WorldWideScience

Sample records for electronic conversion topology

  1. A New Cost-Effective Multi-Drive Solution based on a Two-Stage Direct Power Electronic Conversion Topology

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2002-01-01

    of a protection circuit involving twelve diodes with full voltage/current ratings used only during faulty situations, makes this topology not so attractive. Lately, two stage Direct Power Electronic Conversion (DPEC) topologies have been proposed, providing similar functionality as a matrix converter but allowing...... shared by many loads, making this topology more cost effective. The functionality of the proposed two-stage multi-drive direct power electronic conversion topology is validated by experiments on a realistic laboratory prototype....

  2. Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2011-01-01

    Two fundamental electrons attributes in materials and nanostructures - charge and spin - determine their electronic properties. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials with topological band structure attributes and having a zero-energy band gap surface states are a special class of these materials that exhibit some fascinating and superior electronic properties compared to conventional materials allowing to combine both charge and spin functionalities. This article reviews a range of topological insulator materials and nanostructures with tunable surface states, focusing on nanolayered and nanowire like structures. These materials and nanostructures all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

  3. Topological energy conversion through the bulk or the boundary of driven systems

    Science.gov (United States)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  4. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang

    2016-06-29

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  5. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  6. Link between the photonic and electronic topological phases in artificial graphene

    Science.gov (United States)

    Lannebère, Sylvain; Silveirinha, Mário G.

    2018-04-01

    In recent years the study of topological phases of matter has emerged as a very exciting field of research, both in photonics and in electronics. However, up to now the electronic and photonic properties have been regarded as totally independent. Here we establish a link between the electronic and the photonic topological phases of the same material system and theoretically demonstrate that they are intimately related. We propose a realization of the Haldane model as a patterned two-dimensional electron gas and determine its optical response using the Kubo formula. It is shown that the electronic and photonic phase diagrams of the patterned electron gas are strictly related. In particular, the system has a trivial photonic topology when the inversion symmetry is the prevalent broken symmetry, whereas it has a nontrivial photonic topology for a dominant broken time-reversal symmetry, similar to the electronic case. To confirm these predictions, we numerically demonstrate the emergence of topologically protected unidirectional electromagnetic edge states at the interface with a trivial photonic material.

  7. Ripple-modulated electronic structure of a 3D topological insulator.

    Science.gov (United States)

    Okada, Yoshinori; Zhou, Wenwen; Walkup, D; Dhital, Chetan; Wilson, Stephen D; Madhavan, V

    2012-01-01

    Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.

  8. Conversion electrons in the SDC

    International Nuclear Information System (INIS)

    Wicklund, A.B.

    1991-01-01

    We summarize a preliminary analysis of the rates for conversion electrons in the SDC detector, relative to other interesting sources of prompt electrons. We have used Papageno V3.30, and other available NLO calculations to estimate inclusive rates in the central region (η less than 2.0), and we have cross checked these using CDF data at 1.8 TeV. We have considered three sources of ''isolated'' electrons, namely inclusive W/Z production; top quark (Mt=140); and QCD prompt photon production, followed by conversion in 10% XO. This value approximates the inner silicon detector at SDC. Additional conversions will occur in the outer tracking chamber, but the trigger and track reconstruction efficiency will be lower. We have also considered ''nonisolated'' leptons coming from inclusive bottom production, photon conversions resulting from π 0 ,η production in jets, and high pt hadrons faking electrons

  9. Analytical framework for analyzing the energy conversion efficiency of different hybrid electric vehicle topologies

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2009-01-01

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of the components and applied control strategy. There are many available patterns of combining the power flows to meet load requirements making it difficult to analyze and evaluate a newly designed HEV. In order to enhance design of HEVs, the paper provides a stand alone analytical framework for evaluating energy conversion phenomena of different HEV topologies. Analytical analysis is based on the energy balance equations and considers the complete energy path in the HEVs from the energy sources to the wheels and to other energy sinks. The analytical framework enables structuring large amount of data in physically meaningful energy flows and associated energy losses, and therefore provides insightful information for HEV optimization. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components, since it reveals and quantifies the instruments that could lead to improved energy conversion efficiency of particular HEV. The analytical framework is also applicable for correcting the energy consumption of the HEV to the value corresponding to balanced energy content of the electric storage devices.

  10. Conversion electron spectroscopy in transfermium nuclei

    International Nuclear Information System (INIS)

    Herzberg, R.D.

    2003-01-01

    Conversion electron spectroscopy is an essential tool for the spectroscopy of heavy deformed nuclei. The conversion electron spectrometer SACRED has been used in conjunction with the gas-filled recoil separator RITU to study conversion electron cascades in 254 No. The spectra reveal the ground state rotational bands down to low spin. A detailed analysis of the background seen for 254 No shows that approximately 40% of the decay path goes via excited high K bands which may be built on an isomer. (orig.)

  11. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  12. Test-electron analysis of the magnetic reconnection topology

    Science.gov (United States)

    Borgogno, D.; Perona, A.; Grasso, D.

    2017-12-01

    Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.

  13. Alpha and conversion electron spectroscopy of {sup 238,239}Pu and {sup 241}Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P., E-mail: michael.dion@pnnl.gov; Miller, Brian W.; Warren, Glen A.

    2016-09-11

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of {sup 241}Am, {sup 238}Pu and {sup 239}Pu using a dual-stage peltier-cooled 25 mm{sup 2} silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for {sup 241}Am.

  14. Topological materials discovery using electron filling constraints

    Science.gov (United States)

    Chen, Ru; Po, Hoi Chun; Neaton, Jeffrey B.; Vishwanath, Ashvin

    2018-01-01

    Nodal semimetals are classes of topological materials that have nodal-point or nodal-line Fermi surfaces, which give them novel transport and topological properties. Despite being highly sought after, there are currently very few experimental realizations, and identifying new materials candidates has mainly relied on exhaustive database searches. Here we show how recent studies on the interplay between electron filling and nonsymmorphic space-group symmetries can guide the search for filling-enforced nodal semimetals. We recast the previously derived constraints on the allowed band-insulator fillings in any space group into a new form, which enables effective screening of materials candidates based solely on their space group, electron count in the formula unit, and multiplicity of the formula unit. This criterion greatly reduces the computation load for discovering topological materials in a database of previously synthesized compounds. As a demonstration, we focus on a few selected nonsymmorphic space groups which are predicted to host filling-enforced Dirac semimetals. Of the more than 30,000 entires listed, our filling criterion alone eliminates 96% of the entries before they are passed on for further analysis. We discover a handful of candidates from this guided search; among them, the monoclinic crystal Ca2Pt2Ga is particularly promising.

  15. In-beam conversion electron spectroscopy using the SACRED array

    International Nuclear Information System (INIS)

    Jones, P.M.; Cann, K.J.; Cocks, J.F.C.; Jones, G.D.; Julin, R.; Schulze, B.; Smith, J.F.; Wilson, A.N.

    1997-01-01

    Conversion electron studies of medium-heavy to heavy nuclear mass systems are important where the internal conversion process begins to dominate over gamma-ray emission. The use of a segmented detector array sensitive to conversion electrons has been used to study multiple conversion electron cascades from nuclear transitions. The application of the silicon array for conversion electron detection (SACRED) for in-beam measurements has successfully been implemented. (orig.). With 2 figs

  16. Monopole and topological electron dynamics in adiabatic spintronic and graphene systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.

    2010-01-01

    A unified theoretical treatment is presented to describe the physics of electron dynamics in semiconductor and graphene systems. Electron spin's fast alignment with the Zeeman magnetic field (physical or effective) is treated as a form of adiabatic spin evolution which necessarily generates a monopole in magnetic space. One could transform this monopole into the physical and intuitive topological magnetic fields in the useful momentum (K) or real spaces (R). The physics of electron dynamics related to spin Hall, torque, oscillations and other technologically useful spinor effects can be inferred from the topological magnetic fields in spintronic, graphene and other SU(2) systems.

  17. Low energy electronic scattering processes in the topological Weyl semimetal TaAs

    Energy Technology Data Exchange (ETDEWEB)

    Muellner, Silvia; Lemmens, Peter [IPKM, TU-BS, Braunschweig (Germany); Gnezdilov, Vladimir [IPKM, TU-BS, Braunschweig (Germany); ILTPE NAS (Ukraine); Sankar, Raman; Chou, Fangcheng [CCMS, National Taiwan Univ., Taipei (China)

    2016-07-01

    The topological Weyl semimetal TaAs shows Weyl points as well as topological surface states (Fermi arcs) intimately related to symmetry and strong spin orbit interaction. We find evidence for a low energy maximum in the scattering intensity that is compatible with electronic correlations in a collision dominated regime. We compare our observations with topological insulators.

  18. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3

    Science.gov (United States)

    Fuhrer, Michael

    2013-03-01

    The three dimensional strong topological insulator (STI) is a new phase of electronic matter which is distinct from ordinary insulators in that it supports on its surface a conducting two-dimensional surface state whose existence is guaranteed by topology. I will discuss experiments on the STI material Bi2Se3, which has a bulk bandgap of 300 meV, much greater than room temperature, and a single topological surface state with a massless Dirac dispersion. Field effect transistors consisting of thin (3-20 nm) Bi2Se3 are fabricated from mechanically exfoliated from single crystals, and electrochemical and/or chemical gating methods are used to move the Fermi energy into the bulk bandgap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be ~60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se3, which will have implications for topological electronic devices operating at room temperature. As samples are made thinner, coherent coupling of the top and bottom topological surfaces is observed through the magnitude of the weak anti-localization correction to the conductivity, and, in the thinnest Bi2Se3 samples (~ 3 nm), in thermally-activated conductivity reflecting the opening of a bandgap.

  19. Topology optimization of an electronics cover plate with respect to eigenfrequencies

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    In the present paper it is illustrated how topology optimization with respect to eigenfrequency can be applied effectively in the product development process. The topology optimization code is implemented in ANSYS by a so called UPF. The maximization of eigenfrequency as objective is invoked...... into the existing code. As an example is chosen an electronics cover plate. The resulting design devised by the topology optimization yield a significant higher eigenfrequency than obtained by traditional design methods and experience....

  20. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  1. Topological nanophononic states by band inversion

    Science.gov (United States)

    Esmann, Martin; Lamberti, Fabrice Roland; Senellart, Pascale; Favero, Ivan; Krebs, Olivier; Lanco, Loïc; Gomez Carbonell, Carmen; Lemaître, Aristide; Lanzillotti-Kimura, Norberto Daniel

    2018-04-01

    Nanophononics is essential for the engineering of thermal transport in nanostructured electronic devices, it greatly facilitates the manipulation of mechanical resonators in the quantum regime, and it could unveil a new route in quantum communications using phonons as carriers of information. Acoustic phonons also constitute a versatile platform for the study of fundamental wave dynamics, including Bloch oscillations, Wannier-Stark ladders, and other localization phenomena. Many of the phenomena studied in nanophononics were inspired by their counterparts in optics and electronics. In these fields, the consideration of topological invariants to control wave dynamics has already had a great impact for the generation of robust confined states. Interestingly, the use of topological phases to engineer nanophononic devices remains an unexplored and promising field. Conversely, the use of acoustic phonons could constitute a rich platform to study topological states. Here, we introduce the concept of topological invariants to nanophononics and experimentally implement a nanophononic system supporting a robust topological interface state at 350 GHz. The state is constructed through band inversion, i.e., by concatenating two semiconductor superlattices with inverted spatial mode symmetries. The existence of this state is purely determined by the Zak phases of the constituent superlattices, i.e., the one-dimensional Berry phase. We experimentally evidenced the mode through Raman spectroscopy. The reported robust topological interface states could become part of nanophononic devices requiring resonant structures such as sensors or phonon lasers.

  2. Electronic transport in bismuth selenide in the topological insulator regime

    Science.gov (United States)

    Kim, Dohun

    The 3D topological insulators (TIs) have an insulating bulk but spin-momentum coupled metallic surface states stemming from band inversion due to strong spin-orbit interaction, whose existence is guaranteed by the topology of the band structure of the insulator. While the STI surface state has been studied spectroscopically by e.g. photoemission and scanned probes, transport experiments have failed to demonstrate clear signature of the STI due to high level of bulk conduction. In this thesis, I present experimental results on the transport properties of TI material Bi2Se3 in the absence of bulk conduction (TI regime), achieved by applying novel p-type doping methods. Field effect transistors consisting of thin (thickness: 5-17 nm) Bi2Se3 are fabricated by mechanical exfoliation of single crystals, and a combination of conventional dielectric (300 nm thick SiO2) and electrochemical or chemical gating methods are used to move the Fermi energy through the surface Dirac point inside bulk band gap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be 60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se 3, which will have implications for topological electronic devices operating at room temperature. Along with semi-classical Boltzmann transport, I also discuss 2D weak anti-localization (WAL) behavior of the topological surface states. By investigating gate-tuned WAL behavior in thin (5-17 nm) TI films, I show that WAL in the TI regime is extraordinarily sensitive to the hybridization induced quantum mechanical tunneling between top and bottom topological surfaces, and interplay of phase coherence

  3. Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-05-01

    Full Text Available The main objective of this paper was to study a bidirectional direct current to direct current converter (BDC topology with a high voltage conversion ratio for electric vehicle (EV batteries connected to a dc-microgrid system. In this study, an unregulated level converter (ULC cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC is introduced to achieve a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V. In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high voltage step-down conversion ratio (385 V to 48 V. The features, operation principles, steady-state analysis, simulation and experimental results are made to verify the performance of the studied novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be achieved, respectively, in charge and discharge states.

  4. Correlation of the Auger electrons direction of movement with the internal electron conversion direction of movement

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2013-01-01

    On installation of coincidences of γ-quanta with electrons and with law energy electrons about zero area the spatial correlation of the direction emitting Auger-electrons and electron of internal conversion was investigated at the 152 Eu decay. Auger-electrons were registered on e 0 -electrons of the secondary electron emission (γ e IC e 0 -coincidences). It was established, that Auger-electrons of M-series, as well as electrons 'shake-off' at β-decay and internal conversion, are strongly correlated at the direction of movement with the direction of movement of basic particle (β -particle, conversion electron), moving together mainly in the forward hemisphere. The intensity of correlated M-Auger radiation in range energy 1000 - 1700 eV is equal to intensity of correlated radiation 'shake-off' electron from internal conversion in this range. The assumption, that the presence of spatial correlating Auger-electron and conversion electron caused by cur-rent components of electron-electron interaction of particles in the final state is made

  5. Electronic states of zigzag graphene nanoribbons with edges reconstructed with topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Pincak, R., E-mail: pincak@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Kosice (Slovakia); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Smotlacha, J., E-mail: smota@centrum.cz [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 110 00 Prague (Czech Republic); Osipov, V.A., E-mail: osipov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2015-10-15

    The energy spectrum and electronic density of states (DOS) of zigzag graphene nanoribbons with edges reconstructed with topological defects are investigated within the tight-binding method. In case of the Stone–Wales zz(57) edge the low-energy spectrum is markedly changed in comparison to the pristine zz edge. We found that the electronic DOS at the Fermi level is different from zero at any width of graphene nanoribbons. In contrast, for ribbons with heptagons only at one side and pentagons at another one the energy gap at the Fermi level is open and the DOS is equal to zero. The reason is the influence of uncompensated topological charges on the localized edge states, which are topological in nature. This behavior is similar to that found for the structured external electric potentials along the edges.

  6. Non-local electron transport through normal and topological ladder-like atomic systems

    Science.gov (United States)

    Kurzyna, Marcin; Kwapiński, Tomasz

    2018-05-01

    We propose a locally protected ladder-like atomic system (nanoconductor) on a substrate that is insensitive to external perturbations. The system corresponds to coupled atomic chains fabricated on different surfaces. Electron transport properties of such conductors are studied theoretically using the model tight-binding Su-Schriffer-Hegger (SSH) Hamiltonian and Green's function formalism. We have found that the conductance of the system is almost insensitive to single adatoms and oscillates as a function of the side chain length with very large periods. Non-local character of the electron transport was observed also for topological SSH chains where nontrivial end states survive in the presence of disturbances as well as for different substrates. We have found that the careful inspection of the density of states or charge waves can provide the information about the atom energy levels and hopping amplitudes. Moreover, the ladder-like geometry allows one to distinguish between normal and topological zero-energy states. It is important that topological chains do not reveal Friedel oscillations which are observed in non-topological chains.

  7. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  8. Conversion of spin current into charge current in a topological insulator: Role of the interface

    Science.gov (United States)

    Dey, Rik; Prasad, Nitin; Register, Leonard F.; Banerjee, Sanjay K.

    2018-05-01

    Three-dimensional spin current density injected onto the surface of a topological insulator (TI) produces a two-dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect (IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined to be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016), 10.1103/PhysRevB.94.184423]. However, we find that the transmission rate across the interface gives a nonzero contribution to the transport relaxation rate in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization effects), and the IEE length is always less than the original mean free path in the TI without the interface. We show that both the IEE relaxation time and the transport relaxation time in the TI are modified by the interface transmission time. The correction becomes significant when the transmission time across the interface becomes comparable to or less than the original momentum scattering time in the TI. This correction is similar to experimental results in Rashba electron systems in which the IEE relaxation time was found shorter in the case of direct interface with metal in which the interface transmission rate will be much higher, compared to interfaces incorporating insulating oxides. Our results indicate the continued importance of the interface to obtain a better spin-to-charge current conversion and a limitation to the conversion efficiency due to the quality of the interface.

  9. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. In addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).

  10. Electronic topological transitions in Zn under compression

    Science.gov (United States)

    Kechin, Vladimir V.

    2001-01-01

    The electronic structure of hcp Zn under pressure up to 10 GPa has been calculated self-consistently by means of the scalar relativistic tight-binding linear muffin-tin orbital method. The calculations show that three electronic topological transitions (ETT's) occur in Zn when the c/a axial ratio diminishes under compression. One transition occurs at c/a~=1.82 when the ``needles'' appear around the symmetry point K of the Brillouin zone. The other two transitions occur at c/a~=3, when the ``butterfly'' and ``cigar'' appear simultaneously both around the L point. It has been shown that these ETT's are responsible for a number of anomalies observed in Zn at compression.

  11. Development of a mini-orange spectrometer for conversion electron study

    International Nuclear Information System (INIS)

    Mishra, N.R.; Chakravarty, V.; Chintalapudi, S.N.; Ghugre, S.S.; Sastry, D.L.

    1996-01-01

    Conversion electrons provide with an unique tool to have an unambiguous multipolarity assignment for the observed gamma transitions. The fabrication of an electron spectrometer to detect these conversion electrons is a non-trivial task

  12. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    Aquilanti, G.; Trapananti, A.; Pascarelli, S.; Minicucci, M.; Principi, E.; Liscio, F.; Twarog, A.

    2007-01-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used

  13. Electron spectrometers with internal conversion

    International Nuclear Information System (INIS)

    Suita, J.C.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The efforts that the Department of Physics (DEFI) of Institute of Nuclear Engineering (IEN) are being made aiming at adjusting the electron spectrometers with internal conversion to its necessity, are shown. (E.G.) [pt

  14. Influence of electron-phonon interaction on soliton mediated spin-charge conversion effects in two-component polymer model

    International Nuclear Information System (INIS)

    Sergeenkov, S.; Moraes, F.; Furtado, C.; Araujo-Moreira, F.M.

    2010-01-01

    By mapping a Hubbard-like model describing a two-component polymer in the presence of strong enough electron-phonon interactions (κ) onto the system of two coupled nonlinear Schroedinger equations with U(2) symmetry group, some nontrivial correlations between topological solitons mediated charge Q and spin S degrees of freedom are obtained. Namely, in addition to a charge fractionalization and reentrant like behavior of both Q(κ) and S(κ), the model also predicts a decrease of soliton velocity with κ as well as spin-charge conversion effects which manifest themselves through an explicit S(Q,Ω) dependence (with Ω being a mixing angle between spin-up and spin-down electron amplitudes). A possibility to observe the predicted effects in low-dimensional systems with charge and spin soliton carriers is discussed.

  15. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  16. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Science.gov (United States)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  17. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  18. Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi

    Science.gov (United States)

    Jiang, J.; Schröter, N. B. M.; Wu, S.-C.; Kumar, N.; Shekhar, C.; Peng, H.; Xu, X.; Chen, C.; Yang, H. F.; Hwang, C.-C.; Mo, S.-K.; Felser, C.; Yan, B. H.; Liu, Z. K.; Yang, L. X.; Chen, Y. L.

    2018-02-01

    The recent discovery of the extreme magnetoresistance (XMR) in the nonmagnetic rare-earth monopnictides La X (X = P, As, Sb, Bi,), a recently proposed new topological semimetal family, has inspired intensive research effort in the exploration of the correlation between the XMR and their electronic structures. In this work, using angle-resolved photoemission spectroscopy to investigate the three-dimensional band structure of LaBi, we unraveled its topologically nontrivial nature with the observation of multiple topological surface Dirac fermions, as supported by our ab initio calculations. Furthermore, we observed substantial imbalance between the volume of electron and hole pockets, which rules out the electron-hole compensation as the primary cause of the XMR in LaBi.

  19. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  20. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    Science.gov (United States)

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  1. Band structure and unconventional electronic topology of CoSi

    Science.gov (United States)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  2. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  3. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  4. Effects of Structural and Electronic Disorder in Topological Insulator Sb2Te3 Thin Films

    Science.gov (United States)

    Korzhovska, Inna

    Topological quantum matter is a unique and potentially transformative protectorate against disorder-induced backscattering. The ultimate disorder limits to the topological state, however, are still not known - understanding these limits is critical to potential applications in the fields of spintronics and information processing. In topological insulators spin-orbit interaction and time-reversal-symmetry invariance guarantees - at least up to a certain disorder strength - that charge transport through 2D gapless Dirac surface states is robust against backscattering by non-magnetic disorder. Strong disorder may destroy topological protection and gap out Dirac surface states, although recent theories predict that under severe electronic disorder a quantized topological conductance might yet reemerge. Very strong electronic disorder, however, is not trivial to install and quantify, and topological matter under such conditions thus far has not been experimentally tested. This thesis addresses the behavior of three-dimensional (3D) topological insulator (TI) films in a wide range of structural and electronic disorder. We establish strong positional disorder in thin (20-50 nm) Sb2Te 3 films, free of extrinsic magnetic dopants. Sb 2Te3 is a known 2nd generation topological insulator in the low-disorder crystalline state. It is also a known phase-change material that undergoes insulator-to-metal transition with the concurrent orders of magnitude resistive drop, where a huge range of disorder could be controllably explored. In this work we show that even in the absence of magnetic dopants, disorder may induce spin correlations detrimental to the topological state. Chapter 1 contains a brief introduction to the topological matter and describes the role played by disorder. This is followed by theory considerations and a survey of prior experimental work. Next we describe the motivation for our experiments and explain the choice of the material. Chapter 2 describes deposition

  5. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  6. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  7. Topological analysis of the electron density and of the electron localization function of pyrene and its radicals

    International Nuclear Information System (INIS)

    Hernandez-Trujillo, Jesus; Garcia-Cruz, Isidoro; Martinez-Magadan, Jose Manuel

    2005-01-01

    The topological properties of the charge distribution of pyrene and the three derived monoradicals in their ground state and of didehydrogenated pyrenes in the lowest singlet and triplet electronic states are discussed in detail by means of the quantum theory of atoms in molecules (TAIM) and by the electron localization function (ELF). The non-equivalence of the fused aromatic rings of pyrene prevents one from anticipating the stability and reactivity of these species from the chemistry of didehydrogenated species derived from benzene only. Whereas some of these didehydrogenated molecules were found to display a diradical character in the singlet ground state, the topological analysis reveals that others correspond to normal closed shells. Using these theoretical tools, the energetic and geometric details of o-, m- and p-benzyne-like pyrene derivatives are explained

  8. A Review of Power Electronics for Wind Power

    Institute of Scientific and Technical Information of China (English)

    Zhe CHEN

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems.Main wind turbine systems with different generators and power electronic converters are described.The electrical topologies of wind farms with power electronic conversion are discussed.Power electronic applications for improving the performance of wind turbines and wind farms in power systems have been illustrated.

  9. Topology Optimization of an Actively Cooled Electronics Section for Downhole Tools

    DEFF Research Database (Denmark)

    Soprani, Stefano; Klaas Haertel, Jan Hendrik; Lazarov, Boyan Stefanov

    2015-01-01

    Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration into the dow......Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration......, according to the topology optimization results and assembly constraints, and compared to the optimized cases....

  10. An overview of power electronic converter technology for renewable energy systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic technology which is an enabling tool for modern wind and marine energy conversion systems. In this chapter, the main power electronic devices are described. Various power electronic converter topologies are represented, and commonly used modulation schemes...

  11. Specular Andreev reflection in thin films of topological insulators

    Science.gov (United States)

    Majidi, Leyla; Asgari, Reza

    2016-05-01

    We theoretically reveal the possibility of specular Andreev reflection in a thin film topological insulator normal-superconductor (N/S) junction in the presence of a gate electric field. The probability of specular Andreev reflection increases with the electric field, and electron-hole conversion with unit efficiency happens in a wide experimentally accessible range of the electric field. We show that perfect specular Andreev reflection can occur for all angles of incidence with a particular excitation energy value. In addition, we find that the thermal conductance of the structure displays exponential dependence on the temperature. Our results reveal the potential of the proposed topological insulator thin-film-based N/S structure for the realization of intraband specular Andreev reflection.

  12. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-10-15

    This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn. (author)

  13. Efficient charge-spin conversion and magnetization switching through the Rashba effect at topological-insulator/Ag interfaces

    Science.gov (United States)

    Shi, Shuyuan; Wang, Aizhu; Wang, Yi; Ramaswamy, Rajagopalan; Shen, Lei; Moon, Jisoo; Zhu, Dapeng; Yu, Jiawei; Oh, Seongshik; Feng, Yuanping; Yang, Hyunsoo

    2018-01-01

    We report the observation of efficient charge-to-spin conversion in the three-dimensional topological insulator (TI) B i2S e3 and Ag bilayer by the spin-torque ferromagnetic resonance technique. The spin-orbit-torque ratio in the B i2S e3/Ag /CoFeB heterostructure shows a significant enhancement as the Ag thickness increases to ˜2 nm and reaches a value of 0.5 for 5 nm Ag, which is ˜3 times higher than that of B i2S e3/CoFeB at room temperature. The observation reveals the interfacial effect of B i2S e3/Ag exceeds that of the topological surface states (TSSs) in the B i2S e3 layer and plays a dominant role in the charge-to-spin conversion in the B i2S e3/Ag /CoFeB system. Based on first-principles calculations, we attribute our observation to the large Rashba splitting bands which wrap the TSS band and have the same net spin polarization direction as the TSS of B i2S e3 . Subsequently, we demonstrate Rashba-induced magnetization switching in B i2S e3/Ag /Py with a low current density of 5.8 ×105A /c m2 .

  14. Thermoelectric power and topological transitions in quasi-two-dimensional electronic systems

    International Nuclear Information System (INIS)

    Blanter, Ya.M.; Pantsulaya, A.V.; Varlamov, A.A.

    1991-05-01

    Electron-impurity relaxation time and the thermoelectric power (TEP) of quasi-two-dimensional electron gas are calculated. Two cases are discussed: the isotropic spectrum and the electronic topological transition (ETT) of the ''neck-breaking'' type. Methods of thermal diagramatic technique are used for the calculation. It is found that the TEP in the vicinity of the ETT greatly exceeds its background value. The results of experimental investigations of the TEP in the metal-oxide-semiconductor structures are compared with the predictions of the proposed theory. (author). 17 refs, 5 figs

  15. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    Science.gov (United States)

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  16. Topological insulators/superconductors: Potential future electronic materials

    International Nuclear Information System (INIS)

    Hor, Y. S.

    2014-01-01

    A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb x Bi 2 Se 3 is shown to be a superconductor with T c ∼ 3.2 K, which could be a potential candidate for a topological superconductor

  17. C library for topological study of the electronic charge density.

    Science.gov (United States)

    Vega, David; Aray, Yosslen; Rodríguez, Jesús

    2012-12-05

    The topological study of the electronic charge density is useful to obtain information about the kinds of bonds (ionic or covalent) and the atom charges on a molecule or crystal. For this study, it is necessary to calculate, at every space point, the electronic density and its electronic density derivatives values up to second order. In this work, a grid-based method for these calculations is described. The library, implemented for three dimensions, is based on a multidimensional Lagrange interpolation in a regular grid; by differentiating the resulting polynomial, the gradient vector, the Hessian matrix and the Laplacian formulas were obtained for every space point. More complex functions such as the Newton-Raphson method (to find the critical points, where the gradient is null) and the Cash-Karp Runge-Kutta method (used to make the gradient paths) were programmed. As in some crystals, the unit cell has angles different from 90°, the described library includes linear transformations to correct the gradient and Hessian when the grid is distorted (inclined). Functions were also developed to handle grid containing files (grd from DMol® program, CUBE from Gaussian® program and CHGCAR from VASP® program). Each one of these files contains the data for a molecular or crystal electronic property (such as charge density, spin density, electrostatic potential, and others) in a three-dimensional (3D) grid. The library can be adapted to make the topological study in any regular 3D grid by modifying the code of these functions. Copyright © 2012 Wiley Periodicals, Inc.

  18. Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator

    Science.gov (United States)

    Han, Jiahao; Richardella, A.; Siddiqui, Saima A.; Finley, Joseph; Samarth, N.; Liu, Luqiao

    2017-08-01

    The strongly spin-momentum coupled electronic states in topological insulators (TI) have been extensively pursued to realize efficient magnetic switching. However, previous studies show a large discrepancy of the charge-spin conversion efficiency. Moreover, current-induced magnetic switching with TI can only be observed at cryogenic temperatures. We report spin-orbit torque switching in a TI-ferrimagnet heterostructure with perpendicular magnetic anisotropy at room temperature. The obtained effective spin Hall angle of TI is substantially larger than the previously studied heavy metals. Our results demonstrate robust charge-spin conversion in TI and provide a direct avenue towards applicable TI-based spintronic devices.

  19. Tunable Electronic and Topological Properties of Germanene by Functional Group Modification

    Directory of Open Access Journals (Sweden)

    Ceng-Ceng Ren

    2018-03-01

    Full Text Available Electronic and topological properties of two-dimensional germanene modified by functional group X (X = H, F, OH, CH3 at full coverage are studied with first-principles calculation. Without considering the effect of spin-orbit coupling (SOC, all functionalized configurations become semiconductors, removing the Dirac cone at K point in pristine germanene. We also find that their band gaps can be especially well tuned by an external strain. When the SOC is switched on, GeX (X = H, CH3 is a normal insulator and strain leads to a phase transition to a topological insulator (TI phase. However, GeX (X = F, OH becomes a TI with a large gap of 0.19 eV for X = F and 0.24 eV for X = OH, even without external strains. More interestingly, when all these functionalized monolayers form a bilayer structure, semiconductor-metal states are observed. All these results suggest a possible route of modulating the electronic properties of germanene and promote applications in nanoelectronics.

