1. Photoinduced electron transfer in ordered polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. II.

    1991-12-01

    Long range photoinduced electron transfer between electron donor and acceptor groups is of considerable current interest in terms of strategies for artificial photosynthesis and studies regarding the redox properties of proteins. As part of an extensive study of long range electron transfer involving biopolymers, we have carried out this year investigations of the assembly of electron transfer agents in a system of model short peptides. Also studied is a polyelectrolyte that can adopt a helical conformation when electrostatically complexed with organic dye counter-ions. The principal interest in these systems has to do with the well ordered secondary structures adopted by peptide polymers, and the capabilities for synthetic modification of peptide side chains and end groups with chromophores or electroactive substituents. The present report gives a brief account of the following elements of work related to photochemical electron transfer themes: (1) the synthesis and photochemical characterization of chromophore-bound peptides and amino acid model compounds based on the amino acids, tryptophan and the spacer residue, alanine (Ala); (2) the study of binding of the cationic organic dye to a peptide electrolyte, for which cooperative dye loading and helix formation is important; and (3) completion of the synthesis of a new series of acridinium chromophores that have rod-like'' arrangements of inked aryl rings for assembly of electron donor-acceptor systems that will exhibit especially long lived charge separation.

  2. Electron densities and the excitation of CN in molecular clouds

    Science.gov (United States)

    Black, John H.; Van Dishoeck, Ewine F.

    1991-01-01

    In molecular clouds of modest density and relatively high fractional ionization, the rotational excitation of CN is controlled by a competition among electron impact, neutral impact and the interaction with the cosmic background radiation. The degree of excitation can be measured through optical absorption lines and millimeter-wave emission lines. The available, accurate data on CN in diffuse and translucent molecular clouds are assembled and used to determine electron densities. The derived values, n(e) = roughly 0.02 - 0.5/cu cm, imply modest neutral densities, which generally agree well with determinations by other techniques. The absorption- and emission-line measurements of CN both exclude densities higher than n(H2) = roughly 10 exp 3.5/cu cm on scales varying from 0.001 to 60 arcsec in these clouds.

  3. Electronic Excitation Temperature in DC Positive Streamer Discharge

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaochen; WANG Ninghui; DING Zhenfeng

    2007-01-01

    The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Texc) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 μA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.

  4. The role of electron-impact vibrational excitation in electron transport through gaseous tetrahydrofuran

    Energy Technology Data Exchange (ETDEWEB)

    Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Do, T. P. T. [School of Education, Can Tho University, Campus II, 3/2 Street, Xuan Khanh, Ninh Kieu, Can Tho City (Viet Nam); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Konovalov, D. A.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville (Australia); Brunger, M. J., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jones, D. B., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)

    2015-03-28

    In this paper, we report newly derived integral cross sections (ICSs) for electron impact vibrational excitation of tetrahydrofuran (THF) at intermediate impact energies. These cross sections extend the currently available data from 20 to 50 eV. Further, they indicate that the previously recommended THF ICS set [Garland et al., Phys. Rev. A 88, 062712 (2013)] underestimated the strength of the electron-impact vibrational excitation processes. Thus, that recommended vibrational cross section set is revised to address those deficiencies. Electron swarm transport properties were calculated with the amended vibrational cross section set, to quantify the role of electron-driven vibrational excitation in describing the macroscopic swarm phenomena. Here, significant differences of up to 17% in the transport coefficients were observed between the calculations performed using the original and revised cross section sets for vibrational excitation.

  5. Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer.

    Science.gov (United States)

    Miller, David C; Choi, Gilbert J; Orbe, Hudson S; Knowles, Robert R

    2015-10-28

    Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups.

  6. Electromicrobiology: Electron Transfer via Biowires in Nature and Practical Applications

    Directory of Open Access Journals (Sweden)

    Lovley Derek

    2016-01-01

    Full Text Available One of the most exciting developments in the field of electromicrobiology has been the discovery of electrically conductive pili (e-pili in Geobacter species that transport electrons with a metallic-like mechanism. The e-pili are essential for extracellular electron transport to Fe(III oxides and longrange electron transport through the conductive biofilms that form on the anodes of microbial fuel cells. The e-pili also facilitate direct interspecies electron transfer between Geobacter and Methanosaeta or Methanosarcina species. Metatranscriptomic studies have demonstrated that Geobacter/Methanosaeta DIET is an important process in anaerobic digesters converting brewery wastes to methane. Increasing e-pili expression through genetic modification of regulatory systems or adaptive evolution yields strains with enhanced rates of extracellular electron transfer. Measurement of the conductivity of individual e-pili has demonstrated that they have conductivities higher than those of a number of synthetic conducting organic polymers. Multiple lines of evidence have demonstrated that aromatic amino acids play an important role in the electron transport along e-pili, suggesting opportunities to tune e-pili conductivity via genetic manipulation of the amino acid composition of e-pili. It is expected that e-pili will be harnessed to improve microbe-electrode processes such as microbial electrosynthesis and for the development of novel biosensors. Also, e-pili show promise as a sustainable ‘green’ replacement for electronic materials that contain toxic components and/or are produced with harsh chemicals.

  7. Is There a Linear Building Transfer Function for Small Excitation?

    Science.gov (United States)

    Clinton, J. F.; Heaton, T. H.

    2003-12-01

    In the absence of actual building accelerometer data, the linear response of a structure to strong ground motion is estimated by the convolution of the dynamic response of the structure with an input ground motion. The input motion is usually provided by a local `reference' station record. In this study, we look at whether actual recorded ground motion at two instrumented buildings with well studied dynamic properties can be satisfactorily modeled using a local ground station. All stations record continuous 24-bit data streams on the CISN network, so analysis of a variety of weak earthquake motions, as well as ambient noise, is possible. Our buildings are the 9-story reinforced concrete Millikan Library (CISN Station MIK) and the 3-story braced steel frame Broad Center (CBC), both on the Caltech Campus. Motions recorded on their upper floors are compared with motions from ground stations located in the basement of a lightweight wood-frame house (GSA), and in a subsurface vault (CRP). All stations are within 200m of each other. Recent work using the new continuous datastream indicates that the natural frequencies of these structures can vary by up to 5% during normal ambient conditions, due to such factors as changing building usage, diurnal temperature variation, and wind/rainfall events. These shifts can be sudden, and models of building motions are sensitive to these previously un-documented changes. Further, during stronger motions, such as forced vibration testing, and minor earthquake shaking, natural frequencies are shown to drop by up to 10% (2003 M5.4 Big Bear Earthquake, Δ = 119km), with near-instantaneous recovery once the excitation is over. Moderate earthquakes can temporarily reduce frequencies by up to 30% with no apparent structural damage (1971 M6.6 San Fernando Earthquake, Δ = 31km). Post-event permanent reductions of about 10% have been observed. The ability to monitor these evolving dynamic characteristics makes a re-evaluation of the

  8. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 2950K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 2950K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  9. Unusual distance dependences of electron transfer rates.

    Science.gov (United States)

    Kuss-Petermann, Martin; Wenger, Oliver S

    2016-07-28

    Usually the rates for electron transfer (kET) decrease with increasing donor-acceptor distance, but Marcus theory predicts a regime in which kET is expected to increase when the transfer distance gets longer. Until recently, experimental evidence for such counter-intuitive behavior had been very limited, and consequently this effect is much less well-known than the Gaussian free energy dependence of electron transfer rates leading to the so-called inverted driving-force effect. This article presents the theoretical concepts that lead to the prediction of electron transfer rate maxima at large donor-acceptor distances, and it discusses conditions that are expected to favor experimental observations of such behavior. It continues with a consideration of specific recent examples in which electron transfer rates were observed to increase with increasing donor-acceptor distance, and it closes with a discussion of the importance of this effect in the context of light-to-chemical energy conversion. PMID:27353891

  10. Theory of nuclear excitation by electron capture for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gagyi-Palffy, A.

    2006-07-01

    The resonant process of nuclear excitation by electron capture (NEEC) in collisions involving highly-charged ions has been investigated theoretically. NEEC is a rare recombination process in which a free electron is captured into a bound shell of an ion with the simultaneous excitation of the nucleus. Total cross sections for NEEC followed by the radiative decay of the excited nucleus are presented for various collision systems. The possibility to observe the NEEC in scattering experiments with trapped or stored ions was discussed focusing on the cases with the largest calculated resonance strength. As the photons emitted in different channels of the electron recombination process are indistinguishable in the total cross section, the interference between NEEC followed by the radiative decay of the nucleus and radiative recombination was investigated. The angular distribution of the emitted photons in the recombination process provides means to discern the two processes. Angular differential cross sections for the emitted photons in the case of E2 nuclear transitions were presented for several heavy elements. (orig.)

  11. Ultrafast Structural Dynamics of Tertiary Amines upon Electronic Excitation

    Science.gov (United States)

    Cheng, Xinxin; Minitti, Michael P.; Deb, Sanghamitra; Zhang, Yao; Budarz, James; Weber, Peter M.

    2011-06-01

    The structural response of several tertiary amines to electronic excitation has been investigated using Rydberg Fingerprint Spectroscopy. The 3p Rydberg states are reached by excitation with a 5.93 eV photon while 3s states are populated by electronic relaxation from 3p state. We observe binding energy shifts on ultrafast time scales in all peaks that reflect the structural change of the molecular ion cores. The shifts are in the range of 15 meV to 30 meV, within time scales of less than 500 fs, depending on the specific molecular systems and the nature of the electronic state. In cases where the p states are spectrally separate, the trends of the energy shifts are different for the p_z and p_x_y Rydberg states whereas the p_z and s states are similar. This suggests that the response of the Rydberg states to structural displacements depends on the symmetry. Very fast binding energy shifts, observed on sub-picosecond time scales, are attributed to the structural adjustment from a pyramidal to a planar structure upon Rydberg excitation. The quantitative values of the binding energy shifts can also be affected by laser chirp, which we model using simulations.

  12. Search for Nuclear Excitation by Electronic Transition in U-235

    Science.gov (United States)

    Chodash, P. A.; Norman, E. B.; Burke, J. T.; Wilks, S. C.; Casperson, R. J.; Swanberg, E. L.; Wakeling, M. A.; Cordeiro, T. J.

    2013-10-01

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is predicted to occur in numerous isotopes, including U-235. When a nuclear transition matches the energy and the multipolarity of an electronic transition, there is a possibility that NEET will occur. If NEET were to occur in U-235, the nucleus would be excited to its 1/2 + isomeric state that subsequently decays by internal conversion with a decay energy of 77 eV and a half-life of 26 minutes. Theory predicts that NEET can occur in partially ionized uranium plasma with a charge state of 23 +. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 780 mJ and a pulse width of 9 ns was used to generate the uranium plasma. The plasma was collected on a plate and the internal conversion electrons were focused onto a microchannel plate detector by a series of electrostatic lenses. Depleted uranium and highly enriched uranium samples were used for the experiment. Preliminary results will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This work was further supported by the U.S. DHS, UC Berkeley, and the NNIS Fellowship.

  13. Electron transfer in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C D

    1979-01-01

    Recent theoretical development in the understanding of electron transfer processes is reviewed. K-K electron transfer processes are studied for projectiles (nuclear charge Z/sub B/) and targets (nuclear charge Z/sub A/) in which Z/sub A/ and Z/sub B/ range from Z/sub A/ much greater than Z/sub B/ to Z/sub A/ approx. = Z/sub B/, over the energy range 0.1 < v/v/sub e/ < 2. (GHT)

  14. Nanosecond length electron pulses from a laser-excited photocathode

    International Nuclear Information System (INIS)

    A photocathode made from polycrystalline lanthanum hexaboride (LaB6) has produced nanosecond length electron pulses when excited by an excimer laser at 308nm. Peak currents in excess of 1A have been observed, with quantum yields of 4 x 10-5 being measured. A method for extracting the electrons from an emission-limited cathode, plasma extraction, has been demonstrated. This technique uses a low power continuous discharge to provide the electric field needed to extract the photoelectrons. This technique may be useful in producing high repetition rate short pulse ion sources. 10 refs., 4 figs

  15. Electronic properties of solids excited with intermediate laser power densities

    Science.gov (United States)

    Sirotti, Fausto; Tempo Beamline Team

    Intermediate laser power density up to about 100 GW/cm2 is below the surface damage threshold is currently used to induce modification in the physical properties on short time scales. The absorption of a short laser pulse induces non-equilibrium electronic distributions followed by lattice-mediated equilibrium taking place only in the picosecond range. The role of the hot electrons is particularly important in several domains as for example fast magnetization and demagnetization processes, laser induced phase transitions, charge density waves. Angular resolved photoelectron spectroscopy measuring directly energy and momentum of electrons is the most adapted tool to study the electronic excitations at short time scales during and after fast laser excitations. The main technical problem is the space charge created by the pumping laser pulse. I will present angular resolved multiphoton photoemission results obtained with 800 nm laser pulses showing how space charge electrons emitted during fast demagnetization processes can be measured. Unable enter Affiliation: CNRS-SOLEIL Synchrotron L'Orme des Merisiers , Saint Aubin 91192 Gif sur Yvette France.

  16. Nature of ground and electronic excited states of higher acenes.

    Science.gov (United States)

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  17. Facilitating electron transfer in bioelectrocatalytic systems

    OpenAIRE

    Sekretaryova, Alina

    2016-01-01

    Bioelectrocatalytic systems are based on biological entities, such as enzymes, whole cells, parts of cells or tissues, which catalyse electrochemical processes that involve the interaction between chemical change and electrical energy. In all cases, biocatalysis is implemented by enzymes, isolated or residing inside cells or part of cells. Electron transfer (ET) phenomena, within the protein molecules and between biological redox systems and electronics, enable the development of various bioe...

  18. Facile Interfacial Electron Transfer of Hemoglobin

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2005-12-01

    Full Text Available Abstract: We herein describe a method of depositing hemoglobin (Hb and sulfonated polyaniline (SPAN on GC electrodes that facilitate interfacial protein electron transfer. Well-defined, reproducible, chemically reversible peaks of Hb and SPAN can be obtained in our experiments. We also observed enhanced peroxidase activity of Hb in SPAN films. These results clearly showed that SPAN worked as molecular wires and effectively exchanged electrons between Hb and electrodes.Mediated by Conjugated Polymers

  19. Absolute cross sections for electronic excitation of pyrimidine by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Regeta, Khrystyna; Allan, Michael [Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg (Switzerland); Mašín, Zdeněk [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin (Germany); Gorfinkiel, Jimena D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2016-01-14

    We measured differential cross sections for electron-impact electronic excitation of pyrimidine, both as a function of electron energy up to 18 eV, and of scattering angle up to 180°. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. The differential cross sections were summed to obtain integral cross sections. These are compared to results of R-matrix calculations, which successfully reproduce both the magnitude of the cross section and the major resonant features. Comparison of the experiment to the calculated contributions of different symmetries to the integral cross section permitted assignment of several features to specific core-excited resonances. Comparison of the resonant structure of pyrimidine with that of benzene revealed pronounced similarities and thus a dominant role of π–π{sup ∗} excited states and resonances. Electron energy loss spectra were measured as a preparation for the cross section measurements and vibrational structure was observed for some of the triplet states. A detailed analysis of the electronic excited states of pyrimidine is also presented.

  20. Photoinduced electron transfer in ordered polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. II.

    1990-10-20

    Photochemical studies on organic polymers or biopolymers (particularly synthetic peptides) that have been modified by covalent attachment (or other means of binding) of organic chromophores and electron transfer agents are described. Specific projects involve are: peptide conjugates bearing electroactive residues such as tryptophan and specifically labeled at the N- or C-terminus of peptide chains; the electrostatic binding of organic dyes to poly-electrolytes (polyacrylates) for which the formation of dimeric aggregates of bound dye that display unusual photophysical and electron transfer properties is important; a study of the binding of dyes and electron transfer agents to the protein mimic,'' polyvinyl-2-pyrrolidinone (PVP), in hydrophobic domains that depend on specific H-bond interaction; and completion of an earlier study having to do with the triplet state properties of charge-transfer (CT) complexes of a high potential quinone and various electron donors (investigation of the properties of triplet (contact) radical-ion pairs). 13 refs., 5 figs., 2 tabs.

  1. Dynamic Effects in Core Electron Impact Excitation of Lanthanum

    Science.gov (United States)

    Nuroh, Kofi

    2000-05-01

    Experimental data of inelastic electron scattering exciting inner3d-shell of metallic lanthanum show strong dependence on the projectile electron energy.^1 Calculations based on an atomic physics description of the triply ionized free atom are made. The large spin-orbit coupling constant of the 3d-hole leads to an approximate jK-coupling. The resulting excitation strength is formulated in terms of the Born approximation including resonant contributions. The intensity is folded with a Lorentzian broadening with full width at half maximum (FWHM) parameter Γ. This parameter is considered to be dependent on the projectile electron energy so that the dynamic effects found in experimental electron-energy-loss-spectra (EELS) may be addressed. The systematic variation of the relative intensities of the spin-orbit doublet structures with exciation energy found in experiment is generally accounted for as Γ is varied from the experimentally measured values of 0.7eV - 0.5eV and beyond^2 ^1J. Kanski and G. Wendin, Phys. Rev.B24, 1981 (4977). ^2K. Nuroh, Physica Scripta 61, 2000(in press).

  2. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling

    Science.gov (United States)

    Uskov, Alexander V.; Khurgin, Jacob B.; Protsenko, Igor E.; Smetanin, Igor V.; Bouhelier, Alexandre

    2016-07-01

    A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits.A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits. Electronic supplementary information (ESI) available: Plasmonic mode in nanowires, the probability of stimulated emission in tunnelling through the Fermi's Golden Rule and electron wave functions in tunnelling structures with nonresonant and resonant tunnelling. See DOI: 10.1039/c6nr01931e

  3. Electric dipole excitation of 208Pb by polarized electron impact

    International Nuclear Information System (INIS)

    The cross sections and spin asymmetries for the excitation of 1- states in 208Pb by transversely polarized electrons with collision energy of 30-180MeV have been examined within the DWBA scattering formalism. As examples, we have considered a low-lying 1- state and also states belonging to the pygmy dipole and giant dipole resonances. The structure of these states and their corresponding transition charge and current densities have been taken from an RPA calculation within the quasiparticle phonon model. The complex-plane rotation method has been applied to achieve the convergence of the radial DWBA integrals for backward scattering. We have studied the behaviour of the cross sections and spin asymmetries as a function of electron energy and scattering angle. The role of the longitudinal and transversal contributions to the excitation has been thoroughly studied. We conclude that the spin asymmetry S, related to unpolarized outgoing electrons, is mostly well below 1% even at the backward scattering angles and its measurement provides a challenge for future experiments with polarized electrons. (orig.)

  4. Hot electron mediated desorption rates calculated from excited state potential energy surfaces

    CERN Document Server

    Olsen, Thomas; Schiøtz, Jakob

    2008-01-01

    We present a model for Desorption Induce by (Multiple) Electronic Transitions (DIET/DIMET) based on potential energy surfaces calculated with the Delta Self-Consistent Field extension of Density Functional Theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various transition metal surfaces, and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system, with parameters obtained from the excited state potential energy surface, and show that this model can describe desorption dynamics in both the DIET and DIMET regime, and reproduce the power law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong.

  5. Energy shift of collective electron excitations in highly corrugated graphitic nanostructures: Experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sedelnikova, O. V., E-mail: o.sedelnikova@gmail.com; Bulusheva, L. G.; Okotrub, A. V. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Science, 3 Acad. Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090 (Russian Federation); Tomsk State University, 36 Lenina Ave., Tomsk 634050 (Russian Federation); Asanov, I. P. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Science, 3 Acad. Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090 (Russian Federation); Yushina, I. V. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Science, 3 Acad. Lavrentiev Ave., Novosibirsk 630090 (Russian Federation)

    2014-04-21

    Effect of corrugation of hexagonal carbon network on the collective electron excitations has been studied using optical absorption and X-ray photoelectron spectroscopy in conjunction with density functional theory calculations. Onion-like carbon (OLC) was taken as a material, where graphitic mantle enveloping agglomerates of multi-shell fullerenes is strongly curved. Experiments showed that positions of π and π + σ plasmon modes as well as π → π* absorption peak are substantially redshifted for OLC as compared with those of highly ordered pyrolytic graphite and thermally exfoliated graphite consisted of planar sheets. This effect was reproduced in behavior of dielectric functions of rippled graphite models calculated within the random phase approximation. We conclude that the energy of electron excitations in graphitic materials could be precisely tuned by a simple bending of hexagonal network without change of topology. Moreover, our investigation suggests that in such materials optical exciton can transfer energy to plasmon non-radiatively.

  6. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schr\\"odinger equation

    CERN Document Server

    Abramavicius, Vytautas

    2014-01-01

    We derive the stochastic Schr\\"odinger equation for the system wave vector and use it to describe the excitation energy transfer dynamics in molecular aggregates. We suggest a quantum-measurement based method of estimating the excitation transfer time. Adequacy of the proposed approach is demonstrated by performing calculations on a model system. The theory is then applied to study the excitation transfer dynamics in a photosynthetic pigment-protein Fenna-Matthews-Olson (FMO) aggregate using both the Debye spectral density and the spectral density obtained from earlier molecular dynamics simulations containing strong vibrational high-frequency modes. The obtained results show that the excitation transfer times in the FMO system are affected by the presence of the vibrational modes, however the transfer pathways remain the same.

  7. Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation

    Science.gov (United States)

    Koopmans, Bert

    A hot topic in the field of ultrafast laser-induced manipulation of the magnetic state is that of the role and exploitation of laser-induced spin currents. Intense debate has been triggered by claims that such a spin-transfer, e.g. in the form of super-diffusive spin currents over tens of nanometers, might be a main contributor to the demagnetization process in ferromagnetic thin films after femtosecond laser excitation. In this presentation the underlying concepts will be introduced and recent developments reviewed. Particularly we demonstrate the possibility to apply a laser-induced spin transfer torque on a free magnetic layer, using a non-collinear multilayer configuration consisting of a free in-plane layer on top of a perpendicularly magnetized injection layer, as separated by a nonmagnetic spacer. Interestingly, this approach allows for a quantitative measurement of the amount of spin transfer. Moreover, it might provide access to novel device architectures in which the magnetic state is controlled by fs laser pulses. Careful analysis of the resulting precession of the free layer allows us to quantify the applied torque, and distinguish between driving mechanisms based on laser-induced transfer of hot electrons versus a spin Seebeck effect due to the large thermal gradients. Further engineering of the layered structures in order to gain fundamental understanding and optimize efficiencies will be reported. A simple model that treats local non-equilibrium magnetization dynamics to spin transport effects via a spin-dependent chemical potential will be introduced.

  8. Excitation of CO2/+/ by electron impact on CO2

    Science.gov (United States)

    Mentall, J. E.; Coplan, M. A.; Kushlis, R. J.

    1973-01-01

    Consideration of a discrepancy concerning the correct value of the cross section for excitation of the CO2(+) B state by electron impact on CO2. It is suggested that the reason for the disparate results obtained by various authors for the B state can be traced to a calibration error due to scattered light. In particular, the tungsten filament lamps used in the experiments cited have very low intensity at wavelengths below 3000 A where the B state emissions occur, so that even a small amount of scattered light in the spectrometer will produce a large error in the measured cross section. In a remeasurement of the cross section for excitation of the B state at an energy of 150 eV it was found that at 2900 A the scattered light signal, if uncorrected for, would introduce an error of about 50%.

  9. The role of electronic excitation in cold atom-ion chemistry

    OpenAIRE

    Sullivan, Scott T.; Rellergert, Wade G.; Kotochigova, Svetlana; Hudson, Eric R.

    2012-01-01

    The role of electronic excitation in charge exchange chemical reactions between ultracold Ca atoms and Ba$^+$ ions, confined in a hybrid trap, is studied. This prototypical system is energetically precluded from reacting in its ground state, allowing a particularly simple interpretation of the influence of electronic excitation. It is found that while electronic excitation of the ion can critically influence the chemical reaction rate, electronic excitation of the neutral atom is less importa...

  10. Role of core excitation in (d,p) transfer reactions

    CERN Document Server

    Deltuva, A; Norvaišas, E; Nunes, F M

    2016-01-01

    [Background:] Recent work found that core excitation can be important in extracting structure information from (d,p) reactions. [Purpose:] Our objective is to systematically explore the role of core excitation in (d,p) reactions, and understand the origin of the dynamical effects. [Method:] Based on the particle-rotor model of $n+^{10}$Be, we generate a number of models with a range of separation energies ($S_n=0.1-5.0$ MeV), while maintaining a significant core excited component. We then apply the latest extension of the momentum-space based Faddeev method, including dynamical core excitation in the reaction mechanism to all orders, to the $^{10}$Be(d,p)$^{11}$Be like reactions, and study the excitation effects for beam energies from $E_d=15-90$ MeV. [Results:] We study the resulting angular distributions and the differences between the spectroscopic factor that would be extracted from the cross sections, when including dynamical core excitation in the reaction, to that of the original structure model. We al...

  11. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  12. Computer simulation of electronic excitation in atomic collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Duvenbeck, A.

    2007-04-05

    The impact of an keV atomic particle onto a solid surface initiates a complex sequence of collisions among target atoms in a near-surface region. The temporal and spatial evolution of this atomic collision cascade leads to the emission of particles from the surface - a process usually called sputtering. In modern surface analysis the so called SIMS technology uses the flux of sputtered particles as a source of information on the microscopical stoichiometric structure in the proximity of the bombarded surface spots. By laterally varying the bombarding spot on the surface, the entire target can be scanned and chemically analyzed. However, the particle detection, which bases upon deflection in electric fields, is limited to those species that leave the surface in an ionized state. Due to the fact that the ionized fraction of the total flux of sputtered atoms often only amounts to a few percent or even less, the detection is often hampered by rather low signals. Moreover, it is well known, that the ionization probability of emitted particles does not only depend on the elementary species, but also on the local environment from which a particle leaves the surface. Therefore, the measured signals for different sputtered species do not necessarily represent the stoichiometric composition of the sample. In the literature, this phenomenon is known as the Matrix Effect in SIMS. In order to circumvent this principal shortcoming of SIMS, the present thesis develops an alternative computer simulation concept, which treats the electronic energy losses of all moving atoms as excitation sources feeding energy into the electronic sub-system of the solid. The particle kinetics determining the excitation sources are delivered by classical molecular dynamics. The excitation energy calculations are combined with a diffusive transport model to describe the spread of excitation energy from the initial point of generation. Calculation results yield a space- and time-resolved excitation

  13. Effect of Electronic Excitation on Thin Film Growth

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed-Ali, Hani E. [Old Dominion University

    2011-01-31

    The effect of nanosecond pulsed laser excitation on surface diffusion during growth of Ge on Si(100) at 250 degrees C was studied. In Situ reflection high-energy electron diffraction (RHEED) was used to measure the surface diffusion coefficient while ex situ atomic force microscopy (AFM) was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during growth of Ge on Si(100), changes the growth morphology, improves crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface diffusion of the deposited Ge is proposed. Ge quantum dots were grown on Si(100)-(2x1) by pulsed laser deposition at various substrate temperatures using a femtosecond Ti:sapphire laser. In-situ reflection high-energy electron diffraction and ex-situ atomic force microscopy were used to analyze the fim structure and morphology. The morphology of germanium islands on silicon was studied at differect coverages. The results show that femtosecond pulsed laser depositon reduces the minimum temperature for epitaxial growth of Ge quantum dots to ~280 degrees C, which is 120 degrees C lower then previously observed in nanosecond pulsed laser deposition and more than 200 degrees C lower than that reported for molecular beam epitaxy and chemical vapor deposition.

  14. Electronically excited rubidium atom in a helium cluster or film

    Science.gov (United States)

    Leino, Markku; Viel, Alexandra; Zillich, Robert E.

