WorldWideScience

Sample records for electron-ion coincidence spectrometer

  1. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    International Nuclear Information System (INIS)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown

  2. Description and performance of an electron-ion coincidence TOF spectrometer used at the Brazilian synchrotron facility LNLS

    International Nuclear Information System (INIS)

    Burmeister, F.; Coutinho, L.H.; Marinho, R.R.T.; Homem, M.G.P.; Morais, M.A.A. de; Mocellin, A.; Bjoerneholm, O.; Sorensen, S.L.; Fonseca, P.T.; Lindgren, A.; Naves de Brito, A.

    2010-01-01

    This paper reports the characteristics and performance of a Time-of-Flight Mass Spectrometer (TOF-MS) for coincidence measurements between electrons and ions that has been developed jointly in Sweden and Brazil. The spectrometer, used for studies of inner-shell photoexcitation of molecules in the gas-phase, has been optimized by implementing ion and electron lenses to allow the use of relatively small diameter detectors. Simulations were performed to understand the lens performance and they show that ions (electrons) could be collected without angular discrimination with a maximum kinetic energy up to ten (two) times higher than without the lens actions. A rotary vacuum chamber allows the spectrometer axis to be positioned at different angles relative to the polarization vector of the excitation beam. An important characteristic of the apparatus is that the acquisition setup allows a multi-hit capability with 1 ns resolution. Hereby, Photoelectron-Photoion-Photoion Coincidence (PEPIPICO) measurements can be performed on molecules containing two or more atoms of equal mass. A method to obtain experimental detection efficiencies of a single ion and one of one, two or three electrons has been developed. A systematic study of the interaction region has been performed to determine the shape of the photon and gas beams. Measurements on molecular nitrogen demonstrate the spectrometer's ability to resolve fragments with the same charge to mass ratio arriving within only a few ns. Simulations and experimental results of fragmentation of two singly charged cation nitrogen atoms agree, confirming that the spectrometer performance is well understood.

  3. Description and performance of an electron-ion coincidence TOF spectrometer used at the Brazilian synchrotron facility LNLS

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, F. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Coutinho, L.H. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Instituto de Fisica, Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil); Marinho, R.R.T. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Homem, M.G.P. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Morais, M.A.A. de; Mocellin, A. [Instituto de Fisica, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil); Bjoerneholm, O. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Sorensen, S.L. [SLF, Institute of Physics, University of Lund, Box 118, S-221 00 Lund (Sweden); Fonseca, P.T. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Lindgren, A. [SLF, Institute of Physics, University of Lund, Box 118, S-221 00 Lund (Sweden); Naves de Brito, A., E-mail: arnaldo.naves@gmail.co [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Instituto de Fisica, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil)

    2010-06-15

    This paper reports the characteristics and performance of a Time-of-Flight Mass Spectrometer (TOF-MS) for coincidence measurements between electrons and ions that has been developed jointly in Sweden and Brazil. The spectrometer, used for studies of inner-shell photoexcitation of molecules in the gas-phase, has been optimized by implementing ion and electron lenses to allow the use of relatively small diameter detectors. Simulations were performed to understand the lens performance and they show that ions (electrons) could be collected without angular discrimination with a maximum kinetic energy up to ten (two) times higher than without the lens actions. A rotary vacuum chamber allows the spectrometer axis to be positioned at different angles relative to the polarization vector of the excitation beam. An important characteristic of the apparatus is that the acquisition setup allows a multi-hit capability with 1 ns resolution. Hereby, Photoelectron-Photoion-Photoion Coincidence (PEPIPICO) measurements can be performed on molecules containing two or more atoms of equal mass. A method to obtain experimental detection efficiencies of a single ion and one of one, two or three electrons has been developed. A systematic study of the interaction region has been performed to determine the shape of the photon and gas beams. Measurements on molecular nitrogen demonstrate the spectrometer's ability to resolve fragments with the same charge to mass ratio arriving within only a few ns. Simulations and experimental results of fragmentation of two singly charged cation nitrogen atoms agree, confirming that the spectrometer performance is well understood.

  4. A new apparatus for electron-ion multiple coincidence momentum imaging spectroscopy

    International Nuclear Information System (INIS)

    Morishita, Y.; Kato, M.; Pruemper, G.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Oura, M.; Yamaoka, H.; Suzuki, I.H.; Saito, N.

    2006-01-01

    We have developed a new experimental apparatus for the electron-ion multiple coincidence momentum imaging spectroscopy in order to obtain the angular distributions of vibration-resolved photoelectrons from molecules fixed in space. The apparatus consists of a four-stage molecular supersonic jet and a spectrometer analyzing three-dimensional momenta of fragment ions and electrons in coincidence

  5. Electron-ion-x-ray spectrometer system

    International Nuclear Information System (INIS)

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.

    1993-01-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays

  6. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    Science.gov (United States)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  7. A magnetic-lens - mini-orange coincidence spectrometer

    International Nuclear Information System (INIS)

    Bargholtz, C.; Holmberg, L.; Ruus, N.; Tegner, P.E.; Weiss, G.

    1997-04-01

    A coincidence spectrometer consisting of a Gerholm type magnetic lens and a permanent magnet mini-orange spectrometer is described. Electron-electron or electron-positron coincidences may be registered in various angular settings. The spectrometer has been developed mainly to search for anomalous contributions to Bhabha scattering or positrons and is at present used for such studies. 6 refs

  8. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    International Nuclear Information System (INIS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztaray, Balint; Baer, Tomas

    2009-01-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm -1 field, which enables the direct measurement of rate constants in the 10 3 -10 7 s -1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  9. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector

    Science.gov (United States)

    Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-07-01

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  10. Secondary electron/reflected particle coincidence studies during slow highly charged ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, C.T.; Szilagyi, Z.; Shah, M.B.; McCullough, R.W. [Queen' s Univ., Belfast, Northern Ireland (United Kingdom); Woolsey, J.M. [Stirling Univ. (United Kingdom). DBMS; Trassl, R.; Salzborn, E. [Giessen Univ. (Germany). Inst. fuer Kernphysik

    2001-07-01

    We have measured the secondary electron emission statistics (ES) for 5 keV N{sup q+} (q = 1-4) ions incident at 10 on polycrystalline aluminium, in coincidence with specularly reflected N{sup 0}. In this arrangement the kinetic contribution to secondary electron emission is minimised. The experimental data shows that the coincident electron yield, {gamma}, increases linearly with incident ion charge state. The kinetic emission contribution has also been determined from this data. The ES due to 2 and 4 keV He{sup 2+} impact on polycrystalline aluminium in coincidence with specularly reflected He{sup +} and He{sup 0} have also been determined. The process He{sup 2+} {yields} He{sup 0} yields a larger {gamma} value than the process He{sup 2+} {yields} He{sup +}. (orig.)

  11. High-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap

    International Nuclear Information System (INIS)

    Robbins, D.L.; Chen, H.; Beiersdorfer, P.; Faenov, A.Ya.; Pikuz, T.A.; May, M.J.; Dunn, J.; Smith, A.J.

    2004-01-01

    A compact high-resolution (λ/Δλ≅10 000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured

  12. A novel spectrometer for studying exotic nuclei with the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Woertche, H.J.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    A novel concept of an electron spectrometer developed for the ELISe facility is presented. This spectrometer will be constructed as a part of the international Facility for Antiprotons and Ion Research (FAIR) at GSI Helmholtzzentrum fuer Schwerionenforschung. The spectrometer is designed to analyze electron scattering at the ion-electron interaction region of the NESR and EAR colliding storage rings with a high resolution and a large solid angle. A pre-deflector with a zero-field central channel along the path of the intersecting beam allows the measurement of scattered electrons without interfering with the circulating beams. Ion-optical and magnet design calculations are presented to demonstrate the feasibility and achievement of realistic design specifications.

  13. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  14. Mass spectrometer with two ion sources

    International Nuclear Information System (INIS)

    Glickman, L.G.; Mit', A.G.

    2002-01-01

    Static mass spectrometer with mid-plane near which ions are moving is considered in this article. Two ion sources are used, their exit slits are perpendicular to the mid-plane. The simple method of the replacement of source is offered. Two concave two-electrode transaxial mirrors with two-plate electrodes are used for this aim. The mid-plane of these mirrors coincides with the mid-plane of the device. The exit slit of each source is located in the principal plane of the object space. The principal planes of the image space of the both mirrors coincide. The images of the exit slits of the sources are in these planes and coincide too. We used the mirrors making stigmatic images with the magnification one to one, in which the dispersion on energy and spherical aberrations of the second order are equal to zero. These images are the objects on which the ion-optical system of the mass spectrometer is tuned. When you choose one from two ion sources it is enough to switch the corresponding mirror

  15. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  16. Angular correlations of coincident electron-positron pairs in heavy ion collisions

    International Nuclear Information System (INIS)

    Graf, O.

    1988-10-01

    In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de

  17. A coincidence study between photo- and Auger electrons

    International Nuclear Information System (INIS)

    Ricz, S.; Koever, A.; Varga, D.; Molnar, J.; Aksela, S.; Jurvansuu, M.

    2000-01-01

    Complete text of publication follows. The investigation of double differential cross sections of photon induced Auger electrons provides very sensitive method for studying the rearrangement process, especially when the angular correlation between photo- and Auger electrons is also studied. Such type of measurements could reveal a new aspect in studying the electron-electron, hole-electron and photoelectron - Auger electron interactions. It enables one to separate the overlapping Auger lines belonging to different initial holes. The traditional coincidence measurement is very time consuming and causes serious calibration problems. In order to overcome these experimental difficulties a new electron-spectrometer (ESA-22) was developed in ATOMKI, Debrecen in cooperation with the Electron spectroscopy group of University of Oulu, Finland. The analyzer consists of a spherical and a cylindrical part. It is very similar to the ESA-21 analyzer. The main differences is that the focal ring can be set different diameters thus either a series of channel detectors can be used to detect the electrons at different angles or a position sensitive channel plate can be applied for simultaneous angular recording of electrons. Furthermore the outer sphere and cylinder are cut into two parts so the spectrometer is capable to analyze two independent angularly resolved electron spectra (in the 0 deg - 180 deg region) at different energy regions, simultaneously. A special electronic control and data handling electronics and software was worked out to control the analyzer. The first results were presented in. In the last year the ESA-22 electron-spectrometer was transported to the I411 beam line of MAX-II synchrotron in Lund, Sweden. The advanced properties of the spectrometer was investigated by measuring coincidences between the photoelectrons originated from the Ar L 3 subshell and the Ar Auger electrons in the 203-207 eV energy region. Fig. 1 shows the single and the coincidence spectra

  18. A simple photoionization scheme for characterizing electron and ion spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wituschek, A.; Vangerow, J. von; Grzesiak, J.; Stienkemeier, F.; Mudrich, M., E-mail: mudrich@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany)

    2016-08-15

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  19. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  20. Interaction of multicharged ions with molecules (CO2, C60) by coincident electron spectroscopy

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    2001-01-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems 18 O 8+ +Ar, CO 2 and C 60 have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C n + fragments (n=1 to 8) produced in multiple capture processes from C 60 target are given. A detailed investigation of the double capture process with CO 2 molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO 2 2+ molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  1. Evidence of sequential interatomic decay in argon trimers obtained by electron-triple-ion coincidence spectroscopy

    International Nuclear Information System (INIS)

    Liu, X-J; Saito, N; Fukuzawa, H; Morishita, Y; Stoychev, S; Kuleff, A; Suzuki, I H; Tamenori, Y; Richter, R; Pruemper, G; Ueda, K

    2007-01-01

    Sequential interatomic decay, where the first step is an Auger decay with interatomic character and the second step is a pure interatomic Coulombic decay (ICD), is identified in Ar trimers Ar 3 . The 2p hole state in Ar 3 decays via the L 2,3 M 1 M 2,3 Auger to the one-site two-hole states Ar ++ (3s -1 3p -1 )-Ar-Ar that couples to the two-site satellite states Ar + (3p -2 nl)-Ar + (3p -1 )-Ar. These states are subject to ICD to the states Ar + (3p -1 )-Ar + (3p -1 )-Ar + (3p -1 ), in which the nl electron fills the 3p hole in the same Ar site and one of the 3p electrons in the third Ar site is emitted as a slow ICD electron. This ICD process is identified unambiguously by electron-ion-ion-ion coincidence spectroscopy in which the kinetic energy of the slow ICD electron and the kinetic energy release among the three Ar + ions are measured in coincidence. (fast track communication)

  2. Alpha and conversion electron spectroscopy of {sup 238,239}Pu and {sup 241}Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P., E-mail: michael.dion@pnnl.gov; Miller, Brian W.; Warren, Glen A.

    2016-09-11

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of {sup 241}Am, {sup 238}Pu and {sup 239}Pu using a dual-stage peltier-cooled 25 mm{sup 2} silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for {sup 241}Am.

  3. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  4. An energy resolved electron-ion coincidence study near the S 2p thresholds of the SF6 molecule

    International Nuclear Information System (INIS)

    Kivimaeki, A; Ruiz, J Alvarez; Erman, P; Hatherly, P; Garcia, E Melero; Rachlew, E; Rius i Riu, J; Stankiewicz, M

    2003-01-01

    The fragmentation dynamics of the SF 6 molecule following the excitations of S 2p electrons into unoccupied molecular orbitals has been studied using the energy-resolved electron-ion coincidence technique. Fragmentation patterns were found to depend on the particular excitation and on the electronic state of the molecular ion. The spectator resonant Auger decay at the 2p → 6a 1g resonance induces changes in the ion distributions as compared to direct photoionization. Furthermore, coincidence spectra related to the same Auger structure display different ion abundances at the 2t 2g and 4e g shape resonances. Differences were also found in the Auger decay spectra. These findings give further support for the previously suggested many-electron character of the 4e g shape resonance

  5. Mini ion trap mass spectrometer

    Science.gov (United States)

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  6. COINCIDENCES BETWEEN ELECTRONS AND TARGET IONS TO IDENTIFY CAPTURE CHANNELS IN COLLISIONS OF MULTIPLY CHARGED IONS ON GAS TARGETS

    NARCIS (Netherlands)

    POSTHUMUS, JH; MORGENSTERN, R

    1992-01-01

    We have investigated multielectron capture processes in collisions of Ar9+ on Ar by measuring the resulting Auger electrons in coincidence with charge-state-analyzed target ions. In this way it was possible to reconstruct partial electron energy spectra, each corresponding to a particular number of

  7. Electron emission relevant to inner-shell photoionization of condensed water studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hikosaka, Y., E-mail: hikosaka@las.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Mashiko, R.; Konosu, Y.; Soejima, K. [Department of Environmental Science, Niigata University, Niigata 950-2181 (Japan); Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); SOKENDAI, Okazaki 444-8585 (Japan)

    2016-11-15

    Highlights: • Multi-electron coincidence spectroscopy is applied to the study of electron emissions from condensed H2O molecules. • Coincidence Auger spectra are obtained for different photoelectron energies. • The energy distribution of the slow electrons ejected in the Auger decay is deduced from three-fold coincidences. - Abstract: Multi-electron coincidence spectroscopy using a magnetic-bottle electron spectrometer has been applied to the study of the Auger decay following O1s photoionization of condensed H{sub 2}O molecules. Coincidence Auger spectra are obtained for three different photoelectron energy ranges. In addition, the energy distribution of the slow electrons ejected in the Auger decay of the O1s core hole is deduced from three-fold coincidences.

  8. Constant-gap spectrometer design for the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Wörtche, H.J.; Berg, G.P.A.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    For the study of electron-scattering off radioactive nuclei, the ELISe spectrometer will be constructed as a part of the Facility of Antiprotons and Ion Research (FAIR) in Darmstadt. A conceptional design of a spectrometer with a “clam-shell” gap was presented before. Here, we will present an improved design with a pre-deflector with a constant gap. Such a pre-deflector is not only simpler to construct but also provides larger angle acceptances in the forward-angle range compared to those with the “clam-shell” design.

  9. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input

  10. Interaction of multicharged ions with molecules (CO{sub 2}, C{sub 60}) by coincident electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. CAR-IRSAMC

    2001-07-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems {sup 18}O{sup 8+}+Ar, CO{sub 2} and C{sub 60} have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C{sub n}{sup +} fragments (n=1 to 8) produced in multiple capture processes from C{sub 60} target are given. A detailed investigation of the double capture process with CO{sub 2} molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO{sub 2}{sup 2+} molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  11. A superconducting electron spectrometer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.; Grumbkow, A. von

    1983-03-01

    The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)

  12. Double differential distributions of electron emission in ion-atom and electron-atom collisions using an electron spectrometer

    International Nuclear Information System (INIS)

    Misra, Deepankar; Thulasiram, K.V.; Fernandes, W.; Kelkar, Aditya H.; Kadhane, U.; Kumar, Ajay; Singh, Yeshpal; Gulyas, L.; Tribedi, Lokesh C.

    2009-01-01

    We study electron emission from atoms and molecules in collisions with fast electrons and heavy ions (C 6+ ). The soft collision electrons (SE), two center electron emission (TCEE), the binary encounter (BE) events and the KLL Auger lines along with the elastically scattered peaks (in electron collisions) are studied using a hemispherical electrostatic electron analyzer. The details of the measurements along with description of the spectrometer and data acquisition system are given. The angular distributions of the low energy (few eV) electrons in soft collisions and the binary encounter electrons at keV energies are compared with quantum mechanical models based on the first Born (B1) and the continuum distorted wave-Eikonal initial state approximation (CDW-EIS).

  13. A novel electrostatic ion-energy spectrometer by the use of a proposed ``self-collection'' method for secondary-electron emission from a metal collector

    Science.gov (United States)

    Hirata, M.; Nagashima, S.; Cho, T.; Kohagura, J.; Yoshida, M.; Ito, H.; Numakura, T.; Minami, R.; Kondoh, T.; Nakashima, Y.; Yatsu, K.; Miyoshi, S.

    2003-03-01

    For the purpose of end-loss-ion energy analyses in open-field plasmas, a newly developed electrostatic ion-energy spectrometer is proposed on the basis of a "self-collection" principle for secondary-electron emission from a metal collector. The ion-energy spectrometer is designed with multiple grids for analyzing incident ion energies, and a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most important characteristic properties of this spectrometer is the use of our proposed principle of a "self-collection" mechanism due to E×B drifts for secondary electrons emitted from the grounded metal-plate collector by the use of no further additional magnetic systems except the ambient open-ended fields B. The proof-of-principle and characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed ion-energy spectrometer for end-loss-ion diagnostics in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation, since these electrons have contributed to disturb these ion signals from conventional end-loss-ion detectors.

  14. Ion transmission in a linear radiofrequency spectrometer

    International Nuclear Information System (INIS)

    Gomet, J.-C.

    1975-01-01

    A linear radiofrequency spectrometer is used for the purpose of experimental determination of the absolute ionization cross sections of various ions obtained by electron impact on polyatomic molecules. The transmission of the apparatus is studied: it does not only depend on the mass resolution of the spectrometer, but also on the nature of ions. It is affected by charge transfers, especially for the parent ions. An empiric way of correction of the apparatus function is given which allows the use at 10 -6 Torr [fr

  15. Field electron emission spectrometer combined with field ion/electron microscope as a field emission laboratory

    International Nuclear Information System (INIS)

    Shkuratov, S.I.; Ivanov, S.N.; Shilimanov, S.N.

    1996-01-01

    The facility, combining the field ion microscope, field electron emission microscope and field electron emission spectrometer, is described. Combination of three methodologies makes it possible to carry out the complete cycle of emission studies. Atom-plane and clean surface of the studied samples is prepared by means of field evaporation of the material atom layers without any thermal and radiation impact. This enables the study of atom and electron structure of clean surface of the wide range materials, the study whereof through the field emission methods was previously rather difficult. The temperature of the samples under study changes from 75 up to 2500 K. The energy resolution of the electron analyzer equals 30 MeV. 19 refs., 10 figs

  16. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu, Sichuan 610200 (China); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [Department of Nuclear Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-11-15

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  17. A coincidence-type ion-electron converter detector for low-energy protons

    International Nuclear Information System (INIS)

    Benka, O.; Weinzierl, P.; Dobrozemsky, R.; Stratowa, C.

    1981-04-01

    A coincidence type ion-electron converter detector has been developed and used - together with an electrostatic energy-analyser - for precision measurements of the energy distribution of recoil protons from free-neutron decay. The most important aspect of the development was, besides keeping the background below 0,2 counts/sec in the presence of a certain radiation background, to achieve a high and energy-independent counting probability for protons with energies between 100 and 1000 eV. With an acceleration voltage of about 25 kV and Al-foils (20 to 35 ug/cmsup2) as converter, we obtained counting efficiences of 70 to 85 percent. The design and performance of the detector system, employing six foils with different sensitive areas, are described and discussed in detail. (author)

  18. Digital spectrometer for coincidence measurement of Doppler broadening of positron annihilation radiation

    International Nuclear Information System (INIS)

    Cizek, J.; Vlcek, M.; Prochazka, I.

    2010-01-01

    High-resolution digital coincidence Doppler broadening spectrometer equipped with two high-purity Ge detectors and two-channel 12-bit fast digitizer was developed and tested in this work. Two configurations were compared: (i) semi-digital setup which uses active analogue shaping of detector pulses prior to digitization to improve signal-to-noise ratio, and (ii) pure-digital setup which samples detector pulses directly. Software procedure developed for analysis of sampled waveforms, i.e. precise determination of energy of detected photon and rejection of distorted pulses, is described. Performance of digital coincidence spectrometer was compared with traditional analogue setup connected to the same detectors. It was found that digital spectrometer enables to achieve better energy resolution than in traditional analogue setup. Moreover, in digital configuration one has better control over shape of the signal. This allows efficient elimination of undesired distorted or damaged waveforms and to obtain spectrum of better clarity. The superior parameters of new digital coincidence Doppler broadening spectrometer are demonstrated by benchmark measurements of well defined Fe and Al specimens and also by the detection of rare annihilation in flight events.

  19. The MEDUSA electron and ion spectrometer and the PIA ultraviolet photometers on Astrid-2

    Directory of Open Access Journals (Sweden)

    O. Norberg

    2001-06-01

    Full Text Available The miniature electron and ion spectrometer MEDUSA on Astrid-2 consists of two "top-hat"-type spherical electrostatic analyzers, sharing a common top-hat. Fast energy sweeps (16 electron sweeps and 8 ion sweeps per second allow for very high temporal resolution measurements of a two-dimensional slice of the particle distribution function. The energy range covered, is in the case of electrons, 4 eV to 22 keV and, in the case of ions, 2 eV to 12 keV. MEDUSA is mounted with its aperture close to the spin plane of Astrid-2, which allows for good pitch-angle coverage when the local magnetic field is in the satellite spin plane. The PIA-1/2 spin-scanning ultraviolet photometers measure auroral emissions. Using the spacecraft spin and orbital motion, it is possible to create two-dimensional images from the data. Spin-scanning photometers, such as PIA, are low-cost, low mass alternatives to auroral imagers, but place constraints on the satellite attitude. Data from MEDUSA are used to study processes in the auroral region, in particular, electrodynamics of aurora and "black aurora". MEDUSA is also a technological development, paving the way for highly capable, miniaturized particle spectrometers.Key words. Ionosphere (instruments and techniques – Magnetospheric physics (auroral phenomena; instruments and techniques

  20. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches

    Science.gov (United States)

    Lindner, F. H.; Bin, J. H.; Englbrecht, F.; Haffa, D.; Bolton, P. R.; Gao, Y.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Parodi, K.; Thirolf, P. G.; Schreiber, J.

    2018-01-01

    Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

  1. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    Science.gov (United States)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  2. Study and development of a spectrometer with Compton suppression and gamma coincidence counting

    International Nuclear Information System (INIS)

    Masse, D.

    1990-10-01

    This paper presents the characteristics of a spectrometer consisting of a Ge detector surrounded by a NaI(T1) detector that can operate in Compton-suppression and gamma-gamma coincidence modes. The criteria that led to this measurement configuration are discussed and the spectrometer performances are shown for 60 Co and 137 Cs gamma-ray sources. The results for the measurement of 189 Ir (Compton suppression) and for the measurement of 101 Rh (gamma-gamma coincidence) in the presence of other radioisotopes are given. 83 Rb and 105 Ag isotopes are also measured with this spectrometer [fr

  3. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  4. Reflection-time-of-flight spectrometer for two-electron (e,2e) coincidence spectroscopy on surfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Kerherve, G.; Winkler, C.

    2008-01-01

    In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/γ,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E kin ≅25 eV is around 100 ns. The corresponding time- and energy resolution are typically ≅1 ns and ≅0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented

  5. Realisation of a {beta} spectrometer solenoidal and a double {beta} spectrometer at coincidence; Realisation d'un spectrometre {beta} solenoidal et d'un double spectrometre {beta} a coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of {beta} spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports {alpha}{sub K} / {alpha}{sub L} and it is especially efficient for the accurate energy levels of the {gamma} rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the {beta} and {gamma} emission is rather little lower to 4{pi} steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations {beta}{gamma} and e{sup -}{gamma}. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e{sup -}e{sup -}, e{sup -}{beta} of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e{sup -}e{sup -}, e{sup -}{beta}. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: {sup 76}As (26 h), {sup 122}Sb (2,8 j), {sup 124}Sb (60 j), {sup 125}Sb (2,7 years). (M.B.) [French] Les deux spectrometres qui ont ete realises permettent d'aborder un grand nombre de problemes de spectrometrie nucleaire. Ils possedent des champs d'application tres differents qui se completent. Le spectrometre solenoidal permet la determination des energies limites des spectres {beta} et de leur forme; il permet aussi la determination des coefficients de conversion interne et des rapports

  6. A beta ray spectrometer based on a two-, or three-element silicon detector coincidence telescope

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Weizman, Y.; Hirning, C.R.

    1995-01-01

    The operation of a beta ray energy spectrometer based on a two-or three-element silicon detector telescope is described. The front detector (A) is a thin, totally depleted, silicon surface barrier detector either 40 μm, 72 μm or 98 μm thick. The back detector (C) is a Li compensated silicon detector, 5000 μm thick. An additional thin detector can be inserted between these two detectors when additional photon rejection capability is required in intense photon fields. The capability of the spectrometer to reject photons is based on the fact that incident photons will have a small probability of simultaneously losing detectable energy in two detectors and an even smaller probability of losing detectable energy in all three detectors. Electrons, however, above a low energy threshold, will always record simultaneous, events in all three detectors. The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of 70 keV with 60% efficiency increasing to 100% efficiency in the energy region between 150 keV and 2.5 MeV. (Author)

  7. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8–24 eV photon energy range

    International Nuclear Information System (INIS)

    Schwell, Martin; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Es-Sebbar, Et.; Garcia, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney

    2012-01-01

    Highlights: ► We study the VUV photoionization of acetamide in the 8–24 eV photon energy range. ► Electron/ion coincidence measurements are performed using synchrotron radiation. ► The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. ► VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8–24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2 A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2 A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3 , NH 2 , NH 3 , CO, HCCO and NH 2 CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  8. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  9. The XRS microcalorimeter spectrometer at the Livermore Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F S; Beiersdorfer, P; Boyce, K; Brown, G V; Chen, H; Gygax, J; Kahn, S M; Kelley, R; Kilbourne, C A; Magee, E; Thorn, D B

    2007-08-22

    NASA's X-ray Spectrometer (XRS) microcalorimeter instrument has been operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory since July of 2000. The spectrometer is currently undergoing its third major upgrade to become an easy to use, extremely high performance instrument for a broad range of EBIT experiments. The spectrometer itself is broadband, capable of simultaneously operating from 0.1 to 12 keV and has been operated at up to 100 keV by manipulating its operating conditions. The spectral resolution closely follows the spaceflight version of the XRS, beginning at 10 eV FWHM at 6 keV in 2000, upgraded to 5.5 eV in 2003, and will hopefully be {approx}3.8 eV in the Fall of 2007. Here we review the operating principles of this unique instrument, the extraordinary science that has been performed at EBIT over the last 6 years, and prospects for future upgrades. Specifically we discuss upgrades to cover the high-energy band (to at least 100 keV) with a high quantum efficiency detector, and prospects for using a new superconducting detector to reach 0.8 eV resolution at 1 keV, and 2 eV at 6 keV with high counting rates.

  10. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  11. Simulated performance of the in-beam conversion-electron spectrometer, SPICE

    Energy Technology Data Exchange (ETDEWEB)

    Ketelhut, S., E-mail: ketelhut@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Evitts, L.J.; Garnsworthy, A.B.; Bolton, C.; Ball, G.C.; Churchman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Dunlop, R. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Hackman, G.; Henderson, R.; Moukaddam, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Rand, E.T.; Svensson, C.E. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Witmer, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada)

    2014-07-01

    The SPICE spectrometer is a new in-beam electron spectrometer designed to operate in conjunction with the TIGRESS HPGe Clover array at TRIUMF-ISAC. The spectrometer consists of a large area, annular, segmented lithium-drifted silicon electron detector shielded from the target by a photon shield. A permanent magnetic lens directs electrons around the photon shield to the detector. Experiments will be performed utilising Coulomb excitation, inelastic-scattering, transfer and fusion–evaporation reactions using stable and radioactive ion beams with suitable heavy-ion detection. Good detection efficiency can be achieved in a large energy range up to 3500 keV electron energy using several magnetic lens designs which are quickly interchangeable. COMSOL and Geant4 simulations have been used to maximise the detection efficiency. In addition, the simulations have guided the design of components to minimise the contributions from various sources of backgrounds.

  12. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    Science.gov (United States)

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  13. Low power ion spectrometer for high counting rates

    International Nuclear Information System (INIS)

    Klein, J.W.; Dullenkopf, P.; Glasmachers, A.; Melbert, J.; Winkelnkemper, W.

    1980-01-01

    This report describes in detail the electronic concept for a time-of-flight (TOF) ion spectrometer for high counting rates and high dynamic range which can be used as a satellite instrument. The detection principle of the spectrometer is based on a time-of-flight and energy measurement for each incident ion. The ionmass is related to these two quantities by a simple equation. The described approach for the mass identification systems is using an analog fast-slow concept: The fast TOF-signal preselects the gainstep in the much slower energy channel. The conversion time of the mass identifier is approximately 10 -6 s and the dynamic range of the energy channel is better than 10 3 (20 keV to 25 MeV). The purpose of this study was to demonstrate the feasibility of a TOF-spectrometer capable to measure the ion composition in planetary magnetospheres. (orig.) [de

  14. A compact time-of-flight mass spectrometer for ion source characterization

    International Nuclear Information System (INIS)

    Chen, L.; Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-01-01

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters

  15. Ion mobility analyzer - quadrupole mass spectrometer system design

    International Nuclear Information System (INIS)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina; Bocos-Bintintan, V

    2009-01-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  16. Ion mobility analyzer - quadrupole mass spectrometer system design

    Energy Technology Data Exchange (ETDEWEB)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Bocos-Bintintan, V, E-mail: cornel.cuna@itim-cj.r [Babes-Bolyai University, Faculty of Environmental Sciences, 3 Fantanele, 400294 Cluj Napoca (Romania)

    2009-08-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  17. Coincident detection of electrons ejected at large angles and target recoil ions produced in multiply ionizing collisions for the 1-MeV/u Oq++Ar collision system

    International Nuclear Information System (INIS)

    Gaither III, C.C.; Breinig, M.; Berryman, J.W.; Hasson, B.F.; Richards, J.D.; Price, K.

    1993-01-01

    The angular distributions of energetic electrons ejected at angles between 45 degree and 135 degree with respect to the incident-beam direction have been measured in coincidence with the charge states of the target recoil ions produced in multiply ionizing collisions for the 1-MeV/u O q+ (q=4,7)+Ar collision systems. These measurements have been made for ∼179-, ∼345-, and ∼505-eV electrons. Additionally, the energy distributions of electrons ejected into specific angular regions have been measured. Ar LMM satellite Auger electrons appear as a peak in the energy spectrum of electrons ejected at all large angles. The center of this peak is found at an electron energy of ∼179 eV. Electrons with ∼179 eV energy, ejected at large angles, are preferentially produced in coincidence with recoil ions of charge state 4+. Electrons with ∼345 eV energy and ∼505 eV energy ejected at large angles are preferentially produced in coincidence with recoil ions of charge state 3+. The angular distributions for these electrons are strongly peaked in the forward direction; essentially no electrons are observed at angles larger than 90 degree. These results are consistent with the dominant production mechanism for energetic electrons ejected at large angles being a binary-encounter process. Differential cross sections have been calculated from these angular distributions. They are on the order of 10 -21 cm 2 /(eV sr)

  18. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  19. Photoelectron-Auger electron coincidence spectroscopy of free molecules: New experiments

    International Nuclear Information System (INIS)

    Ulrich, Volker; Barth, Silko; Lischke, Toralf; Joshi, Sanjeev; Arion, Tiberiu; Mucke, Melanie; Foerstel, Marko; Bradshaw, Alex M.; Hergenhahn, Uwe

    2011-01-01

    Photoelectron-Auger electron coincidence spectroscopy probes the dicationic states produced by Auger decay following the photoionization of core or inner valence levels in atoms, molecules or clusters. Moreover, the technique provides valuable insight into the dynamics of core hole decay. This paper serves the dual purpose of demonstrating the additional information obtained by this technique compared to Auger spectroscopy alone as well as of describing the new IPP/FHI apparatus at the BESSY II synchrotron radiation source. The distinguishing feature of the latter is the capability to record both the photoelectron and Auger electron with good energy and angle resolution, for which purpose a large hemispherical electrostatic analyser is combined with several linear time-of-flight spectrometers. New results are reported for the K-shell photoionization of oxygen (O 2 ) and the subsequent KVV Auger decay. Calculations in the literature for non-coincident O 2 Auger spectra are found to be in moderately good agreement with the new data.

  20. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  1. Multiple capture investigated by coincident electron spectroscopy in X7++Ar, at 70 keV

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    1999-01-01

    The multiple electron capture in N 7+ + Ar and F 7+ (1s 2 ) + Ar systems is investigated at 70 keV with a new electron-recoil ion charge coincidence experiment. The whole electron energy range has been studied. Up to six electrons are found to be captured into autoionizing states. The recoil ion charge distribution associated with the emission of electrons is similar for both systems and found to be in good agreement with the prediction of Niehaus's model roughly adapted to take into account autoionizing cascades. New findings for the coincident double and triple captures are briefly discussed. A capture of an inner L-shell electron of Ar into the K-shell of the projectile is also observed in N 7+ + Ar collisions. (orig.)