  20. Photoinduced Topological Phase Transitions in Topological Magnon Insulators.

    Science.gov (United States)

    Owerre, S A

    2018-03-13

    Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials.

  1. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-01-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  2. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae

    2012-03-27

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  3. Testing of the SPEDE conversion electron spectrometer at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2157167

    2017-04-24

    The aim of this work was to test the performance of the SPEDE detector in the MINIBALL setup at CERN’s ISOLDE laboratory. The main research objective of MINIBALL is to study properties of atomic nuclei employing radioactive ion beams. Radioactive Bi-207 and Hg-191 were used in this experiment. SPEDE detects internal conversion electrons which are created in transitions between states in atomic nucleus. The internal conversion is competing process to more common γ-ray emission. This way it is possible to measure different properties of nuclear structure for example the E0-transitions. The simultaneous γ and electron measurements are possible when SPEDE is used in conjunction with the MINIBALL spectrometer. The GEANT4 simulation results were used to help interpretation of experimental results. As a result, αK/L-ratio was determined for Bi-207 conversion electrons, for the 5^2− -> 1^2− transition αK/L = 3.29±0.06 and for the 13^2+-> 5^2− transition αK/L = 3.11±0.05 were obtained. Also, the partial...

  4. Electronic structure and transport on the surface of topological insulator attached to an electromagnetic superlattice

    International Nuclear Information System (INIS)

    Wang Haiyan; Chen Xiongwen; Zhou Xiaoying; Zhang Lebo; Zhou Guanghui

    2012-01-01

    We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional (3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in antiparallel alignment is larger than that in parallel alignment, which stems to the energy band structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently, there is only small incident angle transport in the higher energy region when the system is modulated mainly by the higher electric barriers. We further find that the spatial distribution of the spin polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed direction in the transmitting region. The results may provide a further understanding of the nature of 3D TI surface states, and may be useful in the design of topological insulator-based electronic devices such as collimating electron beam.

  5. Beyond Lebesgue and Baire IV: Density topologies and a converse Steinhaus-Weil Theorem

    OpenAIRE

    Bingham, N. H.; Ostaszewski, A. J.

    2016-01-01

    The theme here is category-measure duality, in the context of a topological group. One can often handle the (Baire) category case and the (Lebesgue, or Haar) measure cases together, by working bi-topologically: switching between the original topology and a suitable refinement (a density topology). This prompts a systematic study of such density topologies, and the corresponding $\\sigma$-ideals of negligibles. Such ideas go back to Weil's classic book, and to Hashimoto's ideal topologies. We m...

  6. Role of Sn impurity on electronic topological transitions in 122 Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Haranath, E-mail: hng@rrcat.gov.in [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sen, Smritijit [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-08-25

    We show that only a few percentage of Sn doping at the Ba site on BaFe{sub 2}As{sub 2}, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d{sub xy} band of Fe undergoes electron like transition due to 4% Sn doping. Lifshitz transition is found in BaFe{sub 2}As{sub 2} system around all the high symmetry points. Our detailed first principles simulation predicts absence of any Lifshitz transition in other 122 family compounds like SrFe{sub 2}As{sub 2}, CaFe{sub 2}As{sub 2} in agreement with experimental observations. This work bears practical significance due to the facts that a few percentage of Sn impurity is in-built in tin-flux grown single crystals method of synthesizing 122 materials and inter-relationship among the Lifshitz transition, magnetism and superconductivity. - Highlights: • Electronic topological transition due to Sn contamination in BaFe{sub 2}As{sub 2}. • Hole like Fe-d{sub xy} band converts into electron like in 3% Sn contaminated BaFe{sub 2}As{sub 2}. • Electron like Fe-d{sub xz}, d{sub yz} bands moves above Fermi Level at X,Y points. • No Lifshitz transition found in Sn-contaminated Sr-122, Ca-122 systems.

  7. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    Science.gov (United States)

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Search for Muon to electron conversion at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Chen Wu on behalf of the COMET Collaboration

    2016-12-15

    This article introduces the search for muon to electron conversion at J-PARC, namely COMET (COherent Muon Electron Transition) experiment, including a brief introduction of its physics motivation, a detailed description of COMET experiment and its staged approach, and an overview of its current status.

  9. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl

    2006-01-01

    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give on the weath......Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...

  10. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  11. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode

    International Nuclear Information System (INIS)

    Jones, B.; Efthimion, P.C.; Taylor, G.; Munsat, T.; Wilson, J.R.; Hosea, J.C.; Kaita, R.; Majeski, R.; Maingi, R.; Shiraiwa, S.; Spaleta, J.

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  12. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  13. Nonlinear effects and conversion efficiency of free electron laser in compton regime

    International Nuclear Information System (INIS)

    Taguchi, Toshihiro; Mima, Kunioki; Mochizuki, Takayasu

    1980-01-01

    Nonlinear evolutions of free electron laser are analyzed by using quasi-linear theory. By the analysis, the energy conversion rates and the spectral width of the emitted radiations are calculated self-consistently. Moreover, it is found that the energy conversion rate is remarkably improved, when a RF field is applied to reaccelerate electron beam. (author)

  14. Electron polarizability of crystalline solids in quantizing magnetic fields and topological gap numbers

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Jonckheere, T.; Martin, T.

    2008-01-01

    Roč. 100, - (2008), 146804/1-146804/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0365 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron polarizability * quantum Hall effect * topological numbers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  15. The measurement of internal conversion electrons of selected nuclei: A physics undergraduate laboratory experience

    International Nuclear Information System (INIS)

    Nagy, P.; Duggan, J.L.; Desmarais, D.

    1992-01-01

    Thin sources are now commercially available for a wide variety of isotopes that have measurable internal conversion coefficients. The authors have used standard surface barrier detectors, NIM electronics, and a personal computer analyzer to measure conversion electrons from a few of these sources. Conversion electrons energy and intensity were measured for 113 Sn, 133 Ba, 137 Cs, and 207 Bi. From the measured spectra the innershell binding energies of the K ampersand L Shell electrons from the daughter nuclei were determined and compared to theory. The relative conversion coefficients a k /a L and the K/L ration were also measured. The spin and parity change of the transitions will also be assigned based on the selection rules of the transitions

  16. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  17. Spin current in an electron waveguide tunnel-coupled to a topological insulator

    International Nuclear Information System (INIS)

    Sukhanov, Aleksei A; Sablikov, Vladimir A

    2012-01-01

    We show that electron tunneling from edge states in a two-dimensional topological insulator into a parallel electron waveguide leads to the appearance of spin-polarized current in the waveguide. The spin polarization P can be very close to unity and the electron current passing through the tunnel contact splits in the waveguide into two branches flowing from the contact. The polarization essentially depends on the electron scattering by the contact and the electron-electron interaction in the one-dimensional edge states. The electron-electron interaction is treated within the Luttinger liquid model. The main effect of the interaction stems from the renormalization of the electron velocity, due to which the polarization increases with the interaction strength. Electron scattering by the contact leads to a decrease in P. A specific effect occurs when the bottom of the subbands in the waveguide crosses the Dirac point of the spectrum of edge states when changing the voltage or chemical potential. This leads to changing the direction of the spin current.

  18. Saturation mechanism and improvement of conversion efficiency of free electron laser

    International Nuclear Information System (INIS)

    Taguchi, T.; Mima, K.; Mochizuki, T.

    1980-01-01

    Saturation mechanisms of free electron laser are investigated in the Compton regime. It is found that the saturation occurs due to quasi-linear energy spreading of electron beam in the case of many mode excitation. The energy conversion efficiency remains low even if many modes are taken into account. For improvement of the conversion efficiency, effects of reacceleration by a traveling wave are investigated and turn out to increase the efficiency up to more than 50%. (author)

  19. An enhanced electronic topology aimed at improving the phase sensitivity of GMI sensors

    International Nuclear Information System (INIS)

    Costa Silva, E; Gusmão, L A P; Hall Barbosa, C R; Costa Monteiro, E

    2014-01-01

    The giant magnetoimpedance effect (GMI) is used in the most recent technologies developed for the detection of magnetic fields, showing potential to be applied in the measurement of ultra-weak fields. GMI samples exhibit a huge dependency of their electrical impedance on the magnetic field, which makes them excellent magnetic sensors. In spite of GMI magnetometers being mostly based on magnitude impedance characteristics, it was previously verified that sensitivity could be significantly increased by reading the impedance phase. Pursuing this idea, a phase-based GMI magnetometer has been already developed as well as an electronic configuration capable of improving the phase sensitivity of GMI samples. However, when using this topology, it was noted that the sensitivity improvement comes at the cost of reduced voltage levels in the reading terminal, degrading the signal-to-noise ratio. Another drawback of the electronic configuration was that it was not capable of enforcing a linear behavior of the impedance phase in the function of the magnetic field in a given operation region. Aiming at overcoming those issues and then optimizing the behavior of the circuit developed to improve the phase sensitivity, this paper mathematically describes a completely new methodology, presents an enhanced newly developed electronic topology and exemplifies its application. (paper)

  20. Critic: a new program for the topological analysis of solid-state electron densities

    Science.gov (United States)

    Otero-de-la-Roza, A.; Blanco, M. A.; Pendás, A. Martín; Luaña, Víctor

    2009-01-01

    In this paper we introduce CRITIC, a new program for the topological analysis of the electron densities of crystalline solids. Two different versions of the code are provided, one adapted to the LAPW (Linear Augmented Plane Wave) density calculated by the WIEN2K package and the other to the ab initio Perturbed Ion ( aiPI) density calculated with the PI7 code. Using the converged ground state densities, CRITIC can locate their critical points, determine atomic basins and integrate properties within them, and generate several graphical representations which include topological atomic basins and primary bundles, contour maps of ρ and ∇ρ, vector maps of ∇ρ, chemical graphs, etc. Program summaryProgram title: CRITIC Catalogue identifier: AECB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL, version 3 No. of lines in distributed program, including test data, etc.: 1 206 843 No. of bytes in distributed program, including test data, etc.: 12 648 065 Distribution format: tar.gz Programming language: FORTRAN 77 and 90 Computer: Any computer capable of compiling Fortran Operating system: Unix, GNU/Linux Classification: 7.3 Nature of problem: Topological analysis of the electron density in periodic solids. Solution method: The automatic localization of the electron density critical points is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed by a Newton search from significant points on each tetrahedra. Plotting of and integration on the atomic basins is currently based on a new implementation of Keith's promega algorithm. Running time: Variable, depending on the task. From seconds to a few minutes for the localization of critical points. Hours to days for the determination of the atomic basins shape and properties. Times correspond to a typical 2007 PC.

  1. Bulk and interface quantum states of electrons in multi-layer heterostructures with topological materials

    Science.gov (United States)

    Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.

    2018-06-01

    In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.

  2. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode; TOPICAL

    International Nuclear Information System (INIS)

    B. Jones; P.C. Efthimion; G. Taylor; T. Munsat; J.R. Wilson; J.C. Hosea; R. Kaita; R. Majeski; R. Maingi; S. Shiraiwa; J. Spaleta

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  3. First proof of topological signature in high pressure xenon gas with electroluminescence amplification

    CERN Document Server

    Ferrario, P.; López-March, N.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L.M.P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R.M.; Hauptman, J.; Henriques, C.A.O.; Hernando Morata, J.A.; Irastorza, I.G.; Labarga, L.; Lebrun, P.; Liubarsky, I.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Para, A.; Pérez, J.; Pérez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Yepes-Ramírez, H.

    2016-01-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure Xe136 gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of Na22 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the Th228 decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 +- 1.4 (stat.)%, while maintaining an efficiency of 66.7 +- 0.6 (stat.)% for signal events.

  4. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  5. Topological Gyroscopic Metamaterials

    Science.gov (United States)

    Nash, Lisa Michelle

    Topological materials are generally insulating in their bulk, with protected conducting states on their boundaries that are robust against disorder and perturbation of material property. The existence of these conducting edge states is characterized by an integer topological invariant. Though the phenomenon was first discovered in electronic systems, recent years have shown that topological states exist in classical systems as well. In this thesis we are primarily concerned with the topological properties of gyroscopic materials, which are created by coupling networks of fast-spinning objects. Through a series of simulations, numerical calculations, and experiments, we show that these materials can support topological edge states. We find that edge states in these gyroscopic metamaterials bear the hallmarks of topology related to broken time reversal symmetry: they transmit excitations unidirectionally and are extremely robust against experimental disorder. We also explore requirements for topology by studying several lattice configurations and find that topology emerges naturally in gyroscopic systems.A simple prescription can be used to create many gyroscopic lattices. Though many of our gyroscopic networks are periodic, we explore amorphous point-sets and find that topology also emerges in these networks.

  6. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  7. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan

    2012-03-27

    Topological insulator is a new state of matter attracting tremendous interest due to its gapless linear dispersion and spin momentum locking topological states located near the surface. Heterostructures, which have traditionally been powerful in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered that an exotic topological state exists. Surprisingly, the state migrates from the nontrivial Bi 2Se 3 into the trivial Sb 2Se 3 region and spreads across the entire Sb 2Se 3 slab, extending beyond the concept of "surface" state while preserving all of the topological surface state characteristics. This unusual topological state arises from the coupling between different materials and the modification of electronic structure near Fermi energy. Our study demonstrates that heterostructures can open up opportunities for controlling the real-space distribution of the topological state and inducing quantum phase transitions between topologically trivial and nontrivial states. © 2012 American Chemical Society.

  8. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  9. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  10. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  11. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  12. Topology in WebRTC Services

    OpenAIRE

    Husøy, Tarjei Klinge

    2015-01-01

    Bandwidth efficient, low latency, cheap - pick two. This has been the traditional trade-off for video conferencing providers, where the network topology has limited achievable performance in many conversation types. Consumers have also suffered under this scheme, as only the biggest companies have been capable of delivering a system that performs in a wide enough range of conversations to grow sustainable. This has limited innovation and made it hard for new providers to enter the market. ...

  13. On two examples in linear topological spaces

    International Nuclear Information System (INIS)

    Iyahen, S.O.

    1985-11-01

    This note first gives examples of B-complete linear topological spaces, and shows that neither the closed graph theorem nor the open mapping theorem holds for linear mappings from such a space to itself. It then looks at Hausdorff linear topological spaces for which coarser Hausdorff linear topologies can be extended from hyperplanes. For B-complete spaces, those which are barrelled necessarily have countable dimension, and conversely. The paper had been motivated by two questions arising in earlier studies related to the closed graph and open mapping theorems; answers to these questions are contained therein. (author)

  14. Low-temperature system for simultaneous counting of conversion electrons and backscattered [gamma]-rays in Moessbauer effect experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruskov, Todor (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Passage, Guener (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Rastanawi, Abdallah (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Radev, Rumen (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria))

    1994-12-01

    A system for simultaneous detection of conversion electrons, emitted after resonant exciting of [sup 57]Fe, and resonant backscattered [gamma]-rays and X-rays, accompanying the conversion electrons, is described. The system includes a helium proportional counter, for detection of conversion electrons, and a toroidal ''Keisch-type'' proportional counter, connected to the vacuum part of a helium cryostat. ((orig.))

  15. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  16. Soft-switching PWM full-bridge converters topologies, control, and design

    CERN Document Server

    Ruan, Xinbo

    2014-01-01

    Soft-switching PWM full-bridge converters have been widely used in medium-to-high power dc-dc conversions for topological simplicity, easy control and high efficiency. Early works on soft-switching PWM full-bridge converter by many researchers included various topologies and modulation strategies.  However, these works were scattered, and the relationship among these topologies and modulation strategies had not been revealed. This book intends to describe systematically the soft-switching techniques for pulse-width modulation (PWM) full-bridge converters, including the topologies, control and

  17. Topological sensitivity based far-field detection of elastic inclusions

    Directory of Open Access Journals (Sweden)

    Tasawar Abbas

    2018-03-01

    Full Text Available The aim of this article is to present and rigorously analyze topological sensitivity based algorithms for detection of diametrically small inclusions in an isotropic homogeneous elastic formation using single and multiple measurements of the far-field scattering amplitudes. A L2-cost functional is considered and a location indicator is constructed from its topological derivative. The performance of the indicator is analyzed in terms of the topological sensitivity for location detection and stability with respect to measurement and medium noises. It is established that the location indicator does not guarantee inclusion detection and achieves only a low resolution when there is mode-conversion in an elastic formation. Accordingly, a weighted location indicator is designed to tackle the mode-conversion phenomenon. It is substantiated that the weighted function renders the location of an inclusion stably with resolution as per Rayleigh criterion. 2000 MSC: 35R30, 35L05, 74B05, 47A52, 65J20, Keywords: Inverse elastic scattering, Elasticity imaging, Topological derivative, Resolution analysis, Stability analysis

  18. An innovative seeding technique for photon conversion reconstruction at CMS

    International Nuclear Information System (INIS)

    Giordano, D; Sguazzoni, G

    2012-01-01

    The conversion of photons into electron-positron pairs in the detector material is a nuisance in the event reconstruction of high energy physics experiments, since the measurement of the electromagnetic component of interaction products results degraded. Nonetheless this unavoidable detector effect can also be extremely useful. The reconstruction of photon conversions can be used to probe the detector material and to accurately measure soft photons that come from radiative decays in heavy flavor physics. In fact a converted photon can be measured with very high momentum resolution by exploiting the excellent reconstruction of charged tracks of a tracking detector as the one of CMS at LHC. The main issue is that photon conversion tracks are difficult to reconstruct for standard reconstruction algorithms. They are typically soft and very displaced from the primary interaction vertex. An innovative seeding technique that exploits the peculiar photon conversion topology, successfully applied in the CMS track reconstruction sequence, is presented. The performances of this technique and the substantial enhancement of photon conversion reconstruction efficiency are discussed. Application examples are given.

  19. The principles of electronic and electromechanic power conversion a systems approach

    CERN Document Server

    Ferreira, Braham

    2013-01-01

    Teaching the principles of power electronics and electromechanical power conversion through a unique top down systems approach, The Principles of Electromechanical Power Conversion takes the role and system context of power conversion functions as the starting point. Following this approach, the text defines the building blocks of the system and describes the theory of how they exchange power with each other. The authors introduce a modern, simple approach to machines, which makes the principles of field oriented control and space vector theory approachable to undergraduate students as well as

  20. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  1. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then...

  2. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.

    Science.gov (United States)

    Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan

    2017-12-15

    The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities.

    Science.gov (United States)

    Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N

    2016-05-11

    A large variety of conceptual three- and fourfold tetraazaporphyrin- and subtetraazaporphyrin-based functional 3D nanocage and nanobarrel structures have been proposed on the basis of in silico design. The designed structures differ in their sizes, topology, porosity, and conjugation properties. The stability of nanocages of Oh symmetry and nanobarrels of D4h symmetry was revealed on the basis of DFT and MD calculations, whereas their optical properties were assessed using a TDDFT approach and a long-range corrected LC-wPBE exchange-correlation functional. It was shown that the electronic structures and vertical excitation energies of the functional nanocage and nanobarrel structures could be easily tuned via their size, topology, and the presence of bridging sp(3) carbon atoms. TDDFT calculations suggest significantly lower excitation energies in fully conjugated nanocages and nanobarrels compared with systems with bridging sp(3) carbon fragments. Based on DFT and TDDFT calculations, the optical properties of the new materials can rival those of known quantum dots and are superior to those of monomeric phthalocyanines and their analogues. The methane gas adsorption properties of the new nanostructures and nanotubes generated by conversion from nanobarrels were studied using an MD simulation approach. The ability to store large quantities of methane (106-216 cm(3) (STP) cm(-3)) was observed in all cases with several compounds being close to or exceeding the DOE target of 180 cm(3) (STP) cm(-3) for material-based methane storage at a pressure of 3.5 MPa and room temperature.

  4. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences-Influence of DNA Sequence and Topology.

    Science.gov (United States)

    Rackwitz, Jenny; Bald, Ilko

    2018-03-26

    During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  6. High-Harmonic Generation in Solids with and without Topological Edge States

    Science.gov (United States)

    Bauer, Dieter; Hansen, Kenneth K.

    2018-04-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.

  7. Topological Acoustic Delay Line

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  8. Topological insulators fundamentals and perspectives

    CERN Document Server

    Ortmann, Frank; Valenzuela, Sergio O

    2015-01-01

    There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic

  9. Amorphous topological insulators constructed from random point sets

    Science.gov (United States)

    Mitchell, Noah P.; Nash, Lisa M.; Hexner, Daniel; Turner, Ari M.; Irvine, William T. M.

    2018-04-01

    The discovery that the band structure of electronic insulators may be topologically non-trivial has revealed distinct phases of electronic matter with novel properties1,2. Recently, mechanical lattices have been found to have similarly rich structure in their phononic excitations3,4, giving rise to protected unidirectional edge modes5-7. In all of these cases, however, as well as in other topological metamaterials3,8, the underlying structure was finely tuned, be it through periodicity, quasi-periodicity or isostaticity. Here we show that amorphous Chern insulators can be readily constructed from arbitrary underlying structures, including hyperuniform, jammed, quasi-crystalline and uniformly random point sets. While our findings apply to mechanical and electronic systems alike, we focus on networks of interacting gyroscopes as a model system. Local decorations control the topology of the vibrational spectrum, endowing amorphous structures with protected edge modes—with a chirality of choice. Using a real-space generalization of the Chern number, we investigate the topology of our structures numerically, analytically and experimentally. The robustness of our approach enables the topological design and self-assembly of non-crystalline topological metamaterials on the micro and macro scale.

  10. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  11. Complete theory of symmetry-based indicators of band topology.

    Science.gov (United States)

    Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki

    2017-06-30

    The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.

  12. The Future of Electronic Power Processing and Conversion: Highlights from FEPPCON IX

    DEFF Research Database (Denmark)

    Enslin, Johan H.; Blaabjerg, Frede; Tan, Don F.D.

    2017-01-01

    Since 1991, every second year the IEEE Power Electronics Society (PELS) has organized the technical long-range planning meeting "Future of Electronic Power Processing and Conversion" (FEPPCON). FEPPCON IX was held 12-16 June 2017 in beautiful Kruger Park in South Africa (Figure 1). The overall go...

  13. Feasibility of conversion electron spectrometry using a Peltier-cooled silicon drift detector

    International Nuclear Information System (INIS)

    Perajarvi, K.; Turunen, J.; Ihantola, S.; Pollanen, R.; Siiskonen, T.; Toivonen, H.; Kamarainen, V.; Pomme, S.

    2014-01-01

    A Peltier-cooled silicon drift detector was successfully applied for conversion electron spectrometry. The energy resolution of the detector for 45 keV electrons was 0.50 keV (FWHM). The approximate thickness of the dead layer was determined to be 140 ± 20 nm Si equivalent. The relative efficiency of the detector was verified to be approximately constant in the energy range of 17-75 keV. This is concordant with the high transparency of the thin dead layer and the sufficient thickness of the detector (450 μm) to stop the electrons. The detector is suitable for use in plutonium analysis of chemically prepared samples. Moreover, it was demonstrated that conversion electron spectrometry is better than alpha spectrometry in preserving its capability to determine the 240 Pu/ 239 Pu isotopic ratio as a function of sample thickness. The investigated measurement technique can be considered a promising new tool in safeguards, complementary to existing methods. (author)

  14. Conversion electron spectrometry of Pu isotopes with a silicon drift detector

    OpenAIRE

    Pommé, S.; Paepen, J.; Peräjärvi, K.; Turunen, J.; Pöllänen, R.

    2016-01-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5 keV for electrons of 30 keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. 238Pu, 239Pu, 240P...

  15. Dynamic surface electronic reconstruction as symmetry-protected topological orders in topological insulator Bi2Se3

    Science.gov (United States)

    Shu, G. J.; Liou, S. C.; Karna, S. K.; Sankar, R.; Hayashi, M.; Chou, F. C.

    2018-04-01

    The layered narrow-band-gap semiconductor Bi2Se3 is composed of heavy elements with strong spin-orbital coupling, which has been identified both as a good candidate for a thermoelectric material with high thermoelectric figure of merit (Z T ) and as a topological insulator of the Z2 type with a gapless surface band in a Dirac-cone shape. The existence of a conjugated π -bond system on the surface of each Bi2Se3 quintuple layer is proposed based on an extended valence bond model with valence electrons distributed in the hybridized orbitals. Supporting experimental evidence of a two-dimensional (2D) conjugated π -bond system on each quintuple layer of Bi2Se3 is provided using electron energy-loss spectroscopy and electron density mapping through inverse Fourier transform of x-ray diffraction data. Quantum chemistry calculations support the π -bond existence between partially filled 4 pz orbitals of Se via side-to-side orbital overlap positively. The conjugated π -bond system on the surface of each quintuple Bi2Se3 layer is proposed to be similar to that found in graphite (graphene) and responsible for the unique 2D conduction mechanism. The van der Waals (vdW) attractive force between quintuple layers is interpreted to be coming from the antiferroelectrically ordered effective electric dipoles, which are constructed with π -bond trimer pairs on Se layers across the vdW gap of minimized Coulomb repulsion.

  16. Conversion-electron experiment to characterize the decay of the 237Np shape isomer

    International Nuclear Information System (INIS)

    Henry, E.A.; Becker, J.A.; Bauer, R.W.; Gardner, D.G.; Decman, D.J.; Meyer, R.A.; Roy, N.; Sale, K.E.

    1987-01-01

    Conversion electrons from the decay of low-lying levels of 237 Np have been measured to detect the population of these levels by gamma-ray decay of the 237 Np shape isomer. Analysis of the 208-keV transition L conversion-electron peak gives an upper limit of about 17 μb for the population of the 3/2 - 267-keV level in 237 Np from the shape isomer decay. Model calculations are compared with the measured limit. Improvements are suggested for this experiment. 9 refs., 4 figs

  17. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  18. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2016-01-01

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  19. Implementation of the Electron conversion Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Hernandez, Torres, D.; Noriega Scull, C.

    1996-01-01

    In the present work has been exposed the principles of the Conversion Moessbauer Electron Spectroscopy and its possibilities of application. Is also described the operation of the parallel plate avalanche detector made at the CEADEN starting from modifications done to the Gancedo's model and is exposed examples of the use of this detector in the characterization of corroded surfaces, with chemical cleaning and in samples of welded joints. The experiences obtained of this work were extended to the National Polytechnic Institute of Mexico where a similar detector, made in our center, was installed there

  20. A novel series-resonant converter topology

    NARCIS (Netherlands)

    Tilgenkamp, N.V.; Haan, de S.W.H.; Huisman, H.

    1987-01-01

    A converter topology based on the principles of seriesresonant (SR) power conversion is described in which the input and output of this converter have one terminal in common, and the transformer is omitted. Both the underlying theory and associated waveforms are presented. The converter is suitable

  1. Personal dose equivalent conversion coefficients for electrons to 1 Ge V.

    Science.gov (United States)

    Veinot, K G; Hertel, N E

    2012-04-01

    In a previous paper, conversion coefficients for the personal dose equivalent, H(p)(d), for photons were reported. This note reports values for electrons calculated using similar techniques. The personal dose equivalent is the quantity used to approximate the protection quantity effective dose when performing personal dosemeter calibrations and in practice the personal dose equivalent is determined using a 30×30×15 cm slab-type phantom. Conversion coefficients to 1 GeV have been calculated for H(p)(10), H(p)(3) and H(p)(0.07) in the recommended slab phantom. Although the conversion coefficients were determined for discrete incident energies, analytical fits of the conversion coefficients over the energy range are provided using a similar formulation as in the photon results previously reported. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection guidance. Effects of eyewear on H(p)(3) are also discussed.

  2. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  3. Topologically non-trivial electronic and magnetic states in doped copper Kagome lattices

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O.; Valenti, Roser

    We present a theoretical investigation of doped copper kagome materials based on natural minerals Herbertsmithite [ZnCu3(OH)6Cl2] and Barlowite[Cu4(OH)6FBr]. Using ab-initio density functional theory calculations we estimate the stability of the hypothetical compounds against structural distortions and analyze their electronic and magnetic properties. We find that materials based on Herbertsmithite present an ideal playground for investigating the interplay of non-trivial band-topology and strong electronic correlation effects. In particular, we propose candidates for the Quantum Spin Hall effect at filling 4/3 and the Quantum Anomalous Hall effect at filling 2/3. For the Barlowite system we point out a route to realize a Quantum Spin Liquid. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49 and the National Science Foundation under Grant No. PHY11-25915.

  4. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan; Zhang, Zhiyong; Zhu, Zhiyong; Schwingenschlö gl, Udo; Cui, Yi

    2012-01-01

    in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered

  5. The effect of van der Waal's gap expansions on the surface electronic structure of layered topological insulators

    International Nuclear Information System (INIS)

    Eremeev, S V; Vergniory, M G; Chulkov, E V; Menshchikova, T V; Shaposhnikov, A A

    2012-01-01

    On the basis of relativistic ab initio calculations, we show that an expansion of van der Waal's (vdW) spacings in layered topological insulators caused by intercalation of deposited atoms, leads to the simultaneous emergence of parabolic and M-shaped two-dimensional electron gas (2DEG) bands as well as Rashba-splitting of the former states. The expansion of vdW spacings and the emergence of the 2DEG states localized in the (sub)surface region are also accompanied by a relocation of the topological surface state to the lower quintuple layers, that can explain the absence of inter-band scattering found experimentally. (paper)

  6. Dual frequency parametric excitation of a nonlinear, multi degree of freedom mechanical amplifier with electronically modified topology

    Science.gov (United States)

    Dolev, A.; Bucher, I.

    2018-04-01

    Mechanical or electromechanical amplifiers can exploit the high-Q and low noise features of mechanical resonance, in particular when parametric excitation is employed. Multi-frequency parametric excitation introduces tunability and is able to project weak input signals on a selected resonance. The present paper addresses multi degree of freedom mechanical amplifiers or resonators whose analysis and features require treatment of the spatial as well as temporal behavior. In some cases, virtual electronic coupling can alter the given topology of the resonator to better amplify specific inputs. An analytical development is followed by a numerical and experimental sensitivity and performance verifications, illustrating the advantages and disadvantages of such topologies.

  7. Converting topological insulators into topological metals within the tetradymite family

    Science.gov (United States)

    Chen, K.-W.; Aryal, N.; Dai, J.; Graf, D.; Zhang, S.; Das, S.; Le Fèvre, P.; Bertran, F.; Yukawa, R.; Horiba, K.; Kumigashira, H.; Frantzeskakis, E.; Fortuna, F.; Balicas, L.; Santander-Syro, A. F.; Manousakis, E.; Baumbach, R. E.