    2008-11-01

    We present theoretical studies of helium droplets and films doped with one electronically excited rubidium atom Rb∗ (P2). Diffusion and path integral Monte Carlo approaches are used to investigate the energetics and the structure of clusters containing up to 14 helium atoms. The surface of large clusters is approximated by a helium film. The nonpair additive potential energy surface is modeled using a diatomic in molecule scheme. Calculations show that the stable structure of Rb∗Hen consists of a seven helium atom ring centered at the rubidium, surrounded by a tirelike second solvation shell. A very different structure is obtained when performing a "vertical Monte Carlo transition." In this approach, a path integral Monte Carlo equilibration starts from the stable configuration of a rubidium atom in the electronic ground state adsorbed to the helium surface after switching to the electronically excited surface. In this case, Rb∗Hen relaxes to a weakly bound metastable state in which Rb∗ sits in a shallow dimple. The interpretation of the results is consistent with the recent experimental observations [G. Auböck et al., Phys. Rev. Lett. 101, 035301 (2008)].

  15. Compilation of electron collision excitation cross sections for neutro argon

    International Nuclear Information System (INIS)

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p''5 ns(n=4 to 12), np(n=4 to 8) and nd(n=3 to 8) of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p''5 ns(n=4 to 7), np(n=4 to 7) and nd(n=3 to 8). 3.- Comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author)

  16. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    Science.gov (United States)

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap. PMID:26871327

  17. Electron impact excitation of F-like W LXVI

    CERN Document Server

    Aggarwal, K M

    2016-01-01

    Electron impact excitation collision strengths are calculated for all transitions among 113 levels of the 2s$^2$2p$^5$, 2s2p$^6$, 2s$^2$2p$^4$3$\\ell$, 2s2p$^5$3$\\ell$, and 2p$^6$3$\\ell$ configurations of F-like W~LXVI. For this purpose Dirac Atomic R-matrix Code (DARC) has been adopted and results are listed over a wide energy range of 1000 to 6000 Ryd. For comparison purpose analogous calculations have also been performed with the Flexible Atomic Code (FAC), and the results obtained are comparable with those from DARC.

  18. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hou, H [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  19. Optogalvanic monitoring of collisional transfer of laser excitation energy in a neon RF plasma

    International Nuclear Information System (INIS)

    The optogalvanic signals produced by pulsed laser excitation of 1s5--2p8 and 1s5-2p9 (Paschen notation) transition by a ∼29 MHz radiofrequency (rf) discharge at ∼5 torr have been investigated. The optogalvanic signal produced by 1s5-2p9 excitations indicates that there is transfer of energy from the 2p9 state to some other state. The state to which this energy is transferred is believed to be mainly the 2p8 state because of the very small energy gap between the 2p9 and 2p8 states. To verify this transfer, the 1s5-2p8 transition was investigated. The similarity of the temporal profiles of the optogalvanic signals in both excitations confirms the collisional transfer of laser excitation energy from 2p9 to 2p8

  20. Computational Approach to Electron Charge Transfer Reactions

    DEFF Research Database (Denmark)

    Jónsson, Elvar Örn

    The step from ab initio atomic and molecular properties to thermodynamic - or macroscopic - properties requires the combination of several theoretical tools. This dissertation presents constant temperature molecular dynamics with bond length constraints, a hybrid quantum mechanics...... to show general (or expected) properties. Properties such as in the physical and (semi-)chemical interface between classical and quantum systems and the effects of molecular bond length constraints on the temperature during simulations. As a second step the methodology is applied to the symmetric...... structure modes. This is for a large iridium-iridium dimer complex which shows a dramatic structural (and vibrational) change upon electronic excitation....

  1. Dependence of the energy transfer to graphene on the excitation energy

    Energy Technology Data Exchange (ETDEWEB)

    Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl; Kamińska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2015-07-13

    Fluorescence studies of natural photosynthetic complexes on a graphene layer demonstrate pronounced influence of the excitation wavelength on the energy transfer efficiency to graphene. Ultraviolet light yields much faster decay of fluorescence, with average efficiencies of the energy transfer equal to 87% and 65% for excitation at 405 nm and 640 nm, respectively. This implies that focused light changes locally the properties of graphene affecting the energy transfer dynamics, in an analogous way as in the case of metallic nanostructures. Demonstrating optical control of the energy transfer is important for exploiting unique properties of graphene in photonic and sensing architectures.

  2. Electron, Hole, Singlet, and Triplet Energy Transfer in Photoexcited Porphyrin-Naphthalenediimide Dyads.

    Science.gov (United States)

    Yushchenko, Oleksandr; Hangarge, Rahul V; Mosquera-Vazquez, Sandra; Boshale, Sheshanath V; Vauthey, Eric

    2015-06-18

    The excited-state dynamics of two molecular dyads, consisting of zinc (1) and free-base (2) porphyrin connected via a peptide linker to a core-substituted naphthalenediimide (NDI) have been investigated using optical spectroscopy. These dyads exhibit rich photophysics because of the large number of electronic excited states below 3 eV. In the case of 1 in apolar solvents, excitation energy transfer from the vibrationally hot singlet excited porphyrin to the NDI takes place with a 500 fs time constant. Electronic energy ends up in the NDI-localized triplet state, which decays to the ground state on a microsecond timescale. In polar solvents, ground-state recovery is faster by 5 orders of magnitude because of the occurrence of charge separation followed by recombination. On the other hand, excitation energy transfer in 2 takes place in the opposite direction, namely from the NDI to the porphyrin, which then undergoes intersystem crossing to the triplet state, followed by triplet energy transfer back to the NDI. Therefore, four distinct local electronic excited states are consecutively populated after excitation of the NDI unit of 2, with the energy shuttling between the two ends of the dyad. PMID:25418961

  3. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, F.B.; Korterik, J.P.; Offerhaus, H.L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  4. Excitation of the lowest electronic transitions in ethanol by low-energy electrons

    Science.gov (United States)

    Hargreaves, L. R.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2016-09-01

    We report absolute differential and integral cross sections for electronic excitation of ethanol, by low-energy electron impact. Cross sections for low-lying excited states were measured at incident electron energies from 9 to 20 eV and at scattering angles from {5}\\circ through {130}\\circ . Our results include cross sections for excitation of the 1{}3A\\prime \\prime and 1{}1A\\prime \\prime states as well as for the 2{}3A\\prime \\prime + 1{}3A\\prime and 2{}1A\\prime \\prime + 2{}1A\\prime cross section sums. Corresponding calculations were also performed using the Schwinger multichannel method, within an 11-channel close-coupling scheme.

  5. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  6. Electron transfer theory revisit: Quantum solvation effect

    CERN Document Server

    Han, P; Cui, P; Mo, Y; He, G; Yan, Y J; Han, Ping; Xu, Rui-Xue; Cui, Ping; Mo, Yan; He, Guozhong; Yan, YiJing

    2006-01-01

    The effect of solvation on the electron transfer (ET) rate processes is investigated on the basis of the exact theory constructed in J. Phys. Chem. B Vol. 110, (2006); quant-ph/0604071. The nature of solvation is studied in a close relation with the mechanism of ET processes. The resulting Kramers' turnover and Marcus' inversion characteristics are analyzed accordingly. The classical picture of solvation is found to be invalid when the solvent longitudinal relaxation time is short compared with the inverse temperature.

  7. Cold chemistry with electronically excited Ca+ Coulomb crystals

    International Nuclear Information System (INIS)

    Rate constants for chemical reactions of laser-cooled Ca+ ions and neutral polar molecules (CH3F, CH2F2, or CH3Cl) have been measured at low collision energies (coll>/kB=5-243 K). Low kinetic energy ensembles of 40Ca+ ions are prepared through Doppler laser cooling to form ''Coulomb crystals'' in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca+ ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of 40Ca+ involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state (2S1/2) and the combined excited states (2D3/2 and 2P1/2) of 40Ca+. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.

  8. Cold chemistry with electronically excited Ca+ Coulomb crystals

    Science.gov (United States)

    Gingell, Alexander D.; Bell, Martin T.; Oldham, James M.; Softley, Timothy P.; Harvey, Jeremy N.

    2010-11-01

    Rate constants for chemical reactions of laser-cooled Ca+ ions and neutral polar molecules (CH3F, CH2F2, or CH3Cl) have been measured at low collision energies (⟨Ecoll⟩/kB=5-243 K). Low kinetic energy ensembles of C40a+ ions are prepared through Doppler laser cooling to form "Coulomb crystals" in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca+ ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of C40a+ involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state (S21/2) and the combined excited states (D23/2 and P21/2) of C40a+. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.

  9. Inelastic electron and light scattering from the elementary electronic excitations in quantum wells: Zero magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2012-09-01

    Full Text Available The most fundamental approach to an understanding of electronic, optical, and transport phenomena which the condensed matter physics (of conventional as well as nonconventional systems offers is generally founded on two experiments: the inelastic electron scattering and the inelastic light scattering. This work embarks on providing a systematic framework for the theory of inelastic electron scattering and of inelastic light scattering from the electronic excitations in GaAs/Ga1−xAlxAs quantum wells. To this end, we start with the Kubo's correlation function to derive the generalized nonlocal, dynamic dielectric function, and the inverse dielectric function within the framework of Bohm-Pines’ random-phase approximation. This is followed by a thorough development of the theory of inelastic electron scattering and of inelastic light scattering. The methodological part is then subjected to the analytical diagnoses which allow us to sense the subtlety of the analytical results and the importance of their applications. The general analytical results, which know no bounds regarding, e.g., the subband occupancy, are then specified so as to make them applicable to practicality. After trying and testing the eigenfunctions, we compute the density of states, the Fermi energy, the full excitation spectrum made up of intrasubband and intersubband – single-particle and collective (plasmon – excitations, the loss functions for all the principal geometries envisioned for the inelastic electron scattering, and the Raman intensity, which provides a measure of the real transitions induced by the (laser probe, for the inelastic light scattering. It is found that the dominant contribution to both the loss peaks and the Raman peaks comes from the collective (plasmon excitations. As to the single-particle peaks, the analysis indicates a long-lasting lack of quantitative comparison between theory and experiments. It is inferred that the inelastic electron

  10. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Esboui, Mounir, E-mail: mounir.esboui@fst.rnu.tn [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, 2092 Tunis (Tunisia); Technical and Vocational Training Corporation, Hail College of Technology, P.O. Box 1960, Hail 81441 (Saudi Arabia)

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  11. $d$-wave bond-order charge excitations in electron-doped cuprates

    OpenAIRE

    Yamase, Hiroyuki; Bejas, Matías; Greco, Andrés

    2015-01-01

    We study charge excitation spectra in the two-dimensional $t$-$J$ model on a square lattice to explore a charge-order tendency recently found in electron-doped cuprates around the carrier density 0.15. The static susceptibility of $d$-wave charge density, which corresponds to the nematic susceptibility at the momentum transfer ${\\bf q}=(0,0)$, shows two characteristic peaks at momenta of the form ${\\bf q}_{1}=(q',q')$ and ${\\bf q}_{2}=(q,0)$. These two peaks originate from the so-called $2k_{...

  12. Modeling the nonradiative decay rate of electronically excited thioflavin T.

    Science.gov (United States)

    Erez, Yuval; Liu, Yu-Hui; Amdursky, Nadav; Huppert, Dan

    2011-08-01

    A computational model of nonradiative decay is developed and applied to explain the time-dependent emission spectrum of thioflavin T (ThT). The computational model is based on a previous model developed by Glasbeek and co-workers (van der Meer, M. J.; Zhang, H.; Glasbeek, M. J. Chem. Phys. 2000, 112, 2878) for auramine O, a molecule that, like ThT, exhibits a high nonradiative rate. The nonradiative rates of both auramine O and ThT are inversely proportional to the solvent viscosity. The Glasbeek model assumes that the excited state consists of an adiabatic potential surface constructed by adiabatic coupling of emissive and dark states. For ThT, the twist angle between the benzothiazole and the aniline is responsible for the extensive mixing of the two excited states. At a twist angle of 90°, the S(1) state assumes a charge-transfer-state character with very small oscillator strength, which causes the emission intensity to be very small as well. In the ground state, the twist angle of ThT is rather small. The photoexcitation leads first to a strongly emissive state (small twist angle). As time progresses, the twist angle increases and the oscillator strength decreases. The fit of the experimental results by the model calculations is good for times longer than 3 ps. When a two-coordinate model is invoked or a solvation spectral-shift component is added, the fit to the experimental results is good at all times. PMID:21711024

  13. Comparison of Magnetic Field-Modified Electronic Excitations in Ni(II) Compounds

    Science.gov (United States)

    Long, Virginia; Schundler, E. C.; Makumbe, P. O.; Wei, X.; Landry, B. R.; Maxcy, K. R.; Turnbull, M. M.; Landee, C. P.

    2006-03-01

    NTDN (Ni[tn]2[NO2]2) can be considered a paramagnetic analog material to the Haldane compounds NENP and NENB (Ni[en]2NO2ClO4 and Ni[en]2NO2BF4; where en = C2N2H8 and tn = C2N3H10). Except for the different bonding of one NO2 group and the absence or presence of spin chains, NTDN and the Haldane compounds have nearly identical electronic coordination around the Ni^2+ ions. Here, we report and compare the magnetic field (H)-dependent polarized optical transmittance of the three materials in the range 9,000 to 22,000 cm-1. The H dependence is manifest in the varying intensities of certain electronic absorptions with applied field. Although all three materials possess similar H- sensitive excitations, the details of the H dependence differ with the magnetic ground states. In NTDN, the intensity changes commence at H = 0 and saturate at 10 T, whereas in the Haldane compounds, the onset of changes is at the gap- closing critical field, HC, above which the intensity is linearly modified with field. The mechanism of the H- dependence is yet to be clarified and probably depends on the nature of the electronic excitation. Intensity variations with applied field are observed in both Ni^2+-to-NO2^- charge transfer transitions and Ni^2+ d-d spin forbidden excitations.

  14. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy

    Science.gov (United States)

    Fidler, Andrew F.; Singh, Ved P.; Long, Phillip D.; Dahlberg, Peter D.; Engel, Gregory S.

    2014-02-01

    Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.

  15. Coherent Transfer of Electronic Wavepacket Motion Between Atoms

    Science.gov (United States)

    Zhou, Tao; Richards, B. G.; Jones, R. R.

    2016-05-01

    We have shown that electron correlations, induced by controlled dipole-dipole (DD) interactions, can enable the coherent transfer of electronic wavepacket motion from atoms to their neighbors. In the experiment, a 5 ns tunable dye laser excites Rb atoms in a MOT to the 25s state in a weak static electric field for which the tunable 25s 33 s 24p34p DD interaction is resonant. A picosecond THz pulse then further excites each Rydberg atom into a coherent superposition, of 25s and 24p states. The evolution of this mixed-parity wavepacket is characterized by time-dependent oscillations in the electric dipole moment, with a period of 2.9 ps. Approximately 5 ns after the wavepacket creation, a second 5 ns dye-laser promotes a second set of atoms from the 5p level into the 33s state. Because of the DD interaction, the second dye laser actually creates atom pairs whose electronic states are correlated via the resonant DD coupling. A 33 s + 34p wavepacket, oscillating with the same 2.9 ps period as the 25 s + 24p wavepacket, develops on the second set of atoms as a result of the correlation. A second, time-delayed ps THz pulse enables the detection of the coherent wavepacket motion on the two sets of atoms. This research has been supported by the NSF.

  16. Effect of electronic excitation on high-temperature flows behind strong shock waves

    International Nuclear Information System (INIS)

    In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N2/N22/N/N+/e−) taking into account electronic degrees of freedom in N and N+ (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N2 and N2+ (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation is fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N2/N2+/N/N+/e−) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry

  17. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin;

    2013-01-01

    We investigate the failure of Time{Dependent Density Functional Theory (TDDFT) with the CAM{B3LYP exchange{correlation (xc) functional coupled to the Polarizable Embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge{transfer excitation in para...... to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge{transfer excitations in molecular systems similar to pNA against higher{level ab initio wave function methods, like, e.g., CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure...

  18. Promoting interspecies electron transfer with biochar

    DEFF Research Database (Denmark)

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla;

    2014-01-01

    attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why......Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar...... to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were...

  19. Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    OpenAIRE

    Magadur, Gurvan; Lauret, Jean-Sébastien; Alain-Rizzo, Valérie; C. Voisin; Roussignol, Ph.; Deleporte, Emmanuelle; Delaire, Jacques,

    2007-01-01

    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "$\\pi$-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $\\pi-\\pi$ interactions. The porphyrin-nanotube complex shows a strong quenching ...

  20. Energy transfer in aminonaphthalimide-boron-dipyrromethene (BODIPY) dyads upon one- and two-photon excitation: applications for cellular imaging.

    Science.gov (United States)

    Collado, Daniel; Remón, Patricia; Vida, Yolanda; Najera, Francisco; Sen, Pratik; Pischel, Uwe; Perez-Inestrosa, Ezequiel

    2014-03-01

    Aminonaphthalimide-BODIPY energy transfer cassettes were found to show very fast (kEET ≈ 10(10)-10(11) s(-1) and efficient BODIPY fluorescence sensitization. This was observed upon one- and two-photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two-photon absorption cross-section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ ≈ 10 GM for the BODIPY versus 19-26 GM in the dyad at λ(exc)=840 nm; 1 GM (Goeppert-Mayer unit)=10(-50) cm(4) smolecule(-1) photon-(1)]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfercassette concept, was demonstrated by time-dependent density functional theory calculations. The applicability of the new probes in the one- and twophoton excitation mode was demonstrated in a proof-of-principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY-containing dyad.

  1. Properties of Auger electrons following excitation of polarized atoms by polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kupliauskiene, A. [Institute of Theoretical Physics and Astronomy of Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania)], E-mail: akupl@itpa.lt; Tutlys, V. [Institute of Theoretical Physics and Astronomy of Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania)

    2009-01-15

    In non-relativistic approximation, the most general expression for differential cross sections describing the properties of Auger-electron emission induced in the excitation of polarized atoms by polarized electrons is obtained for the first time. The ways of the application of the general expressions suitable for the specific experimental conditions are outlined by deriving the expressions for the asymmetry parameters and the magnetic dichroism of the angular distribution of the Auger electrons as well as of the angular correlations between the scattered and Auger electrons.

  2. Education and solar conversion. Demonstrating electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Smestad, Greg P. [Institute of Physical Chemistry, ICP-2, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)

    1998-07-23

    A simplified solar cell fabrication procedure is presented that uses natural anthocyanin or chlorophyll dyes extracted from plants. This procedure illustrates how interdisciplinary science can be taught at lower division university and upper division high school levels for an understanding of renewable energy as well as basic science concepts. Electron transfer occurs on the Earth in the mitochondrial membranes found in living cells, and in the thylakoid membranes found in the photosynthetic cells of green plants. Since we depend on the results of this electron and energy transfer, e.g. in our use of petroleum and agricultural products, it is desirable to understand and communicate how the electron transfer works. The simplified solar cell fabrication procedure, based on nanocrystalline dye-sensitized solar cells, has therefore been developed so that it can be inexpensively reproduced and utilized in the teaching of basic principles in biology, chemistry, physics, and environmental science. A water-based solution of commercial nanocrystalline titanium dioxide (TiO{sub 2}) powder is used to deposit a highly porous semiconductor electron acceptor. This acceptor couples the light-driven processes occurring at an organic dye to the macroscopic world and an external electrical circuit. Materials science and semiconductor physics are emphasized during the deposition of the sintered TiO{sub 2} nanocrystalline ceramic film. Chelation, complexation and molecular self-assembly are demonstrated during the attachment of the dye molecule to the surface of the TiO{sub 2} semiconductor particles. Environmental chemistry and energy conversion can be linked to these concepts via the regenerative oxidation and reduction cycle found in the cell. The resulting device, made in under 3 h, can be used as a light detector or power generator that produces 0.4-0.5 V at open circuit, and 1-2 mA per square cm under solar illumination

  3. Production of excited electrons at TESLA and CLIC based $e\\gamma$ colliders

    CERN Document Server

    Aydin, Z Z; Kirca, Z

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron-photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions e gamma --> e gamma, e gamma --> eZ and e gamma --> nu W. Excited electrons can be discovered with the masses up to about 90% of the available collider energy.

  4. Dynamics of Electron Transfer Processes at the Surface of Dye-Sensitized Mesoporous Semiconductor Films

    OpenAIRE

    Teuscher, Joël

    2010-01-01

    Electron transfer reactions taking place at the surface of dye-sensitized semiconductors are key processes in dye-sensitized solar cells (DSSCs). After light absorption, the excited state of a dye injects an electron into a wide-bandgap semiconductor, usually titanium dioxyde, TiO2. The formed oxidized dye can then be intercepted by a redox mediator, typically iodide, before charge recombination between the injected electron and the oxidized dye...

  5. Electron-photon angular correlations in electron-helium collisions for 31P excitations

    International Nuclear Information System (INIS)

    Electron-photon angular correlations have been measured by detecting, in delayed coincidence, electrons inelastically scattered from helium and photons emitted in decays from the 31P level. The measurements have been carried out using both the 31P-11S (53.7nm) line and the 31P-21S (501.6nm) line. Analysis of the data yields the ratio of differential cross sections for exciting 31P magnetic sublevels and the absolute value of the relative phase between the corresponding excitation amplitudes for electron scattering angles between 100 and 300 at incident electron energies in the range 50 eV to 150 eV. Data of the atomic orientation is also presented. The results are compared with the predictions of the first Born approximation and a recent multichannel eikonal calculation. (author)

  6. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Ratnavelu, K. [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  7. Correlated electron-ion dynamics: the excitation of atomic motion by energetic electrons

    International Nuclear Information System (INIS)

    Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems

  8. Heat transfer in high density electronics packaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to get an insight into the thermal characteristic and to evaluate the thermal reliability of the "System in Packaging"(SIP), a new solution of electronics packaging, a heat transfer model of SIP was developed to predict the heat dissipation capacity and to investigate the effect of different factors on the temperature distribution in the electronics. The affecting parameters under consideration include the thermophysical properties of the substrates, the coefficient of convection heat transfer, the thickness of the chip, and the density of power dissipation. ALGOR, a kind of finite element analysis software,was used to do the model simulation. Based on the sinulation and analysis of the heat conduction and convection resistance, criteria for the thermal design were established and possible measurement for enhancing power dissipation was provided, The results show that the heat transfer model provides a new and effective way to the thermal design and thermal analysis of SIP and to the mechanical analysis for the further investigation of SIP.

  9. Influence of multiphonon excitations and transfer on the fusion of Ca+Zr

    CERN Document Server

    Esbensen, H

    2014-01-01

    Fusion data for $^{48}$Ca+$^{90,96}$Zr are analyzed by coupled-channels calculations that are based on the M3Y+repulsion, double-folding potential. By applying a previously determined nuclear density of $^{48}$Ca, the neutron densities of the zirconium isotopes are adjusted to optimize the fit to the fusion data, whereas the proton densities are determined by electron scattering experiments. It is shown that the fusion data can be explained fairly well by including couplings to one- and two-phonon excitations of the reacting nuclei and to one- and two-nucleon transfer reactions but there is also some sensitivity to multiphonon excitations. The neutron skin thicknesses extracted for the two zirconium isotopes are consistent with anti-proton measurements. The densities of the zirconium isotopes are used together with the previously determined nuclear density of $^{40}$Ca to calculate the M3Y+repulsion potentials and predict the fusion cross sections of $^{40}$Ca+$^{90,96}$Zr. The predicted cross sections for $^...

  10. How fast is optically induced electron transfer in organic mixed valence systems?

    Science.gov (United States)

    Lambert, C; Moos, M; Schmiedel, A; Holzapfel, M; Schäfer, J; Kess, M; Engel, V

    2016-07-28

    The rate of thermally induced electron transfer in organic mixed valence compounds has thoroughly been investigated by e.g. temperature dependent ESR spectroscopy. However, almost nothing is known about the dynamics of optically induced electron transfer processes in such systems. Therefore, we investigated these processes in mixed valence compounds based on triphenylamine redox centres bridged by conjugated spacers by NIR transient absorption spectroscopy with fs-time resolution. These experiments revealed an internal conversion (IC) process to be on the order of 50-200 fs which is equivalent to the back electron transfer after optical excitation into the intervalence charge transfer band. This IC is followed by ultrafast cooling to the ground state within 1 ps. Thus, in the systems investigated optically induced electron transfer is about 3-4 orders of magnitude faster than thermally induced ET. PMID:27376572

  11. Excitation energy transfer in a classical analogue of photosynthetic antennae.

    Science.gov (United States)

    Mančal, Tomáš

    2013-09-26

    We formulate a classical pure dephasing system-bath interaction model in a full correspondence to the well-studied quantum model of natural light-harvesting antennae. The equations of motion of our classical model not only represent the correct classical analogy to the quantum description of excitonic systems, but they also have exactly the same functional form. We demonstrate derivation of classical dissipation and relaxation tensor in second order perturbation theory. We find that the only difference between the classical and quantum descriptions is in the interpretation of the state and in certain limitations imposed on the parameters of the model by classical physics. The effects of delocalization, transfer pathway interference, and the transition from coherent to diffusive transfer can be found already in the classical realm. The only qualitatively new effect occurring in quantum systems is the preference for a downhill energy transfer and the resulting possibility of trapping the energy in the lowest energy state. PMID:23822554

  12. Electronic excitation of C4F6 isomers by electron impact

    International Nuclear Information System (INIS)

    We have measured electronic excitation differential cross sections for C4F6 molecules isomers by electron impact. In the case of hexafluoro-1,3-butadiene we observed an optical forbidden transition at around 5 eV. The spectra of the three C4F6 isomers show the most intense band clearly shifted to lower energies when going from 2-C4F6, to c-C4F6 and to 1,3-C4F6.

  13. Linker proteins enable ultrafast excitation energy transfer in the phycobilisome antenna system of Thermosynechococcus vulcanus.

    Science.gov (United States)

    Nganou, C; David, L; Adir, N; Mkandawire, M

    2016-01-01

    We applied a femtosecond flash method, using induced transient absorption changes, to obtain a time-resolved view of excitation energy transfer in intact phycobilisomes of Thermosynechococcus vulcanus at room temperature. Our measurement of an excitation energy transfer rate of 888 fs in phycobilisomes shows the existence of ultrafast kinetics along the phycocyanin rod subcomplex to the allophycocyanin core that is faster than expected for previous excitation energy transfer based on Förster theory in phycobilisomes. Allophycocyanin in the core further transfers energy to the terminal emitter(s) in 17 ps. In the phycobilisome, rod doublets composed of hexameric phycocyanin discs and internal linker proteins are arranged in a parallel fashion, facilitating direct rod-rod interactions. Excitonic splitting likely drives rod absorption at 635 nm as a result of strong coupling between β84 chromophores (20 ± 1 Å) in adjacent hexamers. In comparison to the absorbance of the phycobilisome antenna system of the cyanobacterium Acaryochloris marina, which possesses a single rod structure, the linkers in T. vulcanus rods induce a 17 nm red shift in the absorbance spectrum. Furthermore, the kinetics of 888 fs indicates that the presence of the linker protein induces ultrafast excitation energy transfer between phycocyanin and allophycocyanin inside the phycobilisome, which is faster than all previous excitation energy transfer in phycobilisome subunits or sub-complexes reported to date. PMID:26537632

  14. Photophysical Parameters, Excitation Energy Transfer, and Photoreactivity of 1,4-Bis(5-phenyl-2-oxazolylbenzene (POPOP Laser Dye

    Directory of Open Access Journals (Sweden)

    Samy A. El-Daly

    2012-01-01

    Full Text Available The effect of solvents on the absorption and emission spectra of 1,4-bis(5-phenyl-2-oxazolylbenzene (POPOP laser dye has been studied in various solvents at 298 K. A bathochromic shift was observed in absorption and fluorescence spectra upon increase of solvent polarity, which indicates that this transition is π-∗. The ground and excited state dipole moments were calculated as 2.23 and 6.34 Debye, respectively. The dye solution in MeOH, n-heptane, and methyl isobutyl ketone gives laser emission in the blue region upon excitation by a 337.1 nm nitrogen pulse; the gain coefficient and emission cross section as well as normalized photostability have been determined. Excitation energy transfer from POPOP to rhodamine B and fluorescine was studied to improve the laser emission from these dyes. Such an energy transfer dye laser system (ETDL obeys a long range columbic energy transfer mechanism with a critical transfer distance, R0, of 25 and 33 Å and kq equal to 10.4×1012 and 26.2×1012M−1s−1 for the POPOP/RB and POPOP/fluorescine pair, respectively. The POPOP dye is highly photostable in polar protic and polar aprotic solvents, while it displays photodecomposition in chloromethane solvent via formation of a contact ion pair. The photochemical quantum yield and rate of photodecomposition depend on the electron affinity of solvent.