  2. Efficiency-optimized low-cost TDPAC spectrometer using a versatile routing/coincidence unit

    International Nuclear Information System (INIS)

    Renteria, M.; Bibiloni, A. G.; Darriba, G. N.; Errico, L. A.; Munoz, E. L.; Richard, D.; Runco, J.

    2008-01-01

    A highly efficient, reliable, and low-cost γ-γ TDPAC spectrometer, PACAr, optimized for 181 Hf-implanted low-activity samples, is presented. A versatile EPROM-based routing/coincidence unit was developed and implemented to be use with the memory-card-based multichannel analyzer hosted in a personal computer. The excellent energy resolution and very good overall resolution and efficiency of PACAr are analyzed and compare with advanced and already tested fast-fast and slow-fast PAC spectrometers.

  3. Efficiency-optimized low-cost TDPAC spectrometer using a versatile routing/coincidence unit

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, M., E-mail: renteria@fisica.unlp.edu.ar; Bibiloni, A. G.; Darriba, G. N.; Errico, L. A.; Munoz, E. L.; Richard, D.; Runco, J. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)

    2008-01-15

    A highly efficient, reliable, and low-cost {gamma}-{gamma} TDPAC spectrometer, PACAr, optimized for {sup 181}Hf-implanted low-activity samples, is presented. A versatile EPROM-based routing/coincidence unit was developed and implemented to be use with the memory-card-based multichannel analyzer hosted in a personal computer. The excellent energy resolution and very good overall resolution and efficiency of PACAr are analyzed and compare with advanced and already tested fast-fast and slow-fast PAC spectrometers.

  4. A compact CMA spectrometer with axially integrated hybrid electron-ion gun for ISS, AES and sputter depth profile analysis

    International Nuclear Information System (INIS)

    Gisler, E.; Bas, E.B.

    1986-01-01

    Until now, the combined application of electrons and ions in surface analysis required two separate sources for electrons and ions with different incidence angles. The newly developed hybrid electron-ion gun, however, allows bombardment of the same sample area both with noble gas ions and with electrons coming from the same direction. By integrating such a hybrid gun axially in a cylindrical mirror energy analyser (CMA) a sensitive compact single flange spectrometer obtains for ion scattering spectroscopy (ISS), Auger electron spectroscopy (AES), and sputtering all within normal beam incidence. This concept makes accurate beam centering very easy. Additionally, the bombardment from the same direction both for sputtering and for surface analysis brings advantages in depth profiling. The scattering angle for ISS has a constant value of about 138 0 . The hybrid gun delivers typically an electron beam current of -20μA at 3keV for AES, and an ion beam current of +40 nA and +1.2μA at 2 keV for ISS and sputtering respectively. The switching time between ISS, AES, and sputtering mode is about 0.1 s. So this system is best suited for automatically controlled depth profile analysis. The design and operation of this new system will be described and some applications will be discussed. (author)

  5. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  6. High-effective position time spectrometer in actual measurements of low intensity region of electron spectra

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.

    2002-01-01

    Magnetic position-time spectrometer was proposed in previous work, where not only electron coordinates in focal plane are measured by position sensitive detector (PSD) but places of their birth in beta source plane of a large area are fixed using another PSD, situated behind it, by quick effects, accompanying radioactive decay. PSD on the basis of macro-channel plates are used. It is succeeded in position-time spectrometer to combine beta sources of a large area with multichannel registration for a wide energy interval, that efficiency of measurements was two orders of magnitude increase d in comparison magnetic apparatus having PSD only in focal plane. Owing to two detectors' switching on coincidence the relation effect/background in increased minimum on two orders of magnitude in comparison with the same apparatus. At some complication of mathematical analysis it was obtained, that high characteristics of position-time spectrometer are kept during the use the magnetic field, providing double focusing. Owning to this focusing the gain the efficiency of measurements will make one more order of magnitude. Presented high-effective position-time spectrometer is supposed to use in the measurements of low-intensity region of electron spectra, which are important for development of fundamental physics. This is the first of all estimation of electron anti-neutrino mass by the form of beta spectrum of tritium in the region of boundary energy. Recently here there was problem of non physical negative values. This problem can be solved by using in measurement of different in principle high-effective spectrometers, which possess improved background properties. A position-time spectrometers belongs to these apparatus, which provides the best background conditions at very large effectiveness of the measurements of tritium beta spectrum in the region of boundary energy with acceptable high resolution. An important advantage of position-time spectrometer is the possibility of

  7. Optical simulations for the S3 project - Super separator spectrometer - gamma-electron coincidence spectroscopy of a transfermium nucleus: the 251Md101

    International Nuclear Information System (INIS)

    Dechery, Fabien

    2012-01-01

    In analogy with the atomic closed shells giving rise to the stability and high ionisation energies of noble gases, nuclear physics also has its magic numbers of protons and neutrons which enhance nuclear structure stability. Knowledge of the structure of doubly-magic nuclei, both proton and neutron numbers, is crucial to parameterize theoretical models. The discovery of the next and ultimate magic numbers will provide a strong constraint on the many predictions. These two numbers are like the centre coordinates of an area of enhanced stability of the nuclear chart, well known as 'island of stability'. These superheavy nuclei only exist due to pure quantum shell effects. My thesis work deals with two distinct, but complementary, aspects of fundamental physics with the common goal of studying these extreme mass nuclei structure. The first part corresponds to the development of a next generation instrument for nuclear physics to allow synthesis and spectroscopy studies of superheavy nuclei: the Super Separator Spectrometer S 3 . This project will be installed at SPIRAL2 (GANIL) and has been approved by the French Research National Agency (ANR) within the EQUIPEX framework. It has been designed to take advantage of the high intensity heavy ion beam from the LINAC, giving access to a wide range of physical programs. The second part corresponds to the preparation, realisation and analysis of an experiment on 251-Mendelevium in which the very first prompt gamma-electron coincidence spectroscopy was performed for a transfermium nuclei. (author) [fr

  8. TARGET EXCITATION IN BARE ION XE/AR COLLISIONS STUDIED BY ELECTRON TARGET ION COINCIDENCES

    NARCIS (Netherlands)

    DENIJS, G; HOEKSTRA, R; MORGENSTERN, R

    We present electron spectra resulting from collisions of bare ions N-15(7+) and C-13(6+) on Ar and the charge state distribution of target ions resulting from C-13(6+)-Xe collisions. From both type of experiments we find evidence that electron capture accompanied by target excitation is an important

  9. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  10. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    International Nuclear Information System (INIS)

    Thorn, D. B.

    2008-01-01

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  11. Multiple capture investigated by coincident electron spectroscopy in X{sup 7+}+Ar, at 70 keV

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. Collisions-Agregats-Reactivite

    1999-11-01

    The multiple electron capture in N{sup 7+} + Ar and F{sup 7+}(1s{sup 2}) + Ar systems is investigated at 70 keV with a new electron-recoil ion charge coincidence experiment. The whole electron energy range has been studied. Up to six electrons are found to be captured into autoionizing states. The recoil ion charge distribution associated with the emission of electrons is similar for both systems and found to be in good agreement with the prediction of Niehaus`s model roughly adapted to take into account autoionizing cascades. New findings for the coincident double and triple captures are briefly discussed. A capture of an inner L-shell electron of Ar into the K-shell of the projectile is also observed in N{sup 7+} + Ar collisions. (orig.) 10 refs.

  12. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    Science.gov (United States)

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Application Of Electronic Nose And Ion Mobility Spectrometer To Quality Control Of Spice Mixtures

    International Nuclear Information System (INIS)

    Banach, U.; Tiebe, C.; Huebert, Th.

    2009-01-01

    The aim of the paper is to demonstrate the application of electronic nose (e-nose) and ion mobility spectrometry (IMS) to quality control and to find out product adulteration of spice mixtures. Therefore the gaseous head space phase of four different spice mixtures (spices for sausages and saveloy) was differed from original composition and product adulteration. In this set of experiments metal-oxide type e-nose (KAMINA-type) has been used, and characteristic patterns of data corresponding to various complex odors of the four different spice mixtures were generated. Simultaneously an ion mobility spectrometer was coupled also to an emission chamber for the detection of gaseous components of spice mixtures. The two main methods that have been used show a clear discrimination between the original spice mixtures and product adulteration could be distinguished from original spice mixtures.

  14. Comparison of the target-thickness dependence of the convoy electron yield and the Rydberg electron yield measured in coincidence with exit charge states in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Gaither, C.C. III; Breinig, M.; Freyou, J.; Underwood, T.A.

    1988-01-01

    We have simultaneously measured the yield of convoy electrons and the yield of electrons in high Rydberg states of the projectile (n /approx gt/ 70), produced by 2MeV/u C projectiles passing through C foils, whose thicknesses range from 4--10 ug/cm 2 , for incident charge states q/sub i/ = 4--6 and exit charge states q/sub e/ = 4--6. We have found that these yields exhibit similar trends as a function of foil thickness, but that, nevertheless, the ratio of the number of convoy electrons detected in coincidence with ions of exit charge state q/sub e/ to the number of electrons detected in high Rydberg states of ions with the same exit charge state is a function of foil thickness. This may be due to a broadening of the convoy electron energy spectrum with increasing foil thickness. 6 refs., 3 figs

  15. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  16. Study of the processes of ion pairs formation by the method of ion-ion coincidence: I2 and chlorine-containing hydrocarbons

    International Nuclear Information System (INIS)

    Golovin, A.V.

    1991-01-01

    A method of ion-ion coincidences was suggested to study the process of ion pairs formation during molecule photoionization. The principle of action of ion-ion coincidence method is based on recording of only the negative and positive ions that formed as a result of a molecule decomposition. The flowsheet of the facility of ion-ion coincidences was presented. The processes of ion pairs formation in iodine, chloroform, propyl-, n-propenyl-, tert.butyl- and benzyl-chlorides were studied. A simple model permitting to evaluate the dependence of quantum yield of ion pair formation on excitation energy was suggested

  17. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  18. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Torrisi Lorenzo

    2018-01-01

    Full Text Available The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  19. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    Science.gov (United States)

    Torrisi, Lorenzo; Costa, Giuseppe; Ceccio, Giovanni; Cannavò, Antonino; Restuccia, Nancy; Cutroneo, Mariapompea

    2018-01-01

    The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF) measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA) acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC) at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  20. Energy and angle resolved studies of double photo-ionisation of helium by electron time-of-flight coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Viefhaus, J.; Avaldi, L.; Heiser, F.; Hentges, R.; Gessner, O.; Ruedel, A.; Wiedenhoeft, M.; Wieliczek, K.; Becker, U. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany)

    1996-10-28

    Helium double photo-ionization is studied by a novel coincidence technique which employs time-of-flight spectrometers. Using this technique it is possible to collect simultaneously all the electron pairs, with different energy sharing, emitted by the absorption of a single energetic incident photon. The measurements, in a configuration where the two electrons emerge at 180{sup o} relative angle, provide the more complete information on the contribution of the ungerade amplitude to the triple differential cross section and allow the establishment of a relative scale for the full coincidence angular distribution measured by other experiments at the same photon energies, but only for a few selected energy-sharing conditions. (author).

  1. Programmable ion mobility spectrometer: Time resolution improvement and ion counter comparison

    International Nuclear Information System (INIS)

    Harrison, R.G.; Wilding, R.J.

    2005-01-01

    Atmospheric ion mobility spectrometers operating on the aspirated electrode principle require switching of a bias voltage to select ions of different mobility. The ion spectrum can be obtained by sweeping across a set of bias voltages. If rapid temporal changes in atmospheric ion spectra are to be measured, however, such as for a balloon-carried instrument, the sweep time across the ion spectrum must be kept short. As bias voltage steps can generate saturation in the mobility spectrometer's electrometer amplifier, the electrometer recovery time limits the ion mobility spectrum sweep rate. Here, active compensation of the charge injected at a bias voltage step is used to reduce the saturation time. Further, the optimal setting of the charge compensation circuitry provides a determination of the system capacitance, a necessary calibration parameter for absolute measurements. Using laboratory air, hourly variations in ion concentrations and air conductivity found using the voltage switching system were similar to those obtained with a traditional ion counter operating at a single mobility: ion growth, however, could only be detected using the ion spectrometer

  2. The Dubna double-arm time-of-flight spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Schilling, K.D.; Gippner, P.; Seidel, W.; Stary, F.; Will, E.; Heidel, K.; Lukyanov, S.M.; Penionzhkevich, Yu.E.; Salamatin, V.S.; Sodan, H.; Chubarian, G.G.

    1986-05-01

    The double-arm time-of-flight spectrometer DEMAS designed for the detection and identification of heavy-ion reaction products at incident energies below 10 MeV/amu is presented. Based on the kinematic coincidence method, the relevant physical information is obtained from the measurement of the two correlated velocity vectors of the binary fragments. Construction and performance of the different detector systems applied to measure the time-of-flight values, the position coordinates and the kinetic energies of both fragments are presented in detail. The description of the data acquisition and analysing procedures is followed by the discussion of some experimental examples to demonstrate the spectrometer performance. A mass resolution of typically 4 - 5 amu (fwhm) is routinely achieved. (author)

  3. Wide angle spectrometers for intermadiate energy electron accelerators

    International Nuclear Information System (INIS)

    Leconte, P.

    1982-10-01

    It is shown that improvements of the detector acceptances (in solid angle and momentum bite) is as important as increased duty cycle for coincidence experiments. To have a maximum efficiency and thus to reduce the cost of experiments, it is imperative to develop maximum solid angle systems. This implies an axial symmetry with respect to the incoming beam. At Saclay, we have investigated some of the properties of specific detectors covering up to 90% of 4π steradians for a high energy, 100% duty cycle electron accelerator. The techniques of wide angle spectrometers have already been explored on a large scale in high energy physics. However, in the case of charged particles, such detectors, compared to classical iron dipole spectrometers, present a smaller resolving power and a rather low background rejection. The choice of which of these two solutions is to be used depends on the conditions of the specific experiment

  4. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  5. Electron-electron coincidence spectroscopies at surfaces

    International Nuclear Information System (INIS)

    Stefani, G.; Iacobucci, S.; Ruocco, A.; Gotter, R.

    2002-01-01

    In the past 20 years, a steadily increasing number of electron-electron coincidence experiments on atoms and molecules have contributed to a deeper understanding of electron-electron correlation effects. In more recent years this technique has been extended to the study of solid surfaces. This class of one photon IN two electrons OUT experiments will be discussed with an emphasis on grazing incidence geometry, that is expected to be particularly suited for studying surfaces. The crucial question of which is the dominant mechanism that leads to ejection of pairs of electron from the surface will be addressed. It will be shown that, depending on the kinematics chosen, the correlated behaviour of the pairs of electrons detected might be singled out from independent particle one

  6. The SPEDE spectrometer

    Science.gov (United States)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  7. Photoion Auger-electron coincidence measurements near threshold

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Keller, N.; Liljeby, L.; Short, R.T.; Sellin, I.A.; Lindle, D.W.

    1990-01-01

    The vacancy cascade which fills an atomic inner-shell hole is a complex process which can proceed by a variety of paths, often resulting in a broad distribution of photoion charge states. We have measured simplified argon photoion charge distributions by requiring a coincidence with a K-LL or K-LM Auger electron, following K excitation with synchrotron radiation, as a function of photon energy, and report here in detail the argon charge distributions coincident with K-L 1 L 23 Auger electrons. The distributions exhibit a much more pronounced photon-energy dependence than do the more complicated non-coincident spectra. Resonant excitation of the K electron to np levels, shakeoff of these np electrons by subsequent decay processes, double-Auger decay, and recapture of the K photoelectron through postcollision interaction occur with significant probability. 17 refs

  8. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  9. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  10. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    Science.gov (United States)

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    Energy Technology Data Exchange (ETDEWEB)

    Storer, P; Caprari, R S; Clark, S A.C.; Vos, M; Weigold, E

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a{sub 0}{sup -1}. The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs.

  12. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    International Nuclear Information System (INIS)

    Storer, P.; Caprari, R.S.; Clark, S.A.C.; Vos, M.; Weigold, E.

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a 0 -1 . The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs

  13. Fragment ion and electron emission from C sub 6 sub 0 by fast heavy ion impact

    CERN Document Server

    Mizuno, T; Itoh, A; Tsuchida, H; Nakai, Y

    2003-01-01

    Correlation between electron emission and fragmentation of C sub 6 sub 0 was studied using 847keV Si sup + ions. Mass distribution of fragment ions, number distribution of secondary electrons, and final charge distribution of outgoing projectiles were successfully measured by means of a triple coincidence time-of-flight method. Strong correlation was observed for electron emission and fragmentation.

  14. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    KAUST Repository

    Schwell, Martin; Bé nilan, Yves; Fray, Nicolas; Gazeau, Marie Claire; Es-sebbar, Et-touhami; Garcí a, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney Sydney

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  15. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  16. Recent ion optics and mass spectrometers

    International Nuclear Information System (INIS)

    Matsuda, Hisashi

    1976-01-01

    The establishment of the third order approximation method for computing the orbit of the ion optical system for mass spectrometers and the completion of its computer program are reported. A feature of this orbit computation is in that the effect of the fringing field can be considered with the accuracy of third order approximation. Several new ion optical systems for mass spectrometers have been proposed by using such orbit computing programs. Brief explanation and the description on the future prospect and problems are made on the following items: the vertual image double focusing mass spectrometer, the second order double focusing mass spectrometer, the E x B superposed field mass spectrometer, and the apparatus with a cylindrical electric field and Q-lens. In the E x B superposed field with Matsuda plates, if the magnetic field is generated by an electromagnet instead of a permanent magnet, the dispersion of mass and energy can be changed at will. The Matsuda plates are known as the auxiliary electrodes positioned at the top and bottom of a cylindrical capacitor. Utilizing those characteristics, a zoom spectrometer can be made, with which only a necessary part of mass spectra can be investigated in detail, but the whole spectra are investigated roughly. In addition, the distribution of energy can be investigated simultaneously after the separation of ionic mass similarly to the parabola apparatus. (Iwakiri, K.)

  17. Newly appreciated roles for electrons in ion-atom collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies

  18. Determination of low-energy ion-induced electron yields from thin carbon foils

    International Nuclear Information System (INIS)

    Allegrini, Frederic; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter

    2003-01-01

    Ion beams crossing thin carbon foils can cause electron emission from the entrance and exit surface. Thin carbon foils are used in various types of time-of-flight (TOF) mass spectrometers to produce start pulses for TOF measurements. The yield of emitted electrons depends, among other parameters, on the energy of the incoming ion and its mass, and it has been experimentally determined for a few projectile elements. The electron emission yield is of great importance for deriving abundance ratios of elements and isotopes in space plasmas using TOF mass spectrometers. We have developed a detector for measuring ion-induced electron yields, and we have extended the electron yield measurements for oxygen to energies relevant for solar wind research. We also present first measurements of the carbon foil electron emission yield for argon and iron in the solar wind energy range

  19. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  20. VUV state-selected photoionization of thermally-desorbed biomolecules by coupling an aerosol source to an imaging photoelectron/photoion coincidence spectrometer: case of the amino acids tryptophan and phenylalanine.

    Science.gov (United States)

    Gaie-Levrel, François; Garcia, Gustavo A; Schwell, Martin; Nahon, Laurent

    2011-04-21

    Gas phase studies of biological molecules provide structural and dynamical information on isolated systems. The lack of inter- or intra-molecular interactions facilitates the interpretation of the experimental results through theoretical calculations, and constitutes an informative complement to the condensed phase. However advances in the field are partially hindered by the difficulty of vaporising these systems, most of which are thermally unstable. In this work we present a newly developed aerosol mass thermodesorption setup, which has been coupled to a Velocity Map Imaging (VMI) analyzer operated in coincidence with a Wiley-McLaren Time of Flight spectrometer, using synchrotron radiation as a single photon ionization source. Although it has been previously demonstrated that thermolabile molecules such as amino acids can be produced intact by the aerosol vaporisation technique, we show how its non-trivial coupling to a VMI analyzer plus the use of electron/ion coincidences greatly improves the concept in terms of the amount of spectroscopic and dynamic information that can be extracted. In this manner, we report on the valence shell ionization of two amino acids, tryptophan and phenylalanine, for which threshold photoelectron spectra have been recorded within the first 3 eV above the first ionization energy using synchrotron radiation emitted from the DESIRS beamline located at SOLEIL in France. Their adiabatic ionization energies (IEs) have been measured at 7.40 ± 0.05 and 8.65 ± 0.02 eV, respectively, and their spectra analyzed using existing theoretical data from the literature. The IE values agree well with previously published ones, but are given here with a considerably reduced uncertainty by up to a factor of 5. The photostability of both amino acids is also described in detail, through the measurement of the state-selected fragmentation pathways via the use of threshold electron/ion coincidences (TPEPICO), with appearance energies for the different

  1. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1987-10-01

    Multiple electron capture is reported for Ca 17+ in Ar. Close collisions are defined by the observation of a coincident Ca K or Ar K x-ray. A large number of electrons is transferred to the projectile in a single close collision when the Ca ion projectile is of the order of the Ar L-shell electron velocity. The cross section for electron capture is reported

  2. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Hunka, Deborah E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Austin, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).

  3. Gas-phase ion-molecule reactions and high-pressure mass spectrometer, 1

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo

    1977-01-01

    The reasons for the fact that the research in gas-phase ion-molecule reactions, to which wide interest is shown, have greatly contributed to the physical and chemical fields are that, first it is essential in understanding general phenomena concerning ions, second, it can furnish many unique informations in the dynamics of chemical reactions, and third, usefulness of '' chemical ionization'' methods has been established as its application to chemical analysis. In this review, the history and trend of studies and equipments in gas-phase ion-molecule reactions are surveyed. The survey includes the chemical ionization mass spectrometer for simultaneously measuring the positive and negative ions utilizing a quadrupole mass spectrometer presented by Hunt and others, flowing afterglow method derived from the flowing method which traces neutral chemical species mainly optically, ion cyclotron resonance mass spectrometer, trapped ion mass spectrometer and others. Number of reports referred to ion-molecule reactions issued during the last one year well exceeds the total number of reports concerning mass spectrometers presented before 1955. This truly shows how active the research and development are in this field. (Wakatsuki, Y.)

  4. LETTER TO THE EDITOR: Observation of photo-double ionization of carbon monoxide below the adiabatic double-ionization potential by threshold-photoelectron - photoelectron coincidence spectroscopy

    Science.gov (United States)

    Thompson, David B.; Dawber, Grant; Gulley, Nicola; MacDonald, Michael A.; King, George C.

    1997-03-01

    The production of 0953-4075/30/5/004/img8 and 0953-4075/30/5/004/img9 ion pairs in carbon monoxide at photon energies below the adiabatic double-ionization threshold of 41.25 eV has been probed in a threshold-photoelectron - photoelectron coincidence (TPEPECO) experiment using tunable VUV radiation and a sensitive electron spectrometer. The TPEPECO spectra provide evidence of 0953-4075/30/5/004/img10 production that does not involve creation and dissociation of a molecular dication, but instead results from complete dissociation of a molecular cation followed by autoionization of the atomic oxygen fragment. Furthermore, an electron - electron coincidence signal has been detected at photon energies as low as 36.5 eV, well below the previously measured onset for 0953-4075/30/5/004/img10 production.

  5. Spin spectrometer at the holified heavy-ion research facility and some planned experiments

    International Nuclear Information System (INIS)

    Sarantites, D.G.; Jaaskelainen, M.; Hood, J.T.; Woodward, R.; Barker, J.H.; Hensley, D.C.; Halbert, M.L.; Chan, Y.D.

    1980-01-01

    The 4π multidetector γ-ray spectrometer at the Holified Heavy-ion Research Facility (HHIRF) is described in some detail. The following important features of this spectrometer are discussed: (a) the geometric arrangement, (b) the actual performance of the individual detector elements, (c) the associated electronics and data acquisition system, and (d) the response of the system to input γ-cascades including the effect of crystal-to-crystal scattering and the response to neutrons. The first few experiments to be performed are briefly described

  6. Investigation of impact-parameter dependent double differential electron emission probabilities in proton-helium collisions

    International Nuclear Information System (INIS)

    Schiwietz, G.

    1986-07-01

    The process of ionization in ion-atom collisions was investigated. Thus absolute double differential electron emission yields were measured for the collision system H + +He. The experimental results are compared with theoretical results partially calculated in this work. For the coincidence measurements an electron time-of-flight spectrometer with a large solid angle was constructed. For the measurement of the scattered projectiles a fast position sensitive ion detector and a data preprocessing unit were developed. (orig.)

  7. Electron multiplier for the measurement of an ion current on a mass spectrometer; Multiplicateur d'electrons pour la mesure de courant d'ions sur un spectrometre de masse

    Energy Technology Data Exchange (ETDEWEB)

    Lohez, P; Nief, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The apparatus described is designed to measure weak ion currents received at the collector of a mass spectrometer. The report describes successively the study of electron paths in the multiplier by the method of analogy, using rubber membranes, and the practical details of construction of the apparatus. The variation with surface treatment of the secondary emission coefficient of the alloy CuBe containing 2 per cent Be, which makes up the dynodes, and the influence of the voltage on the gain per stage, are discussed. Results of tests regarding: the influence of the ion mass on the gain, the background of the instrument and the energy distribution of the impulses coming out on a high gain multiplier (q.q. 10{sup 7}) are given. Finally the performances of the multiplier are reported. 1- For a low gain (10{sup 4}), precision and reproducibility comparable to the electrometer valve, sensitivity 100 times greater, currents capable of detection 10{sup -17} Ampere. 2- For a high gain (10{sup 7}) and measurement by impulse counting, currents capable of detection 10{sup -19} Ampere. Mounting difficult to use on a mass spectrometer. (author) [French] L'appareil decrit est destine a la mesure des faibles courants d'ions re s au collecteur d'un spectrometre de masse. Le rapport decrit successivement l'etude des trajectoires des electrons dans le multiplicateur, par la methode analogique de la menbrane en caoutchouc, et la realisation pratique de l'appareil. La variation du coefficient d'emission secondaire de l'alliage CuBe a 2 pour cent de Be, constituant les dynodes suivant le traitement des surfaces, et l'influence de la tension sur le gain par etage sont discutees. Des resultats d'essais concernant: l'influence de la masse des ions sur le gain, le bruit de fond de l'appareil et la repartition en energie des impulsions de sortie sur un multiplicateur a gain eleve (q.q. 10{sup 7}) sont donnes. Enfin, sont rapportees les performances du multiplicateur. 1- pour un gain faible

  8. Coincidence corrections for a multi-detector gamma spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Britton, R., E-mail: r.britton@surrey.ac.uk [University of Surrey, Guildford GU2 7XH (United Kingdom); AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Burnett, J.L.; Davies, A.V. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Regan, P.H. [University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-01-01

    List-mode data acquisition has been utilised in conjunction with a high-efficiency γ–γ coincidence system, allowing both the energetic and temporal information to be retained for each recorded event. Collected data is re-processed multiple times to extract any coincidence information from the γ-spectroscopy system, correct for the time-walk of low-energy events, and remove accidental coincidences from the projected coincidence spectra. The time-walk correction has resulted in a reduction in the width of the coincidence delay gate of 18.4±0.4%, and thus an equivalent removal of ‘background’ coincidences. The correction factors applied to ∼5.6% of events up to ∼500 keV for a combined {sup 137}Cs and {sup 60}Co source, and are crucial for accurate coincidence measurements of low-energy events that may otherwise be missed by a standard delay gate. By extracting both the delay gate and a representative ‘background’ region for the coincidences, a coincidence background subtracted spectrum is projected from the coincidence matrix, which effectively removes ∼100% of the accidental coincidences (up to 16.6±0.7% of the total coincidence events seen during this work). This accidental-coincidence removal is crucial for accurate characterisation of the events seen in coincidence systems, as without this correction false coincidence signatures may be incorrectly interpreted.

  9. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  10. Micro Plasma Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this IRAD project is to develop a preliminary design elements of miniature electron and ion plasma spectrometers and supporting electronics, focusing...

  11. A new time of flight mass spectrometer for absolute dissociative electron attachment cross-section measurements in gas phase

    Science.gov (United States)

    Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay

    2018-02-01

    A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.

  12. Electron volt neutron spectrometers

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.

    2011-01-01

    The advent of pulsed neutron sources has made available intense fluxes of epithermal neutrons (500 meV ≤E≤100 eV ). The possibility to open new investigations on condensed matter with eV neutron scattering techniques, is related to the development of methods, concepts and devices that drive, or are inspired by, emerging studies at this energy scale. Electron volt spectrometers have undergone continuous improvements since the construction of the first prototype instruments, but in the last decade major breakthroughs have been accomplished in terms of resolution and counting statistics, leading, for example, to the direct measurement of the proton 3-D Born–Oppenheimer potential in any material, or to quantitatively probe nuclear quantum effects in hydrogen bonded systems. This paper reports on the most effective methods and concepts for energy analysis and detection, as well as devices for the optimization of electron volt spectrometers for different applications. This is set in the context of the progress made up to date in instrument development. Starting from early stages of development of the technique, particular emphasis will be given to the Vesuvio eV spectrometer at the ISIS neutron source, the first spectrometer where extensive scientific, as well as research and development programmes have been carried out. The potential offered by this type of instrumentation, from single particle excitations to momentum distribution studies, is then put in perspective into the emerging fields of eV spectroscopy applied to cultural heritages and neutron irradiation effects in electronics. - Highlights: ► Neutron spectrometers at eV energies. ► Methods and techniques for eV neutrons counting at spallation sources. ► Scattering, imaging and radiation hardness tests with multi-eV neutrons.

  13. Sensitivity of Electron Transfer Mediated Decay to Ion Pairing.

    Science.gov (United States)

    Pohl, Marvin N; Richter, Clemens; Lugovoy, Evgeny; Seidel, Robert; Slavíček, Petr; Aziz, Emad F; Abel, Bernd; Winter, Bernd; Hergenhahn, Uwe

    2017-08-17

    Ion pairing in electrolyte solutions remains a topic of discussion despite a long history of research. Very recently, nearest-neighbor mediated electronic de-excitation processes of core hole vacancies (electron transfer mediated decay, ETMD) were proposed to carry a spectral fingerprint of local solvation structure and in particular of contact ion pairs. Here, for the first time, we apply electron-electron coincidence detection to a liquid microjet, and record ETMD spectra of Li 1s vacancies in aqueous solutions of lithium chloride (LiCl) in direct comparison to lithium acetate (LiOAc). A change in the ETMD spectrum dependent on the electrolyte anion identity is observed for 4.5 M salt concentration. We discuss these findings within the framework of the formation and presence of contact ion pairs and the unique sensitivity of ETMD spectroscopy to ion pairing.

  14. Ion optics of a high resolution multipassage mass spectrometer with electrostatic ion mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T [Osaka Univ. (Japan). Dept. of Physics; Baril, M [Departement de Physique, Faculte des Sciences et de Genie, Universite Laval, Ste-Foy, Quebec G1K 7P4 (Canada)

    1995-09-01

    Ion trajectories in an electrostatic ion mirror are calculated. The interferences of the extended fringing fields of the mirror with finite aperture are studied. The results of the calculations are represented by three transfer matrices, which describe ion trajectories under the effects of a fringing field at the entrances, of an idealized mirror region, and of a fringing field at the exit. The focusing effects and ion-optical properties of mass spectrometers with electrostatic ion mirrors can be evaluated by using these transfer matrices. A high performance multipassage mass spectrometer is designed. The system has one magnet and four electrostatic sector analyzers and two ion mirrors. The double focusing condition and stigmatic focusing condition are achieved in any passage of the system. The mass resolution increases linearly with the number of passages in a magnet. (orig.).

  15. Invited Article: Characterization of background sources in space-based time-of-flight mass spectrometers

    International Nuclear Information System (INIS)

    Gilbert, J. A.; Gershman, D. J.; Gloeckler, G.; Lundgren, R. A.; Zurbuchen, T. H.; Orlando, T. M.; McLain, J.; Steiger, R. von

    2014-01-01

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments

  16. Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development

    Science.gov (United States)

    Hamilton, Hannah; Phenix Collaboration

    2015-10-01

    Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.

  17. How to measure energy of LEReC electron beam with magnetic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-04-11

    For successful cooling the energies of RHIC ion beam and LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with required accuracy, e-beam energy can have as large initial offset as 5%. The final setting of e-beam energy will be performed by observing either Schottky spectrum or recombination signal from debunched ions co-traveling with the e-beam. Yet, to start observing such signals one has to set absolute energy of electron beam with accuracy better than 10-2, preferably better than 5∙10-3. The aim of this exercise is to determine whether and how such accuracy can be reached by utilizing LEReC 180° bend as a spectrometer.

  18. Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Matteson, S.; Nicolet, M.A.

    1979-01-01

    The magnitude and characteristics of the currents which flow in the target and the chamber of an MeV ion backscattering spectrometer are examined. Measured energy distributions and the magnitude of high-energy secondary electron currents are reported. An empirical universal curve is shown to fit the energy distribution of secondary electrons for several combinations of ion energy, targets and ion species. The magnitude of tertiary electron currents which arise at the vacuum vessel walls is determined for various experimental situations and is shown to be non-negligible in many cases. An experimental arrangement is described which permits charge integrations to 1% arruracy without restricting access to the target as a Faraday cage does. (Auth.)

  19. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl [LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Powis, Ivan [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  20. Electron and ion Bernstein waves in Saturnian Magnetosphere

    Science.gov (United States)

    Bashir, M. F.; Waheed, A.; Ilie, R.; Naeem, I.; Maqsood, U.; Yoon, P. H.

    2017-12-01

    The study of Bernstein mode is presented in order to interpret the observed micro-structures (MIS) and banded emission (BEM) in the Saturnian magnetosphere. The general dispersion relation of Bernstein wave is derived using the Lerche-NewBerger sum rule for the kappa distribution function and further analyzed the both electron Bernstein (EB) and ion Bernstein (IB) waves. The observational data of particle measurements is obtained from the electron spectrometer (ELS) and the ion mass spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite on board the Cassini spacecraft. For additional electron data, the measurements of Low Energy Magnetospheric Measurements System of the Magnetospheric Imaging Instrument (LEMMS /MIMI) are also utilized. The effect of kappa spectral index, density ratio (nohe/noce for EB and nohe/noi for IB) and the temperature ratio (The/Tce for EB and The/T(h,c)i for IB) on the dispersion properties are discussed employing the exact numerical analysis to explain the appearing of additional maxima/minima (points where the perpendicular group velocity vanishes, i.e., ∂w/∂k = 0) above/below the lower (for IB) and upper hybrid (EB) bands in the observation and their relation to the MIS and BED. The results of these waves may also be compared with the simulation results of Space Weather Modeling Framework (SWMF) .