    2018-04-01

    We report the electronic band structures and concomitant Fermi surfaces for a family of exfoliable tetradymite compounds with the formula T2C h2P n , obtained as a modification to the well-known topological insulator binaries Bi2(Se,Te ) 3 by replacing one chalcogen (C h ) with a pnictogen (P n ) and Bi with the tetravalent transition metals T = Ti, Zr, or Hf. This imbalances the electron count and results in layered metals characterized by relatively high carrier mobilities and bulk two-dimensional Fermi surfaces whose topography is well-described by first-principles calculations. Intriguingly, slab electronic structure calculations predict Dirac-like surface states. In contrast to Bi2Se3 , where the surface Dirac bands are at the Γ point, for (Zr,Hf ) 2Te2 (P,As) there are Dirac cones of strong topological character around both the Γ ¯ and M ¯ points, which are above and below the Fermi energy, respectively. For Ti2Te2P , the surface state is predicted to exist only around the M ¯ point. In agreement with these predictions, the surface states that are located below the Fermi energy are observed by angle-resolved photoemission spectroscopy measurements, revealing that they coexist with the bulk metallic state. Thus this family of materials provides a foundation upon which to develop novel phenomena that exploit both the bulk and surface states (e.g., topological superconductivity).

  8. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of 137Cs

    International Nuclear Information System (INIS)

    Yunoki, A.; Kawada, Y.; Yamada, T.; Unno, Y.; Sato, Y.; Hino, Y.

    2013-01-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of 137 Cs- 137 Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. - Highlights: • Counting efficiencies for internal conversion electrons from 137 Cs were measured, and compared with those for β-rays. • Electron-X coincidence technique was employed. • A thin NaI(Tl) scintillation detector was used for X-ray detection. • Backscattering fractions of electrons and beta particles were studied by similar experiments

  9. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  10. Electron-topological investigation of the structure-antitumor activity relationship of thiosemicarbazone derivatives.

    Science.gov (United States)

    Dimoglo, A S; Chumakov, Y M; Dobrova, B N; Saracoglu, M

    1997-04-01

    In the frameworks of the electron-topological method (ETM) the structure-antitumor activity relationship was investigated for a series of thiosemicarbazone derivatives. The series included 70 compounds. Conformational analysis and quantum-chemical calculations were carried out for each compound. The revealed activity feature showed a satisfactory description of the class of active compounds according to two different parameters P and alpha estimating the probabilities of the feature realization in the class of active compounds (they are equal to 0.94 and 0.86, correspondingly). The results of testing demonstrated the high ability of ETM in predicting the activity investigated.

  11. Topological defect and quasi-particle dynamics in charge density waves

    International Nuclear Information System (INIS)

    Hayashi, Masahiko; Ebisawa, Hiromichi

    2010-01-01

    The dynamics of topological defects (dislocations) in charge density waves (CDW's) is largely affected by the quasi-particle dynamics in the cores of the dislocations. The dislocations mediate the conversion of the electron number between condensate and quasi-particle sub-systems. This is especially important in the sliding conduction of CDW. In this work we propose a simple model, which is obtained by extending the Ginzburg-Landau theory partially taking into account the quasi-particle dynamics in the sense of two-fluid model. We perform the numerical simulation of sliding conduction of CDW based on our model. Using this model we may clarify the detailed process of dislocation nucleation and annihilation near the contacts.

  12. A design approach for integrating thermoelectric devices using topology optimization

    DEFF Research Database (Denmark)

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov

    2016-01-01

    Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system...... to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems...... for different operating conditions and objective functions, such as temperature span, efficiency, and power recoveryrate. As a specific application, the integration of a thermoelectric cooler into the electronics section ofa downhole oil well intervention tool is investigated, with the objective of minimizing...

  13. A review of Indirect Matrix Converter Topologies

    Directory of Open Access Journals (Sweden)

    Salem Rahmani

    2015-08-01

    Full Text Available Abstract—Matrix Converter (MC is a modern direct AC/AC electrical power converter without dc-link capacitor. MC is operated in four quadrant, assuring a control of the output voltage, amplitude and frequency. The matrix converter has recently attracted significant attention among researchers and it has become increasing attractive for applications of wind energy conversion, military power supplies, induction motor drives, etc. Recently, different MC topologies have been proposed and developed which have their own advantages and disadvantages. Matrix converter can be classified as direct and indirect structures. The direct one has been elaborated in previous work. In this paper the indirect MCs are reviewed. Different characteristics of the indirect MC topologies are mentioned to show the strengths and weaknesses of such converter topologies.

  14. The topological entropy of iterated piecewise affine maps is uncomputable

    Directory of Open Access Journals (Sweden)

    Pascal Koiran

    2001-12-01

    Full Text Available We show that it is impossible to compute (or even to approximate the topological entropy of a continuous piecewise affine function in dimension four. The same result holds for saturated linear functions in unbounded dimension. We ask whether the topological entropy of a piecewise affine function is always a computable real number, and conversely whether every non-negative computable real number can be obtained as the topological entropy of a piecewise affine function. It seems that these two questions are also open for cellular automata.

  15. Topological Coherent Modes in Trapped Bose Gas

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.; Bagnato, V.S.

    2005-01-01

    The report reviews the problem of topological coherent modes, which are nonlinear collective states of Bose-condensed atoms. Such modes can be generated by means of alternating external fields, whose frequencies are in resonance with the transition frequencies between the related modes. The Bose gas with generated topological coherent modes is a collective nonlinear analog of a resonant atom. Such systems exhibit a variety of nontrivial effects, e.g. interference fringes, interference current, mode locking, dynamic transitions, critical phenomena, chaotic motion, harmonic generation, parametric conversion, atomic squeezing, and entanglement production

  16. Runaway electrons in disruptions and perturbed magnetic topologies of tokamak plasmas

    International Nuclear Information System (INIS)

    Forster, Michael

    2012-01-01

    spectra are found. The radial decay of the runaways is studied and approximated by an exponential distribution. Deriving from the measurements, resistive tearing modes or kink modes are suggested to trigger the formation of the bursts. Measurements of the total runaway electron energy are carried out using the calorimeter probe during induced TEXTOR disruptions. The dependencies of the runaway energy on the runaway current, the radial probe position, the toroidal magnetic field and the predisruptive plasma current are studied. The conversion efficiency of the magnetic plasma energy into runaway energy is estimated. The losses of runaways due to resonant magnetic perturbation fields are measured applying a scintillator probe. The effects of well defined amplitudes of the perturbation on the temporal evolution of the runaway losses and the spectral properties of the runaways are analysed. The runaway transport towards the plasma edge is described by a model which takes magnetic turbulences and the magnetic perturbation field into account. Using an asymptotic theory, the orbits as well as radially and energy dependent transport coefficients for the runaways are calculated. A diffusion equation which utilises the coefficients is solved delivering the density and the flux of the runaways. The model reproduces the measured enhancement of the runaway losses. Qualitatively different runaway spectra are found inside the plasma and at the edge. The spectra are explained by estimations of the competition between the secondary generation rate of the runaways and their radial diffusion. The runaway transport is found to be determined by the magnetic turbulence, the magnetic topology at the edge as well as inside the plasma and by the runaway energy. The mitigation of the runaways due to the magnetic perturbations can be understood by the enhancement of the losses of the low energy runaways. Eventually, a self consistent understanding of the temporal and spectral properties of the

  17. Weakly interacting topological insulators: Quantum criticality and the renormalization group approach

    Science.gov (United States)

    Chen, Wei

    2018-03-01

    For D -dimensional weakly interacting topological insulators in certain symmetry classes, the topological invariant can be calculated from a D - or (D +1 ) -dimensional integration over a certain curvature function that is expressed in terms of single-particle Green's functions. Based on the divergence of curvature function at the topological phase transition, we demonstrate how a renormalization group approach circumvents these integrations and reduces the necessary calculation to that for the Green's function alone, rendering a numerically efficient tool to identify topological phase transitions in a large parameter space. The method further unveils a number of statistical aspects related to the quantum criticality in weakly interacting topological insulators, including correlation function, critical exponents, and scaling laws, that can be used to characterize the topological phase transitions driven by either interacting or noninteracting parameters. We use 1D class BDI and 2D class A Dirac models with electron-electron and electron-phonon interactions to demonstrate these principles and find that interactions may change the critical exponents of the topological insulators.

  18. A design approach for integrating thermoelectric devices using topology optimization

    International Nuclear Information System (INIS)

    Soprani, S.; Haertel, J.H.K.; Lazarov, B.S.; Sigmund, O.; Engelbrecht, K.

    2016-01-01

    Highlights: • The integration of a thermoelectric (TE) cooler into a robotic tool is optimized. • Topology optimization is suggested as design tool for TE integrated systems. • A 3D optimization technique using temperature dependent TE properties is presented. • The sensitivity of the optimization process to the boundary conditions is studied. • A working prototype is constructed and compared to the model results. - Abstract: Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems for different operating conditions and objective functions, such as temperature span, efficiency, and power recovery rate. As a specific application, the integration of a thermoelectric cooler into the electronics section of a downhole oil well intervention tool is investigated, with the objective of minimizing the temperature of the cooled electronics. Several challenges are addressed: ensuring effective heat transfer from the load, minimizing the thermal resistances within the integrated system, maximizing the thermal protection of the cooled zone, and enhancing the conduction of the rejected heat to the oil well. The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The 3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between experimental results and

  19. Signature of Topological Phases in Zitterbewegung

    KAUST Repository

    Ghosh, Sumit

    2016-09-02

    We have studied the Zitterbewegung effect on an infinite two-dimensional sheet with honeycomb lattice. By tuning the perpendicular electric field and the magnetization of the sheet, it can enter different topological phases. We have shown that the phase and magnitude of Zitterbewegung effect, i.e., the jittering motion of electron wavepackets, correlates with the various topological phases. The topological phase diagram can be reconstructed by analyzing these features. Our findings are applicable to materials like silicene, germanene, stanene, etc.

  20. Signature of Topological Phases in Zitterbewegung

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2016-01-01

    We have studied the Zitterbewegung effect on an infinite two-dimensional sheet with honeycomb lattice. By tuning the perpendicular electric field and the magnetization of the sheet, it can enter different topological phases. We have shown that the phase and magnitude of Zitterbewegung effect, i.e., the jittering motion of electron wavepackets, correlates with the various topological phases. The topological phase diagram can be reconstructed by analyzing these features. Our findings are applicable to materials like silicene, germanene, stanene, etc.

  1. Experimental demonstration of anomalous Floquet topological insulator for sound

    Science.gov (United States)

    Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng

    2016-11-01

    Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.

  2. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  3. When quantum optics meets topology

    Science.gov (United States)

    Amo, Alberto

    2018-02-01

    Routing photons at the micrometer scale remains one of the greatest challenges of integrated quantum optics. The main difficulty is the scattering losses at bends and splitters in the photonic circuit. Current approaches imply elaborate designs, quite sensitive to fabrication details (1). Inspired by the physics underlying the one-way transport of electrons in topological insulators, on page 666 of this issue, Barik et al. (2) report a topological photonic crystal in which single photons are emitted and routed through bends with negligible loss. The marriage between quantum optics and topology promises new opportunities for compact quantum optics gating and manipulation.

  4. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-10-31

    In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are

  5. Methanol conversion to lower olefins over RHO type zeolite

    KAUST Repository

    Masih, Dilshad

    2013-07-01

    Eight-membered ring small-pore zeolite of RHO-type topology has been synthesized, characterized and tested for methanol-to-olefin (MTO) reaction. The zeolite was hydrothermally crystallized from the gel with Si/Al ratio of 5.0. It showed a high BET specific surface area (812 m2 g-1), micropore volume (0.429 cm3 g-1), and acid amount (2.53 mmol g-1). Scanning electron microscopy observations showed small crystallites of about 1 μm. The zeolite was active for MTO reaction with 100% methanol conversions at 623-723 K, whereas selectivity to lower olefins changed with time. © 2013 Elsevier B.V.

  6. Dose conversion coefficients for electron exposure of the human eye lens

    International Nuclear Information System (INIS)

    Behrens, R; Dietze, G; Zankl, M

    2009-01-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H p (0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H p (3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 deg. and 45 deg. are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  7. Designing Energy Conversion Systems for the Next Decade

    Directory of Open Access Journals (Sweden)

    Slobodan N. Vukosavić

    2012-12-01

    Full Text Available Sustainable growth in energy consumption requires transition to clean and green energy sources and energy systems. Environment friendly and renewable energy systems deal with electrical energy and rely on efficient electrical power converters. High power electronics is the key technology to deal with the next generation of electrical energy systems. The door to future breakthroughs in high power electronics is opened by major improvement in semiconductor power devices and their packaging technologies. New materials allow for much higher junction temperatures and higher operating voltages. Most importantly, advanced power semiconductor devices and novel converter topology open the possibility to increase the energy efficiency of power conversion and reduce the amount of heat. Although the waste heat created by high power converters can be put to use by adding on to heating systems, this option is not always available and the conversion losses are mostly wasted. At the same time, wasted heat is a form of pollution that threatens the environment. Another task for high power converters is efficient harvesting of renewable energy sources, such as the wind energy and the sun. Intermittent in nature, they pose a difficult task to power converter topology and controls. Eventually, high power converters are entering power distribution and transmission networks. With their quick reaction, with fast communication between the grid nodes and with advanced controllability of high power converters, a number of innovations can be introduced, facilitating the power system control and allowing for optimizations and loss reduction. Coined smart grid, this solution comprises two key elements, and these are intelligent controls and large static power converters. At virtually no cost, smart grids allow for a better utilization of available resources and it enlarges the stable operating range of the transmission systems. Therefore, it is of interest to review the

  8. Correction: Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities.

    Science.gov (United States)

    Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N

    2017-08-02

    Correction for 'Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities' by Rodion V. Belosludov et al., Phys. Chem. Chem. Phys., 2016, 18, 13503-13518.

  9. COMET/PRISM Muon to Electron Conversion at J-PARC

    International Nuclear Information System (INIS)

    Hungerford, Ed V.

    2009-01-01

    A new experimental search for coherent, neutrinoless, muon-to-electron conversion from a muonic atom has been proposed for the Japanese Proton Accelerator, J-PARC, now under commissioning. The experiment is completing a conceptual design which proposes a single event sensitivity in the branching ratio of lepton number violating to lepton conserving decays of ≅0.26x10 -16 . This note briefly describes the experiment and its objectives.

  10. Topological excitations in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Koushik, R.; Mukerjee, Subroto; Ghosh, Arindam; Baenninger, Matthias; Narayan, Vijay; Pepper, Michael; Farrer, Ian; Ritchie, David A.

    2013-01-01

    Topological defects play an important role in the melting phenomena in two-dimensions. In this work, we report experimental observation of topological defect induced melting in two-dimensional electron systems (2DES) in the presence of strong Coulomb interaction and disorder. The phenomenon is characterised by measurement of conductivity which goes to zero in a Berezinskii-Kosterlitz-Thouless like transition. Further evidence is provided via low-frequency conductivity noise measurements

  11. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  12. Electronic tunneling through a potential barrier on the surface of a topological insulator

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Zhou, Guanghui

    2016-12-01

    We investigate the tunneling transport for electrons on the surface of a topological insulator (TI) through an electrostatic potential barrier. By using the Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the transmission probability and conductance for the system. It is demonstrated that, the Klein paradox can also been observed in the system same as in graphene system. Interestingly, the conductance reaches the minimum value when the incident electron energy is equal to the barrier strength. Moreover, with increasing barrier width, the conductance turns up some tunneling oscillation peaks, and larger barrier strength can cause lower conductance, shorter period but larger oscillation amplitude. The oscillation amplitude decreases as the barrier width increases, which is similar as that of the system consisting of the compressive uniaxial strain applied on a TI, but somewhat different from that of graphene system where the oscillation amplitude is a constant. The findings here imply that an electrostatic barrier can greatly influence the electron tunneling transport of the system, and may provide a new way to realize directional filtering of electrons.

  13. Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The electron and photon reconstruction in ATLAS has moved towards the use of a dynamical, topo- logical cell-based approach for cluster building, owing to advancements in the calibration procedure which allow for such a method to be applied. The move to this new technique allows for improved measurements of electron and photon energies, particularly in situations where an electron radiates a bremsstrahlung photon, or a photon converts to an electron-poistron pair. This note details the changes to the ATLAS electron and photon reconstruction software, and assesses its performance under current LHC luminosity conditions using simulated data. Changes to the converted photon reconstruction are also detailed, which improve the reconstruction efficiency of double-track converted photons, as well as reducing the reconstruction of spurious one-track converted photons. The performance of the new reconstruction algorithm is also presented in a number of important topologies relevant to precision Standard Model physics,...

  14. A class of P,T-invariant topological phases of interacting electrons

    International Nuclear Information System (INIS)

    Freedman, Michael; Nayak, Chetan; Shtengel, Kirill; Walker, Kevin; Wang Zhenghan

    2004-01-01

    We describe a class of parity- and time-reversal-invariant topological states of matter which can arise in correlated electron systems in 2+1-dimensions. These states are characterized by particle-like excitations exhibiting exotic braiding statistics. P and T invariance are maintained by a 'doubling' of the low-energy degrees of freedom which occurs naturally without doubling the underlying microscopic degrees of freedom. The simplest examples have been the subject of considerable interest as proposed mechanisms for high-T c superconductivity. One is the 'doubled' version of the chiral spin liquid. The chiral spin liquid gives rise to anyon superconductivity at finite doping and the corresponding field theory is U(1) Chern-Simons theory at coupling constant m=2. The 'doubled' theory is two copies of this theory, one with m=2 the other with m=-2. The second example corresponds to Z 2 gauge theory, which describes a scenario for spin-charge separation. Our main concern, with an eye towards applications to quantum computation, are richer models which support non-Abelian statistics. All of these models, richer or poorer, lie in a tightly organized discrete family indexed by the Baraha numbers, 2cos(π/(k+2)), for positive integer k. The physical inference is that a material manifesting the Z 2 gauge theory or a doubled chiral spin liquid might be easily altered to one capable of universal quantum computation. These phases of matter have a field-theoretic description in terms of gauge theories which, in their infrared limits, are topological field theories. We motivate these gauge theories using a parton model or slave-fermion construction and show how they can be solved exactly. The structure of the resulting Hilbert spaces can be understood in purely combinatorial terms. The highly constrained nature of this combinatorial construction, phrased in the language of the topology of curves on surfaces, lays the groundwork for a strategy for constructing microscopic

  15. Conversion electron spectroscopy at the FMA focal plane: Decay studies of proton-rich N {approximately} 82 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nisius, D.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    The FMA has proven to be an ideal instrument for the detailed study of the decay of microsecond isomers behind the focal plane following mass selection. In reactions leading to the population of nuclei with isomeric lifetimes longer than their flight time through the device, decay gamma rays and conversion electrons can be detected in an environment free from the backgrounds of prompt radiation and delta electrons. This was a very successful technique to study proton (h{sub 11/2}){sup n} seniority isomers in nuclei with Z > 64 and N {approximately} 82. Since isomeric decay gamma rays are emitted isotropically, conversion electrons are essential for the assignment of multipolarities in these nuclei. Furthermore, the low-energy transitions that depopulate isomeric states are typically highly converted and can escape gamma-ray detection, but they can be identified by their conversion electrons.

  16. Electron Jet Detected by MMS at Dipolarization Front

    Science.gov (United States)

    Liu, C. M.; Fu, H. S.; Vaivads, A.; Khotyaintsev, Y. V.; Gershman, D. J.; Hwang, K.-J.; Chen, Z. Z.; Cao, D.; Xu, Y.; Yang, J.; Peng, F. Z.; Huang, S. Y.; Burch, J. L.; Giles, B. L.; Ergun, R. E.; Russell, C. T.; Lindqvist, P.-A.; Le Contel, O.

    2018-01-01

    Using MMS high-resolution measurements, we present the first observation of fast electron jet (Ve 2,000 km/s) at a dipolarization front (DF) in the magnetotail plasma sheet. This jet, with scale comparable to the DF thickness ( 0.9 di), is primarily in the tangential plane to the DF current sheet and mainly undergoes the E × B drift motion; it contributes significantly to the current system at the DF, including a localized ring-current that can modify the DF topology. Associated with this fast jet, we observed a persistent normal electric field, strong lower hybrid drift waves, and strong energy conversion at the DF. Such strong energy conversion is primarily attributed to the electron-jet-driven current (E ṡ je ≈ 2 E ṡ ji), rather than the ion current suggested in previous studies.

  17. Preparation of 114mIn low energy conversion electron sources

    International Nuclear Information System (INIS)

    Wrede, C.; Filippone, B.W.; Garcia, A.; Harper, G.C.; Lassell, S.; Liu, J.; Mendenhall, M.P.; Palmer, A.S.C.; Pattie, R.W.; Will, D.I.; Young, A.R.

    2011-01-01

    Highlights: → Controlled ion implantation of In-113 into thin Al substrate. → Production of In-114m (half life = 50 days) by neutron irradiation. → Use of In-114m as a source of electron lines and continuum for calibrations. → Source reactivation by short neutron irradiation. -- Abstract: The preparation of 114m In sources of conversion electrons in the energy range 162-190 keV and β continuum with a 1989 keV endpoint via ion implantation of 113 In into Al substrates and subsequent irradiation by thermal and epi-thermal neutrons in a nuclear reactor is described.

  18. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    Science.gov (United States)

    He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo

    2018-05-01

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.

  19. The role of topology in materials

    CERN Document Server

    Saxena, Avadh

    2018-01-01

    This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foa...

  20. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  1. Opto-electronic conversion logic behaviour through dynamic modulation of electron/energy transfer states at the TiO2-carbon quantum dot interface.

    Science.gov (United States)

    Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui

    2013-03-07

    Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.

  2. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  3. Assessing topology and surface orientation of an antimicrobial peptide magainin 2 using mechanically aligned bilayers and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Mayo, Daniel J; Sahu, Indra D; Lorigan, Gary A

    2018-07-01

    Aligned CW-EPR membrane protein samples provide additional topology interactions that are absent from conventional randomly dispersed samples. These samples are aptly suited to studying antimicrobial peptides because of their dynamic peripheral topology. In this study, four consecutive substitutions of the model antimicrobial peptide magainin 2 were synthesized and labeled with the rigid TOAC spin label. The results revealed the helical tilts to be 66° ± 5°, 76° ± 5°, 70° ± 5°, and 72° ± 5° for the TOAC substitutions H7, S8, A9, and K10 respectively. These results are consistent with previously published literature. Using the EPR (electron paramagnetic resonance) mechanical alignment technique, these substitutions were used to critically assess the topology and surface orientation of the peptide with respect to the membrane. This methodology offers a rapid and simple approach to investigate the structural topology of antimicrobial peptides. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    Science.gov (United States)

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Magnetic gating of a 2D topological insulator

    Science.gov (United States)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  6. Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry

    Science.gov (United States)

    Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.

    2017-11-01

    We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.

  7. A study of core electron binding energies in technetium-99m complexes by internal conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Burke, J.F.; Archer, C.M.; Wei Chiu, K.; Latham, I.A.; Egdell, R.G.

    1991-01-01

    Core electron binding energies in a series of 99m Tc complexes have been studied by internal conversion electron spectroscopy (ICES) in a conventional x-ray photoelectron spectrometer. In both 3d and 3p regions, a chemical shift of about 1 eV is observed per unit increase in oxidation state. The role of ICES in characterizing radiopharmaceutical agents is illustrated with studies of some novel 99m Tc-phosphine complexes that have been developed for myocardial perfusion imaging. (author)

  8. Irrational Charge from Topological Order

    Science.gov (United States)

    Moessner, R.; Sondhi, S. L.

    2010-10-01

    Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.

  9. Strain-induced topological quantum phase transition in phosphorene oxide

    Science.gov (United States)

    Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.

  10. The radiation-induced topotactic conversion of di-para anthracene to anthracene: an electron microscopic study

    International Nuclear Information System (INIS)

    Parkinson, G.M.; Goringe, M.J.; Thomas, J.M.

    1977-01-01

    A study was made of single crystals of di-para anthracene, the product of photodimerisation of anthracene. This undergoes an electron-induced topotactic conversion to anthracene, and the study of this reaction using low temperature TEM enabled the identification of separate stages in the conversion and the elucidation of probable mechanistic routes. (author)

  11. Topological triplon modes and bound states in a Shastry-Sutherland magnet

    Science.gov (United States)

    McClarty, P. A.; Krüger, F.; Guidi, T.; Parker, S. F.; Refson, K.; Parker, A. W.; Prabhakaran, D.; Coldea, R.

    2017-08-01

    The twin discoveries of the quantum Hall effect, in the 1980s, and of topological band insulators, in the 2000s, were landmarks in physics that enriched our view of the electronic properties of solids. In a nutshell, these discoveries have taught us that quantum mechanical wavefunctions in crystalline solids may carry nontrivial topological invariants which have ramifications for the observable physics. One of the side effects of the recent topological insulator revolution has been that such physics is much more widespread than was appreciated ten years ago. For example, while topological insulators were originally studied in the context of electron wavefunctions, recent work has initiated a hunt for topological insulators in bosonic systems: in photonic crystals, in the vibrational modes of crystals, and in the excitations of ordered magnets. Using inelastic neutron scattering along with theoretical calculations, we demonstrate that, in a weak magnetic field, the dimerized quantum magnet SrCu2(BO3)2 is a bosonic topological insulator with topologically protected chiral edge modes of triplon excitations.

  12. Topological Photonics for Continuous Media

    Science.gov (United States)

    Silveirinha, Mario

    Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.

  13. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    Science.gov (United States)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  14. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    Science.gov (United States)

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  15. Electronic Structure of the Metastable Epitaxial Rock-Salt SnSe {111} Topological Crystalline Insulator

    Directory of Open Access Journals (Sweden)

    Wencan Jin

    2017-10-01

    Full Text Available Topological crystalline insulators have been recently predicted and observed in rock-salt structure SnSe {111} thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation has a reduced surface energy and is thus a preferred configuration. In this paper, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, is used to demonstrate that a rock-salt SnSe {111} thin film epitaxially grown on Bi_{2}Se_{3} has a stable Sn-terminated surface. These observations are supported by low-energy electron diffraction (LEED intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe {111} thin film has undergone a surface structural relaxation of the interlayer spacing between the Sn and Se atomic planes. In sharp contrast to the Se-terminated counterpart, the observed Dirac surface state in the Sn-terminated SnSe {111} thin film is shown to yield a high Fermi velocity, 0.50×10^{6}  m/s, which suggests a potential mechanism of engineering the Dirac surface state of topological materials by tuning the surface configuration.

  16. Single conversion audio amplifier and DC-AC converters with high performance and low complexity control scheme

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2004-01-01

    This paper proposes a novel control topology for a mains isolated single conversion audio amplifier and DC-AC converters. The topology is made for use in audio applications, and differs from prior art in terms of significantly reduced distortion as well as lower system complexity. The topology can...

  17. Torus actions and their applications in topology and combinatorics

    CERN Document Server

    Buchstaber, Victor M

    2002-01-01

    The book presents the study of torus actions on topological spaces is presented as a bridge connecting combinatorial and convex geometry with commutative and homological algebra, algebraic geometry, and topology. This established link helps in understanding the geometry and topology of a space with torus action by studying the combinatorics of the space of orbits. Conversely, subtle properties of a combinatorial object can be realized by interpreting it as the orbit structure for a proper manifold or as a complex acted on by a torus. The latter can be a symplectic manifold with Hamiltonian torus action, a toric variety or manifold, a subspace arrangement complement, etc., while the combinatorial objects include simplicial and cubical complexes, polytopes, and arrangements. This approach also provides a natural topological interpretation in terms of torus actions of many constructions from commutative and homological algebra used in combinatorics. The exposition centers around the theory of moment-angle comple...

  18. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  19. Duo gating on a 3D topological insulator - independent tuning of both topological surface states

    Science.gov (United States)

    Li, Chuan; de Ronde, Bob; Snelder, Marieke; Stehno, Martin; Huang, Yingkai; Golden, Mark; Brinkman, Alexander; ICE Team; IOP Collaboration

    ABSTRACT: Topological insulators are associated with a trove of exciting physics, such as the ability to host robust anyons, Majorana Bound States, which can be used for quantum computation. For future Majorana devices it is desirable to have the Fermi energy tuned as close as possible to the Dirac point of the topological surface state. Based on previous work on gating BSTS, we report the experimental progress towards gate-tuning of the top and bottom topological surface states of BiSbTeSe2 crystal flakes. When the Fermi level is moved across the Dirac point conduction is shown to change from electron dominated transport to hole dominated transport independently for either surface. In the high magnetic field, one can tune the system precisely between the different landau levels of both surfaces, thus a full gating map of the possible landau levels combination is established. In addition, we provide a simple capacitance model to explain the general hysteresis behaviors in topological insulator systems.

  20. Preparation of {sup 114m}In low energy conversion electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, C., E-mail: wrede@uw.ed [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Filippone, B.W. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Garcia, A.; Harper, G.C. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Lassell, S. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Liu, J. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Mendenhall, M.P. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Palmer, A.S.C. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Pattie, R.W. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Will, D.I. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Young, A.R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2011-05-15

    Highlights: {yields} Controlled ion implantation of In-113 into thin Al substrate. {yields} Production of In-114m (half life = 50 days) by neutron irradiation. {yields} Use of In-114m as a source of electron lines and continuum for calibrations. {yields} Source reactivation by short neutron irradiation. -- Abstract: The preparation of {sup 114m}In sources of conversion electrons in the energy range 162-190 keV and {beta} continuum with a 1989 keV endpoint via ion implantation of {sup 113}In into Al substrates and subsequent irradiation by thermal and epi-thermal neutrons in a nuclear reactor is described.

  1. Three-dimensional fractional topological insulators in coupled Rashba layers

    Science.gov (United States)

    Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena

    2017-08-01

    We propose a model of three-dimensional topological insulators consisting of weakly coupled electron- and hole-gas layers with Rashba spin-orbit interaction stacked along a given axis. We show that in the presence of strong electron-electron interactions the system realizes a fractional strong topological insulator, where the rotational symmetry and condensation energy arguments still allow us to treat the problem as quasi-one-dimensional with bosonization techniques. We also show that if Rashba and Dresselhaus spin-orbit interaction terms are equally strong, by doping the system with magnetic impurities, one can bring it into the Weyl semimetal phase.

  2. High-Intensity Laser-to-Hot-Electron Conversion Efficiency from 1 to 2100 J Using the OMEGA EP Laser System

    Science.gov (United States)

    Nilson, P. M.