  15. Explanation of Turbulent Suppression of Electron Heat Transfer in GOL-3 Facility at the Stage of Relativistic Electron Beam Injection

    International Nuclear Information System (INIS)

    The effect of the electron heat transfer suppression during the stage of relativistic electron beam injection into a plasma was discovered experimentally more than a decade ago. It is now widely adopted that the suppression is a side sequel of Langmuir turbulence excited by the beam, however neither quantitative theory nor even rough estimates of the phenomena were available so far. We argue that the coefficient of turbulent thermal conductivity can be evaluated from a robust judgement based on the energy balance consideration

  16. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    Science.gov (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  17. Vibrational excitations in molecular layers probed by ballistic electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kajen, Rasanayagam Sivasayan; Chandrasekhar, Natarajan [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Feng Xinliang; Muellen, Klaus [Max-Planck-Institut fuer Polymerforschung, Postfach 3148, D-55021 Mainz (Germany); Su Haibin, E-mail: n-chandra@imre.a-star.edu.sg, E-mail: muellen@mpip-mainz.mpg.de, E-mail: hbsu@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2011-10-28

    We demonstrate the information on molecular vibrational modes via the second derivative (d{sup 2}I{sub B}/dV{sup 2}) of the ballistic electron emission spectroscopy (BEES) current. The proposed method does not create huge fields as in the case of conventional derivative spectroscopy and maintains a zero bias across the device. BEES studies carried out on three different types of large polycyclic aromatic hydrocarbon (PAH) molecular layers show that the d{sup 2}I{sub B}/dV{sup 2} spectra consist of uniformly spaced peaks corresponding to vibronic excitations. The peak spacing is found to be identical for molecules within the same PAH family though the BEES onset voltage varies for different molecules. In addition, injection into a particular orbital appears to correspond to a specific vibrational mode as the manifestation of the symmetry principle.

  18. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    Science.gov (United States)

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  19. 48 CFR 18.123 - Electronic funds transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Electronic funds transfer... CONTRACTING METHODS AND CONTRACT TYPES EMERGENCY ACQUISITIONS Available Acquisition Flexibilities 18.123 Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to...

  20. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Science.gov (United States)

    2010-01-01

    ... Government by electronic funds transfer through the Treasury Fedline Payment System (FEDLINE) or the... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment...

  1. Nuclear Excitation by Electronic Transition of U-235

    Science.gov (United States)

    Chodash, Perry Adam

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to occur in numerous isotopes. One isotope in particular, U-235, has been studied several times over the past 40 years and NEET of U-235 has never been conclusively observed. These past experiments generated conflicting results with some experiments claiming to observe NEET of U-235 and others setting limits for the NEET rate. This dissertation discusses the latest attempt to measure NEET of U-235. If NEET of U-235 were to occur, U-235m would be created. U-235m decays by internal conversion with a decay energy of 76 eV and a half-life of 26 minutes. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 789 mJ and a pulse width of 9 ns was used to generate a uranium plasma. The plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. A decay of 26 minutes would suggest the creation of U-235m and the possibility that NEET occurred. However, measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. Numerous other decays were observed with half-lives ranging from minutes up to hundreds of minutes. While NEET of U-235 was not observed during this experiment, an upper limit for the NEET rate of U-235 was determined. In addition, explanations for the conflicting results from previous experiments are given. Based on the results of this experiment and the previous experiments looking for NEET of U-235, it is likely that NEET of U-235 has never been observed.

  2. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    Science.gov (United States)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  3. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    International Nuclear Information System (INIS)

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) model uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U(FH). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U(FH), thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U

  4. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    Energy Technology Data Exchange (ETDEWEB)

    Valone, S. M.; Pilania, G.; Liu, X. Y. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Allen, J. R.; Wu, T.-C.; Atlas, S. R.; Dunlap, D. H. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-11-14

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) model uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U{sup (FH)}. The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U{sup (FH)}, thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.

  5. Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from Rhodobacter sphaeroides.

    Science.gov (United States)

    Dahlberg, Peter D; Ting, Po-Chieh; Massey, Sara C; Martin, Elizabeth C; Hunter, C Neil; Engel, Gregory S

    2016-06-23

    Light harvesting in photosynthetic organisms involves efficient transfer of energy from peripheral antenna complexes to core antenna complexes, and ultimately to the reaction center where charge separation drives downstream photosynthetic processes. Antenna complexes contain many strongly coupled chromophores, which complicates analysis of their electronic structure. Two-dimensional electronic spectroscopy (2DES) provides information on energetic coupling and ultrafast energy transfer dynamics, making the technique well suited for the study of photosynthetic antennae. Here, we present 2DES results on excited state properties and dynamics of a core antenna complex, light harvesting complex 1 (LH1), embedded in the photosynthetic membrane of Rhodobacter sphaeroides. The experiment reveals weakly allowed higher-lying excited states in LH1 at 770 nm, which transfer energy to the strongly allowed states at 875 nm with a lifetime of 40 fs. The presence of higher-lying excited states is in agreement with effective Hamiltonians constructed using parameters from crystal structures and atomic force microscopy (AFM) studies. The energy transfer dynamics between the higher- and lower-lying excited states agree with Redfield theory calculations. PMID:27232937

  6. Microwave beatwave excitation of electron plasma wave and high energy electron production

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M.; Obata, K.; Nobuhara, S. [Himeji Inst. of Tech., Hyogo (Japan)

    1997-12-31

    Two X-band microwave beams with a slightly different frequency and the maximum output power of 50 kW are injected into a target plasma antiparallel to each other through a standard horn. The resonant excitation of an electron plasma wave is observed when the difference in frequency between counterstreaming microwaves is equal to the electron plasma frequency. The excited wave propagates in the same direction as the higher-frequency microwave with a wave length which satisfies the resonance condition of wave number. The wave amplitude grows with an increase in incident microwave power, and reaches the density perturbation {delta}n/n{sub 0} of approximately 3.2 % at the incident microwave power of 40 kW and beat frequency of 600 MHz. A small amount of high-energy electrons with the speed of 27 eV are observed in the high-power region of incident microwave. (author)

  7. Formation of excited tin ion in collisions of slow electrons with SnCl2 molecules

    International Nuclear Information System (INIS)

    Formation of tin excited ions in collisions of slow electrons with tin dichloride molecules was studied experimentally. At electron energy of 100 eV 50 cross sections of excited single charged tin ions spectral lines were measured. 6 optical functions of dissociative excitation in the electron energy range of 0-100 eV were recorded. Comparison of cross sections for direct and dissociative excitation of certain lines was made. Dissociative excitation of spectral lines in two systems of SnCl molecules was studied simultaneously

  8. Electron transfer interactome of cytochrome C.

    Directory of Open Access Journals (Sweden)

    Alexander N Volkov

    Full Text Available Lying at the heart of many vital cellular processes such as photosynthesis and respiration, biological electron transfer (ET is mediated by transient interactions among proteins that recognize multiple binding partners. Accurate description of the ET complexes - necessary for a comprehensive understanding of the cellular signaling and metabolism - is compounded by their short lifetimes and pronounced binding promiscuity. Here, we used a computational approach relying solely on the steric properties of the individual proteins to predict the ET properties of protein complexes constituting the functional interactome of the eukaryotic cytochrome c (Cc. Cc is a small, soluble, highly-conserved electron carrier protein that coordinates the electron flow among different redox partners. In eukaryotes, Cc is a key component of the mitochondrial respiratory chain, where it shuttles electrons between its reductase and oxidase, and an essential electron donor or acceptor in a number of other redox systems. Starting from the structures of individual proteins, we performed extensive conformational sampling of the ET-competent binding geometries, which allowed mapping out functional epitopes in the Cc complexes, estimating the upper limit of the ET rate in a given system, assessing ET properties of different binding stoichiometries, and gauging the effect of domain mobility on the intermolecular ET. The resulting picture of the Cc interactome 1 reveals that most ET-competent binding geometries are located in electrostatically favorable regions, 2 indicates that the ET can take place from more than one protein-protein orientation, and 3 suggests that protein dynamics within redox complexes, and not the electron tunneling event itself, is the rate-limiting step in the intermolecular ET. Further, we show that the functional epitope size correlates with the extent of dynamics in the Cc complexes and thus can be used as a diagnostic tool for protein mobility.

  9. Transfer of optical orbital angular momentum to a bound electron

    Science.gov (United States)

    Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand

    2016-10-01

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.

  10. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals

    OpenAIRE

    Bévillon, Emile; Colombier, Jean-Philippe; Recoules, Vanina; Stoian, Razvan

    2015-01-01

    International audience Ultrafast laser excitation can induce fast increases of the electronic subsystem temperature. The subsequent electronic evolutions in terms of band structure and energy distribution can determine the change of several thermodynamic properties, including one essential for energy deposition; the electronic heat capacity. Using density functional calculations performed at finite electronic temperatures, the electronic heat capacities dependent on electronic temperatures...

  11. Electron degradation and yields of initial products. I. Excited species generated by electrons in binary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M.; Inokuti, M.

    1987-10-01

    Initial yields of excited species resulting from electron degradation in Ar+H/sub 2/ mixtures have been calculated using the Fowler equation. Following up the previous study of yields of ions by Eggarter (J. Chem. Physl 84, 6123 (1986)) and by Inokuti and Eggarter (J. Chem. Phys. 86, 3870 (1987)), the present work treats initial yields of excited species over the entire range of the composition of Ar+H/sub 2/ mixtures. The variation of the yield with the composition depends on the kind of excited species. The most noteworthy of the results obtained concerns the Ar metastable-state yield, which shows peculiar behavior when a small amount of H/sub 2/ is introduced in the media.

  12. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements

    Science.gov (United States)

    Cave, Robert J.; Newton, Marshall D.

    1996-01-01

    A new method for the calculation of the electronic coupling matrix element for electron transfer processes is introduced and results for several systems are presented. The method can be applied to ground and excited state systems and can be used in cases where several states interact strongly. Within the set of states chosen it is a non-perturbative treatment, and can be implemented using quantities obtained solely in terms of the adiabatic states. Several applications based on quantum chemical calculations are briefly presented. Finally, since quantities for adiabatic states are the only input to the method, it can also be used with purely experimental data to estimate electron transfer matrix elements.

  13. INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS

    NARCIS (Netherlands)

    Bartoloni, Fernando Heering; Monteiro Leite Ciscato, Luiz Francisco; Augusto, Felipe Alberto; Baader, Wilhelm Josef

    2010-01-01

    INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS. Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron tr

  14. Decision making based on optical excitation transfer via near-field interactions between quantum dots

    CERN Document Server

    Naruse, Makoto; Aono, Masashi; Ohtsu, Motoichi; Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge; Kim, Song-Ju

    2014-01-01

    Optical near-field interactions between nanostructured matter, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

  15. Excited atomic bromine energy transfer and quenching mechanisms

    Science.gov (United States)

    Johnson, Ray O.

    1993-08-01

    Pulsed and steady-state photolysis experiments have been conducted to determine the rate coefficients for collisional deactivation of the spin-orbit excited state of atomic bromine, Br((sup 2)P(sub 1/2)). Pulsed lifetime studies for quenching by Br2 and CO2 established absolute rate coefficients at room temperature of k(sub Br2) = 1.2 +/- 0.1 x 10(exp-12) and k(sub CO2) = 1.5 +/0.2 x 10(exp-11) cu cm/molecule-s. Steady-state photolysis methods were used to determine the quenching rates for the rare gases, N2, 02, H2, D2, NO, NO2, N2O, SF6, CF4, CH4, CO, CO2, COS, SO2, H2S, HBr, HC1, and HI relative to that for Br2. Quenching rate temperature dependence was examined for Br2, CO2, N2O, HCl, COS, NO, and NO2 for temperatures from 300 to 420 K. Diffusion and three body effects were examined in order to determine the slowest relative quenching rate measurable by this experimental technique.

  16. Interfacial Electron Transfer and Transient Photoconductivity Studied with Terahertz Spectroscopy

    Science.gov (United States)

    Milot, Rebecca Lee

    Terahertz spectroscopy is distinguished from other far infrared and millimeter wave spectroscopies by its inherent phase sensitivity and sub-picosecond time resolution making it a versatile technique to study a wide range of physical phenomena. As THz spectroscopy is still a relatively new field, many aspects of THz generation mechanisms have not been fully examined. Using terahertz emission spectroscopy (TES), THz emission from ZnTe(110) was analyzed and found to be limited by two-photon absorption and free-carrier generation at high excitation fluences. Due to concerns about the continued use of fossil fuels, solar energy has been widely investigated as a promising source of renewable energy. Dye-sensitized solar cells (DSSCs) have been developed as a low-cost alternative to conventional photovoltaic solar cells. To solve the issues of the intermittency and inefficient transport associated with solar energy, researchers are attempting to adapt DSSCs for water oxidation and chemical fuel production. Both device designs incorporate sensitizer molecules covalently bound to metal oxide nanoparticles. The sensitizer, which is comprised of a chromophore and anchoring group, absorbs light and transfers an electron from its excited state to the conduction band of the metal oxide, producing an electric current. Using time-resolved THz spectroscopy (TRTS), an optical pump/THz probe technique, the efficiency and dynamics of electron injection from sensitizers to metal oxides was evaluated as a function of the chromophore, its anchoring group, and the metal oxide identity. Experiments for studying fully functioning DSSCs and water oxidation devices are also described. Bio-inspired pentafluorophenyl porphyrin chromophores have been designed and synthesized for use in photoelectrochemical water oxidation cells. Influences on the efficiency and dynamics of electron injection from the chromophores into TiO2 and SnO2 nanoparticles due to changes in both the central substituent to

  17. Electronic structure and excited state dynamics in optically excited PTCDA films investigated with two-photon photoemission

    Science.gov (United States)

    Marks, M.; Sachs, S.; Schwalb, C. H.; Schöll, A.; Höfer, U.

    2013-09-01

    We present an investigation of the electronic structure and excited state dynamics of optically excited 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) thin films adsorbed on Ag(111) using two-photon photoemission spectroscopy (2PPE). 2PPE allows us to study both occupied and unoccupied electronic states, and we are able to identify signals from the highest occupied and the two lowest unoccupied electronic states of the PTCDA thin film in the 2PPE spectra. The energies for occupied states are identical to values from ultraviolet photoelectron spectroscopy. Compared to results from inverse photoelectron spectroscopy (IPES), the 2PPE signals from the two lowest unoccupied electronic states, LUMO and LUMO+1, are found at 0.8 eV and 1.0 eV lower energies, respectively. We attribute this deviation to the different final states probed in 2PPE and IPES and the attractive interaction of the photoexcited electron and the remaining hole. Furthermore, we present a time-resolved investigation of the excited state dynamics of the PTCDA film in the femtosecond time regime. We observe a significantly shorter inelastic excited state lifetime compared to findings from time-resolved photoluminescence spectroscopy of PTCDA single crystals which could originate from excitation quenching by the metal substrate.

  18. Coexistence of Different Electron-Transfer Mechanisms in the DNA Repair Process by Photolyase.

    Science.gov (United States)

    Lee, Wook; Kodali, Goutham; Stanley, Robert J; Matsika, Spiridoula

    2016-08-01

    DNA photolyase has been the topic of extensive studies due to its important role of repairing photodamaged DNA, and its unique feature of using light as an energy source. A crucial step in the repair by DNA photolyase is the forward electron transfer from its cofactor (FADH(-) ) to the damaged DNA, and the detailed mechanism of this process has been controversial. In the present study, we examine the forward electron transfer in DNA photolyase by carrying out high-level ab initio calculations in combination with a quantum mechanical/molecular mechanical (QM/MM) approach, and by measuring fluorescence emission spectra at low temperature. On the basis of these computational and experimental results, we demonstrate that multiple decay pathways exist in DNA photolyase depending on the wavelength at excitation and the subsequent transition. This implies that the forward electron transfer in DNA photolyase occurs not only by superexchange mechanism but also by sequential electron transfer. PMID:27362906

  19. Rhodamine-6G can photosensitize folic acid decomposition through electron transfer

    Science.gov (United States)

    Hirakawa, Kazutaka; Ito, Hiroki

    2015-05-01

    Rhodamine-6G photosensitized folic acid decomposition in aqueous solution, and its quantum yield in the presence of 10 μM folic acid was 9.9 × 10-6. A possible mechanism of this photodecomposition is direct oxidation through an electron transfer from folic acid to rhodamine-6G. The fluorescence lifetime of rhodamine-6G was slightly decreased by folic acid, suggesting electron transfer in the excited singlet state of rhodamine-6G. The quenching rate coefficient estimated from the Stern-Volmer plot of the fluorescence quenching supported that this electron transfer proceeds as a diffusion-controlled reaction. The quantum yields of the electron transfer and the following reaction could be determined.

  20. Excitation and ionization of highly charged ions by electron impact

    International Nuclear Information System (INIS)

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 ≤ Z ≤ 92; all transitions among the 2s1/2, 2p1/2 and 2p3/2 levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 ≤ Z ≤ 92; all transitions among the 3s1/2, 3p3/2, 3d3/2 and 3d5/2 levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 ≤ Z ≤ 92; and all transitions among 4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2 and 4f7/2 levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 ≤ Z ≤ 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact

  1. Nuclear Excitation by Electronic Transition of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Chodash, Perry Adam [Univ. of California, Berkeley, CA (United States)

    2015-07-14

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to occur in numerous isotopes. One isotope in particular, 235U, has been studied several times over the past 40 years and NEET of 235U has never been conclusively observed. These past experiments generated con icting results with some experiments claiming to observe NEET of 235U and others setting limits for the NEET rate. This dissertation discusses the latest attempt to measure NEET of 235U. If NEET of 235U were to occur, 235mU would be created. 235mU decays by internal conversion with a decay energy of 76 eV and a half-life of 26 minutes. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 789 mJ and a pulse width of 9 ns was used to generate a uranium plasma. The plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. A decay of 26 minutes would suggest the creation of 235mU and the possibility that NEET occurred. However, measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. Numerous other decays were observed with half-lives ranging from minutes up to hundreds of minutes. While NEET of 235U was not observed during this experiment, an upper limit for the NEET rate of 235U was determined. In addition, explanations for the con icting results from previous experiments are given. Based on the results of this experiment and the previous experiments looking for NEET of 235U, it is likely that NEET of 235U has never been observed.

  2. I. Concepts of Highly Excited Electronic Systems / II. Electronic Correlation Mapping from Finite to Extended Systems

    Science.gov (United States)

    Berakdar, Jamal

    2006-02-01

    Knowledge of the excitation characteristics of matter is decisive for the descriptions of a variety of dynamical processes, which are of significant technological interest. E.g. transport properties and the optical response are controlled by the excitation spectrum. This self-contained work is a coherent presentation of the quantum theory of correlated few-particle excitations in electronic systems. It begins with a compact resume of the quantum mechanics of single particle excitations. Particular emphasis is put on Green function methods, which offer a natural tool to unravel the relations between the physics of small and large electronic systems. The book contains explicit expressions for the Coulomb Green function of two charge particles and a generalization to three-body systems. Techniques for the many-body Green function of finite systems are introduced and some explicit calculations of the Green functions are given. Concrete examples are provided and the theories are contrasted with experimental data, when available. A complimentary volume presents an up-to-date selection of applications of the developed concepts and a comparison with available experiments is made

  3. Electron transfer in gas surface collisions

    International Nuclear Information System (INIS)

    In this thesis electron transfer between atoms and metal surfaces in general is discussed and the negative ionization of hydrogen by scattering protons at a cesiated crystalline tungsten (110) surface in particular. Experimental results and a novel theoretical analysis are presented. In Chapter I a theoretical overview of resonant electron transitions between atoms and metals is given. In the first part of chapter II atom-metal electron transitions at a fixed atom-metal distance are described on the basis of a model developed by Gadzuk. In the second part the influence of the motion of the atom on the atomic charge state is incorporated. Measurements presented in chapter III show a strong dependence of the fraction of negatively charged H atoms scattered at cesiated tungsten, on the normal as well as the parallel velocity component. In chapter IV the proposed mechanism for the parallel velocity effect is incorporated in the amplitude method. The scattering process of protons incident under grazing angles on a cesium covered surface is studied in chapter V. (Auth.)

  4. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural

    Science.gov (United States)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; do N. Varella, M. T.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Limão-Vieira, P.; Brunger, M. J.

    2016-03-01

    We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C5H4O2). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C5H4O2. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ˜80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.

  5. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  6. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    International Nuclear Information System (INIS)

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d64p (3d54s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of various

  7. Nonlinear lattice relaxation of photogenerated charge-transfer excitation in halogen-bridged mixed-valence metal complexes. II. Polaron channel

    Science.gov (United States)

    Mishima, A.; Nasu, K.

    1989-03-01

    The one-dimensional extended Peierls-Hubbard model with half-filled-band electrons is studied in order to clarify the lattice relaxation path of the photogenerated charge-transfer excitation in halogen-bridged mixed-valence metal complexes. The ground and excited states are calculated within mean-field theory for electrons and the adiabatic approximation for phonons. It is concluded that the main origin of the photoinduced absorption is a distant pair of the hole-polaron and the electron-polaron. This distant pair is created not from the ground state of the self-trapped exciton (STE), but from the excited states of the STE through their autodissociation. This is consistent with the experiment on the excitation energy dependence of the photoinduced absorption yield.

  8. Polarization dependence of charge-transfer excitations in La2CuO4

    Science.gov (United States)

    Lu, Li; Chabot-Couture, Guillaume; Hancock, Jason; Vajk, Owen; Yu, Guichuan; Ishii, Kenji; Mizuki, Jun'ichiro; Casa, Diego; Gog, Thomas; Greven, Martin

    2006-03-01

    We have carried out an extensive resonant inelastic x-ray scattering (RIXS) study of La2CuO4 at the Cu K-edge. Multiple charge-transfer excitations have been identified using the incident photon energy dependence of the cross section and studied carefully with polarizations E//c and E //ab. An analysis of the incident photon energy dependence, the polarization dependence, as well as the K-edge absorption spectra, indicates that the RIXS spectra reveal rich physics about the K-edge absorption process and momentum-dependent charge-transfer excitations in cuprates.

  9. Mechanism for Highly Efficient Non-Radiative Deactivation of Electronic Excitation in Rutin

    Science.gov (United States)

    Bondarev, S. L.; Knyukshto, V. N.; Tikhomirov, S. A.; Buganov, O. V.

    2016-01-01

    Steady-state and pulsed spectroscopic methods are used to study the spectroscopic and photophysical properties of the biologically important plant pigment rutin at room temperature and 77 K in organic solvents and a buffer solution at pH 7.0. The large dipole moment μe = 13.3 D of the rutin molecule in a Franck-Condon excited state indicates that rutin is dipolar in this excited state. The nonstationary S1 → Sn induced absorption spectra are characterized by a short-wavelength band at λabs max = 460 nm and low-intensity absorption in the 500-750 range which clearly belongs to associates of rutin. No residual induced absorption which might be related to triplet-triplet T1→Tk transitions in rutin was observed over the entire spectral range for times >50 ns. S1 → S0 fluorescence with a quantum yield Φfl ~ 10-4 was also observed at room temperature. The fluorescence and fluorescence excitation spectra manifest a weak dependence on the excitation and detection wavelengths, which may be related to the presence of conformers in the solution owing to rotation of the phenol B ring around a single 1'-2 bond. Lowering the temperature of a glassy frozen solution of rutin in ethanol to 77 K raises Φfl by a factor of 750. A rate constant kic = 3.7·1011 s-1 for internal conversion from the S1 state at room temperature is calculated from the spectral-luminescence data. It is found that the main channel for exchange of electronic excitation energy in the rutin molecule at room temperature is S1(π,π*) ~~> S0-internal conversion induced by the charge-transfer state.

  10. Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation

    International Nuclear Information System (INIS)

    Irradiation of a metal by lasers or swift heavy ions causes the electrons to become excited. In the vicinity of the excitation, an electronic temperature is established within a thermalization time of 10-100 fs, as a result of electron-electron collisions. For short times, corresponding to less than 1 ps after excitation, the resulting electronic temperature may be orders of magnitude higher than the lattice temperature. During this short time, atoms in the metal experience modified interatomic forces as a result of the excited electrons. These forces can lead to ultrafast nonthermal phenomena such as melting, ablation, laser-induced phase transitions, and modified vibrational properties. We develop an electron-temperature-dependent empirical interatomic potential for tungsten that can be used to model such phenomena using classical molecular dynamics simulations. Finite-temperature density functional theory calculations at high electronic temperatures are used to parametrize the model potential

  11. Optically Forbidden Excitations of 3s Electron of Argon by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    朱林繁; 成华东; 刘小井; 田鹏; 苑震生; 李文斌; 徐克尊

    2003-01-01

    The electron energy loss spectrum of argon in the energy region of 24.5-30.5eV was measured at 2.5 keV impact energy. The line profile parameters of the optically forbidden excitations of 3s-1ns (n = 4-6) and 3s-1nd (n = 3-7) of argon, I.e.,Eγ,Г,q and p,were determined.

  12. Transfer line TT70 (electrons from PS to SPS)

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    As injectors for LEP, PS and SPS had to be converted to the acceleration of electrons and positrons. So far, only positively charged particles had been transferred from the PS to the SPS, for the negatively charged electrons a new transfer line, TT70, had to be built. Due to the difference in level of the two machines, the transfer line slopes and tilts.

  13. Activation entropy of electron transfer reactions

    CERN Document Server

    Milischuk, A A; Newton, M D; Milischuk, Anatoli A.; Matyushov, Dmitry V.; Newton, Marshall D.

    2005-01-01

    We report microscopic calculations of free energies and entropies for intramolecular electron transfer reactions. The calculation algorithm combines the atomistic geometry and charge distribution of a molecular solute obtained from quantum calculations with the microscopic polarization response of a polar solvent expressed in terms of its polarization structure factors. The procedure is tested on a donor-acceptor complex in which ruthenium donor and cobalt acceptor sites are linked by a four-proline polypeptide. The reorganization energies and reaction energy gaps are calculated as a function of temperature by using structure factors obtained from our analytical procedure and from computer simulations. Good agreement between two procedures and with direct computer simulations of the reorganization energy is achieved. The microscopic algorithm is compared to the dielectric continuum calculations. We found that the strong dependence of the reorganization energy on the solvent refractive index predicted by conti...

  14. Polarization of Radiation Emitted after Electron Impact Excitation

    Institute of Scientific and Technical Information of China (English)

    WU Ze-Qing; LI Yue-Ming; DUAN Bin; YAN Jun; ZHANG Hong

    2007-01-01

    A programme is developed to calculate the polarizations of the radiation emitted after electron impact excitation. The fully relativistic distorted-wave method is used in cross-section calculations. The programme is applied to He- and Li-like ions. The calculated values of line polarization are compared with other theoretical results and experimental values. For He-like U, at lower incident energy, the present polarization agrees with the other theoretical ones within 1%, while at higher energy, the differences increase up to about 10%. For He-like Fe and Ti, the present results of polarization degree for most of the lines agree with the experimental data within the experimental error bars. For the Li-like Ti line q (1s2s2p2P3/2 to 1s22s), the present value of the polarization agree excellently with another theoretical one, and both the values are consistent with the measured data within the experimental error bar.