  1. Resonant Auger electron-photoion coincidence study of the fragmentation dynamics of an acrylonitrile molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kooser, K; Ha, D T; Granroth, S; Itaelae, E; Nommiste, E; Kukk, E [Department of Physics, University of Turku, FIN-20014 Turku (Finland); Partanen, L; Aksela, H, E-mail: kunkoo@utu.f [Department of Physics, University of Oulu, Box 3000, FIN-90014 Oulu (Finland)

    2010-12-14

    Monochromatic synchrotron radiation was used to promote K-shell electrons of nitrogen and carbon from the cyano group (C {identical_to} N) of gaseous acrylonitrile (C{sub 2}H{sub 3}-CN) to the unoccupied antibonding {pi}*{sub C} {sub {identical_to} N} orbital. Photofragmentation of acrylonitrile molecules following selective resonant core excitations of carbon and nitrogen core electrons to the {pi}*{sub C} {sub {identical_to} N} orbital was investigated using the electron-energy-resolved photoelecton-photoion coincidence technique. The fragment ion mass spectra were recorded in coincidence with the resonant Auger electrons, emitted in the decay process of the core-excited states. Singly and triply deuterated samples were used for fragment identification. The results showed the initial core-hole localization to be of minor importance in determining the dissociation pattern of the molecular cation. The participator and spectator Auger transitions produce entirely different fragmentation patterns and the latter indicates that complex nuclear rearrangements take place. It is suggested that the calculated kinetic energy releases are caused by the existence of metastable states, which appear with the opening of the spectator Auger channels.

  2. Intercomparison of air ion spectrometers: an evaluation of results in varying conditions

    Directory of Open Access Journals (Sweden)

    S. Gagné

    2011-05-01

    Full Text Available We evaluated 11 air ion spectrometers from Airel Ltd. after they had spent one year in field measurements as a part of the EUCAARI project: 5 Air Ion Spectrometers (AIS, 5 Neutral cluster and Air Ion Spectrometers (NAIS and one Airborne NAIS (ANAIS. This is the first time that an ANAIS is evaluated and compared so extensively. The ion spectrometers' mobility and concentration accuracy was evaluated. Their measurements of ambient air were compared between themselves and to reference instruments: a Differential Mobility Particle Sizer (DMPS, a Balanced Scanning Mobility Analyzer (BSMA, and an Ion-DMPS. We report on the simultaneous measurement of a new particle formation (NPF event by all 11 instruments and the 3 reference instruments. To our knowledge, it is the first time that the size distribution of ions and particles is measured by so many ion spectrometers during a NPF event. The new particle formation rates (~0.2 cm−3 s−1 for ions and ~2 cm−3 s−1 for particles and growth rates (~25 nm h−1 in the 3–7 nm size range were calculated for all the instruments. The NAISs and the ANAIS gave higher concentrations and formation rates than the AISs. For example, the AISs agreed with the BSMA within 11 % and 28 % for negative and positive ion concentration respectively, whereas the NAISs agreed within 23 % and 29 %. Finally, based on the results presented here, we give guidelines for data evaluation, when data from different individual ion spectrometers are compared.

  3. Mechanism of ion output for the MI-1305 mass-spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kornyushkin, YW D; Stavrovich, N V [Leningradskij Inst. Tochnoj Mekhaniki i Optiki (USSR)

    1976-01-01

    An attachment to MJ-1305 mass-spectrometer for ion ejection enabling to study interaction of ions and substance is designed. The attachment is accomodated with a block of diaphragms forming a beam of primary ions. A magneto-discharge pump has been used to improve vacuum in a sample chamber up to 5x10/sup -8/ torr. An universal exit slit permits producing ion beam currents ranging from 10/sup -9/ to 10/sup -10/ A with 4 keV energy under operating conditions of the spectrometer as an ion source. To ensure a higher noise stability of the measuring circuit the ion current is measured through a variable signal with synchronous detection employed.

  4. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.

    1989-01-01

    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs

  5. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F; Wieliczec, K; Becker, U

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  6. Design and realization of a space-borne reflectron time of flight mass spectrometer: electronics and measuring head

    International Nuclear Information System (INIS)

    Devoto, P.

    2006-03-01

    The purpose of this thesis is the design of the electronics of a time of flight mass spectrometer, the making and the vacuum tests of a prototype which can be put onboard a satellite. A particular effort was necessary to decrease to the maximum the mass and electric consumption of the spectrometer, which led to the development of new circuits. The work completed during this thesis initially concerns the electronics of the measuring equipment which was conceived in a concern for modularity. A complete 'reflectron' type mass spectrometer was then designed, simulated and developed. The built prototype, which uses the developed electronics, was exposed to ion flows of different masses and energies in the CESR vacuum chambers. Its measured performances validate the implemented principles and show that an identical mass spectrometer can be put onboard a satellite with profit, for planetary or solar missions. (author)

  7. A new approach to nuclear microscopy: The ion-electron emission microscope

    International Nuclear Information System (INIS)

    Doyle, B.L.; Vizkelethy, G.; Walsh, D.S.; Senftinger, B.; Mellon, M.

    1998-01-01

    A new multidimensional high lateral resolution ion beam analysis technique, Ion-Electron Emission Microscopy or IEEM is described. Using MeV energy ions, IEEM is shown to be capable of Ion Beam Induced Charge Collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IIEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion

  8. Simultaneous ion detection in a mass spectrometer with variable mass dispersion

    International Nuclear Information System (INIS)

    Tuithof, H.H.

    1977-01-01

    This thesis mainly describes the ion-optics of a magnetic mass spectrometer system, especially applied to the projection of a significant part of the mass spectrum onto a flat ion-detector. The complete detector consists of a channeltron electron multiplier array with phosphor screen and a Vidicon-multichannel analyzer combination for simultaneous read-out. In order to optimise the spectral range projected onto the channelplate, by varying the mass dispersion and to rotate the oblique angle of the mass focal plane with respect to the detector surface, the sector magnet has been combined with electrostatic and magnetic quadrupole lenses. This detector will find wide application in the analysis of minute sample quantities, in the recording of extremely short ion events (large molecules) and at collision activation mass-spectrometry studies

  9. Development of a collision induced dissociation ion cyclotron resonance spectrometer

    International Nuclear Information System (INIS)

    Fan, Y.N.

    1982-01-01

    A transient analysis ion cyclotron resonance spectrometer is developed to investigate the phenomena of collision induced dissociation. The Fourier transform method and the modified maximum entropy spectral analysis or covariance least square method are implemented in measuring the mass spectrum of the ion ensemble. The Fourier transform method can be used in quantitative analysis while the maximum entropy method as developed here is useful for qualitative analysis only. The cyclotron resonance frequency, relaxation time constant, and the relative ion population are observable from the Fourier transform spectrum. These parameters are very important in investigating collision induced dissociation process and other topics in gas phase chemistry. The ion cyclotron resonance spectrometer is not only developed to study fragments and their abundance from a parent ion, but also to determine the threshold energy and reaction cross section in the collision induced dissociation process. When hard sphere model is used in the ion-molecule collision, the radius of acetone ion measured from the reactive cross section is 2.2 angstrom which is very close to the physical dimension of acetone. The threshold energy for acetone ion in collision induced dissociation process is 1.8 eV which is similar to the result obtained by the angle-resolved mass spectrometer

  10. Sub-nanosecond lifetime measurements using the Double Orange Spectrometer at the cologne 10 MV Tandem accelerator

    International Nuclear Information System (INIS)

    Regis, J.-M.; Materna, Th.; Christen, S.; Bernards, C.; Braun, N.; Breuer, G.; Fransen, Ch.; Heinze, S.; Jolie, J.; Meersschaut, T.; Pascovici, G.; Rudigier, M.; Steinert, L.; Thiel, S.; Warr, N.; Zell, K.O.

    2009-01-01

    Conversion electron spectroscopy constitutes an important tool in nuclear structure physics. A high efficiency iron-free Orange type electron spectrometer with an energy resolution of 1-2% has been installed at a beam line of the Cologne 10 MV FN Tandem Van-de-Graaff accelerator for in-beam studies of conversion electrons. In combination with a γ-ray detector array, high efficiency e - -γ-coincidences can be performed. The newly developed very fast LaBr 3 (Ce) scintillator detector with an energy resolution of about 4% makes it also possible to use e - -γ-coincidences for lifetime measurements of nuclear excited states. A second iron-free Orange spectrometer can be connected to perform e - -e - -coincidences. Because of the higher efficiency and the better energy resolution, the use of the Double Orange Spectrometer for lifetime measurements is more powerful. Lifetimes down to 100 ps and even less can be determined with an accuracy of about 10 ps. The working principle of the Orange spectrometer and the setup of the Double Orange Spectrometer are described. The performances are illustrated by examples of in-beam experiments with a main focus on high precision lifetime measurements.

  11. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  12. Simultaneous electron capture and excitation in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Graham, W.G.; Clark, M.; Shafroth, S.M.; Johnson, B.M.; Jones, K.; Meron, M.

    1982-01-01

    A review of recent efforts to observe simultaneous electron capture-and-K-shell excitation in ion-atom collisions is presented. This process which has been referred to as resonant-transfer-and-excitation (RTE), is qualitatively analogous to dielectronic recombination (inverse Auger transition) in free-electron-ion collisions, and, hence, is expected to be resonant. Experimentally, events having the correct signature for simultaneous capture-and-excitation are isolated by detecting projectile K x rays in coincidence with ions which capture a single electron. In a recent experiment involving 70-160 MeV S 13+ ions incident on Ar, a maximum was observed in the yield of projectile K x rays associated with electron capture. This maximum is attributed to simultaneous capture - and excitation. The position (120 MeV) and width (60 MeV) of the observed maximum are in good agreement with theoretical calculations. The data indicate that RTE is an important mechanism for inner-shell vacancy production in the energy range studied

  13. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine.

    Science.gov (United States)

    Dunn, Jamie D; Gryniewicz-Ruzicka, Connie M; Kauffman, John F; Westenberger, Benjamin J; Buhse, Lucinda F

    2011-02-20

    In response to recent incidents of undeclared sibutramine, an appetite suppressant found in dietary supplements, we developed a method to detect sibutramine using hand-held ion mobility spectrometers with an analysis time of 15 s. Ion mobility spectrometry is a high-throughput and sensitive technique that has been used for illicit drug, explosive, volatile organic compound and chemical warfare detection. We evaluated a hand-held ion mobility spectrometer as a tool for the analysis of supplement extracts containing sibutramine. The overall instrumental limit of detection of five portable ion mobility spectrometers was 2 ng of sibutramine HCl. When sample extractions containing 30 ng/μl or greater of sibutramine were analyzed, saturation of the ionization chamber of the spectrometer occurred and the instrument required more than three cleaning cycles to remove the drug. Hence, supplement samples suspected of containing sibutramine should be prepared at concentrations of 2-20 ng/μl. To obtain this target concentration range for products containing unknown amounts of sibutramine, we provided a simple sample preparation procedure, allowing the U.S. Food and Drug Administration or other agencies to screen products using the portable ion mobility spectrometer. Published by Elsevier B.V.

  14. Design of a reflex time-of-flight mass spectrometer for the study of the desorption of molecular ions

    International Nuclear Information System (INIS)

    Riggi, F.

    1991-01-01

    A reflex time-of-flight mass spectrometer for the study of the desorption and dissociation of molecular ions has been designed. A general overview of the instrument is reported, together with the different experimental aspects of the technique. These include mechanical and vacuum solutions, secondary ion optics in the electrostatic mirror, electronics, data acquisition and analysis

  15. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  16. Coincidence method for determination of radionuclides activities

    International Nuclear Information System (INIS)

    Andrukhovich, S.K.; Berestov, A.V.; Rudak, E.A.

    2004-01-01

    The radon and radium activity measurements using six-crystal gamma-gamma coincidence, 4 -spectrometer PRIPJAT and radioactivity measurements in different samples of meat and vegetation by 32-crystal spectrometer ARGUS, are described. Radiation detector with 4 -geometry provides higher efficiency, and therefore shorter counting time than a detector without such geometry. However, its application is limited by the fact that obtained spectrum contains summing peaks of all γ-quanta registered in coincidence. Multiparameter information on coincident photon emission can be obtained only by a detection system where the 4 -geometry is made by many detectors, such are both the PRIPJAT and the ARGUS - γ-coincidence spectrometer of the Crystal Ball type in the Institute of Physics, Minsk [1,2]. There are other characteristics, as background conditions, energy and time resolution, makes it ve suitable for investigation of rare decays and interactions, cascade transitions, k intensity radiations etc. We are developing a method of 2 26R a and 2 26 Rn measurement by a multidetector 4 -spectrometer. The method is based on coincidence counting of γ-rays from two step cascade transitions that follow - decay of 2 14 Bi. Its application to the PRIPL spectrometer, which has 6 Nal(Tl) detectors, is presented here, as well as the method of the determination of radionuclide activities based on the registration of the cascades intensity of γ-rays of different multiplicity using ARGUS

  17. Heavy-ion-spectrometer system

    International Nuclear Information System (INIS)

    1982-05-01

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures

  18. Heavy-ion-spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures (OSP).

  19. Magnetic spectrometer Grand Raiden

    International Nuclear Information System (INIS)

    Fujiwara, M.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Hatanaka, K.; Ikegami, H.; Katayama, I.; Nagayama, K.; Matsuoka, N.; Morinobu, S.; Noro, T.; Yoshimura, M.; Sakaguchi, H.; Sakemi, Y.; Tamii, A.; Yosoi, M.

    1999-01-01

    A high-resolution magnetic spectrometer called 'Grand Raiden' is operated at the RCNP ring cyclotron facility in Osaka for nuclear physics studies at intermediate energies. This magnetic spectrometer has excellent ion-optical properties. In the design of the spectrometer, the second-order dispersion matching condition has been taken into account, and almost all the aberration terms such as (x vertical bar θ 3 ), (x vertical bar θφ 2 ), (x vertical bar θ 2 δ) and (x vertical bar θδ 2 ) in a third-order matrix calculation are optimized. A large magnetic rigidity of the spectrometer (K = 1400 MeV) gives a great advantage to measure the charge-exchange ( 3 He, t) reactions at 450 MeV. The ability of the high-resolution measurement has been demonstrated. Various coincidence measurements are performed to study the nuclear structures of highly excited states through decay properties of nuclear levels following nuclear reactions at intermediate energies

  20. Fast neutron scintillation spectrometer in a heavy ion accelerator

    International Nuclear Information System (INIS)

    Blinov, M.V.; Gavrilov, B.P.; Ivannikova, L.L.; Kozulin, Eh.M.; Mozhaev, A.N.; Tyurin, G.P.

    1984-01-01

    Scintillation fast neutron spectrometer in a heavy ion accelerator is described in short. The spectrometer is used to measure characteristics of neutrons emitted in heavy ion interaction with different nuclei. Experiment was performed on the base of particle flight from 0.7 up to 2 m. Within the angle range of 0-150 deg. The technique is based on recording of two-dimensional neutron spectra obtained due to combination of the time-of-flight method and the method of recoil proton energy detection. Two measuring channels were used in the spectrometer. Each channel comprise both amplitude and time tracks. Detector on the base microchannel plates (MCP) generated a signal in passing the next ion bunch was used in order to obtain the time mark. Data from the scintillation block are recorded with respect to three parameters: recoil proton amplitude, time of neutron or γ-quantum arrival in respect of MCP-sensor pulse. Apparatus is carried out within the CAMAC standard. The spectrometer calibration within the 1-20 MeV neutron range was conducted in the Van-de-Graaf accelerator, and for higher energies - with the use of lightguides. Spectrometer time resolution for neutron energies of 0.5-50 MeV constituted 1.5-1.8 ns. The above measuring of neutron spectra from 1 /H2C+ 181 Ta and sup(20, 22)Ne+sup(181)Ta reaction have revealed a possibility of the experiment organization in heavy ion accelerators in the presence of strong neutron and γ-fields. Organization of multi-dimensional analysis combining two methods allows one to separate accelerator cycle, a region of the most reliable information, free of a low-energy gamma background and limited both by a dynamic threshold and a region of permissible energy values

  1. Low pressure gas detectors for molecular-ion break up studies

    International Nuclear Information System (INIS)

    Breskin, A.; Chechik, R.; Zwang, N.

    1981-01-01

    Two detector systems for Molecular ions like OH + and CH 2 + and like H 2 + and H 3 + were developed and are described. The first detector is installed in a magnetic spectrometer. Both systems are made of various types of gas detectors operating at low pressures. In the study of the Coulomb explosion of molecular ions like OH + , CH 2 + or H 3 + these detectors provide the position and time coordinates of all the fragments of the molecular ion, in coincidence, in order to determine their energy and angular distribution. In the case of molecules containing atoms other than hydrogen, information on the electronic charge state is obtained. (H.K.)

  2. Results of the first air ion spectrometer calibration and intercomparison workshop

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2009-01-01

    Full Text Available The Air Ion Spectrometer (AIS measures mobility and size distributions of atmospheric ions. The Neutral cluster and Air Ion Spectrometer (NAIS can additionally measure neutral particles. The number of the (NAIS instruments in the world is only 11. Nevertheless, they are already widely used in atmospheric ion studies, particularly related to the initial steps of new particle formation. There is no standard method applicable for calibrating the ion spectrometers in the sub-3 nm ion range. However, recent development of high resolution DMAs has enabled the size separation of small ions with good mobility resolution. For the first time, the ion spectrometers were intercompared and calibrated in a workshop, held in January–February 2008 in Helsinki, Finland. The overall goal was to experimentally determine the (NAIS transfer functions. Monomobile mobility standards, 241-Am charger ions and silver particles were generated and used as calibration aerosols. High resolution DMAs were used to size-separate the smaller (1–10 nm ions, while at bigger diameters (4–40 nm the size was selected with a HAUKE-type DMA. Negative ion mobilities were detected by (NAISs with slightly better accuracy than positive, nonetheless, both were somewhat overestimated. A linear fit of slope of one to the whole dataset of mobilities suggested that (NAISs measured the negative mobilities 1.36±0.16 times larger compared with the reference instruments. Similarly, positive mobilities were measured 1.39±0.15 times larger compared with the reference instruments. The completely monomobile mobility standards were measured with the best accuracy. The (NAIS concentrations were compared with an aerosol electrometer (AE and a condensation particle counter (CPC. At sizes below 1.5 nm (positive and 3 nm (negative the ion spectrometers detected higher concentrations while at bigger sizes they showed similar concentrations as the reference instruments. The total particle

  3. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  4. Photoelectron photoion coincidence imaging of ultrafast control in multichannel molecular dynamics.

    Science.gov (United States)

    Lehmann, C Stefan; Ram, N Bhargava; Irimia, Daniel; Janssen, Maurice H M

    2011-01-01

    The control of multichannel ionic fragmentation dynamics in CF3I is studied by femtosecond pulse shaping and velocity map photoelectron photoion coincidence imaging. When CF3I is photoexcited with femtosecond laser pulses around 540 nm there are two major ions observed in the time-of-flight mass spectrum, the parent CF3I+ ion and the CF3+ fragment ion. In this first study we focussed on the influence of LCD-shaped laser pulses on the molecular dynamics. The three-dimensional recoil distribution of electrons and ions were imaged in coincidence using a single time-of-flight delay line detector. By fast switching of the voltages on the various velocity map ion lenses after detection of the electron, both the electron and the coincident ion are measured with the same imaging detector. These results demonstrate that a significant simplification of a photoelectron-photoion coincidence imaging apparatus is in principle possible using switched lens voltages. It is observed that shaped laser fields like chirped pulses, double pulses, and multiple pulses can enhance the CF3+CF3I+ ratio by up to 100%. The total energetics of the dynamics is revealed by analysis of the coincident photoelectron spectra and the kinetic energy of the CF3+ and I fragments. Both the parent CF3I+ and the CF3+ fragment result from a five-photon excitation process. The fragments are formed with very low kinetic energy. The photoelectron spectra and CF3+/CF3I+ ratio vary with the center wavelength of the shaped laser pulses. An optimal enhancement of the CF3+/CF3I+ ratio by about 60% is observed for the double pulse excitation when the pulses are spaced 60 fs apart. We propose that the control mechanism is determined by dynamics on neutral excited states and we discuss the results in relation to the location of electronically excited (Rydberg) states of CF3I.

  5. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    Science.gov (United States)

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  6. Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Hu, Zhimin; Watanabe, Hirofumi; Li, Yueming; Kato, Daiji; Currell, Fred J.; Tong Xiaomin; Watanabe, Tsutomu; Ohtani, Shunsuke

    2011-01-01

    In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.

  7. Calibration method for ion mobility spectrometer

    International Nuclear Information System (INIS)

    Vasiliev, Valery

    2011-01-01

    The new method for the calibration of the ion mobility spectrometer has been developed. This article describes the working principle, advantages and disadvantages of the calibration method operating in the mode of explosives detection. This method is most suitable for use in portable detectors, due to the small weight, small size parameters and low power consumption.

  8. A 2-100 keV, UHV ion impact spectrometer for ion-solid interaction studies

    International Nuclear Information System (INIS)

    Berg, J.A. Van den; Armour, D.G.; Verheij, L.K.

    1978-01-01

    A 2 to 100 keV ion accelerator has been constructed as part of an ion impact spectrometer in which a number of analytical techniques have been combined to allow a comprehensive study of the interaction of low- and medium-energy ions with solids to be carried out under carefully controlled conditions. The overall requirements of the ion beam system in terms of ion species, beam purity, uniformity, energy spread and intensity were dictated by the interest in carrying out low-energy ion scattering, Rutherford back-scattering and thermal desorption experiments. The accelerator design utilises the principle of low-energy extraction and mass analysis, and post-acceleration up to the required high energy. The ions are produced in a duoplasmatron ion source and a parallel beam is obtained after mass selection, utilising a quadrupole triplet lens in conjunction with a 60 0 stigmatic focusing magnetic analyser. Proton and rare gas ion beams of 1 to 100 nA are routinely obtained on target. The 54 cm diameter, UHV target chamber is pumped by a 270 1 s -1 turbo-molecular pump in conjunction with an in-line titanium sublimator, and typical base pressures of 1 to 4 x 10 -11 Torr are achieved. The target is supported in a precision, three-axis goniometer and the detection system, at present comprising a 90 mm mean diameter hemispherical energy analyser and channel electron multiplier, is mounted on a two-axis manipulator. Preliminary measurements using the system have employed the low-energy ion scattering technique to study the oxidation of a Ni(110) surface. (author)

  9. Variation in yield ratios of fragment ions and of ion-pairs from CF2Cl2 following monochromatic soft X-ray absorption

    International Nuclear Information System (INIS)

    Suzuki, I.H.; Saito, N.; Bozek, J.D.

    1995-01-01

    Fragment ions produced from CF 2 Cl 2 have been measured from 44 to 1200eV using a time-of-flight mass spectrometer and monochromatized synchrotron radiation. Positively charged ion pairs from this molecule were observed in the inner-shell excitation regions using a Selected photoion-photoion coincidence technique. Obtained yield ratios of fragment ions indicate that the atomic chlorine ion, Cl + , has the greatest intensity at all photon energies above 60eV and exhibits a steep increase at the Cl L 2,3 -edges. Some fragment ions, in particular CF 2 + , have a clear intensity increase at the transitions of inner-shell electrons to unoccupied molecular orbitals. The ion pair F + - Cl + exhibits the highest yield at most photon energies, and some of the branching ratios for ion-pair production changed significantly near the Cl L 2,3 -edges. (author)

  10. Ion mobility spectrometer for online monitoring of trace compounds

    International Nuclear Information System (INIS)

    Li, F.; Xie, Z.; Schmidt, H.; Sielemann, S.; Baumbach, J.I.

    2002-01-01

    The principle, character and developments of the instrumentation of ion mobility spectrometry are reviewed. The application of ion mobility spectrometers in monitoring chemical warfare agents, explosives, drugs, environmental hazardous compounds and industrial process control are discussed. Process applications with respect to miniaturization of the instrument are presented

  11. Imaging the electron transfer reaction of Ne2+ with Ar using position-sensitive coincidence spectroscopy

    International Nuclear Information System (INIS)

    Harper, Sarah M; Hu Wanping; Price, Stephen D

    2002-01-01

    A new experiment, employing position-sensitive detection coupled with time-of-flight mass spectrometry, has been used to investigate the single-electron transfer reaction between Ne 2+ and Ar by detecting the resulting pairs of singly charged ions in coincidence. The experimental technique allows the determination of the individual velocity vectors of the ionic products, in the centre-of-mass frame, for each reactive event detected. The experiments show that forward scattering dominates the reactivity, although a bimodal angular distribution is apparent. In addition, the spectra show that at laboratory frame collision energies from 4-14 eV the reactivity is dominated by Ne 2+ (2p 4 , 3 P) accepting an electron from an argon atom to form the ground state of Ne + together with an Ar + ion in an excited electronic level, predominantly arising from the Ar + (3s 2 3p 4 3d) configuration. The form of this reactivity, and the differences between the reactivity observed in these experiments and those performed at higher collision energies, are well reproduced by Landau-Zener theory

  12. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  13. A gamma scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, S

    1952-07-01

    A scintillation type gamma ray spectrometer employing coincidence counting, designed and built at the Physics Department of the University of Western Ontario is described. The spectrometer is composed of two anthracene and photomultiplier radiation detectors, two pulse analyzing channels, a coincidence stage, three scalers and a high voltage stabilized supply. A preliminary experiment to test the operation of the spectrometer was performed and the results of this test are presented. (author)

  14. The electronic system of Beijing spectrometer

    International Nuclear Information System (INIS)

    Xi Deming

    1990-01-01

    Beijing Spectrometer (BES) in an experimental facility of high energy physics on Beijing Electron Positron Collider (BEPC). A brief description including the global design, the read out circuits, the performances and the recent status of its electronic system is presented

  15. Momentum mapping spectrometer for probing the fragmentation dynamics of molecules induced by keV electrons

    International Nuclear Information System (INIS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R

    2011-01-01

    We describe a new experimental setup for studying the fragmentation dynamics of molecules induced by the impact of keV electrons using the well-known technique of recoil ion momentum spectroscopy. The apparatus consists of mainly a time- and position-sensitive multi-hit particle detector for ion analysis and a channel electron multiplier detector for detecting the ejected electrons. Different components of the setup and the relevant electronics for data acquisition are described in detail with their working principles. In order to verify the reliable performance of the setup, we have recorded the collision-induced ionic spectra of the CO 2 molecule by the impact of keV electrons. Information about the ion pairs of CO + :O + , C + :O + and O + :O + resulting from dissociative ionizing collisions of 20 and 26 keV electrons with a dilute gaseous target of CO 2 molecules has been obtained. Under conditions of the present experiment, the momentum resolutions of the spectrometer for the combined momenta of CO + and O + ions in the direction of the time-of-flight axis and perpendicular to the direction of an electron beam are found to be 10.0 ± 0.2 and 15.0 ± 0.3 au, respectively

  16. MAGNETIC SPECTROMETER DESIGN FOR ELECTRON SCATTERING ABOVE 1 Bev

    Energy Technology Data Exchange (ETDEWEB)

    Schopper, H.

    1963-06-15

    Design considerations are discussed for magnetic spectrometer electron scattering investigations with the higher energy (above 1 Bev) electron sources which are being developed. The spectrometers are to be used to discriminate between elastic and inelastic processes. A momentum resolution of the order of one per cent is required for these experiments. Various spectrometers are compared according to their optical properties and the number of magnets they consist of. (R.E.U.)

  17. Electron spectrometers with internal conversion

    International Nuclear Information System (INIS)

    Suita, J.C.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The efforts that the Department of Physics (DEFI) of Institute of Nuclear Engineering (IEN) are being made aiming at adjusting the electron spectrometers with internal conversion to its necessity, are shown. (E.G.) [pt

  18. Electronic THz-spectrometer for plasmonic enhanced deep subwavelength layer detection

    NARCIS (Netherlands)

    Berrier, A.; Schaafsma, M.C.; Gómez Rivas, J.; Schäfer-Eberwein, H.; Haring Bolivar, P.; Tripodi, L.; Matters-Kammerer, M.K.

    2015-01-01

    We demonstrate the operation of a miniaturized all-electronic CMOS based THz spectrometer with performances comparable to that of a THz-TDS spectrometer in the frequency range 20 to 220 GHz. The use of this all-electronic THz spectrometer for detection of a thin TiO2 layer and a B. subtilis bacteria

  19. K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

    Science.gov (United States)

    Hell, Natalie; Brown, G. V.; Wilms, J.; Beiersdorfer, P.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2015-08-01

    With the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11 ≤ Z ≤ 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5eV, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6eV resolution shows that the analysis of spectra taken at ECS resolution allows us to determine the transition energies of the strongest components.Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344 and supported by NASA's APRA program.

  20. Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    Science.gov (United States)

    Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2016-09-01

    The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.

  1. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    International Nuclear Information System (INIS)

    Alejo, A.; Kar, S.; Ahmed, H.; Doria, D.; Borghesi, M.; Tebartz, A.; Ding, J.; Neumann, N.; Astbury, S.; Carroll, D. C.; Scott, G. G.; Higginson, A.; McKenna, P.; Wagner, F.; Roth, M.

    2016-01-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  2. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Doria, D.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Tebartz, A.; Ding, J.; Neumann, N. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Astbury, S.; Carroll, D. C.; Scott, G. G. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Higginson, A.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Wagner, F. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany)

    2016-08-15

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  3. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    Science.gov (United States)

    Alejo, A.; Kar, S.; Tebartz, A.; Ahmed, H.; Astbury, S.; Carroll, D. C.; Ding, J.; Doria, D.; Higginson, A.; McKenna, P.; Neumann, N.; Scott, G. G.; Wagner, F.; Roth, M.; Borghesi, M.

    2016-08-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  4. Electron-capture negative-ion mass spectrometry: a technique for environmental contaminant identification

    International Nuclear Information System (INIS)

    Stemmler, E.A.

    1986-01-01

    Electron capture negative ion mass spectrometry (ECNIMS) is a method used to generate negative ions in a mass spectrometer by electron-molecule reactions. This technique facilitates the sensitive and selective detection of many toxic contaminants in environmental samples. Applications of this technique have been hindered by the limited understanding of instrumental parameters, by the questionable reproducibility of negative ion mass spectra, and by the inability to interpret negative ion mass spectra. Instrumental parameters which were important to control include the ion source temperature, ion source pressure, sample concentration, and the focus lens potential. The ability to obtain reproducible spectra was demonstrated by measurement of the spectrum of decafluorotriphenylphosphine (DFTPP) over a period of one year. Negative ion fragmentation mechanisms were studied by measuring the spectra of structurally related classes of compounds and isotopically labelled compounds. These results were combined with data obtained by other researchers. Fragmentations characteristic of particular functional groups or molecular structures have been summarized. From this data set, guidelines for the interpretation of electron capture negative ion mass spectra have been developed

  5. Ion beam alignment in the MSX-4 mass spectrometer

    International Nuclear Information System (INIS)

    Busygin, A.I.; Nevzorov, A.A.; Ul'masbaev, B.Sh.

    1977-01-01

    A method for electrically adjusting an ion beam in an MSKh-4 mass-spectrometer has been developed. The adjusting system consists of two deflecting plates fastened to the frame of the ion source. By adjusting the potential difference at the plates in the range 0-150 v, one can increase the intensity of the mass-spectrum by a factor of 3 to 5

  6. UV Photodissociation Action Spectroscopy of Haloanilinium Ions in a Linear Quadrupole Ion Trap Mass Spectrometer

    Science.gov (United States)

    Hansen, Christopher S.; Kirk, Benjamin B.; Blanksby, Stephen J.; O'Hair, Richard. A. J.; Trevitt, Adam J.

    2013-06-01

    UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag2 + is compared with a literature spectrum as a further benchmark.

  7. A merged-beam setup at SOLEIL dedicated to photoelectron–photoion coincidence studies on ionic species

    Energy Technology Data Exchange (ETDEWEB)

    Bizau, J.M., E-mail: jean-marc.bizau@u-psud.fr [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Cubaynes, D. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Guilbaud, S.; El Eassan, N.; Al Shorman, M.M.; Bouisset, E.; Guigand, J.; Moustier, O.; Marié, A.; Nadal, E. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Robert, E.; Nicolas, C. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Miron, C. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure—Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2016-07-15

    Highlights: • Description of a merged-beam setup at SOLEIL synchrotron radiation facility. • Unique setup of this kind allowing photoelectron spectroscopy on ionic species. • Use of electron-ion coincidence to reduce the background. • Examples on the photoionization of Xe{sup 5+} multiply-charged ion. - Abstract: We describe the merged-beam setup permanently installed on a dedicated optical branch of the PLEIADES beamline at SOLEIL, the French synchrotron radiation facility in St-Aubin, delivering photons in the 10–1000 eV photon energy range. The setup is designed both for photoion and photoelectron spectroscopy experiments on atomic and molecular ions. Ion spectrometry is dedicated to the determination of absolute single and multiple photoionization cross sections. Electron spectroscopy brings additional information on the non-radiative decay of inner-vacancies produced in the photoionization processes and allows for the determination of partial cross sections. Efficient reduction of the background in the electron spectra is achieved by the use of the electron-ion coincidence technique. Examples of photoion and photoelectron spectra are given for the Xe{sup 5+} ion.

  8. Testing of the SPEDE conversion electron spectrometer at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2157167

    2017-04-24

    The aim of this work was to test the performance of the SPEDE detector in the MINIBALL setup at CERN’s ISOLDE laboratory. The main research objective of MINIBALL is to study properties of atomic nuclei employing radioactive ion beams. Radioactive Bi-207 and Hg-191 were used in this experiment. SPEDE detects internal conversion electrons which are created in transitions between states in atomic nucleus. The internal conversion is competing process to more common γ-ray emission. This way it is possible to measure different properties of nuclear structure for example the E0-transitions. The simultaneous γ and electron measurements are possible when SPEDE is used in conjunction with the MINIBALL spectrometer. The GEANT4 simulation results were used to help interpretation of experimental results. As a result, αK/L-ratio was determined for Bi-207 conversion electrons, for the 5^2− -> 1^2− transition αK/L = 3.29±0.06 and for the 13^2+-> 5^2− transition αK/L = 3.11±0.05 were obtained. Also, the partial...