    2010-11-01

    Intense laser--matter interactions generate high-current electron beams. The laser-electron conversion efficiency is an important parameter for fast ignition and for developing intense x-ray sources for flash-radiography and x-ray-scattering experiments. These applications may require kilojoules of laser energy focused to greater than 10^18 W/cm^2 with pulse durations of tens of picoseconds. Previous experiments have measured the conversion efficiency with picosecond and subpicosecond laser pulses with energies up to ˜500 J. The research extends conversion-efficiency measurements to 1- to 10-ps laser pulses with energies up to 2100 J using the OMEGA EP Laser System and shows that the conversion efficiency is constant (20±10%) over the entire range The conversion efficiency is measured for interactions with finite-mass, thin-foil targets. A collimated electron jet exits the target rear surface and initiates rapid target charging, causing the majority of laser-accelerated electrons to recirculate (reflux) within the target. The total fast-electron energy is inferred from K-photon spectroscopy. Time-resolved x-ray emission data suggest that electrons are accelerated into the target over the entire laser-pulse duration with approximately constant conversion. This work provides significant insight into high-intensity laser--target interactions. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302 and DE-FC02-04ER54789. [4pt] In collaboration with R. Betti, A. A. Solodov (LLE/FSC), R. S. Craxton, J. A. Delettrez, C. Dorrer, L. Gao, P. A. Jaanimagi, J. H. Kelly, B. E. Kruschwitz, D. D. Meyerhofer, J. F. Myatt, T. C. Sangster, C. Stoeckl, W. Theobald, B. Yaakobi, J. D. Zuegel (LLE), A. J. MacKinnon, P. K. Patel (LLNL), K. U. Akli (General Atomics), L. Willingale, K. M. Krushelnick (U. of Michigan).

  3. Surfaces and slabs of fractional topological insulator heterostructures

    Science.gov (United States)

    Sahoo, Sharmistha; Sirota, Alexander; Cho, Gil Young; Teo, Jeffrey C. Y.

    2017-10-01

    Fractional topological insulators (FTIs) are electronic topological phases in (3 +1 ) dimensions enriched by time reversal (TR) and charge U (1 ) conservation symmetries. We focus on the simplest series of fermionic FTIs, whose bulk quasiparticles consist of deconfined partons that carry fractional electric charges in integral units of e*=e /(2 n +1 ) and couple to a discrete Z2 n +1 gauge theory. We propose massive symmetry preserving or breaking FTI surface states. Combining the long-ranged entangled bulk with these topological surface states, we deduce the novel topological order of quasi-(2 +1 ) -dimensional FTI slabs as well as their corresponding edge conformal field theories.

  4. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius......) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating...

  5. Ions and electrons thermal effects on the fast-slow mode conversion process in a three components plasma

    International Nuclear Information System (INIS)

    Fidone, I.; Gomberoff, L.

    1977-07-01

    Fast-slow mode conversion in a deuterium plasma with a small amount of hydrogen impurity, for frequencies close to the two-ion hybrid frequency, is investigated. It is shown that while electron thermal effects tend to inhibit the wave conversion process, ion thermal effects tend to restore, qualitatively, the cold plasma properties, favouring therefore, the energy exchange between the two modes. The aforementioned effects are competitive for zetasub(o)sup(e)=1/nsub(parall).vsub(e)>=1. For zetasub(o)sup(e)<=1, electron thermal effects, in particular Landau damping, dominate over ion Larmor radius effects, drastically diminishing the wave conversion efficacy. For zetasub(o)sup(e)<<1, the coupling between the modes disappears altogether

  6. Optical transitions in two-dimensional topological insulators with point defects

    Science.gov (United States)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  7. Topological properties and functionalities in oxide thin films and interfaces

    Science.gov (United States)

    Uchida, Masaki; Kawasaki, Masashi

    2018-04-01

    As symbolized by the Nobel Prize in Physics 2016, ‘topology’ has been recognized as an essential standpoint to understand and control the physics of condensed matter. This concept may be spreading even into application areas such as novel electronics. In this trend, there has been reported a number of studies for oxide films and heterostructures with topologically non-trivial electronic or magnetic states. In this review, we overview the trends of new topological properties and functionalities in oxide materials by sorting out a number of examples. The technological advances in oxide film growth achieved over the last few decades are now opening the door for harnessing novel topological properties.

  8. Topological Crystalline Insulators and Dirac Octets in Anti-perovskites

    OpenAIRE

    Hsieh, Timothy H.; Liu, Junwei; Fu, Liang

    2014-01-01

    We predict a new class of topological crystalline insulators (TCI) in the anti-perovskite material family with the chemical formula A$_3$BX. Here the nontrivial topology arises from band inversion between two $J=3/2$ quartets, which is described by a generalized Dirac equation for a "Dirac octet". Our work suggests that anti-perovskites are a promising new venue for exploring the cooperative interplay between band topology, crystal symmetry and electron correlation.

  9. 3-D topological signatures and a new discrimination method for single-electron events and 0νββ events in CdZnTe: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ming; Li, Teng-Lin; Cang, Ji-Rong [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zeng, Zhi, E-mail: zengzhi@tsinghua.edu.cn [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Fu, Jian-Qiang; Zeng, Wei-He; Cheng, Jian-Ping; Ma, Hao; Liu, Yi-Nong [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2017-06-21

    In neutrinoless double beta (0νββ) decay experiments, the diversity of topological signatures of different particles provides an important tool to distinguish double beta events from background events and reduce background rates. Aiming at suppressing the single-electron backgrounds which are most challenging, several groups have established Monte Carlo simulation packages to study the topological characteristics of single-electron events and 0νββ events and develop methods to differentiate them. In this paper, applying the knowledge of graph theory, a new topological signature called REF track (Refined Energy-Filtered track) is proposed and proven to be an accurate approximation of the real particle trajectory. Based on the analysis of the energy depositions along the REF track of single-electron events and 0νββ events, the REF energy deposition models for both events are proposed to indicate the significant differences between them. With these differences, this paper presents a new discrimination method, which, in the Monte Carlo simulation, achieved a single-electron rejection factor of 93.8±0.3 (stat.)% as well as a 0νββ efficiency of 85.6±0.4 (stat.)% with optimized parameters in CdZnTe.

  10. Ring-array processor distribution topology for optical interconnects

    Science.gov (United States)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  11. Topological Oxide Insulator in Cubic Perovskite Structure

    Science.gov (United States)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  12. Quantum transport in new two-dimensional heterostructures: Thin films of topological insulators, phosphorene

    Science.gov (United States)

    Majidi, Leyla; Zare, Moslem; Asgari, Reza

    2018-06-01

    The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.

  13. The {nu}MSM and muon to electron conversion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Canetti, Laurent, E-mail: laurent.canetti@epfl.ch; Shaposhnikov, Mikhail, E-mail: mikhail.shaposhnikov@epfl.ch [EPFL, ITP (Switzerland)

    2013-03-15

    We review briefly the different constraints on the three right-handed neutrinos of the {nu}MSM, an extension of the Standard Model that can explain baryon asymmetry, dark matter and neutrino masses. We include in the discussion the proposed experiments on muon to electron conversion Mu2e (Carey et al., Mu2e Collaboration, 2012), COMET and PRISM (Hungerford, COMET Collaboration, AIP Conf Proc 1182:694, 2009; Cui et al., COMET Collaboration, 2012). We find that the expected sensitivity of these experiments is weaker by about two orders of magnitude than the constraints coming from successful baryogenesis.

  14. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  15. Topological interface states and effects for next generation of innovative devices

    International Nuclear Information System (INIS)

    Kantser, Valeriu; Carlig, Sergiu

    2013-01-01

    Topological insulators (TI) have opened a gateway to search new quantum electronic phase of the condensed matter as well as to pave new platform of modern technology. This stems mainly on their unique surface states that are protected by time-reversal symmetry, show the Dirac cones connecting the inverted conduction and valence bands and exhibit unique spin-momentum locking property. Increasing the surface state contribution in proportion to the bulk of material is critical to investigate the surface states and for future innovative device applications. The way to achieve this is to configure topological insulators into nanostructures, which at the same time in combination with others materials significantly enlarge the variety of new states and phenomena. This article reviews the recent progress made in topological insulator nano heterostructures electronic states investigation. The state of art of different new scenario of engineering topologically interface states in the TI heterostructures are revealed, in particular by using polarization fields and antiferromagnetic ordering. Some of new proposals for innovative electronic devices are discussed. (authors)

  16. The SAGE spectrometer: A tool for combined in-beam γ-ray and conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Papadakis, P; Herzberg, R-D; Pakarinen, J; Butler, P A; Cox, D; Cresswell, J R; Parr, E; Sampson, J; Greenlees, P T; Sorri, J; Hauschild, K; Jones, P; Julin, R; Peura, P; Rahkila, P; Sandzelius, M; Coleman-Smith, P J; Lazarus, I H; Letts, S C; Pucknell, V F E

    2011-01-01

    The SAGE spectrometer allows simultaneous in-beam γ-ray and internal conversion electron measurements, by combining a germanium detector array with a highly segmented silicon detector and an electron transport system. SAGE is coupled with the ritu gas-filled recoil separator and the great focal-plane spectrometer for recoil-decay tagging studies. Digital electronics are used both for the γ ray and the electron parts of the spectrometer. SAGE was commissioned in the Accelerator Laboratory of the University of Jyvaeskylae in the beginning of 2010.

  17. Thermoelectric properties of 3D topological insulator: Direct observation of topological surface and its gap opened states

    Science.gov (United States)

    Matsushita, Stephane Yu; Huynh, Khuong Kim; Yoshino, Harukazu; Tu, Ngoc Han; Tanabe, Yoichi; Tanigaki, Katsumi

    2017-10-01

    We report thermoelectric (TE) properties of topological surface Dirac states (TSDS) in three-dimensional topological insulators (3D-TIs) purely isolated from the bulk by employing single-crystal B i2 -xS bxT e3 -yS ey films epitaxially grown in the ultrathin limit. Two intrinsic nontrivial topological surface states, a metallic TSDS (m-TSDS) and a gap-opened semiconducting topological state (g-TSDS), are successfully observed by electrical transport, and important TE parameters [electrical conductivity (σ), thermal conductivity (κ), and thermopower (S )] are accurately determined. Pure m-TSDS gives S =-44 μ V K-1 , which is an order of magnitude higher than those of the conventional metals and the value is enhanced to -212 μ V K-1 for g-TSDS. It is clearly shown that the semiclassical Boltzmann transport equation (SBTE) in the framework of constant relaxation time (τ) most frequently used for conventional analysis cannot be valid in 3D-TIs and strong energy dependent relaxation time τ(E ) beyond the Born approximation is essential for making intrinsic interpretations. Although σ is protected on the m-TSDS, κ is greatly influenced by the disorder on the topological surface, giving a dissimilar effect between topologically protected electronic conduction and phonon transport.

  18. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2014-09-08

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  19. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    International Nuclear Information System (INIS)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.

    2014-01-01

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  20. Magnetic reconnection in Earth's magnetotail: Energy conversion and its earthward-tailward asymmetry

    Science.gov (United States)

    Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.

    2018-01-01

    Magnetic reconnection, a fundamental plasma process, releases magnetic energy and converts it to particle energy, by accelerating and heating ions and electrons. This energy conversion plays an important role in the Earth's magnetotail. A two-dimensional particle-in-cell simulation is performed to study such a conversion in a magnetotail topology, one with a nonzero Bz, and the energy conversion is found to be more efficient in the earthward outflow than in the tailward outflow. Such earthward-tailward asymmetry is manifested not only in j .E but also in Poynting flux, Hall electromagnetic fields, bulk kinetic energy flux, enthalpy flux, heat flux, bulk acceleration, heating, and suprathermal particle energization, all of which are more prevalent on the earthward side. Such asymmetries are consistent with spacecraft observations reported in the literature. Our study shows that in the magnetotail, most of the energy converted by reconnection flows predominantly toward the Earth and has the potential of being geoeffective, rather than being expelled to the solar wind by the tailward flow. The energy conversion asymmetry arises from the presence of the non-zero normal magnetic field, the stronger lobe magnetic field, and the stronger cross-tail current earthward of the reconnection site in the pre-reconnecting thin current sheet.

  1. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    Science.gov (United States)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  2. Topological photonic crystals with zero Berry curvature

    Science.gov (United States)

    Liu, Feng; Deng, Hai-Yao; Wakabayashi, Katsunori

    2018-02-01

    Topological photonic crystals are designed based on the concept of Zak's phase rather than the topological invariants such as the Chern number and spin Chern number, which rely on the existence of a nonvanishing Berry curvature. Our photonic crystals (PCs) are made of pure dielectrics and sit on a square lattice obeying the C4 v point-group symmetry. Two varieties of PCs are considered: one closely resembles the electronic two-dimensional Su-Schrieffer-Heeger model, and the other continues as an extension of this analogy. In both cases, the topological transitions are induced by adjusting the lattice constants. Topological edge modes (TEMs) are shown to exist within the nontrivial photonic band gaps on the termination of those PCs. The high efficiency of these TEMs transferring electromagnetic energy against several types of disorders has been demonstrated using the finite-element method.

  3. Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulator

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Liu, Xiaojun; Christensen, Johan

    2017-12-01

    Topologically protected wave engineering in artificially structured media resides at the frontier of ongoing metamaterials research, which is inspired by quantum mechanics. Acoustic analogs of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation by means of robust edge mode excitations through analogies drawn to exotic quantum states. A variety of artificial acoustic systems hosting topological edge states have been proposed analogous to the quantum Hall effect, topological insulators, and Floquet topological insulators in electronic systems. However, those systems were characterized by a fixed geometry and a very narrow frequency response, which severely hinders the exploration and design of useful applications. Here we establish acoustic multipolar pseudospin states as an engineering degree of freedom in time-reversal invariant flow-free phononic crystals and develop reconfigurable topological insulators through rotation of their meta-atoms and reshaping of the metamolecules. Specifically, we show how rotation forms man-made snowflakelike molecules, whose topological phase mimics pseudospin-down (pseudospin-up) dipolar and quadrupolar states, which are responsible for a plethora of robust edge confined properties and topological controlled refraction disobeying Snell's law.

  4. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2004-01-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion...

  5. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  6. Tetradymites as thermoelectrics and topological insulators

    Science.gov (United States)

    Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin

    2017-10-01

    Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

  7. Topology optimized design of a transverse electric higher order mode converter

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Ding, Yunhong; Sigmund, Ole

    2016-01-01

    The investigation of methods to support the ever increasing demand for data transfer has continued for years; one such method suggested within the field of optical communication, is space division multiplexing (SDM) [1]. Simultaneously the field of photonic integrated circuits (PICs) is being...... present the possibility of employing topology optimization (TO) to design a device that allows for reversible conversion between the transverse electric fundamental even (TE0) mode and the second higher order odd mode (TE2). Topology optimization is an iterative inverse design process, where repeated...

  8. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    Science.gov (United States)

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  9. Conversion of sulfur and nitrogen oxides in air under exposure to microsecond electron beams

    International Nuclear Information System (INIS)

    Denisov, G.V.; Kuznetsov, D.L.; Novoselov, Yu.N.; Tkachenko, R.M.

    2002-01-01

    Flue gases of power plants realizing sulfur and nitrogen oxides into the atmosphere represent one of the environmental pollution sources. Paper presents the results of experimental investigations of conversion of sulfur and nitrogen oxides in the ionized gas mixture simulating composition of off-gases of thermal power stations. Pulse beam of microsecond duration electrons was used as a source of ionization. Mutual influence of both types of oxides on process of their conversion is shown. One studied possible kinetic mechanisms to remove sulfur and nitrogen oxides from gaseous mixture [ru

  10. Topology

    CERN Document Server

    Hocking, John G

    1988-01-01

    ""As textbook and reference work, this is a valuable addition to the topological literature."" - Mathematical ReviewsDesigned as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff t

  11. Topological hierarchy matters — topological matters with superlattices of defects

    International Nuclear Information System (INIS)

    He Jing; Kou Su-Peng

    2016-01-01

    Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)

  12. Relation of the runaway avalanche threshold to momentum space topology

    Science.gov (United States)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu

    2018-02-01

    The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.

  13. High-Harmonic Generation in Solids with and without Topological Edge States

    DEFF Research Database (Denmark)

    Bauer, Dieter; Hansen, Kenneth Christian Klochmann

    2018-01-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up...... to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present...

  14. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  15. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  16. Topological dynamics of gyroscopic and Floquet lattices from Newton's laws

    Science.gov (United States)

    Lee, Ching Hua; Li, Guangjie; Jin, Guliuxin; Liu, Yuhan; Zhang, Xiao

    2018-02-01

    Despite intense interest in realizing topological phases across a variety of electronic, photonic, and mechanical platforms, the detailed microscopic origin of topological behavior often remains elusive. To bridge this conceptual gap, we show how hallmarks of topological modes—boundary localization and chirality—emerge from Newton's laws in mechanical topological systems. We first construct a gyroscopic lattice with analytically solvable edge modes, and show how the Lorentz and spring restoring forces conspire to support very robust "dangling bond" boundary modes. The chirality and locality of these modes intuitively emerges from microscopic balancing of restoring forces and cyclotron tendencies. Next, we introduce the highlight of this work, an experimentally realistic mechanical nonequilibrium (Floquet) Chern lattice driven by ac electromagnets. Through appropriate synchronization of the ac driving protocol, the Floquet lattice is "pushed around" by a rotating potential analogous to an object washed ashore by water waves. Besides hosting "dangling bond" chiral modes analogous to the gyroscopic boundary modes, our Floquet Chern lattice also supports peculiar half-period chiral modes with no static analog, i.e., analogs of anomalous Floquet Chern insulators edge modes. With key parameters controlled electronically, our setup has the advantage of being dynamically tunable for applications involving arbitrary Floquet modulations. The physical intuition gleaned from our two prototypical topological systems is applicable not just to arbitrarily complicated mechanical systems, but also photonic and electrical topological setups.

  17. Exploring the Interaction Natures in Plutonyl (VI Complexes with Topological Analyses of Electron Density

    Directory of Open Access Journals (Sweden)

    Jiguang Du

    2016-04-01

    Full Text Available The interaction natures between Pu and different ligands in several plutonyl (VI complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC basis set. The Pu– O y l bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI approach it has been found that some weak and repulsion interactions existed in plutonyl(VI complexes, which can not be distinguished by QTAIM, can be successfully identified.

  18. Quantum and Classical Approaches in Graphene and Topological Insulators

    DEFF Research Database (Denmark)

    Posvyanskiy, Vladimir

    mechanical study, this approach can give simple and pictorial explanation of the topological edge states. In our work we find the semiclassical orbits for the samples of different geometries and also discuss the influence of the quantum effects, the Berry phase, on the semiclassical electron dynamics....... Finally, we try to find the semiclassical mechanism responsible for topological protection of the edge states....

  19. Magnetic susceptibility in the edged topological disordered nanoscopic cylinder

    International Nuclear Information System (INIS)

    Faizabadi, Edris; Omidi, Mahboubeh

    2011-01-01

    The effects of edged topological disorder on magnetic susceptibility are investigated in a nanoscopic cylinder threaded by a magnetic flux. Persistent current versus even or odd number of electrons shows different signs in ordered and disordered cylinders and also in short or long ones. In addition, temperature-averaged susceptibility has only diamagnetic signs in strong regimes and it is associated with paramagnetic signs in ordered and weak disordered ones. Besides, in an edged topological disordered cylinder, the temperature-averaged susceptibility decreases by raising the temperature somewhat and then increasing initiates and finally at high temperature tends to zero as the ordered one. - Research highlights: → Magnetic susceptibility in one-dimensional topological disordered quantum ring. → Edged topological disorder effect on magnetic susceptibility in nanoscopic cylinder. → Edged topological disorder effect on temperature-averaged susceptibility in cylinder.

  20. Topological and trivial magnetic oscillations in nodal loop semimetals

    Science.gov (United States)

    Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto

    2018-05-01

    Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.

  1. Nanometric holograms based on a topological insulator material.

    Science.gov (United States)

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-05-18

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

  2. Identifying carcinogenic activity of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) through electronic and topological indices

    CERN Document Server

    Braga, R S; Barone, P M V B

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of planar molecules, abundant in urban environment, which can induce chemical carcinogenesis. Their carcinogenic power varies in a large range, from very strong carcinogens to inactive ones. In a previous study, we proposed a methodology to identify the PAHs carcinogenic activity exploring electronic and topological indices. In the present work, we show that it is possible to simplify that methodology and expand its applicability to include methylated PAHs compounds. Using very simple rules, we can predict their carcinogenic activity with high accuracy (approx 89%).

  3. Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.

    1996-07-01

    The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)

  4. Detection of topological phase transitions through entropy measurements: The case of germanene

    Science.gov (United States)

    Grassano, D.; Pulci, O.; Shubnyi, V. O.; Sharapov, S. G.; Gusynin, V. P.; Kavokin, A. V.; Varlamov, A. A.

    2018-05-01

    We propose a characterization tool for studies of the band structure of new materials promising for the observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron dependence on the chemical potential may be considered as a fingerprint of the transition between topological and trivial insulator phases. The entropy per electron in a honeycomb two-dimensional crystal of germanene subjected to the external electric field is obtained from the first-principles calculation of the density of electronic states and the Maxwell relation. We demonstrate that, in agreement with the recent prediction of the analytical model, strong spikes in the entropy per particle dependence on the chemical potential appear at low temperatures. They are observed at the values of the applied bias both below and above the critical value that corresponds to the transition between the topological insulator and trivial insulator phases, whereas the giant resonant feature in the vicinity of the zero chemical potential is strongly suppressed at the topological transition point, in the low-temperature limit. In a wide energy range, the van Hove singularities in the electronic density of states manifest themselves as zeros in the entropy per particle dependence on the chemical potential.

  5. Superconducting proximity effect in topological materials

    Science.gov (United States)

    Reeg, Christopher R.

    In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.

  6. Raman spectra of MgB2 at high pressure and topological electronic transition

    International Nuclear Information System (INIS)

    Meletov, K.P.; Kulakov, M.P.; Kolesnikov, N.N.; Arvanitidis, J.; Kourouklis, G.A.

    2002-01-01

    Raman spectra of the MgB 2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼ 590 cm -1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼ 5 GPa exhibits a change in the slope as well as a hysteresis effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB 2 may undergo a pressure-induced topological electronic transition [ru

  7. Imaging active topological defects in carbon nanotubes

    Science.gov (United States)

    Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio

    2007-06-01

    A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.

  8. Geared Topological Metamaterials with Tunable Mechanical Stability

    Directory of Open Access Journals (Sweden)

    Anne S. Meeussen

    2016-11-01

    Full Text Available The classification of materials into insulators and conductors has been shaken up by the discovery of topological insulators that conduct robustly at the edge but not in the bulk. In mechanics, designating a material as insulating or conducting amounts to asking if it is rigid or floppy. Although mechanical structures that display topological floppy modes have been proposed, they are all vulnerable to global collapse. Here, we design and build mechanical metamaterials that are stable and yet capable of harboring protected edge and bulk modes, analogous to those in electronic topological insulators and Weyl semimetals. To do so, we exploit gear assemblies that, unlike point masses connected by springs, incorporate both translational and rotational degrees of freedom. Global structural stability is achieved by eliminating geometrical frustration of collective gear rotations extending through the assembly. The topological robustness of the mechanical modes makes them appealing across scales from engineered macrostructures to networks of toothed microrotors of potential use in micromachines.

  9. Topological semimetal in honeycomb lattice LnSI

    Science.gov (United States)

    Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng

    2017-10-01

    Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.

  10. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice

    Science.gov (United States)

    Khanikaev, Alexander B.; Fleury, Romain; Mousavi, S. Hossein; Alù, Andrea

    2015-10-01

    Topological insulators do not allow conduction in the bulk, yet they support edge modes that travel along the boundary only in one direction, determined by the carried electron spin, with inherent robustness to defects and disorder. Topological insulators have inspired analogues in photonics and optics, in which one-way edge propagation in topologically protected two-dimensional materials is achieved breaking time-reversal symmetry with a magnetic bias. Here, we introduce the concept of topological order in classical acoustics, realizing robust topological protection and one-way edge propagation of sound in a suitably designed resonator lattice biased with angular momentum, forming the acoustic analogue of a magnetically biased graphene layer. Extending the concept of an acoustic nonreciprocal circulator based on angular-momentum bias, time-reversal symmetry is broken here using moderate rotational motion of air within each element of the lattice, which takes the role of the electron spin in determining the direction of modal edge propagation.

  11. Achievement of extreme resolution for the selective by depth Moessbauer method on conversion electrons

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.; Ryzhikh, V.Yu.; Chubisov, M.A.

    2001-01-01

    At the Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan the depth selective conversion electrons Moessbauer spectroscopy (DSCEMS) method was realized on the facility designed on the magnet sector beta-spectrometer base with the dual focusing equipped with non-equipotential electron source in the multi-ribbon variant and the position-sensitive detector. In the work the model statistical calculations of energy and angular distributions experienced not so many times of inelastic scattering acts were carried out

  12. Mode-conversion process and overdense-plasma heating in the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Nakajima, S.; Abe, H.

    1988-01-01

    Through a particle-simulation investigation, a new mode-conversion process, through which an incident fast extraordinary mode (fast X mode) is converted into an electron Bernstein mode (B mode) via a (slow extraordinary mode slow X mode), is discovered in plasmas whose maximum density exceeds the cutoff density of the slow X mode. The converted B mode is found to heat the electrons efficiently in an overdense plasma region, when the plasma has the optimum density gradient at the plasma surface

  13. Slow and fast electron concentrations

    International Nuclear Information System (INIS)

    MacDougall, P.J.

    1991-01-01

    We consider the physical significance of the topology of the Laplacian of the electron momentum density. Via a single simple postulate, the electrical properties of metals, superconductors, and insulators are linked to well-defined and observable topological features in this distribution From this postulate it follows that a necessary condition for superconductivity is a closed path of cusp singularities in the material's time-averaged distribution. The topology of the path is constrained by the geometry of the sample and its environment. Yet, by virtue of the postulate, the unique collision properties of this path (in momentum space suggest that it charts a common course for electrons throughout the material, along which there is absolute minimum resistance to electron flow. As a further consequence of the postulate, it is also predicted that the preferred planes or axes of electron transport in anisotropic conductors with correspond to uniquely and unambiguously defined topological features of the Laplacian of the electron momentum distribution. (Author) 34 refs., 2 figs., tab

  14. twzPEA: A Topology and Working Zone Based Pathway Enrichment Analysis Framework

    Science.gov (United States)

    Sensitive detection of involvement and adaptation of key signaling, regulatory, and metabolic pathways holds the key to deciphering molecular mechanisms such as those in the biomass-to-biofuel conversion process in yeast. Typical gene set enrichment analyses often do not use topology information in...

  15. Surface states on a topologically nontrivial semimetal: The case of Sb(110)

    DEFF Research Database (Denmark)

    Bianchi, Marco; Guan, Dandan; Strózecka, Anna

    2012-01-01

    The electronic structure of Sb(110) is studied by angle-resolved photoemission spectroscopy and first-principles calculations, revealing several electronic surface states in the projected bulk band gaps around the Fermi energy. The dispersion of the states can be interpreted in terms of a strong...... spin-orbit splitting. The bulk band structure of Sb has the characteristics of a strong topological insulator with a Z2 invariant ν0 = 1. This puts constraints on the existence of metallic surface states and the expected topology of the surface Fermi contour. However, bulk Sb is a semimetal......, not an insulator, and these constraints are therefore partly relaxed. This relation of bulk topology and expected surface-state dispersion for semimetals is discussed....

  16. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  17. Induced topological pressure for topological dynamical systems

    International Nuclear Information System (INIS)

    Xing, Zhitao; Chen, Ercai

    2015-01-01

    In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure

  18. Topological superconductivity, topological confinement, and the vortex quantum Hall effect

    International Nuclear Information System (INIS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2011-01-01

    Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.

  19. Rényi-Fisher entropy product as a marker of topological phase transitions

    Science.gov (United States)

    Bolívar, J. C.; Nagy, Ágnes; Romera, Elvira

    2018-05-01

    The combined Rényi-Fisher entropy product of electrons plus holes displays a minimum at the charge neutrality points. The Stam-Rényi difference and the Stam-Rényi uncertainty product of the electrons plus holes, show maxima at the charge neutrality points. Topological quantum numbers capable of detecting the topological insulator and the band insulator phases, are defined. Upper and lower bounds for the position and momentum space Rényi-Fisher entropy products are derived.

  20. ForConX: A forcefield conversion tool based on XML.

    Science.gov (United States)

    Lesch, Volker; Diddens, Diddo; Bernardes, Carlos E S; Golub, Benjamin; Dequidt, Alain; Zeindlhofer, Veronika; Sega, Marcello; Schröder, Christian

    2017-04-05

    The force field conversion from one MD program to another one is exhausting and error-prone. Although single conversion tools from one MD program to another exist not every combination and both directions of conversion are available for the favorite MD programs Amber, Charmm, Dl-Poly, Gromacs, and Lammps. We present here a general tool for the force field conversion on the basis of an XML document. The force field is converted to and from this XML structure facilitating the implementation of new MD programs for the conversion. Furthermore, the XML structure is human readable and can be manipulated before continuing the conversion. We report, as testcases, the conversions of topologies for acetonitrile, dimethylformamide, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate comprising also Urey-Bradley and Ryckaert-Bellemans potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. High power density dc/dc converter: Selection of converter topology

    Science.gov (United States)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  2. Pseudospins and Topological Effects of Phonons in a Kekulé Lattice

    Science.gov (United States)

    Liu, Yizhou; Lian, Chao-Sheng; Li, Yang; Xu, Yong; Duan, Wenhui

    2017-12-01

    The search for exotic topological effects of phonons has attracted enormous interest for both fundamental science and practical applications. By studying phonons in a Kekulé lattice, we find a new type of pseudospin characterized by quantized Berry phases and pseudoangular momenta, which introduces various novel topological effects, including topologically protected pseudospin-polarized interface states and a phonon pseudospin Hall effect. We further demonstrate a pseudospin-contrasting optical selection rule and a pseudospin Zeeman effect, giving a complete generation-manipulation-detection paradigm of the phonon pseudospin. The pseudospin and topology-related physics revealed for phonons is general and applicable for electrons, photons, and other particles.

  3. Chemical Gating of a Weak Topological Insulator: Bi14Rh3I9.

    Science.gov (United States)

    Ghimire, Madhav Prasad; Richter, Manuel

    2017-10-11

    The compound Bi 14 Rh 3 I 9 has recently been suggested as a weak three-dimensional topological insulator on the basis of angle-resolved photoemission and scanning-tunneling experiments in combination with density functional (DF) electronic structure calculations. These methods unanimously support the topological character of the headline compound, but a compelling confirmation could only be obtained by dedicated transport experiments. The latter, however, are biased by an intrinsic n-doping of the material's surface due to its polarity. Electronic reconstruction of the polar surface shifts the topological gap below the Fermi energy, which would also prevent any future device application. Here, we report the results of DF slab calculations for chemically gated and counter-doped surfaces of Bi 14 Rh 3 I 9 . We demonstrate that both methods can be used to compensate the surface polarity without closing the electronic gap.