  15. Detailed glycan structural characterization by electronic excitation dissociation.

    Science.gov (United States)

    Yu, Xiang; Jiang, Yan; Chen, Yajie; Huang, Yiqun; Costello, Catherine E; Lin, Cheng

    2013-11-01

    The structural complexity and diversity of glycans parallel their multilateral functions in living systems. To better understand the vital roles glycans play in biological processes, it is imperative to develop analytical tools that can provide detailed glycan structural information. This was conventionally achieved by multistage tandem mass spectrometry (MS(n)) analysis using collision-induced dissociation (CID) as the fragmentation method. However, the MS(n) approach lacks the sensitivity and throughput needed to analyze complex glycan mixtures from biological sources, often available in limited quantities. We define herein the critical parameters for a recently developed fragmentation technique, electronic excitation dissociation (EED), which can yield rich structurally informative fragment ions during liquid chromatographic (LC)-MS/MS analysis of glycans. We further demonstrate that permethylation, reducing end labeling and judicious selection of the metal charge carrier, can greatly facilitate spectral interpretation. With its high sensitivity, throughput, and compatibility with online chromatographic separation techniques, EED appears to hold great promise for large-scale glycomics studies. PMID:24080071

  16. Ultrafast static and diffusion-controlled electron transfer at Ag 29 nanocluster/molecular acceptor interfaces

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-10-29

    Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV2+) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs. © 2016 The Royal Society of Chemistry.

  17. Differential cross sections for the electron-impact near-threshold electronic excitation of argon

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, S; Lower, J; Buckman, S; McEachran, R P [Centre for Antimatter-Matter Studies, Australian National University, Canberra ACT 0200 (Australia); Garcia, G, E-mail: Suhendu.mondal@anu.edu.a [Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006, Madrid (Germany)

    2009-11-01

    Absolute accurate differential cross section data are presented for the excitation of the 3p{sup 5}4s state in argon by electron impact. The study focuses on the near-threshold region, where previous studies have revealed persistent disparities between measurement and theory. The time-of-flight (TOF) technique is employed, allowing scattered electrons to be measured over a broad range of energies with constant transmission, thereby eliminating a potential source of error in relating relative intensities of elastic and inelastic transitions inherent to other techniques. The experimental results are compared to new relativistic distorted-wave (RDW) calculations as well as to previous experimental and theoretical studies.

  18. Path integral approach to non-relativistic electron charge transfer

    International Nuclear Information System (INIS)

    A path integral approach has been generalized for the non-relativistic electron charge transfer processes. The charge transfer - the capture of an electron by an ion passing another atom, or more generally the problem of rearrangement collisions - is formulated in terms of influence functionals. It has been shown that the electron charge transfer process can be treated either as an electron transition problem or as ion and atom elastic scattering in the effective potential field. The first-order Born approximation for the electron charge transfer reaction cross section has been reproduced to prove the adequacy of the path integral approach for this problem. (author)

  19. Differential cross sections for electron impact excitation of the electronic bands of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2015-03-14

    We report results from a joint theoretical and experimental investigation into electron scattering from the important organic species phenol (C{sub 6}H{sub 5}OH). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C{sub 6}H{sub 5}OH. The measurements were carried out at energies in the range 15–40 eV, and for scattered-electron angles between 10{sup ∘} and 90{sup ∘}. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potentials calculations, with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were conducted at the static exchange plus polarisation (SEP)-level using a minimum orbital basis for single configuration interaction (MOBSCI) approach. Agreement between the measured and calculated DCSs was typically fair, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOBSCI.

  20. Coherent excitation transferring via dark state in light-harvesting process

    OpenAIRE

    Dong, H.; Xu, D. Z.; Sun, C. P.

    2011-01-01

    We study the light absorption and energy transferring in a donor-acceptor system with a bionic structure. In the optimal case with uniform couplings, it is found that the quantum dynamics of this seemingly complicated system is reduced as a three-level system of $\\Lambda$-type. With this observation, we show that the dark state based electromagnetically-induced transparency (EIT) effect could enhance the energy transfer efficiency, through a quantum interference effect suppressing the excited...

  1. Excited-state proton transfer from pyranine to acetate in methanol

    Indian Academy of Sciences (India)

    Sudip Kumar Mondal; Subhadip Ghosh; Kalyanasis Sahu; Pratik Sen; Kankan Bhattacharyya

    2007-03-01

    Excited-state proton transfer (ESPT) of pyranine (8-hydroxypyrene-1,3,6-trisulphonate, HPTS) to acetate in methanol has been studied by steady-state and time-resolved fluorescence spectroscopy. The rate constant of direct proton transfer from pyranine to acetate (1) is calculated to be ∼ 1 × 109 M-1 s-1. This is slower by about two orders of magnitude than that in bulk water (8 × 1010 M-1 s-1) at 4 M acetate.

  2. Electronic structure and angular momentum coupling as reflected in electron excitation out of rare-gas metastable levels: Excitation cross sections of krypton

    International Nuclear Information System (INIS)

    We present measurements of electron-impact excitation cross sections into levels of the 4p55p configuration from the J=0 and J=2 metastable levels of krypton. Metastable-atom targets were generated using two different sources, a hollow-cathode discharge and via charge-exchange collisions between a fast Kr+ beam and Cs atoms. The metastable atoms are excited to 4p55p levels by a monoenergetic electron beam and the fluorescence from the levels are used to determine the excitation cross sections. Laser quenching of the hollow-cathode target is used to separate the signal contributions from excitation of the two metastable levels. Like excitation from the metastable levels of Ar, cross sections for dipole-allowed excitations are generally larger than ones for dipole-forbidden excitations. Krypton differs from Ar and Ne, however, in having a larger spin-orbit coupling for the 4p5 core so that the energy levels of each excited configuration segregate into two tiers based on the value of the core angular momentum. Cross sections for dipole-allowed excitation with a change in the core angular momentum are not only much smaller than their core-preserving counterparts, but also have different energy dependence. The measured cross sections are compared with recent theoretical calculations and with previous experimental work

  3. The evaluation of temporal electronic structures of nonresonant Raman excited virtual state of thiourea

    Institute of Scientific and Technical Information of China (English)

    Fang Chao; Sun Li-Feng

    2011-01-01

    An algorithm has been introduced to calculate molecular bond polarizabilities of thiourea, which supply essential electronic information about the nonresonant Raman excited virtual states.The main dynamical behaviour of the excited virtual states of thiourea is that the Raman excited electrons tend to flow to the N-H bonds and C-N bonds from the S-C bonds because of the electronic repulsion effect. The difference in Raman excited electron relaxation time of thiourea under 514.5-nm and 325-nm excitations has been observed, which quantitatively shows that the Raman scattering process is dependent on the wavelength of the pumping laser. Finally, the distribution of the electrons at the final stage of relaxation is given out through the comparison between the bond electronic densities of the ground states and the bond polarizabilities after deexcitation.

  4. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles.

    Science.gov (United States)

    Escudero, Daniel

    2016-09-20

    Photoinduced electron transfer (PET) plays relevant roles in many areas of chemistry, including charge separation processes in photovoltaics, natural and artificial photosynthesis, and photoluminescence sensors and switches. As in many other photochemical scenarios, the structural and energetic factors play relevant roles in determining the rates and efficiencies of PET and its competitive photodeactivation processes. Particularly, in the field of fluorescent sensors and switches, intramolecular PET is believed (in many cases without compelling experimental proof) to be responsible of the quench of fluorescence. There is an increasing experimental interest in fluorophore's molecular design and on achieving optimal excitation/emission spectra, excitation coefficients, and fluorescence quantum yields (importantly for bioimaging purposes), but less efforts are devoted to fundamental mechanistic studies. In this Account, I revise the origins of the fluorescence quenching in some of these systems with state-of-the-art quantum chemical tools. These studies go beyond the common strategy of analyzing frontier orbital energy diagrams and performing PET thermodynamics calculations. Instead, the potential energy surfaces (PESs) of the lowest-lying excited states are explored with time-dependent density functional theory (TD-DFT) and complete active space self-consistent field (CASSCF) calculations and the radiative and nonradiative decay rates from the involved excited states are computed from first-principles using a thermal vibration correlation function formalism. With such a strategy, this work reveals the real origins of the fluorescence quenching, herein entitled as dark-state quenching. Dark states (those that do not absorb or emit light) are often elusive to experiments and thus, computational investigations can provide novel insights into the actual photodeactivation mechanisms. The success of the dark-state quenching mechanism is demonstrated for a wide variety of

  5. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles.

    Science.gov (United States)

    Escudero, Daniel

    2016-09-20

    Photoinduced electron transfer (PET) plays relevant roles in many areas of chemistry, including charge separation processes in photovoltaics, natural and artificial photosynthesis, and photoluminescence sensors and switches. As in many other photochemical scenarios, the structural and energetic factors play relevant roles in determining the rates and efficiencies of PET and its competitive photodeactivation processes. Particularly, in the field of fluorescent sensors and switches, intramolecular PET is believed (in many cases without compelling experimental proof) to be responsible of the quench of fluorescence. There is an increasing experimental interest in fluorophore's molecular design and on achieving optimal excitation/emission spectra, excitation coefficients, and fluorescence quantum yields (importantly for bioimaging purposes), but less efforts are devoted to fundamental mechanistic studies. In this Account, I revise the origins of the fluorescence quenching in some of these systems with state-of-the-art quantum chemical tools. These studies go beyond the common strategy of analyzing frontier orbital energy diagrams and performing PET thermodynamics calculations. Instead, the potential energy surfaces (PESs) of the lowest-lying excited states are explored with time-dependent density functional theory (TD-DFT) and complete active space self-consistent field (CASSCF) calculations and the radiative and nonradiative decay rates from the involved excited states are computed from first-principles using a thermal vibration correlation function formalism. With such a strategy, this work reveals the real origins of the fluorescence quenching, herein entitled as dark-state quenching. Dark states (those that do not absorb or emit light) are often elusive to experiments and thus, computational investigations can provide novel insights into the actual photodeactivation mechanisms. The success of the dark-state quenching mechanism is demonstrated for a wide variety of

  6. Respiratory electron transfer in Escherichia coli : components, energetics and regulation

    NARCIS (Netherlands)

    M. Bekker

    2009-01-01

    The respiratory chain that is housed in the bacterial cytoplasmic membrane, generally transfers electrons from NADH to oxygen; in the absence of oxygen it can use several alternative electron acceptors, such as nitrate and fumarate. Transfer of electrons through this chain is usually coupled to the

  7. Soliton-like Solutions and Electron Transfer in DNA.

    Science.gov (United States)

    Lakhno, V D

    2000-06-01

    We consider various mechanisms of long-range electron transfer in DNAwhich enable us to explain recent controversial experiments. We show thatcontinuous super-exchange theory can explain the values of electron rateconstants in short fragments of DNA. The soliton-type electron transfer inlong segments of DNA is also dealt with.

  8. Electron transfer and ionization in collisions of highly stripped ions with neutral targets at intermediate velocities

    International Nuclear Information System (INIS)

    A highly-charged ion impinging upon a neutral target atom will capture electrons into excited states of the projectile. If the velocity is much less than that of the target electrons, little direct ionization is expected, although appreciable target ionization has been reported for very highly charged ions. Recent studies on both transfer and ionization for Arq+ (6≤q≤17) and O+8,7 on Ar and He target shave been performed for projectile velocities between 0.2 and 1.7 a.u. The measured quantities include charge-state-correlated differential cross sections, K-x-ray emission, and longitudinal recoil- ion momentum transfer, from which Q values can be deduced. Non-negligible direct ionization is observed. Information is extracted on both the primary transfer process and the decay of the multiply excited projectile states formed. Comparisons with model predictions will be made

  9. Theoretical aspects of electron transfer reactions of complex molecules

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    2001-01-01

    Features of electron transfer involving complex molecules are discussed. This notion presently refers to molecular reactants where charge transfer is accompanied by large molecular reorganization, and commonly used displaced harmonic oscillator models do not apply. It is shown that comprehensive ...

  10. Optically Forbidden Excitations of 2s Electron of Neon Studied by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    GE Min; ZHU Lin-Fan; LIU Cun-Ding; XU Ke-Zun

    2008-01-01

    The electron energy loss spectrum in the energy region of 42-48.5 eV of neon is measured with an angle-resolved fast-electron energy-loss spectrometer at an incident electron energy of 2500eV. Besides the dipole-allowed autoionization transitions of 2s-1np (n = 3, 4) and 2p-23s3p, the dipole-forbidden ones of 2s-1ns (n = 3 - 6) and 2s-13d are observed. The line profile parameters, i.e. ET, F and q for these transitions, are determined, and the momentum transfer dependence behaviour is discussed.

  11. Electron transfer reaction in the Marcus inverted region: Role of high frequency vibrational modes

    International Nuclear Information System (INIS)

    A theoretical study of the dynamics of photo-electron transfer reactions in the Marcus inverted regime is presented. This study is motivated partly by the recent proposal of Barbara et al. (J. Phys. Chem. 96, 3728, 1991) that a minimal model of an electron transfer reaction should consist of a polar solvent mode (X), a low frequency vibrational mode (Q) and one high frequency mode (q). Interplay between these modes may be responsible for the crossover observed in the dynamics from a solvent controlled to a vibrational controlled electron transfer. The following results have been obtained. (i) In the case of slowly relaxing solvents, the proximity of the point of excitation to an effective sink on the excited surface is critical in determining the decay of the reactant population. This is because the Franck-Condon overlap between the reactant ground and the product excited states decreases rapidly with increase in the quantum number of the product vibrational state. (ii) Non-exponential solvation dynamics has an important effect in determining the rates of electron transfer. Especially, a biphasic solvation and a large coupling between the reactant and the product states both may be needed to explain the experimental results

  12. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  13. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy

    Science.gov (United States)

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy

    2011-01-01

    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  14. Computer modelling of coherence effects in excitation transfer in hexagonal PSU

    International Nuclear Information System (INIS)

    The time development of the site occupation probabilities in the hexagonal model of photosynthetic units is investigated. The method based on Stochastic Liouville Equations allows us to describe the excitation transfer with a trap (reaction center) in coherent, quasicoherent and incoherent regimes. (author). 26 refs, 9 figs

  15. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  16. Anisotropy of electronic states excited in ion-atom collisions

    International Nuclear Information System (INIS)

    The author reports coincidence measurements made on the He+ + Ne and He+ + He systems. The complex population amplitudes for the magnetic sublevels of the investigated excited states, Ne(2p43s2)1D and He(2p2)1D, were completely determined and possible excitation mechanisms are described. (Auth.)

  17. Dynamics of Excitation Energy Transfer Between the Subunits of Photosystem II Dimer.

    Science.gov (United States)

    Yoneda, Yusuke; Katayama, Tetsuro; Nagasawa, Yutaka; Miyasaka, Hiroshi; Umena, Yasufumi

    2016-09-14

    Energy transfer dynamics in monomer and dimer of the photosystem II core complex (PSII-CC) was investigated by means of femtosecond transient absorption (TA) spectroscopy. There is no profound difference between the TA dynamics of the monomer and the dimer in the weak excitation intensity condition (≤21 nJ). However, the fast recovery of the ground state bleach was pronounced at higher excitation intensities, and the excitation intensity dependence of the dimer was more significant than that of the monomer. This result indicates efficient exciton-exciton annihilation taking place in the dimer due to energy transfer between the two monomer units. The annihilation dynamics was reproduced by a simple model based on binomial theorem, which indicated that although PSII-CC dimer has two reaction centers, only one charge-separated state remained after annihilation. PMID:27541744

  18. Nonlocality in the excitation energy transfer in the Fenna-Matthews-Olson complex

    CERN Document Server

    Bengtson, Charlotta; Sjöqvist, Erik

    2015-01-01

    Pigment protein complexes involved in photosynthesis are remarkably efficient in transferring excitation energy from light harvesting antenna molecules to a reaction centre where it is converted to and stored as chemical energy. Recent experimental and theoretical studies suggest that quantum coherence and correlations may play a role in explaining this efficiency. We examine whether bipartite nonlocality, a property that verifies a strong correlation between two quantum systems, exists between different pairs of chromophore states in the Fenna-Matthews-Olson (FMO) complex and how this is connected to the amount of bipartite entanglement. In particular, it is tested in what way these correlation properties are affected by different initial conditions (i.e., which chromophore is initially excited). When modeling the excitation energy transfer (EET) in the FMO complex with the hierarchically coupled equations of motions (HEOM), it is found that bipartite nonlocality indeed exists for some pairs of chromophore s...

  19. Tuning the reorganization energy of electron transfer in supramolecular ensembles - metalloporphyrin, oligophenylenevinylenes, and fullerene - and the impact on electron transfer kinetics

    Science.gov (United States)

    Stangel, Christina; Schubert, Christina; Kuhri, Susanne; Rotas, Georgios; Margraf, Johannes T.; Regulska, Elzbieta; Clark, Timothy; Torres, Tomás; Tagmatarchis, Nikos; Coutsolelos, Athanassios G.; Guldi, Dirk M.

    2015-01-01

    Oligo(p-phenylenevinylene) (oPPV) wires of various lengths featuring pyridyls at one terminal and C60 moieties at the other, have been used as molecular building blocks in combination with porphyrins to construct a novel class of electron donor-acceptor architectures. These architectures, which are based on non-covalent, directional interactions between the zinc centers of the porphyrins and the pyridyls, have been characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. Complementary physico-chemical assays focused on the interactions between electron donors and acceptors in the ground and excited states. No appreciable electron interactions were noted in the ground state, which was being probed by electrochemistry, absorption spectroscopy, etc.; the electron acceptors are sufficiently decoupled from the electron donors. In the excited state, a different picture evolved. In particular, steady-state and time-resolved fluorescence and transient absorption measurements revealed substantial electron donor-acceptor interactions. These led, upon photoexcitation of the porphyrins, to tunable intramolecular electron-transfer processes, that is, the oxidation of porphyrin and the reduction of C60. In this regard, the largest impact stems from a rather strong distance dependence of the total reorganization energy in stark contrast to the distance independence seen for covalently linked conjugates.Oligo(p-phenylenevinylene) (oPPV) wires of various lengths featuring pyridyls at one terminal and C60 moieties at the other, have been used as molecular building blocks in combination with porphyrins to construct a novel class of electron donor-acceptor architectures. These architectures, which are based on non-covalent, directional interactions between the zinc centers of the porphyrins and the pyridyls, have been characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. Complementary physico-chemical assays focused on the interactions

  20. Effect of vacuum polarization on the excitation of hydrogen atom by electron impact

    Directory of Open Access Journals (Sweden)

    Sujata Bhattacharyya

    1981-01-01

    for 1S−2S excitation of the hydrogen atom by electron impact. The excitation amplitude calculated field theoretically is found to be lowered by 0.47t2/(t2+93 where t2=4|P−Q|2, P and Q being the momenta of the incident and scattered electrons respectively.

  1. Investigation of the charge-transfer in photo-excited nanoparticles for CO2 reduction in non-aqueous media

    Directory of Open Access Journals (Sweden)

    Dimitrijević Nada M.

    2013-01-01

    Full Text Available Photoinduced charge separation in TiO2 and Cu2O semiconductor nanoparticles was examined using Electron Paramagnetic Resonance spectroscopy in order to get insight into the photocatalytic reduction of CO2 in nonaqueous media. For dissolution/grafting of CO2 we have used carboxy-PEG4-amine, and as a solvent poly(ethylene glycol 200. We have found that, in this system, reduction of CO2 starts at potential of -0.5 V vs Ag/AgCl, which is significantly more positive than the potential for electrochemical reduction of CO2 in most organic solvents and water (-2.0 V vs. Ag/AgCl. The electron transfer from excited nanoparticles to CO2 is governed both by thermodynamic and kinetic parameters, namely by the redox potential of conduction band electrons and adsorption/binding of CO2 on the surface of nanoparticles.

  2. The Liability of banks in electronic fund transfer transaction

    OpenAIRE

    Algudah, Fayyad

    1993-01-01

    The liability of banks in electronic fund transfer (EFT) transactions is discussed in this thesis under the British and the United States law. The thesis covers banks’ liability in electronic credit and debit transfers. It covers banks’ liability in Electronic Fund Transfer at the Point Of Sale (EFTPOS), Automatic Teller Machines (ATM) and home and office banking. Liability of banks in credit card transactions and cheque truncation falls outside the scope of this thesis. In ...

  3. Internal electron transfer within mitochondrial succinate-cytochrome C reductase

    International Nuclear Information System (INIS)

    Internal electron transfer within succinate-cytochrome C reductase from pigeon breast muscle mitochondria was followed by the pulse radiolytic technique. The electron equivalent is transferred from an unknown donor to b type cytochrome(s), in a first order process with a rate constant of: 660 +- 150s-1. This process might be the rate determining step of electron transfer in mitochondria, since it is similar in rate to the turnover number of the mitochondrial respiratory chain

  4. Electron transfer and interfacial behavior of redox proteins

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reviews the recent progress in the electron transfer and interfacial behavior of redox proteins. Significant achievements in the relevant fields are summarized including the direct electron transfer between proteins and electrodes, the thermodynamic and kinetic properties, catalytic activities and activity regulation of the redox proteins. It has been demonstrated that the electrochemical technique is an effective tool for protein studies, especially for probing into the electron transfer and interfacial behavior of redox proteins.

  5. Computational Studies on Structural, Excitation, and Charge-Transfer Properties of Ureidopeptidomimetics.

    Science.gov (United States)

    Joy, Sherin; Sureshbabu, Vommina V; Periyasamy, Ganga

    2016-07-14

    Peptides with ureido group enclosing backbones are considered peptidomimetics and are known for their higher stabilities, biocompatibilities, antibiotic, inhibitor, and charge-transduction activities. These peptidomimetics have some unique applications, which are quite different from those of natural peptides. Hence, it is imperative to appreciate their properties at a microscopic level. In this regard, this work outlines, in detail, the charge transfer (CT) properties, hole-migration dynamics, and electronic structures of various experimentally comprehended ureidopeptidomimetic models using density functional theory (DFT). Time-dependent DFT and complete active space self-consistent field computations on basic models provide the necessary evidence for the viability of CT from the end enfolding the ureido group to the other end with a carboxylate entity. This donor-to-acceptor CT has been reflected in excitation studies, in which the higher intensity band corresponds to CT from the π orbital of the ureido group to the π* orbital of the carboxylate entity. Further, hole-migration studies have shown that charge can evolve from the ureido end, whereas the hole generated at the carboxylate end does not migrate. However, hole migration has been reported to occur from both ends (amino and carboxylate ends) in glycine oligopeptides, and our studies show that the ability to transfer and migrate charge can be tuned by modifying the donor and acceptor functional groups in both the neutral and cationic charge states. We have analyzed the possibility of hole migration following ionization using DFT-based wave-packet propagation and found its occurrence on a ∼2-5 fs time scale, which reflects the charge-transduction ability of peptidomimetics. PMID:27314639

  6. Ultrafast excited state dynamics of the bi- and termolecular stilbene-viologen charge-transfer complexes assembled via host-guest interactions

    International Nuclear Information System (INIS)

    Excited state dynamics of the highly stable 1:1 and 2:1 charge-transfer (CT) complexes assembled via host-guest interactions between a biscrown stilbene and a viologen vinylog was studied using transient pump-supercontinuum probe spectroscopy. In acetonitrile, both complexes showed ultrafast two-component transient absorption dynamics after excitation in the CT absorption band by a 616 nm, 70 fs laser pulse. The faster component (τ<200 fs) is assigned to relaxation processes in the lowest CT excited state. The second component is due to the back electron transfer (ET) reaction leading to the ground state. The measured ET time constants for the 1:1 and 2:1 CT complexes are about 540 fs and 1.08 ps, respectively. Excitation of the bimolecular complex by a 308 nm laser pulse gave rise to three-component transient absorption dynamics. The fastest transient (τ∼150 fs) is assigned to relaxation processes in the high-lying excited states of the complex. The high-amplitude rise component with a time constant of about 300 fs is due to the internal conversion from the high-lying excited states to the lowest CT excited state. The latter decayed to the ground state via the back ET with a time constant very close to that measured when the complex was excited in the CT absorption band

  7. Resonant transfer excitation of fluorine-like Mo{sup 33+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Hassan [Ain Shams Univ., Cairo (Egypt). Dept. of Basic Sciences; Elkilany, Sabbah [Kafr El-sheikh Univ. (Egypt). Dept. of Mathematics

    2010-06-15

    Dielectronic recombination (DR) cross sections (anti {sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) for Mo{sup 33+} are calculated using the angular momentum average scheme (AMA). Moreover, the resonant transfer excitation followed by X-ray emission (RTEX) cross sections ({sigma}{sup RTEX}) for the collision of Mo{sup 33+} with H{sub 2} and He targets are calculated and studied. The calculations of the cross sections are performed for both K- and L-shell excitations. A smooth change with the temperatures for {alpha}{sup DR} is found for all kinds of excitations. The rates for K-shell excitation are very small in comparison with the rates for L-shell excitation. The RTEX cross sections for Mo{sup 33+} ions are obtained from their corresponding DR cross sections by the method of folding in the impulse approximation (IMA). {sigma}{sup RTEX} for the K-shell excitation shows two overlapped peaks which may be attributed to the two groups in this excitation process. The present calculations are considered as a database for future comparison with theoretical and experimental data using other coupling schemes. Multiple Auger channels are complicating the dependence of the cross sections on principal quantum numbers. (orig.)

  8. Coupled sensitizer-catalyst dyads: electron-transfer reactions in a perylene-polyoxometalate conjugate.

    Science.gov (United States)

    Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony

    2009-01-01

    Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide. PMID:19197929

  9. Cross Sections for Electron Impact Excitation of Ions Relevant to Planetary Atmospheres Observation

    Science.gov (United States)

    Tayal, Swaraj S.

    1998-01-01

    The goal of this research grant was to calculate accurate oscillator strengths and electron collisional excitation strengths for inelastic transitions in atomic species of relevance to Planetary Atmospheres. Large scale configuration-interaction atomic structure calculations have been performed to obtain oscillator strengths and transition probabilities for transitions among the fine-structure levels and R-matrix method has been used in the calculations of electron-ion collision cross sections of C II, S I, S II, S III, and Ar II. A number of strong features due to ions of sulfur have been detected in the spectra of Jupiter satellite Io. The electron excitation cross sections for the C II and S II transitions are studied in collaboration with the experimental atomic physics group at the Jet Propulsion Laboratory. There is excellent agreement between experiment and theory which provide an accurate and broad-base test of the ability of theoretical methods used in the calculation of atomic processes. Specifically, research problems have been investigated for: electron impact excitation cross sections of C II: electron impact excitation cross sections of S III; energy levels and oscillator strengths for transitions in S III; collision strengths for electron collisional excitation of S II; electron impact excitation of inelastic transitions in Ar II; oscillator strengths of fine-structure transitions in neutral sulfur; cross sections for inelastic scattering of electrons from atomic nitrogen; and excitation of atomic ions by electron impact.

  10. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization.

    Science.gov (United States)

    Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai

    2013-02-01

    Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

  11. Dielectronic recombination and resonant transfer excitation processes for helium-like krypton

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao-Li; Qu Yi-Zhi; Zhang Song-Bin; Zhang Yu

    2012-01-01

    The relativistic configuration interaction method is employed to calculate the dielectronic recombination (DR) cross sections of helium-like krypton via the 1s21nl' (n =2,3,...,15) resonances.Then,the resonant transfer excitation (RTE) processes of Kr34+ colliding with H,He,H2,and CHx (x =0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2121' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H2.For CHx (x =0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CHx,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,ls) and CH4(1t2,2a1,1a1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t2,2s-2a1,and 1s-1a1 orbitals,respectively.