  9. Ion source for a mass spectrometer

    International Nuclear Information System (INIS)

    Kappus, G.

    1980-01-01

    The ion source is used for electron impact ionisation and chemical ionisation of a gaseous or vapour test substance. In this type of operation, openings of different sizes are provided for the entry of electrons, the exit of ions and sample entry, because of different working pressures. Part of the source is made as a movable case or container floor with the ion exit opening being a shutter. (DG) [de

  10. Atomic physics at the Argonne PII ECR [electron cyclotron resonance] Ion Source

    International Nuclear Information System (INIS)

    Dunford, R.W.; Berry, H.G.; Billquist, P.J.; Pardo, R.C.; Zabransky, B.J.; Bakke, E.; Groeneveld, K.O.; Hass, M.; Raphaelian, M.L.A.

    1987-01-01

    An atomic physics beam line has been set up at the Argonne PII ECR Ion Source. The source is on a 350-kV high-voltage platform which is a unique feature of particular interest in work on atomic collisions. We describe our planned experimental program which includes: measurement of state-selective electron-capture cross sections, studies of doubly-excited states, precision spectroscopy of few-electron ions, tests of quantum electrodynamics, and studies of polarization transfer using optically pumped polarized alkali targets. The first experiments will be measurements of cross sections for electron capture into specific nl subshells in ion-atom collisions. Our method is to observe the characteristic radiation emitted after capture using a VUV spectrometer. Initial data from these experiments are presented. 12 refs., 4 figs

  11. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  12. Mass-spectrometer MASHA - testing results on heavy ion beam

    International Nuclear Information System (INIS)

    Rodin, A.M.; Belozerov, A.V.; Vanin, D.V.; Dmitriev, S.N.; Itkis, M.G.; Kliman, J.; Krupa, L.; Lebedev, A.N.; Oganesyan, Yu.Ts.; Salamatin, V.S.; Sivachek, I.; Chernysheva, E.V.; Yukhimchuk, S.A.

    2011-01-01

    Description of mass-spectrometer MASHA, developed for the mass identification of superheavy elements, is given. The efficiency and operation speed in the off-line mode were measured with four calibrated leakages of noble gases. The total efficiency and operation speed of mass-spectrometer with hot catcher and ECR ion source were determined using the 40 Ar beam. The test experiment was carried out by measuring the alpha decay of Hg and Rn isotopes, produced in fusion reactions 40 Ar+ nat Sm→ nat-xn Hg+xn and 40 Ar+ 166 Er→ 206-xn Rn+xn, in the focal plane of mass-spectrometer. The operation speed of the given technique and relative yields of isotopes in the test reactions were determined

  13. Ion source for a mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, G.

    1980-07-24

    The ion source is used for electron impact ionisation and chemical ionisation of a gaseous or vapour test substance. In this type of operation, openings of different sizes are provided for the entry of electrons, the exit of ions and sample entry, because of different working pressures.

  14. Application of ion mobility spectrometer for rapid drug detection

    International Nuclear Information System (INIS)

    Zhu Xuemei; Zheng Jian; Lv Yongjie; Chen Yangqin

    2007-01-01

    A 63 Ni source-based high resolution ion mobility spectrometer (IMS) was developed and applied to drug detection. The drugs included opium, morphine, heroin, methamphetamine, MDMA, MDEA, ketamine and cannabis. Their ion mobility spectra were acquired, ion types were derived and reduced mobilities were calculated, which are in good agreement with the data reported in literatures. The results indicate that the IMS can detect effectively a variety of drugs, especially for the amphetamine derivatives. And the reduced mobility standard database of drugs was established. (authors)

  15. Application of ion mobility spectrometer for rapid drug detection

    Energy Technology Data Exchange (ETDEWEB)

    Xuemei, Zhu; Jian, Zheng [The Third Research Inst. of Ministry of Public Security, Shanghai (China); Yongjie, Lv; Yangqin, Chen [Department of Physics, Key Laboratory of Optical and Magnetic Resonance Spectroscopy, East China Normal Univ., Shanghai (China)

    2007-10-15

    A {sup 63}Ni source-based high resolution ion mobility spectrometer (IMS) was developed and applied to drug detection. The drugs included opium, morphine, heroin, methamphetamine, MDMA, MDEA, ketamine and cannabis. Their ion mobility spectra were acquired, ion types were derived and reduced mobilities were calculated, which are in good agreement with the data reported in literatures. The results indicate that the IMS can detect effectively a variety of drugs, especially for the amphetamine derivatives. And the reduced mobility standard database of drugs was established. (authors)

  16. Environmental radioactivity measurements Using a compton suppression spectrometer

    International Nuclear Information System (INIS)

    Sharshar, T.; Elnimr, T.

    1998-01-01

    The natural and artificial radioactivities of some environmental samples such as soil and vegetables have been studied through gamma-ray spectroscopy with a new constructed compton suppression spectrometer (CSS). The spectrometer consists of a 10% p-type HPGe detector as a main detector, an annular NE-102 A plastic scintillator as a guard detector, and a fast-slow coincidence system employing standard electronic modules for anti-compton operation. This study shows that CSS is a powerful tool for measuring the low level activities of environmental samples

  17. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory

    Science.gov (United States)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We derive a formal theory of noisy Poisson processes with multiple outcomes. We obtain simple, compact expressions for the probability distribution function of arbitrarily complex composite events and its moments. We illustrate the utility of the theory by analyzing properties of coincidence and covariance photoelectron-photoion detection involving single-ionization events. The results and techniques introduced in this work are directly applicable to more general coincidence and covariance experiments, including multiple ionization and multiple-ion fragmentation pathways.

  18. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  19. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications

    Science.gov (United States)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We use an analytical theory of noisy Poisson processes, developed in the preceding companion publication, to compare coincidence and covariance measurement approaches in photoelectron and -ion spectroscopy. For non-unit detection efficiencies, coincidence data acquisition (DAQ) suffers from false coincidences. The rate of false coincidences grows quadratically with the rate of elementary ionization events. To minimize false coincidences for rare event outcomes, very low event rates may hence be required. Coincidence measurements exhibit high tolerance to noise introduced by unstable experimental conditions. Covariance DAQ on the other hand is free of systematic errors as long as stable experimental conditions are maintained. In the presence of noise, all channels in a covariance measurement become correlated. Under favourable conditions, covariance DAQ may allow orders of magnitude reduction in measurement times. Finally, we use experimental data for strong-field ionization of 1,3-butadiene to illustrate how fluctuations in experimental conditions can contaminate a covariance measurement, and how such contamination can be detected.

  20. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  1. Ion-Ion Plasmas Produced by Electron Beams

    Science.gov (United States)

    Fernsler, R. F.; Leonhardt, D.; Walton, S. G.; Meger, R. A.

    2001-10-01

    The ability of plasmas to etch deep, small-scale features in materials is limited by localized charging of the features. The features charge because of the difference in electron and ion anisotropy, and thus one solution now being explored is to use ion-ion plasmas in place of electron-ion plasmas. Ion-ion plasmas are effectively electron-free and consist mainly of positive and negative ions. Since the two ion species behave similarly, localized charging is largely eliminated. However, the only way to produce ion-ion plasmas at low gas pressure is to convert electrons into negative ions through two-body attachment to neutrals. While the electron attachment rate is large at low electron temperatures (Te < 1 eV) in many of the halogen gases used for processing, these temperatures occur in most reactors only during the afterglow when the heating fields are turned off and the plasma is decaying. By contrast, Te is low nearly all the time in plasmas produced by electron beams, and therefore electron beams can potentially produce ion-ion plasmas continuously. The theory of ion-ion plasmas formed by pulsed electron beams is examined in this talk and compared with experimental results presented elsewhere [1]. Some general limitations of ion-ion plasmas, including relatively low flux levels, are discussed as well. [1] See the presentation by D. Leonhardt et al. at this conference.

  2. Procedure and apparatus for controlling the ion energy in a mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Fies, W J; Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    The invention relates to a process and apparatus for adjusting the energy of ions of different masses in a mass spectrometer. Specifically, it concerns a mass spectrometer having a gas inlet and ionisation space. A multipole mass filter includes several electrodes. A focusing system connects the ionisation space and the mass filter. Provision is made for applying to the electrodes a mass adjusting voltage combining a high frequency voltage and a d.c. voltage of increasing amplitude, so that the ions of a pre-determined mass can be selected. This system also includes a device connected to the electrodes, sensitive to the mass adjusting voltage and enabling the energy of the ions to be adjusted to that of the selected ions, depending on the mass of the ions, by modifying the difference in potential between the ionisation volume and the mean potential of the electrodes .

  3. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    Science.gov (United States)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  4. First transmission of electrons and ions through the KATRIN beamline

    Czech Academy of Sciences Publication Activity Database

    Arenz, M.; Dragoun, Otokar; Kovalík, Alojz; Lebeda, Ondřej; Ryšavý, Miloš; Sentkerestiová, Jana; Suchopár, Martin; Vénos, Drahoslav

    2018-01-01

    Roč. 13, č. 4 (2018), č. článku P04020. ISSN 1748-0221 R&D Projects: GA MŠk LM2015056; GA MŠk LTT18021 Institutional support: RVO:61389005 Keywords : ion sources * electron beam * detector control systems * beam-line instrumentation * spectrometers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  5. First experiments with the 200 keV electron beam ion trap at LLNL

    International Nuclear Information System (INIS)

    Marrs, R.E.; Knapp, D.A.; Elliott, S.

    1993-01-01

    A high-energy electron beam ion trap (Super EBIT) is operating at electron energies up to 200 keV and currents up to 200 mA. Highly charged ions up to Li-like U 89+ and H-like Pb 81+ have been produced and studied. Ionization cross sections for H-like Dy 66+ at E e = 170 keV have been measured with respect to radiative recombination from the observed Dy 66+ /Dy 67+ equilibrium ionization balance. A Bragg crystal spectrometer has been used to measure 2s 1/2 -2p 3/2 transition energies in Li-like U 82+ with respect to the Lymann-series transitions in lower-Z hydrogenic ions

  6. Complete momentum balance for single ionization of helium by fast ion impact: I. Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Moshammer, R.; Kollmus, H.; Unverzagt, M.; Schmidt-Boecking, H. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Ullrich, J.; Schmitt, W. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Wood, C.J.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1997-02-01

    The collision dynamics of He single ionization by 3.6 MeV/u Se{sup 28+} impact was explored using the GSI-reaction microscope, a high resolution integrated multi electron - recoil-ion momentum spectrometer. The complete three particle final state momentum distribution (9 cartesian components p{sub i}) was imaged with a resolution of {Delta}p{sub i} {approx} {+-}0.1 a.u. by measuring the three momentum components of the emitted electron and the recoiling target-ion in coincidence. The projectile energy loss has been determined on a level of {Delta}E{sub p}/E{sub p} {approx} 10{sup -7} and projectile scattering angles as small as {Delta}{theta} {approx} 10{sup -7}rad became accessible. The experimental data which are compared with results of classical trajectory Monte-Carlo (CTMC) calculations reveal an unprecedented insight into the details of the electron emission and the collision dynamics for ionization of helium by fast heavy-ion impact. (orig.)

  7. Complete momentum balance for single ionization of helium by fast ion impact: I. Experiment

    International Nuclear Information System (INIS)

    Moshammer, R.; Kollmus, H.; Unverzagt, M.; Schmidt-Boecking, H.; Wood, C.J.; Olson, R.E.

    1997-02-01

    The collision dynamics of He single ionization by 3.6 MeV/u Se 28+ impact was explored using the GSI-reaction microscope, a high resolution integrated multi electron - recoil-ion momentum spectrometer. The complete three particle final state momentum distribution (9 cartesian components p i ) was imaged with a resolution of Δp i ∼ ±0.1 a.u. by measuring the three momentum components of the emitted electron and the recoiling target-ion in coincidence. The projectile energy loss has been determined on a level of ΔE p /E p ∼ 10 -7 and projectile scattering angles as small as Δθ ∼ 10 -7 rad became accessible. The experimental data which are compared with results of classical trajectory Monte-Carlo (CTMC) calculations reveal an unprecedented insight into the details of the electron emission and the collision dynamics for ionization of helium by fast heavy-ion impact. (orig.)

  8. Electron stereodynamics in coulomb explosion of molecules by slow highly charged ions

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2008-01-01

    The three-center Coulombic over-the-barrier model is developed for Coulomb explosion of a homonuclear diatomic molecule in collisions with a slow (∼10 eV/amu) highly charged ion. A conventional two-step picture of multiple electron transfer followed by Coulomb explosion is far from appropriate because the molecule sets out to dissociate before the incident ion approaches the closest distance. We treat the formation of a quasi-molecule and its decay into the three moving atomic ions. Charge-asymmetric population between fragment ions observed in a triple-coincidence measurement is suggested to reflect the bond elongation during a collision. Collisions of Kr 8+ + N 2 are analyzed. (author)

  9. Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.

    1991-10-01

    The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab

  10. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  11. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  12. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    Science.gov (United States)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  13. Ion Mobility Spectrometer Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; McLain, Derek [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Steeb, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-12-20

    The Morpho Saffran Itemizer 4DX Ion Mobility Spectrometer previously used to detect uranium signatures in FY16 was used at the former New Brunswick Facility, a past uranium facility located on site at Argonne National Laboratory. This facility was chosen in an attempt to detect safeguards relevant signatures and has a history of processing uranium at various enrichments, chemical forms, and purities; various chemicals such as nitric acid, uranium fluorides, phosphates and metals are present at various levels. Several laboratories were sampled for signatures of nuclear activities around the laboratory. All of the surfaces that were surveyed were below background levels of the radioanalytical instrumentation and determined to be radiologically clean.

  14. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    Science.gov (United States)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral

  15. A 'tiny-orange' spectrometer for electrons

    International Nuclear Information System (INIS)

    Silva, N.C. da.

    1990-01-01

    An tiny-orange electron spectrometer was designed and constructed using flat permanent magnets and a surface barrier detector. The transmission functions of different system configurations were determined for energies in the 200-1100 KeV range. A mathematical model for the system was developed. (L.C.J.A.)

  16. Analytical applications of ion/molecule reactions in a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Kinter, M.T.

    1986-01-01

    The development of triple quadrupole mass spectrometers as a means of performing tandem mass spectrometry has provided a versatile instrument on which the ion/molecule reactions of a mass selected ion can be studied. This dissertation details the application of ion/molecule reactions in a triple quadrupole to two analytical problems. Part I. Ion/Molecule Reactions of Ammonia with Translationally Excited C 2 H 5 O + /Ions. The ability to impart low center-of-mass translational energies, which upon collision are converted into internal energy, allows the observation of reactions that require energy input. In addition, the systematic variation of the ion kinetic energy, often referred to as energy-resolved mass spectrometer, adds another dimension to the mass spectrum and can allow the observation of thresholds for reactions requiring energy input. This investigation develops methods for determining these thresholds. Part 2. The Use of Ion/Molecule Reactions in selected Reaction Monitoring GC/MSD/MS Analyses. An approach to improving the selectivity of an analysis is to improve the selectivity of the detection method. In GC/MS, one method has been to monitor a selected fragmentation reaction, either metastable or collisionally activated, in a selected reaction monitoring (SRM) analysis. This develops the use of ion/molecule reactions for selected reaction monitoring analyses

  17. Time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Kozlov, B.N.; Mamyrin, B.A.; Shmikk, D.V.; Shebelin, V.G.

    1981-01-01

    A time-of-flight mass spectrometer containing a pulsed ion source with an electron gun and two electrodes limiting ionization range, drift space and ion acceptor, is described. To expand functional possibilities, a slot collimator of the gas stream, two quantum generators and two diaphragms for the inlet of quantum generator radiation located on both sides of the ion source, are introduced in the ion source. The above invention enables to study details of the complex interaction process of laser radiation with molecules of the gas stream, which is actual for laser isotope separation

  18. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer

    Science.gov (United States)

    Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.

    2018-05-01

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.

  19. The design of the Spectrometer Ring at the HIAF

    Science.gov (United States)

    Wu, B.; Yang, J. C.; Xia, J. W.; Yan, X. L.; Hu, X. J.; Mao, L. J.; Sheng, L. N.; Wu, J. X.; Yin, D. Y.; Chai, W. P.; Shen, G. D.; Ge, W. W.; Wang, G.; Zhao, H.; Ruan, S.; Ma, X. W.; Wang, M.; Litvinov, S.; Wen, W. Q.; Chen, X. C.; Chen, R. J.; Tang, M. T.; Wu, W.; Luo, C.; Zhao, T. C.; Shi, C. F.; Fu, X.; Liu, J.; Liang, L.

    2018-02-01

    The Spectrometer Ring (SRing) is an essential part of the High Intensity heavy-ion Accelerator Facility project (HIAF) in China. It is designed as a multi-functional experimental storage ring, which will be able to operate in three ion optical operation modes. The SRing will be used as a time-of-flight mass spectrometer for short-lived, especially neutron-rich nuclei. It will also be used to collect and cool Rare Isotope Beams (RIBs) or highly-charged stable ion beams for nuclear and atomic physics experiments. The design magnetic rigidity is in the range 1.5 to 15 Tm. The beam cooling system consists of stochastic cooling and electron cooling devices. With a help of an electron cooler, stored ions will be decelerated to a minimum energy of 30 MeV/u by RF cavities. The extraction system of the SRing will allow cooled ion beams to be extracted to an external target for further ion manipulations or reaction experiments. The general ion optics design and technical requirements of SRing subsystems are presented and discussed in this paper.

  20. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources

    International Nuclear Information System (INIS)

    Strueder, Lothar; Epp, Sascha; Rolles, Daniel; Hartmann, Robert; Holl, Peter; Lutz, Gerhard; Soltau, Heike; Eckart, Rouven; Reich, Christian; Heinzinger, Klaus; Thamm, Christian; Rudenko, Artem; Krasniqi, Faton; Kuehnel, Kai-Uwe; Bauer, Christian; Schroeter, Claus-Dieter; Moshammer, Robert; Techert, Simone; Miessner, Danilo; Porro, Matteo

    2010-01-01

    Fourth generation accelerator-based light sources, such as VUV and X-ray Free Electron Lasers (FEL), deliver ultra-brilliant (∼10 12 -10 13 photons per bunch) coherent radiation in femtosecond (∼10-100 fs) pulses and, thus, require novel focal plane instrumentation in order to fully exploit their unique capabilities. As an additional challenge for detection devices, existing (FLASH, Hamburg) and future FELs (LCLS, Menlo Park; SCSS, Hyogo and the European XFEL, Hamburg) cover a broad range of photon energies from the EUV to the X-ray regime with significantly different bandwidths and pulse structures reaching up to MHz micro-bunch repetition rates. Moreover, hundreds up to trillions of fragment particles, ions, electrons or scattered photons can emerge when a single light flash impinges on matter with intensities up to 10 22 W/cm 2 . In order to meet these challenges, the Max Planck Advanced Study Group (ASG) within the Center for Free Electron Laser Science (CFEL) has designed the CFEL-ASG MultiPurpose (CAMP) chamber. It is equipped with specially developed photon and charged particle detection devices dedicated to cover large solid-angles. A variety of different targets are supported, such as atomic, (aligned) molecular and cluster jets, particle injectors for bio-samples or fixed target arrangements. CAMP houses 4π solid-angle ion and electron momentum imaging spectrometers ('reaction microscope', REMI, or 'velocity map imaging', VMI) in a unique combination with novel, large-area, broadband (50 eV-25 keV), high-dynamic-range, single-photon-counting and imaging X-ray detectors based on the pnCCDs. This instrumentation allows a new class of coherent diffraction experiments in which both electron and ion emission from the target may be simultaneously monitored. This permits the investigation of dynamic processes in this new regime of ultra-intense, high-energy radiation-matter interaction. After an introduction into the salient features of the CAMP chamber and

  1. Electron shakeoff following the β+ decay of +19Ne and +35Ar trapped ions

    Science.gov (United States)

    Fabian, X.; Fléchard, X.; Pons, B.; Liénard, E.; Ban, G.; Breitenfeldt, M.; Couratin, C.; Delahaye, P.; Durand, D.; Finlay, P.; Guillon, B.; Lemière, Y.; Mauger, F.; Méry, A.; Naviliat-Cuncic, O.; Porobic, T.; Quéméner, G.; Severijns, N.; Thomas, J.-C.

    2018-02-01

    The electron shakeoff of 19F and 35Cl atoms resulting from the β+ decay of +19Ne and +35Ar ions has been investigated using a Paul trap coupled to a time of flight recoil-ion spectrometer. The charge-state distributions of the recoiling daughter nuclei were compared to theoretical calculations based on the sudden approximation and accounting for subsequent Auger processes. The excellent agreement obtained for 35Cl is not reproduced in 19F. The shortcoming is attributed to the inaccuracy of the independent particle model employed to calculate the primary shakeoff probabilities in systems with rather low atomic numbers. This calls for more elaborate calculations, including explicitly the electron-electron correlations.

  2. APES: Acute Precipitating Electron Spectrometer - A High Time Resolution Monodirectional Magnetic Deflection Electron Spectrometer

    Science.gov (United States)

    Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-01-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  3. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  4. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R., E-mail: hogstrom@lsu.edu; Carver, Robert L.; Gibbons, John P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Clarke, Taylor; Henderson, Alexander; Liang, Edison P. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, Texas 77005-1827 (United States)

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower

  5. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    Science.gov (United States)

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration

  6. Performance of the electron energy-loss spectrometer

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1977-01-01

    Performance characteristics of the electron energy-loss spectrometer incorporating a new high-resolution hemispherical monochromator are reported. The apparatus achieved an energy-resolution of 25 meV in the elastic scattering mode, and angular distributions of elastically scattered electrons were in excellent agreement with previous workers. Preliminary energy-loss spectra for several atmospheric gases demonstrate the excellent versatility and stable operation of the improved system. 12 references

  7. Ignition method of corona discharge with modulation of the field in ion source of ion mobility spectrometer

    International Nuclear Information System (INIS)

    Gromov, Evgeniy

    2011-01-01

    The new method for the ignition of the corona discharge has been developed, which improves the stability of the ion mobility spectrometer and the resolution of the instrument. The system of forming a corona discharge without additional electrodes, which are used in a number of known structures for the pre-ionization, has been developed. This simplifies the design of the proposed source and an electronic control circuit. IMS technology is widely used in different civil and military fields for vapor-phase detection of explosive, narcotics, chemical warfare agents, biology molecules and so on. There are set of methods whose are used for the ionization of molecules under analysis. They are the following: radioactive ionization, ultraviolet photoionization, laser ionization, electric field ionization, corona spray ionization, electro spray ionization, roentgen ionization, and surface ionization. All these methods has their own advantages and disadvantages. A comparing of ion mobility spectra of non-polar hydrocarbons for photoionization, corona discharge ionization and 63 Ni ionization, had carried in. In our work we have investigated four types of IMS spectrometers whose use different sources for molecules under analysis ionization. They use radioactive ionization, ultraviolet photoionization, laser ionization, and roentgen ionization. The traditional explosives had investigated in experiments. In electricity, a corona discharge is an electrical discharge brought on by the ionization of a fluid surrounding a conductor, which occurs when the potential gradient (the strength of the electric field) exceeds a certain value, but conditions are insufficient to cause complete electrical breakdown or arcing.

  8. Development of a mini-orange spectrometer for conversion electron study

    International Nuclear Information System (INIS)

    Mishra, N.R.; Chakravarty, V.; Chintalapudi, S.N.; Ghugre, S.S.; Sastry, D.L.

    1996-01-01

    Conversion electrons provide with an unique tool to have an unambiguous multipolarity assignment for the observed gamma transitions. The fabrication of an electron spectrometer to detect these conversion electrons is a non-trivial task

  9. A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim; Waite, J. Hunter [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Westlake, Joseph [The Johns Hopkins University Applied Physics Laboratory LLC, 11100 Johns Hopkins Road, Laurel, Maryland 20723 (United States); Ostrom, Nathaniel; Ostrom, Peggy H. [Department of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, Michigan 48824 (United States)

    2015-10-15

    A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is around 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.

  10. Beta-spectrometer with magnetic filter of mini orange type

    International Nuclear Information System (INIS)

    Gorozhankin, V.M.; Gromov, K.Ya.; Kalinnikov, V.G.; Sereeter, Z.; Fominykh, V.I.; Malikov, Sh.R.; Yuldashev, M.B.

    1997-01-01

    At the ISOL facility YASNAPP-2 a β-spectrometer with a magnetic filter of the miniorange type is constructed to measure γ-ray internal conversion coefficients. The magnetic filter of the mini orange type is an assemblage of permanent magnets creating a toroidal magnetic field perpendicular to the electron trajectories from the source to the Si(Li) detector. The chosen profile of the permanent magnets allowed electron registration in the defined energy energy interval with some transmission increase. There are two sets of permanent magnets of the different thickness. Varying the type and number of permanent magnets one can set the detected electron energy intervals in a 50-2500 keV range. The efficiency of the spectrometer was investigated for different assemblages of the mini orange magnet. The facility can be used for the e-γ coincidence investigation. (A.A.D.)

  11. On the extension of (e,2e) theory to coincidence studies of ion-atom collisions

    International Nuclear Information System (INIS)

    Godunov, A.L.; Kampp, Marco; Sulik, B.; Walters, H.R.J.; Whelan, Colm T.

    2007-01-01

    The extension of (e,2e) theory to the coincidence studies of ion-atom collisions is considered. The simultaneous ionization of projectile and target is discussed and results are presented for transfer ionization

  12. Investigation of the ion beam of the Titan source by the time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Bugaev, A.S.; Gushenets, V.V.; Nikolaev, A.G.; Yushkov, G.Yu.

    2000-01-01

    The Titan ion source generates wide-aperture beams of both gaseous and metal ions of various materials. The above possibility is realized on the account of combining two types of arc discharge with cold cathodes in the source discharge system. The vacuum arc, initiated between the cathode accomplished from the ion forming material, and hollow anode, is used for obtaining the metal ions. The pinch-effect low pressure arc discharge, ignited on the same hollow anode, is used for obtaining gaseous ions. The composition of ion beams, generated by the Titan source through the specially designed time-of-flight spectrometer, is studied. The spectrometer design and principle pf operation are presented. The physical peculiarities of the source functioning, influencing the ion beam composition, are discussed [ru

  13. Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection

    International Nuclear Information System (INIS)

    Barbara, E. de; Marti, G. V.; Capurro, O. A.; Fimiani, L.; Mingolla, M. G.; Negri, A. E.; Arazi, A.; Figueira, J. M.; Pacheco, A. J.; Martinez Heimann, D.; Carnelli, P. F. F.; Fernandez Niello, J. O.

    2010-01-01

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of 7 Li, 16 O, 32 S and 35 Cl to study the mass region of interest for its application to measurements fusion cross sections in the 6,7 Li+ 27 Al systems at energies around and above the Coulomb barrier (0.8V B ≤E≤2.0V B ). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

  14. Evidence for electron-based ion generation in radio-frequency ionization.

    Science.gov (United States)

    Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2016-01-01

    Radio-frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi-volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive- and negative-ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4-T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We show that RF-generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6 F6 ) molecules to generate C6 F6 (●-) . Intensity of observed C6 F6 (●-) species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post-RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) for post-RF FT-ICR MS agreed with the previously reported value (1.60 (±0.30) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) from low-pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF-generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  15. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part II - the determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.

    1991-01-01

    For the use of published general or theoretical sensitivity factors in quantitative AES and XPS the energy dependence of both the spectrometer transmission function and the detector sensitivity must be known. Here we develop simple procedures which allow these dependencies to be determined experimentally. Detailed measurements for a modified VG Scientific ESCALAB II, the metrology spectrometer, operated in both the constant ΔE/E and constant ΔE modes, are presented and compared with theoretical estimates. It is shown that an exceptionally detailed electron-optical calculation, involving proprietary information, would be required to match the accuracy of the experimental procedures developed. Removal of the spectrometer transmission function and the detector sensitivity terms allows the measured spectrum to be converted to the true electron emission spectrum irrespective of the mode of operation. This provides the first step to the provision of reference samples to calibrate the transmission functions and detector sensitivities of all instruments so that they, in turn, may produce true electron emission spectra. This is vital if (i) all instruments are to give consistent results, (ii) theoretical terms are to be used in quantifying either AES or XPS and (iii) reference data banks are to be established for AES or XPS

  16. Electron scattering resonances and dissociative attachment in polyatomic molecules

    International Nuclear Information System (INIS)

    Olthoff, J.K.

    1985-01-01

    A relatively new technique, electron transmission spectroscopic, is now being used to investigate the unoccupied valence molecular orbitals of many chemical compounds. Electron-transmission spectroscopy measures the energy of negative ion states that arise from electron capture into unoccupied molecular orbitals. Additional information about the unoccupied orbitals may be obtained if the negative ion decays by way of dissociation. Determination of the identity, kinetic energy, and production rates of stable ion fragments supplies information about the shape and position of the potential energy curves which describe the electronic states of the molecule and the anion. Used together, photoelectron, electron transmission, and dissociation data can produce a complete picture of a molecule's valence electronic structure. For this work, a time-of-flight mass spectrometer was attached to an electron transmission spectrometer to observe negative ion fragments due to dissociative attachment. The mass spectrometer measures the identify and kinetic energy of stable negative ions as a function of incident electron energy. Electron transmission spectra and ion production data were acquired for many compounds in four chemical categories

  17. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  18. The ion mobility spectrometer for high explosive vapor detection

    International Nuclear Information System (INIS)

    Cohen, M.J.; Stimac, R.M.; Wernlund, R.F.

    1984-01-01

    The Phemto-Chem /SUP R/ Model 100 Ion Mobility Spectrometer (IMS) operates in air and measures a number of explosive vapors at levels as low as partsper-trillion in seconds. The theory and operation of this instrument is discussed. The IMS inhales the vapor sample in a current of air and generates characteristic ions which are separated by time-of -ion drift in the atmospheric pressure gas. Quantitative results, using a dilution tunnel and standard signal generator with TNT, nitroglycerine, ethylene glycol dinitrate, cyclohexanone, methylamine, octafluoronaphthalene and hexafluorobenzene, are given. Rapid sample treatment with sample concentrations, microprocessor signal readout and chemical identification, offer a realistic opportunity of rapid explosive vapor detection at levels down to 10 -14 parts by volume in air

  19. Electronic neutron sensor based on coincidence detection

    International Nuclear Information System (INIS)

    Barelaud, B.; Decossas, J.L.; Mokhtari, F.; Vareille, J.C.

    1996-01-01

    The last symposium on neutron dosimetry which took place in Paris in November 1995 have shown again that it doesn't exist any individual active neutron dosemeter. The state of art on electronic device, the needs of the nuclear power industry in individual neutron monitoring and the new trends of The last symposium on neutron dosimetry which took place in Paris in November 1995 have shown again that it doesn't exist any individual active neutron dosemeter. The state of art on electronic device, the needs of the nuclear power industry in individual neutron monitoring and the new trends of researches were presented. They confirm the relevance of our studies in progress in the C2M team of the University of Limoges. The aim of this work is to realize an individual electronic neutron dosemeter. The device in the progress of being development will operate either as a dosemeter or as ratemeter giving H p (10) and H p (10) either as a spectrometer permitting to characterize the primary neutron beam. (author)

  20. Influence of the coupling between an atmospheric pressure ion mobility spectrometer and the low pressure ion inlet of a mass spectrometer on the mobility measurement

    Directory of Open Access Journals (Sweden)

    Gunzer Frank

    2016-01-01

    Full Text Available Ion mobility spectrometers (IMS are versatile gas analyzers. Due to their small size and robustness, combined with a very high sensitivity, they are often used in gas sensing applications such as environmental monitoring. In order to improve the selectivity, they are typically combined with a mass spectrometer (MS. Since IMS works at atmospheric pressure, and MS works at vacuum, a special interface reducing the pressure over normally two stages has to be used. In this paper the influence of this coupling of different pressure areas on the IMS signal will be analyzed with help of finite elements method simulations.

  1. SU-F-T-84: Measurement and Monte-Carlo Simulation of Electron Phase Spaces Using a Wide Angle Magnetic Electron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Englbrecht, F; Lindner, F; Bin, J; Wislsperger, A; Reiner, M; Kamp, F; Belka, C; Dedes, G; Schreiber, J; Parodi, K [LMU Munich, Munich, Bavaria (Germany)

    2016-06-15

    Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by an online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser

  2. Measurement of the central ion and electron temperature of tokamak plasmas from the x-ray line radiation of high-Z impurity ions

    International Nuclear Information System (INIS)

    Bitter, M.; von Goeler, S.; Goldman, M.; Hill, K.W.; Horton, R.; Roney, W.; Sauthoff, N.; Stodiek, W.

    1982-04-01

    This paper describes measurements of the central ion and electron temperature of tokamak plasmas from the observation of the 1s - 2p resonance lines, and the associated dielectronic (1s 2 nl - 1s2pnl, with n greater than or equal to 2) satellites, of helium-like iron (Fe XXV) and titanium (Ti XXI). The satellite to resonance line ratios are very sensitive to the electron temperature and are used as an electron temperature diagnostic. The ion temperature is deduced from the Doppler width of the 1s - 2p resonance lines. The measurements have been performed with high resolution Bragg crystal spectrometers on the PLT (Princeton Large Torus) and PDX (Poloidal Divertor Experiment) tokamaks. The details of the experimental arrangement and line evaluation are described, and the ion and electron temperature results are compared with those obtained from independent diagnostic techniques, such as the analysis of charge-exchange neutrals and measurements of the electron cyclotron radiation. The obtained experimental results permit a detailed comparison with theoretical predictions

  3. High-precision spectrometer for studies of ion-induced and spontaneous fission dynamics

    International Nuclear Information System (INIS)

    Batenkov, O.; Elmgren, K.; Majorov, M.; Blomgren, J.; Conde, H.; Hultqvist, S.; Olsson, N.; Rahm, J.; Ramstroem, E.; Smirnov, S.; Veshikov, A.

    1997-01-01

    A spectrometer has been designed and built to investigate the dynamics of spontaneous and ion-induced fission processes. It consists of 8 neutron detectors surrounding a low mass scattering chamber containing the fissionable targets and two fission fragment telescopes. The spectrometer measures neutron spectra, and energy and angular correlations of neutrons, as well as kinetic energy, mass, and relative angle of fission fragments. A 252 Cf fission reference source is used for calibration. (orig.)