  4. General topology

    CERN Document Server

    Willard, Stephen

    2004-01-01

    Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Its treatment encompasses two broad areas of topology: ""continuous topology,"" represented by sections on convergence, compactness, metrization and complete metric spaces, uniform spaces, and function spaces; and ""geometric topology,"" covered by nine sections on connectivity properties, topological characterization theorems, and homotopy theory. Many standard spaces are introduced in the related problems that accompany each section (340

  5. Comparing topological charge definitions using topology fixing actions

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Gruber, Florian; Jansen, Karl; Marinkovic, Marina; Urbach, Carsten; Wagner, Marc

    2009-05-01

    We investigate both the hyperbolic action and the determinant ratio action designed to fix the topological charge on the lattice. We show to what extent topology is fixed depending on the parameters of these actions, keeping the physical situation fixed. At the same time the agreement between different definitions of topological charge - the field theoretic and the index definition - is directly correlated to the degree topology is fixed. Moreover, it turns out that the two definitions agree very well. We also study finite volume effects arising in the static potential and related quantities due to topology fixing. (orig.)

  6. Observation of electron beam moiré fringes in an image conversion tube

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yunfei; Liao, Yubo [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China); Long, Jing-hua [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Cai, Houzhi; Bai, Yanli [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China); Liu, Jinyuan, E-mail: ljy@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China)

    2016-11-15

    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10 L/mm. The anode mesh had a fixed spatial frequency of 10 L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3 keV electron beam. - Highlights: • Observe the electron beam moiré fringes in large angle of view. • The changes to the fringe direction and the spacing as a function of the rotation angle between the two gratings were examined. • Modulations of the moiré fringes in different rotation angle are recorded.

  7. Observation of electron beam moiré fringes in an image conversion tube

    International Nuclear Information System (INIS)

    Lei, Yunfei; Liao, Yubo; Long, Jing-hua; Cai, Houzhi; Bai, Yanli; Liu, Jinyuan

    2016-01-01

    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10 L/mm. The anode mesh had a fixed spatial frequency of 10 L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3 keV electron beam. - Highlights: • Observe the electron beam moiré fringes in large angle of view. • The changes to the fringe direction and the spacing as a function of the rotation angle between the two gratings were examined. • Modulations of the moiré fringes in different rotation angle are recorded.

  8. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    International Nuclear Information System (INIS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-01-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z_2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  9. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  10. Dose-rate conversion factors for external exposure to photon and electron radiation from radionuclides occurring in routine releases from nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1980-01-01

    Dose-rate conversion factors for external exposure to photon and electron radiation are calculated for 240 radionuclides of potential importance in routine releases from nuclear fuel cycle facilities. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each exposure mode, dose-rate conversion factors for photons and electrons are calculated for tissue-equivalent material at the body surface of an exposed individual. Dose-rate conversion factors for photons only are calculated for 22 body organs. (author)

  11. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Science.gov (United States)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  12. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Directory of Open Access Journals (Sweden)

    Daniel Litinski

    2017-09-01

    Full Text Available We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall–superconductor hybrids.

  13. Lateral topological crystalline insulator heterostructure

    Science.gov (United States)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  14. Circuit topology of self-interacting chains: implications for folding and unfolding dynamics.

    Science.gov (United States)

    Mugler, Andrew; Tans, Sander J; Mashaghi, Alireza

    2014-11-07

    Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.

  15. Real-space mapping of topological invariants using artificial neural networks

    Science.gov (United States)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  16. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  17. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  18. Transmission through a potential barrier in Luttinger liquids with a topological spin gap

    Science.gov (United States)

    Kainaris, Nikolaos; Carr, Sam T.; Mirlin, Alexander D.

    2018-03-01

    We study theoretically the transport of the one-dimensional single-channel interacting electron gas through a strong potential barrier in the parameter regime where the spin sector of the low-energy theory is gapped by interaction (Luther-Emery liquid). There are two distinct phases of this nature, of which one is of particular interest as it exhibits nontrivial interaction-induced topological properties. Focusing on this phase and using bosonization and an expansion in the tunneling strength we calculate the conductance through the barrier as a function of the temperature as well as the local density of states (LDOS) at the barrier. Our main result concerns the mechanism of bound-state-mediated tunneling. The characteristic feature of the topological phase is the emergence of protected zero-energy bound states with fractional spin located at the impurity position. By flipping this fractional spin, single electrons can tunnel across the impurity even though the bulk spectrum for spin excitations is gapped. This results in a finite LDOS below the bulk gap and in a nonmonotonic behavior of the conductance. The system represents an important physical example of an interacting symmetry-protected topological phase, which combines features of a topological spin insulator and a topological charge metal, in which the topology can be probed by measuring transport properties.

  19. Topological analysis of valence electron charge distributions from semiempirical and ab initio methods

    International Nuclear Information System (INIS)

    Ho, Minhhuy; Schmider, H.; Edgecombe, K.E.

    1994-01-01

    Topological properties of the charge density p(→) of a series of diatomic molecules, as well as ethane, ethene, and acetylene are calculated at the Hartree-Fock level employing various basis sets, and by the AM1 method. The effect of the core orbitals on the bonding regions in these molecules is examined. The results help to evaluate the utility of AM1 wavefunctions for analyzing the topological properties of the charge density

  20. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  1. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  2. Developing Topological Insulator Fiber Based Photon Pairs Source for Ultrafast Optoelectronic Applications

    Science.gov (United States)

    2016-04-01

    of a thin layer of topological insulator Bi2Se3 with the transmission of T = 50%. We apply magnetic field B=3 tesla normal to the sample and parallel...nonlinear induced by magnetic field in the Topological Insulator Bi2Se3 and Molybdenum Disulfide MoS2. The nonlinear effect is pulse broadening...Topological Insulator Q- Switched Erbium-Doped Fiber Laser”, IEEE J. Sel. Top. Quant. Electron., 20, 0900508 (2014). [2]. Shuqing Chen et al, “Stable Q

  3. Effects of xenon insertion into hydrogen bromide. Comparison of the electronic structure of the HBr···CO2 and HXeBr···CO2 complexes using quantum chemical topology methods: electron localization function, atoms in molecules and symmetry adapted perturbation theory.

    Science.gov (United States)

    Makarewicz, Emilia; Gordon, Agnieszka J; Mierzwicki, Krzysztof; Latajka, Zdzislaw; Berski, Slawomir

    2014-06-05

    Quantum chemistry methods have been applied to study the influence of the Xe atom inserted into the hydrogen-bromine bond (HBr → HXeBr), particularly on the nature of atomic interactions in the HBr···CO2 and HXeBr···CO2 complexes. Detailed analysis of the nature of chemical bonds has been carried out using topological analysis of the electron localization function, while topological analysis of electron density was used to gain insight into the nature of weak nonbonding interactions. Symmetry-adapted perturbation theory within the orbital approach was applied for greater understanding of the physical contributions to the total interaction energy.

  4. Investigation of internal conversion electron lines by track counting technique

    CERN Document Server

    Islamov, T A; Kambarova, N T; Muminov, T M; Lebedev, N A; Solnyshkin, A A; Aleshin, Yu D; Kolesnikov, V V; Silaev, V I; Niipf-Tashgu, T

    2001-01-01

    The methodology of counting the tracks of the internal conversion electron (ICE) in the nuclear photoemulsion is described. The results on counting the ICE tracks on the photoplates for sup 1 sup 6 sup 1 Ho, sup 1 sup 6 sup 3 Tm, sup 1 sup 6 sup 6 Tm, sup 1 sup 3 sup 5 Ce is described. The above results are obtained through the MBI-9 microscope and the MAS-1 automated facility. The ICE track counting on the photoplates provides for essentially higher sensitivity as compared to the photometry method. This makes it possible to carry out measurements with the sources by 1000 times weaker as by the study into the density of blackening

  5. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  6. A new magnetic spectrometer for the investigation of the internal conversion electron in capture reaction

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1978-01-01

    Planning, development and manufacture of a new beta spectrometer for the investigation of the internal conversion electrons, from 0,02 to 10 MeV, emitted during the radioative capture process of the thermal neutrons. The resolution on the base of resolution curve is about 1,5 X 10 sup(-3) [pt

  7. The conversion to electronic hospital notes at Mayo Clinic. Overcoming barriers and challenges.

    Science.gov (United States)

    Andreen, Debra L; Dobie, Linda J; Jasperson, Jan C; Lucas, Thomas A; Wubbenhorst, Cathryn L

    2010-01-01

    This article describes the conversion to electronic hospital notes at a large, multi-specialty group practice: Mayo Clinic in Rochester, Minnesota. Because of the size of the institution and the barriers to the adoption of electronic notes, the process was a gradual one that took several years. Making a convincing case for change to institutional leaders and maintaining their support was crucial to success. Equally vital was the careful investigation of user requirements and the development of software features that allowed providers to complete their notes quickly in the fast-paced hospital environment. Care providers discovered the value of having immediate access to legible hospital notes throughout the campus and from remote locations.

  8. Conversion Matrix Analysis of SiGe HBT Gilbert Cell Mixers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2004-01-01

    The frequency response of SiGe HBT active mixers based on the Gilbert cell topology is analyzed theoretically. The time-varying operation of the Gilbert cell mixer is taken into account by applying conversion matrix analysis. The main bandwidth limiting mechanisms experienced in SiGe HBT Gilbert ...

  9. Topological Classification of Crystalline Insulators through Band Structure Combinatorics

    Science.gov (United States)

    Kruthoff, Jorrit; de Boer, Jan; van Wezel, Jasper; Kane, Charles L.; Slager, Robert-Jan

    2017-10-01

    We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure in all physically relevant dimensions. The algorithm applies to crystals without time-reversal, particle-hole, chiral, or any other anticommuting or anti-unitary symmetries. The results presented match the mathematical structure underlying the topological classification of these crystals in terms of K -theory and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify all allowed topological phases of spinless particles in crystals in class A . Employing this classification, we study transitions between topological phases within class A that are driven by band inversions at high-symmetry points in the first Brillouin zone. This enables us to list all possible types of phase transitions within a given crystal structure and to identify whether or not they give rise to intermediate Weyl semimetallic phases.

  10. Chiral topological excitons in a Chern band insulator

    Science.gov (United States)

    Chen, Ke; Shindou, Ryuichi

    2017-10-01

    A family of semiconductors called Chern band insulators are shown to host exciton bands with nonzero topological Chern integers and chiral exciton edge modes. Using a prototypical two-band Chern insulator model, we calculate a cross-correlation function to obtain the exciton bands and their Chern integers. The lowest exciton band acquires Chern integers such as ±1 and ±2 in the electronic Chern insulator phase. The nontrivial topology can be experimentally observed both by a nonlocal optoelectronic response of exciton edge modes and by a phase shift in the cross-correlation response due to the bulk mode. Our result suggests that magnetically doped HgTe, InAs/GaSb quantum wells, and (Bi,Sb)2Te3 thin films are promising candidates for a platform of topological excitonics.

  11. Topology of Fermi surfaces and anomaly inflows

    Energy Technology Data Exchange (ETDEWEB)

    Adem, Alejandro; Camarena, Omar Antolín [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada); Semenoff, Gordon W. [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, V6T 1Z1 (Canada); Sheinbaum, Daniel [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada)

    2016-11-14

    We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half-space and with a gapped bulk, our derivation naturally yields a K-theory classification. Given the d−1-dimensional surface Brillouin zone X{sub s} of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K{sup −1}(X{sub s}) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d=2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.

  12. Topological Sound and Flocking on Curved Surfaces

    Science.gov (United States)

    Shankar, Suraj; Bowick, Mark J.; Marchetti, M. Cristina

    2017-07-01

    Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature, orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state because of the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow, the system additionally supports long-wavelength propagating sound modes that get gapped by the curvature of the underlying substrate. We analytically compute the steady-state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry-protected topological modes that get localized to special geodesics on the surface (the equator or the neck, respectively). These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.

  13. Disorder Effects in Charge Transport and Spin Response of Topological Insulators

    Science.gov (United States)

    Zhao, Lukas Zhonghua

    Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in the bulk donated by randomly distributed defects such as vacancies and antisites. This bulk disorder intermixes surface and bulk conduction channels, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response and resulting in the relatively low measured carrier mobilities. Moreover, charge inhomogeneity arising from bulk disorder can result in pronounced nanoscale spatial fluctuations of energy on the surface, leading to the formation of surface `puddles' of different carrier types. Great efforts have been made to combat the undesirable effects of disorder in 3D topological insulators and to reduce bulk carriers through chemical doping, nanostructure fabrication, and electric gating. In this work we have developed a new way to reduce bulk carrier densities using high-energy electron irradiation, thereby allowing us access to the topological surface quantum channels. We also found that disorder in 3D topological insulators can be beneficial. It can play an important part in enabling detection of unusual magnetic response from Dirac fermions and in uncovering new excitations, namely surface superconductivity in Dirac `puddles'. In Chapter 3 we show how by using differential magnetometry we could probe spin rotation in the 3D topological material family (Bi2Se 3, Bi2Te3 and Sb2Te3

  14. Time- and Site-Resolved Dynamics in a Topological Circuit

    Directory of Open Access Journals (Sweden)

    Jia Ningyuan

    2015-06-01

    Full Text Available From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed-matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of ϕ=π/2. In situ probes of the band gaps reveal spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band structure, and when combined with circuit quantum electrodynamics techniques, it provides a direct path to topologically ordered quantum matter.

  15. Dual-scale topology optoelectronic processor.

    Science.gov (United States)

    Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H

    1991-12-15

    The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.

  16. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  17. Energy conversion phenomena in plug-in hybrid-electric vehicles

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2011-01-01

    Research highlights: → Energy conversion phenomena of PHEVs for different drive cycles and depletion rates of energy sources. → Detailed physically based framework for analyzing energy conversion phenomena in PHEVs. → Interaction of energy flows and energy losses with energy consumption of the PHEV. → Identification and explanation of mechanisms leading to optimal tank-to-wheel efficiency. → Analysis of well-to-wheel efficiencies for different realistic well-to-tank scenarios. -- Abstract: Energy flows and energy conversion efficiencies of commercial plug-in hybrid-electric vehicles (PHEV) are analyzed for parallel and series PHEV topologies. The analysis is performed by a combined analytical and simulation approach. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the energy consumption of the PHEV. Thereby the paper reveals energy conversion phenomena of different PHEV topologies operating according to charge depleting and charge sustaining modes as well as according to different test cycles. It is shown in the paper that amount of the energy depleted from both on-board energy sources is significantly influenced by the efficiencies of energy conversion chains from on-board energy sources to the wheels. It is also shown that energy used to power the PHEV according to particular test cycles varies based on its operating mode, which influences energy flows on different energy paths within the PHEVs and consequently overall energy consumed by the PHEV. The paper additionally discusses well-to-wheel efficiencies considering different realistic well-to-tank scenarios. It is shown that well-to-tank efficiency of electric energy generation significantly influences optimal operating mode of the PHEV if consumption of primary energy sources is considered.

  18. Topologically Allowed Nonsixfold Vortices in a Sixfold Multiferroic Material: Observation and Classification

    KAUST Repository

    Cheng, Shaobo

    2017-04-06

    We report structural transformation of sixfold vortex domains into two-, four-, and eightfold vortices via a different type of topological defect in hexagonal manganites. Combining high-resolution electron microscopy and Landau-theory-based numerical simulations, we investigate the remarkable atomic arrangement and the intertwined relationship between the vortex structures and the topological defects. The roles of their displacement field, formation temperature, and nucleation sites are revealed. All conceivable vortices in the system are topologically classified using homotopy group theory, and their origins are identified.

  19. Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene

    Science.gov (United States)

    Prarokijjak, Worasak; Soodchomshom, Bumned

    2018-04-01

    Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.

  20. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    International Nuclear Information System (INIS)

    Posske, Thore Hagen

    2016-01-01

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  1. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  2. The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Singh, R.

    2003-01-01

    Ab initio density functional theory (DFT) calculations of the interactions between isolated infinitely-long semiconducting zig-zag (10, 0) or isolated infinitely-long metallic arm-chair (5, 5) single-walled carbon-nanotubes (SWCNTs) and single oxygen-molecules are carried out in order to determine the character of molecular-oxygen adsorption and its effect on electronic transport properties of these SWCNTs. A Green's function method combined with a nearest-neighbor tight-binding Hamiltonian in a non-orthogonal basis is used to compute the electrical conductance of SWCNTs and its dependence on the presence of topological defects in SWCNTs and of molecular-oxygen adsorbates. The computational results obtained show that in both semiconducting and metallic SWCNTs, oxygen-molecules are physisorbed to the defect-free nanotube walls, but when such walls contain topological defects, oxygen-molecules become strongly chemisorbed. In semiconducting (10, 0) SWCNTs, physisorbed O 2 -molecules are found to significantly increase electrical conductance while the effect of 7-5-5-7 defects is practically annulled by chemisorbed O 2 -molecules. In metallic (5, 5) SWCNTs, both O 2 adsorbates and 7-5-5-7 defects are found to have a relatively small effect on electrical conductance of these nanotubes

  3. Topological Methods for Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United Stat

    2016-04-07

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  4. A quantized microwave quadrupole insulator with topologically protected corner states

    Science.gov (United States)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  5. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  6. Introduction to topology

    CERN Document Server

    Gamelin, Theodore W

    1999-01-01

    A fresh approach to introductory topology, this volume explains nontrivial applications of metric space topology to analysis, clearly establishing their relationship. Also, topics from elementary algebraic topology focus on concrete results with minimal algebraic formalism. The first two chapters consider metric space and point-set topology; the second two, algebraic topological material. 1983 edition. Solutions to Selected Exercises. List of Notations. Index. 51 illustrations.

  7. Electronic and transport properties of the Mn-doped topological insulator Bi.sub.2./sub.Te.sub.3./sub.: a first-principles study

    Czech Academy of Sciences Publication Activity Database

    Carva, K.; Kudrnovský, Josef; Máca, František; Drchal, Václav; Turek, I.; Baláž, P.; Tkáč, V.; Holý, V.; Sechovský, V.; Honolka, Jan

    2016-01-01

    Roč. 93, č. 21 (2016), s. 1-8, č. článku 214409. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-30062S Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : topological insulator * electronic structure * transport * Bi 2 Te 3 * Mn dopant Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  8. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  9. Topology and electronic structure of flexible (Nb,Ru)O2 thermoelectrics

    International Nuclear Information System (INIS)

    Music, Denis; Schnabel, Volker; Bednarcik, Jozef

    2017-01-01

    Using combinatorial reactive sputtering, we have synthesised Nb–Ru–O thin films on Kapton (polyimide) with the Ru/Nb ratio from 0.5 to 1.1 in a dioxide type of environment. Based on correlative analysis, including synchrotron diffraction experiments and density functional theory, the topology of these amorphous samples is characterised by short metal–oxygen bonds and very pronounced metal–metal interactions within the second coordination shell. We suggest that the role of Nb is within bond length reduction and promotion of quantum confinement, giving rise to an increase in the Seebeck coefficient. Furthermore, these Nb–Ru–O thin films are mechanically flexible as there are no crack formation and delamination upon bending or rolling. This may be rationalised as follows. Nb–Ru–O appears ductile due to low topological connectivity and forms strong bonds with Kapton. (paper)

  10. Enhanced thermoelectric power in ultrathin topological insulators with magnetic doping

    KAUST Repository

    Tahir, M.

    2014-09-07

    We derive analytical expressions for the magnetic moment and orbital magnetization as well as for the corresponding thermal conductivity and thermoelectric power of a topological insulator film. We demonstrate enhancement of the thermoelectric transport for decreasing film thickness and for application of an exchange field due to the tunable band gap. Combining hybridization and exchange field is particularly suitable for heat to electric energy conversion and thermoelectric cooling.

  11. Enhanced thermoelectric power in ultrathin topological insulators with magnetic doping

    KAUST Repository

    Tahir, M.; Manchon, Aurelien; Schwingenschlö gl, Udo

    2014-01-01

    We derive analytical expressions for the magnetic moment and orbital magnetization as well as for the corresponding thermal conductivity and thermoelectric power of a topological insulator film. We demonstrate enhancement of the thermoelectric transport for decreasing film thickness and for application of an exchange field due to the tunable band gap. Combining hybridization and exchange field is particularly suitable for heat to electric energy conversion and thermoelectric cooling.

  12. p-topological Cauchy completions

    Directory of Open Access Journals (Sweden)

    J. Wig

    1999-01-01

    Full Text Available The duality between “regular” and “topological” as convergence space properties extends in a natural way to the more general properties “p-regular” and “p-topological.” Since earlier papers have investigated regular, p-regular, and topological Cauchy completions, we hereby initiate a study of p-topological Cauchy completions. A p-topological Cauchy space has a p-topological completion if and only if it is “cushioned,” meaning that each equivalence class of nonconvergent Cauchy filters contains a smallest filter. For a Cauchy space allowing a p-topological completion, it is shown that a certain class of Reed completions preserve the p-topological property, including the Wyler and Kowalsky completions, which are, respectively, the finest and the coarsest p-topological completions. However, not all p-topological completions are Reed completions. Several extension theorems for p-topological completions are obtained. The most interesting of these states that any Cauchy-continuous map between Cauchy spaces allowing p-topological and p′-topological completions, respectively, can always be extended to a θ-continuous map between any p-topological completion of the first space and any p′-topological completion of the second.

  13. Quantum SDW liquid state originating from 2D electronic topological transition as a source for anomalies in the high-Tc cuprates

    International Nuclear Information System (INIS)

    Onufrieva, F.; Pfeuty, P.

    1999-01-01

    A new microscopic scenario for high T c cuprates based on the existence of an electronic topological transition (ETT) in a strongly correlated 2D electron system has been developed recently. We first briefly sketch the principal results concerning the behaviour of a 2D fermion system on a square lattice close to an ETT and the main consequences for a strongly correlated system: d-wave superconductivity and SDW (CDW) quantum liquid state above T SC . We then illustrate how this theory can explain several crucial experimental facts (observed by NMR, angle resolved photoemission spectroscopy (ARPES), tunneling spectroscopy, inelastic neutron scattering) which reveal anomalous behavior in the SC state and in the metallic state above T s c. (orig.)

  14. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    /fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...

  15. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    Science.gov (United States)

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  16. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    International Nuclear Information System (INIS)

    Nogueira, P; Vaz, P; Zankl, M; Schlattl, H

    2011-01-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  17. Plasma transport in mixed magnetic topologies

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.

    1992-12-01

    A simple model is introduced to illustrate some features concerning anomalous transport associated with magnetic turbulence. For magnetic topologies that are described as bands of stochasticity separated by regions with good flux surfaces, the transport coefficients deviate significantly from those describing completely stochastic magnetic fields. It is possible to have the electron heat diffusivity exceed a runaway electron diffusion coefficient, despite the existence of widespread magnetic stochasticity. Comparing the ratios of transport coefficients is not an accurate way to determine whether anomalous plasma transport is controlled by electrostatic or electromagnetic fluctuations

  18. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  19. Topological Sound and Flocking on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Suraj Shankar

    2017-09-01

    Full Text Available Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature, orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state because of the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow, the system additionally supports long-wavelength propagating sound modes that get gapped by the curvature of the underlying substrate. We analytically compute the steady-state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry-protected topological modes that get localized to special geodesics on the surface (the equator or the neck, respectively. These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.

  20. Adiabatic photo-steering theory in topological insulators

    Science.gov (United States)

    Inoue, Jun-ichi

    2014-12-01

    Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.

  1. Adiabatic photo-steering theory in topological insulators

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi

    2014-01-01

    Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane–Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed. (focus issue review)

  2. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion will provide better efficiency and higher level of integration, leading to lower component count, volume and cost, but at the expense of a minor performance deterioration. (au)

  3. Topology

    CERN Document Server

    Manetti, Marco

    2015-01-01

    This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.

  4. Modified High Voltage Conversion Inverting Cuk DC-DC Converter for Renewable Energy Application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick

    2017-01-01

    controlled device DC-DC topology. The voltage conversion ratio of proposed converter has increased by ten times of the conventional Cuk converterat a duty ratio of 90%. The detailed analysis of the voltage conversion ratio and losses occur due to internal resistance of components is done in the paper......The proposed exertion represents the modified high voltage conversion Cuk converter for renewable energy application. The proposed Cuk converter is a combination of the conventional boost converter and Cuk converter. The arrangement of the proposed converter make, such as, it becomes the single...

  5. Beginning topology

    CERN Document Server

    Goodman, Sue E

    2009-01-01

    Beginning Topology is designed to give undergraduate students a broad notion of the scope of topology in areas of point-set, geometric, combinatorial, differential, and algebraic topology, including an introduction to knot theory. A primary goal is to expose students to some recent research and to get them actively involved in learning. Exercises and open-ended projects are placed throughout the text, making it adaptable to seminar-style classes. The book starts with a chapter introducing the basic concepts of point-set topology, with examples chosen to captivate students' imaginations while i

  6. Influence of Magnetic Topology on Mars' Ionospheric Structure

    Science.gov (United States)

    Adams, D.; Xu, S.; Mitchell, D. L.; Fillingim, M. O.; Lillis, R. J.; Andersson, L.; Fowler, C. M.; Benna, M.; Connerney, J. E. P.; Elrod, M. K.; Girazian, Z.; Vogt, M.

    2017-12-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been in Mars' orbit since September 2014 (>1 Mars year), and has collected particle and field data within the ionosphere over wide ranges of altitudes, latitudes, and local times. This study uses MAVEN data to (1) analyze the influence of magnetic topology on the day-side ionosphere and (2) identify the sources of the night-side ionosphere. On the day side, magnetic strength and elevation angle are commonly used as proxies for magnetic topology. In this study, we use pitch-angle-resolved suprathermal electron measurements by the Solar Wind Electron Analyzer (SWEA) to directly deduce the magnetic topology instead of using a proxy. On the night side, the main sources of ionospheric plasma are bulk transport and plasma pressure gradient flow from the day side, as well as in situ production by electron impact ionization (EII). Plasma transport at Mars is complicated by the presence of intense crustal magnetic fields. Closed crustal magnetic fields form isolated plasma environments ("miniature magnetospheres") that inhibit external sources of cold ionospheric plasma as well as suprathermal (ionizing) electrons. Inside these closed magnetic loops, we study how the plasma evolves with bulk flow transport as the only source. By comparing closed and non-closed magnetic configurations, the effects of pressure gradient flow and EII can be distinguished. Finally, the densities of O2+, O+, and NO+, as measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS), are examined. Inside miniature magnetospheres on the night side, the abundances of these species are found to be primarily controlled by the different recombination rates, as there is little plasma created within these regions by EII or transported from the neighboring regions by plasma pressure gradient flow.

  7. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  8. Deconvolution of 238,239,240Pu conversion electron spectra measured with a silicon drift detector

    DEFF Research Database (Denmark)

    Pommé, S.; Marouli, M.; Paepen, J.

    2018-01-01

    Internal conversion electron (ICE) spectra of thin 238,239,240Pu sources, measured with a windowless Peltier-cooled silicon drift detector (SDD), were deconvoluted and relative ICE intensities were derived from the fitted peak areas. Corrections were made for energy dependence of the full...

  9. Topology with applications topological spaces via near and far

    CERN Document Server

    Naimpally, Somashekhar A

    2013-01-01

    The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and...

  10. Asymmetric Cherenkov acoustic reverse in topological insulators

    Science.gov (United States)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  11. Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters

    Energy Technology Data Exchange (ETDEWEB)

    Borges Junior, Itamar; Silva, Alexander M., E-mail: itamar@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro-RJ (Brazil). Programa de Pos-Graduacao em Engenharia de Defesa

    2012-10-15

    A general two-step theoretical approach to study electronic redistributions in catalytic processes is presented. In the first step, density functional theory (DFT) is used to fully optimize two geometries: the cluster representing the catalyst and the cluster plus adsorbed molecule system. In the second step, the converged electron density is divided into multipoles centered on atomic sites according to a distributed multipole analysis which provides detailed topological information on the charge redistribution of catalyst and molecule before and after adsorption. This approach is applied to thiophene adsorption on the 10{sup -}10 metal edge of Ni(Co)MoS catalysts and compared to the same reaction on bare MoS{sub 2}. Calculated adsorption energies, geometries and multipole analysis indicate weak thiophene chemisorption on both cases. A Coulombic bond model showed that surface metal-sulfur bond strengths in Ni(Co)MoS promoted catalysts are considerably smaller than in bare MoS{sub 2}, thus confirming the origin of the enhancement of hydrodesulfurization (HDS) activity in these catalysts. (author)

  12. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    Science.gov (United States)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  13. Quantum computation with topological codes from qubit to topological fault-tolerance

    CERN Document Server

    Fujii, Keisuke

    2015-01-01

    This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.

  14. Topological BF field theory description of topological insulators

    International Nuclear Information System (INIS)

    Cho, Gil Young; Moore, Joel E.

    2011-01-01

    Research highlights: → We show that a BF theory is the effective theory of 2D and 3D topological insulators. → The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. → The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. → Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a π flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.

  15. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  16. Bulk contribution to magnetotransport properties of low-defect-density Bi2Te3 topological insulator thin films

    Science.gov (United States)

    Ngabonziza, P.; Wang, Y.; Brinkman, A.

    2018-04-01

    An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.

  17. Topological Aspects of Information Retrieval.

    Science.gov (United States)

    Egghe, Leo; Rousseau, Ronald

    1998-01-01

    Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)

  18. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Veldhorst, M.; Snelder, M.; Hoek, M.; Molenaar, C.G.; Leusink, D.P.; Golubov, A.A.; Hilgenkamp, H.; Brinkman, A.

    2013-01-01

    The surface of a three-dimensional (3D) topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Veldhorst, M.; Snelder, M.; Hoek, M.; Molenaar, C.G.; Leusink, D.P.; Golubov, A.A.; Hilgenkamp, H.; Brinkman, A. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-02-15

    The surface of a three-dimensional (3D) topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Topological mirror superconductivity.

    Science.gov (United States)

    Zhang, Fan; Kane, C L; Mele, E J

    2013-08-02

    We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.

  1. Interactive Topology Optimization

    DEFF Research Database (Denmark)

    Nobel-Jørgensen, Morten

    Interactivity is the continuous interaction between the user and the application to solve a task. Topology optimization is the optimization of structures in order to improve stiffness or other objectives. The goal of the thesis is to explore how topology optimization can be used in applications...... on theory of from human-computer interaction which is described in Chapter 2. Followed by a description of the foundations of topology optimization in Chapter 3. Our applications for topology optimization in 2D and 3D are described in Chapter 4 and a game which trains the human intuition of topology...... optimization is presented in Chapter 5. Topology optimization can also be used as an interactive modeling tool with local control which is presented in Chapter 6. Finally, Chapter 7 contains a summary of the findings and concludes the dissertation. Most of the presented applications of the thesis are available...