  12. Electronic transfer of sensitive patient data.

    Science.gov (United States)

    Detterbeck, A M W; Kaiser, J; Hirschfelder, U

    2015-01-01

    The purpose of this study was to develop decision-making aids and recommendations for dental practitioners regarding the utilization and sharing of sensitive digital patient data. In the current environment of growing digitization, healthcare professionals need detailed knowledge of secure data management to maximize confidentiality and minimize the risks involved in both archiving patient data and sharing it through electronic channels. Despite well-defined legal requirements, an all-inclusive technological solution does not currently exist. The need for a preliminary review and critical appraisal of common practices of data transfer prompted a search of the literature and the Web to identify viable methods of secure data exchange and to develop a flowchart. A strong focus was placed on the transmission of datasets both smaller than and larger than 10 MB, and on secure communication by smartphone. Although encryption of patient-related data should be routine, it is often difficult to implement. Pretty Good Privacy (PGP) and Secure/Multipurpose Internet Mail Extensions (S/MIME) are viable standards for secure e-mail encryption. Sharing of high-volume data should be accomplished with the help of file encryption. Careful handling of sensitive patient data is mandatory, and it is the end-user's responsibility to meet any requirements for encryption, preferably by using free, open-source (and hence transparent) software. PMID:25911828

  13. Electronic transfer of sensitive patient data.

    Science.gov (United States)

    Detterbeck, A M W; Kaiser, J; Hirschfelder, U

    2015-01-01

    The purpose of this study was to develop decision-making aids and recommendations for dental practitioners regarding the utilization and sharing of sensitive digital patient data. In the current environment of growing digitization, healthcare professionals need detailed knowledge of secure data management to maximize confidentiality and minimize the risks involved in both archiving patient data and sharing it through electronic channels. Despite well-defined legal requirements, an all-inclusive technological solution does not currently exist. The need for a preliminary review and critical appraisal of common practices of data transfer prompted a search of the literature and the Web to identify viable methods of secure data exchange and to develop a flowchart. A strong focus was placed on the transmission of datasets both smaller than and larger than 10 MB, and on secure communication by smartphone. Although encryption of patient-related data should be routine, it is often difficult to implement. Pretty Good Privacy (PGP) and Secure/Multipurpose Internet Mail Extensions (S/MIME) are viable standards for secure e-mail encryption. Sharing of high-volume data should be accomplished with the help of file encryption. Careful handling of sensitive patient data is mandatory, and it is the end-user's responsibility to meet any requirements for encryption, preferably by using free, open-source (and hence transparent) software.

  14. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion.

    Science.gov (United States)

    Fredin, Lisa A; Persson, Petter

    2016-09-14

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective. PMID:27634263

  15. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion

    Science.gov (United States)

    Fredin, Lisa A.; Persson, Petter

    2016-09-01

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective.

  16. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion.

    Science.gov (United States)

    Fredin, Lisa A; Persson, Petter

    2016-09-14

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective.

  17. Electron impact excitation and assignment of the low-lying electronic states of CO2

    Science.gov (United States)

    Hall, R. I.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.

  18. Production of excited electrons at TESLA and CLIC based egamma colliders

    CERN Document Server

    Kirca, Z; Cakir, O

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron- photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions egamma yields egamma, egamma yields eZ and egamma yields vW. Excited electrons with masses up to about 90% of the available collider energy can be probed down to the coupling f = f prime = 0.05(0.1) at TESLA(CLIC) based egamma colliders. 22 Refs.

  19. Electron emission from fast heavy ions associated with resonant coherent excitation

    Science.gov (United States)

    Suda, S.; Nakano, Y.; Metoki, K.; Azuma, T.; Takano, Y.; Hatakeyama, A.; Nakai, Y.; Komaki, K.; Takada, E.; Murakami, T.

    2011-06-01

    We observed convoy electrons emitted from 416 MeV/u He-like Ar16+ passing through a thin Si crystal under the condition of three-dimensional resonant coherent excitation (3D-RCE). The convoy electrons, which originate from electrons released from ions into the continuum by collisions with target atoms, emerged in the forward direction and formed a cusp-shaped peak in the energy distribution. We selectively controlled the population of the ground and excited states of ions traveling through the crystal by using 3D-RCE, where the 1s electron was excited to the 2p state by a periodic crystal field. Under the resonance condition, we found an enhancement of the convoy electrons with a narrowing in the energy distribution, which reflects the electron momentum distribution of the initial bound state of the excited ions.

  20. Excitation Transfer in Vertically Self-Organized Pairs of Unequal-Sized InAs/GaAs Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-Long; FENG Song-Lin; YANG Fu-Hua; SUN Bao-Quan; JIANG De-Sheng

    2000-01-01

    The excitation transfer processes in vertically self-organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.

  1. Interfacial electron transfer dynamics of ru(II)-polypy6ridine sensitized TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Jakubikova, Elena [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Snoeberger, Robert C [YALE UNIV.; Batista, Victor S [YALE UNIV.

    2009-01-01

    Quantum dynamics simulations combined with density functional theory calculations are applied to study interfacial electron transfer (IET) from pyridine-4-phosphonic acid, [Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 2+} and [Ru(tpy)(bpy)(H{sub 2}O)-Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 4+} into the (101) surface of anatase TiO{sub 2}. IET rate from pyridine-4-phosphonic acid attached to the nanoparticle in bidentate mode ({tau} {approx} 100 fs) is an order of magnitude faster than the IET rate of the adsorbate attached in the monodentate mode ({tau} {approx} 1 ps). Upon excitation with visible light, [Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 2+} attached to TiO{sub 2} in bidentate binding mode will undergo IET with the rate of {approx} 1-10 ps, which is competitive with the excited state decay into the ground state. The probability of electron injection from [Ru(tpy)(bpy)(H{sub 2}O)-Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 4+} is rather low, as the excitation with visible light localizes the excited electron in the tpy-tpy bridge, which does not have favorable coupling with the TiO{sub 2} nanoparticle. The results are relevant to better understanding of the adsorbate features important for promoting efficient interfacial electron transfer into the semiconductor.

  2. Amplified spontaneous emission of a molecular nitrogen laser excited by an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Report of a study of the shape and length of the output pulse of a molecular nitrogen laser, excited by an intense relativistic electron beam, is described. The rate equations are computer solved, at first ignoring the spontaneous emission during the excitation process. Afterwards the rate equations are solved taking into account excitation functions of various shapes and lengths, related to electron-beam pulses of a few kA and a few nsec. Laser power output, energy, and peak-time, i.e., the time at which the gain reaches its saturated value, are given and discussed as functions of the intensity and rise time of the excitation functions

  3. Assessment of asymptotically corrected model potential scheme for charge-transfer-like excitations in oligoacenes

    CERN Document Server

    Peng, Wei-Tao

    2014-01-01

    We examine the performance of the asymptotically corrected model potential scheme on the two lowest singlet excitation energies of acenes with different number of linearly fused benzene rings (up to 5), employing both the real-time time-dependent density functional theory and the frequency-domain formulation of linear-response time-dependent density functional theory. The results are compared with the experimental data and those calculated by long-range corrected hybrid functionals and others. The long-range corrected hybrid scheme is shown to outperform the asymptotically corrected model potential scheme for charge-transfer-like excitations.

  4. Quantum effects in ultrafast electron transfers within cryptochromes.

    Science.gov (United States)

    Firmino, Thiago; Mangaud, Etienne; Cailliez, Fabien; Devolder, Adrien; Mendive-Tapia, David; Gatti, Fabien; Meier, Christoph; Desouter-Lecomte, Michèle; de la Lande, Aurélien

    2016-08-21

    Cryptochromes and photolyases are flavoproteins that may undergo ultrafast charge separation upon electronic excitation of their flavin cofactors. Charge separation involves chains of three or four tryptophan residues depending on the protein of interest. The molecular mechanisms of these processes are not completely clear. In the present work we investigate the relevance of quantum effects like the occurrence of nuclear tunneling and of coherences upon charge transfer in Arabidopsis thaliana cryptochromes. The possible breakdown of the Condon approximation is also investigated. We have devised a simulation protocol based on the realization of molecular dynamics simulations on diabatic potential energy surfaces defined at the hybrid constrained density functional theory/molecular mechanics level. The outcomes of the simulations are analyzed through various dedicated kinetics schemes related to the Marcus theory that account for the aforementioned quantum effects. MD simulations also provide a basic material to define realistic model Hamiltonians for subsequent quantum dissipative dynamics. To carry out quantum simulations, we have implemented an algorithm based on the Hierarchical Equations of Motion. With this new tool in hand we have been able to model the electron transfer chain considering either two- or three-state models. Kinetic models and quantum simulations converge to the conclusion that quantum effects have a significant impact on the rate of charge separation. Nuclear tunneling involving atoms of the tryptophan redox cofactors as well as of the environment (protein atoms and water molecules) is significant. On the other hand non-Condon effects are negligible in most simulations. Taken together, the results of the present work provide new insights into the molecular mechanisms controlling charge separation in this family of flavoproteins. PMID:27427185

  5. Characterisation of an RF excited argon plasma cathode electron beam gun

    OpenAIRE

    Del Pozo, S.; Ribton, C; Smith, DR

    2014-01-01

    This work describes the experimental set up used for carrying out spectroscopic measurements in a plasma cathode electron beam (EB) gun. Advantages of plasma cathode guns over thermionic guns are described. The factors affecting electron beam power such as plasma pressure, excitation power and plasma chamber geometry are discussed. The maximum beam current extracted was 53 mA from a 0.5 mm diameter aperture in the plasma chamber. In this work, the electron source is an argon plasma excited at...

  6. Identification of a new electron-transfer relaxation pathway in photoexcited pyrrole dimers.

    Science.gov (United States)

    Neville, Simon P; Kirkby, Oliver M; Kaltsoyannis, Nikolas; Worth, Graham A; Fielding, Helen H

    2016-04-21

    Photoinduced electron transfer is central to many biological processes and technological applications, such as the harvesting of solar energy and molecular electronics. The electron donor and acceptor units involved in electron transfer are often held in place by covalent bonds, π-π interactions or hydrogen bonds. Here, using time-resolved photoelectron spectroscopy and ab initio calculations, we reveal the existence of a new, low-energy, photoinduced electron-transfer mechanism in molecules held together by an NH⋯π bond. Specifically, we capture the electron-transfer process in a pyrrole dimer, from the excited π-system of the donor pyrrole to a Rydberg orbital localized on the N-atom of the acceptor pyrrole, mediated by an N-H stretch on the acceptor molecule. The resulting charge-transfer state is surprisingly long lived and leads to efficient electronic relaxation. We propose that this relaxation pathway plays an important role in biological and technological systems containing the pyrrole building block.

  7. Identification of a new electron-transfer relaxation pathway in photoexcited pyrrole dimers

    Science.gov (United States)

    Neville, Simon P.; Kirkby, Oliver M.; Kaltsoyannis, Nikolas; Worth, Graham A.; Fielding, Helen H.

    2016-04-01

    Photoinduced electron transfer is central to many biological processes and technological applications, such as the harvesting of solar energy and molecular electronics. The electron donor and acceptor units involved in electron transfer are often held in place by covalent bonds, π-π interactions or hydrogen bonds. Here, using time-resolved photoelectron spectroscopy and ab initio calculations, we reveal the existence of a new, low-energy, photoinduced electron-transfer mechanism in molecules held together by an NH⋯π bond. Specifically, we capture the electron-transfer process in a pyrrole dimer, from the excited π-system of the donor pyrrole to a Rydberg orbital localized on the N-atom of the acceptor pyrrole, mediated by an N-H stretch on the acceptor molecule. The resulting charge-transfer state is surprisingly long lived and leads to efficient electronic relaxation. We propose that this relaxation pathway plays an important role in biological and technological systems containing the pyrrole building block.

  8. Ab initio nonadiabatic molecular dynamics of the ultrafast excitation energy transfer in small semiconducting carbon nanotube aggregates

    Science.gov (United States)

    Postupna, Olena; Long, Run; Prezhdo, Oleg

    2012-02-01

    Outstanding physical properties of carbon nanotubes (CNTs), such as well-defined optical resonance and ultrafast nonlinear response, result in CNTs gaining popularity in academic and industrial endeavors as potential effective energy generating devices. Following recent experiments on ultrafast excitation energy transfer in small semiconducting carbon nanotube aggregates [1], we report results of ab initio nonadiabatic molecular dynamics simulation of the energy transfer taking place in two carbon nanotube systems. We investigate the energy transfer between (8,4) and (10,0) CNTs, as well as (8,4) and (13,0) CNTs. In both cases, the CNTs are orthogonal to each other. Luer et al. in [1] elucidate the second excitonic transitions followed by fast intratube relaxation and energy transfer from the (8,4) CNT toward other acceptor tubes. Our project aims to provide a better understanding of the energy transfer mechanism in the given systems, which should foster development of a theory for the electronic structure and dynamics of CNT networks, hence enhancing their tailoring and application in the future. References 1.Larry Luer, Jared Crochet, Tobias Hertel, Giulio Cerullo, Gugliermo Lanzani. ACSNano. Vol.4, No. 7, 4265-4273

  9. Microbial extracellular electron transfer and its relevance to iron corrosion

    OpenAIRE

    Kato, Souichiro

    2016-01-01

    Summary Extracellular electron transfer (EET) is a microbial metabolism that enables efficient electron transfer between microbial cells and extracellular solid materials. Microorganisms harbouring EET abilities have received considerable attention for their various biotechnological applications, including bioleaching and bioelectrochemical systems. On the other hand, recent research revealed that microbial EET potentially induces corrosion of iron structures. It has been well known that corr...

  10. 75 FR 75897 - Electronic Funds Transfer of Depository Taxes

    Science.gov (United States)

    2010-12-07

    ... published in the Federal Register (75 FR 51707) proposed amendments to the regulations (REG-153340-09) to... deposit is made by electronic funds transfer by the next business day, January 17, 2012. Example 2. Semi... Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 RIN 1545-BJ13 Electronic Funds Transfer...

  11. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Science.gov (United States)

    2010-01-01

    ... cooperative agreement will be made by the Government by electronic funds transfer through the Treasury Fedline... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931...

  12. Picosecond time-resolved fluorescence studies on excitation energy transfer in a histidine 117 mutant of the D2 protein of photosystem II in Synechocystis 6803.

    Science.gov (United States)

    Vasil'ev, S; Bruce, D

    2000-11-21

    The role of the peripheral reaction center chlorophyll a molecule associated with His117 of the D2 polypeptide in photosystem II was investigated in Synechocystis sp. PCC 6803 using a combination of steady state, pump-probe, and picosecond time-resolved fluorescence spectroscopy. Data were obtained from intact cells and isolated thylakoid membranes of a control mutant and a D2-H117T mutant, both of which lacked photosystem I. Excitation energy transfer and trapping were investigated by analyzing the data with a kinetic model that used an exact numerical solution of the Pauli master equation, taking into account available photosystem II spectral and structural information. The results of our kinetic analysis revealed the observed difference in excited-state dynamics between the H117T mutant and the control to be consistent with a retardation of the rate of excitation energy transfer from the peripheral chlorophyll of D2 (Chl at His117) to the electron-transfer pigments and an increase of the rate constant for charge recombination in the H117T mutant. The kinetic model was able to account for the experimentally observed changes in absorption cross section and fluorescence decay kinetics between the control and mutant by invoking changes in only these two rate constants. The results rule out quenching of excitation by a chlorophyll cation radical as a mechanism responsible for the lower efficiency of excitation energy utilization in the H117T mutant. Our work also demonstrates the importance of the chlorophyll associated with His117 of the D2 protein for excitation energy transfer to the PSII electron-transfer pigments and for the effective stabilization of the primary radical pair. PMID:11087370

  13. Dissociative electron attachment and electron-impact resonant dissociation of vibrationally excited O2 molecules

    CERN Document Server

    Laporta, V; Tennyson, J

    2015-01-01

    State-by-state cross sections for dissociative electron attachment and electron-impact dissociation for molecular oxygen are computed using ab initio resonance curves calculated with the R-matrix method. When O2 is in its vibrational ground state, the main contribution for both processes comes from the $^2\\Pi_u$ resonance state of $O_2^-$ but with a significant contribution from the $^4\\Sigma$ resonant state. Vibrational excitation leads to an increased contribution from the low-lying $^2\\Pi_{g}$ resonance, greatly increased cross sections for both processes, and the threshold moving to lower energies. These results provide important input for models of O2-containing plasmas in nonequilibrium conditions.

  14. On the ultrashort lifetime of electronically excited thiophenol

    Science.gov (United States)

    Ovejas, Virginia; Fernández-Fernández, Marta; Montero, Raúl; Longarte, Asier

    2016-09-01

    The relaxation dynamics of thiophenol, excited from the onset of the S1 (11ππ∗) state absorption, to the more intense S3 (21ππ∗) state band (290-244 nm), has been studied by time resolved ion yield spectroscopy. Along the studied energy range, the reached excited states relax in less 100 fs. These results evidence that the photophysics is dominated by the non-adiabatic coupling between the initially excited S1 and S31ππ∗ states, and the dissociative character 1πσ∗ state. Contrarily to phenol, the 11ππ∗/1πσ∗ crossing is reached from the origin of the 11ππ∗ state absorption, through a nearly barrierless pathway.

  15. Transcriptomic and genetic analysis of direct interspecies electron transfer

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Summers, Zarath M;

    2013-01-01

    The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the elect....... These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments....

  16. Characterizing the Structures, Spectra, and Energy Landscapes Involved in the Excited-State Proton Transfer Process of Red Fluorescent Protein LSSmKate1.

    Science.gov (United States)

    Chen, Fasheng; Zeng, Qiao; Zhuang, Wei; Liang, WanZhen

    2016-09-22

    By applying molecular dynamics (MD) simulations and quantum chemical calculations, we have characterized the states and processes involved in the excited-state proton transfer (ESPT) of LSSmKate1. MD simulations identify two stable structures in the electronic ground state of LSSmKate1, one with a protonated chromophore and the other with a deprotonated chromophore, thus leading to two separate low-energy absorption maxima with a large energy spacing, as observed in the calculated and experimentally measured absorption spectra. Proton transfer is induced by electronic excitation. When LSSmKate1 is excited, the electrons in the chromophore are transferred from the phenol ring to the N-acylimine moiety; the acidity of a phenolic hydroxyl group is thus enhanced. The calculated potential energy curves (PECs) exhibit energetic feasibility in the generation of the fluorescent species in LSSmKate1, and the exact agreement between the calculated and experimentally measured values of the large Stokes shift further provides solid theoretical evidence for the ESPT process taking place in photoexcited LSSmKate1. The molecular environments play a significant role in the geometries and absorption/emission energies of the chromophores. Overall, TD-ωB97X-D/molecular mechanics (MM) provides a better description of the optical properties of LSSmKate1 than TD-B3LYP/MM, although it always overestimates the excitation energies. PMID:27581731

  17. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    Science.gov (United States)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  18. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  19. Femtosecond spectroscopic studies of photoinduced electron transfer in MDMO-PPV:ZnO hybrid bulk heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Cecchetto, E.; De Cola, L. [Institute of Physics, University of Muenster, Mendelstrasse 7, 48149 Muenster (Germany); Slooff, H. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Zhang, H. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam (Netherlands)

    2007-01-15

    The photophysics of charge carriers (polaron) in MDMO-PPV:ZnO hybrid bulk heterojunction is studied at 80 K by femtosecond transient absorption spectroscopy. A short-lived positive polaron is observed in the blend phase in MDMO-PPV:ZnO blend films with a weight ratio of 1:1 and 1:2. Further increase of ZnO weight ratio results in a significant quenching of the polaron absorption. The results are discussed in the concept that both pristine polymer and MDMO-PPV:ZnO blend phases coexist in the blend films. It is concluded that a polaron is photogenerated within the excitation laser pulse (<100 fs) and electron transfer efficiency is highest in blend films 1:1 and 1:2. Lack of the interfacial area and faster back electron transfer process are discussed to be responsible for the quenching of the electron transfer efficiency in blend film 1:3.

  20. Valence-Shell Excitations of Nitrous Oxide Studied by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-Wei; WANG You-Yan; ZHU Lin-Fan

    2012-01-01

    The valence-shell excitations of nitrous oxide are studied by fast electron energy loss spectroscopy.From the spectra measured at 2.5keV and scattering angles of 3.5°-8.5°,it is found that the asymmetric peak of the transition B 1△ can be well fitted by Haarhoff-Van der Linde function,while the symmetric peaks of the transitions of C1Π and D1∑+ can be well fitted by the Voigt function.The parameters of the peak profiles of B1△,C1Π and D1∑+,i.e.,their energy level positions and linewidths,are determined.With the aid of these parameters,the overlapping spectra measured at the low-energy electron impact can be deconvolved,which provides the possibility to determine the quantitative differential cross sections.The present results also show that the peak profiles of the transitions of B1△,C1Π and D1∑+ are independent of the momentum transfer.%The valence-shell excitations of nitrous oxide are studied by fast electron energy loss spectroscopy. From the spectra measured at 2.5keV and scattering angles of 3.5°-8.5°, it is found that the asymmetric peak of the transition B1A can be well fitted by Haarhoff-Van der Linde function, while the symmetric peaks of the transitions of C1II. And D1∑+ can be well fitted by the Voigt function. The parameters of the peak profiles of B1△, C1II and D1∑+, I.e., their energy level positions and linewidths, are determined. With the aid of these parameters, the overlapping spectra measured at the low-energy electron impact can be deconvolved, which provides the possibility to determine the quantitative differential cross sections. The present results also show that the peak profiles of the transitions of B1△, C1II and D1∑+ are independent of the momentum transfer.

  1. The influence of crater formation for electron excitation processes in cluster induced collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Weidtmann, B.; Duvenbeck, A.; Wucher, A.

    2015-06-01

    The interplay between electronic energy loss and the excitation of electronic degrees of freedom accompanying the bombardment of a silver crystal with 7-keV Ag and 20-keV Ag{sub 3} particles is investigated by molecular dynamics simulation. Two kinetic excitation processes – the friction of moving atoms in a free electron gas and autoionization in close, binary collisions – are considered, as to describe the electronic stopping. In order to accommodate the massive transient morphology changes following a cluster impact, the electronic friction is described by a modified Lindhard/Scharff model, where the friction coefficient is scaled to the local environment of a moving atom. It is shown that this approach is capable of reproducing both the measured sputter yields and the degree of electronic excitation as manifested by measured electron and secondary ion yields.

  2. Imaging Excited Orbitals of Quantum Dots: Experiment and Electronic Structure Theory.

    Science.gov (United States)

    Nienhaus, Lea; Goings, Joshua J; Nguyen, Duc; Wieghold, Sarah; Lyding, Joseph W; Li, Xiaosong; Gruebele, Martin

    2015-11-25

    Electronically excited orbitals play a fundamental role in chemical reactivity and spectroscopy. In nanostructures, orbital shape is diagnostic of defects that control blinking, surface carrier dynamics, and other important optoelectronic properties. We capture nanometer resolution images of electronically excited PbS quantum dots (QDs) by single molecule absorption scanning tunneling microscopy (SMA-STM). Dots with a bandgap of ∼1 eV are deposited on a transparent gold surface and optically excited with red or green light to produce hot carriers. The STM tip-enhanced laser light produces a large excited-state population, and the Stark effect allows transitions to be tuned into resonance by changing the sample voltage. Scanning the QDs under laser excitation, we were able to image electronic excitation to different angular momentum states depending on sample bias. The shapes differ from idealized S- or P-like orbitals due to imperfections of the QDs. Excitation of adjacent QD pairs reveals orbital alignment, evidence for electronic coupling between dots. Electronic structure modeling of a small PbS QD, when scaled for size, reveals Stark tuning and variation in the transition moment of different parity states, supporting the simple one-electron experimental interpretation in the hot carrier limit. The calculations highlight the sensitivity of orbital density to applied field, laser wavelength, and structural fluctuations of the QD. PMID:26518039

  3. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  4. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  5. Observation of excited state charge transfer with fs/ps-CARS

    International Nuclear Information System (INIS)

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4(prime)-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4(prime)-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles

  6. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin

    2006-09-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  7. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    Directory of Open Access Journals (Sweden)

    Chekalin S.

    2013-03-01

    Full Text Available Femtosecond spectroscopy was applied to capture complex dynamics of non equilibrium electrons in bismuth. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along the Γ-T direction of the Brillouin zone

  8. Electron Transfer Pathways in Cholesterol Synthesis.

    Science.gov (United States)

    Porter, Todd D

    2015-10-01

    Cholesterol synthesis in the endoplasmic reticulum requires electron input at multiple steps and utilizes both NADH and NADPH as the electron source. Four enzymes catalyzing five steps in the pathway require electron input: squalene monooxygenase, lanosterol demethylase, sterol 4α-methyl oxidase, and sterol C5-desaturase. The electron-donor proteins for these enzymes include cytochrome P450 reductase and the cytochrome b5 pathway. Here I review the evidence for electron donor protein requirements with these enzymes, the evidence for additional electron donor pathways, and the effect of deletion of these redox enzymes on cholesterol and lipid metabolism. PMID:26344922

  9. Respiratory electron transfer in Escherichia coli : components, energetics and regulation

    OpenAIRE

    Hellingwerf, K.J.; Teixeira De Mattos, M.J.; Bekker, M.

    2009-01-01

    The respiratory chain that is housed in the bacterial cytoplasmic membrane, generally transfers electrons from NADH to oxygen; in the absence of oxygen it can use several alternative electron acceptors, such as nitrate and fumarate. Transfer of electrons through this chain is usually coupled to the translocation of protons across the membrane. The resulting gradient of protons is then used for the generation of ATP by the F0F1-ATPase, and for other free energy requiring processes such as solu...

  10. Electronic energy transfer between coumarin 460 and Eu3+ in thorium phosphate xerogel

    International Nuclear Information System (INIS)

    Optical spectroscopy experiments performed on thorium phosphate xerogels, doped with both a laser dye (coumarin 460) and europium, have pointed out the existence of an electronic energy transfer from coumarin 460 to the 5D3 level of Eu3+. Indeed, the excitation spectrum of the red fluorescence of Eu3+ in thorium phosphate xerogel doped simultaneously with coumarin 460 exhibits a broad band corresponding to the absorption of coumarin 460 in this optical region

  11. Photoinduced electron transfer in porous organic salt crystals impregnated with fullerenes.

    Science.gov (United States)

    Hasegawa, Tetsuya; Ohkubo, Kei; Hisaki, Ichiro; Miyata, Mikiji; Tohnai, Norimitsu; Fukuzumi, Shunichi

    2016-06-28

    Porous organic salt (POS) crystals composed of 9-(4-sulfophenyl)anthracene (SPA) and triphenylmethylamine (TPMA) were impregnated with fullerenes (C60 and C70), which were arranged in one dimensional close contact. POS crystals of SPA and TPMA without fullerenes exhibit blue fluorescence due to SPA, whereas the fluorescence was quenched in POS with fullerenes due to electron transfer from the singlet excited state of SPA to fullerenes. PMID:27182038

  12. Probing ultrafast excitation energy transfer of the chlorosome with exciton-phonon variational dynamics.

    Science.gov (United States)

    Somoza Márquez, Alejandro; Chen, Lipeng; Sun, Kewei; Zhao, Yang

    2016-07-27

    The chlorosome antenna complex is a fascinating structure which due to its immense scale, accurate simulation of excitation energy transfer (EET) dynamics supposes a genuine computational challenge. Resonant vibronic modes have been recently identified in 2D spectra of the chlorosome which motivates our present endeavour of modelling electronic and vibrational degrees of freedom on an equal footing. Following the Dirac-Frenkel time-dependent variational principle, we exploit a general theory of polaron dynamics in two-dimensional lattices based on the Holstein molecular crystal model and investigate a single rod model of pigment aggregates. Unlike reduced formalisms, explicit integration of the degrees of freedom of both the system and the bath requires extensive computational resources. We exploit the architecture of graphic processor units (GPUs) by implementing our simulations on this platform. The simulation of dynamic properties of hundreds or even thousands of pigments is thus achievable in just a few hours. The potential investigation and design of natural or engineered two-dimensional pigment networks can thus be accommodated. Due to the lack of consensus regarding the precise arrangement of chromophores in the chlorosome, helicity and dimerization are investigated independently, extracting their contributions to both optical and EET properties. The presence of dimerization is found to slow down the delocalization process. Exciton delocalization is completed in 100 fs in a single rod aggregate whose dimensions (20 nm) fairly exceed the estimated extent of a coherent domain. Ultrafast energy relaxation in the exciton manifold occurs in 50 fs and the duration of super-diffusive transport is found to last for about 80 fs. PMID:26792106

  13. Free electron degeneracy effects on collisional excitation, ionization, de-excitation and three-body recombination

    Science.gov (United States)

    Tallents, G. J.