  4. Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions

    Science.gov (United States)

    Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.

    2012-06-01

    We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.

  5. Electron optics development for photo-electron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wannberg, Bjoern [VG Scienta AB, P.O. Box 15120, SE-750 15 Uppsala (Sweden); BW Particle Optics AB, P.O. Box 55, SE-822 22 Alfta (Sweden)], E-mail: bjorn@particleoptics.se

    2009-03-21

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  6. Electron optics development for photo-electron spectrometers

    International Nuclear Information System (INIS)

    Wannberg, Bjoern

    2009-01-01

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  7. Project for a high resolution magnetic spectrometer for heavy ions

    International Nuclear Information System (INIS)

    Birien, P.; Valero, S.

    1981-05-01

    The energy loss spectrometer presented in this report has an energy resolution of 2x10 -4 with the full solid angle of 5 msr. The maximum magnetic rigidity of the particles analysed is 2.88 Tesla-meters on the optical axis and the total acceptance in energy is 14%. Experiments with reaction angles near 0 0 are possible. Kinematic compensation is adapted to heavy ion physics. In this report, we have paid special attention to the simplicity of the construction and of the use of this spectrometer by experimentalists. This report is addressed both to non-specialists and to future users as well [fr

  8. Electron emission following collisions between multi-charged ions and D2 molecules

    International Nuclear Information System (INIS)

    Laurent, G.

    2004-05-01

    Dissociative ionisation mechanisms induced in collisions involving a highly charged ion (S 15+ , 13.6 MeV/u) and a molecular deuterium target, have been studied through momentum vector correlations of both the D + fragments and the electrons produced. An experimental apparatus has been developed in order to detect in coincidence all the charged particles produced during the collision. The measurement of their momentum vectors, which allows one to determine both their kinetic energy and direction of emission with respect to the projectile one, combines Time of Flight, Position Sensitive Detection, and multi-coincidence techniques. The correlation of the fragment and electron kinetic energies enables not only to determine branching ratios between the dissociative ionisation pathways, but also to separate unambiguously kinetic energy distributions of fragments associated to each process. Finally, the angular distributions of ejected electrons, as a function of the orientation of the molecular axis with respect to the projectile direction, are deduced from the spatial correlation. Measurements are compared to theoretical angular distributions obtained using the CDW-EIS (Continuum Distorted Wave-Eikonal Initial State) method. (author)

  9. Exploring the Physics Limitations of Compact High Gradient Accelerating Structures Simulations of the Electron Current Spectrometer Setup in Geant4

    CERN Document Server

    Van Vliet, Philine Julia

    2017-01-01

    The high field gradient of 100 MV/m that will be applied to the accelerator cavities of the Compact Linear Collider (CLIC), gives rise to the problem of RF breakdowns. The field collapses and a plasma of electrons and ions is being formed in the cavity, preventing the RF field from penetrating the cavity. Electrons in the plasma are being accelerated and ejected out, resulting in a breakdown current up to a few Amp`eres, measured outside the cavities. These breakdowns lead to luminosity loss, so reducing their amount is of great importance. For this, a better understanding of the physics behind RF breakdowns is needed. To study these breakdowns, the XBox 2 test facility has a spectrometer setup installed after the RF cavity that is being conditioned. For this report, a simulation of this spectrometer setup has been made using Geant4. Once a detailed simulation of the RF field and cavity has been made, it can be connected to this simulation of the spectrometer setup and used to recreate the data that has b...

  10. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Winzen, Daniel; Hannen, Volker; Ortjohann, Hans-Werner; Zacher, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2012-07-01

    The KATRIN (KArlsruhe TRItium Neutrino mass) experiment will study the tritium {beta}-spectrum near the endpoint of 18.6 keV, aiming to measure the mass of the electron antineutrino. Using an electrostatic retarding spectrometer (MAC-E-Filter), the projected sensitivity for m{sub ve} is 200 meV/c{sup 2} at 90% C.L. In order to map out the electric and magnetic fields in the main spectrometer, an angular selective electron gun is currently being developed. The e-gun uses an UV-Laser to produce electrons via the photo-electric effect from a copper substrate which are then accelerated electrostatically. It features a small energy spread of approx. 0.1 eV, a sharp emission angle and will be able to cover the whole magnetic flux tube of KATRIN. Using a pulsed laser it is also possible to investigate the time of flight (TOF) of electrons through the spectrometer, offering enhanced sensitivity to spectrometer properties far away from the analysing plane. By comparing information from transmission function measurements and TOF data with Monte Carlo simulations of the setup, one will be able to achieve a detailed understanding of the spectrometer properties.

  11. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-10-12

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158 molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).

  12. Ion-neutral transport through quadrupole interfaces of mass-spectrometer systems

    International Nuclear Information System (INIS)

    Jugroot, M.; Groth, C.P.T.; Thomson, B.A.; Baranov, V.; Collings, B.A.; French, J.B.

    2004-01-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf), and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. (author)

  13. Highly effective portable beta spectrometer for precise depth selective electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Aldiyarov, N.U.; Kadyrzhanov, K.K.; Seytimbetov, A.M.; Zhdanov, V.S.

    2007-01-01

    Full text: More broad application of the nuclear-physical method of precise Depth Selective Electron Moessbauer Spectroscopy (DS EMS) is limited by insufficient accessibility of highly-effective beta spectrometers with acceptable resolution. It should be mentioned that the method DS EMS is realized at a combined installation that consists of a highly-effective beta spectrometer and a conventional portable nuclear gamma-resonance spectrometer. Yet few available beta spectrometers have sophisticated design and controlling; in most cases they are cumbersome. All the attempts to simplify beta spectrometers resulted in noticeable worsening of depth resolution for the DS EMS method making the measurements non precise. There is currently an obvious need in a highly-effective portable easily controlled beta spectrometer. While developing such portable beta spectrometer, it is more promising to use as basis a simpler spectrometer, which has ratio of sample size to spectrometer size of about five times. The paper presents an equal-arm version of a highly-effective portable beta spectrometer with transverse heterogeneous sector magnetic field that assures double focusing. The spectrometer is equipped with a large-area non-equipotential source (a sample under investigation) and a position-sensitive detector. This portable spectrometer meets all requirements for achievement of the DS EMS depth resolution close to the physical limit and demonstrates the following main characteristics: equilibrium orbit radius ρ 0 = 80 mm, instrumental energy resolution 0.6 % at solid angle 1 % of 4π steradian, area of non-equipotential source ∼ 80 mm 2 , registration by position-sensitive detector of ∼ 10 % of the energy interval. Highly-effective portable beta spectrometer assures obtaining Moessbauer data with depth resolution close to physical limit of the DS EMS method. So in measurements at conversion and Auger electrons with energies of about units of keV and above, the achieved

  14. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    International Nuclear Information System (INIS)

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  15. Application of an ion mobility spectrometer based on virtual instrument technology

    International Nuclear Information System (INIS)

    Fu Shihong; Wei Yongbo; Jiang Dazhen

    2008-01-01

    This paper presents the application of virtual instrument technology on an ion mobility spectrometer (IMS). By designing the data acquisition and processing system of IMS on LabVIEW platform, the ability of signal processing and real time measurement in practice has been improved. (authors)

  16. Further development of a cosmic veto gamma-spectrometer

    International Nuclear Information System (INIS)

    Burnett, J.L.; Davies, A.V.; McLarty, J.L.

    2013-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a network of certified laboratories that perform high-resolution gamma-spectrometry on global air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of measurements for treaty compliance. The system consists of plastic scintillation plates operated in time-stamp mode to detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer. This provides a mean background reduction of 75.2 % with MDA improvements of 45.6 %. The CTBT requirement for a 140 Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system does not require dedicated coincidence electronics, and remains easily configurable with dual acquisition of unsuppressed and suppressed spectra. Performance has been significantly improved by complete processing of the cosmic-ray spectrum (0-25 MeV) combined with the Canberra Lynx TM multi-channel analyser. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident. (author)

  17. Hardware/Software Codesign in a Compact Ion Mobility Spectrometer Sensor System for Subsurface Contaminant Detection

    Directory of Open Access Journals (Sweden)

    Gribb MollyM

    2008-01-01

    Full Text Available Abstract A field-programmable-gate-array-(FPGA- based data acquisition and control system was designed in a hardware/software codesign environment using an embedded Xilinx Microblaze soft-core processor for use with a subsurface ion mobility spectrometer (IMS system, designed for detection of gaseous volatile organic compounds (VOCs. An FPGA is used to accelerate the digital signal processing algorithms and provide accurate timing and control. An embedded soft-core processor is used to ease development by implementing nontime critical portions of the design in software. The design was successfully implemented using a low-cost, off-the-shelf Xilinx Spartan-III FPGA and supporting digital and analog electronics.

  18. The SAGE spectrometer: A tool for combined in-beam γ-ray and conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Papadakis, P; Herzberg, R-D; Pakarinen, J; Butler, P A; Cox, D; Cresswell, J R; Parr, E; Sampson, J; Greenlees, P T; Sorri, J; Hauschild, K; Jones, P; Julin, R; Peura, P; Rahkila, P; Sandzelius, M; Coleman-Smith, P J; Lazarus, I H; Letts, S C; Pucknell, V F E

    2011-01-01

    The SAGE spectrometer allows simultaneous in-beam γ-ray and internal conversion electron measurements, by combining a germanium detector array with a highly segmented silicon detector and an electron transport system. SAGE is coupled with the ritu gas-filled recoil separator and the great focal-plane spectrometer for recoil-decay tagging studies. Digital electronics are used both for the γ ray and the electron parts of the spectrometer. SAGE was commissioned in the Accelerator Laboratory of the University of Jyvaeskylae in the beginning of 2010.

  19. Kβ spectra of heliumlike chromium from an electron-beam ion trap

    International Nuclear Information System (INIS)

    Decaux, V.; Beiersdorfer, P.; Elliott, S.; Osterheld, A.

    1993-01-01

    Kβ spectra of heliumlike chromium have been recorded using the Livermore electron-beam ion trap (EBIT) with a high-resolution Bragg crystal spectrometer in the von Hamos configuration, in the wavelong range from 1.870 Angstrom. Measurements have been made both for direct excitation at an electron beam energy of 8 k and dielectronic recombination around the KLM resonance energy of 5 keV. In order to evaluate the resonance strength the lithiumlike dielectronic satellites, we used a data routine technique to accumulate spectra at 15 different beam energies between 4.96 and 5.28 keV. Results are compared to theoretical calculations using the multiconfiguration parametric potential method

  20. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C.

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed

  1. Ion plasma electron gun

    International Nuclear Information System (INIS)

    Wakalopulos, G.

    1976-01-01

    In the disclosed electron gun positive ions generated by a hollow cathode plasma discharge in a first chamber are accelerated through control and shield grids into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam having a distribution adjacent to the cathode emissive surface substantially the same as the distribution of the ion beam impinging upon the cathode. After passing through the grids and the plasma discharge chamber, the electron beam exits from the electron gun via a foil window. Control of the generated electron beam is achieved by applying a relatively low control voltage between the control grid and the electron gun housing (which resides at ground potential) to control the density of the positive ions bombarding the cathode

  2. Ion transfer from an atmospheric pressure ion funnel into a mass spectrometer with different interface options: Simulation-based optimization of ion transmission efficiency.

    Science.gov (United States)

    Mayer, Thomas; Borsdorf, Helko

    2016-02-15

    We optimized an atmospheric pressure ion funnel (APIF) including different interface options (pinhole, capillary, and nozzle) regarding a maximal ion transmission. Previous computer simulations consider the ion funnel itself and do not include the geometry of the following components which can considerably influence the ion transmission into the vacuum stage. Initially, a three-dimensional computer-aided design (CAD) model of our setup was created using Autodesk Inventor. This model was imported to the Autodesk Simulation CFD program where the computational fluid dynamics (CFD) were calculated. The flow field was transferred to SIMION 8.1. Investigations of ion trajectories were carried out using the SDS (statistical diffusion simulation) tool of SIMION, which allowed us to evaluate the flow regime, pressure, and temperature values that we obtained. The simulation-based optimization of different interfaces between an atmospheric pressure ion funnel and the first vacuum stage of a mass spectrometer require the consideration of fluid dynamics. The use of a Venturi nozzle ensures the highest level of transmission efficiency in comparison to capillaries or pinholes. However, the application of radiofrequency (RF) voltage and an appropriate direct current (DC) field leads to process optimization and maximum ion transfer. The nozzle does not hinder the transfer of small ions. Our high-resolution SIMION model (0.01 mm grid unit(-1) ) under consideration of fluid dynamics is generally suitable for predicting the ion transmission through an atmospheric-vacuum system for mass spectrometry and enables the optimization of operational parameters. A Venturi nozzle inserted between the ion funnel and the mass spectrometer permits maximal ion transmission. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  4. Electron-ion collisions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1982-01-01

    This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments

  5. A superheterodyne spectrometer for electronic paramagnetic. Resonance

    International Nuclear Information System (INIS)

    Laffon, J.L.

    1963-12-01

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [fr

  6. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  7. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    Science.gov (United States)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  8. (e, 2e) ionization-excitation experiment with fixed-in-space H2 molecules

    International Nuclear Information System (INIS)

    Takahashi, M.; Watanabe, N.; Khajuria, Y.; Udagawa, Y.; Eland, J.H.D.

    2005-01-01

    This report will introduce an electron-electron-fragment ion triple coincidence spectrometer to the readers with our recent collision dynamics study on ionization-excitation processes of the hydrogen molecule. Following a description of the working principle of the spectrometer, results of the study will be discussed; this includes molecular frame (e, 2e) cross sections that have been observed for the first time. (author)

  9. Cassini Ion Mass Spectrometer Peak Calibrations from Statistical Analysis of Flight Data

    Science.gov (United States)

    Woodson, A. K.; Johnson, R. E.

    2017-12-01

    The Cassini Ion Mass Spectrometer (IMS) is an actuating time-of-flight (TOF) instrument capable of resolving ion mass, energy, and trajectory over a field of view that captures nearly the entire sky. One of three instruments composing the Cassini Plasma Spectrometer, IMS sampled plasma throughout the Kronian magnetosphere from 2004 through 2012 when it was permanently disabled due to an electrical malfunction. Initial calibration of the flight instrument at Southwest Research Institute (SwRI) was limited to a handful of ions and energies due to time constraints, with only about 30% of planned measurements carried out prior to launch. Further calibration measurements were subsequently carried out after launch at SwRI and Goddard Space Flight Center using the instrument prototype and engineering model, respectively. However, logistical differences among the three calibration efforts raise doubts as to how accurately the post-launch calibrations describe the behavior of the flight instrument. Indeed, derived peak parameters for some ion species differ significantly from one calibration to the next. In this study we instead perform a statistical analysis on 8 years of flight data in order to extract ion peak parameters that depend only on the response of the flight instrument itself. This is accomplished by first sorting the TOF spectra based on their apparent compositional similarities (e.g. primarily water group ions, primarily hydrocarbon ions, etc.) and normalizing each spectrum. The sorted, normalized data are then binned according to TOF, energy, and counts in order to generate energy-dependent probability density maps of each ion peak contour. Finally, by using these density maps to constrain a stochastic peak fitting algorithm we extract confidence intervals for the model parameters associated with various measured ion peaks, establishing a logistics-independent calibration of the body of IMS data gathered over the course of the Cassini mission.

  10. Ion and electron swarm studies of relevance to plasma processing: positive ion-molecule and electron-molecule studies of SF6 and derivatives

    International Nuclear Information System (INIS)

    Atterbury, C.; Kennedy, R.A.; Critchley, A.D.J.; Mayhew, C.A.

    2002-01-01

    dissociative charge transfer and various abstraction channels. Non-dissociative charge transfer is not observed, implying that the parent ion dissociates rapidly to the fragment ion and associated neutral(s). Figure 1 illustrated the reaction pathways accessible to the reagent ions either by dissociative charge transfer (simple fragmentation) and those involving migration of an F atom across the S-C bond. Electron attachment studies. Electron attachment rate coefficients and anion product branching ratios have been measured for electron attachment to XF 6 (X = S, Se and Te) and SF 5 X (X = Cl and CF 3 ), using an atmospheric pressure drift tube apparatus connected to a mass spectrometer. Results from these studies are presented. Electron attachment to XF 6 was observed to produce XF 6 + XF 5 + . When extrapolated to zero attaching gas concentration, the branching ratios are found to be similar, with XF 6 + dominate in each case. Despite this similarity, the electron attachment rate coefficients are found to be markedly different: k(SeF 6 ) ∼ 10 -2 x k(SF 6 ); k(TeF 6 ) ∼ 10 -3 x k(SF 6 ). SF 5 CF 3 and SF 5 Cl are also found to attach electrons at much slower rate than SF 6 . (author)

  11. Emission of low-energetic electrons in collisions of heavy ions with solid targets

    International Nuclear Information System (INIS)

    Lineva, Natallia

    2008-07-01

    At the UNILAC accelerator, we have initiated a project with the objective to investigate lowenergy electrons, emitted from solid, electrically conductive targets after the impact of swift light and heavy ions. For this purposes, we have installed, optimized, and put into operation an electrostatic toroidal electron spectrometer. First, investigations of electrons, emitted from solid-state targets after the bombardment with a monochromatic electron beam from an electron gun, has been carried out. The proposed method combines the results of the measurements with the results of dedicated Monte Carlo simulations. The method has been elaborated in a case study for carbon targets. The findings have been instrumental for the interpretation of our measurements of electrons emitted in collisions of swift ions with the same carbon targets. Our investigations focused on following ion beams: protons and (H + 3 )-molecules of the same energy, as well as on carbon ions with two different energies. Thin carbon, nickel, argon and gold foils has been used as targets. Electrons in the energy range between 50 eV and 1 keV have been investigated. The measured electron distributions, both integral as well as differential with respect to the polar angle, have been compared to simple standard theories for gases as well as to the results of TRAX simulations, the latter being based on data from gaseous targets. Dedicated TRAX simulations have been performed only for the carbon targets, applying the method mentioned above. Within our experimental uncertainties, we observe a good agreement of the measured and TRAX simulated data. That leads us to the conclusion that - as a first order approximation - the electron emission pattern from ion-atom collisions in solid-state targets and the one from single collisions in gases are similar. (orig.)

  12. Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy

    Science.gov (United States)

    Reeder, P. L.; Bowyer, T. W.

    1998-02-01

    Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.

  13. Modelling the line shape of very low energy peaks of positron beam induced secondary electrons measured using a time of flight spectrometer

    International Nuclear Information System (INIS)

    Fairchild, A J; Chirayath, V A; Gladen, R W; Chrysler, M D; Koymen, A R; Weiss, A H

    2017-01-01

    In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed. (paper)

  14. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  15. State-selective electron capture into He-like U90+ ions in collisions with gaseous targets

    International Nuclear Information System (INIS)

    Ma, X.; Stoehlker, T.; Brinzanescu, O.; Fritzsche, S.; Ludziejewski, T.; Stachura, Z.; Warczak, A.

    2000-11-01

    For He-like uranium, a state-selective electron capture study was carried out for relativistic collisions with gaseous targets. In the experiment, the projectile X-ray emission produced by electron capture in collisions of 223 MeV/u U 90+ ions on N 2 , Ar, Kr, and Xe targets was measured in coincidence with down-charged U 89+ projectiles. Due to the large fine structure splitting in heavy ions, the well resolved Balmer transitions observed were used to deduce subshell sensitive cross-sections for electron capture. For this purpose a theoretical spectrum analysis and simulation was performed by taking into account electron cascades from states up to n = 40. The state-selective data are compared with theoretical calculations as a function of target atomic number. An overall agreement is found between the experimental data and the theoretical approaches applied except for the j-sensitive part. (orig.)

  16. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    International Nuclear Information System (INIS)

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4π required for a spectral measurement with this system is approx. 10 10 n where the neutron yield is predominantly below 4 MeV and approx. 10 8 n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described

  17. Electron spectroscopy measurements with a shifted analyzing plane setting in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Dyba, Stephan [Institut fuer Kernphysik, Uni Muenster (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    With the KATRIN (KArlsruhe TRItium Neutrino) experiment the endpoint region of the tritium beta decay will be measured to determine the electron-neutrino mass with a sensitivity of 200 meV/c{sup 2} (90% C.L.). For the high precision which is needed to achieve the sub-eV range a MAC-E filter type spectrometer is used to analyze the electron energy. To understand the various background contributions inside the spectrometer vessel different electric and magnetic field settings were investigated during the last commissioning phase. This talk will focus on the so called shifted analyzing plane measurement in which the field settings were tuned in a way to provide non standard potential barriers within the spectrometer. The different settings allowed to perform a spectroscopic measurement, determining the energy spectrum of background electrons born within the spectrometer.

  18. Modified Thomson spectrometer design for high energy, multi-species ion sources

    International Nuclear Information System (INIS)

    Gwynne, D.; Kar, S.; Doria, D.; Ahmed, H.; Hanton, F.; Cerchez, M.; Swantusch, M.; Willi, O.; Fernandez, J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Green, J. S.; Neely, D.; Najmudin, Z.; Streeter, M.; Ruiz, J. A.; Schiavi, A.; Zepf, M.; Borghesi, M.

    2014-01-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection

  19. Observations of field-aligned energetic electron and ion distributions near the magnetopause at geosynchronous orbit

    International Nuclear Information System (INIS)

    Korth, A.; Kremser, G.; Daly, P.W.; Amata, E.

    1982-01-01

    On August 28, 1978, the dayside magnetopause crossed the geosynchronous satellite GEOS 2 several times during a geomagnetically disturbed period, and clear signatures of the interconnection of field lines through the magnetopause were observed. The MPAE particle spectrometer provided high time resolution observations of the distribution of energetic electrons (E>22 keV) and ions (E>27 keV). Magnetometer data were used to determine the location of GEOS 2 relative to the magnetopause. The pitch angle distributions of ions and electrons were found to be strongly asymmetric with respect to 90 0 , and the asymmetries have been interpreted in terms of field-aligned particle streaming. Evidence is provided for the first time for electron streaming inside the magnetopause which continues for many bounce periods. It is concluded that magnetospheric field lines opened, at least for brief time intervals, as a consequence of interconnection with magnetosheath field lines. Comparisons of electron spectra provide evidence that the streaming electrons observed in the magnetosheath originate in the magnetosphere

  20. Action spectroscopy of SrCl{sup +} using an integrated ion trap time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Prateek, E-mail: teek24@ucla.edu; Schowalter, Steven J.; Hudson, Eric R. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Kotochigova, Svetlana; Petrov, Alexander [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2014-07-07

    The photodissociation cross-section of SrCl{sup +} is measured in the spectral range of 36 000–46 000 cm{sup −1} using a modular time-of-flight mass spectrometer (TOF-MS). By irradiating a sample of trapped SrCl{sup +} molecular ions with a pulsed dye laser, X{sup 1}Σ{sup +} state molecular ions are electronically excited to the repulsive wall of the A{sup 1}Π state, resulting in dissociation. Using the TOF-MS, the product fragments are detected and the photodissociation cross-section is determined for a broad range of photon energies. Detailed ab initio calculations of the SrCl{sup +} molecular potentials and spectroscopic constants are also performed and are found to be in good agreement with experiment. The spectroscopic constants for SrCl{sup +} are also compared to those of another alkaline earth halogen, BaCl{sup +}, in order to highlight structural differences between the two molecular ions. This work represents the first spectroscopy and ab initio calculations of SrCl{sup +}.

  1. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  2. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    Science.gov (United States)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  3. Binary-encounter electron emission after fast heavy-ion impact on complex rare- and molecular-gas targets

    International Nuclear Information System (INIS)

    Bechthold, U.; Ullrich, J.; Ramm, U.; Kraft, G.; Hagmann, S.; Schultz, D.R.; Reinhold, C.O.; Schmidt-Boecking, H.

    1998-01-01

    Doubly differential cross sections (DDCSs) for electron emission have been measured for collisions of 3.6 MeV/u Ne 10+ , Xe 40+ and 5.9 MeV/u U 29+ on neon, xenon, water, ethanol, methanol, propanol, C 2 F 6 , SF 6 , and C 3 F 8 . Electrons ejected with emission angles between 0 degree and 180 degree with respect to the ion beam axis have been recorded simultaneously using a toroidal electron spectrometer. We analyze the singly differential cross section (SDCS) for binary encounter electron (BEe) production as a function of target electron number and laboratory emission angle. We find that there exists a linear scaling of the BEe SDCS with the number of electrons bound in the target with an energy lower than the reduced projectile energy. The enhancement of BEe production in the forward direction in collisions with partially stripped ions is studied for the different projectiles and targets and compared to theoretical calculations. copyright 1998 The American Physical Society

  4. Electron induced formation and stability of molecular and cluster ions in gas phase and superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Aleem, M. A.

    2010-01-01

    The present PhD thesis represents a broad range study of electron induced formation and stability of positive and negative ions in gas phase and superfluid helium nanodroplets. The molecules studied are of industrial, environmental, plasma and biological relevance. The knowledge obtained from the study provides new insight for the proper understanding and control on energetics and dynamics of the reactions involved in the formation and fragmentation processes of the studied molecules and clusters. The experiments are accomplished and investigated using mass spectrometric techniques for the formation of molecular and cluster ions using different mass spectrometers available in our laboratory. One part of the work is focused on electron-induced reactions of the molecules in gas phase. Especially focus is laid to electron attachment to the isomers of mononitrotolouene used as an additive to explosives. The fragile nature and high internal energy of these molecules has lead to extensive fragmentation following the ionisation process. Dissociative electron attachment to the three different isomers has shown different resonances and therefore this process can be utilized to explicitly distinguish these isomers. Anion efficiency curves of the isomers have been studied using effusive molecular beam source in combination with a hemispherical electron monochromator as well as a Nier-type ion source attached to a sector field mass spectrometer. The outcome of the experiment is a reliable and effective detection method highly desirable for environmental and security reasons. Secondly, dissociative electron ionization of acetylene and propene is studied and their data is directly related to the plasma modelling for plasma fusion and processing reactors. Temperature effects for dissociative electron attachment to halo-hydrocarbons are also measured using a trochoidal electron monochromator. The second part of the work is concerned with the investigation of electron

  5. PLUMEX II: A second set of coincident radar and rocket observations of equatorial spread-F

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Tsunoda, R.T.; Narcisi, R.; Holmes, J.C.

    1981-01-01

    PLUMEX II, the second rocket in a two-rocket operation that successfully executed coincident rocket and radar measurements of backscatter plumes and plasma depletions, was launched into the mid-phase of well-developed equatorial spread-F. In contrast with the first operation, the PLUMEX II results show large scale F-region irregularities only on the bottomside gradient with smaller scale irregularities (i.e., small scale structure imbedded in larger scale features) less intense than corresponding observations in PLUMEX I. The latter result could support current interpretations of east-west plume asymmetry which suggests that during initial upwelling the western wall of a plume (the PLUMEX I case) is more unstable than its eastern counterpart (the PLUMEX II case). In addition, ion mass spectrometer results are found to provide further support for an ion transport model which ''captures'' bottomside ions in an upwelling bubble and transports them to high altitudes

  6. Large acceptance spectrometers for π0 mesons

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1984-01-01

    A spectrometer composed of lead-oxide loaded glass blocks has been constructed for detection of neutral pi mesons emitted in low energy heavy ion reactions. The spectrometer detects the Cerenkov radiation emitted when the high energy photons (Eγ approx. 70 MeV) resulting from π 0 decay create electron-position pairs in the glass, initiating electromagnetic showers. A geometric acceptance of better than 5% of 4π is possible; the π 0 detection efficiency varies between this value at T/sub π/ = 0 MeV and 1% for T/sub π/ approx. 100 MeV

  7. Zero-degree binary encounter electrons in fast collisions of highly charged F and O ions with H2 targets

    International Nuclear Information System (INIS)

    Lee, D.H.; Zouros, T.J.M.; Sanders, J.M.; Hidmi, H.; Richard, P.

    1993-01-01

    Doubly differential cross sections (DDCS) for binary encounter electrons (BEe) produced by 0.5-2 MeV/u highly-charged F and O ions in collisions with H 2 gas targets have been studied at 0 with respect to the ion beam direction. The measured DDCS of the broad binary encounter peak was well described by a simple impulse approximation (IA) treatment for bare ions, and was demonstrated to provide in situ detection efficiency of the electron spectrometer. The projectile energy dependence of the BEe production for nonbare (clothed) projectiles is found to follow a scaled IA prediction, in which a BEe enhancement is consistently exhibited for the collision energy range studied. (orig.)

  8. A solenoidal electron spectrometer for a precision measurement of the neutron β-asymmetry with ultracold neutrons

    International Nuclear Information System (INIS)

    Plaster, B.; Carr, R.; Filippone, B.W.; Harrison, D.; Hsiao, J.; Ito, T.M.; Liu, J.; Martin, J.W.; Tipton, B.; Yuan, J.

    2008-01-01

    We describe an electron spectrometer designed for a precision measurement of the neutron β-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported

  9. A solenoidal electron spectrometer for a precision measurement of the neutron {beta}-asymmetry with ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Plaster, B. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)], E-mail: plaster@pa.uky.edu; Carr, R.; Filippone, B.W. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Harrison, D. [Physics Department, University of Winnipeg, Manitoba, Canada R3B 2E9 (Canada); Hsiao, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Ito, T.M. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Martin, J.W. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Physics Department, University of Winnipeg, Manitoba, R3B 2E9 (Canada); Tipton, B.; Yuan, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-10-11

    We describe an electron spectrometer designed for a precision measurement of the neutron {beta}-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  10. Design of microcomputer-based data acquisition system for the time-of-flight ion scattering spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H; Su, C [National Tsing Hua Univ., Hsinchu (Taiwan). Inst. of Nuclear Engineering

    1981-07-15

    A microcomputer-based data aquisition system used on a time-of-flight ion scattering spectrometer is described. The flight time of 90/sup 0/-scattered ions from target atom determined directly with a 30 MHz crystal-controlled oscillator and its associated circuit. The ion intensity is detected by a channel multiplier, and its output signal pulse is converted from the analog form into digital form by an ADC. Both flight time and ion intensity are stored in the microcomputer.

  11. Design of microcomputer-based data acquisition system for the time-of-flight ion scattering spectrometer

    International Nuclear Information System (INIS)

    Lo, H.; Su, C.

    1981-01-01

    A microcomputer-based data aquisition system used on a time-of-flight ion scattering spectrometer is described. The flight time of 90 0 -scattered ions from target atom determined directly with a 30 MHz crystal-controlled oscillator and its associated circuit. The ion intensity is detected by a channel multiplier, and its output signal pulse is converted from the analog form into digital form by an ADC. Both flight time and ion intensity are stored in the microcomputer. (orig.)

  12. Direct classification of olive oils by using two types of ion mobility spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Garrido-Delgado, Rocio [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Mercader-Trejo, Flora [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Metrologia de Materiales, Centro Nacional de Metrologia, km. 4.5 Carretera a Los Cues, El Marques, Queretaro (Mexico); Sielemann, Stefanie; Bruyn, Wolfgang de [G.A.S. Gesellschaft fuer analytische Sensorsysteme mbH, BioMedizinZentrumDortmund, Otto-Hahn-Str. 15, 44227 Dortmund (Germany); Arce, Lourdes [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain)

    2011-06-24

    Graphical abstract: Highlights: > We explore the use of Ion Mobility Spectrometers for classification of olive oils. > Three types of olive oils were analyzed with both devices coupled to headspace system. > The ion mobility data were processed using chemometric to obtain global information. > The classification rate was better using tritium source and separation step prior IMS. - Abstract: In this work, we explored the use of an Ion Mobility Spectrometry (IMS) device with an ultraviolet (UV) source, and of a Gas Chromatographic (GC) column coupled to an IM Spectrometer with a tritium source, for the discrimination of three grades of olive oil, namely: extra virgin olive oil (EVOO), olive oil (OO) and pomace olive oil (POO). The three types of oil were analyzed with both equipment combinations as coupled to a headspace system and the obtained ion mobility data were consecutively processed with various chemometric tools. The classification rate for an independent validation set was 86.1% (confidence interval at 95% [83.4%, 88.5%]) with an UV-IMS and 100% (confidence interval at 95% [87%, 100%]) using a GC-IMS system. The classification rate was improved by using a more suitable ionization source and a pre-separation step prior to the IM analysis.

  13. Direct classification of olive oils by using two types of ion mobility spectrometers

    International Nuclear Information System (INIS)

    Garrido-Delgado, Rocio; Mercader-Trejo, Flora; Sielemann, Stefanie; Bruyn, Wolfgang de; Arce, Lourdes; Valcarcel, Miguel

    2011-01-01

    Graphical abstract: Highlights: → We explore the use of Ion Mobility Spectrometers for classification of olive oils. → Three types of olive oils were analyzed with both devices coupled to headspace system. → The ion mobility data were processed using chemometric to obtain global information. → The classification rate was better using tritium source and separation step prior IMS. - Abstract: In this work, we explored the use of an Ion Mobility Spectrometry (IMS) device with an ultraviolet (UV) source, and of a Gas Chromatographic (GC) column coupled to an IM Spectrometer with a tritium source, for the discrimination of three grades of olive oil, namely: extra virgin olive oil (EVOO), olive oil (OO) and pomace olive oil (POO). The three types of oil were analyzed with both equipment combinations as coupled to a headspace system and the obtained ion mobility data were consecutively processed with various chemometric tools. The classification rate for an independent validation set was 86.1% (confidence interval at 95% [83.4%, 88.5%]) with an UV-IMS and 100% (confidence interval at 95% [87%, 100%]) using a GC-IMS system. The classification rate was improved by using a more suitable ionization source and a pre-separation step prior to the IM analysis.

  14. Studies of the electron-impact double-ionisation process in magnesium using coincidence techniques

    International Nuclear Information System (INIS)

    Ford, M.J.