  2. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  3. The topology of architecture

    DEFF Research Database (Denmark)

    Marcussen, Lars

    2003-01-01

    Rummets topologi, Historiens topologi: betragtninger om menneskets orientering til rum - fra hulen over beherskelse af flere akser til det flydende rum.......Rummets topologi, Historiens topologi: betragtninger om menneskets orientering til rum - fra hulen over beherskelse af flere akser til det flydende rum....

  4. Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations

    Science.gov (United States)

    Fuselier, S. A.; Anderson, B. J.; Onsager, T. G.

    1995-01-01

    Electron distributions at energies above 50 eV have been found to be a sensitive indicator of magnetic topology for magnetopause crossings of the AMPTE/CCE spacecraft. Progressing from the magnetosheath to the magnetosphere two abrupt transitions occur. First, the magnetosheath electron population directed either parallel or antiparallel to the magnetic field is replaced by a streaming, heated magnetosheath electron population. The other half of the distribution is unchanged. The region with unidirectional, heated magnetosheath electrons is identified as the magnetosheath boundary layer (MSBL). Second, the unheated magnetosheath electron population is replaced by a heated population nearly identical to the population encountered in the MSBL, resulting in a symmetric counterstreaming distribution. The region populated by the bidirectional heated magnetosheath electrons is identified as the low-latitude boundary layer (LLBL). The MSBL and LLBL identified by the electron transitions are the same as the regions identified using ion composition measurements. The magnetosheath-MSBL transition reflects a change in magnetic topology from a solar wind field line to one that threads the magnetopause, and the existence of a magnetosheath-MSBL transition implies that the magnetopause is open. When the current layer is easily identified, the MSBL-LLBL transition coincides with the magnetopause current layer, indicating that the magnetosheath electrons are heated in the current layer. Both magnetosheath-MSBL and MSBL-LLBL transitions are observed for low as well as high magnetic shears. Moreover, the transitions are particularly clear for low shear implying that magnetic topology boundaries are sharp even when abrupt changes in the field and other plasma parameters are absent. Furthermore, for low magnetic shear, solar wind ions with low parallel drift speeds make up the majority of the LLBL population indicating that the magnetosheath plasma has convected directly across the

  5. Cosmic Topology

    Science.gov (United States)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  6. Topological Invariants and Ground-State Wave functions of Topological Insulators on a Torus

    Directory of Open Access Journals (Sweden)

    Zhong Wang

    2014-01-01

    Full Text Available We define topological invariants in terms of the ground-state wave functions on a torus. This approach leads to precisely defined formulas for the Hall conductance in four dimensions and the topological magnetoelectric θ term in three dimensions, and their generalizations in higher dimensions. They are valid in the presence of arbitrary many-body interactions and disorder. These topological invariants systematically generalize the two-dimensional Niu-Thouless-Wu formula and will be useful in numerical calculations of disordered topological insulators and strongly correlated topological insulators, especially fractional topological insulators.

  7. A first theoretical realization of honeycomb topological magnon insulator.

    Science.gov (United States)

    Owerre, S A

    2016-09-28

    It has been recently shown that in the Heisenberg (anti)ferromagnet on the honeycomb lattice, the magnons (spin wave quasipacticles) realize a massless two-dimensional (2D) Dirac-like Hamiltonian. It was shown that the Dirac magnon Hamiltonian preserves time-reversal symmetry defined with the sublattice pseudo spins and the Dirac points are robust against magnon-magnon interactions. The Dirac points also occur at nonzero energy. In this paper, we propose a simple realization of nontrivial topology (magnon edge states) in this system. We show that the Dirac points are gapped when the inversion symmetry of the lattice is broken by introducing a next-nearest neighbour Dzyaloshinskii-Moriya (DM) interaction. Thus, the system realizes magnon edge states similar to the Haldane model for quantum anomalous Hall effect in electronic systems. However, in contrast to electronic spin current where dissipation can be very large due to Ohmic heating, noninteracting topological magnons can propagate for a long time without dissipation as magnons are uncharged particles. We observe the same magnon edge states for the XY model on the honeycomb lattice. Remarkably, in this case the model maps to interacting hardcore bosons on the honeycomb lattice. Quantum magnetic systems with nontrivial magnon edge states are called topological magnon insulators. They have been studied theoretically on the kagome lattice and recently observed experimentally on the kagome magnet Cu(1-3, bdc) with three magnon bulk bands. Our results for the honeycomb lattice suggests an experimental procedure to search for honeycomb topological magnon insulators within a class of 2D quantum magnets and ultracold atoms trapped in honeycomb optical lattices. In 3D lattices, Dirac and Weyl points were recently studied theoretically, however, the criteria that give rise to them were not well-understood. We argue that the low-energy Hamiltonian near the Weyl points should break time-reversal symmetry of the pseudo spins

  8. Elements of topology

    CERN Document Server

    Singh, Tej Bahadur

    2013-01-01

    Topological SpacesMetric Spaces Topologies Derived Concepts Bases Subspaces Continuity and ProductsContinuityProduct TopologyConnectednessConnected Spaces Components Path-Connected Spaces Local ConnectivityConvergence Sequences Nets Filters Hausdorff SpacesCountability Axioms 1st and 2nd Countable Spaces Separable and Lindelöf SpacesCompactnessCompact Spaces Countably Compact Spaces Compact Metric Spaces Locally Compact Spaces Proper Maps Topological Constructions Quotient Spaces Identification Maps Cones, Suspensions and Joins Wedge Sums and Smash Products Adjunction Spaces Coherent Topologie

  9. Evidence of topological insulator state in the semimetal LaBi

    Science.gov (United States)

    Lou, R.; Fu, B.-B.; Xu, Q. N.; Guo, P.-J.; Kong, L.-Y.; Zeng, L.-K.; Ma, J.-Z.; Richard, P.; Fang, C.; Huang, Y.-B.; Sun, S.-S.; Wang, Q.; Wang, L.; Shi, Y.-G.; Lei, H. C.; Liu, K.; Weng, H. M.; Qian, T.; Ding, H.; Wang, S.-C.

    2017-03-01

    By employing angle-resolved photoemission spectroscopy combined with first-principles calculations, we performed a systematic investigation on the electronic structure of LaBi, which exhibits extremely large magnetoresistance (XMR), and is theoretically predicted to possess band anticrossing with nontrivial topological properties. Here, the observations of the Fermi-surface topology and band dispersions are similar to previous studies on LaSb [L.-K. Zeng, R. Lou, D.-S. Wu, Q. N. Xu, P.-J. Guo, L.-Y. Kong, Y.-G. Zhong, J.-Z. Ma, B.-B. Fu, P. Richard, P. Wang, G. T. Liu, L. Lu, Y.-B. Huang, C. Fang, S.-S. Sun, Q. Wang, L. Wang, Y.-G. Shi, H. M. Weng, H.-C. Lei, K. Liu, S.-C. Wang, T. Qian, J.-L. Luo, and H. Ding, Phys. Rev. Lett. 117, 127204 (2016), 10.1103/PhysRevLett.117.127204], a topologically trivial XMR semimetal, except the existence of a band inversion along the Γ -X direction, with one massless and one gapped Dirac-like surface state at the X and Γ points, respectively. The odd number of massless Dirac cones suggests that LaBi is analogous to the time-reversal Z2 nontrivial topological insulator. These findings open up a new series for exploring novel topological states and investigating their evolution from the perspective of topological phase transition within the family of rare-earth monopnictides.

  10. A topological derivative method for topology optimization

    DEFF Research Database (Denmark)

    Norato, J.; Bendsøe, Martin P.; Haber, RB

    2007-01-01

    resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void......We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric...... regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures....

  11. Fundamental aspects of steady-state conversion of heat to work at the nanoscale

    Science.gov (United States)

    Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.

    2017-06-01

    In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the

  12. Graph topology and gap topology for unstable systems

    NARCIS (Netherlands)

    Zhu, S.Q.

    1989-01-01

    A reformation is provided of the graph topology and the gap topology for a general setting (including lumped linear time-invariant systems and distributed linear time-invariant systems) in the frequency domain. Some essential properties and their comparisons are clearly presented in the

  13. The local skin dose conversion coefficients of electrons, protons and alpha particles calculated using the Geant4 code.

    Science.gov (United States)

    Zhang, Bintuan; Dang, Bingrong; Wang, Zhuanzi; Wei, Wei; Li, Wenjian

    2013-10-01

    The skin tissue-equivalent slab reported in the International Commission on Radiological Protection (ICRP) Publication 116 to calculate the localised skin dose conversion coefficients (LSDCCs) was adopted into the Monte Carlo transport code Geant4. The Geant4 code was then utilised for computation of LSDCCs due to a circular parallel beam of monoenergetic electrons, protons and alpha particles electrons and alpha particles are found to be in good agreement with the results using the MCNPX code of ICRP 116 data. The present work thus validates the LSDCC values for both electrons and alpha particles using the Geant4 code.

  14. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction.

    Science.gov (United States)

    Chen, Zhihao; Song, Xiaojie; Zhang, Shujuan; Wu, Bingdang; Zhang, Guoyang; Pan, Bingcai

    2017-11-01

    The redox conversion of arsenite and nitrate has direct effects on their potential environment risks. Due to the similar reduction potentials, there are few technologies that can simultaneously oxidize arsenite and reduce nitrate in one process. Here, we demonstrate that a diketone-mediated photochemical process could efficiently do this. A combined experimental and theoretical investigation was conducted to elucidate the mechanisms behind the redox conversion in the UV/acetylacetone (AA) process. Our key finding is that UV irradiation significantly changed the redox potential of AA. The excited AA, 3 (AA)*, acted as a semiquinone radical-like electron shuttle. For arsenite oxidation, the efficiency of 3 (AA)* was 1-2 orders of magnitude higher than those of quinone-type electron shuttles, whereas the consumption of AA was 2-4 orders of magnitude less than those of benzonquinones. The oxidation of arsenite and reduction of nitrate could be both accelerated when they existed together in UV/AA process. The results indicate that small diketones are some neglected but potent electron shuttles of great application potential in regulating aquatic redox reactions with the combination of UV irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  16. Topological and non-topological soliton solutions to some time

    Indian Academy of Sciences (India)

    Topological and non-topological soliton solutions to some time-fractional differential equations ... These equations have been widely applied in many branches of nonlinear ... Department of Engineering Sciences, Faculty of Technology and ...

  17. Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111 substrates: a potential route to fabricate topological insulator p-n junction

    Directory of Open Access Journals (Sweden)

    Zhaoquan Zeng

    2013-07-01

    Full Text Available High quality Bi2Te3 and Sb2Te3 topological insulators films were epitaxially grown on GaAs (111 substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111 substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111 substrate is better than a vicinal substrate to provide high quality Bi2Te3 and Sb2Te3 films. Hall and magnetoresistance measurements indicate that p type Sb2Te3 and n type Bi2Te3 topological insulator films can be directly grown on a GaAs (111 substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.

  18. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3

    Science.gov (United States)

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-01-01

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs. PMID:28198378

  19. EFFECTS OF FIELD-LINE TOPOLOGY ON ENERGY PROPAGATION IN THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Candelaresi, S.; Pontin, D. I.; Hornig, G. [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)

    2016-12-01

    We study the effect of photospheric footpoint motions on magnetic field structures containing magnetic nulls. The footpoint motions are prescribed on the photospheric boundary as a velocity field that entangles the magnetic field. We investigate the propagation of the injected energy, the conversion of energy, emergence of current layers, and other consequences of the nontrivial magnetic field topology in this situation. These boundary motions lead initially to an increase in magnetic and kinetic energy. Following this, the energy input from the photosphere is partially dissipated and partially transported out of the domain through the Poynting flux. The presence of separatrix layers and magnetic null points fundamentally alters the propagation behavior of disturbances from the photosphere into the corona. Depending on the field-line topology close to the photosphere, the energy is either trapped or free to propagate into the corona.

  20. Abe homotopy classification of topological excitations under the topological influence of vortices

    International Nuclear Information System (INIS)

    Kobayashi, Shingo; Kobayashi, Michikazu; Kawaguchi, Yuki; Nitta, Muneto; Ueda, Masahito

    2012-01-01

    Topological excitations are usually classified by the nth homotopy group π n . However, for topological excitations that coexist with vortices, there are cases in which an element of π n cannot properly describe the charge of a topological excitation due to the influence of the vortices. This is because an element of π n corresponding to the charge of a topological excitation may change when the topological excitation circumnavigates a vortex. This phenomenon is referred to as the action of π 1 on π n . In this paper, we show that topological excitations coexisting with vortices are classified by the Abe homotopy group κ n . The nth Abe homotopy group κ n is defined as a semi-direct product of π 1 and π n . In this framework, the action of π 1 on π n is understood as originating from noncommutativity between π 1 and π n . We show that a physical charge of a topological excitation can be described in terms of the conjugacy class of the Abe homotopy group. Moreover, the Abe homotopy group naturally describes vortex-pair creation and annihilation processes, which also influence topological excitations. We calculate the influence of vortices on topological excitations for the case in which the order parameter manifold is S n /K, where S n is an n-dimensional sphere and K is a discrete subgroup of SO(n+1). We show that the influence of vortices on a topological excitation exists only if n is even and K includes a nontrivial element of O(n)/SO(n).

  1. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  2. Method of electroplating a conversion electron emitting source on implant

    Science.gov (United States)

    Srivastava, Suresh C [Setauket, NY; Gonzales, Gilbert R [New York, NY; Adzic, Radoslav [East Setauket, NY; Meinken, George E [Middle Island, NY

    2012-02-14

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  3. $L$-Topological Spaces

    Directory of Open Access Journals (Sweden)

    Ali Bajravani

    2018-04-01

    Full Text Available ‎By substituting the usual notion of open sets in a topological space $X$ with a suitable collection of maps from $X$ to a frame $L$, we introduce the notion of L-topological spaces. Then, we proceed to study the classical notions and properties of usual topological spaces to the newly defined mathematical notion. Our emphasis would be concentrated on the well understood classical connectedness, quotient and compactness notions, where we prove the Thychonoff's theorem and connectedness property for ultra product of $L$-compact and $L$-connected topological spaces, respectively.

  4. Unravelling the local structure of topological crystalline insulators using hyperfine interactions

    CERN Multimedia

    Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semi-metals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperfine interactions: emission Mössbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on: \\\\ \\\\(1) the mag...

  5. Topological superconductors: a review.

    Science.gov (United States)

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  6. Topological entropy of continuous functions on topological spaces

    International Nuclear Information System (INIS)

    Liu Lei; Wang Yangeng; Wei Guo

    2009-01-01

    Adler, Konheim and McAndrew introduced the concept of topological entropy of a continuous mapping for compact dynamical systems. Bowen generalized the concept to non-compact metric spaces, but Walters indicated that Bowen's entropy is metric-dependent. We propose a new definition of topological entropy for continuous mappings on arbitrary topological spaces (compactness, metrizability, even axioms of separation not necessarily required), investigate fundamental properties of the new entropy, and compare the new entropy with the existing ones. The defined entropy generates that of Adler, Konheim and McAndrew and is metric-independent for metrizable spaces. Yet, it holds various basic properties of Adler, Konheim and McAndrew's entropy, e.g., the entropy of a subsystem is bounded by that of the original system, topologically conjugated systems have a same entropy, the entropy of the induced hyperspace system is larger than or equal to that of the original system, and in particular this new entropy coincides with Adler, Konheim and McAndrew's entropy for compact systems

  7. Valley photonic crystals for control of spin and topology.

    Science.gov (United States)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  8. Gas flow counter conversion electron Moessbauer spectroscopy (GFC-CEMS)

    International Nuclear Information System (INIS)

    Williamson, A.; Vijay, Y.K.; Jain, I.P.

    1999-01-01

    Conversion Electron Moessbauer Spectroscopy (CEMS) is well established technique to study surface properties of materials. However non availability of commercial experimental set up and complexity of operational parameters have been restricting the working experimental groups with in the country and abroad. In this paper we have presented the development work for the design of Gas Flow Counter (GFC), e.g. convenient sample mount, grounding, steady flow rate adjustment and minimum He-losses so that the detector operation and installation becomes convenient and dependable. The basic design is modified e.g. large volume to maintain steady gas flow, sample mount close to central wire and O-ring fitted flange. The CEMS spectra are recorded using conventional Moessbauer drive and 57 Co source. The calibrated spectrum shows a detection efficiency of about 20% for natural iron and steel foil. The CEMS spectrum for FeTi bulk and transmission Moessbauer Spectroscopy (TMS) spectrum of FeTi thin film deposited by vacuum evaporation on thin glass substrate were recorded to test the performance of GFC-CEMS. (author)

  9. Quantum control of topological defects in magnetic systems

    Science.gov (United States)

    Takei, So; Mohseni, Masoud

    2018-02-01

    Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .

  10. Conversion electron Moessbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    International Nuclear Information System (INIS)

    Terwagne, G.; Hutchings, R.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI 3 ) at 350 C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ε-Fe 2 N through ε-Fe 3 N to γ'-Fe 4 N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone. (orig.)

  11. Nonvolatile Solid-State Charged-Polymer Gating of Topological Insulators into the Topological Insulating Regime

    Science.gov (United States)

    Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.

    2018-04-01

    We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.

  12. Photonic topological boundary pumping as a probe of 4D quantum Hall physics.

    Science.gov (United States)

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P; Kraus, Yaacov E; Rechtsman, Mikael C

    2018-01-03

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  13. Photonic topological boundary pumping as a probe of 4D quantum Hall physics

    Science.gov (United States)

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P.; Kraus, Yaacov E.; Rechtsman, Mikael C.

    2018-01-01

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  14. Quantum condensates and topological bosons in coupled light-matter excitations

    Energy Technology Data Exchange (ETDEWEB)

    Janot, Alexander

    2016-02-29

    Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.

  15. Toric topology

    CERN Document Server

    Buchstaber, Victor M

    2015-01-01

    This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric v

  16. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  17. Electron beam induced cationic polymerization of epoxy resins. Dependence of Tg on conversion

    International Nuclear Information System (INIS)

    Degrand, H.; Cazaux, F.; Coqueret, X.

    2002-01-01

    Complete text of publication follows. The high-energy radiation curing of monomer blends polymerizing by a free radical or by a cationic mechanism receives increasing attention in the perspective of high performance composite materials. In the present work, we have focused our attention on epoxy formulations as models of the matrices polymerizing by a cationic mechanism that could be used in fiber-reinforced composites for aerospace applications. We have examined the progress of the electron beam (EB) induced polymerization of diglycidylether of bisphenol A (DGEBA) in the presence of a diaryliodonium salt (DAIS) by FTIR spectroscopy and by dynamic mechanical thermal analysis (DMA). The obtained results allow to draw the gradual increase of the temperature for the network thermomechanical transition (T a , associated with the glass transition temperature T g ) over a broad range of conversion (p) and reveal a peculiar behavior at high conversion. In this domain (p > 0.90), the material's T g is shown to decrease when conversion approaches unity. Moreover, the post-irradiation thermal treatment of the materials, that generally yields effective 'dark curing', appears to induce a decrease of T g , with an amplitude correlated with the amount of DAIS in the formulation. Owing to the particular nature of the propagating centers in cationic polymerisation, the thermal relaxation of ionic clusters trapped in the glassy matrix can be reasonably invoked as a possible cause for this behavior

  18. Optical Manipulation and Detection of Emergent Phenomena in Topological Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Gedik, Nuh [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics

    2017-02-17

    The three-dimensional topological insulator (TI) is a new quantum phase of matter that exhibits quantum-Hall-like properties, even in the absence of an external magnetic field. These materials are insulators in the bulk but have a topologically protected conducting state at the surface. Charge carriers on these surface states behave like a two-dimensional gas of massless helical Dirac fermions for which the spin is ideally locked perpendicular to the momentum. The purpose of this project is to probe the unique collective electronic behaviors of topological insulators by developing and using advanced time resolved spectroscopic techniques with state-of-the-art temporal and spatial resolutions. The nature of these materials requires development of specialized ultrafast techniques (such as time resolved ARPES that also has spin detection capability, ultrafast electron diffraction that has sub-100 fs time resolution and THz magneto-spectroscopy). The focus of this report is to detail our achievements in terms of establishing state of the art experimental facilities. Below, we will describe achievements under this award for the entire duration of five years. We will focus on detailing the development of ultrafast technqiues here. The details of the science that was done with these technqiues can be found in the publications referencing this grant.

  19. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks

    International Nuclear Information System (INIS)

    Hasan, M Zahid; Xu, Su-Yang; Bian, Guang

    2015-01-01

    Unlike string theory, topological physics in lower dimensional condensed matter systems is an experimental reality since the bulk-boundary correspondence can be probed experimentally in lower dimensions. In addition, recent experimental discoveries of non-quantum-Hall-like topological insulators, topological superconductors, Weyl semimetals and other topological states of matter also signal a clear departure from the quantum-Hall-effect-like transport paradigm that has dominated the field since the 1980s. It is these new forms of matter that enabled realizations of topological-Dirac, Weyl cones, helical-Cooper-pairs, Fermi-arc-quasiparticles and other emergent phenomena in fine-tuned photoemission (ARPES) experiments since ARPES experiments directly allow the study of bulk-boundary (topological) correspondence. In this proceeding we provide a brief overview of the key experiments and discuss our perspectives regarding the new research frontiers enabled by these experiments. Taken collectively, we argue in favor of the emergence of ‘topological-condensed-matter-physics’ in laboratory experiments for which a variety of theoretical concepts over the last 80 years paved the way. (review)

  20. Optical and Casimir effects in topological materials

    Science.gov (United States)

    Wilson, Justin H.

    Two major electromagnetic phenomena, magneto-optical effects and the Casimir effect, have seen much theoretical and experimental use for many years. On the other hand, recently there has been an explosion of theoretical and experimental work on so-called topological materials, and a natural question to ask is how such electromagnetic phenomena change with these novel materials. Specifically, we will consider are topological insulators and Weyl semimetals. When Dirac electrons on the surface of a topological insulator are gapped or Weyl fermions in the bulk of a Weyl semimetal appear due to time-reversal symmetry breaking, there is a resulting quantum anomalous Hall effect (2D in one case and bulk 3D in the other, respectively). For topological insulators, we investigate the role of localized in-gap states which can leave their own fingerprints on the magneto-optics and can therefore be probed. We have shown that these states resonantly contribute to the Hall conductivity and are magneto-optically active. For Weyl semimetals we investigate the Casimir force and show that with thickness, chemical potential, and magnetic field, a repulsive and tunable Casimir force can be obtained. Additionally, various values of the parameters can give various combinations of traps and antitraps. We additionally probe the topological transition called a Lifshitz transition in the band structure of a material and show that in a Casimir experiment, one can observe a non-analytic "kink'' in the Casimir force across such a transition. The material we propose is a spin-orbit coupled semiconductor with large g-factor that can be magnetically tuned through such a transition. Additionally, we propose an experiment with a two-dimensional metal where weak localization is tuned with an applied field in order to definitively test the effect of diffusive electrons on the Casimir force---an issue that is surprisingly unresolved to this day. Lastly, we show how the time-continuous coherent state

  1. Electron cyclotron heating and current drive approach for low-temperature startup plasmas using O-X-EBW mode conversion

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Bigelow, T.S.

    1997-01-01

    A mechanism for heating and driving currents in very overdense plasmas is considered based on a double-mode conversion: Ordinary mode to Extraordinary mode to electron Bernstein wave. The possibility of using this mechanism for plasma buildup and current ramp in the National Spherical Torus Experiment is investigated

  2. Edge states and integer quantum Hall effect in topological insulator thin films.

    Science.gov (United States)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  3. Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mössbauer spectroscopy

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Gunnlaugsson, H.P; Weyer, G.

    2005-01-01

    We have grown 4 nm thin films of Fe-57 on InAs(100) and InP(100) surfaces by use of MBE and studied the samples by Fe-57 conversion electron Mossbauer spectroscopy. In the case of InAs, the Mossbauer spectrum showed a sextet due to alpha-Fe and a further magnetically split component with slightly...

  4. Topologically Allowed Nonsixfold Vortices in a Sixfold Multiferroic Material: Observation and Classification

    KAUST Repository

    Cheng, Shaobo; Li, Jun; Han, Myung-Geun; Deng, Shiqing; Tan, Guotai; Zhang, Xixiang; Zhu, Jing; Zhu, Yimei

    2017-01-01

    We report structural transformation of sixfold vortex domains into two-, four-, and eightfold vortices via a different type of topological defect in hexagonal manganites. Combining high-resolution electron microscopy and Landau

  5. Quantum Phase Transition and Entanglement in Topological Quantum Wires.

    Science.gov (United States)

    Cho, Jaeyoon; Kim, Kun Woo

    2017-06-05

    We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting the two-site entanglements in the ground state. It is shown that the topological phase transition of the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. This transition is characterised solely by quantum information theory and does not accompany the closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of the transition points.

  6. From topology to geometry

    International Nuclear Information System (INIS)

    Eberhart, M.

    1996-01-01

    A systematic study of the charge density topologies corresponding to a number of transition metal aluminides with the B2 structure indicates that unstable crystal structures are sometimes associated with uncharacteristic topologies. This observation invites the speculation that the distance to a topological instability might relate to a metals phase behavior. Following this speculation, a metric is imposed on the topological theory of Bader, producing a geometrical theory, where it is now possible to assign a distance from a calculated charge density topology to a topological instability. For the cubic transition metals, these distances are shown to correlate with single crystal elastic constants, where the metals that are furthest from an instability are observed to be the stiffest. (author). 16 refs., 1 tab., 9 figs

  7. Topological Nodal Cooper Pairing in Doped Weyl Metals

    Science.gov (United States)

    Li, Yi; Haldane, F. D. M.

    2018-02-01

    We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

  8. General Topology of the Universe

    OpenAIRE

    Pandya, Aalok

    2002-01-01

    General topology of the universe is descibed. It is concluded that topology of the present universe is greater or stronger than the topology of the universe in the past and topology of the future universe will be stronger or greater than the present topology of the universe. Consequently, the universe remains unbounded.

  9. Topological surface states of Bi{sub 2}Te{sub 2}Se are robust against surface chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Conor R.; Sahasrabudhe, Girija; Kushwaha, Satya Kumar; Cava, Robert J.; Schwartz, Jeffrey [Department of Chemistry, Princeton University, Princeton, NJ (United States); Xiong, Jun [Department of Physics, Princeton University, Princeton, NJ (United States)

    2014-12-01

    The robustness of the Dirac-like electronic states on the surfaces of topological insulators (TIs) during materials process-ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi{sub 2}Te{sub 2}Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov-de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case - surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides - the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  11. Ordered groups and topology

    CERN Document Server

    Clay, Adam

    2016-01-01

    This book deals with the connections between topology and ordered groups. It begins with a self-contained introduction to orderable groups and from there explores the interactions between orderability and objects in low-dimensional topology, such as knot theory, braid groups, and 3-manifolds, as well as groups of homeomorphisms and other topological structures. The book also addresses recent applications of orderability in the studies of codimension-one foliations and Heegaard-Floer homology. The use of topological methods in proving algebraic results is another feature of the book. The book was written to serve both as a textbook for graduate students, containing many exercises, and as a reference for researchers in topology, algebra, and dynamical systems. A basic background in group theory and topology is the only prerequisite for the reader.

  12. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    Science.gov (United States)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  13. Topological phases of topological-insulator thin films

    Science.gov (United States)

    Asmar, Mahmoud M.; Sheehy, Daniel E.; Vekhter, Ilya

    2018-02-01

    We study the properties of a thin film of topological insulator material. We treat the coupling between helical states at opposite surfaces of the film in the properly-adapted tunneling approximation, and show that the tunneling matrix element oscillates as a function of both the film thickness and the momentum in the plane of the film for Bi2Se3 and Bi2Te3 . As a result, while the magnitude of the matrix element at the center of the surface Brillouin zone gives the gap in the energy spectrum, the sign of the matrix element uniquely determines the topological properties of the film, as demonstrated by explicitly computing the pseudospin textures and the Chern number. We find a sequence of transitions between topological and nontopological phases, separated by semimetallic states, as the film thickness varies. In the topological phase, the edge states of the film always exist but only carry a spin current if the edge potentials break particle-hole symmetry. The edge states decay very slowly away from the boundary in Bi2Se3 , making Bi2Te3 , where this scale is shorter, a more promising candidate for the observation of these states. Our results hold for free-standing films as well as heterostructures with large-gap insulators.

  14. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  15. Probing Dirac fermion dynamics in topological insulator Bi2Se3 films with a scanning tunneling microscope.

    Science.gov (United States)

    Song, Can-Li; Wang, Lili; He, Ke; Ji, Shuai-Hua; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2015-05-01

    Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi2Se3 ultrathin films. At the two-dimensional limit, bulk electrons become quantized and the quantization can be controlled by the film thickness at a single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of the phase relaxation length lϕ and inelastic scattering lifetime τ of topological surface-state electrons. We find that τ exhibits a remarkable (E - EF)(-2) energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.

  16. Physical basis of power conversion of energy fluctuations of hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Yater, J C

    1983-12-01

    The design of an experimental reversible-energy-fluctuation (REF) solar converter using hot nonequilibrated (HNE) electrons is presented. The physical principles are introduced, and an idealized model is described and analyzed in terms of radiation and electron-thermalization losses and first-to-third-layer transfer times. It is shown that the 93-percent limiting conversion efficiency can be approached in both a two-level and an N-level model, even in larger-scale circuits. On the other hand, as circuit size is decreased below 100 nm, the maximum power output can exceed 10 MW/sq m. The materials and thicknesses to be used in an experimental thin-film version of the REF device are outlined, including a 10-60-nm-thick Cd3As2 or alpha-Sn absorbing layer, a 4-10-nm-thick doped-semiconductor or semimetal quantum-well layer, and a Schottky-barrier diode layer comprising a 4-10-nm-thick Pb sheet on a 5-20-nm-thick p-GaAs film. Experiments at lattice temperatures of from 300 to 1 K with input radiation at wavelengths from 1 micron to the solar spectrum and intensities from zero to 1 mW are planned to determine whether the predicted practical efficiency of 80 percent can be obtained. 19 references.

  17. Topological sound in active-liquid metamaterials

    Science.gov (United States)

    Souslov, Anton; van Zuiden, Benjamin C.; Bartolo, Denis; Vitelli, Vincenzo

    2017-11-01

    Liquids composed of self-propelled particles have been experimentally realized using molecular, colloidal or macroscopic constituents. These active liquids can flow spontaneously even in the absence of an external drive. Unlike spontaneous active flow, the propagation of density waves in confined active liquids is not well explored. Here, we exploit a mapping between density waves on top of a chiral flow and electrons in a synthetic gauge field to lay out design principles for artificial structures termed topological active metamaterials. We design metamaterials that break time-reversal symmetry using lattices composed of annular channels filled with a spontaneously flowing active liquid. Such active metamaterials support topologically protected sound modes that propagate unidirectionally, without backscattering, along either sample edges or domain walls and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.