    2016-09-01

    Collisional-radiative models enable average ionization and ionization populations, plus the rates of absorption and emission of radiation to be calculated for plasmas not in thermal equilbrium. At high densities and low temperatures, electrons may have a high occupancy of the free electron quantum states and evaluations of rate coefficients need to take into account the free electron degeneracy. We demonstrate that electron degeneracy can reduce collisional rate coefficients by orders-of-magnitude from values calculated neglecting degeneracy. We show that assumptions regarding the collisional differential cross-section can alter collisional ionization and recombination rate coefficients by a further factor two under conditions relevant to inertial fusion.

  14. A fluorescent sensing membrane for iodine based on intramolecular excitation energy transfer of anthryl appended porphyrin

    Institute of Scientific and Technical Information of China (English)

    LONG LiPing; YOU MingXu; WANG Hao; WANG YongXiang; YANG RongHua

    2009-01-01

    A single anthryl appended meso-tetraphenylporphyrin (TPP) dyed has been synthesized and applied in fluorescence sensing of iodine based on the intramolecular excitation energy transfer. The molecular recognition of the sensor is based on the interaction of iodine with inner anthracene moiety of the dyad, while the signal reporter for the recognition process is the TPP fluorescence quenching. Because the emission spectrum of anthracene is largely overlapped with the Soret band absorption of TPP, in-tremolecular excitation energy transfer interaction occurs between the donor, anthracene and acceptor, TPP. This energy transfer leads to TPP fluorescence emission by excitation of anthracene. The sensor was constructed by immobilizing the dyad in a plasticized poly(vinyl chloride) (PVC) membrane. The sensing membrane shows higher sensitivity compared to the sensors by using anthracene, TPP, or a mixture of anthracene and TPP as sensing materials. Under the optimum conditions, iodine in a sample membrane shows satisfactory response characteristics including good reproducibility, reversibility end stability, as well as the short response time of less than 60 s. Except for Cr2O2-7 and MnO-4, other common metal ions and anions in foodstuff do not interfere with iodine determination. The proposed method was applied in the determination of iodine in table salt samples. The results agree well with those obtained by other methods.

  15. A fluorescent sensing membrane for iodine based on intramolecular excitation energy transfer of anthryl appended porphyrin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A single anthryl appended meso-tetraphenylporphyrin (TPP) dyad has been synthesized and applied in fluorescence sensing of iodine based on the intramolecular excitation energy transfer. The molecular recognition of the sensor is based on the interaction of iodine with inner anthracene moiety of the dyad, while the signal reporter for the recognition process is the TPP fluorescence quenching. Because the emission spectrum of anthracene is largely overlapped with the Soret band absorption of TPP, intramolecular excitation energy transfer interaction occurs between the donor, anthracene and acceptor, TPP. This energy transfer leads to TPP fluorescence emission by excitation of anthracene. The sensor was constructed by immobilizing the dyad in a plasticized poly(vinyl chloride) (PVC) membrane. The sensing membrane shows higher sensitivity compared to the sensors by using anthracene, TPP, or a mixture of anthracene and TPP as sensing materials. Under the optimum conditions, iodine in a sample solution can be determined from 2.04 to 23.6 mmol·L-1 with a detection limit of 33 nmol·L-1. The sensing membrane shows satisfactory response characteristics including good reproducibility, reversibility and stability, as well as the short response time of less than 60 s. Except for Cr2O72- and MnO4-, other common metal ions and anions in foodstuff do not interfere with iodine determination. The proposed method was applied in the determination of iodine in table salt samples. The results agree well with those obtained by other methods.

  16. Modulation of the electron transfer processes in Au-ZnO nanostructures

    Science.gov (United States)

    Aguirre, M. E.; Armanelli, A.; Perelstein, G.; Feldhoff, A.; Tolley, A. J.; Grela, M. A.

    2015-04-01

    Plasmonic nanostructures comprising Au and ZnO nanoparticles synthesized by the spontaneous reduction of HAuCl4 in ethylene glycol were used to assess the possibility of modulating the direction of the electron transfer processes at the interface. One electron UV reduction and visible oxidation of the reversible couple TEMPOL/TEMPOL-H was confirmed by EPR spectroscopy. The apparent quantum yield for TEMPOL-H conversion under continuous wave visible excitation depends on the irradiation wavelength, being 0.57% and 0.27% at 450 +/- 12 and 530 +/- 12 nm, respectively. These results indicate that both the surface plasmon resonance and the interband transition from the 5d to the 6s level of Au nanoparticles contribute to the visible activity of the nanostructure. In addition, by detecting free electron conduction band electrons in ZnO, after the visible excitation of Au/ZnO nanostructures, we provide direct evidence of the photoexcited electron transfer from gold nanoparticles to ZnO.Plasmonic nanostructures comprising Au and ZnO nanoparticles synthesized by the spontaneous reduction of HAuCl4 in ethylene glycol were used to assess the possibility of modulating the direction of the electron transfer processes at the interface. One electron UV reduction and visible oxidation of the reversible couple TEMPOL/TEMPOL-H was confirmed by EPR spectroscopy. The apparent quantum yield for TEMPOL-H conversion under continuous wave visible excitation depends on the irradiation wavelength, being 0.57% and 0.27% at 450 +/- 12 and 530 +/- 12 nm, respectively. These results indicate that both the surface plasmon resonance and the interband transition from the 5d to the 6s level of Au nanoparticles contribute to the visible activity of the nanostructure. In addition, by detecting free electron conduction band electrons in ZnO, after the visible excitation of Au/ZnO nanostructures, we provide direct evidence of the photoexcited electron transfer from gold nanoparticles to ZnO. Electronic

  17. A new technique for excitation studies in electron-ion collisions

    International Nuclear Information System (INIS)

    A new technique based on an electron energy-loss technique is being developed to measure absolute total cross sections for ion excitation by electron impact. Novel aspects of the instrument include collection of the electrons in the backward direction, and the use of curved trochoidal plates to minimise distortion of the inelastically scattered beam during analysis. (orig.)

  18. Measured multipole moments of continuum electron transfer angular distributions

    International Nuclear Information System (INIS)

    The velocity space distribution of electrons emitted near the forward direction from collisions involving fast, highly stripped oxygen ions with gaseous and solid targets is presented and described in terms of multipole moments of the ejected charge distribution, which permits direct comparison with recent theory. The measurements are produced by employing position-sensitive electron detection to combine emission angle definition with conventional electrostatic spectrometry. Agreement obtained between theory and distributions observed for binary continuum electron loss processes coupled with a similar multipole content observed with solid targets suggests a model of convoy electron production dominated by electron loss from the projectile within the bulk of the target. Further, the connection between multipoles of the projectile electron emission distribution in single collisions and the state of excitation of that projectile excited states may provide the basis for a probe of the state of ions traversing bulk solid matter. 14 refs., 3 figs., 1 tab

  19. Electron impact excitation of helium in Debye plasma

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, S.; Gomis, L.; Faye, I. G.; Tall, M. S.; Diédhiou, I. [Département de Physique, Faculté des Sciences and Techniques, Université Cheikh Anta Diop, Dakar-Fann (Senegal); Diatta, C. S. [Institut International des Sciences et de Technologie, 28 Avenue des Ambassadeurs Dakar-Fann (Senegal); Zammit, M. [ARC Centre for Antimatter-Matter Studies, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia)

    2015-03-15

    The probability, differential, and integral scattering cross sections of the 1{sup 1}S→2{sup 1}S and 1{sup 1}S→2{sup 1}P transitions of helium have been calculated in the first Born approximation. The projectile-target interactions depending on the temperature and the density of plasma are described by the Debye-Hückel model. Wave functions of the target before and after collision were modeled by non orthogonal Hartree-Fock orbitals. The wave functions parameters are calculated with the Ritz variational method. We improve our unscreened first Born approximation integral cross sections by using the BE-scaled (B stands for binding energy and E excitation energy) method. The second Born approximation has also been used to calculate the excitation cross sections in Debye plasma. Our calculations are compared to other theoretical and experimental results where applicable.

  20. Synthesis, Characterization, Photophysics and Photochemistry of Pyrylogen Electron Transfer Sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Clennan, Edward L. [University of Wyoming, Laramie; Liao, Chen [ORNL

    2014-01-01

    A series of new dicationic sensitizers that are hybrids of pyrylium salts and viologens has been synthesized. The electrochemical and photophysical properties of these "pyrylogen" sensitizers are reported in sufficient detail to allow rationale design of new photoinduced electron transfer reactions. The range of their reduction potentials (+0.37-+0.05V vs SCE) coupled with their range of singlet (48-63 kcal mol(-1)) and triplet (48-57kcalmol(-1)) energies demonstrate that they are potent oxidizing agents in both their singlet and triplet excited states, thermodynamically capable of oxidizing substrates with oxidation potentials as high as 3.1eV. The pyrylogens are synthesized in three steps from readily available starting materials in modest overall 11.4-22.3% yields. These sensitizers have the added advantages that: (1) their radical cations do not react on the CV timescale with oxygen bypassing the need to run reactions under nitrogen or argon and (2) have long wavelength absorptions between 413 and 523nm well out of the range where competitive absorbance by most substrates would cause a problem. These new sensitizers do react with water requiring special precautions to operate in a dry reaction environment.

  1. The excitation energy transfer between b -Car and Chla molecules in PSⅡ core antenna complexes CP43 and CP47

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The excitation energy transfer efficiency between b -Car and Chla molecules in purified CP43 and CP47 was calculated by comparing absorption and fluorescence excitation after normalization at 550 nm, CP43 had an energy transfer efficiency of 29.1% while the CP47 had an energy transfer efficiency of 62.8%, proving that excitation energy was transferred between b -Car and Chla molecules in CP43 and CP47 at normal conditions. The excitation energy transfer between b -Car and Chla molecules in CP43 and CP47 may occur through the "Dexter" mechanism and the distance between these two kinds of pigments should be less than 1 nm. In addition, the results were also used to discuss the conformational relationship between b -Car and Chla molecules in CP43 and CP47.

  2. Fast spin information transfer between distant quantum dots using individual electrons

    Science.gov (United States)

    Bertrand, B.; Hermelin, S.; Takada, S.; Yamamoto, M.; Tarucha, S.; Ludwig, A.; Wieck, A. D.; Bäuerle, C.; Meunier, T.

    2016-08-01

    Transporting ensembles of electrons over long distances without losing their spin polarization is an important benchmark for spintronic devices. It usually requires injecting and probing spin-polarized electrons in conduction channels using ferromagnetic contacts or optical excitation. In parallel with this development, important efforts have been dedicated to achieving control of nanocircuits at the single-electron level. The detection and coherent manipulation of the spin of a single electron trapped in a quantum dot are now well established. Combined with the recently demonstrated control of the displacement of individual electrons between two distant quantum dots, these achievements allow the possibility of realizing spintronic protocols at the single-electron level. Here, we demonstrate that spin information carried by one or two electrons can be transferred between two quantum dots separated by a distance of 4 μm with a classical fidelity of 65%. We show that at present it is limited by spin flips occurring during the transfer procedure before and after electron displacement. Being able to encode and control information in the spin degree of freedom of a single electron while it is being transferred over distances of a few micrometres on nanosecond timescales will pave the way towards ‘quantum spintronics’ devices, which could be used to implement large-scale spin-based quantum information processing.

  3. Theory of ultrafast photoinduced electron transfer from a bulk semiconductor to a quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Andrew M., E-mail: andyras@gmail.com; Ramakrishna, S.; Weiss, Emily A.; Seideman, Tamar, E-mail: t-seideman@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113 (United States)

    2014-04-14

    This paper describes analytical and numerical results from a model Hamiltonian method applied to electron transfer (ET) from a quasicontinuum (QC) of states to a set of discrete states, with and without a mediating bridge. Analysis of the factors that determine ET dynamics yields guidelines for achieving high-yield electron transfer in these systems, desired for instance for applications in heterogeneous catalysis. These include the choice of parameters of the laser pulse that excites the initial state into a continuum electronic wavepacket and the design of the coupling between the bridge molecule and the donor and acceptor. The vibrational mode on a bridging molecule between donor and acceptor has an influence on the yield of electron transfer via Franck-Condon factors, even in cases where excited vibrational states are only transiently populated. Laser-induced coherence of the initial state as well as energetic overlap is crucial in determining the ET yield from a QC to a discrete state, whereas the ET time is influenced by competing factors from the coupling strength and the coherence properties of the electronic wavepacket.

  4. Quantum-chemical study of electronically excited states ofprotolytic forms of vanillic acid

    OpenAIRE

    Vusovich, O. V.; Tchaikovskaya, O. N.; I. V. Sokolova; Vasileva, N. Y.

    2015-01-01

    The paper describes an analysis of possible ways of deactivation of electronically excited states of 4-hydroxy- 3-methoxy-benzoic acid (vanillic acid) and its protolytic forms with the use of quantum-chemical methods INDO/S (intermediate neglect of differential overlap with a spectroscopic parameterization) and MEP (molecular electrostatic potential). The ratio of radiative and non-radiative deactivation channels of the electronic excitation energy is established. The rate constants of photop...

  5. Direct evidences for inner-shell electron-excitation by laser induced electron recollision

    CERN Document Server

    Deng, Yunpei; Jia, Zhengmao; Komm, Pavel; Zheng, Yinhui; Ge, Xiaochun; Li, Ruxin; Marcus, Gilad

    2015-01-01

    Extreme ultraviolet (XUV) attosecond pulses, generated by a process known as laser-induced electron recollision, are a key ingredient for attosecond metrology, providing a tool to precisely initiate and probe sub-femtosecond dynamics in the microcosms of atoms, molecules and solids[1]. However, with the current technology, extending attosecond metrology to scrutinize the dynamics of the inner-shell electrons is a challenge, that is because of the lower efficiency in generating the required soft x-ray \\hbar\\omega>300 eV attosecond bursts and the lower absorption cross-sections in this spectral range. A way around this problem is to use the recolliding electron to directly initiate the desired inner-shell process, instead of using the currently low flux x-ray attosecond sources.Such an excitation process occurs in a sub-femtosecond timescale, and may provide the necessary "pump" step in a pump-probe experiment[2]. Here we used a few cycle infrared \\lambda_{0}~1800nm source[3] and observed direct evidences for i...

  6. Acoustic resonance excitation of turbulent heat transfer and flow reattachment downstream of a fence

    Science.gov (United States)

    Selcan, Claudio; Cukurel, Beni; Shashank, Judah

    2016-10-01

    The current work investigates the aero-thermal impact of standing sound waves, excited in a straight channel geometry, on turbulent, separating and reattaching flow over a fence. Effects of distinct frequency resonant forcing (ReH = 10,050 and f = 122 Hz) are quantified by wall static pressure measurements and detailed convective heat transfer distributions via liquid crystal thermometry. Acoustic boundary conditions are numerically predicted and the computed longitudinal resonance mode shapes are experimentally verified by surface microphone measurements. Findings indicate the presence of a resonant sound field to exert strong influence on local heat transfer downstream of the fence, whereas the boundary layer upstream of the obstacle remains notable unaffected. Upstream shift of the maximum heat transfer location and an earlier pressure recovery indicate a reduction in time averaged flow reattachment length of up to 37 %. Although the streamwise peak Nusselt increased by only 5 %, the heat transfer level in the vicinity of the unexcited reattachment zone was locally enhanced up to 25 %. Despite prominent impact of resonant forcing on the fence wake flow, the total pressure drop penalty remained invariant. Observations demonstrate the significant aero-thermal implications of shear layer excitation by standing sound waves superimposed on the channel flow field.

  7. Intermolecular and intramolecular electron transfer from eosin ester to viologen

    Institute of Scientific and Technical Information of China (English)

    张丰雷; 张曼华; 沈涛

    1996-01-01

    The covalently -(CH2)10- linked eosin-butylviologen compound has been synthesized. The photoinduced electron transfer of eosin ester and butylviologen as well as the influence of addition of cyclodextrin or amylose into the solution of linked compound on the system have been studied by the absorption spectra, fluorescence spectra and fluorescence lifetime. The results indicated that the intramolecular electron transfer is much more efficient than the intermolecular one. Due to the formation of inclusion complex, the process of intramolecular electron transfer was changed after adding cydodextrin or amylose.

  8. Differential cross sections for electron-impact vibrational-excitation of tetrahydrofuran at intermediate impact energies

    Energy Technology Data Exchange (ETDEWEB)

    Do, T. P. T. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); School of Education, Can Tho University, Campus II, 3/2 Street, Xuan Khanh, Ninh Kieu, Can Tho City (Viet Nam); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Konovalov, D. A.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville (Australia); Brunger, M. J., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jones, D. B., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)

    2015-03-28

    We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.

  9. Quantum entanglement for two electrons in the excited states of helium-like systems

    OpenAIRE

    Lin, Yen-Chang; Ho, Yew Kam

    2013-01-01

    The quantum entanglement for the two electrons in the excited states of the helium-like atom/ions is investigated using the two-electron wave functions constructed by the B-spline basis. As a measure of the spatial (electron-electron orbital) entanglement, the von Neumann entropy and linear entropy of the reduced density matrix are calculated for the 1s2s 1,3S excited states for systems with some selected Z values from Z=2 to Z=100. Results for the helium atom are compared with other availabl...

  10. Experimental and Quantum-Chemical Study of Electronically Excited States of Protolytic Isovanillin Species

    Science.gov (United States)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.

    2014-05-01

    Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.

  11. Excitation of a cylindrical cavity by a helical current and an axial electron beam current

    Science.gov (United States)

    Davidovich, M. V.; Bushuev, N. A.

    2013-07-01

    The explicit expressions (in the Vainshtein and Markov forms) are derived for the excitation of a cylindrical cavity with perfectly conducting walls and with impedance end faces. Excitation of a cylindrical cavity and a cylindrical waveguide with a preset nonuniform axial electron-beam current and a helical current with a variable pitch, which is excited by a concentrated voltage source and is loaded by a preset pointlike matched load, is considered. For the helical current, the integro-differential equation is formulated. The traveling-wave tube (TWT) is simulated in the preset beam current approximation taking into account the nonuniform winding of the spiral coil, nonuniform electron beam, and losses.

  12. A theoretical study of electronic excited states of photosynthetic reaction center in Rhodopseudomonas viridis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The electronic singlet vertical excited states of photosynthetic reaction center (PSRC) in Rhodopseudomonas (Rps.) viridis were investigated by ZINDO and INDO/S methods. The effects of the interactions of pigment-pigment and pigment-protein on the electronic excitations were examined. The calculation results showed that the interactions of pigment-pigment and pigment-protein play an important role in reasonably assigning the experimental absorption and circular dichroism (CD) spectra of PSRC in Rps. virids. By comparing the theoretically computed excited states with the experimental absorption and CD spectra, satisfactory assignments of the experimental spectroscopic peaks were achieved.

  13. Determination of Surface excitation correction in elastic peak electron spectroscopy for selected conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lesiak, B. [Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44/52 (Poland)]. E-mail: blo@ichf.edu.pl; Gergely, G. [Research Institute for Technical Physics and Materials Sciences, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Toth, J. [Nuclear Research Institute ATOMKI, H-4001 Debrecen, P.O. Box 51 (Hungary); Menyhard, M. [Research Institute for Technical Physics and Materials Sciences, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Varga, D. [Nuclear Research Institute ATOMKI, H-4001 Debrecen, P.O. Box 51 (Hungary); Gurban, S. [Research Institute for Technical Physics and Materials Sciences, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Sulyok, A. [Research Institute for Technical Physics and Materials Sciences, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Kosinski, A. [Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44/52 (Poland)

    2006-12-15

    Inelastic mean free paths (IMFPs) determined by elastic peak electron spectroscopy (EPES) have been frequently evaluated neglecting surface excitations that affect the elastic peak intensity for a sample and a reference material. Surface excitation correction is defined by Surface excitation parameter, P {sub s}, denoted by SEP. SEPs for eight selected conducting polymers (polythiophenes, polyaniline and polyethylene) undoped and doped with Pd were determined by EPES using Ag, Ni and Si reference materials for electron energies between 0.2 and 2.0 keV. The mean percentage deviations between IMFPs uncorrected for surface excitations and those calculated with the predictive formulae of Gries and Tanuma et al. were 4.32 and 27.32%, respectively. Relevant deviations for IMFPs corrected for surface excitations were 2.97 and 22.90%, respectively.

  14. 2D-IR spectroscopy of hydrogen-bond-mediated vibrational excitation transfer.

    Science.gov (United States)

    Chuntonov, Lev

    2016-05-18

    Vibrational excitation transfer along the hydrogen-bond-mediated pathways in the complex of methyl acetate (MA) and 4-cyanophenol (4CP) was studied by dual-frequency femtosecond two-dimensional infrared spectroscopy. We excited the energy-donating ester carbonyl stretching vibrational mode and followed the transfer to the energy-accepting benzene ring and cyano stretching vibrations. The complexes with no, one, and two hydrogen-bonded 4CP molecules were studied. Vibrational relaxation of the carbonyl mode is more efficient in both hydrogen-bonded complexes as compared with free MA molecules. The inter-molecular transport in a hydrogen-bonded complex involving a single 4CP molecule is slower than that in a complex with two 4CP molecules. In the former, vibrational relaxation leads to local heating, as shown by the spectroscopy of the carbonyl mode, whereas the local heating is suppressed in the latter because the excitation redistribution is more efficient. At early times, the transfer to the benzene ring is governed by its direct coupling with the energy-donating carbonyl mode, whereas at later times intermediate states are involved. The transfer to a more distant site of the cyano group in 4CP involves intermediate states at all times, since no direct coupling between the energy-donating and accepting modes was observed. We anticipate that our findings will be of importance for spectroscopic studies of bio-molecular structures and dynamics, and inter- and intra-molecular signaling pathways, and for developing molecular networking applications. PMID:27145861

  15. Modulating the electronic structure of chromophores by chemical substituents for efficient energy transfer: application to fluorone.

    Science.gov (United States)

    Sand, Andrew M; Liu, Claire; Valentine, Andrew J S; Mazziotti, David A

    2014-08-01

    Strong electron correlation within a quasi-spin model of chromophores was recently shown to enhance exciton energy transfer significantly. Here we investigate how the modulation of the electronic structure of the chromophores by chemical substitution can enhance energy-transfer efficiency. Unlike previous work that does not consider the direct effect of the electronic structure on exciton dynamics, we add chemical substituents to the fluorone dimer to study the effect of electron-donating and electron-withdrawing substituents on exciton energy transfer. The exciton dynamics are studied from the solution of a quantum Liouville equation for an open system whose model Hamiltonian is derived from excited-state electronic structure calculations. Both van der Waals energies and coupling energies, arising from the Hellmann-Feynman force generated upon transferring the dimers from infinity to a finite separation, are built into the model Hamiltonian. Though these two effects are implicitly treated in dipole-based models, their explicit and separate treatment as discussed here is critical to forging the correct connection with the electronic structure calculations. We find that the addition of electron-donating substituents to the fluorone system results in an increase in exciton-transfer rates by factors ranging from 1.3-1.9. The computed oscillator strength is consistent with the recent experimental results on a larger heterodimer system containing fluorone. The oscillator strength increases with the addition of electron-donating substituents. Our results indicate that the study of chromophore networks via electronic structure will help in the future design of efficient synthetic light-harvesting systems. PMID:25062094

  16. Endoergic and resonant charge transfer excitation in He-Cu discharge

    Science.gov (United States)

    Mezei, P.; Rózsa, K.; Jánossy, M.; Apai, P.

    1987-09-01

    The intensity of Cu-II lines with upper level energies near and above those of the He ion was measured as a function of He pressure in a Cu hollow cathode tube. In this tube at low pressures the negative glow could expand above the cathode. The maximum intensity of the Cu-II 493.1 nm line was found in the low voltage, high pressure hollow cathode discharge region in accordance with a resonant charge transfer excitation process. Enhancement of the intensity of the Cu-II 436.5 nm and 417.9 nm lines was observed in the cathode glow at low pressures. Excitation of these lines is attributed to endoergic charge transfer collisions between He ions accelerated by the 2 kV tube voltage and ground state Cu atoms. The cross-section for this reaction exciting the 436.5 nm line was estimated to be of the order of 10-17 cm2.

  17. Methods, algorithms and computer codes for calculation of electron-impact excitation parameters

    CERN Document Server

    Bogdanovich, P; Stonys, D

    2015-01-01

    We describe the computer codes, developed at Vilnius University, for the calculation of electron-impact excitation cross sections, collision strengths, and excitation rates in the plane-wave Born approximation. These codes utilize the multireference atomic wavefunctions which are also adopted to calculate radiative transition parameters of complex many-electron ions. This leads to consistent data sets suitable in plasma modelling codes. Two versions of electron scattering codes are considered in the present work, both of them employing configuration interaction method for inclusion of correlation effects and Breit-Pauli approximation to account for relativistic effects. These versions differ only by one-electron radial orbitals, where the first one employs the non-relativistic numerical radial orbitals, while another version uses the quasirelativistic radial orbitals. The accuracy of produced results is assessed by comparing radiative transition and electron-impact excitation data for neutral hydrogen, helium...

  18. Measurements and analysis of excitation coefficients and secondary electron yields in Townsend dark discharges

    International Nuclear Information System (INIS)

    In this paper, we review our study of excitation coefficients in rare gases and in methane, some of the excitation cross sections that were obtained, the spatial profiles of emission (with absolute calibration) and secondary electron yields. The data for excitation coefficients have been analysed to produce the cross section data in some cases. The spatial profiles of emission at the low currents were used to establish the importance of the non-hydrodynamic relaxation and the contributions of heavy particles and reflected electrons. These data were also used to get more reliable secondary electron yields for rare gases. The spatial emission profiles at higher currents have been applied to obtain field profiles and make comparisons with hybrid models. In particular, we present in this paper, the emission coefficients in krypton and we discuss the wide range of interconnected applications of excitation coefficients and spatial emission profiles

  19. Back-action-induced excitation of electrons in a silicon quantum dot with a single-electron transistor charge sensor

    Energy Technology Data Exchange (ETDEWEB)

    Horibe, Kosuke; Oda, Shunri [Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552 (Japan); Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp [Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505 (Japan)

    2015-02-02

    Back-action in the readout of quantum bits is an area that requires a great deal of attention in electron spin based-quantum bit architecture. We report here back-action measurements in a silicon device with quantum dots and a single-electron transistor (SET) charge sensor. We observe the back-action-induced excitation of electrons from the ground state to an excited state in a quantum dot. Our measurements and theoretical fitting to the data reveal conditions under which both suitable SET charge sensor sensitivity for qubit readout and low back-action-induced transition rates (less than 1 kHz) can be achieved.

  20. Back-action-induced excitation of electrons in a silicon quantum dot with a single-electron transistor charge sensor

    International Nuclear Information System (INIS)

    Back-action in the readout of quantum bits is an area that requires a great deal of attention in electron spin based-quantum bit architecture. We report here back-action measurements in a silicon device with quantum dots and a single-electron transistor (SET) charge sensor. We observe the back-action-induced excitation of electrons from the ground state to an excited state in a quantum dot. Our measurements and theoretical fitting to the data reveal conditions under which both suitable SET charge sensor sensitivity for qubit readout and low back-action-induced transition rates (less than 1 kHz) can be achieved

  1. Promoting Knowledge Transfer with Electronic Note Taking

    Science.gov (United States)

    Katayama, Andrew D.; Shambaugh, R. Neal; Doctor, Tasneem

    2005-01-01

    We investigated the differences between (a) copying and pasting text versus typed note-taking methods of constructing study notes simultaneously with (b) vertically scaffolded versus horizontally scaffold notes on knowledge transfer. Forty-seven undergraduate educational psychology students participated. Materials included 2 electronic…

  2. Electronic structure of thienylene vinylene oligomers : Singlet excited states, triplet excited states, cations, and dications

    NARCIS (Netherlands)

    Grozema, FC; van Duijnen, PT; Siebbeles, LDA; Goossens, A

    2004-01-01

    This paper describes a quantum chemical study of the electronic structure of thienylene vinylene oligomers ranging in size from two thienylene rings (2TV) to 12TV. The geometries of the TV oligomers in the ground state, the lowest triplet state, and the singly and doubly oxidized states were optimiz

  3. Supramolecular networks with electron transfer in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin

    2016-09-13

    Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.