    1998-01-01

    This article will review recent measurements of the electron-impact double-ionisation of atomic magnesium. Results for the resonant Auger double-ionisation process with coincident detection of all three outgoing electrons, the (e, 3e) experiment, and for the direct double-ionisation process where only two outgoing electrons are detected, the (e, (3 -1)e) experiment, will be discussed. The results are analysed with reference to ionisation mechanisms and comparisons are made with calculated double-ionisation cross sections. Copyright (1998) CSIRO Australia

  15. Selected methods of electron-and ion-diagnostics in tokamak scrape-off-layer

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This invited paper considers reasons why exact measurements of fast electron and ion losses in tokamaks, and particularly i n a scrape-off-layer and near a divertor region, are necessary in order to master nuclear fusion energy production. Attention is also paid to direct measurements of escaping fusion products from D-D and D-T reactions, and in particular of fast alphas which might be used for plasma heating. The second part describes the generation of so-called runaway and ripple-born electrons which might induce high energy losses and cause severe damages of internal walls in fusion facilities. Advantages and disadvantages of different diagnostic methods applied for studies of such fast electrons are discussed. Particular attention is paid to development of a direct measuring technique based on the Cherenkov effect which might be induced by fast electrons in appropriate radiators. There are presented various versions of Cherenkov-type probes which have been developed by the NCBJ team and applied in different tokamak experiments. The third part is devoted to direct measurements of fast ions (including those produced by the nuclear fusion reactions which can escape from a high-temperature plasma region. Investigation of fast fusion-produced protons from tokamak discharges is reported. New ion probes, which were developed by the NCBJ team, are also presented. For the first time there is given a detailed description of an ion pinhole camera, which enables irradiation of several nuclear track detectors during a single tokamak discharge, and a miniature Thomson-type mass-spectrometer, which can be used for ion measurements at plasma borders.

  16. Performance of the Linear Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer (MOMA) Investigation on the 2018 Exomars Rover

    Science.gov (United States)

    Arevalo, Ricardo, Jr.; Brinckerhoff, William B.; Pinnick, Veronica T.; van Amerom, Friso H. W.; Danell, Ryan M.; Li, Xiang; Getty, Stephanie; Hovmand, Lars; Atanassova, Martina; Mahaffy, Paul R.; hide

    2014-01-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from degradation derived from cosmic radiation and/or oxidative chemical reactions. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. The MOMA investigation is led by the Max Planck Institute for Solar System Research (MPS) with the mass spectrometer subsystem provided by NASA GSFC. MOMA's linear ion trap mass spectrometer (ITMS) is designed to analyze molecular composition of: (i) gas evolved from pyrolyzed powder samples and separated in a gas chromatograph; and, (ii) ions directly desorbed from crushed solid samples at Mars ambient pressure, as enabled by a pulsed UV laser system, fast-actuating aperture valve and capillary ion inlet. Breadboard ITMS and associated electronics have been advanced to high end-to-end fidelity in preparation for flight hardware delivery to Germany in 2015.

  17. Development of a pico-second life-time spectrometer for positron annihilation studies

    International Nuclear Information System (INIS)

    Pujari, P.K.; Datta, T.; Tomar, B.S.; Das, S.K.

    1992-01-01

    Positron annihilation technique is a sensitive probe to investigate various physico-chemical phenomena due to the ability to provide information about the electron momentum and density in any medium. While measurements on the Doppler broadening and angular correlation of annihilation photons provide information about the electron momentum, the electron density at the annihilation site is obtained, by the positron life-time measurement. This report describes the development, optimization and calibration of a high resolution life-time spectrometer (FWHM=230 ps), based on fast-fast coincidence technique, a relatively new concept in nuclear timing spectroscopy. (author). 4 refs., 9 figs., 1 tab

  18. Fragmentation of cluster ions produced by electron impact ionization

    International Nuclear Information System (INIS)

    Parajuli, R.

    2001-12-01

    By studying fragmentation of dimer and cluster ions produced by electron impact ionization of a neutral cluster beam, it is possible to elucidate structure, stability and energetics of these species and the dynamics of the corresponding decay reactions. Fragmentation of carbon cluster ions formed from C 6 0 fullerenes, rare gas cluster ions and dimer ions and simple molecular cluster ions (oxygen and nitrogen) and dimer ions have been studied in this thesis using a high resolution two sector field mass spectrometer of reversed geometry and a NIER type electron impact ion source. Spontaneous decay reactions of triply and quadruply charged C 4 0 z + and C 4 1 z + cluster ions which are formed from C 6 0 fullerenes by electron impact ionization have been analyzed. A new but very weak decay reaction for the even-sized carbon clusters ions is observed, namely loss of C 3 . The odd-sized clusters ions preferentially decay by loss of carbon atoms and, to a lesser degree, trimers. A weak signal due to C 2 loss is observed for C 4 1 3 + ion. These decay channels are discussed in terms of the geometric structure of these metastable, relatively cold cluster ions. Measurements on metastable fragmentation of mass selected rare gas cluster ions (Ne, Ar, Kr) which are produced by electron impact ionization of a neutral rare gas cluster beam have been carried out. From the shape of the fragment ion peaks (MIKE scan technique) information about the distribution of kinetic energy that is released in the decay reaction can be deduced. In this study, the peak shape observed for cluster ions with sizes larger than five is Gaussian and thus from the peak width the mean kinetic energy release of the corresponding decay reactions can be calculated. Using finite heat bath theory, the binding energies of the decaying cluster ions are calculated from these data and have been compared to data in the literature where available. In addition to the decay reactions of cluster ions the metastable

  19. Stability and dissociation dynamics of N{sub 2}{sup ++} ions following core ionization studied by an Auger-electron–photoion coincidence method

    Energy Technology Data Exchange (ETDEWEB)

    Iwayama, H.; Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585 (Japan); SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki 444-8585 (Japan); Kaneyasu, T. [SAGA Light Source, Tosu 841-0005 (Japan); Hikosaka, Y. [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan)

    2016-07-21

    An Auger-electron–photoion coincidence (AEPICO) method has been applied to study the stability and dissociation dynamics of dicationic states after the N K-shell photoionization of nitrogen molecules. From time-of-flight and kinetic energy analyses of the product ions, we have obtained coincident Auger spectra associated with metastable states of N{sub 2}{sup ++} ions and dissociative states leading to N{sub 2}{sup ++} → N{sup +} + N{sup +} and N{sup ++} + N. To investigate the production of dissociative states, we present two-dimensional AEPICO maps which reveal the correlations between the binding energies of the Auger final states and the ion kinetic energy release. These correlations have been used to determine the dissociation limits of individual Auger final states.

  20. Performance of the Recoil Mass Spectrometer and its detector systems at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Gross, C.J.; Ginter, T.N.; Shapira, D.; Milner, W.T.; McConnell, J.W.; James, A.N.; Johnson, J.W.; Mas, J.; Mantica, P.F.; Auble, R.L.; Das, J.J.; Blankenship, J.L.; Hamilton, J.H.; Robinson, R.L.; Akovali, Y.A.; Baktash, C.; Batchelder, J.C.; Bingham, C.R.; Brinkman, M.J.; Carter, H.K.; Cunningham, R.A.; Davinson, T.; Fox, J.D.; Galindo-Uribarri, A.; Grzywacz, R.; Liang, J.F.; MacDonald, B.D.; MacKenzie, J.; Paul, S.D.; Piechaczek, A.; Radford, D.C.; Ramayya, A.V.; Reviol, W.; Rudolph, D.; Rykaczewski, K.; Toth, K.S.; Weintraub, W.; Williams, C.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    2000-01-01

    The recently commissioned Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility (HRIBF) is described. Consisting of a momentum separator followed by an E-D-E Rochester-type mass spectrometer, the RMS is the centerpiece of the nuclear structure endstation at the HRIBF. Designed to transport ions with rigidities near K=100, the RMS has acceptances of ±10% in energy and ±4.9% in mass-to-charge ratio. Recent experimental results are used to illustrate the detection capabilities of the RMS, which is compatible with many detectors and devices

  1. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  2. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  3. Studies on reducing the scale of a double focusing mass spectrometer

    International Nuclear Information System (INIS)

    Chambers, D.M.; Gregg, H.R.; Andresen, B.D.

    1993-05-01

    Several groups have developed miniaturized sector mass spectrometers with the goal of remote sensing in confined spaces or portability. However, these achievements have been overshadowed by more successful development of man-portable quadrupole and ion trap mass spectrometers. Despite these accomplishments the development of a reduced-scale sector mass spectrometer remains attractive as a potentially low-cost, robust instrument requiring very simple electronics and low power. Previous studies on miniaturizing sector instruments include the use of a Mattauch-Herzog design for a portable mass spectrograph weighing less than 10 kg. Other work has included the use of a Nier-Johnson design in spacecraft-mountable gas chromatography mass spectrometers for the Viking spacecraft as well as miniature sector-based MS/MS instrument. Although theory for designing an optimized system with high resolution and mass accuracy is well understood, such specifications have not yet been achieved in a miniaturized instrument. To proceed further toward the development of a miniaturized sector mass spectrometer, experiments were conducted to understand and optimize a practical, yet nonideal instrument configuration. The sector mass spectrometer studied in this work is similar to the ones developed for the Viking project, but was further modified to be low cost, simple and robust. Characteristics of this instrument that highlight its simplicity include the use of a modified Varian leak detector ion source, source ion optics that use one extraction voltage, and an unshunted fixed nonhomogeneous magnetic sector. The effects of these design simplifications on ion trajectory were studied by manipulating the ion beam along with the magnetic sector position. This latter feature served as an aid to study ion focusing amidst fringing fields as well as nonhomogeneous forces and permitted empirical realignment of the instrument

  4. Electron spectroscopy for surface analysis - the ES300 electron spectrometer and its applications

    International Nuclear Information System (INIS)

    Walker, J.A.J.; Price, W.B.

    1980-07-01

    The features of the ES300 electron spectrometer are described together with factors which affect the energy spectrum, experimental variables and interpretation of the spectral information. A discussion of five applications illustrates the use of X-ray photo-electron spectroscopy (XPS) in the diverse work of the Risley Nuclear Power Development Laboratories (RNL). The analytical results are given for each of the examples and their interpretation discussed in the chemical context of the original problem. (author)

  5. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    International Nuclear Information System (INIS)

    Yang Wenjing; Yin Jingpeng; Huang Xiongliang; Cheng Zhiwei; Shen Maoquan; Zhang Yang

    2012-01-01

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  6. Study on the ratio of signal to noise for single photon resolution time spectrometer

    International Nuclear Information System (INIS)

    Wang Zhaomin; Huang Shengli; Xu Zizong; Wu Chong

    2001-01-01

    The ratio of signal to noise for single photon resolution time spectrometer and their influence factors were studied. A method to depress the background, to shorten the measurement time and to increase the ratio of signal to noise was discussed. Results show that ratio of signal to noise is proportional to solid angle of detector to source and detection efficiency, and inverse proportional to electronics noise. Choose the activity of the source was important for decreasing of random coincidence counting. To use a coincidence gate and a discriminator of single photon were an effective way of increasing measurement accuracy and detection efficiency

  7. Future directions in electron--ion collision physics

    International Nuclear Information System (INIS)

    Reed, K.J.; Griffin, D.C.

    1992-01-01

    This report discusses the following topics: Summary of session on synergistic co-ordination of theory and experiment; synergism between experiment and theory in atomic physics; comparison of theory and experiment for electron-ion excitation and ionization; summary of session on new theoretical and computational methods; new theoretical and computational methods-r-matrix calculations; the coulomb three-body problem: a progress report; summary of session on needs and applications for electron-ion collisional data; electron-ion collisions in the plasma edge; needs and applications of theoretical data for electron impact excitation; summary of session on relativistic effects, indirect effects, resonance, etc; direct and resonant processes in electron-ion collisions; relativistic calculations of electron impact ionization and dielectronic recombination cross section for highly charged ions; electron-ion recombination in the close-coupling approximation; modified resonance amplitudes with strongly correlated channels; a density-matrix approach to the broadening of spectral lines by autoionization, radiative transitions and electron-ion collisions; towards a time-dependent description of electron-atom/ion collisions two electron systems; and comments on inclusion of the generalized bright interaction in electron impact excitation of highly charged ions

  8. Theoretical study, and construction, of a spherical electrostatic beta spectrometer; Etude theorique et realisation d'un spectrometre beta electrostatique spherique

    Energy Technology Data Exchange (ETDEWEB)

    Moret, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-03-15

    After a literature survey showing the importance of an electrostatic spectrometer with spherical electrodes for studying disintegration processes, the theoretical characteristics of such an apparatus are derived (determination of the trajectory equations calculation of the transmission and of the resolving power the case of a point source and of an extended source). The apparatus built as a result of these calculations is described. The electrostatic field distribution outside the electrodes is derived. As well as giving electron spectra ({beta} disintegration and conversion electrons) the apparatus make s it possible to study e-{gamma}, e-{beta}, e-e-{gamma} and e-e-{beta} coincidences. In the last part are given experimental characteristics and the results of the first measurements made on conversion electron spectra ({sup 161}Tb, {sup 151}Pm, {sup 155}Eu) and on coincidences ({sup 170}Tm) using this spectrometer. (author) [French] Apres une etude bibliographique montrant l'interet que presente un spectrometre electrostatique a electrodes spheriques pour l'etude des schemas de desintegration, l'auteur etablit les caracteristiques theoriques d'un tel appareil (determination de l'equation des trajectoires calcul de la transmission et du pouvoir de resolution cas d'une source ponctuelle et d'une source etendue). On decrit l'appareil realise d'apres ces calculs. On etablit la repartition du champ electrostatique a l'exterieur des electrodes. Outre le trace des spectres d'electrons (desintegration {beta} et electrons de conversion), l'appareil permet l'etude de coincidences e-{gamma}, e-{beta}, e-e-{gamma} and e-e-{beta}. Dans la derniere partie, sont donnees les caracteristiques experimentales et les premieres etudes de spectres d'electrons de conversion ({sup 161}Tb, {sup 151}Pm, {sup 155}Eu) et de coincidences ({sup 170}Tm) faites a l'aide de ce spectrometre. (auteur)

  9. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  10. Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source

    International Nuclear Information System (INIS)

    Rafalskyi, D; Aanesland, A

    2014-01-01

    We propose an alternative method to accelerate ions in classical gridded ion thrusters and ion sources such that co-extracted electrons from the source may provide beam space charge neutralization. In this way there is no need for an additional electron neutralizer. The method consists of applying RF voltage to a two-grid acceleration system via a blocking capacitor. Due to the unequal effective area of the two grids in contact with the plasma, a dc self-bias is formed, rectifying the applied RF voltage. As a result, ions are continuously accelerated within the grid system while electrons are emitted in brief instants within the RF period when the RF space charge sheath collapses. This paper presents the first experimental results and a proof-of-principle. Experiments are carried out using the Neptune thruster prototype which is a gridded Inductively Coupled Plasma (ICP) source operated at 4 MHz, attached to a larger beam propagation chamber. The RF power supply is used both for the ICP discharge (plasma generation) and powering the acceleration grids via a capacitor for ion acceleration and electron extraction without any dc power supplies. The ion and electron energies, particle flux and densities are measured using retarding field energy analyzers (RFEA), Langmuir probes and a large beam target. The system operates in Argon and N 2 . The dc self-bias is found to be generated within the gridded extraction system in all the range of operating conditions. Broad quasi-neutral ion-electron beams are measured in the downstream chamber with energies up to 400 eV. The beams from the RF acceleration method are compared with classical dc acceleration with an additional external electron neutralizer. It is found that the two acceleration techniques provide similar performance, but the ion energy distribution function from RF acceleration is broader, while the floating potential of the beam is lower than for the dc accelerated beam. (paper)

  11. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Science.gov (United States)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  12. Spectra of W19 +-W32 + observed in the EUV region between 15 and 55 Å with an electron-beam ion trap

    Science.gov (United States)

    Sakaue, H. A.; Kato, D.; Yamamoto, N.; Nakamura, N.; Murakami, I.

    2015-07-01

    We present extreme ultraviolet spectra of highly charged tungsten ions (W19 +-W32 + ) in the wavelength range of 15 -55 Å obtained with a compact electron-beam ion trap (CoBIT) and a grazing-incidence spectrometer at the National Institute for Fusion Science. The electron energy dependence of the spectra was investigated for electron energies from 490 to 1320 eV . Identification of the observed lines was aided by collisional-radiative (CR) modeling of CoBIT plasma. Good quantitative agreement was obtained between the CR-modeling results and the experimental observations. The ion charge dependence of the 6 g -4 f ,5 g -4 f ,5 f -4 d ,5 p -4 d , and 4 f -4 d transition wavelengths were measured.

  13. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Science.gov (United States)

    Saha, Asit; Pal, Nikhil; Chatterjee, Prasanta

    2014-10-01

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  14. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  15. Ion feedback afterpulses in FEU-130 and XP2020 photomultipliers

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Morozov, V.A.; Morozova, N.V.

    2003-01-01

    Intensities and time distributions of ion feedback afterpulses are studied as a function of the difference of potentials between the photocathode and the first dynodes in FEU-130. The intensities and amplitudes of afterpulses in FEU-130 are found to be appreciably larger than in XP2020, which may limit the use of FEU-130 in some experiments with autocorrelation delayed-coincidence spectrometers

  16. ECR ion source with electron gun

    Science.gov (United States)

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  17. Cornell electron beam ion source

    International Nuclear Information System (INIS)

    Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.

    1981-01-01

    An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies

  18. Ion- and electron-acoustic solitons in two-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Kakad, A. P.; Singh, S. V.; Verheest, F.

    2008-01-01

    Properties of ion- and electron-acoustic solitons are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons and hot ions using the Sagdeev pseudopotential technique. The analysis is based on fluid equations and the Poisson equation. Solitary wave solutions are found when the Mach numbers exceed some critical values. The critical Mach numbers for the ion-acoustic solitons are found to be smaller than those for electron-acoustic solitons for a given set of plasma parameters. The critical Mach numbers of ion-acoustic solitons increase with the increase of hot electron temperature and the decrease of cold electron density. On the other hand, the critical Mach numbers of electron-acoustic solitons increase with the increase of the cold electron density as well as the hot electron temperature. The ion-acoustic solitons have positive potentials for the parameters considered. However, the electron-acoustic solitons have positive or negative potentials depending whether the fractional cold electron density with respect to the ion density is greater or less than a certain critical value. Further, the amplitudes of both the ion- and electron-acoustic solitons increase with the increase of the hot electron temperature. Possible application of this model to electrostatic solitary waves observed on the auroral field lines by the Viking spacecraft is discussed

  19. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part I - an absolute traceable energy calibration for electron spectrometers

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.; Anthony, M.T.

    1991-01-01

    Experiments have been made to provide calibrated kinetic energy values for AES peaks in order to calibrate Auger electron spectrometers of various resolving powers. The kinetic energies are measured using a VG Scientific ESCALAB 2 which has power supplies appropriate for AES measurements in both the constant ΔE and constant ΔE/E modes. The absolute calibration of the energy scale is obtained by the development of a new measurement chain which, in turn, is calibrated in terms of the post-1990 representation of electron volts using XPS peaks with a traceable kinetic energy accuracy of 0.02 eV. The effects of instrumental and operating parameters, including the spectrometer dispersion and stray magnetic fields, are all assessed and contribute errors for three peaks not exceeding 0.06 eV and for two peaks not exceeding 0.03 eV. Calibrated positions in the direct spectrum are given for the Cu M 2,3 VV, Au N 6,7 VV, Ag M 4 NN, Cu L 3 VV and Au M 5 N 6,7 N 6,7 transitions at 0.2 eV resolution, referred to both the Standard Vacuum Level and the Fermi level. For the derivative spectrum the positions of the negative excursions are derived numerically by computer from this data and are established with the same accuracy. Data are tabulated for the above peaks in both the direct and differentiated modes for the popular resolutions of 0.15%, 0.3% and 0.6% produced by Gaussian broadening of the high resolution spectra. Differentiations are effected by both sinusoidal modulation and Savitzky-Golay functions of 2 eV and 5 eV peak-to-peak

  20. Calculation of ion storage in electron beams with account of ion-ion interactions

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.; Shirkov, G.D.

    1979-01-01

    Ion storage in relativistic electron beams was calculated taking account of ion-ion charge exchange and ionization. The calculations were made for nitrogen ion storage from residual gas during the compression of electron rings in the adhezator of the JINR heavy ion accelerator. The calculations were made for rings of various parameters and for various pressures of the residual gas. The results are compared with analogous calculations made without account of ion-ion processes. It is shown that at heavy loading of a ring by ions ion-ion collisions play a significant part, and they should be taken into account while calculating ion storage

  1. One- and two-electron processes in collisions between hydrogen molecules and slow highly charged ions

    International Nuclear Information System (INIS)

    Wells, E.; Carnes, K.D.; Tawara, H.; Ali, R.; Sidky, Emil Y.; Illescas, Clara; Ben-Itzhak, I.

    2005-01-01

    A coincidence time-of-flight technique coupled with projectile charge state analysis was used to study electron capture in collisions between slow highly charged ions and hydrogen molecules. We found single electron capture with no target excitation to be the dominant process for both C 6+ projectiles at a velocity of 0.8 atomic units and Ar 11+ projectiles at v 0.63 a.u. Double electron capture and transfer excitation, however, were found to be comparable and occur about 30% of the time relative to single capture. Most projectiles (96%) auto-ionize quickly following double capture into doubly excited states. The data are compared to classical and quantum mechanical model calculations

  2. Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sehwan; Lee, Jihyeon; KIm, Jeongkwon [Chungnam National Univ., Daejeon (Korea, Republic of); Cho, Soo Gyeong; Goh, Eun Mee [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Sungman; Koh, Sungsuk [Sensor Tech Inc., Seoul (Korea, Republic of)

    2013-12-15

    Eight representative explosives (ammonium perchlorate (AP), ammonium nitrate (AN), trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), cyclonite (RDX), cyclotetramethylenetetranitramine (HMX), pentaerythritol tetranitrate (PETN), and hexanitrostilbene (HNS)) were comprehensively analyzed with an ion trap mass spectrometer in negative ion mode using direct infusion electrospray ionization. MS/MS experiments were performed to generate fragment ions from the major parent ion of each explosive. Explosives in salt forms such as AP or AN provided cluster parent ions with their own anions. Explosives with an aromatic ring were observed as either [M.H]{sup -} for TNT and DNT or [M]{sup ·-}. for HNS, while explosives without an aromatic ring such as RDX, HMX, and PETN were detected as an adduct ion with a formate anion, i. e., [M+HCOO]{sup -}. These findings provide a guideline for the rapid and accurate detection of explosives once portable MS instruments become more readily available.

  3. Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer

    International Nuclear Information System (INIS)

    Park, Sehwan; Lee, Jihyeon; KIm, Jeongkwon; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sungsuk

    2013-01-01

    Eight representative explosives (ammonium perchlorate (AP), ammonium nitrate (AN), trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), cyclonite (RDX), cyclotetramethylenetetranitramine (HMX), pentaerythritol tetranitrate (PETN), and hexanitrostilbene (HNS)) were comprehensively analyzed with an ion trap mass spectrometer in negative ion mode using direct infusion electrospray ionization. MS/MS experiments were performed to generate fragment ions from the major parent ion of each explosive. Explosives in salt forms such as AP or AN provided cluster parent ions with their own anions. Explosives with an aromatic ring were observed as either [M.H] - for TNT and DNT or [M] ·- . for HNS, while explosives without an aromatic ring such as RDX, HMX, and PETN were detected as an adduct ion with a formate anion, i. e., [M+HCOO] - . These findings provide a guideline for the rapid and accurate detection of explosives once portable MS instruments become more readily available

  4. Development and evaluation of the Combined Ion and Neutron Spectrometer (CINS)

    International Nuclear Information System (INIS)

    Zeitlin, C.; Maurer, R.; Roth, D.; Goldsten, J.; Grey, M.

    2009-01-01

    The Combined Ion and Neutron Spectrometer, CINS, is designed to measure the charged and neutral particles that contribute to the radiation dose and dose equivalent received by humans in spaceflight. As the depth of shielding increases, either onboard a spacecraft or in a surface habitat, the relative contribution of neutrons increases significantly, so that obtaining accurate neutron spectra becomes a critical part of any dosimetric measurements. The spectrometer system consists of high- and medium-energy neutron detectors along with a charged-particle detector telescope based on a standard silicon stack concept. The present version of the design is intended for ground-based use at particle accelerators; future iterations of the design can easily be streamlined to reduce volume, mass, and power consumption to create an instrument package suitable for spaceflight. The detector components have been tested separately using high-energy heavy ion beams at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory and neutron beams at the Radiological Research Accelerator Facility operated by Columbia University. Here, we review the progress made in fabricating the hardware, report the results of several test runs, and discuss the remaining steps necessary to combine the separate components into an integrated system. A custom data acquisition system built for CINS is described in an accompanying article.

  5. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  6. An interactive, multitask computer system for heavy-ion physics research with the spin spectrometer: [Progress report, 1982

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1982-01-01

    The scope of this proposal is to assemble an interactive off-line data analysis system based on a DEC VAX 11/780 computer interfaced with an array processor, which is capable of meeting the needs of modern heavy-ion physics experiments involving data of large dimensionality as created in the Spin Spectrometer at the Holifield Heavy-ion Research Facility, to adapt the existing PDP 11 software for the Spin Spectrometer for this computer system in a form completely compatible with other laboratories with VAX 11 computers, and to develop new general and efficient software for automatic but fully interactive data analysis making use of an attach array processor

  7. The transition-edge EBIT microcalorimeter spectrometer

    Science.gov (United States)

    Betancourt-Martinez, Gabriele L.; Adams, Joseph; Bandler, Simon; Beiersdorfer, Peter; Brown, Gregory; Chervenak, James; Doriese, Randy; Eckart, Megan; Irwin, Kent; Kelley, Richard; Kilbourne, Caroline; Leutenegger, Maurice; Porter, F. S.; Reintsema, Carl; Smith, Stephen; Ullom, Joel

    2014-07-01

    The Transition-edge EBIT Microcalorimeter Spectrometer (TEMS) is a 1000-pixel array instrument to be delivered to the Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory (LLNL) in 2015. It will be the first fully operational array of its kind. The TEMS will utilize the unique capabilities of the EBIT to verify and benchmark atomic theory that is critical for the analysis of high-resolution data from microcalorimeter spectrometers aboard the next generation of x-ray observatories. We present spectra from the present instrumentation at EBIT, as well as our latest results with time-division multiplexing using the current iteration of the TEMS focal plane assembly in our test platform at NASA/GSFC.

  8. Direct determination of recoil ion detection efficiency for coincidence time-of-flight studies of molecular fragmentation

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Carnes, K.D.; Ginther, S.G.; Johnson, D.T.; Norris, P.J.; Weaver, O.L.

    1993-01-01

    Molecular fragmentation of diatomic and small polyatomic molecules caused by fast ion impact has been studied. The evaluation of the cross sections of the different fragmentation channels depends strongly on the recoil ion detection efficiency, ε r (single ions proportional to ε r , and ion pairs to ε 2 r , etc.). A method is suggested for the direct determination of this detection efficiency. This method is based on the fact that fast H + + CH 4 collisions produce C 2+ fragments only in coincidence with H + and H + 2 fragments, that is, there is a negligible number of C 2+ singles, if any. The measured yield of C 2+ singles is therefore due to events in which the H + m of the H + m + C 2+ ion pair was not detected and thus is proportional to 1 - ε r . Methane fragmentation caused by 1 MeV proton impact is used to evaluate directly the recoil ion detection efficiency and to demonstrate the method of deriving the cross sections of all breakup channels. (orig.)

  9. Future directions in electron momentum spectroscopy of matter

    International Nuclear Information System (INIS)

    Weigold, E.

    1998-01-01

    The development of coincidence spectrometers with multivariable detection techniques, higher energy kinematics, monochromated and spin-polarised electron sources, will usher in a new generation of electron momentum spectroscopy revealing new electronic phenomena in atoms, molecules and solids. This will be enhanced by developments in target preparation, such as spin polarised, oriented and aligned atoms and molecules, radicals, surfaces and strongly correlated systems in condensed matter. Copyright (1998) CSIRO Australia

  10. Electron-impact excitation of molecular ions

    International Nuclear Information System (INIS)

    Neufeld, D.A.; Dalgarno, A.

    1989-01-01

    A simple expression is derived that relates the rate coefficient for dipole-allowed electron-impact excitation of a molecular ion in the Coulomb-Born approximation to the Einstein A coefficient for the corresponding radiative decay. Results are given for several molecular ions of astrophysical interest. A general analytic expression is obtained for the equilibrium rotational level populations in the ground vibrational state of any molecular ion excited by collisions with electrons. The expression depends only upon the electron temperature, the electron density, and the rotational constant of the molecular ion. A similar expression is obtained for neutral polar molecules

  11. System for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  12. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  13. On the design of the NIF Continuum Spectrometer

    Science.gov (United States)

    Thorn, D. B.; MacPhee, A.; Ayers, J.; Galbraith, J.; Hardy, C. M.; Izumi, N.; Bradley, D. K.; Pickworth, L. A.; Bachmann, B.; Kozioziemski, B.; Landen, O.; Clark, D.; Schneider, M. B.; Hill, K. W.; Bitter, M.; Nagel, S.; Bell, P. M.; Person, S.; Khater, H. Y.; Smith, C.; Kilkenny, J.

    2017-08-01

    In inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF), measurements of average ion temperature using DT neutron time of flight broadening and of DD neutrons do not show the same apparent temperature. Some of this may be due to time and space dependent temperature profiles in the imploding capsule which are not taken into account in the analysis. As such, we are attempting to measure the electron temperature by recording the free-free electron-ion scattering-spectrum from the tail of the Maxwellian temperature distribution. This will be accomplished with the new NIF Continuum Spectrometer (ConSpec) which spans the x-ray range of 20 keV to 30 keV (where any opacity corrections from the remaining mass of the ablator shell are negligible) and will be sensitive to temperatures between ˜ 3 keV and 6 keV. The optical design of the ConSpec is designed to be adaptable to an x-ray streak camera to record time resolved free-free electron continuum spectra for direct measurement of the dT/dt evolution across the burn width of a DT plasma. The spectrometer is a conically bent Bragg crystal in a focusing geometry that allows for the dispersion plane to be perpendicular to the spectrometer axis. Additionally, to address the spatial temperature dependence, both time integrated and time resolved pinhole and penumbral imaging will be provided along the same polar angle. The optical and mechanical design of the instrument is presented along with estimates for the dispersion, solid angle, photometric sensitivity, and performance.

  14. Spectroscopy of heavy few-electron ions

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1986-07-01

    In this paper we ask first, why is it interesting to investigate heavy-few electron ions. Then the various accelerator-based methods to produce heavy few-electron ions are discussed. In the main part an overview on available heavy few-electron ion data and current experiments is given. The summary will end up with future aspects in this field. (orig.)

  15. An experimental study of electron transfer and emission during particle-surface interactions

    International Nuclear Information System (INIS)

    McGrath, C.T.

    2000-09-01

    A new coincidence technique has been developed and used to study the secondary electron emission that arises during the interaction of ions with surfaces. This coincidence technique allows the secondary electron emission statistics due to the impact of singly, doubly and multiply charged ions on surfaces to be measured in coincidence with reflected particles, in specific charge states and with specific post-collision trajectories. This system has been used to study the impact of 8 keV H + ions on polycrystalline copper and aluminium targets. Under these conditions the potential emission contribution is negligible and the electron emission is almost entirely due to kinetic emission processes. The sub-surface contribution to the observed electron emission has been isolated using two newly developed models. These models provide valuable information about the depth and amount of surface penetration and on the probability for subsequent electron transport to the surface. The impact of 2 - 100 keV Xe q+ (q = 1 - 10) ions on polycrystalline copper has also been studied using this system. From the subsequent data the potential and kinetic contributions to secondary electron emission have been separated using a previously established model for potential emission. The resulting kinetic emission yield increases with increasing ion impact energy, consistent with current concepts on quasimolecular ionisation. For ions impacting at large incident angles evidence for sub-surface emission has also been observed. The degree of penetration increases with ion impact energy, consistent with current concepts on this effect. The formation of H - ions from incident H + ions has also been studied by measuring the secondary electron emission statistics in coincidence with reflected particles in specific final charge states. This preliminary data is consistent with a two-step process of Auger neutralisation followed by resonant electron capture to the affinity level. However this mechanism

  16. Scattering of polarized electrons from polarized targets: Coincidence reactions and prescriptions for polarized half-off-shell single-nucleon cross sections

    International Nuclear Information System (INIS)

    Caballero, J.A.; Massachusetts Inst. of Tech., Cambridge, MA; Donnelly, T.W.; Massachusetts Inst. of Tech., Cambridge, MA; Poulis, G.I.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-01-01

    Coincidence reactions of the type vector A( vector e, e'N)B involving the scattering of polarized electrons from polarized targets are discussed within the context of the plane-wave impulse approximation. Prescriptions are developed for polarized half-off single-nucleon cross sections; the different prescriptions are compared for typical quasi-free kinematics. Illustrative results are presented for coincidence polarized electron scattering from typical polarized nuclei. (orig.)

  17. A fully automated mass spectrometer for the analysis of organic solids

    International Nuclear Information System (INIS)

    Hillig, H.; Kueper, H.; Riepe, W.

    1979-01-01

    Automation of a mass spectrometer-computer system makes it possible to process up to 30 samples without attention after sample loading. An automatic sample changer introduces the samples successively into the ion source by means of a direct inlet probe. A process control unit determines the operation sequence. Computer programs are available for the hardware support, system supervision and evaluation of the spectrometer signals. The most essential precondition for automation - automatic evaporation of the sample material by electronic control of the total ion current - is confirmed to be satisfactory. The system operates routinely overnight in an industrial laboratory, so that day work can be devoted to difficult analytical problems. The cost of routine analyses is halved. (Auth.)

  18. Test report: Electron-proton spectrometer qualification test unit, qualification test

    Science.gov (United States)

    Vincent, D. L.

    1972-01-01

    Qualification tests of the electron-proton spectrometer test unit are presented. The tests conducted were: (1) functional, (2) thermal/vacuum, (3) electromagnetic interference, (4) acoustic, (5) shock, (6) vibration, and (7) humidity. Results of each type of test are presented in the form of data sheets.

  19. Photon-ion spectrometer PIPE at the Variable Polarization XUV Beamline of PETRA III

    International Nuclear Information System (INIS)

    Schippers, S; Ricz, S; Buhr, T; Hellhund, J; Müller, A; Klumpp, S; Martins, M; Flesch, R; Rühl, E; Lower, J; Jahnke, T; Metz, D; Schmidt, L Ph H; Dörner, R; Ullrich, J; Wolf, A

    2012-01-01

    The photon-ion spectrometer PIPE is currently being installed as a permanent end station at beamline P04 of the PETRA III synchrotron radiation source. Various state-of-the-art experimental techniques will be available for studies of gaseous matter with circularly and linearly polarized synchrotron radiation with photon energies in range the 100–3000 eV.