  18. Topological transport from a black hole

    Directory of Open Access Journals (Sweden)

    Dmitry Melnikov

    2018-03-01

    Full Text Available In this paper the low temperature zero-frequency transport in a 2+1-dimensional theory dual to a dyonic black hole is discussed. It is shown that transport exhibits topological features: the transverse electric and heat conductivities satisfy the Wiedemann–Franz law of free electrons; the direct heat conductivity is measured in units of the central charge of CFT2+1, while the direct electric conductivity vanishes; the thermoelectric conductivity is non-zero at vanishing temperature, while the O(T behavior, controlled by the Mott relation, is subleading. Provided that the entropy of the black hole, and the dual system, is non-vanishing at T=0, the observations indicate that the dyonic black hole describes a ħ→0 limit of a highly degenerate topological state, in which the black hole charge measures the density of excited non-abelian quasiparticles. The holographic description gives further evidence that non-abelian nature of quasiparticles can be determined by the low temperature behavior of the thermoelectric transport.

  19. Fine topology and locally Minkowskian manifolds

    Science.gov (United States)

    Agrawal, Gunjan; Sinha, Soami Pyari

    2018-05-01

    Fine topology is one of the several well-known topologies of physical and mathematical relevance. In the present paper, it is obtained that the nonempty open sets of different dimensional Minkowski spaces with the fine topology are not homeomorphic. This leads to the introduction of a new class of manifolds. It turns out that the technique developed here is also applicable to some other topologies, namely, the s-topology, space topology, f-topology, and A-topology.

  20. Transport of Dirac fermions on the surface of strong topological insulator and graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Arijit

    2012-06-14

    In this dissertation I study electronic transport through Dirac Fermions on the surface of strong topological insulator and graphene. I start by reviewing the physics of topological insulator and graphene and the low energy effective theory for the electronic states of the surface of a 3D strong topological insulator and graphene. Using this theory the electronic structure of the surface states of strong topological insulators of geometries with large surface to bulk ratio like nanowire and thin film are obtained. Then the energy spectrum and the spin-parity structure of the eigenstates for a finite size topological insulator quantum dot of the shape of a nanotube are considered. Numerical calculations show that even at the lowest energy scales, the ''spin-surface locking'' is broken, that is, the spin direction in a topologically protected surface mode is not locked to the surface. The calculations also show the existence of ''zero-momentum'' modes, and sub-gap states localized near the ''caps'' of the dot. Both the energy spectrum and the spin texture of the eigenstates are basically reproduced from an analytical surface Dirac fermion description. The results are compared to microscopic calculations using a tight-binding model for a strong topological insulator in a finite-length nanowire geometry, which shows qualitative similarity. Then, a theoretical study of electron-phonon scattering effects in thin films made of a strong topological insulator is presented. Phonons are modeled by isotropic elastic continuum theory with stress-free boundary conditions, and the interaction with the helical surface Dirac fermions is mediated by the deformation potential. The temperature-dependent electrical resistivity ρ(T) and the quasi-particle decay rate Γ(T) observable in photo-emission are computed numerically. The low and high-temperature power laws for both quantities are obtained analytically. Detailed

  1. Topology optimization based on spline-based meshfree method using topological derivatives

    International Nuclear Information System (INIS)

    Hur, Junyoung; Youn, Sung-Kie; Kang, Pilseong

    2017-01-01

    Spline-based meshfree method (SBMFM) is originated from the Isogeometric analysis (IGA) which integrates design and analysis through Non-uniform rational B-spline (NURBS) basis functions. SBMFM utilizes trimming technique of CAD system by representing the domain using NURBS curves. In this work, an explicit boundary topology optimization using SBMFM is presented with an effective boundary update scheme. There have been similar works in this subject. However unlike the previous works where semi-analytic method for calculating design sensitivities is employed, the design update is done by using topological derivatives. In this research, the topological derivative is used to derive the sensitivity of boundary curves and for the creation of new holes. Based on the values of topological derivatives, the shape of boundary curves is updated. Also, the topological change is achieved by insertion and removal of the inner holes. The presented approach is validated through several compliance minimization problems.

  2. Topology optimization based on spline-based meshfree method using topological derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Junyoung; Youn, Sung-Kie [KAIST, Daejeon (Korea, Republic of); Kang, Pilseong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2017-05-15

    Spline-based meshfree method (SBMFM) is originated from the Isogeometric analysis (IGA) which integrates design and analysis through Non-uniform rational B-spline (NURBS) basis functions. SBMFM utilizes trimming technique of CAD system by representing the domain using NURBS curves. In this work, an explicit boundary topology optimization using SBMFM is presented with an effective boundary update scheme. There have been similar works in this subject. However unlike the previous works where semi-analytic method for calculating design sensitivities is employed, the design update is done by using topological derivatives. In this research, the topological derivative is used to derive the sensitivity of boundary curves and for the creation of new holes. Based on the values of topological derivatives, the shape of boundary curves is updated. Also, the topological change is achieved by insertion and removal of the inner holes. The presented approach is validated through several compliance minimization problems.

  3. Interferometry with particles of non-zero rest mass: topological experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1994-01-01

    Interferometry as a space-time process is described, together with its topology. Starting from this viewpoint, a convenient unified formalism for the phase shifts which arise in particle interferometry is developed. This formalism is based on a covariant form of Hamilton's action principle and Lagrange's equations of motion. It will be shown that this Lorentz invariant formalism yields a simple perturbation theoretic expression for the general phase shift that arises in matter-wave interferometry. The Lagrangian formalism is compared with the more usual formalism based on the wave propagation vector and frequency. The resulting formalism will be used to analyse the Sagnac effect, gravitational field measurements, and several Aharonov-Bohm-like topological phase shifts. Several topological interferometric experiments using particles of non-zero rest mass are discussed. These experiments involve the use of electrons, neutrons and neutral atoms. Neutron experiments will be emphasised. 45 refs., 15 figs

  4. Comparison of 10 MW superconducting generator topologies for direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    Large wind turbines of 10 MW or higher power levels are desirable for reducing the cost of energy of offshore wind power conversion. Conventional wind generator systems will be costly if scaled up to 10 MW due to rather large size and weight. Direct drive superconducting generators have been...... magnetic field excitation allows for lightweight non-magnetic composite materials for machine cores instead of iron. A topology would probably not be a good option for an offshore wind turbine generator if it demands a far more expensive active material cost than others, even if it has other advantages...... proposed to address the problem with generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density of an electrical machine. However, the topology to be adopted for superconducting wind generators has not yet been settled, since the high...

  5. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in meta-waveguides (Presentation Recording)

    Science.gov (United States)

    Shvets, Gennady B.; Khanikaev, Alexander B.; Ma, Tzuhsuan; Lai, Kueifu

    2015-09-01

    Science thrives on analogies, and a considerable number of inventions and discoveries have been made by pursuing an unexpected connection to a very different field of inquiry. For example, photonic crystals have been referred to as "semiconductors of light" because of the far-reaching analogies between electron propagation in a crystal lattice and light propagation in a periodically modulated photonic environment. However, two aspects of electron behavior, its spin and helicity, escaped emulation by photonic systems until recent invention of photonic topological insulators (PTIs). The impetus for these developments in photonics came from the discovery of topologically nontrivial phases in condensed matter physics enabling edge states immune to scattering. The realization of topologically protected transport in photonics would circumvent a fundamental limitation imposed by the wave equation: inability of reflections-free light propagation along sharply bent pathway. Topologically protected electromagnetic states could be used for transporting photons without any scattering, potentially underpinning new revolutionary concepts in applied science and engineering. I will demonstrate that a PTI can be constructed by applying three types of perturbations: (a) finite bianisotropy, (b) gyromagnetic inclusion breaking the time-reversal (T) symmetry, and (c) asymmetric rods breaking the parity (P) symmetry. We will experimentally demonstrate (i) the existence of the full topological bandgap in a bianisotropic, and (ii) the reflectionless nature of wave propagation along the interface between two PTIs with opposite signs of the bianisotropy.

  6. Feasibility study of internal conversion electron spectroscopy of {sup 229m}Th

    Energy Technology Data Exchange (ETDEWEB)

    Seiferle, Benedict; Wense, Lars von der; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2017-05-15

    With an expected energy of 7.8(5) eV, the isomeric first excited state in {sup 229}Th exhibits the lowest excitation energy of all known nuclei. Until today, a value for the excitation energy has been inferred only by indirect measurements. In this paper we propose an experimental method that is potentially capable of measuring the ground-state transition energy via the detection of the internal conversion electrons. MatLab-based Monte Carlo simulations have been performed to obtain an estimate of the expected statistics and to test the feasibility and the expected precision of the experiment. From the simulations we conclude that with the presented methods an energy determination with a precision of better than 0.1 eV is within reach. (orig.)

  7. Topology control

    NARCIS (Netherlands)

    Buchin, K.; Buchin, M.; Wagner, D.; Wattenhofer, R.

    2007-01-01

    Information between two nodes in a network is sent based on the network topology, the structure of links connecting pairs of nodes of a network. The task of topology control is to choose a connecting subset from all possible links such that the overall network performance is good. For instance, a

  8. Nonlocal optical response in topological phase transitions in the graphene family

    Science.gov (United States)

    Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; Woods, Lilia M.

    2018-01-01

    We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family and find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. We find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. The expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.

  9. The ATLAS Level-1 Topological Trigger performance in Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00120419; The ATLAS collaboration

    2017-01-01

    The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compar...

  10. Valley photonic crystals for control of spin and topology

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  11. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    Science.gov (United States)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  12. Strain effects in topological insulators: Topological order and the emergence of switchable topological interface states in Sb2Te3/Bi2Te3 heterojunctions

    Science.gov (United States)

    Aramberri, H.; Muñoz, M. C.

    2017-05-01

    We investigate the effects of strain on the topological order of the Bi2Se3 family of topological insulators by ab initio first-principles methods. Strain can induce a topological phase transition and we present the phase diagram for the 3D topological insulators, Bi2Te3 , Sb2Te3 , Bi2Se3 , and Sb2Se3 , under combined uniaxial and biaxial strain. Their phase diagram is universal and shows metallic and insulating phases, both topologically trivial and nontrivial. In particular, uniaxial tension can drive the four compounds into a topologically trivial insulating phase. We propose a Sb2Te3/Bi2Te3 heterojunction in which a strain-induced topological interface state arises in the common gap of this normal insulator-topological insulator heterojunction. Unexpectedly, the interface state is confined in the topologically trivial subsystem and is physically protected from ambient impurities. It can be switched on or off by means of uniaxial strain and therefore Sb2Te3 /Bi2Te3 heterojunctions provide a topological system which hosts tunable robust helical interface states with promising spintronic applications.

  13. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    Science.gov (United States)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  14. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    Science.gov (United States)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  15. Topological massive sigma models

    International Nuclear Information System (INIS)

    Lambert, N.D.

    1995-01-01

    In this paper we construct topological sigma models which include a potential and are related to twisted massive supersymmetric sigma models. Contrary to a previous construction these models have no central charge and do not require the manifold to admit a Killing vector. We use the topological massive sigma model constructed here to simplify the calculation of the observables. Lastly it is noted that this model can be viewed as interpolating between topological massless sigma models and topological Landau-Ginzburg models. ((orig.))

  16. Topics in general topology

    CERN Document Server

    Morita, K

    1989-01-01

    Being an advanced account of certain aspects of general topology, the primary purpose of this volume is to provide the reader with an overview of recent developments.The papers cover basic fields such as metrization and extension of maps, as well as newly-developed fields like categorical topology and topological dynamics. Each chapter may be read independently of the others, with a few exceptions. It is assumed that the reader has some knowledge of set theory, algebra, analysis and basic general topology.

  17. Topological nearly entropy

    Science.gov (United States)

    Gulamsarwar, Syazwani; Salleh, Zabidin

    2017-08-01

    The purpose of this paper is to generalize the notions of Adler's topological entropy along with their several fundamental properties. A function f : X → Y is said to be R-map if f-1 (V) is regular open in X for every regular open set V in Y. Thus, we initiated a notion of topological nearly entropy for topological R-dynamical systems which is based on nearly compact relative to the space by using R-map.

  18. Relational topology

    CERN Document Server

    Schmidt, Gunther

    2018-01-01

    This book introduces and develops new algebraic methods to work with relations, often conceived as Boolean matrices, and applies them to topology. Although these objects mirror the matrices that appear throughout mathematics, numerics, statistics, engineering, and elsewhere, the methods used to work with them are much less well known. In addition to their purely topological applications, the volume also details how the techniques may be successfully applied to spatial reasoning and to logics of computer science. Topologists will find several familiar concepts presented in a concise and algebraically manipulable form which is far more condensed than usual, but visualized via represented relations and thus readily graspable. This approach also offers the possibility of handling topological problems using proof assistants.

  19. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    Science.gov (United States)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  20. Spin-polarized currents in the tunnel contact of a normal conductor and a two-dimensional topological insulator

    International Nuclear Information System (INIS)

    Sukhanov, A. A.; Sablikov, V. A.

    2013-01-01

    The spin filtering of electrons tunneling from the edge states of a two-dimensional topological insulator into a normal conductor under a magnetic field (external or induced due to proximity to a magnetic insulator) is studied. Calculations are performed for a tunnel contact of finite length between the topological insulator and an electronic multimode quantum strip. It is shown that the flow of tunneling electrons is split in the strip, so that spin-polarized currents arise in its left and right branches. These currents can be effectively controlled by the contact voltage and the chemical potential of the system. The presence of a magnetic field, which splits the spin subbands of the electron spectrum in the strip, gives rise to switching of the spin current between the strip branches

  1. Molecular beam epitaxial growth of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhaoquan; Morgan, Timothy A.; Li, Chen; Hirono, Yusuke; Hu, Xian; Hawkridge, Michael E.; Benamara, Mourad; Salamo, Gregory J. [Arkansas Institute for Nanoscale Material Sciences and Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Fan, Dongsheng; Yu, Shuiqing [Arkansas Institute for Nanoscale Material Sciences and Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Zhao, Yanfei [International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871 (China); Lee, Joon Sue [The Center for Nanoscale Science and Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Wang, Jian [International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871 (China); The Center for Nanoscale Science and Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Wang, Zhiming M. [Arkansas Institute for Nanoscale Material Sciences and Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083 (China)

    2013-07-15

    High quality Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} topological insulators films were epitaxially grown on GaAs (111) substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111) substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111) substrate is better than a vicinal substrate to provide high quality Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} films. Hall and magnetoresistance measurements indicate that p type Sb{sub 2}Te{sub 3} and n type Bi{sub 2}Te{sub 3} topological insulator films can be directly grown on a GaAs (111) substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.

  2. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  3. Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Miloshevich, George, E-mail: gmilosh@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)

    2016-07-15

    Highlights: • Common Hamiltonian structure of the extended MHD models presented. • The generalized helicities of extended MHD shown to be topological invariants analogous to fluid/magnetic helicity. • Generalized helicities can be studied through powerful topological and knot-theoretic methods such as the Jones polynomial. • Each extended MHD model shown to possess two Lie-dragged 2-forms, which are interpreted as the generalized vorticity fluxes. - Abstract: The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern–Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.

  4. Ultrafilters and topologies on groups

    CERN Document Server

    Zelenyuk, Yevhen

    2011-01-01

    This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results aboutultrafilters. Topics covered include: topological and left topological groups, ultrafilter semigroups, local homomorphisms and automorphisms, subgroups and ideal structure of ßG, almost maximal spaces and projectives of finite semigroups, resolvability of groups. This is a self-contained book aimed at graduate students and researchers working in to

  5. Reconfigurable topological photonic crystal

    Science.gov (United States)

    Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.

    2018-02-01

    Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.

  6. Absorption and emission from mode conversion theory

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-02-01

    The effects of mode conversion theory on emission have led to some surprising results. The classical expressions were originally derived from models which did not include mode conversion or its attendant reflection. When mode conversion was included, the first surprise was that the transmission coefficient is totally independent of absorption and due exclusively to tunneling. The other surprise is that the observed emission arises from two distinct sources, one direct, and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for laboratory plasmas, leading to the validation of the classical formula, but via an entirely new paradigm in its interpretation. This paper includes a summary of the absorption process for electron cyclotron harmonics, and reviews the emission physics, including both potential error estimates and a discussion of the spatial emission source distribution

  7. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh

    2015-03-12

    © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We demonstrate single atom anisotropic magnetoresistance on the surface of a topological insulator, arising from the interplay between the helical spin-momentum-locked surface electronic structure and the hybridization of the magnetic adatom states. Our first-principles quantum transport calculations based on density functional theory for Mn on Bi2Se3 elucidate the underlying mechanism. We complement our findings with a two dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological insulator surfaces, and reveal the real space spin texture around the magnetic impurity.

  8. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-01-25

    The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.

  9. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator

    Science.gov (United States)

    Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.

    2017-05-01

    Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.

  10. Undergraduate topology a working textbook

    CERN Document Server

    McCluskey, Aisling

    2014-01-01

    This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp i

  11. Equivariant topological quantum field theory and symmetry protected topological phases

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, Anton [Division of Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA, 91125 (United States); Turzillo, Alex [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794 (United States)

    2017-03-01

    Short-Range Entangled topological phases of matter are closely related to Topological Quantum Field Theory. We use this connection to classify Symmetry Protected Topological phases in low dimensions, including the case when the symmetry involves time-reversal. To accomplish this, we generalize Turaev’s description of equivariant TQFT to the unoriented case. We show that invertible unoriented equivariant TQFTs in one or fewer spatial dimensions are classified by twisted group cohomology, in agreement with the proposal of Chen, Gu, Liu and Wen. We also show that invertible oriented equivariant TQFTs in spatial dimension two or fewer are classified by ordinary group cohomology.

  12. Topologically massive supergravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    1983-01-01

    Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.

  13. Topological pregauge-pregeometry

    International Nuclear Information System (INIS)

    Akama, Keiichi; Oda, Ichiro.

    1990-12-01

    The pregauge-pregeometric action, i.e. the fundamental matter action whose quantum fluctuations give rise to the Einstein-Hilbert and the Yang-Mills actions is investigated from the viewpoint of the topological field theory. We show that the scalar pregauge-pregeometric action is a topological invariant for appropriate choices of the internal gauge group. This model realizes the picture that the gravitational and internal gauge theory at the low energy scale is induced as the quantum effects of the topological field theory at the Planck scale. (author)

  14. A time-reversal invariant topological phase at the surface of a 3D topological insulator

    International Nuclear Information System (INIS)

    Bonderson, Parsa; Nayak, Chetan; Qi, Xiao-Liang

    2013-01-01

    A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p x + ip y superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases. (paper)

  15. Topology optimized permanent magnet systems

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian; Insinga, Andrea Roberto

    2017-01-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron...... and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a ΛcoolΛcool figure of merit of 0...

  16. Free Boolean Topological Groups

    Directory of Open Access Journals (Sweden)

    Ol’ga Sipacheva

    2015-11-01

    Full Text Available Known and new results on free Boolean topological groups are collected. An account of the properties that these groups share with free or free Abelian topological groups and properties specific to free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.

  17. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    Science.gov (United States)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  18. Topology breaking of the vortex in multiferroic Y0.67Lu0.33MnO3

    International Nuclear Information System (INIS)

    Zhang, Qing-Hua; Gu, Lin; Yao, Yuan; Jin, Chang-Qing; Wang, Yan-Guo; Duan, Xiao-Feng; Yu, Ri-Cheng; Tan, Guo-Tai

    2014-01-01

    Although topological defects, such as domain walls (DWs) or vortices, are naturally protected by topological invariance, yet, we discover an exception that the six-state topology of the vortex with Z2 × Z3 symmetry is broken by a partial edge dislocation (PED) in hexagonal Y 0.67 Lu 0.33 MnO 3 , where the topologies of the four-state vortex or closed DWs emerges. Using aberration-corrected scanning transmission electron microscopy, we found that the PED plays an important role in changing the phase of translation domain. The PED at the vortex core leads to the formation of the four-state vortex, while the ones at closed DWs connect different types of DWs, both corresponding to continuous phase changes. These results indicate that PEDs can change the topology of translation-related domain vortices and more vortices with even domains can be expected.

  19. Transport, shot noise, and topology in AC-driven dimer arrays

    Science.gov (United States)

    Niklas, Michael; Benito, Mónica; Kohler, Sigmund; Platero, Gloria

    2016-11-01

    We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.

  20. Topology general & algebraic

    CERN Document Server

    Chatterjee, D

    2007-01-01

    About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the

  1. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  2. The role of topological spin defects in magnetotransport of CrO2

    International Nuclear Information System (INIS)

    Yanagihara, H; Salamon, M B

    2007-01-01

    We investigated the temperature dependence of the resistivity for a wide temperature range for CrO 2 (100) epitaxial films. The temperature derivative dρ/dT definitely shows the same character as the magnetic heat capacity anomaly in the critical regime even in a finite magnetic field and the critical exponents (α) deduced are consistent with those of 3D Heisenberg ferromagnets. In addition, we found that the spin dependent resistivity over a wide temperature range can be simply proportional to the density of diluted topological spin defects (Skyrmion strings) suggesting that those nontrivial topological defects scatter conduction electrons just like impurities. The excitation energy of such topological defects is quite comparable to that obtained by anomalous Hall effect analysis of the Ye et al model based on the Berry phase. The overall results give a simple picture wherein the density of the topological defects can be a dominant mechanism of resistivity, like the anomalous Hall effect. The results concerning the critical exponent analysis and intuition concerning scattering centres of magnetic disorder suggest a specific picture of the Fisher-Langer model

  3. Spin-transfer torque generated by a topological insulator

    KAUST Repository

    Mellnik, A. R.

    2014-07-23

    Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron\\' s spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi 2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications. © 2014 Macmillan Publishers Limited. All rights reserved.

  4. Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model

    Science.gov (United States)

    Wu, Wei; Scheurer, Mathias S.; Chatterjee, Shubhayu; Sachdev, Subir; Georges, Antoine; Ferrero, Michel

    2018-04-01

    One of the distinctive features of hole-doped cuprate superconductors is the onset of a "pseudogap" below a temperature T* . Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fermi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is holelike and that, for a broad range of parameters, its opening is concomitant with a Fermi-surface topology change from electronlike to holelike. We identify a common link between these observations: The polelike feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi-surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this polelike feature and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.

  5. Building a Library for Microelectronics Verification with Topological Constraints

    Science.gov (United States)

    2017-03-01

    with topological constraints. Circuits at the second level of abstraction are selected from prior work on simulated reverse- engineered hardware...entering DoD systems. The Defense Advanced Research Project Agency (DARPA) Trusted Integrated Circuits (TRUST) [12-14] program was introduced to focus on...serious- risks-from-counterfeit-electronic-parts/ 4. “Trusted Integrated Circuits (TRUST)”. [Online]. DARPA Microsystems Technology Office. Available

  6. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1987-01-01

    Dose-rate conversion factors have been calculated for external exposure of the skin from electrons emitted by sources that are deposited uniformly on the body surface. The dose-rate factors are obtained from electron scaled point kernels developed by Berger. The dose-rate factors are calculated at depths of 4, 8, and 40 mg cm-2 below the body surface as recommended by Whitton, and at a depth of 7 mg cm-2 as recommended in ICRP Publication 26 (ICRP77). The dependence of the dose-rate factors at selected depths on the energy of the emitted electrons is displayed. The dose-rate factors for selected radionuclides of potential importance in radiological assessments are tabulated

  7. Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells

    Science.gov (United States)

    Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu

    2017-07-01

    Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.

  8. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  9. Protection of surface states in topological nanoparticles

    Science.gov (United States)

    Siroki, Gleb; Haynes, Peter D.; Lee, Derek K. K.; Giannini, Vincenzo

    2017-07-01

    Topological insulators host protected electronic states at their surface. These states show little sensitivity to disorder. For miniaturization one wants to exploit their robustness at the smallest sizes possible. This is also beneficial for optical applications and catalysis, which favor large surface-to-volume ratios. However, it is not known whether discrete states in particles share the protection of their continuous counterparts in large crystals. Here we study the protection of the states hosted by topological insulator nanoparticles. Using both analytical and tight-binding simulations, we show that the states benefit from the same level of protection as those on a planar surface. The results hold for many shapes and sustain surface roughness which may be useful in photonics, spectroscopy, and chemistry. They complement past studies of large crystals—at the other end of possible length scales. The protection of the nanoparticles suggests that samples of all intermediate sizes also possess protected states.

  10. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Jonah, E. O.; Britton, D. T.; Beaucage, P.; Rai, D. K.; Beaucage, G.; Magunje, B.; Ilavsky, J.; Scriba, M. R.; Härting, M.

    2012-01-01

    The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle X-ray scattering, supported by scanning electron microscopy observations. The milled particles with a highly polydisperse size distribution form agglomerates, which in turn cluster to form larger aggregates with a very high degree of aggregation. Smaller nanoparticles with less polydisperse size distribution synthesized by thermal catalytic pyrolysis of silane form small open clusters. The Sauter mean diameters of the primary particles of the two types of nanoparticles were obtained from USAXS particle volume to surface ratio, with values of ∼41 and ∼21 nm obtained for the high energy milled and pyrolysis samples, respectively. Assuming a log-normal distribution of the particles, the geometric standard deviation of the particles was calculated to be ∼1.48 for all the samples, using parameters derived from the unified fit to the USAXS data. The flow properties of the inks and substrate combination lead to quantitative changes in the mean particle separation, with slowly curing systems with good capillary flow resulting in denser networks with smaller aggregates and better contact between particles.

  11. Foundations of topological racks and quandles

    OpenAIRE

    Mohamed Moutuou, El-Kaioum; Elhamdadi, Mohamed

    2016-01-01

    We give a foundational account on topological racks and quandles. Specifically, we define the notions of ideals, kernels, units, and inner automorphism group in the context of topological racks. Further, we investigate topological rack modules and principal rack bundles. Central extensions of topological racks are then introduced providing a first step towards a general continuous cohomology theory for topological racks and quandles

  12. Quantum nonlocal theory of topological Fermi arc plasmons in Weyl semimetals

    Science.gov (United States)

    Andolina, Gian Marcello; Pellegrino, Francesco M. D.; Koppens, Frank H. L.; Polini, Marco

    2018-03-01

    The surface of a Weyl semimetal (WSM) displays Fermi arcs, i.e., disjoint segments of a two-dimensional Fermi contour. We present a quantum-mechanical nonlocal theory of chiral Fermi arc plasmons in WSMs with broken time-reversal symmetry. These are collective excitations constructed from topological Fermi arc and bulk electron states and arising from electron-electron interactions, which are treated in the realm of the random phase approximation. Our theory includes quantum effects associated with the penetration of the Fermi arc surface states into the bulk and dissipation, which is intrinsically nonlocal in nature and arises from decay processes mainly involving bulk electron-hole pair excitations.

  13. Topological Structures on DMC Spaces †

    Directory of Open Access Journals (Sweden)

    Rajai Nasser

    2018-05-01

    Full Text Available Two channels are said to be equivalent if they are degraded from each other. The space of equivalent channels with input alphabet X and output alphabet Y can be naturally endowed with the quotient of the Euclidean topology by the equivalence relation. A topology on the space of equivalent channels with fixed input alphabet X and arbitrary but finite output alphabet is said to be natural if and only if it induces the quotient topology on the subspaces of equivalent channels sharing the same output alphabet. We show that every natural topology is σ -compact, separable and path-connected. The finest natural topology, which we call the strong topology, is shown to be compactly generated, sequential and T 4 . On the other hand, the strong topology is not first-countable anywhere, hence it is not metrizable. We introduce a metric distance on the space of equivalent channels which compares the noise levels between channels. The induced metric topology, which we call the noisiness topology, is shown to be natural. We also study topologies that are inherited from the space of meta-probability measures by identifying channels with their Blackwell measures.

  14. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  15. Topological surface states in nodal superconductors

    International Nuclear Information System (INIS)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-01-01

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)

  16. Duality and topology

    Science.gov (United States)

    Sacramento, P. D.; Vieira, V. R.

    2018-04-01

    Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.

  17. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

    CSIR Research Space (South Africa)

    Jonah, EO

    2012-10-01

    Full Text Available The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle...

  18. Graph topologies on closed multifunctions

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Maio

    2003-10-01

    Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.

  19. Nobel Lecture: Topological quantum matter*

    Science.gov (United States)

    Haldane, F. Duncan M.

    2017-10-01

    Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."

  20. Topology optimized permanent magnet systems

    Science.gov (United States)

    Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.

    2017-09-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  1. QCD in a nonsimply connected spacetime: The topological origin of flavours and topological gluon mass generation

    International Nuclear Information System (INIS)

    Goncharov, Yu.P.

    1982-01-01

    In a spacetime having a nontrivial topology QCD may have properties which are absent for QCD in Minkowski spacetime. Two new possibilities for QCD are discussed by the example of spacetime with topology R x (S 1 ) 3 and flat metric: the topological origin of flavours and topological gluon mass generation. (orig.)

  2. Adjoint entropy vs topological entropy

    OpenAIRE

    Giordano Bruno, Anna

    2012-01-01

    Recently the adjoint algebraic entropy of endomorphisms of abelian groups was introduced and studied. We generalize the notion of adjoint entropy to continuous endomorphisms of topological abelian groups. Indeed, the adjoint algebraic entropy is defined using the family of all finite-index subgroups, while we take only the subfamily of all open finite-index subgroups to define the topological adjoint entropy. This allows us to compare the (topological) adjoint entropy with the known topologic...

  3. Synthesis, Transport, and Thermoelectric Studies of Topological Dirac Semimetal Cd3As2 for Room Temperature Waste Heat Recovery and Energy Conversion

    Science.gov (United States)

    Hosseini, Tahereh A.