  4. Analysis of transmission efficiency of SSRF electron beam transfer lines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, the main factors which influence transmission efficiency of the SSRF electron beam transfer lines are described, including physical requirements for magnet system, vacuum system, beam diagnostic system,trajectory correction system, etc. The dynamic simulation calculation and transmission efficiency analysis of the SSRF electron beam transfer lines are presented, and the studies show that the design purpose of efficient beam transmission and injection will be achieved.

  5. 77 FR 6310 - Electronic Fund Transfers (Regulation E)

    Science.gov (United States)

    2012-02-07

    ... numbers of transactions as being outside the normal course of business. Nor did they suggest other means... the first transaction in a series of preauthorized remittance transfers the same as all other... electronic transfers of funds sent by consumers in the United States to recipients in other countries....

  6. Theory of interrelated electron and proton transfer processes

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2003-01-01

    A simple theory of elementary act of interrelated reactions of electron and proton transfer is developed. Mechanisms of synchronous and multistage transfer and coherent transitions via a dynamically populated intermediate state are discussed. Formulas for rate constants of adiabatic and nonadiaba...

  7. Theory of coupled hybrid inorganic/organic systems: Excitation transfer at semiconductor/molecule interfaces

    Science.gov (United States)

    Specht, Judith; Verdenhalven, Eike; Theuerholz, Sverre; Knorr, Andreas; Richter, Marten

    2016-03-01

    We derive a theoretical framework for describing hybrid organic-inorganic systems consisting of an ordered organic molecular layer coupled to a semiconductor quantum well (e.g., ZnO). A Heisenberg equation of motion technique based on a density matrix formalism is applied to derive dynamical equations for the composite system on a mesoscopic scale. Our theoretical approach focuses on the inuence of nonradiative Förster excitation transfer across the hybrid interface on linear optical absorption spectra. Therefore, the dielectric screening is discussed at the interface of two materials with different dielectric constants. Moreover, the Förster transfer matrix element is calculated in the point-dipole approximation. For a consistent theoretical description of both constituents (i.e., the molecular layer and the semiconductor substrate), the problem is treated in momentum space. Solving the equations of motion for the microscopic polarizations in frequency space directly leads to an equation for the frequency-dependent linear absorption coefficient. Our theoretical approach forms the basis for studying parameter regimes and geometries with optimized excitation transfer efficiency across the semiconductor/ molecule interface.

  8. Fast electronic relaxation in metal nanoclusters via excitation of coherent shape deformations: Circumventing a bottleneck

    CERN Document Server

    Kresin, V V; Kresin, Vitaly V.; Ovchinnikov, Yu. N.

    2006-01-01

    Electron-phonon relaxation in size-quantized systems may become inhibited when the spacing of discrete electron energy levels exceeds the magnitude of the phonon frequency. We show, however, that nanoclusters can support a fast nonradiative relaxation channel which derives from their distinctive ability to undergo Jahn-Teller shape deformations. Such a deformation represents a collective and coherent vibrational excitation and enables electronic transitions to occur without a multiphonon bottleneck. We analyze this mechanism for a metal cluster within the analytical framework of a three-dimensional potential well undergoing a spheroidal distortion. An expression for the time evolution of the distortion parameter is derived, the electronic level crossing condition formulated, and the probability of electronic transition at a level crossing is evaluated. An application to electron-hole recombination in a closed-shell aluminum cluster with 40 electrons shows that the short (~250 fs) excitation lifetime observed ...

  9. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen, E-mail: karen.hemelsoet@ugent.be [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); De Meyer, Thierry [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium); De Clerck, Karen [Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium)

    2014-04-07

    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.

  10. Ultrafast Electron Transfer Between Dye and Catalyst on a Mesoporous NiO Surface.

    Science.gov (United States)

    Brown, Allison M; Antila, Liisa J; Mirmohades, Mohammad; Pullen, Sonja; Ott, Sascha; Hammarström, Leif

    2016-07-01

    The combination of molecular dyes and catalysts with semiconductors into dye-sensitized solar fuel devices (DSSFDs) requires control of efficient interfacial and surface charge transfer between the components. The present study reports on the light-induced electron transfer processes of p-type NiO films cosensitized with coumarin C343 and a bioinspired proton reduction catalyst, [FeFe](mcbdt)(CO)6 (mcbdt = 3-carboxybenzene-1,2-dithiolate). By transient optical spectroscopy we find that ultrafast interfacial electron transfer (τ ≈ 200 fs) from NiO to the excited C343 ("hole injection") is followed by rapid (t1/2 ≈ 10 ps) and efficient surface electron transfer from C343(-) to the coadsorbed [FeFe](mcbdt)(CO)6. The reduced catalyst has a clear spectroscopic signature that persists for several tens of microseconds, before charge recombination with NiO holes occurs. The demonstration of rapid surface electron transfer from dye to catalyst on NiO, and the relatively long lifetime of the resulting charge separated state, suggests the possibility to use these systems for photocathodes on DSSFDs.

  11. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting.

    Science.gov (United States)

    Huo, P; Coker, D F

    2010-11-14

    Rather than incoherent hopping between chromophores, experimental evidence suggests that the excitation energy transfer in some biological light harvesting systems initially occurs coherently, and involves coherent superposition states in which excitation spreads over multiple chromophores separated by several nanometers. Treating such delocalized coherent superposition states in the presence of decoherence and dissipation arising from coupling to an environment is a significant challenge for conventional theoretical tools that either use a perturbative approach or make the Markovian approximation. In this paper, we extend the recently developed iterative linearized density matrix (ILDM) propagation scheme [E. R. Dunkel et al., J. Chem. Phys. 129, 114106 (2008)] to study coherent excitation energy transfer in a model of the Fenna-Matthews-Olsen light harvesting complex from green sulfur bacteria. This approach is nonperturbative and uses a discrete path integral description employing a short time approximation to the density matrix propagator that accounts for interference between forward and backward paths of the quantum excitonic system while linearizing the phase in the difference between the forward and backward paths of the environmental degrees of freedom resulting in a classical-like treatment of these variables. The approach avoids making the Markovian approximation and we demonstrate that it successfully describes the coherent beating of the site populations on different chromophores and gives good agreement with other methods that have been developed recently for going beyond the usual approximations, thus providing a new reliable theoretical tool to study coherent exciton transfer in light harvesting systems. We conclude with a discussion of decoherence in independent bilinearly coupled harmonic chromophore baths. The ILDM propagation approach in principle can be applied to more general descriptions of the environment.

  12. Neutrino production of electron-positron pairs at excited Landau levels in a strong magnetic field

    CERN Document Server

    Kuznetsov, A V; Savin, V N

    2014-01-01

    The process of neutrino production of electron positron pairs in a magnetic field of arbitrary strength, where electrons and positrons can be created in the states corresponding to excited Landau levels, is analysed. The mean value of the neutrino energy loss due to the process $\

  13. Electron Spectroscopy: Ultraviolet and X-Ray Excitation.

    Science.gov (United States)

    Baker, A. D.; And Others

    1980-01-01

    Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);…

  14. Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule

    CERN Document Server

    Laporta, V; Celiberto, R

    2016-01-01

    Vibrational-excitation cross sections of ground electronic state of carbon dioxide molecule by electron-impact through the CO2-(2\\Pi) shape resonance is considered in the separation of the normal modes approximation. Resonance curves and widths are computed for each vibrational mode. The calculations assume decoupling between normal modes and employ the local complex potential model for the treatment of the nuclear dynamics, usually adopted for the electron-scattering involving diatomic molecules. Results are presented for excitation up to 10 vibrational levels in each mode and comparison with data present in the literature is discussed.

  15. Measurements of Electron Impact Excitation Cross Sections at the Harvard-Smithsonian Center for Astrophysics

    Science.gov (United States)

    Gardner, L. D.; Kohl, J. L.

    2006-01-01

    The analysis of absolute spectral line intensities and intensity ratios with spectroscopic diagnostic techniques provides empirical determinations of chemical abundances, electron densities and temperatures in astrophysical objects. Since spectral line intensities and their ratios are controlled by the excitation rate coefficients for the electron temperature of the observed astrophysical structure, it is imperative that one have accurate values for the relevant rate coefficients. Here at the Harvard-Smithsonian Center for Astrophysics, we have been carrying out measurements of electron impact excitation (EIE) for more than 25 years.

  16. Electroluminescence and its excitation mechanism of SiOx films deposited by electron-beam evaporation

    International Nuclear Information System (INIS)

    Blue electroluminescence from SiOx films deposited by electron beam evaporation was observed. This blue emission blueshifted from 450 to 410 nm with increasing applied voltage. The dependences of blue emission on applied voltage, frequency and conduction current were studied. Our experimental data support that blue emission from SiOx films is the result of both recombination of charge carriers injected from opposite electrodes and impact excitation of hot electrons, the recombination of carriers injected is dominant in low and medium electric fields but hot electron impact excitation is dominant under high electric fields

  17. Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. 3: CO2

    Science.gov (United States)

    Mumma, M. J.; Borst, W. L.; Zipf, E. C.

    1972-01-01

    Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact on CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focused electron gun used is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are presented. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.

  18. Electron energy-loss spectroscopy of excited states of the pyridine molecules

    Science.gov (United States)

    Linert, Ireneusz; Zubek, Mariusz

    2016-04-01

    Electron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5-10 eV. The applied wide range of residual electron energy and the scattering angle range from 10° to 180° enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited states of pyridine to be determined and tentative assignments of these states to be proposed. Some of these states have not been identified in the previous works. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  19. Resonant transfer excitation followed by X-ray for boron-like ions

    OpenAIRE

    RAMADAN, Hassan

    2011-01-01

    Theoretical cross sections for resonant transfer excitation followed by x-ray emission (RTEX) are calculated for the collisions of some ions in the series of the Boron-like ions with H2 as a target. The calculations have been done for C II, N III, O IV, F V, Ar XIV and Fe XXII ions by folding their dielectronic recombination (DR) cross sections over the momentum distribution (Compton profile) of H2 target gas. Calculations have been performed from both ground and metastable initial st...

  20. Finite Size Corrections to the Excitation Energy Transfer in a Massless Scalar Interaction Model

    CERN Document Server

    Maeda, N; Tobita, Y; Ishikawa, K

    2016-01-01

    We study the excitation energy transfer (EET) for a simple model in which a virtual massless scalar particle is exchanged between two molecules. If the time interval is finite, then the finite size effect generally appears in a transition amplitude through the regions where the wave nature of quanta remains. We calculated the transition amplitude for EET and obtained finite size corrections to the standard formula derived by using Fermi's golden rule. These corrections for the transition amplitude appear outside the resonance energy region. The estimation in a photosynthesis system indicates that the finite size correction could reduce the EET time considerably.

  1. Excited state intramolecular charge transfer reaction in 4-(1-azetidinyl)benzonitrile: Solvent isotope effects

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2009-01-01

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other properties such as quantum yield and radiative rates have been found to be insensitive to the solvent isotope substitution in all these solvents. The origin of the solvent isotope insensitivity of the reaction is discussed and correlated with the observed slowing down of the solvation dynamics upon isotope substitution.

  2. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  3. Proton-Coupled Electron Transfer Reactions with Photometric Bases Reveal Free Energy Relationships for Proton Transfer.

    Science.gov (United States)

    Eisenhart, Thomas T; Howland, William C; Dempsey, Jillian L

    2016-08-18

    The proton-coupled electron transfer (PCET) oxidation of p-aminophenol in acetonitrile was initiated via stopped-flow rapid-mixing and spectroscopically monitored. For oxidation by ferrocenium in the presence of 7-(dimethylamino)quinoline proton acceptors, both the electron transfer and proton transfer components could be optically monitored in the visible region; the decay of the ferrocenium absorbance is readily monitored (λmax = 620 nm), and the absorbance of the 2,4-substituted 7-(dimethylamino)quinoline derivatives (λmax = 370-392 nm) red-shifts substantially (ca. 70 nm) upon protonation. Spectral analysis revealed the reaction proceeds via a stepwise electron transfer-proton transfer process, and modeling of the kinetics traces monitoring the ferrocenium and quinolinium signals provided rate constants for elementary proton and electron transfer steps. As the pKa values of the conjugate acids of the 2,4-R-7-(dimethylamino)quinoline derivatives employed were readily tuned by varying the substituents at the 2- and 4-positions of the quinoline backbone, the driving force for proton transfer was systematically varied. Proton transfer rate constants (kPT,2 = (1.5-7.5) × 10(8) M(-1) s(-1), kPT,4 = (0.55-3.0) × 10(7) M(-1) s(-1)) were found to correlate with the pKa of the conjugate acid of the proton acceptor, in agreement with anticipated free energy relationships for proton transfer processes in PCET reactions. PMID:27500804

  4. Transfer Excitation Processes Observed in N3+-He and O3+-He Collisions at Elab = 33 eV

    Science.gov (United States)

    Itoh, Yoh

    2016-09-01

    We measured the relative state-selective differential cross sections (DCSs) for one-electron capture reactions using a crossed-beam apparatus. The scattering angle θlab studied in the laboratory frame ranged from -3.0 to 22° and the laboratory collision energy Elab was 33 eV. Only the transfer excitation processes, i.e., the electron capture reactions with the simultaneous excitation of the projectile, were observed. The DCSs were determined for the following reactions: N3+ (1s2 2s2 1S) + He (1s2 1S) → N2+ (1s2 2s2p2 2D) + He+ (1s 2S) + 10.3 eV, O3+ (1s2 2s2 2p 2P) + He (1s2 1S) → O2+ (1s2 2s 2p3 3P) + He+ (1s 2S) + 12.7 eV, and O3+ (1s2 2s2 2p 2P) + He (1s2 1S) → O2+ (1s2 2s 2p3 3D) + He+ (1s 2S) + 15.5 eV. In the N3+-He system, the DCSs for the reaction are zero at the center-of-mass angle θcm = 0 and show a peak at a certain angle and a shoulder at a larger angle. In the O3+-He system, the DCSs are again zero at θcm = 0. The capture process to the O2+ (1s2 2s 2p3 3P) state is mainly observed at smaller scattering angles, and the reaction to the O2+ (1s2 2s 2p3 3D) state becomes dominant with increasing scattering angle. A classical trajectory analysis within the two-state approximation based on the ab initio potentials for (NHe)3+ revealed that the transfer excitation of a two-electron process takes place through a single crossing of the relevant potentials.

  5. Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis.

    Science.gov (United States)

    Lam, Quan; Kato, Mallory; Cheruzel, Lionel

    2016-05-01

    The unique photochemical properties of Ru(II)-diimine complexes have helped initiate a series of seminal electron transfer studies in metalloenzymes. It has thus been possible to experimentally determine rate constants for long-range electron transfers. These studies have laid the foundation for the investigation of reactive intermediates in heme proteins and for the design of light-activated biocatalysts. Various metalloenzymes such as hydrogenase, carbon monoxide dehydrogenase, nitrogenase, laccase and cytochrome P450 BM3 have been functionalized with Ru(II)-diimine complexes. Upon visible light-excitation, these photosensitized metalloproteins are capable of sustaining photocatalytic activity to reduce small molecules such as protons, acetylene, hydrogen cyanide and carbon monoxide or activate molecular dioxygen to produce hydroxylated products. The Ru(II)-diimine photosensitizers are hence able to deliver multiple electrons to metalloenzymes buried active sites, circumventing the need for the natural redox partners. In this review, we will highlight the key achievements of the light-driven biocatalysts, which stem from the extensive electron transfer investigations. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  6. 75 FR 16579 - Electronic Fund Transfers

    Science.gov (United States)

    2010-04-01

    ...-detail.php?article_id=330539 ). According to the Federal Reserve's 2007 Electronic Payments Study, $36.6... gift card or gift certificate and loyalty, award, and promotional gift cards. \\7\\ 74 FR 60986 (Nov. 20... (available at: http://schumer.senate.gov/new_website/record.cfm?id=310799 ). New comment 20(a)-4...

  7. Mathematics and electronics - the conceptual transfer problem

    Science.gov (United States)

    Waks, S.

    1988-07-01

    The article deals with the gap between the technological-school student's mastery of pure mathematical principles and his/her competence in their implementation in electronics and suggests a means for narrowing this, using a case study. A cooperative effort by mathematics and electronics teachers, involving coordination of content, teaching strategies and timing, was implemented on two groups (treatment and control). The treatment group achieved significantly higher average scores in tests in those questions where the mathematical reinforcement provided in the treatment process could be used - and this in spite of the group's weaker standing in the electronics course. Moreover, it was establised that treatment students adopted a more analytical approach in their solution strategies, while control students tended to rely more on recall and 'ready-made' formulae. The main conclusion of our case study is that mastery of mathematical theory and principles is a prerequisite to efficient tackling of technological problems, but is not always enough. Cooperation between the maths and electronics teachers contributes to improvement of the teaching-learning process in a technological discipline.

  8. Electron transfer rates and equilibrium within cytochrome c oxidase

    DEFF Research Database (Denmark)

    Farver, O; Einarsdóttir, O; Pecht, I

    2000-01-01

    Intramolecular electron transfer (ET) between the CuA center and heme a in bovine cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methyl nicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at...

  9. Photoinduced electron transfer in model systems of photosynthesis.

    NARCIS (Netherlands)

    Hofstra, U.

    1988-01-01

    This Thesis describes Investigations on photoinduced electron transfer (ET) for several compounds, serving as model systems of the natural photosynthesis. In addition, the properties of the systems, e.g. the conformation in solution and the electronic properties of the photoexcited states are treate

  10. Coherent excitation transferring via dark state in light-harvesting process

    CERN Document Server

    Dong, H; Sun, C P

    2011-01-01

    We study the light absorption and energy transferring in a donor-acceptor system with a bionic structure. In the optimal case with uniform couplings, it is found that the quantum dynamics of this seemingly complicated system is reduced as a three-level system of $\\Lambda$-type. With this observation, we show that the dark state based electromagnetically-induced transparency (EIT) effect could enhance the energy transfer efficiency, through a quantum interference effect suppressing the excited population of the donors. We estimate the optimal parameters of the system to achieve the maximum output power. The splitting behavior of maximum power may be used to explain the phenomenon that the photosynthesis systems mainly absorb two colors of light.

  11. Ultrafast Photo-Induced Charge Transfer Unveiled by Two-Dimensional Electronic Spectroscopy

    CERN Document Server

    Bixner, Oliver; Mancal, Tomas; Hauer, Juergen; Milota, Franz; Fischer, Michael; Pugliesi, Igor; Bradler, Maximilian; Schmid, Walther; Riedle, Eberhard; Kauffmann, Harald F; Christensson, Niklas

    2012-01-01

    The interaction of exciton and charge transfer (CT) states plays a central role in photo-induced CT processes in chemistry, biology and physics. In this work, we use a combination of two-dimensional electronic spectroscopy (2D-ES), pump-probe measurements and quantum chemistry to investigate the ultrafast CT dynamics in a lutetium bisphthalocyanine dimer in different oxidation states. It is found that in the anionic form, the combination of strong CT-exciton interaction and electronic asymmetry induced by a counter-ion enables CT between the two macrocycles of the complex on a 30 fs timescale. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra, and we monitor how the excited state charge density ultimately localizes on the macrocycle closest to the counter-ion within 100 fs. A comparison with the dynamics in the radical species further elucidates how CT states modulate the electronic structure and tune fs-reac...

  12. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  13. Nano tracks in fullerene film by dense electronic excitations

    International Nuclear Information System (INIS)

    Highlights: • Observation of nano track in C60 thin film irradiated with 30 MeV C60 cluster beam by HRTEM. • Average track diameter is around 20 nm in C60 thin films by 30 MeV cluster (C60) ion beam irradiation. • No track observed in C60 thin film irradiated with 120 MeV Au mono atomic beam. • Delta electrons produced during the ion irradiation play crucial role in nano-track formation. - Abstract: In the present work, we investigate the formation of nano tracks by cluster and mono-atomic ion beams in the fullerene (C60) thin films by High Resolution Transmission Electron Microscopy (HRTEM). The fullerene films on carbon coated grids were irradiated by 30 MeV C60 cluster beam and 120 MeV Au mono-atomic beams at normal and grazing angle to the incident ion beams. The studies show that the cluster beam creates latent tracks of an average diameter of around 20 nm. The formation of large size nano tracks by cluster beam is attributed to the deposition of large electronic energy density as compared to mono-atomic beams

  14. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.

    Science.gov (United States)

    Marinica, D C; Lourenço-Martins, H; Aizpurua, J; Borisov, A G

    2013-01-01

    Coupling molecular excitons and localized surface plasmons in hybrid nanostructures leads to appealing, tunable optical properties. In this respect, the knowledge about the excitation dynamics of a quantum emitter close to a plasmonic nanoantenna is of importance from fundamental and practical points of view. We address here the effect of the excited electron tunneling from the emitter into a metallic nanoparticle(s) in the optical response. When close to a plasmonic nanoparticle, the excited state localized on a quantum emitter becomes short-lived because of the electronic coupling with metal conduction band states. We show that as a consequence, the characteristic features associated with the quantum emitter disappear from the optical absorption spectrum. Thus, for the hybrid nanostructure studied here and comprising quantum emitter in the narrow gap of a plasmonic dimer nanoantenna, the quantum tunneling might quench the plexcitonic states. Under certain conditions the optical response of the system approaches that of the individual plasmonic dimer. Excitation decay via resonant electron transfer can play an important role in many situations of interest such as in surface-enhanced spectroscopies, photovoltaics, catalysis, or quantum information, among others. PMID:24206447

  15. Role of methylene spacer in the excitation energy transfer in europium 1- and 2- naphthylcarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, K. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Tsaryuk, V., E-mail: vit225@ire216.msk.s [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Kudryashova, V.; Pekareva, I. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation); Sokolnicki, J. [Faculty of Chemistry, University of WrocLaw, 14 F. Joliot-Curie str., WrocLaw 50-383 (Poland); Yakovlev, Yu. [V.A. Kotelnikov Institute of Radioengineering and Electronics of RAS, 1 Vvedenskii sq., Fryazino Moscow reg. 141190 (Russian Federation)

    2010-08-15

    A series of compounds Ln(RCOO){sub 3}.Phen (Ln=Eu, Gd, Tb; RCOO{sup -}-1- and 2-naphthoate, 1- and 2-naphthylacetate, 1- and 2-naphthoxyacetate anions, Phen-1,10-phenanthroline) was investigated by methods of optical spectroscopy. Compounds of composition Ln(RCOO){sub 3}.nH{sub 2}O with the same carboxylate ligands are also considered. Results of studies of the effects of methylene spacer decoupling the {pi}-{pi}- or p-{pi}-conjugation in the naphthylcarboxylate ligand on the structure of Eu{sup 3+} coordination centre, on the lifetime of {sup 5}D{sub 0} (Eu{sup 3+}) state, and on processes of the excitation energy transfer to Eu{sup 3+} or Tb{sup 3+} ions are presented. Introduction of the methylene bridge in the ligand weakens the influence of the steric hindrances in forming of a crystal lattice and results in lowering the distortion of the Eu{sup 3+} luminescence centre, and in elongation of the observed {sup 5}D{sub 0} lifetime {tau}{sub obs}. The latter is caused by decrease in contribution of the radiative processes rate 1/{tau}{sub r}. This is confirmed by the correlation between the lifetimes {tau}{sub obs} and the quantities '{tau}{sub r}.const' inversely proportional to the total integral intensities of Eu(RCOO){sub 3}.Phen luminescence spectra. The methylene spacer performs a role of regulator of sensitization of the Ln{sup 3+} luminescence efficiency by means of an influence on mutual location of lowest triplet states of the ligands, the ligand-metal charge transfer (LMCT) states, and the emitting states of Ln{sup 3+} ions. The lowest triplet state in lanthanide naphthylcarboxylate adducts with Phen is related to carboxylate anion. A presence of the methylene spacer in naphthylcarboxylate ligand increases the triplet state energy. At the same time, the energy of 'carboxylic group-Eu{sup 3+} ion' charge transfer states falls, which can promote the degradation of excitation energy. In naphthylcarboxylates investigated a range of the

  16. Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules

    DEFF Research Database (Denmark)

    Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa

    2016-01-01

    inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theory-MC-srDFT-as a new tool in the toolbox. While initial applications for systems with multireference character......Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become......-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2...

  17. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de [Institut für Physikalische Chemie, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany); Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl [Institute for Molecules and Materials, Radboud University, NL-6525 AS Nijmegen (Netherlands)

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  18. Electron transfer through rigid organic molecular wires enhanced by electronic and electron-vibration coupling.

    Science.gov (United States)

    Sukegawa, Junpei; Schubert, Christina; Zhu, Xiaozhang; Tsuji, Hayato; Guldi, Dirk M; Nakamura, Eiichi

    2014-10-01

    Electron transfer (ET) is a fundamental process in a wide range of biological systems, photovoltaics and molecular electronics. Therefore to understand the relationship between molecular structure and ET properties is of prime importance. For this purpose, photoinduced ET has been studied extensively using donor-bridge-acceptor molecules, in which π-conjugated molecular wires are employed as bridges. Here, we demonstrate that carbon-bridged oligo-p-phenylenevinylene (COPV), which is both rigid and flat, shows an 840-fold increase in the ET rate compared with the equivalent flexible molecular bridges. A 120-fold rate enhancement is explained in terms of enhanced electronic coupling between the electron donor and the electron acceptor because of effective conjugation through the COPVs. The remainder of the rate enhancement is explained by inelastic electron tunnelling through COPV caused by electron-vibration coupling, unprecedented for organic molecular wires in solution at room temperature. This type of nonlinear effect demonstrates the versatility and potential practical utility of COPVs in molecular device applications.

  19. Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; Lee, Yong-Min; Nam, Wonwoo

    2015-12-01

    Redox-inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal-oxygen intermediates, such as metal-oxo and metal-peroxo complexes. The mechanisms of the oxidative CH bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)-oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate-determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3 ) by iron(III)-oxo complexes. All logarithms of the observed second-order rate constants of Lewis acid-promoted oxidative CH bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)-oxo complexes exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal-oxo moiety has been confirmed for Mn(IV) -oxo complexes. The enhancement of the electron-transfer reactivity of metal-oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox-inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)-peroxo complexes, resulting in acceleration of the electron-transfer reduction but deceleration of the electron-transfer oxidation. Such a control on the reactivity of metal-oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca(2+) in the oxidation of water to dioxygen by the oxygen-evolving complex in photosystem II.

  20. Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; Lee, Yong-Min; Nam, Wonwoo

    2015-12-01

    Redox-inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal-oxygen intermediates, such as metal-oxo and metal-peroxo complexes. The mechanisms of the oxidative CH bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)-oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate-determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3 ) by iron(III)-oxo complexes. All logarithms of the observed second-order rate constants of Lewis acid-promoted oxidative CH bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)-oxo complexes exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal-oxo moiety has been confirmed for Mn(IV) -oxo complexes. The enhancement of the electron-transfer reactivity of metal-oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox-inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)-peroxo complexes, resulting in acceleration of the electron-transfer reduction but deceleration of the electron-transfer oxidation. Such a control on the reactivity of metal-oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca(2+) in the oxidation of water to dioxygen by the oxygen-evolving complex in photosystem II. PMID:26404482

  1. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning

    Science.gov (United States)

    de Queiroz, Thiago B.; Kümmel, Stephan

    2014-08-01

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an "optimally tuned" range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size.

  2. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning

    International Nuclear Information System (INIS)

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an “optimally tuned” range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size

  3. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: exploring range-separation tuning.

    Science.gov (United States)

    de Queiroz, Thiago B; Kümmel, Stephan

    2014-08-28

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an "optimally tuned" range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size.

  4. Electronic Energy Transfer in Polarizable Heterogeneous Environments

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Kongsted, Jacob

    2015-01-01

    such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable...... higher-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that...... explicit use of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....