  20. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    Science.gov (United States)

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  1. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    Science.gov (United States)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  2. Dissociation and ionization of molecular ions by ultra-short intense laser pulses probed by coincidence 3D momentum imaging

    International Nuclear Information System (INIS)

    Ben-Itzhak, Itzik; Wang, Pengqian; Xia, Jiangfan; Max Sayler, A.; Smith, Mark A.; Maseberg, J.W.; Carnes, Kevin D.; Esry, Brett D.

    2005-01-01

    We have experimentally explored laser-induced dissociation and ionization of diatomic molecular ions using coincidence 3D momentum imaging. The vibrationally excited molecular ion beam (4-8 keV) is crossed by an ultrafast intense laser beam (28-200 fs, 10 13 -10 14 W/cm 2 ). The resulting fragments are recorded in coincidence by a time and position-sensitive detector. Complete angular distributions and kinetic energy release maps are reconstructed from the measured dissociation-momentum vectors. The angular distribution of the H + + H fragments was found to be strongly correlated to their kinetic energy release upon dissociation. Low KER was associated with very narrow angular distributions and high KER with distributions peaking away from the laser polarization. Ionization was found to be smaller than dissociation and increased with laser intensity. The H + + H + fragments have a very narrow angular distribution along the laser polarization

  3. Study of the continuum in heavy ion inelastic spectra by light particle coincidence measurements

    International Nuclear Information System (INIS)

    Scarpaci, J.A.; Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Roynette, J.C.; Suomijarvi, T.; Van der Woude, A.; Alamanos, N.; Fernandez, B.; Gillibert, A.; Van der Woude, A.; Lepine, A.

    1990-01-01

    The continuum in heavy ion inelastic spectra contains, in addition to the excitation of target nucleus states, contributions from pick-up break-up and knock out reactions. In the case of the 40 Ca + 40 Ca collision at 50 MeV/N these contributions are separated and their relative importance assessed by the measurement of light charged particles in coincidence with the inelastically scattered fragments. The pick-up break-up contribution is found to make up less than half of the cross section at high excitation energies, conversely, the knock out process is important

  4. A perturbed angular correlation spectrometer for material science ...

    Indian Academy of Sciences (India)

    A four-detector perturbed angular correlation (PAC) spectrometer has been developed with ultra-fast BaF2 detectors to acquire four coincidence spectra simultaneously, two at 180° and two at 90°. This spectrometer has double efficiency compared to that of a three-detector set-up. Higher efficiency is desirable for PAC ...

  5. Positron-annihilation-induced ion desorption from TiO2(110)

    Science.gov (United States)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  6. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    Science.gov (United States)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  7. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  8. The SAGE spectrometer

    International Nuclear Information System (INIS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M.; Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D.; Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J.

    2014-01-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  9. Toward an Intelligent Ion Mobility Spectrometer (IMS)

    International Nuclear Information System (INIS)

    McJunkin, Timothy R.; Scott, Jill R.; Miller, Carla J.

    2003-01-01

    The ultimate goal is to design and build a very smart ion mobility spectrometer (IMS) that can operate autonomously. To accomplish this, software capable of interpreting spectra so that it can be used in control loops for data interpretation as well as adjusting instrument parameters is being developed. Fuzzy logic and fuzzy numbers are used in this IMS spectra classification scheme. Fuzzy logic provides a straight forward method for developing a classification/detection system, whenever rules for classifying the spectra can be described linguistically. Instead of using 'max' and 'min' values, the product of the truth values is used to determine class membership. Using the product allows rule-bases that utilize the AND function to allow each condition to discount truth value in determining membership, while rule-bases with an OR function are allowed to accumulate membership. Fuzzy numbers allow encapsulation of the uncertainties due to ion mobility peak widths as well as measured instrumental parameters, such as pressure and temperature. Associating a peak with a value of uncertainty, in addition to making adjustments to the mobility calculation based on variations in measured parameters, enables unexpected shifts to be more reliably detected and accounted for; thereby, reducing the opportunity for 'false negative' results. The measure of uncertainty is anticipated to serve the additional purpose of diagnosing the operational conditions of the IMS instrument.

  10. PIC simulation of the electron-ion collision effects on suprathermal electrons

    International Nuclear Information System (INIS)

    Wu Yanqing; Han Shensheng

    2000-01-01

    The generation and transportation of suprathermal electrons are important to both traditional ICF scheme and 'Fast Ignition' scheme. The author discusses the effects of electron-ion collision on the generation and transportation of the suprathermal electrons by parametric instability. It indicates that the weak electron-ion term in the PIC simulation results in the enhancement of the collisional absorption and increase of the hot electron temperature and reduction in the maximum electrostatic field amplitude while wave breaking. Therefore the energy and distribution of the suprathermal electrons are changed. They are distributed more close to the phase velocity of the electrostatic wave than the case without electron-ion collision term. The electron-ion collision enhances the self-consistent field and impedes the suprathermal electron transportation. These factors also reduce the suprathermal electron energy. In addition, the authors discuss the effect of initial condition on PIC simulation to ensure that the results are correct

  11. In-beam study of {sup 253}No using the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, A.K.; Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Joss, D.T.; Page, R.D.; Seddon, D.; Thornhill, J.; Wells, D. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Greenlees, P.T.; Papadakis, P.; Auranen, K.; Grahn, T.; Jakobsson, U.; Julin, R.; Konki, J.; Leino, M.; Pakarinen, J.; Peura, P.; Rahkila, P.; Sandzelius, M.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J. [University of Jyvaskyla, Department of Physics, Jyvaskyla (Finland); Garnsworthy, A.B.; Ketelhut, S. [University of British Columbia, TRIUMF, Vancouver, British Columbia (Canada); Hauschild, K.; Lopez-Martens, A. [Universite Paris-Sud, CSNSM, CNRS, IN2P3, Orsay (France); Simpson, J. [STFC, Daresbury Laboratory, Daresbury, Warrington (United Kingdom)

    2017-02-15

    The heavy actinide nucleus {sup 253}No (Z = 102) was studied using the (S)ilicon (A)nd (Ge)rmanium (SAGE) spectrometer allowing simultaneous in-beam γ-ray and conversion electron spectroscopy at the accelerator laboratory of the University of Jyvaeskylae. Using the recoil-tagging technique, γ-electron coincidences have allowed for the extension of the level scheme in the lower-spin region of the yrast band. In addition, internal conversion coefficient (ICC) measurements to establish the multipolarity of transitions have been performed. Measurement of the interband-intraband branching ratios supports the assignment of the Nilsson band-head configuration 9/2{sup -}[734] assigned in previous studies. The study shows the viability of combined in-beam electron and γ-ray spectroscopy down to μb cross sections. (orig.)

  12. Imaging the reactions of molecular dications: a new probe of dicationic reaction dynamics and energetics

    International Nuclear Information System (INIS)

    Wan-Ping Hu, S.; Harper, S.M.; Price, S.D.

    2002-01-01

    Experiments which generated angularly resolved data to prove the dynamics of dication chemical reactions were performed using a position sensitive coincidence (PSCO) apparatus, to detect in coincidence both of the charged products from such reaction. It consists of a ion source, a hemispherical energy analyser, and a time-of-flight mass spectrometer. Initial experiments to test the apparatus performance were runned on the atomic electron transfer reaction: Ne 2+ + Ar → Ne + + Ar + . Angular distributions, translational and internal energies of the product ions were extracted, as well as the scattering diagram among other data. (nevyjel)

  13. A high efficiency thermal ionization source adapted to mass spectrometers

    International Nuclear Information System (INIS)

    Chamberlin, E.P.; Olivares, J.A.

    1996-01-01

    A tungsten crucible thermal ionization source mounted on a quadrupole mass spectrometer is described. The crucible is a disposable rod with a fine hole bored in one end; it is heated by electron bombardment. The schematic design of the assembly, including water cooling, is described and depicted. Historically, the design is derived from that of ion sources used on ion separators at Los Alamos and Dubna, but the crucible is made smaller and simplified. 10 refs., 4 figs

  14. An improved data acquisition system for isotopic ratio mass spectrometers

    International Nuclear Information System (INIS)

    Saha, T.K.; Reddy, B.; Nazare, C.K.; Handu, V.K.

    1999-01-01

    Isotopic ratio mass spectrometers designed and fabricated to measure the isotopic ratios with a precision of better than 0.05%. In order to achieve this precision, the measurement system consisting of ion signal to voltage converters, analog to digital converters, and data acquisition electronics should be at least one order better than the overall precision of measurement. Using state of the art components and techniques, a data acquisition system, which is an improved version of the earlier system, has been designed and developed for use with multi-collector isotopic ratio mass spectrometers

  15. Measuring 226Ra and 232Th activity in soil and vegetation samples using a method of double γ-coincidences

    International Nuclear Information System (INIS)

    Antovic, N.M.; Antovic, I.

    2010-01-01

    A coincidence method for measuring radium and thorium activity has been developed using the PRIPYAT-2M gamma-ray coincidence spectrometer, with six NaI(Tl) detectors and registration geometry close to 4π. It was tested by measuring soil samples from the Northern region of Montenegro, as well as vegetation samples from the same region. The results showed a good agreement with ones obtained by the HPGe spectrometer. (author)

  16. The Wavelength-Dispersive Spectrometer and Its Proposed Use in the Analytical Electron Microscope

    Science.gov (United States)

    Goldstein, Joseph I.; Lyman, Charles E.; Williams, David B.

    1989-01-01

    The Analytical Electron Microscope (AEM) equipped with a wavelength-dispersive spectrometer (WDS) should have the ability to resolve peaks which normally overlap in the spectra from an energy-dispersive spectrometer (EDS). With a WDS it should also be possible to measure lower concentrations of elements in thin foils due to the increased peak-to-background ratio compared with EDS. The WDS will measure X-ray from the light elements (4 less than Z less than 1O) more effectively. This paper addresses the possibility of interfacing a compact WDS with a focussing circle of approximately 4 cm to a modem AEM with a high-brightness (field emission) source of electrons.

  17. Angle-resolving time-of-flight electron spectrometer for near-threshold precision measurements of differential cross sections of electron-impact excitation of atoms and molecules

    International Nuclear Information System (INIS)

    Lange, M.; Matsumoto, J.; Setiawan, A.; Panajotovic, R.; Harrison, J.; Lower, J. C. A.; Newman, D. S.; Mondal, S.; Buckman, S. J.

    2008-01-01

    This article presents a new type of low-energy crossed-beam electron spectrometer for measuring angular differential cross sections of electron-impact excitation of atomic and molecular targets. Designed for investigations at energies close to excitation thresholds, the spectrometer combines a pulsed electron beam with the time-of-flight technique to distinguish between scattering channels. A large-area, position-sensitive detector is used to offset the low average scattering rate resulting from the pulsing duty cycle, without sacrificing angular resolution. A total energy resolution better than 150 meV (full width at half maximum) at scattered energies of 0.5-3 eV is achieved by monochromating the electron beam prior to pulsing it. The results of a precision measurement of the differential cross section for electron-impact excitation of helium, at an energy of 22 eV, are used to assess the sensitivity and resolution of the spectrometer

  18. Design and realization of a space-borne reflectron time of flight mass spectrometer: electronics and measuring head; Conception et realisation d'un spectrometre de masse a temps de vol spatialisable de type 'reflectron' electronique et tete de mesure

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, P

    2006-03-15

    The purpose of this thesis is the design of the electronics of a time of flight mass spectrometer, the making and the vacuum tests of a prototype which can be put onboard a satellite. A particular effort was necessary to decrease to the maximum the mass and electric consumption of the spectrometer, which led to the development of new circuits. The work completed during this thesis initially concerns the electronics of the measuring equipment which was conceived in a concern for modularity. A complete 'reflectron' type mass spectrometer was then designed, simulated and developed. The built prototype, which uses the developed electronics, was exposed to ion flows of different masses and energies in the CESR vacuum chambers. Its measured performances validate the implemented principles and show that an identical mass spectrometer can be put onboard a satellite with profit, for planetary or solar missions. (author)

  19. Chemical characterization of microparticles by laser ablation in an ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Dale, J.M.; Whitten, W.B.; Ramsey, J.M.

    1991-01-01

    We are developing a new technique for the chemical characterization of microparticles based upon the use of electrodynamic traps. The electrodynamic trap has achieved widespread use in the mass spectrometry community in the form of the ion trap mass spectrometer or quadrupole ion trap. Small macroscopic particles can be confined or levitated within the electrode structure of a three-dimensional quadrupole electrodynamic trap in the same way as fundamental charges or molecular ions by using a combination of ac and dc potentials. Our concept is to use the same electrode structure to perform both microparticle levitation and ion trapping/mass analysis. The microparticle will first be trapped and spatially stabilized within the trap for characterization by optical probes, i.e., absorption, fluorescence, or Raman spectroscopy. After the particle has been optically characterized, it is further characterized using mass spectrometry. Ions are generated from the particle surface using laser ablation or desorption. The characteristics of the applied voltages are changed to trap the ions formed by the laser with the ions subsequently mass analyzed. The work described in this paper focuses on the ability to perform laser desorption experiments on microparticles contained within the ion trap

  20. Ion acceleration in modulated electron beams

    International Nuclear Information System (INIS)

    Bonch-Osmolovskij, A.G.; Dolya, S.N.

    1977-01-01

    A method of ion acceleration in modulated electron beams is considered. Electron density and energy of their rotational motion are relatively low. However the effective ion-accelerating field is not less than 10 MeV/m. The electron and ion numbers in an individual bunch are also relatively small, although the number of produced bunches per time unit is great. Some aspects of realization of the method are considered. Possible parameters of the accelerator are given. At 50 keV electron energy and 1 kA beam current a modulation is realized at a wave length of 30 cm. The ion-accelerating field is 12 MeV/m. The bunch number is 2x10 3 in one pulse at a gun pulse duration of 2 μs. With a pulse repetition frequency of 10 2 Hz the number of accelerated ions can reach 10 13 -10 14 per second

  1. The determination of electron momentum densities by inelastic scattering gamma-ray-electron coincidence measurements: The (γ,eγ)-experiment

    International Nuclear Information System (INIS)

    Rollason, A.J.; Bell, F.; Schneider, J.R.

    1989-09-01

    Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs

  2. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  3. Electron-vibrational transitions under molecular ions collisions with slow electrons

    International Nuclear Information System (INIS)

    Andreev, E.A.

    1993-01-01

    A concept of a multichannel quantum defect is considered and basic theoretic ratios of inelastic collisional processes with the participation of molecular positive ions and slow electrons playing an important role both in atmospheric and laboratory plasma, are presented. The problem of scattering channel number limitation with the provision of S-matrix unique character is considered. Different models of electron rotation-vibrational connection under collision of two-atom molecular ions with slow electrons are analysed. Taking N 2 + as an example, a high efficiency of transitions between different electron states of a molecular ion is shown. 73 refs., 9 figs., 1 tab

  4. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  5. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    CERN Document Server

    Bourva, L C A

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP sup T sup M , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents...

  6. In-beam electron spectrometer used in conjunction with a gas-filled recoil separator

    International Nuclear Information System (INIS)

    Kankaanpaeae, H.; Butler, P.A.; Greenlees, P.T.; Bastin, J.E.; Herzberg, R.D.; Humphreys, R.D.; Jones, G.D.; Jones, P.; Julin, R.; Keenan, A.; Kettunen, H.; Leino, M.; Miettinen, L.; Page, T.; Rahkila, P.; Scholey, C.; Uusitalo, J.

    2004-01-01

    The conversion-electron spectrometer SACRED has been redesigned for use in conjunction with the RITU gas-filled recoil separator. The system allows in-beam recoil-decay-tagging (RDT) measurements of internal conversion electrons. The performance of the system using standard sources and in-beam is described

  7. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    Science.gov (United States)

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-01-01

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  9. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  10. Development and commissioning of a double-prism spectrometer for the diagnosis of femtosecond electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2016-12-15

    Free-electron lasers as accelerator-driven light sources and wakefield-based acceleration in plasmas require the knowledge of the longitudinal extension and the longitudinal current profile of the involved electron bunches. These bunches can yield lengths below 10 μm, or durations shorter than approx. 33 fs, as well as charges less than 30 pC. During this work, transition radiation from relativistic electron bunches was investigated in the mid-infrared wavelength regime. A spectrometer using an arrangement of two consecutive zinc selenide prisms was developed, built and commissioned. The instrument covers the spectral range from 2 μm to 18 μm in a single shot. Measurements with the double-prism spectrometer were conducted at the FEL facilities FLASH at DESY in Hamburg, Germany and FELIX at the Radboud Universiteit in Nijmegen, The Netherlands. The assessment of the spectrometer and comparative studies with established diagnostic devices at FLASH show high signal-to-noise ratios at bunch charges below 10 pC and confirm the obtained results.

  11. A Dual Source Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer of ExoMars 2018

    Science.gov (United States)

    Brickerhoff, William B.; vanAmerom, F. H. W.; Danell, R. M.; Arevalo, R.; Atanassova, M.; Hovmand, L.; Mahaffy, P. R.; Cotter, R. J.

    2011-01-01

    We present details on the objectives, requirements, design and operational approach of the core mass spectrometer of the Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars mission. The MOMA mass spectrometer enables the investigation to fulfill its objective of analyzing the chemical composition of organic compounds in solid samples obtained from the near surface of Mars. Two methods of ionization are realized, associated with different modes of MOMA operation, in a single compact ion trap mass spectrometer. The stringent mass and power constraints of the mission have led to features such as low voltage and low frequency RF operation [1] and pulse counting detection.

  12. Many-electron phenomena in the ionization of ions

    International Nuclear Information System (INIS)

    Mueller, A.

    2004-01-01

    Full text: Single and multiple ionization in ion-atom collisions involve a multitude of complex interactions between the electrons and nuclei of projectile and target. Some of the complexity is avoided in studies of fast collisions when the impulse approximation can be applied and the electrons can be described as independent quasi-free particles with a known momentum distribution. For the detailed investigation of ionization mechanisms that can occur in fast ion-atom collisions, it is illuminating to consider collisions of ions (or atoms) and really free electrons with a narrow energy spread. High energy resolution in electron-ion collision studies provides access to individual, possibly even state-selective, reaction pathways. Even in the simple electron-ion collision system (simple compared with the initial ion-atom problem) single and multiple ionization still involve a multitude of complex mechanisms. Besides the direct removal of one or several electrons from the target by electron impact, resonant and non-resonant formation of intermediate multiply excited states which subsequently decay by electron emission is important in single and multiple ionization of ions and atoms. Direct ionization proceeds via one-step or multi-step knock-off mechanisms which can partly be disentangled by studying effects of different projectile species. The role of multiply excited states in the ionization can be experimentally studied in great detail by a further reduction of the initial ion-atom problem. Multiply excited states of atoms and ions can be selectively populated by photon-ion interactions making use of the potential for extreme energy resolution made available at modern synchrotron radiation sources. In the review talk, examples of studies on single and multiple ionization in electron-ion collisions will be discussed in some detail. Electron-ion collision experiments will also be compared with photon-ion interaction studies. Many-electron phenomena have been observed

  13. Compton profiles by inelastic ion-electron scattering

    International Nuclear Information System (INIS)

    Boeckl, H.; Bell, F.

    1983-01-01

    It is shown that Compton profiles (CP) can be measured by inelastic ion-electron scattering. Within the impulse approximation the binary-encounter peak (BEP) reflects the CP of the target atom whereas the electron-loss peak (ELP) is given by projectile CP's. Evaluation of experimental data reveals that inelastic ion-electron scattering might be a promising method to supply inelastic electron or photon scattering for the determination of target CP's. The measurement of projectile CP's is unique to ion scattering since one gains knowledge about wave-function effects because of the high excitation degree of fast heavy-ion projectiles

  14. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  15. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A. [High Temperature Gasdynamics Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  16. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    International Nuclear Information System (INIS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions

  17. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Science.gov (United States)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  18. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    Science.gov (United States)

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  19. Large solid angle tracking of Monte Carlo events of heavy ion collisions in TPC magnetic spectrometers

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Asoka-Kumar, P.P.V.; Chan, C.S.; Kramer, M.A.

    1987-01-01

    The BNL/CCNY collaboration has for some time had as its goal the development and use of ≅ 4π solid angle magnetic spectrometer tracking of charged particles produced in heavy ion collision experiments at AGS, and eventually RHIC. (orig./HSI)

  20. The simulation of pulsed heater for a sampling system for the ion mobility spectrometer

    International Nuclear Information System (INIS)

    Malkin, Evgeniy

    2011-01-01

    The development of the sampling device with pulsed heating of the intermediate carrier for ion mobility spectrometer is described in this article. Numerical simulation of a pulse heater structure of is presented. The design of the sampling device using a pulsed heating of the intermediate carrier is developed. Experimental results of approval of the sampling device are presented.

  1. Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer

    International Nuclear Information System (INIS)

    Zhang Peng; Feng Zheng-Peng; Luo Si-Qiang; Wang Zhe

    2016-01-01

    We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion with low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size. (paper)

  2. A high-resolution mass spectrometer to measure atmospheric ion composition

    Directory of Open Access Journals (Sweden)

    H. Junninen

    2010-08-01

    Full Text Available In this paper we present recent achievements on developing and testing a tool to detect the composition of ambient ions in the mass/charge range up to 2000 Th. The instrument is an Atmospheric Pressure Interface Time-of-Flight Mass Spectrometer (APi-TOF, Tofwerk AG. Its mass accuracy is better than 0.002%, and the mass resolving power is 3000 Th/Th. In the data analysis, a new efficient Matlab based set of programs (tofTools were developed, tested and used. The APi-TOF was tested both in laboratory conditions and applied to outdoor air sampling in Helsinki at the SMEAR III station. Transmission efficiency calibrations showed a throughput of 0.1–0.5% in the range 100–1300 Th for positive ions, and linearity over 3 orders of magnitude in concentration was determined. In the laboratory tests the APi-TOF detected sulphuric acid-ammonia clusters in high concentration from a nebulised sample illustrating the potential of the instrument in revealing the role of sulphuric acid clusters in atmospheric new particle formation. The APi-TOF features a high enough accuracy, resolution and sensitivity for the determination of the composition of atmospheric small ions although the total concentration of those ions is typically only 400–2000 cm−3. The atmospheric ions were identified based on their exact masses, utilizing Kendrick analysis and correlograms as well as narrowing down the potential candidates based on their proton affinities as well isotopic patterns. In Helsinki during day-time the main negative ambient small ions were inorganic acids and their clusters. The positive ions were more complex, the main compounds were (polyalkyl pyridines and – amines. The APi-TOF provides a near universal interface for atmospheric pressure sampling, and this key feature will be utilized in future laboratory and field studies.

  3. TFTR horizontal high-resolution Bragg x-ray spectrometer

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.; Tavernier, M.

    1984-11-01

    A bent quartz crystal spectrometer of the Johann type with a spectral resolution of lambda/Δlambda = 10,000 to 25,000 is used on TFTR to determine central plasma parameters from the spectra of heliumlike and lithiumlike metal impurity ions (Ti, Cr, Fe, and Ni). The spectra are observed along a central radial chord and are recorded by a position sensitive multiwire proportional counter with a spatial resolution of 250. Standard delay-line time-difference readout is employed. The data are histogrammed and stored in 64k of memory providing 128 time groups of 512-channel spectra. The central ion temperature and the toroidal plasma rotation are inferred from the Doppler broadening and Doppler shift of the K lines. The central electron temperature, the distribution of ionization states, and dielectronic recombination rates are obtained from satellite-to-resonance line ratios. The performance of the spectrometer is demonstrated by measurements of the Ti XXI K radiation

  4. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    Science.gov (United States)

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  5. Electron spectroscopy in the fundamental process of electron-nucleus bremsstrahlung

    International Nuclear Information System (INIS)

    Hillenbrand, Pierre-Michel

    2013-07-01

    Within the scope of this thesis the fundamental process of electron-nucleus bremsstrahlung was studied in inverse kinematics at the Experimental Storage Ring ESR at GSI. For the system U 88+ + N 2 at 90 MeV/u it was shown, that by using inverse kinematics coincidence measurements between the scattered electron and the emitted photon can be performed for the case, in which the incoming electron transfers almost all of its kinetic energy onto the emitted photon. The sensitivity to the fundamental process could be achieved by measuring triple differential cross sections as a function of the emission angle of the photon and the scattered electron as well as the energy of the scattered electron. The optics of the magnetic electron spectrometer used were thoroughly revised and optimized to the experimental requirements. Analyzing different coincidences in this collision system, it was possible to determine the contributions to the electron distribution arising from radiative electron capture to the projectile continuum, nonradiative electron capture to the projectile continuum, and electron loss to the projectile continuum. The experimental results of each of these processes were compared to theoretical calculations. The electron spectra for the radiative and the nonradiative electron capture to continuum clearly reproduce the opposite asymmetry predicted by theory. Furthermore electron spectra for collisions of U 28+ with different gases were measured.

  6. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N 7+ ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N 2 , O 2 , and CO molecular ions produced in collisions with 97-MeV Ar 14+ ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO 2+ and CO 3+ from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO 1+ and CO 2+ molecular ions, and the branching ratios for the most prominent charge division channels of CO 2+ through CO 7+ were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer

  7. A multichannel magnetic β-ray spectrometer for rapid measurements of electron spectra

    International Nuclear Information System (INIS)

    Kariya, Komyo; Morikawa, Kaoru.

    1989-01-01

    In order to make the magnetic β-ray spectrometer suitable for rapid measurements of electron spectra with short-lived nuclides, twelve small GM counters have been arrayed along the focal plane of a 180deg focusing flat type design. All the signal pulses from each one of these detectors are mixed together onto a single cable. By means of multichannel PHA, each pulse can be traced back to the specific detector which sent it out. In order to avoid time consuming evacuation procedures, the sample source is placed outside a thin window of the preevacuated analyzer chamber. By the use of this multichannel spectrometer a β-ray spectrum with maximum energy up to about 10 MeV can be measured within 1 min or so. Electron spectra measured with 113m In, 119m In and 144 Pr source are shown. (author)

  8. Secondary ion formation during electronic and nuclear sputtering of germanium

    Science.gov (United States)

    Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2018-06-01

    Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.

  9. [A high resolution projection electron spectrometers]: Final report 1978-1987

    International Nuclear Information System (INIS)

    1988-01-01

    The main emphasis of the work has been to study inner shell ionization processes. The signatures have been K x-rays or K Auger transitions. We have worked with semiconductor or Bragg x-ray spectrometers. Toward the end of the contract we concentrated on projectile electron spectroscopy. These topics and other atomic physics projects are described briefly in this progress report

  10. A coincidence method for the simultaneous measurement of the photoionization of several masses

    International Nuclear Information System (INIS)

    Broeker, G.

    1989-11-01

    This study was made in the working team Ding (Hahn-Meitner Institute Berlin) in the framework of photoionization experiments on Van-der-Waals clusters. The experiments were performed at the Berlin electron storage ring (BESSY). In a molecular-beam source clusters are produced and ionized by monochromatic light. The mass of the ions arising hereby is determined with a time-of-flight mass spectrometer. Within this thesis a method and an electronic device was developed, by which it is made possible to gather simultaneously the wave-length dependence of several masses. (orig.) With 27 refs [de

  11. Determination of Benzene, Toluene, and Xylene by means of an ion mobility spectrometer device using photoionization

    Science.gov (United States)

    Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.

    1995-01-01

    The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.

  12. A silicon microstrip detector in a magnetic spectrometer for high-resolution electron scattering experiments at the S-DALINAC

    International Nuclear Information System (INIS)

    Lenhardt, A.W.; Bonnes, U.; Burda, O.; Neumann-Cosel, P. von; Platz, M.; Richter, A.; Watzlawik, S.

    2006-01-01

    A silicon microstrip detector was developed as focal plane detector of the 169.7 deg. magic angle double-focussing spectrometer at the superconducting Darmstadt electron linear accelerator (S-DALINAC). It allows experiments with minimum ionizing electrons at data rates up to 100 kHz, utilizing the maximum resolution of the spectrometer achievable in dispersion-matching mode

  13. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  14. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  15. HISS spectrometer

    International Nuclear Information System (INIS)

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented

  16. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Bourva, L.C.A.; Croft, S.

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP TM , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents a new evaluation technique for the estimation of gate utilisation factors. It uses the die-away profile of a neutron coincidence chamber generated either by MCNP TM , or by other means, to simulate the neutron detection arrival time pattern originating from independent spontaneous fission events. A shift register simulation algorithm, embedded in the MCF code, then calculates the coincidence counts scored within the electronics gate. The gate utilisation factor is then deduced by dividing the coincidence counts obtained with that obtained in the same Monte Carlo run, but for an ideal detection system with a coincidence gate utilisation factor equal to unity. The MCF code has been benchmarked against analytical results calculated for both single and double exponential die-away profiles. These results are presented along with the development of the closed form algebraic expressions for the two cases. Results of this validity check showed very good agreement. On this

  17. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    Science.gov (United States)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five

  18. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  19. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    Science.gov (United States)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  20. Improvement of the intrinsic time resolving power of the Cologne iron-free orange type electron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Regis, J.-M.; Materna, Th.; Pascovici, G.; Christen, S.; Dewald, A.; Fransen, C.; Jolie, J.; Petkov, P.; Zell, K. O. [Institut fuer Kernphysik (IKP), Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2010-11-15

    Conversion electron spectroscopy represents an important tool for nuclear structure analysis of medium and heavy nuclei. Two iron-free magnetic electron spectrometers of the orange type have been installed at the Institute for Nuclear Physics of the University of Cologne. The very large transmission of 15% and the very good energy resolution of 1% makes the iron-free orange spectrometer a powerful instrument. By means of fast timing techniques, lifetimes of nuclear excited states can be measured with an accuracy better than 20 ps. For the first time, the energy dependent centroid position of prompt events yielding the time-walk characteristics (the prompt curve) of the orange spectrometer fast timing setup has been measured using prompt secondary {delta}-electrons generated in a pulsed beam experiment. The prompt curve calibrated as a function of energy allows precise lifetime determination down to a few tens of picoseconds by the use of the centroid shift method.

  1. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  2. Simplified slow anti-coincidence circuit for Compton suppression systems

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2008-01-01

    Slow coincidence circuits for the anti-coincidence measurements have been considered for use in Compton suppression technique. The simplified version of the slow circuit has been found to be fast enough, satisfactory and allows an easy system setup, particularly with the advantage of the automatic threshold setting of the low-level discrimination. A well-type NaI detector as the main detector surrounded by plastic guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The system has been tested to observe the improvement in the energy spectra for medium to high-energy gamma-ray photons from terrestrial and environmental samples

  3. An Automated High Performance Capillary Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for High-Throughput Proteomics

    International Nuclear Information System (INIS)

    Belov, Mikhail E.; Anderson, Gordon A.; Wingerd, Mark A.; Udseth, Harold R.; Tang, Keqi; Prior, David C.; Swanson, Kenneth R.; Buschbach, Michael A.; Strittmatter, Eric F.; Moore, Ronald J.; Smith, Richard D.

    2004-01-01

    We report on a fully automated 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer coupled to reverse-phase chromatography for high-throughput proteomic studies. Modifications made to the front-end of a commercial FTICR instrument--a dual-ESI-emitter ion source; dual-channel electrodynamic ion funnel; and collisional-cooling, selection and accumulation quadrupoles--significantly improved the sensitivity, dynamic range and mass measurement accuracy of the mass spectrometer. A high-pressure capillary liquid chromatography (LC) system was incorporated with an autosampler that enabled 24 h/day operation. A novel method for accumulating ions in the ICR cell was also developed. Unattended operation of the instrument revealed the exceptional reproducibility (1-5% deviation in elution times for peptides from a bacterial proteome), repeatability (10-20% deviation in detected abundances for peptides from the same aliquot analyzed a few weeks apart) and robustness (high-throughput operation for 5 months without downtime) of the LC/FTICR system. When combined with modulated-ion-energy gated trapping, the internal calibration of FTICR mass spectra decreased dispersion of mass measurement errors for peptide identifications in conjunction with high resolution capillary LC separations to < 5 ppm over a dynamic range for each spectrum of 10 3

  4. Method of summation of amplitudes of coinciding pulses from Ge(Li) detectors used to study cascades of gamma-transitions in (n,#betta#) reaction

    International Nuclear Information System (INIS)

    Bogdzel', A.A.; Vasil'eva, Eh.V.; Elizarov, O.I.

    1982-01-01

    Main performanes and peculiarities of spectrometer based on the coincidence pulse amplitude total-count method and containing two Ge(La) detectors with transmission neutron spectrometer - IBR-30 pulse reactor are considered. It is shown on the 35 Cl(n, #betta#) reaction that the method of summalion of amplitudes of coinciding pulses from the Ge(Li) detector can be used to study the cascades of two #betta#-transitions with a total energy similar to the neutron binding energy. The shape of the response function of this spectrometer was studied versus the energies of #betta#-transition cascades

  5. TIGRESS: TRIUMF-ISAC gamma-ray escape-suppressed spectrometer

    Science.gov (United States)

    Svensson, C. E.; Amaudruz, P.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Chen, A. A.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Kanungo, R.; Maharaj, R.; Martin, J. P.; Morris, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Roy, R.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Smith, M. B.; Starinsky, N.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.

    2005-10-01

    The TRIUMF-ISAC gamma-ray escape-suppressed spectrometer (TIGRESS) is a new γ-ray detector array being developed for use at TRIUMF's Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. TIGRESS will comprise 12 32-fold segmented clover-type HPGe detectors coupled with 20-fold segmented modular Compton suppression shields and custom digital signal processing electronics. This paper provides an overview of the TIGRESS project and progress in its development to date.

  6. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  7. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    Science.gov (United States)

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-07

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  8. Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Chawla, J. K.; Mishra, M. K.

    2010-01-01

    Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,σ), where p and σ are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.

  9. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  10. Satellite-borne time-of-flight particle spectrometer and its response to protons

    International Nuclear Information System (INIS)

    Shino, T.