    Rising rates of the energy consumption and growing concerns over the climate change worldwide have made energy efficiency an urgent problem to address. Nowadays, almost two-thirds of the energy produced by burning fossil fuels to generate electrical power is lost in the form of the heat. On this front, increasing electrical power generation through a waste heat recovery remains one of the highly promising venues of the energy research. Thermo-electric generators (TEGs) directly convert thermal energy into electrical and are the prime candidates for application in low-grade thermal energy/ waste heat recovery. The key commercial TE materials, e.g. PbTe and Bi2Te 3, have room temperature ZT of less than 1, whereas ZT exceeding 3 is required for a TEG to be economically viable. With the thermoelectric efficiency typically within a few percent range and a low efficiency-to-cost ratio of TEGs, there has been a resurgence in the search for new class of thermo-electric materials for developing high efficiency thermo-to-electric energy conversion systems, with phonon-glass electron-crystal materials holding the most promise. Herein, we focus on synthesis, characterization and investigation of electrical, thermo-electrical and thermal characteristics of crystalline Cd 3As2, a high performance 3D topological Dirac semimetal with Dirac fermions dispersing linearly in k3-space and possessing one of the largest electron mobilities known for crystalline materials, i.e. 104-105cm2V-1 s-1. Suppression of carrier backscattering, ultra-high charge carrier mobility, and inherently low thermal conductivity make this semimetal a key candidate for demonstrating high, device-favorable S and in turn ZT. In this work, a low-temperature vapor-based crystallization pathway was developed and optimized to produce free standing 2D cm-size crystals in Cd 3As2. Compared to the bulk crystals produced in previous studies, e.g. Piper-Polich, Bridgman, or flux method, Cd3As 2 samples were synthesized

  4. The design study of an ultra-high power EB/X-ray conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    He, Zi-Feng, E-mail: hezifeng@sinap.ac.cn; Li, Deming; Huang, Jian-Ming; Yang, Yong-Jin; Zhu, Xi-Kai; Zhang, Yu-Tian

    2014-10-15

    Highlights: • We describe a 100 kW electron beam to X-rays conversion system. • We give an idea to improve the conversion efficiency and lifetime of the target. • We describe the design and thermal characteristics of the X-ray converter. - Abstract: X-ray conversion is a frequent need for irradiating the products that cannot be processed by electron beams, duo to their limited penetration capacity in materials, in radiation sterilization of disposable healthcare products and food irradiation. In this paper, we report the design of a conversion facility with a 5-MeV/120-kW electron accelerator, regarding the considerations on selection of the target materials and target structure, design of the electron beam transport line and approaches to improve the conversion efficiency and lifetime.

  5. Topology optimization approaches

    DEFF Research Database (Denmark)

    Sigmund, Ole; Maute, Kurt

    2013-01-01

    Topology optimization has undergone a tremendous development since its introduction in the seminal paper by Bendsøe and Kikuchi in 1988. By now, the concept is developing in many different directions, including “density”, “level set”, “topological derivative”, “phase field”, “evolutionary...

  6. Effect of static charge fluctuations on the conduction along the edge of two-dimensional topological insulator

    Science.gov (United States)

    Vayrynen, Jukka; Goldstein, Moshe; Glazman, Leonid

    2013-03-01

    Static charge disorder may create electron puddles in the bulk of a material which nominally is in the insulating state. A single puddle - quantum dot - coupled to the helical edge of a two-dimensional topological insulator enhances the electron backscattering within the edge. The backscattering rate increases with the electron dwelling time in the dot. While remaining inelastic, the backscattering off a dot may be far more effective than the proposed earlier inelastic processes involving a local scatterer with no internal structure. We find the temperature dependence of the dot-induced correction to the universal conductance of the edge. In addition to the single-dot effect, we calculate the classical temperature-independent conductance correction caused by a weakly conducting bulk. We use our theory to assess the effect of static charge fluctuations in a heterostructure on the edge electron transport in a two-dimensional topological insulator. The work at Yale University is supported by NSF DMR Grant No. 1206612 and the Simons Foundation.

  7. Electron Bernstein wave heating and emission measurement through the very narrow O-X-B mode conversion window in the LHD

    Energy Technology Data Exchange (ETDEWEB)

    Igami, H.; Shimozuma, T.; Yoshimura, Y.; Takahashi, H.; Nishiura, M.; Seki, T.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki (Japan); Kubo, S. [National Institute for Fusion Science, Toki, Japan and Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Ogasawara, S.; Makino, R. [Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Idei, H. [Research Institute for Applied Mechanics, Kyusyu Univ., Kasuga (Japan); Nagasaki, K. [Institute of Advanced Energy, Kyoto Univ., Uji (Japan)

    2014-02-12

    In the large helical device (LHD), the theoretically predicted width of the ordinary-extraordinary-electron Bernstein wave (O-X-B) mode conversion (MC) window is comparable to the beam width and the power deposition is located in the off-axis region if the 77GHz fundamental electron cyclotron (EC) wave of is launched from an existing horizontal port antenna. In the experiment, the actual MC window location was looked for with changing the aiming. The effective aiming with that the increase of the stored energy was observed was two degrees apart from the location of the theoretical MC window at a maximum. Measurement of the waves originated from the thermally emitted EBW and radiated via the B-X-O mode conversion process is effective to improve the accuracy of the theoretical prediction with comparison between the theoretical and the experimental results. The theoretical prediction suggests that the width of the MC window of the fundamental 77GHz EC wave can be expanded if the lower port antenna is used. On the other hand, the MC window of the second harmonic 154GHz EC wave is blocked by horizontal port wall if another horizontal port antenna is used. It is required to move the final mirror of the quasi-optical antenna toward the plasma surface. Focusing of the beam at the plasma cutoff is (PC) also necessary for the effective mode conversion.

  8. Geometrisation of electromagnetic field and topological interpretation of quantum mechanics formalism

    International Nuclear Information System (INIS)

    Olkhov, O.A.

    2001-01-01

    We consider interacting electromagnetic and electron-positron fields as a nonmetrized space-time 4-manifold. The Dirac and Maxwell equations is found to be a relationships expressing topological and metric properties of this manifold. A new equation for the weak interaction is proposed that explains geometrical mechanism of CP-violation

  9. Real topological string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)

    2017-03-15

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.

  10. Topological Susceptibility from Slabs

    CERN Document Server

    Bietenholz, Wolfgang; Gerber, Urs

    2015-01-01

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.

  11. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  12. Multi-planed unified switching topologies

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

    2017-07-04

    An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.

  13. Electron Transfer and Geometric Conversion of Co-NO Moiety in Saddled Porphyrins: Implications for Trigger Role of Tetrapyrrole Distortion.

    Science.gov (United States)

    Tang, Min; Yang, Yan; Zhang, Shaowei; Chen, Jiafu; Zhang, Jian; Zhou, Zaichun; Liu, Qiuhua

    2018-01-02

    The electrons of NO and Co are strongly delocalized in normal {Co-NO} 8 species. In this work, {Co-NO} 8 complexes are induced to convert from (Co II ) +• -NO • to Co III -NO - by a core contraction of 0.06 Å in saddled cobalt(II) porphyrins. This intramolecular electron transfer mechanism indicates that nonplanarity of porphyrin is involved in driving conversion of the NO units from electrophilic NO • as a bent geometry to nucleophilic NO - as a linear geometry. This implies that distortion acts as a trigger in enzymes containing tetrapyrrole. The electronic behaviors of the Co II ions and Co-NO moieties were confirmed by X-ray crystallography, EPR spectroscopy, theoretical calculation, UV-vis and IR spectroscopy, and electrochemistry.

  14. Introduction to topology

    CERN Document Server

    Mendelson, Bert

    1990-01-01

    Highly regarded for its exceptional clarity, imaginative and instructive exercises, and fine writing style, this concise book offers an ideal introduction to the fundamentals of topology. It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

  15. Topology Optimization

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt; Damkilde, Lars

    2007-01-01

    . A way to solve the initial design problem namely finding a form can be solved by so-called topology optimization. The idea is to define a design region and an amount of material. The loads and supports are also fidefined, and the algorithm finds the optimal material distribution. The objective function...... dictates the form, and the designer can choose e.g. maximum stiness, maximum allowable stresses or maximum lowest eigenfrequency. The result of the topology optimization is a relatively coarse map of material layout. This design can be transferred to a CAD system and given the necessary geometrically...... refinements, and then remeshed and reanalysed in other to secure that the design requirements are met correctly. The output of standard topology optimization has seldom well-defined, sharp contours leaving the designer with a tedious interpretation, which often results in less optimal structures. In the paper...

  16. Topology change and quantum physics

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Marmo, G.; Simoni, A.

    1995-01-01

    The role of topology in elementary quantum physics is discussed in detail. It is argued that attributes of classical spatial topology emerge from properties of state vectors with suitably smooth time evolution. Equivalently, they emerge from considerations on the domain of the quantum Hamiltonian, this domain being often specified by boundary conditions in elementary quantum physics. Examples are presented where classical topology is changed by smoothly altering the boundary conditions. When the parameters labelling the latter are treated as quantum variables, quantum states need not give a well-defined classical topology, instead they can give a quantum superposition of such topologies. An existing argument of Sorkin based on the spin-statistics connection and indicating the necessity of topology change in quantum gravity is recalled. It is suggested therefrom and our results here that Einstein gravity and its minor variants are effective theories of a deeper description with additional novel degrees of freedom. Other reasons for suspecting such a microstructure are also summarized. (orig.)

  17. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    Science.gov (United States)

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  18. Atomic effects in tritium beta-decay. II. Muon to electron conversion in atoms

    International Nuclear Information System (INIS)

    Wampler, K.D.

    1989-01-01

    I. The final-state, atomic effects in the low energy end of the tritium beta decay spectrum are studied in detail. The author treats the instantaneous, two-electron repulsion in the final state, effectively to all orders in perturbation theory, by solving the eigenvalue problem with a discretized and truncated form of the Hamiltonian. He finds that these effects fail to explain the distortion in the spectrum observed by Simpson (Phys. Rev. Lett. 54, 649 (1985)). Simpson attributed this distortion to the admixture of a heavy mass antineutrino in the outgoing electron antineutrino state. In fact, the final-state Coulomb effects enhance the distortion. This calculation clears up some of the ambiguities of other theoretical analyses based on considerations of screening functions and perturbation theory. II. He presents a phenomenological study of separate lepton number violating muon to electron conversion in atoms. Previous work on this process has concentrated on elastic transitions where the nucleus characteristics have the gate on the substrate and the source-drain contacts on the top of the sample. The first use as an FET dielectric is reported of hydrogenated amorphous silicon-carbon (prepared from silane and propane mixture), photo-oxidised by UV lamp or laser. These FETs have similar characteristics to those with silicon nitride gate insulator but without the difficulties of preparing good insulator/semiconductor interfaces. Using the same materials attempts have been made to produce charge coupled devices

  19. Topological susceptibility from slabs

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)

    2015-12-14

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.

  20. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  1. Conversion electron Moessbauer and XPS study on the effect of polishing of a stainless steel sample

    International Nuclear Information System (INIS)

    Vertes, Cs.; Kuzmann, E.; Lakatos-Varsanyi, M.; Vertes, A.; Vass, G.; Romhanyi, K.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) and XPS has been used for the surface analysis of an 'X10CrNiTi 18/9 (DIN 1.7440)'-type stainless steel in order to determine the supposed structural and/or chemical changes in the surface layer caused by polishing. Both, CEMS and XPS results can be associated with the appearance of Fe nitride in the outer layer of steel samples after polishing, while no sing of nitrogen was detected in the bulk material. (author) 9 refs.; 3 figs.; 1 tab

  2. Streamline topology of axisymmetric flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field $v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...... and interact follow the topological classification and that the complete set of patterns found is contained in a codimension-4 unfolding of the most simple singular configuration....

  3. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  4. Ambipolar field effect in the ternary topological insulator (BixSb1–x)2Te3 by composition tuning

    KAUST Repository

    Kong, Desheng

    2011-10-02

    Topological insulators exhibit a bulk energy gap and spin-polarized surface states that lead to unique electronic properties 1-9, with potential applications in spintronics and quantum information processing. However, transport measurements have typically been dominated by residual bulk charge carriers originating from crystal defects or environmental doping 10-12, and these mask the contribution of surface carriers to charge transport in these materials. Controlling bulk carriers in current topological insulator materials, such as the binary sesquichalcogenides Bi 2Te 3, Sb 2Te 3 and Bi 2Se 3, has been explored extensively by means of material doping 8,9,11 and electrical gating 13-16, but limited progress has been made to achieve nanostructures with low bulk conductivity for electronic device applications. Here we demonstrate that the ternary sesquichalcogenide (Bi xSb 1-x) 2Te 3 is a tunable topological insulator system. By tuning the ratio of bismuth to antimony, we are able to reduce the bulk carrier density by over two orders of magnitude, while maintaining the topological insulator properties. As a result, we observe a clear ambipolar gating effect in (Bi xSb 1-x) 2Te 3 nanoplate field-effect transistor devices, similar to that observed in graphene field-effect transistor devices 17. The manipulation of carrier type and density in topological insulator nanostructures demonstrated here paves the way for the implementation of topological insulators in nanoelectronics and spintronics. © 2011 Macmillan Publishers Limited. All rights reserved.

  5. Topology of Event Horizon

    OpenAIRE

    Siino, Masaru

    1997-01-01

    The topologies of event horizons are investigated. Considering the existence of the endpoint of the event horizon, it cannot be differentiable. Then there are the new possibilities of the topology of the event horizon though they are excluded in smooth event horizons. The relation between the topology of the event horizon and the endpoint of it is revealed. A torus event horizon is caused by two-dimensional endpoints. One-dimensional endpoints provide the coalescence of spherical event horizo...

  6. Decorrelating topology with HMC

    International Nuclear Information System (INIS)

    Lippert, Th.; Alles, B.; Bali, G.; D'Elia, M.; Di Giacomo, A.; Eicker, N.; Guesken, S.; Schilling, K.; Spitz, A.; Struckmann, T.; Ueberholz, P.; Viehoff, J.

    1999-01-01

    The investigation of the decorrelation efficiency of the HMC algorithm with respect to vacuum topology is a prerequisite for trustworthy full QCD simulations, in particular for the computation of topology sensitive quantities. We demonstrate that for ((m π )/(m ρ ))-ratios ≥ 0.69 sufficient tunneling between the topological sectors can be achieved, for two flavours of dynamical Wilson fermions close to the scaling region (β 5.6). Our results are based on time series of length 5000 trajectories

  7. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3.

    Science.gov (United States)

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J L; Zhong, Ruidan; Schneeloch, John A; Liu, Tiansheng; Valla, Tonica; Tranquada, John M; Gu, Genda; Davis, J C Séamus

    2015-02-03

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  8. Backscattering from width variations in quasi-one-dimensional strips of topological insulators

    International Nuclear Information System (INIS)

    Takagaki, Y

    2012-01-01

    Conductance modulations in wide-narrow-wide electron waveguides constructed from a two-dimensional topological insulator are investigated numerically. The conductance exhibits the Fabry-Perot oscillation at the opening of the helical edge states in the narrow segment when the potential offset imposed in the segment is varied. The quantum multiple reflections between the two ends of the narrow segment manifested by the oscillation demonstrate that the topological states are not protected from the scattering caused by an abrupt change in the channel width. The bulk states do not affect the vulnerability against the geometry scattering but they give rise to resonant transmission in an unconventional fashion.

  9. Opportunities in chemistry and materials science for topological insulators and their nanostructures

    KAUST Repository

    Kong, Desheng

    2011-10-24

    Electrical charges on the boundaries of topological insulators favour forward motion over back-scattering at impurities, producing low-dissipation, metallic states that exist up to room temperature in ambient conditions. These states have the promise to impact a broad range of applications from electronics to the production of energy, which is one reason why topological insulators have become the rising star in condensed-matter physics. There are many challenges in the processing of these exotic materials to use the metallic states in functional devices, and they present great opportunities for the chemistry and materials science research communities. © 2011 Macmillan Publishers Limited. All rights reserved.

  10. Topological Aspects of Solitons in Ferromagnets

    International Nuclear Information System (INIS)

    Ren Jirong; Wang Jibiao; Li Ran; Xu Donghui; Duan Yishi

    2008-01-01

    Two kinds of topological soliton (skyrmion and magnetic vortex ring) in ferromagnets are studied. They have the common topological origin, a tensor H αβ = n-vector · (∂ α n-vector x ∂ β n-vector ), which describes the non-trivial distribution of local orientation of magnetization n-vector at large distances in space. The topological stability of skyrmion is protected by the winding number. Knot-like topological defect as magnetic vortex rings is also studied. On the assumption that magnetic vortex rings are geometric lines, we present their δ-function distribution in ferromagnetic materials. Furthermore, it is briefly shown that Hopf invariant is a proper topological invariant to describe the topology of magnetic vortex rings

  11. An Overview of Power Topologies for Micro-hydro Turbines

    DEFF Research Database (Denmark)

    Nababan, Sabar; Muljadi, E.; Blaabjerg, Frede

    2012-01-01

    This paper is an overview of different power topologies of micro-hydro turbines. The size of micro-hydro turbine is typically under 100kW. Conventional topologies of micro-hydro power are stand-alone operation used in rural electrical network in developing countries. Recently, many of micro-hydro...... power generations are connected to the distribution network through power electronics (PE). This turbines are operated in variable frequency operation to improve efficiency of micro-hydro power generation, improve the power quality, and ride through capability of the generation. In this paper our...... discussion is limited to the distributed generation. Like many other renewable energy sources, the objectives of micro-hydro power generation are to reduce the use of fossil fuel, to improve the reliability of the distribution system (grid), and to reduce the transmission losses. The overview described...

  12. Topological Trigger Developments

    CERN Multimedia

    Likhomanenko, Tatiana

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger utilized a custom boosted decision tree algorithm, selected an almost 100% pure sample of b-hadrons with a typical efficiency of 60-70%, and its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and uBoost. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. These inclu...

  13. Impedance-Source Networks for Electric Power Conversion Part II

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede

    2015-01-01

    Impedance-source networks cover the entire spectrum of electric power conversion applications (dc-dc, dc-ac, ac-dc, ac-ac) controlled and modulated by different modulation strategies to generate the desired dc or ac voltage and current at the output. A comprehensive review of various impedance......-source-network-based power converters has been covered in a previous paper and main topologies were discussed from an application point of view. Now Part II provides a comprehensive review of the most popular control and modulation strategies for impedance-source network-based power converters/inverters. These methods...

  14. Impedance-Source Networks for Electric Power Conversion Part I

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede

    2015-01-01

    power chain, which may improve the reliability and performance of the power system. The first part of this paper provides a comprehensive review of the various impedance-source-networks-based power converters and discusses the main topologies from an application point of view. This review paper...... is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers. A comprehensive review of various modeling, control, and modulation techniques for the impedance...

  15. Magnetization of topological line-node semimetals

    Science.gov (United States)

    Mikitik, G. P.; Sharlai, Yu. V.

    2018-02-01

    Using an approximate expression for the Landau levels of the electrons located near a nodal line of a topological line-node semimetal, we obtain formulas for the magnetization of this semimetal at an arbitrary shape of its line. It is also shown that the dependence of the chemical potential on the magnetic field can be strong in these materials, and this dependence can essentially influence the de Haas-van Alphen oscillations. The obtained results are applied to the rhombohedral graphite, which is one of the line-node semimetals. For this material, we find temperature and magnetic field dependencies of its magnetic susceptibility.

  16. The Topological Vertex

    CERN Document Server

    Aganagic, M; Marino, M; Vafa, C; Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun

    2005-01-01

    We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact Calabi-Yau toric threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kahler classes of Calabi-Yau. We interpret this result as an operator computation of the amplitudes in the B-model mirror which is the Kodaira-Spencer quantum theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.

  17. Univocally determining the cosmic topology from the detection of circles in the sky

    International Nuclear Information System (INIS)

    Mota, Bruno; Tavakol, Reza

    2011-01-01

    Full text: While the topology of the spatial sections of the Universe is at present not specified by any known fundamental theory, it may in principle be determined through observations. In particular, a detectable non-trivial topology will generate pairs of matching circles of temperature fluctuations in maps of the cosmic microwave background, the so-called circles-in-the-sky. Each matching circle pair corresponds to an element of the holonomy group that determines the topology. However, generically, a complete set of generators for the holonomy group will not be detected, so it is not clear that the topology can be uniquely determined from such an observation. With that in mind, in the present work we seek to determine I) If, and how, the angular parameters of a correlated circle pair in a CMB map determines univocally the element in the holonomy group generating such correlation, irrespective of the observer's position in the manifold II) If, or to what extent, the detection of one or more elements of the spatial section's holonomy group univocally specifies the topology of the 3-manifold describing spatial sections of the Universe, and determines out position in it. III) If, or to what extent, the detection of one or more elements of the spatial section's holonomy group univocally specifies the geometry (namely, the sign of the curvature) of the 3-manifold describing spatial sections of the Universe IV) How the (possibly partial) determination of the topology of the 3-manifold describing spatial sections of the Universe from the detection of correlated circle pairs, combined with some other measure of its compactification lengths, constrains the cosmological density parameters. We show explicitly that, for many cases of flat manifolds, the full holonomy group, and by extension the full topology, can be completely determined, or severely constrained, by the determination of the geometrical parameters of a single matching circles pair associated with a non

  18. Topology of Document Retrieval Systems.

    Science.gov (United States)

    Everett, Daniel M.; Cater, Steven C.

    1992-01-01

    Explains the use of a topological structure to examine the closeness between documents in retrieval systems and analyzes the topological structure of a vector-space model, a fuzzy-set model, an extended Boolean model, a probabilistic model, and a TIRS (Topological Information Retrieval System) model. Proofs for the results are appended. (17…

  19. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  20. Topology from Neighbourhoods

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-12-01

    If to each element x of a set X there corresponds a set B(x of subsets of X such that the properties VI, VII, VIII and VIV are satisfied, then there is a unique topological structure on X such that, for each x ∈ X, B(x is the set of neighborhoods of x in this topology.

  1. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques

    Science.gov (United States)

    Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2017-01-01

    N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

  2. Topology change and quantum physics

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Marmo, G.; Simoni, A.

    1995-03-01

    The role of topology in elementary quantum physics is discussed in detail. It is argued that attributes of classical spatial topology emerge from properties of state vectors with suitably smooth time evolution. Equivalently, they emerge from considerations on the domain of the quantum Hamiltonian, this domain being often specified by boundary conditions in elementary quantum physics. Several examples are presented where classical topology is changed by smoothly altering the boundary conditions. When the parameters labelling the latter are treated as quantum variables, quantum states need not give a well-defined classical topology, instead they can give a quantum superposition of such topologies. An existing argument of Sorkin based on the spin-statistics connection and indicating the necessity of topology change in quantum gravity is recalled. It is suggested therefrom and our results here that Einstein gravity and its minor variants are effective theories of a deeper description with additional novel degrees of freedom. Other reasons for suspecting such a microstructure are also summarized. (author). 22 refs, 3 figs

  3. Thermodynamics of quasi-topological cosmology

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Sheykhi, A.; Dehghani, R.

    2013-01-01

    In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r + , with the apparent horizon radius, r -tilde A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which shows the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology

  4. Visualizing vector field topology in fluid flows

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  5. Symmetric Topological Phases and Tensor Network States

    Science.gov (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  6. Topological spin transport of photons: the optical Magnus effect and Berry phase

    International Nuclear Information System (INIS)

    Bliokh, K.Yu.; Bliokh, Yu.P.

    2004-01-01

    The Letter develops a modified geometrical optics (GO) of smoothly inhomogeneous isotropic medium, which takes into account two topological phenomena: Berry phase and the optical Magnus effect. Taking into account the correspondence between a quasi-classical motion of a quantum particle with a spin and GO of an electromagnetic wave in smoothly inhomogeneous media, we have introduced the standard gauge potential associated with the degeneracy in the wave momentum space. This potential corresponds to the magnetic-monopole-like field (Berry curvature), which causes the topological spin (polarization) transport of photons. The deviations of waves of right-hand and left-hand polarization occur in the opposite directions and orthogonally to the principal direction of motion. This produces a spin current directed across the principal motion. The situation is similar to the anomalous Hall effect for electrons. In addition, a simple scheme of the experiment allowing one to observe the topological spin splitting of photons has been suggested

  7. Dynamical topological invariant after a quantum quench

    Science.gov (United States)

    Yang, Chao; Li, Linhu; Chen, Shu

    2018-02-01

    We show how to define a dynamical topological invariant for one-dimensional two-band topological systems after a quantum quench. By analyzing general two-band models of topological insulators, we demonstrate that the reduced momentum-time manifold can be viewed as a series of submanifolds S2, and thus we are able to define a dynamical topological invariant on each of the spheres. We also unveil the intrinsic relation between the dynamical topological invariant and the difference in the topological invariant of the initial and final static Hamiltonian. By considering some concrete examples, we illustrate the calculation of the dynamical topological invariant and its geometrical meaning explicitly.

  8. The ATLAS Level-1 Topological Trigger Performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371751; The ATLAS collaboration

    2016-01-01

    The LHC will collide protons in the ATLAS detector with increasing luminosity through 2016, placing stringent operational and physical requirements to the ATLAS trigger system in order to reduce the 40 MHz collision rate to a manageable event storage rate of 1 kHz, while not rejecting interesting physics events. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system with an output rate of 100 kHz and decision latency smaller than 2.5 μs. It consists of a calorimeter trigger, muon trigger and a central trigger processor. During the LHC shutdown after the Run 1 finished in 2013, the Level-1 trigger system was upgraded including hardware, firmware and software updates. In particular, new electronics modules were introduced in the real-time data processing path: the Topological Processor System (L1Topo). It consists of a single AdvancedCTA shelf equipped with two Level-1 topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which...

  9. Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation

    Directory of Open Access Journals (Sweden)

    Daniel Guyomar

    2011-06-01

    Full Text Available This paper aims at providing an up-to-date review of nonlinear electronic interfaces for energy harvesting from mechanical vibrations using piezoelectric coupling. The basic principles and the direct application to energy harvesting of nonlinear treatment of the output voltage of the transducers for conversion enhancement will be recalled, and extensions of this approach presented. Latest advances in this field will be exposed, such as the use of intermediate energy tanks for decoupling or initial energy injection for conversion magnification. A comparative analysis of each of these techniques will be performed, highlighting the advantages and drawbacks of the methods, in terms of efficiency, performance under several excitation conditions, complexity of implementation and so on. Finally, a special focus of their implementation in the case of low voltage output transducers (as in the case of microsystems will be presented.

  10. Obtaining the conversion curve of CT numbers to electron density from the effective energy of the CT using the dummy SEFM

    International Nuclear Information System (INIS)

    Martin-Viera Cueto, J. A.; Garcia Pareja, S.; Benitez Villegas, E. M.; Moreno Saiz, E. M.; Bodineau Gil, C.; Caudepon Moreno, F.

    2011-01-01

    The objective of this work is to obtain the conversion curve of Hounsfield units (A) versus electron densities using a mannequin with different tissue equivalent materials. This provides for the effective energy beam CT and is used to characterize the linear coefficients of absorption of different materials that comprise the dummy.

  11. Study of electron transmission through thin metallic films by the electron moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Babikova, Yu.F.; Vakar, O.M.; Gruzin, O.M.; Petrikin, Yu.V.

    1983-01-01

    Results of the experimental study of the transmission of conversion electrons through aluminium, iron, tin and gold films are presented. Absorption of resonance electrons of the Moessbauer nuclide 57 Fe, formed during target irradiation with γ-quanta of 57 Co source in chromium matrix has been studied. It is asserted that absorption of conversion electrons in films of different elements is similar; at that, like in the case of β-particles, the law of absorption of resonance electrons, emitted from the flat layer, is exponential For conversion electrons of the Moessbauer nuclide 57 Fe the absorption coefficient is (0.025+-0.002) cm 2 /μg, which in the case of iron absorbing film corresponds to (20.0+-1.0)x10 4 cm -1

  12. Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator.

    Science.gov (United States)

    Balcı, Erdem; Akkuş, Ünal Özden; Berber, Savas

    2018-04-18

    The electronic structures of Si and Ge substitutionally doped Sc 2 C(OH) 2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc 2 C(OH) 2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.

  13. Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator

    Science.gov (United States)

    Balcı, Erdem; Özden Akkuş, Ünal; Berber, Savas

    2018-04-01

    The electronic structures of Si and Ge substitutionally doped Sc2C(OH)2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc2C(OH)2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.

  14. Topological phase transitions of (BixSb1-x)2Se3 alloys by density functional theory.

    Science.gov (United States)

    Abdalla, L B; Padilha José, E; Schmidt, T M; Miwa, R H; Fazzio, A

    2015-07-01

    We have performed an ab initio total energy investigation of the topological phase transition, and the electronic properties of topologically protected surface states of (BixSb1-x)2Se3 alloys. In order to provide an accurate alloy concentration for the phase transition, we have considered the special quasirandom structures to describe the alloy system. The trivial → topological transition concentration was obtained by (i) the calculation of the band gap closing as a function of Bi concentration (x), and (ii) the calculation of the Z2 topological invariant number. We show that there is a topological phase transition, for x around 0.4, verified for both procedures (i) and (ii). We also show that in the concentration range 0.4 x < 0.7, the alloy does not present any other band at the Fermi level besides the Dirac cone, where the Dirac point is far from the bulk states. This indicates that a possible suppression of the scattering process due to bulk states will occur.

  15. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  16. Final Technical Report for Photovoltaic Power Electronics Research Initiative (PERI)

    Energy Technology Data Exchange (ETDEWEB)

    Amirahmadi, Ahmadreza [Univ. of Central Florida, Orlando, FL (United States); Jordan, Charlie [Univ. of Central Florida, Orlando, FL (United States); batarseh, Issa [Univ. of Central Florida, Orlando, FL (United States)

    2015-08-31

    The Power Electronics team at the University of Central Florida (UCF) has developed a novel three-phase micro-inverter for photovoltaic (PV) distributed applications. Based on a new advanced topology and control methodology, the developed inverter is small in size, and achieved DoE targeted power density, cost and efficiency specifications. Today’s inverters are widely used in PV based energy harvesting systems, but are based on single-phase design with limited application to large installations. These micro-inverters have been shown to have advantageous over their string inverter counterparts in both grid-tied PV energy harvesting and standalone micro-grid systems with energy storage. Some of these are simplified installation, no high voltage DC wiring, no single point of failure and improved energy harvesting. Several patents have been issued and this new solar conversion technology has been licensed to the private sector.

  17. Generalized Mathai-Quillen Topological Sigma Models

    OpenAIRE

    Llatas, Pablo M.

    1995-01-01

    A simple field theoretical approach to Mathai-Quillen topological field theories of maps $X: M_I \\to M_T$ from an internal space to a target space is presented. As an example of applications of our formalism we compute by applying our formulas the action and Q-variations of the fields of two well known topological systems: Topological Quantum Mechanics and type-A topological Sigma Model.

  18. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  19. Book Review: Computational Topology

    DEFF Research Database (Denmark)

    Raussen, Martin

    2011-01-01

    Computational Topology by Herbert Edelsbrunner and John L. Harer. American Matheamtical Society, 2010 - ISBN 978-0-8218-4925-5......Computational Topology by Herbert Edelsbrunner and John L. Harer. American Matheamtical Society, 2010 - ISBN 978-0-8218-4925-5...

  20. Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    Science.gov (United States)

    Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2016-09-01

    The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.