  5. Nature of Electronically Excited States of Organic Compounds and Processes of Nonradiative Conversion

    Science.gov (United States)

    Mayer, G. V.; Plotnikov, V. G.; Artyukhov, V. Ya.

    2016-08-01

    Models of quantum-chemical calculation of rate constants for internal processes and intersystem crossing in polyatomic molecules are considered. The influence of the nature of electronically excited states in organic compounds is investigated. It is shown that the explicit allowance for the nature of wave functions of electronic states for estimation of electronic matrix elements of nonadiabaticity operators and spin-orbit interaction allows photophysical processes in organic compounds to be considered in detail.

  6. Symmetric eikonal model for projectile-electron excitation and loss in relativistic ion-atom collisions

    OpenAIRE

    Voitkiv, A. B.; Najjari, B.; Shevelko, S. P.

    2010-01-01

    At impact energies $ \\stackrel{>}{\\sim}1$ GeV/u the projectile-electron excitation and loss occurring in collisions between highly charged ions and neutral atoms is already strongly influenced by the presence of atomic electrons. In order to treat these processes in collisions with heavy atoms we generalize the symmetric eikonal model, used earlier for considerations of electron transitions in ion-atom collisions within the scope of a three-body Coulomb problem. We show that at asymptotically...

  7. Noise-assisted quantum electron transfer in photosynthetic complexes

    OpenAIRE

    Nesterov, Alexander I; Berman, Gennady P.; Martínez, José Manuel Sánchez; Sayre, Richard T.

    2013-01-01

    Electron transfer (ET) between primary electron donors and acceptors is modeled in the photosystem II reaction center (RC). Our model includes (i) two discrete energy levels associated with donor and acceptor, interacting through a dipole-type matrix element and (ii) two continuum manifolds of electron energy levels ("sinks"), which interact directly with the donor and acceptor. Namely, two discrete energy levels of the donor and acceptor are embedded in their independent sinks through the co...

  8. The attosecond regime of impulsive stimulated electronic Raman excitation

    CERN Document Server

    Ware, Matthew R; Cryan, James P; Haxton, Daniel J

    2016-01-01

    We have calculated the resonant and nonresonant contributions to attosecond impulsive stimulated electronic Raman scattering (SERS) in regions of autoionizing transitions. Comparison with Multiconfiguration Time-Dependent Hartree-Fock (MCTDHF) calculations find that attosecond SERS is dominated by continuum transitions and not autoionizing resonances. These results agree quantitatively with a rate equation that includes second-order Raman and first-and second-order photoionization rates. Such rate models can be extended to larger molecular systems. Our results indicate that attosecond SERS transition probabilities may be understood in terms of two-photon generalized cross sections even in the high-intensity limit for extreme ultraviolet wavelengths.

  9. Energy transfer kinetics of the np5(n + 1)p excited states of Ne and Kr.

    Science.gov (United States)

    Kabir, Md Humayun; Heaven, Michael C

    2011-09-01

    Energy transfer rate constants for Ne(2p(5)3p) and Kr(4p(5)5p) atoms colliding with ground state rare gas atoms (Rg) have been measured. In part, this study is motivated by the possibility of using excited rare gas atoms as the active species in optically pumped laser systems. Rg(np(5)(n + 1)s) metastable states may be produced using low-power electrical discharges. The potential then exits for optical pumping and laser action on the np(5)(n + 1)p ↔ np(5)(n + 1)s transitions. Knowledge of the rate constants for collisional energy transfer and deactivation of the np(5)(n + 1)p states is required to evaluate the laser potential for various Rg + buffer gas combinations. In the present study we have characterized energy transfer processes for Ne (2p(5)3p) + He for the six lowest energy states of the multiplet. Rate constants for state-to-state transfer have been determined. Deactivation of the lowest energy level of Kr (4p(5)5p) by He, Ne, and Kr has also been characterized. Initial results suggest that Kr (4p(5)5p) + Ne mixtures may be the best suited for optically pumped laser applications.

  10. A tetrastable naphthalenediimide: anion induced charge transfer, single and double electron transfer for combinational logic gates.

    Science.gov (United States)

    Ajayakumar, M R; Hundal, Geeta; Mukhopadhyay, Pritam

    2013-09-11

    Herein we demonstrate the formation of the first tetrastable naphthalenediimide (NDI, 1a) molecule having multiple distinctly readable outputs. Differential response of 1a to fluoride anions induces intramolecular charge transfer (ICT), single/double electron transfer (SET/DET) leading to a set of combinational logic gates for the first time with a NDI moiety. PMID:23752683

  11. Effect of strong coupling on interfacial electron transfer dynamics in dye-sensitized TiO2 semiconductor nanoparticles

    Indian Academy of Sciences (India)

    Hirendra N Ghosh

    2007-03-01

    Dynamics of interfacial electron transfer (ET) in ruthenium polypyridyl complex [{bis-(2,2'-bpy)-(4-[2-(4'-methyl-[2,2']bipyridinyl-4-yl)-vinyl]-benzene-1,2-diol)}ruthenium(II) hexafluorophosphate] (Ru-cat) and 5,10,15-tris phenyl-20-(3,4-dihydroxy benzene) porphyrin (TPP-cat)-sensitized TiO2 nanoparticles have been investigated using femtosecond transient absorption spectroscopic detection in the visible and near-infrared region. We have observed that both Ru-cat and TPP-cat are coupled strongly with the TiO2 nanoparticles through their pendant catechol moieties. We have observed a single exponential and pulse-width limited (< 100 fs) electron injection from nonthermalized-excited states of Ru-complex. Here electron injection competes with the singlet-triplet manifold relaxation due to strong coupling of catecholate binding, which is a unique observation. Optical absorption measurements indicate that the catechol moiety interacts with TiO2 nanoparticles showing the characteristic pure catechol-TiO2 charge-transfer (CT) band in the visible region. Transient absorption studies on TPP-cat/TiO2 system exciting both the Soret band at 400 nm and the Q-band at 800 nm have been carried out to determine excitation wavelength-dependence on ET dynamics. The reaction channel for the electron-injection process has been found to be different for both the excitation wavelengths. Excitation at 800 nm, is found directly populate directly the excited CT state from where diffusion of electrons into the conduction band takes place. On the other hand, excitation at 400 nm light excites both the CT band of cat-TiO2 and also Soret band of TPP-cat.

  12. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    International Nuclear Information System (INIS)

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy. (paper)

  13. The investigation of excited state proton transfer mechanism in water-bridged 7-azaindole

    Science.gov (United States)

    Zhang, Yong-Jia; Zhao, Jin-Feng; Li, Yong-Qing

    2016-01-01

    Based on the time-dependent density functional theory (TDDFT), the excited-state intermolecular proton transfer (ESIPT) mechanism of water-bridged 7-azaindole has been investigated theoretically. The calculations of primary bond lengths and the IR vibrational spectra between the S0 state and the S1 state that verified the intramolecular hydrogen bond were strengthened. The fact that reproduced experimental absorbance and fluorescence emission spectra well theoretically demonstrate that the TDDFT theory we adopted is reasonable and effective. In addition, intramolecular charge transfer based on the frontier molecular orbitals demonstrated the indication of the ESIPT reaction. The constructed potential energy curves of ground state and the first excited state based on keeping the H2···O3 and H6···N7 distances fixed at a series of values have been used to illustrate the ESIPT process. A relative lower barrier of 5.94 kcal/mol in the S1 state potential energy curve for type II (lower than that of 9.82 kcal/mol in the S1 state for type I) demonstrates that type II ESIPT process occurs firstly in 7Al-2H2O complex.

  14. Bond-specific dissociation following excitation energy transfer for distance constraint determination in the gas phase.

    Science.gov (United States)

    Hendricks, Nathan G; Lareau, Nichole M; Stow, Sarah M; McLean, John A; Julian, Ryan R

    2014-09-24

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase. PMID:25174489

  15. Radiative charge transfer lifetime of the excited state of (NaCa)$^+$

    CERN Document Server

    Makarov, O P; Michels, H J; Smith, W W; Makarov, Oleg P.

    2003-01-01

    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom--ion trap under high vacuum conditions. The collisional cooling of laser pre-cooled Ca$^+$ ions by ultracold Na atoms is being studied. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A$^1\\Sigma^+$ state of the (NaCa)$^+$ molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using Complete Active Space Self-Consistent field and M\\"oller-Plesset second order perturbation theory (CASSCF/MP2) with an extended Gaussian basis, 6-311+G(3df). The semiclassical charge transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition we also present elastic collision cross sections and the spin-exchange cross section. The ra...

  16. Imaging population transfer in atoms with ultrafast electron pulses

    Science.gov (United States)

    Shao, Hua-Chieh; Starace, Anthony F.

    2016-05-01

    Ultrafast electron diffraction and microscopy have made significant progress recently in investigating atomic-scale structural dynamics in gas-phase and condensed materials. With these advances, direct imaging of electronic motions in atoms and molecules by ultrafast electron diffraction is anticipated. We propose imaging a laser-driven coherent population transfer in lithium atoms by femtosecond ultrafast electron pulses. Valuable information and insight can be obtained from studying such a system in order to refine ultrafast electron techniques and to interpret experimental results. Adiabatic passage by level crossing is used to transfer the electron population from the 2 s to the 2 p state. Our simulations demonstrate the ability of ultrafast electron diffraction to image this population transfer, as the time-dependent diffraction images reflect the electronic motion in the scattering intensity and angular distribution. Furthermore, asymmetric diffraction patterns indicate that even the relative phases of the electronic wave function can be resolved, provided there is sufficient temporal resolution. This work has been supported in part by DOE Award No. DE-SC0012193 [H.-C.S.] and by NSF Grant No. PHYS-1505492 [A.F.S.].

  17. Excited state intramolecular proton transfer (ESIPT) in 2-(2'-hydroxyphenyl)benzoxazole and its naphthalene-fused analogs: a TD-DFT quantum chemical study.

    Science.gov (United States)

    Roohi, Hossein; Hejazi, Fahimeh; Mohtamedifar, Nafiseh; Jahantab, Mahjobeh

    2014-01-24

    The intramolecular proton transfer reactions in 2-(2'-hydroxyphenyl)benzoxazole (HBO) and its naphthalene-fused analogs, (HNB1-3) in both S0 and S1 states at the PBE1PBE/6-311++G(2d,2p) level of theory in the gas phase and water have been investigated to find the effects of extension of aromaticity on the intramolecular proton transfer and photophysical properties. The results show that the ground state intramolecular proton transfer (GSIPT) in the studied species is impossible. Excited states potential energy surface calculations support the existence of ESIPT process. Structural parameters, relative energy of isomers, H-bonding energy, adsorption and emission bands, vertical excitation and emission energies, oscillator strength, fluorescence rate constant, dipole moment, atomic charges and electron density at critical points were calculated. Orbital analysis shows that vertical S0→S1 transition in the studied molecules corresponds essentially to the excitation from HOMO (π) to LUMO (π(*)). The potential of HNB2 molecule as an emissive and electron transport material in designing improved organic white light emitting diodes is predicted in this work. Our calculations are also supported by the experimental observations.

  18. Optical and structural characterisation of low dimensional structures using electron beam excitation systems

    CERN Document Server

    Mohammed, A

    2000-01-01

    suppressed by nonradiative recombination centres. The temperatures at which the QW luminescence starts to quench and the activation energies of luminescence quenching are found to depend on excitation conditions, sample quality and QW depth. The results of CL intensity dependence on the excitation intensity revealed that luminescence from good quality QW structures is dominated by radiative recombination processes even at high temperatures during thermal quenching. In contrast, in defected structures non-radiative recombination mechanisms dominate the luminescence properties at all temperatures. Secondary electron images of hexagonal growth hillocks of GaN obtained at a range of electron beam excitation energies vary because of the different signals involved in the imaging. Electron backscatter diffraction measurements have been used for phase identification and lattice constants determination in a strained GaN epilayer. This thesis presents studies on optical and structural characterisation of low dimensiona...

  19. Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism

    CERN Document Server

    Nagesh, Jayashree; Brumer, Paul; Izmaylov, Artur F

    2016-01-01

    We extend the localized operator partitioning method (LOPM) [J. Nagesh, A.F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory (TD-DFT) framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Stratman-Scuseria-Frisch atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1-naphthyl)-methyl)-anthracene and 4-((2-naphthyl)-methyl)-benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that are not accessible using simple density difference analysis.

  20. Effects of Thermal Electronic Excitations on the Diffusion of Oxygen Adatoms on Graphene.

    Science.gov (United States)

    Sun, Tao; Yao, Xinxin; Fabris, Stefano

    2016-05-01

    We conduct first-principles calculations to study oxygen diffusion on the graphene surface as a function of temperature up to 3000 K. The minimum energy migration path and the corresponding activation energy are determined by the nudged elastic band method with explicit inclusion of thermal electronic excitations. Below 1000 K the activation energy for epoxy oxygen to migrate remains close to its room temperature value (0.72 eV). Above 1000 K the activation energy decreases near linearly with temperature, from 0.70 eV at 1000 K to 0.47 eV at 3000 K. We show that this reduction originates from thermal electronic excitations. In particular, the effect is determined by the large contrasts in the electronic structures of the initial and transition states: the transition state exhibits much larger electronic density of states near the Fermi level and is more susceptible to thermal electronic excitations. The reduction in activation energy leads to appreciable enhancement in the diffusivity of oxygen adatoms. A moderate decrease in the vibrational prefactor, also caused by thermal electronic excitations, does not alter this trend. These findings may facilitate future works to accurately describe the dynamics of O adatoms on graphene at high T, which are critical for determining surface thermodynamic properties such as equilibrium coverage. PMID:27074529

  1. Calculation of electron scattering on excited states of sodium

    International Nuclear Information System (INIS)

    The results of electron-sodium scattering for the 3D → 3P transition at the projectile energy of 5 eV calculated using the Convergent Close Coupling method are presented. These include spin-resolved and spin-averaged alignment, orientation, and coherence parameters, as well as differential cross section and spin asymmetry. This calculation simultaneously produces results for the transitions 3P→3P at 6.52 eV and 3S → 3P at 8.62 eV. The three transitions are used to study the nature of the convergence in the close-coupling expansion. The results were found to be in good agreement with the existent experimental data. 15 refs., 9 figs

  2. Plugging in or Going Wireless: Strategies for Interspecies Electron Transfer

    Directory of Open Access Journals (Sweden)

    Pravin Malla Shrestha

    2014-05-01

    Full Text Available Interspecies exchange of electrons enables a diversity of microbial communities to gain energy from reactions that no one microbe can catalyze. The first recognized strategies for interspecies electron transfer were those that relied on chemical intermediates that are recycled through oxidized and reduced forms. Well-studied examples are interspecies H2 transfer and the cycling of sulfur intermediates in anaerobic photosynthetic communities. Direct interspecies electron transfer (DIET in which two species establish electrical contacts is an alternative. Electrical contacts documented to date include electrically conductive pili, as well as conductive iron minerals and conductive carbon moieties such as activated carbon and biochar. It seems likely that there are additional alternative strategies for interspecies electrical connections that have yet to be discovered. Interspecies electron transfer is central to the functioning of methane-producing microbial communities. The importance of interspecies H2 transfer in many methanogenic communities is clear, but under some circumstances DIET predominates. It is expected that further mechanistic studies and broadening investigations to a wider range of environments will help elucidate the factors that favor specific forms of interspecies electron exchange under different environmental conditions.

  3. An amorphous phase formation at palladium / silicon oxide (Pd/SiOx) interface through electron irradiation - electronic excitation process

    International Nuclear Information System (INIS)

    A Pd-Si amorphous phase was formed at a palladium/silicon oxide (Pd/SiOx) interface at room temperature by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Solid-state amorphization was stimulated without the electron knock-on effects. The total dose required for the solid-state amorphization decreases with decreasing acceleration voltage. This is the first report on electron irradiation induced metallic amorphous formation caused by the electronic excitation at metal/silicon oxide interface

  4. Observation of resonance recombination lines in electron excited Auger spectra of Gd

    International Nuclear Information System (INIS)

    Combined measurements of electron excited Nsub(4,5) Auger spectra and photoelectron emission on clean and oxidized Gd lead to a distinction between Auger lines originating from 4d → continuum and 4d → 4f resonance excitations. Several Auger structures are identified as due to the direct recombination of 4d94f8 states with the 4f and valence electrons. The shape of the most prominent Auger line for oxidized Gd agrees perfectly with the Fano profile of the 4f photoemission intensity. (orig.)

  5. Direct Electron Excitation of Low-Lying Gamma-Ray Transitions

    CERN Document Server

    Olariu, S; Ito, Y; Mukoyama, T; Olariu, Silviu; Olariu, Agata; Ito, Yoshiaki; Mukoyama, Takeshi

    2000-01-01

    We report cross sections for the direct excitation of gamma-ray transitionsup to 200 keV by the transient electromagnetic fields of electrons from anincident beam. The cross sections of these processes are found to be of theorder of 10 microbarns, and are comparable to the cross sections for theexcitation of Mossbauer transitions via X-ray electron-nuclear doubletransitions, reported in S. Olariu et al., Phys. Rev. C 56, 381 (1997). Theelectron excitation of nuclear transitions may lead to the development ofpulsed sources of gamma-radiation of very narrowly defined energy.

  6. Validity of Eucken formula and Stokes’ viscosity relation in high-temperature electronically excited gases

    International Nuclear Information System (INIS)

    In the present work we evaluate the accuracy of the Eucken formula and Stokes’ viscosity relation in high temperature non-equilibrium air species with electronic excitation. The thermal conductivity coefficient calculated using the exact kinetic theory methods is compared with that obtained applying approximate formulas in the temperature range 200–20000 K. A modification of the Eucken formula providing a good agreement with exact calculations is proposed. It is shown that the Stokes viscosity relation is not valid in electronically excited monoatomic gases at temperatures higher than 2000 K

  7. Electron-impact excitation out of the metastable levels of Krypton

    International Nuclear Information System (INIS)

    We have measured the electron-impact excitation cross sections out of the two metastable levels of Kr into the ten levels of the 4p55p configuration. For a common 4p55p final level, the peak excitation cross sections out of the two individual 4p55s metastable levels are found to differ by 1 to 2 orders of magnitude. This is explained by the special features of the electronic structure of the two configurations involved. The peak cross sections are 10 to 1600 times larger than the corresponding peak cross sections out of the ground state

  8. Quantum-chemical study of electronically excited states of protolytic forms of vanillic acid

    Science.gov (United States)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Y.

    2015-12-01

    The paper describes an analysis of possible ways of deactivation of electronically excited states of 4-hydroxy- 3-methoxy-benzoic acid (vanillic acid) and its protolytic forms with the use of quantum-chemical methods INDO/S (intermediate neglect of differential overlap with a spectroscopic parameterization) and MEP (molecular electrostatic potential). The ratio of radiative and non-radiative deactivation channels of the electronic excitation energy is established. The rate constants of photophysical processes (internal and intercombination conversions) occurring after the absorption of light in these forms are evaluated.

  9. Role of Tensorial Electronic Friction in Energy Transfer at Metal Surfaces

    Science.gov (United States)

    Askerka, Mikhail; Maurer, Reinhard J.; Batista, Victor S.; Tully, John C.

    2016-05-01

    An accurate description of nonadiabatic energy relaxation is crucial for modeling atomistic dynamics at metal surfaces. Interfacial energy transfer due to electron-hole pair excitations coupled to motion of molecular adsorbates is often simulated by Langevin molecular dynamics with electronic friction. Here, we present calculations of the full electronic friction tensor by using first order time-dependent perturbation theory at the density functional theory level. We show that the friction tensor is generally anisotropic and nondiagonal, as found for hydrogen atom on Pd(100) and CO on Cu(100) surfaces. This implies that electron-hole pair induced nonadiabatic coupling at metal surfaces leads to friction-induced mode coupling, therefore, opening an additional channel for energy redistribution. We demonstrate the robustness and accuracy of our results by direct comparison to established methods and experimental data.

  10. The geometrical change and intramolecular energy transfer upon S{sub 1}←S{sub 0} excitation in cyclopentanone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanmei, E-mail: meirwang@wipm.ac.cn; Liu, Zhiming; Xu, Yanqi; Zhang, Bing, E-mail: bzhang@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2015-08-14

    The ultrafast dynamics in vibrationally hot S{sub 1} electronic excited state in cyclopentanone molecule was discovered with time resolved spectroscopy. Investigation of the geometry change upon the S{sub 1}←S{sub 0} excitation and D{sub 0}←S{sub 1} ionization has shown that the dihedral angle between the C=O bond and the plane given by the carbonyl and the α-carbons is 180° either in S{sub 0} or D{sub 0} state and is reduced to 145.8° by out-out-plane deformation of the oxygen in S{sub 1} state according to the theoretical calculation. The time domain experiments with femtosecond resolution have given rich insights into the energy transfer of the cyclopentanone molecule. The molecules are excited to the vibrationally hot S{sub 1} (n,  π{sup ∗}) state following absorption of one 267-nm photon. It is found that the population of the S{sub 1} (n, π{sup ∗}) state undergoes ultrafast internal conversion to the highly vibrationally hot S{sub 0} state within 80 fs and nonradiative deactivation by intersystem crossing to triplet T{sub 1} (n, π{sup *}) state occurring in 3.14 ps. Several Rydberg states have worked as stepping stones during the ionization. The available energy was distributed in the symmetric methylene group wagging and the symmetric skeletal ring breathing modes in D{sub 0} state.

  11. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer

    Science.gov (United States)

    Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis

    2015-12-01

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon

  12. DFT and time-resolved IR investigation of electron transfer between photogenerated 17- and 19-electron organometallic radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James B.; Kling, Matthias F.; Sawyer, Karma R.; Andersen, Lars K.; Harris, Charles B.

    2008-04-30

    The photochemical disproportionation mechanism of [CpW(CO){sub 3}]{sub 2} in the presence of Lewis bases PR{sub 3} was investigated on the nano- and microsecond time-scales with Step-Scan FTIR time-resolved infrared spectroscopy. 532 nm laser excitation was used to homolytically cleave the W-W bond, forming the 17-electron radicals CpW(CO){sub 3} and initiating the reaction. With the Lewis base PPh{sub 3}, disproportionation to form the ionic products CpW(CO){sub 3}PPh{sub 3}{sup +} and CpW(CO){sub 3}{sup -} was directly monitored on the microsecond time-scale. Detailed examination of the kinetics and concentration dependence of this reaction indicates that disproportionation proceeds by electron transfer from the 19-electron species CpW(CO){sub 3}PPh{sub 3} to the 17-electron species CpW(CO){sub 3}. This result is contrary to the currently accepted disproportionation mechanism which predicts electron transfer from the 19-electron species to the dimer [CpW(CO){sub 3}]{sub 2}. With the Lewis base P(OMe){sub 3} on the other hand, ligand substitution to form the product [CpW(CO){sub 2}P(OMe){sub 3}]{sub 2} is the primary reaction on the microsecond time-scale. Density Functional Theory (DFT) calculations support the experimental results and suggest that the differences in the reactivity between P(OMe){sub 3} and PPh{sub 3} are due to steric effects. The results indicate that radical-to-radical electron transfer is a previously unknown but important process for the formation of ionic products with the organometallic dimer [CpW(CO){sub 3}]{sub 2} and may also be applicable to the entire class of organometallic dimers containing a single metal-metal bond.

  13. Distance-dependent electron transfer in DNA hairpins

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, F.D.; Wu, T.; Zhang, Y. [Northwestern Univ., Evanston, IL (United States)] [and others

    1997-08-01

    The distance dependence of photoinduced electron transfer in duplex DNA was determined for a family of synthetic DNA hairpins in which a stilbene dicarboxamide forms a bridge connecting two oligonucleotide arms. Investigation of the fluorescence and transient absorption spectra of these hairpins established that no photoinduced electron transfer occurs for a hairpin that has six deoxyadenosine-deoxythymidine base pairs. However, the introduction of a single deoxyguanosine-deoxycytidine base pair resulted in distance-dependent fluorescence quenching and the formation of the stilbene anion radical. Kinetic analysis suggests that duplex DNA is somewhat more effective than proteins as a medium for electron transfer but that it does not function as a molecular wire.

  14. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    CERN Document Server

    Duan, Hong-Guang; Cogdell, Richard; Ashraf, Khuram; Stevens, Amy L; Thorwart, Michael; Miller, R J Dwayne

    2016-01-01

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is understood in terms of exciton quasiparticles which move on a grid of biomolecular sites on typical time scales less than 100 femtoseconds (fs). Since the early days of quantum mechanics, this energy transfer is described as an incoherent Forster hopping with classical site occupation probabilities, but with quantum mechanically determined rate constants. This orthodox picture has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein in which interference oscillatory signals up to 1.5 picoseconds were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidenc...

  15. Electron Transport, Energy Transfer, and Optical Response in Single Molecule Junctions

    Science.gov (United States)

    White, Alexander James

    The last decade has seen incredible growth in the quality of experiments being done on single molecule junctions. Contemporary experimental measurements have expanded far beyond simple electron transport. Measurement of vibronic eects, quantum interference and decoherence eects, molecular optical response (Raman spectroscopy), and molecular spintronics are just some of the continuing areas of research in single molecule junctions. Experimental advancements demand advanced theoretical treatments, which can be used accurately within appropriate physical regimes, in order to understand measured phenomena and predict interesting directions for future study. In this dissertation we will study systems with strong intra-system interactions using a many-body states based approach. We will be focused on three related processes in molecular junctions: electron transport, electronic energy transfer, and molecular excitation. Inelastic electron transport in the regime of strong and nonlinear electron-vibration coupling within and outside of the Born-Oppenheimer regime will be investigated. To understand their appropriateness, we will compare simple semi-classical approximations in molecular redox junctions and electron-counting devices to fully quantum calculations based on many-body system states. The role of coherence and quantum interference in energy and electron transfer in molecular junctions is explored. Experiments that simultaneously measure surface enhanced Raman scattering and electron conduction have revealed a strong interaction between conducting electrons and molecular excitation. We investigate the role of the molecular response to a classical surface plasmon enhanced electric eld considering the back action of the oscillating molecular dipole. Raman scattering is quantum mechanical by nature and involves strong interaction between surface plasmons in the contacts and the molecular excitation. We develop a scheme for treating strong plasmon-molecular excitation

  16. Excitation energy transfer in natural photosynthetic complexes and chlorophyll trefoils: hole-burning and single complex/trefoil spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785

    2012-09-12

    In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers

  17. Direct and secondary nuclear excitation with x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gunst, Jonas; Wu, Yuanbin, E-mail: yuanbin.wu@mpi-hd.mpg.de; Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana, E-mail: Palffy@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2015-11-15

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of {sup 93}Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in {sup 57}Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  18. Direct and secondary nuclear excitation with x-ray free-electron lasers

    International Nuclear Information System (INIS)

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of 93Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in 57Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities

  19. Numerical Simulation of Transient Moisture Transfer into an Electronic Enclosure

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    inside the enclosures to be able to protect the electronic systems.In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce theCPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which......Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisturetransfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermalstresses. It is therefore essential to study the local climate...

  20. Dynamics and quantumness of excitation energy transfer through a complex quantum network

    CERN Document Server

    Qin, M; Zhao, X L; Yi, X X

    2015-01-01

    Understanding the mechanisms of efficient and robust energy transfer in organic systems provides us with new insights for the optimal design of artificial systems. In this paper, we explore the dynamics of excitation energy transfer (EET) through a complex quantum network by a toy model consisting of three sites coupled to environments. We study how the coherent evolution and the noise-induced decoherence work together to reach efficient EET and illustrate the role of the phase factor attached to the coupling constant in the EET. By comparing the differences between the Markovian and non-Markovian dynamics, we discuss the effect of environment and the spatial structure of system on the dynamics and the efficiency of EET. A intuitive picture is given to show how the exciton is transferred through the system. Employing the simple model, we show the robustness of EET efficiency under the influence of the environment and elucidate the important role of quantum coherence in EET. We go further to study the quantum ...