    1994-01-01

    One of the purposes of the high energy particle (HEP) experiment of the GEOTAIL satellite launched in 1992 is the elucidation of plasma dynamics in the tail region of planetary magnetosphere. For that purpose, a low energy particle detector (LD) was on board, which mainly observed relatively low energy particles up to a few MeV. The LD is the particle spectrometer based on time of flight technique. In order to confirm further its sensitivity to high energy protons, the beam experiment was carried out at Waseda University using the engineering model of the LD spectrometer that is exactly the same as the launched one. The LD spectrometer is shown, and its functions are explained. The LD was designed to identify electrons of 30 - 400 keV, protons of 30 - 1500 keV, helium ions of 80 - 4000 keV, and heavy ions (mainly C, N and O) of 160 - 1500 keV. The relation of measured time of flight signals with energy signals is shown. There are several factors that determine the detection efficiency of the spectrometer, which are discussed. The experiment and the results are reported. (K.I.)

  11. Electrostatic electron spectrometer based on two cylinders without axial symmetry

    International Nuclear Information System (INIS)

    Varga, D.; Toekesi, K.

    2005-01-01

    Complete text of publication follows. During the last decades electrostatic analyzers were widely used in atomic and surface physics. This was due to their good focusing and dispersion properties, The cylindrical mirror analyzer (CMA) is one of the most advantageous electrostatic analyzers. Its second order focusing properties have been calculated by many authors. A modified, so called 'box' type, CMA (ESA-13) is described in ref. [1]. For CMA (ESA-13), the position of the electron source and focus are outside the analyzer which is desirable for practical reasons. The ends of the cylinders are closed with two coaxial discs, therefore the electrostatic field near the edge is distorted compared to the logarithmic field existing in the classical 'in-finite' cylindrical mirror analyzer. However, the 'box' type distorted field cylindrical mirror analyzer geometry contains several limitations regarding the irradiation of the sample. Therefore, the construction of these analyzers was changed by replacing the endings of the analyzer with conically shaped electrodes ensuring a better accessibility for excitation. But among the various experimental tasks many geometrical conditions arise that are different or that need different sizes compared with the previous ones. Therefore, in a practical point of view, it is extremely advantageous to have different variations of spectrometers. This allows us to choose the best solution for a given problem. In this work, we present electron-optical properties of a mirror type electrostatic electron spectrometer consisting of two cylinders with eccentricity (see Fig 1.), namely the Eccentric Cylindrical Mirror Analyzer (ECMA). The designed analyzer is a possible variation of CMA for measuring the energy distribution of electrons with high energy resolution or making an electron monocromator. It has been shown that the Eccentric Cylindrical Mirror Analyzer has second-order focusing properties with remarkable dispersion (see Fig 2

  12. Sawtooth activity of the ion cloud in an electron-beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.

    2003-01-01

    The dynamics of an ensemble of highly charged Ar and Ba ions in an electron-beam ion trap (EBIT) was studied by recording time-resolved x-ray spectra emitted from trapped ions. Sawtoothlike signatures manifest in the spectra for a variety of EBIT operating conditions indicating a sudden collapse of the ion inventory in the trap. The collapse occurs on a time scale of approximately 100 ms and the evolution of the sawteeth is very sensitive to parameters such as electron-beam current and axial trap depth. Analysis of the measurements is based on a time-dependent calculation of the trapping process showing that sawtooth activity is caused by the feedback between the low-Z argon and high-Z barium ions. This unexpected behavior demonstrates the importance of nonlinear effects in electron-beam traps containing more than a single ion species

  13. Coincidence Doppler broadening study on hydrocarbons with pi and sigma valence electrons: positronium correction

    International Nuclear Information System (INIS)

    Djourelov, N.; Suzuki, T.; Yu, R.S.; Ito, Y.

    2005-01-01

    The coincidence Doppler broadening (CDB) technique was applied to study the electron momentum distribution in anthracene, diphenyl, naphthalene, and polystyrene. A method for separation of the positron and positronium (Ps) components from the Doppler-broadened annihilation line (DBAL) was developed further to be applicable to hydrocarbons with different π and σ valence electron distributions. This method allows extraction of the electron momentum distribution (EMD) from DBAL for samples when Ps formation occurs. The annihilation on π valence electrons was detected as broadening of the EMD compared to that obtained for a polymer sample only with σ valence electrons. The broadening appeared as a significant change in the shape of the CDB ratio of the corresponding positronium-corrected curves: a slight enhancement above the unity line in the low-momentum region and a drop in the momentum region, 10-20x10 -3 m o c

  14. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  15. Ion microprobes

    International Nuclear Information System (INIS)

    Coles, J.N.; Long, J.V.P.

    1977-01-01

    An ion microprobe is described that has an ion extraction arrangement comprising two separate paths for ions and electrons diverging from a common point. A cone shaped or pyramidal guard electrode surrounds each path the apex angles being equal and coinciding with the said point. The guard electrodes are positioned to lie tangentially to each other and to a planar surface including the said point. An aperture is provided for the two paths at the apexes of both guard electrodes, and electrical connections between the guard electrodes enable the same potential to be applied to both guard electrodes. Means are provided for generating oppositely polarised electric fields within the guard electrodes, together with means for causing a focused ion beam to strike the common point without suffering astigmatism. The means for causing a focused ion beam to strike the said point includes an ion gun for directing an ion beam along one of the paths and means to provide an axial accelerating field there along. Optical viewing means are also provided. Existing designs enable only ions or electrons, but not both, to be extracted at any one time. (U.K.)

  16. Upgrade of the compact neutron spectrometer for high flux environments

    Science.gov (United States)

    Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.

    2018-03-01

    In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.

  17. Electronic drive and acquisition system for mass spectrometry

    Science.gov (United States)

    Schaefer, Rembrandt Thomas (Inventor); Mojarradi, Mohammad (Inventor); Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); MacAskill, John (Inventor); Tran, Tuan (Inventor); Burke, Gary R. (Inventor); Madzunkov, Stojan M. (Inventor); Blaes, Brent R. (Inventor); Thomas, John L. (Inventor)

    2010-01-01

    The present invention discloses a mixed signal RF drive electronics board that offers small, low power, reliable, and customizable method for driving and generating mass spectra from a mass spectrometer, and for control of other functions such as electron ionizer, ion focusing, single-ion detection, multi-channel data accumulation and, if desired, front-end interfaces such as pumps, valves, heaters, and columns.

  18. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  19. Co-Registered In Situ Secondary Electron and Mass Spectral Imaging on the Helium Ion Microscope Demonstrated Using Lithium Titanate and Magnesium Oxide Nanoparticles.

    Science.gov (United States)

    Dowsett, D; Wirtz, T

    2017-09-05

    The development of a high resolution elemental imaging platform combining coregistered secondary ion mass spectrometry and high resolution secondary electron imaging is reported. The basic instrument setup and operation are discussed and in situ image correlation is demonstrated on a lithium titanate and magnesium oxide nanoparticle mixture. The instrument uses both helium and neon ion beams generated by a gas field ion source to irradiate the sample. Both secondary electrons and secondary ions may be detected. Secondary ion mass spectrometry (SIMS) is performed using an in-house developed double focusing magnetic sector spectrometer with parallel detection. Spatial resolutions of 10 nm have been obtained in SIMS mode. Both the secondary electron and SIMS image data are very surface sensitive and have approximately the same information depth. While the spatial resolutions are approximately a factor of 10 different, switching between the different images modes may be done in situ and extremely rapidly, allowing for simple imaging of the same region of interest and excellent coregistration of data sets. The ability to correlate mass spectral images on the 10 nm scale with secondary electron images on the nanometer scale in situ has the potential to provide a step change in our understanding of nanoscale phenomena in fields from materials science to life science.

  20. Advanced ion beam analysis of materials using ion-induced fast electron

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Hiroshi; Tanabe, Atsushi; Ishihara, Toyoyuki [Tsukuba Univ., Ibaraki (Japan); and others

    1997-03-01

    Recent progress in the study of high-energy shadowing effect using ion-induced electron spectroscopy is reported with emphasis on a possibility of determination of local electronic structure in solids, which has been a difficult problem to approach with other experimental techniques. We demonstrate real-space determination of covalent-bond electron distribution in Si crystal. The analysis technique may provide a new field of ion beam analysis of solids. (author)

  1. Ions in the KATRIN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, Ferenc [KIT, Campus Nord (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The aim of the KATRIN experiment is to determine the absolute neutrino mass scale in a model independent way, by measuring the electron energy spectrum shape near the endpoint of tritium beta decay. Beta decays and ionizations produce about 2 . 10{sup 12} s{sup -1} tritium ion rate in the KATRIN source. About 10 % and 1 % of that rate is the expected flux of positive tritium ions and T{sup -} ions leaving the source in detector direction. The positive tritium ions are not affected by the pumping system, and, when unhindered, they would cause an extremely large background and tritium contamination in the spectrometers. They will be blocked in the transport system by positive potential electrodes and will be removed from the flux tube by dipole electrodes. The ion composition and the ion blocking and removal efficiency will be tested by an FT-ICR trap, a Faraday cup and the KATRIN pre- and main spectrometers and FPD, using both a photoelectron induced deuterium plasma and the tritium beta decay plasma.

  2. Electron emission following collisions between multi-charged ions and D{sub 2} molecules; Etude de l'emission electronique induite par impact d'ion multicharge sur la molecule D{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G

    2004-05-15

    Dissociative ionisation mechanisms induced in collisions involving a highly charged ion (S{sup 15+}, 13.6 MeV/u) and a molecular deuterium target, have been studied through momentum vector correlations of both the D{sup +} fragments and the electrons produced. An experimental apparatus has been developed in order to detect in coincidence all the charged particles produced during the collision. The measurement of their momentum vectors, which allows one to determine both their kinetic energy and direction of emission with respect to the projectile one, combines Time of Flight, Position Sensitive Detection, and multi-coincidence techniques. The correlation of the fragment and electron kinetic energies enables not only to determine branching ratios between the dissociative ionisation pathways, but also to separate unambiguously kinetic energy distributions of fragments associated to each process. Finally, the angular distributions of ejected electrons, as a function of the orientation of the molecular axis with respect to the projectile direction, are deduced from the spatial correlation. Measurements are compared to theoretical angular distributions obtained using the CDW-EIS (Continuum Distorted Wave-Eikonal Initial State) method. (author)

  3. Ion detection in mass spectrometry

    International Nuclear Information System (INIS)

    Bolbach, Gerard

    2016-03-01

    This course aims at providing some elements for a better understanding of ion detectors used in mass spectrometers, of their operations, and of their limitations. A first part addresses the functions and properties of an ideal detector, how to detect ions in gas phase, and particle detectors and ion detectors used in mass spectrometry. The second part proposes an overview of currently used detectors with respect to their operation principle: detection from the ion charge (Faraday cylinder), detection by inductive effects (FTICR, Fourier Transform Ion Cyclotron Resonance), and detection by secondary electron emission. The third part discusses the specificities of secondary electron emission. The fourth one addresses operating modes and parameters related to detectors. The sixth part proposes a prospective view on future detectors by addressing the following issues: cryo-detector, inductive effect and charge detectors, ion detection and nano materials

  4. An improved electron impact ion source power supply

    International Nuclear Information System (INIS)

    Beaver, E.M.

    1974-01-01

    An electron impact ion source power supply has been developed that offers improved ion beam stability. The electrical adjustments of ion source parameters are more flexible, and safety features are incorporated to protect the electron emitting filament from accidental destruction. (author)

  5. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    International Nuclear Information System (INIS)

    Poletto, L.; Frassetto, F.; Miotti, P.; Di Cicco, A.; Iesari, F.; Finetti, P.; Grazioli, C.; Kivimäki, A.; Stagira, S.; Coreno, M.

    2014-01-01

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented

  6. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    Science.gov (United States)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  7. EUV spectrum of highly charged tungsten ions in electron beam ion trap

    International Nuclear Information System (INIS)

    Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N.

    2016-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra was investigated for electron energy from 540 to 1370 eV. Previously unreported lines were presented in the EUV range, and comparing the wavelengths with theoretical calculations identified them. (author)

  8. Ion-acoustic solitons in a plasma with electron beam

    International Nuclear Information System (INIS)

    Esfandyari, A. R.; Khorram, S.

    2001-01-01

    Ion-acoustic solitons in a collisionless plasma consisting of warm ions, hot isothermal electrons and a electron beam are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries and modified Korteweg-de Vries temperature and electron beam on ion acoustic equations. The effect of ion solitons are investigated

  9. Electron cloud and ion effects

    CERN Document Server

    Arduini, Gianluigi

    2002-01-01

    The significant progress in the understanding and control of machine impedances has allowed obtaining beams with increasing brilliance. Dense positively charged beams generate electron clouds via gas ionization, photoemission and multipacting. The electron cloud in turn interacts with the beam and the surrounding environment originating fast coupled and single bunch instabilities, emittance blow-up, additional loads to vacuum and cryogenic systems, perturbation to beam diagnostics and feedbacks and it constitutes a serious limitation to machine performance. In a similar way high brilliance electron beams are mainly affected by positively charged ions produced by residual gas ionization. Recent observations of electron cloud build-up and its effects in present accelerators are reviewed and compared with theory and with the results of state-of-the-art computer simulations. Two-stream instabilities induced by the interaction between electron beams and ions are discussed. The implications for future accelerators ...

  10. The design and performance of a velocity map imaging spectrometer for the study of molecular photoionisation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holland, D.M.P., E-mail: david.holland@stfc.ac.uk [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Shaw, D.A. [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2012-12-10

    Highlights: Black-Right-Pointing-Pointer Velocity map imaging spectrometer optimised for molecular photoionisation dynamics. Black-Right-Pointing-Pointer Kinetic energy distribution of O{sup +} fragments measured. Black-Right-Pointing-Pointer Effect of autoionisation on photoelectron vibrational populations studied. -- Abstract: The design, construction and performance of a velocity map imaging spectrometer for the study of molecular photoionisation dynamics is described. The spectrometer has been optimised for the efficient collection and detection of particles (electrons or positively charged ions) generated through the interaction of gas phase molecules with synchrotron radiation. A double Einzel lens, incorporated into the flight tube, enhances the collection efficiency of energetic particles. Computer modelling has been used to trace the trajectories of charged particles through the spectrometer and to assess the image quality. A time and position sensitive delay-line detector is used to record the images. Results from two experimental studies are presented to illustrate the capabilities of the spectrometer. In the first, the effect of electronic autoionisation on the vibrationally resolved photoelectron branching ratios of the N{sub 2}{sup +} X {sup 2}{Sigma}{sub g}{sup +} state has been investigated in an excitation range where prominent structure due to Rydberg states occurs in the ion yield curve. The results show that autoionisation leads to rotational branch populations that differ from those observed in direct, non-resonant, photoionisation. In the second, the kinetic energy distribution and the angular distribution of O{sup +} fragments formed in the dissociative photoionisation of molecular oxygen have been measured. The timing properties of the detector have allowed O{sup +} fragments to be separated from O{sub 2}{sup +} parent ions using time-of-flight techniques.

  11. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  13. Electron cyclotron resonance multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1975-01-01

    Three ion sources, that deliver multiply charged ion beams are described. All of them are E.C.R. ion sources and are characterized by the fact that the electrons are emitted by the plasma itself and are accelerated to the adequate energy through electron cyclotron resonance (E.C.R.). They can work without interruption during several months in a quasi-continuous regime. (Duty cycle: [fr

  14. X-ray spectroscopic study of high-temperature plasmas by curved crystal spectrometer

    International Nuclear Information System (INIS)

    Morita, Shigeru.

    1983-07-01

    Extensive studies have been carried out on the structure of X-ray spectra from the highly stripped ions of first transition elements and their behavior in high temperature plasma, using a high resolution crystal spectrometer. Calculation was made on the design and the use of a curved crystal spectrometer for plasma diagnostics. A Johann type crystal spectrometer for measuring X-ray lines was constructed on the basis of the calculation. The characteristics of curved crystals of LiF, Ge and quartz used for the measurement of Kα lines from first transition elements were investigated. Vacuum sparks have been formed for producing high temperature plasma which emits X-ray lines from highly stripped ions. Two different structures of vacuum spark plasma were shown, that is, thermalized point plasma and extended plasma associated with non-thermal electrons. The X-ray lines from the extended plasma, those associated with the K shell from the point plasma and the Kα lines of Ti through Zn from the point plasma have been observed. (Kako, I.)

  15. Ion-electron recombination in merged-beams experiments

    International Nuclear Information System (INIS)

    Schmidt, H.T.

    1994-01-01

    In the present thesis, studies of recombination processes applying the technique of merged beams of fast ions and electrons are described. The main advantage of this technique is that the low relative velocity of ions and electrons necessary for these investigations can be achieved, at the same time as the velocity of the ions relative to the molecules of the residual gas is high. The high ion velocity leads to a very low reaction cross section for the leading contribution to the background signal, the capture of electrons in collisions with residual gas molecules. The experimental technique is described, emphasizing the electron beam velocity distribution and its relation to the energy resolution of the experiments. The presentation of the process of electron cooling is aimed at introducing this process as a tool for merged-beams experiments in storage rings rather than investigating the process itself. The non-resonant process of radiative recombination for non-fully stripped ions, showing evidence of incomplete screening is presented. Experimental investigation of dielectronic recombination is presented. Results of measurements of this process for He-like ions form the Aarhus single-pass experiment and the Heidelberg storage ring experiment are compared. Recombination is reduced from being the aim of the investigation to being a tool for high-precision measurements of the lifetimes of the 1s2s 3 S metastable states of HE-like ions of boron, carbon, and nitrogen, performed at the Heidelberg storage ring. The experiment is concerned with the process of dissociative recombination of molecular hydrogen ions. The discussion of this experiment emphasizes the distribution of population on the different vibrational levels of the ions in the initial state. In particular, a laser photo-dissociation technique was introduced to reduce the number of initial levels in the experiment. (EG) 24 refs

  16. Electron-ion recombination in merged beams

    International Nuclear Information System (INIS)

    Wolf, A.; Habs, D.; Lampert, A.; Neumann, R.; Schramm, U.; Schuessler, T.; Schwalm, D.

    1993-01-01

    Detailed studies of recombination processes between electrons and highly charged ions have become possible by recent improvements of merged-beams experiments. We discuss in particular measurements with stored cooled ion beams at the Test Storage Ring (TSR) in Heidelberg. The cross section of dielectronic recombination was measured with high energy resolution for few-electron systems up to the nuclear charge of Cu at a relative energy up to 2.6 keV. At low energy (∼0.1 eV) total recombination rates of several ions were measured and compared with calculated radiative recombination rates. Laser-stimulated recombination of protons and of C 6+ ions was investigated as a function of the photon energy using visible radiation. Both the total recombination rates and the stimulated recombination spectra indicate that in spite of the short interaction time in merged beams, also collisional capture of electrons into weakly bound levels (related to three-body recombination) could be important

  17. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  18. Microprocessor system for data acquisition processing and display for Auger electrons spectrometer

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Cudny, W.; Hildebrandt, S.; Marzec, J.; Walentek, J.; Zaremba, K.

    1984-01-01

    Data acquisition system for Auger electron spectrometry is developed. The system is used for chemical and structural analysis of materials and consists of a cylindrical mirror analyzer being a measuring spectrometer device, CAMAC unit and control unit. The control unit comprises a microcomputer based on INTEL 8080 microprocessor and display

  19. Convoy electron production by heavy ions in solids

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    The term convoy electron refers to those electrons ejected in fast ion-atom and ion-solid collisions closely matched in vector velocity to that of the incident heavy particles responsible for their ejection. Similarities and differences among electrons ejected into such states through binary electron capture to continuum and electron loss to continuum processes in single ion-atom encounters are compared and contrasted to more complex ejection processes occurring in solid targets. Puzzles posed by the apparent strong projectile Z dependence but weak emergent ion charge dependence of the yield in the case of solid targets are reviewed. Very recent progress in resolving these puzzles has been made by recent observations that the apparent mean free path for electron scattering out of the forward direction within the target is observed to be an order of magnitude greater than that for free electrons of equal velocity provided the projectile charge is high. 13 references, 2 figures, 1 table

  20. The source of monoenergetic electrons for the monitoring of spectrometer in the KATRIN neutrino experiment

    CERN Document Server

    Slezák, Martin

    The international project KATRIN (KArlsruhe TRItium Neutrino experiment) is a next-generation tritium $\\beta$-decay experiment. It is designed to measure the electron anti-neutrino mass by means of a unique electron spectrometer with sensitivity of 0.2 eV/c$^2$. This is an improvement of one order of magnitude over the last results. Important part of the measurement will rest in continuous precise monitoring of high voltage of the KATRIN main spectrometer. The monitoring will be done by means of conversion electrons emitted from a solid source based on $^{83}$Rb decay. Properties of several of these sources are studied in this thesis by means of the semiconductor $\\gamma$-ray spectroscopy. Firstly, measurement of precise energy of the 9.4 keV nuclear transition observed in $^{83}$Rb decay, from which the energy of conversion electrons is derived, is reported. Secondly, measurement of activity distribution of the solid sources by means of the Timepix detector is described. Finally, a report on measurement of r...

  1. Kinetic theory for electron dynamics near a positive ion

    International Nuclear Information System (INIS)

    Wrighton, Jeffrey M; Dufty, James W

    2008-01-01

    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron–ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron–electron and electron–ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single-particle trajectories of the electron–ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron–ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron–ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas

  2. Electron-electron interaction and transfer ionization in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2008-01-01

    Recently it was pointed out that electron capture occurring in fast ion-atom collisions can proceed via a mechanism which earlier was not considered. In the present paper we study this mechanism in more detail. Similarly as in radiative capture, where the electron transfer occurs due to the interaction with the radiation field and proceeds via emission of a photon, within this mechanism the electron capture is caused by the interaction with another atomic electron leading mainly to the emission of the latter. In contrast to the electron-electron Thomas capture, this electron-electron (E-E) mechanism is basically a first-order one having similarities to the kinematic and radiative capture channels. It also possesses important differences with the latter two. Leading to transfer ionization, this first-order capture mechanism results in the electron emission mainly in the direction opposite to the motion of the projectile ion. The same, although less pronounced, feature is also characteristic for the momenta of the target recoil ions produced via this mechanism. It is also shown that the action of the E-E mechanism is clearly seen in recent experimental data on the transfer ionization in fast proton-helium collisions.

  3. A double zero-dispersion magnetic spectrometer used in a telescopic mode for very forward heavy ions studies

    International Nuclear Information System (INIS)

    Bacri, C.O.; Roussel, P.

    1990-01-01

    An original method based on the use of a double magnetic spectrometer in a telescopic mode is proposed for the studies of heavy ions collisions both at very forward angles and for magnetic rigidities close to that of the beam. It consists in the direct measurement of angular distributions on doubly - Bρ and angle - sorted events. The method has been tested on the LISE spectrometer at GANIL with a 44 MeV/A 40 Ar beam impinging on C, Al, Ni and Au targets. Milliradian angular accuracy have been obtained at magnetic rigidities as close as 0.9977 of that of the beam

  4. Quantifying radionuclide signatures from a γ–γ coincidence system

    International Nuclear Information System (INIS)

    Britton, Richard; Jackson, Mark J.; Davies, Ashley V.

    2015-01-01

    A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ–γ system utilises fully digital electronics and list-mode acquisition to time–stamp each event, allowing coincidence matrices to be easily produced alongside typical ‘singles’ spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ–γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. - Highlights: • Monte-Carlo based software developed to easily create/update a coincidence signal library for environmental radionuclides. • Coincidence library utilised to accurately quantify gamma coincidence signatures. • All coincidence signature probabilities are corrected for cascade summing, conversion electron emission and pair production. • Key CTBTO relevant radionuclides have been tested to verify the calculated correction factors. • Accurately quantifying coincidence signals during routine analysis will allow dramatically improved detection

  5. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet.

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

  6. Ion induced high energy electron emission from copper

    International Nuclear Information System (INIS)

    Ruano, G.; Ferron, J.

    2008-01-01

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He + , Ne + and Ar + ) and Li + ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  7. The dynamics of electron and ion holes in a collisionless plasma

    Directory of Open Access Journals (Sweden)

    B. Eliasson

    2005-01-01

    Full Text Available We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly

  8. Incident ion charge state dependence of electron emission during slow multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Hughes, I.G.; Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    Characteristic variations in the total electron yield γ as a function of crystal azimuthal orientation are reported for slow N 2+ , N 5+ and N 6+ ions incident on a Au(011) single crystal, together with measurements of γ as a function of incident ion velocity. Kinetic electron emission is shown to arise predominantly in close collisions between incident ions and target atoms, and potential electron emission is found to be essentially constant within our present velocity range. The incident ion charge state is shown to play no role in kinetic electron emission. Extremely fast neutralization times of the order of 10 - 15 secs are needed to explain the observations

  9. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  10. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  11. Secondary electron ion source neutron generator

    Science.gov (United States)

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  12. Chemical characterization of microparticles by laser ablation in an ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Dale, J.M.; Whitten, W.B.; Ramsey, J.M.

    1991-01-01

    We are developing a new technique for the chemical characterization of microparticles based upon the use of electrodynamic traps. The electrodynamic trap has achieved widespread use in the mass spectrometry community in the form of the ion trap mass spectrometer or quadrupole ion trap. Small macroscopic particles can be confined or leviated within the electrode structure of a three-dimensional quadrupole electrodynamic trap in the same way as fundamental charges or molecular ions by using a combination of ac and dc potentials. Our concept is to use the same electrode structure to perform both microparticle levitation and ion trapping/mass analysis. The microparticle will first be trapped and spatially stabilized within the trap for characterization by optical probes, i.e., absorption, fluorescence, or Raman spectroscopy. After the particle has been optically characterized, it is further characterized using mass spectrometry. Ions are generated from the particle surface using laser ablation or desorption. The characteristics of the applied voltages are changed to trap the ions formed by the laser with the ions subsequently mass analyzed. The work described in this paper focuses on the ability to perform laser desorption experiments on microparticles contained within the ion trap. Laser desorption has previously been demonstrated in ion trap devices by applying the sample to a probe which is inserted so as to place the sample at the surface of the ring electrode. Our technique requires the placement of a microparticle in the center of the trap. Our initial experiments have been performed on falling microparticles rather than levitated particles to eliminate voltage switching requirements when changing from particle to ion trapping modes

  13. Atomic physics of highly charged ions in an electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.

    1990-07-01

    Two electron beam ion traps are in use at LLNL for the purpose of studying the properties of very highly charged ions and their interactions with electrons. This paper reviews the operation of the traps and discusses recent experiments in three areas: precision transition energy measurements in the limit of very high ion charge, dielectronic recombination measurements for the He-like isoelectronic sequence, and measurements of x-ray polarization. 22 refs., 11 figs., 1 tab

  14. Forward electron production in heavy ion-atom and ion-solid collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table

  15. Ion current reduction in pinched electron beam diodes

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Poukey, J.W.

    1977-01-01

    A new version of a particle-in-cell diode code has been written which permits the accurate treatment of higher-current diodes with greater physical dimensions. Using this code, we have studied ways to reduce the ion current in large-aspect-ratio pinched electron beam diodes. In particular, we find that allowing the ions to reflex in such diodes lowers the ion to electron current ratio considerably. In a 3-MV R/d=24 case this ratio was lowered by a factor of 6--8 compared with the corresponding nonreflexing-ion diode, while still producing a superpinched electron beam

  16. A method for atomic spectroscopy of highly charged ions in the Pm isoelectronic sequence

    International Nuclear Information System (INIS)

    Andersson, Oe.

    1995-08-01

    The aim was to search for alkali-like spectra in the Promethium isoelectronic sequence. Pb 22+ ions were produced by means of an ECR-ion source and accelerated towards a target of He gas. Colliding with He atoms the Pb 22+ ions are likely to capture an electron, thus forming an excited Pm-like ion (Pb 21+ ). A 2 m grazing-incidence spectrometer was used for recording the spectra arising as the accelerated ions impinge on the target. No lines were recorded throughout the wavelength region where the spectrometer is sensitive. Further experiments are needed to make clear if this is due to experimental errors or not. 14 refs, 8 figs

  17. Simulating electron clouds in heavy-ion accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2005-01-01

    Contaminating clouds of electrons are a concern for most accelerators of positively charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly magnetized, weakly magnetized, and unmagnetized. The approach to such self-consistency is described, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyroperiod in the magnets. Tests and applications are presented: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the high-current experiment [L. R. Prost, P. A. Seidl, F. M. Bieniosek, C. M. Celata, A. Faltens, D. Baca, E. Henestroza, J. W. Kwan, M. Leitner, W. L. Waldron, R. Cohen, A. Friedman, D. Grote, S. M. Lund, A. W. Molvik, and E. Morse, 'High current transport experiment for heavy ion inertial fusion', Physical Review Special Topics, Accelerators and Beams 8, 020101 (2005)], at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam on an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-time-step mover to accurately calculate the instability

  18. New experimental initiatives using very highly charged ions from an 'electron beam ion trap'

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    A short review of the experimental program in highly-charged heavy ion physics conducted at the Lawrence Livermore National Laboratory Electron Beam Ion Trap (EBIT) facility is presented. The heavy-ion research, involving ions up to fully stripped U 92+ , includes precision x-ray spectroscopy and lifetime studies, electron impact ionization and excitation cross section measurements. The investigations of ion-surface interactions following the impact of high-Z highly charged ions on surfaces are aimed to study the neutralization dynamics effecting the ion and the response of the surface as well. (author)

  19. Electron spectrometer for measurement of the energy distributions and angular distributions of electrons ejected by ionizing radiation

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1975-01-01

    With a broad range of applications in mind, a new electron spectrometer has been constructed which is flange mountable, has an easily accessible source region, is rotatable over the range 25 0 less than or equal to theta less than or equal to 335 0 , and has a wide dynamical range and a wide range of resolving power

  20. Nonplanar ion acoustic waves with kappa-distributed electrons

    International Nuclear Information System (INIS)

    Sahu, Biswajit

    2011-01-01

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing κ) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.

  1. Ion induced high energy electron emission from copper

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)], E-mail: gdruano@ceride.gov.ar; Ferron, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina); Departamento de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)

    2008-11-15

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He{sup +}, Ne{sup +} and Ar{sup +}) and Li{sup +} ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  2. Construction and performance-testing of a scintillation spectrometer

    International Nuclear Information System (INIS)

    Berthier, J.; Locard, P.; Hocquenghem, J.C.; Goin, G.

    1966-01-01

    We first describe the realisation of a scintillation spectrometer based on the 'Fast-slow' coincidences technique. The counters use 56 A.V.P. fast photomultipliers. The fast coincidences unit can also be used as time-to- height pulses converter. The resolving time, with two NaI crystals, is about 14 nanoseconds. We show, at the end, the measurements which can be undertaken with our apparatus: β-γ or γ-γ coincidences, 'Sum-spectra', life time measurements, β-γ or γ-γ directional angular correlation measurements (with detection or not of the linear polarization) and we give, for each case, the results of test-measurements. (authors) [fr

  3. Noncontact measurement of electrostatic fields: Verification of modeled potentials within ion mobility spectrometer drift tube designs

    International Nuclear Information System (INIS)

    Scott, Jill R.; Tremblay, Paul L.

    2007-01-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity

  4. Dosimetry and LET spectrometry in C 290 MeV/n and Ne 400 MeV/n HIMAC ion beam by different TLD's, TED based LET spectrometers, and Si energy-deposition spectrometer

    International Nuclear Information System (INIS)

    Spurny, F.; Brabcova, K.; Jadrnickova, I.; Uchihori, Y.; Kitamura, H.; Yasuda, N.; Molokanov, A. G.

    2009-01-01

    The sets of track etched detectors based (TED) spectrometer's of the linear energy transfer (LET) have been, together with two types of thermoluminescent detectors (TLD)and MDU- Liulin energy deposition spectrometer exposed in the C 290 MeV/n and Ne 400 MeV/n ion beams at the HlMAC installation at NIRS, Chiba, Japan. The experiment has been performed in the frame of NPI project 20P241 agreed by HlMAC P AC at the beginning of 2008 year. Up to now, moxstle only results obtained in C-ion beam have been treated and analyzed. Sets of TED spectrometer's and TLD detectors have been exposed in 19 depths in the C-ion beam with expected LET values of primary particles from 13 keV/μm in water, through the Bragg peak area up to two depth behind the Bragg peak. The contribution of fragments to total number of events, and to the energy absorbed in Si has been determined, when possible separately for different fragments. In all cases also total contribution of fragments (and other secondary particles) to the total number of energy deposition events and to the absorbed dose has been estimated. LET and energy deposition spectra obtained will be compared together , a good agreement of data has bee stated. Some of results have been also compared with those obtained by calculation by means of PHITS code. (authors)

  5. Improvements to the ion Doppler spectrometer diagnostic on the HIT-SI experiments

    Science.gov (United States)

    Hossack, Aaron; Chandra, Rian; Everson, Chris; Jarboe, Tom

    2018-03-01

    An ion Doppler spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record of 6.9 μs temporal and ≤2.8 cm spatial resolution in the midplane of each device. These allow Ciii and Oii flow, displacement, and temperature profiles to be observed simultaneously. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to a video camera, frame rates of up to ten times the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper half of the midplane. In HIT-SI3, frame rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from ≲13 to ≲5 eV (with an instrument temperature of 8-16 eV) and uncertainty in velocity from ≲2 to ≲1 km/s. Doppler shift and broadening are calculated via the Levenberg-Marquardt algorithm, after which the errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for Ciii peaked near the inboard current separatrix at ≈40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at ≈6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.

  6. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  7. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  8. Development of a cosmic veto gamma-spectrometer

    International Nuclear Information System (INIS)

    Burnett, J.L.; Davies, A.V.

    2012-01-01

    Cosmic radiation contributes significantly towards the background radiation measured by a gamma-spectrometer. A novel cosmic veto gamma-spectrometer has been developed that provides a mean background reduction of 54.5%. The system consists of plastic scintillation plates operated in time-stamp mode to detect coincident muon interactions within an HPGe gamma-spectrometer. The instrument is easily configurable and provides improved sensitivity for radionuclides indicative of nuclear weapons tests and reactor incidents, including 140 Ba, 95 Zr, 99 Mo, 141 Ce, 147 Nd, 131 I, 134 Cs and 137 Cs. This has been demonstrated for Comprehensive Nuclear-Test-Ban Treaty applications to obtain the required 140 Ba MDA of 24 mBq within 2 days counting. Analysis of an air filter sample collected during the Fukushima incident indicates improved sensitivity compared to conventional gamma-spectrometers. (author)

  9. Electron collector and ion species experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.; Greenly, J.B.; Hammer, D.A.; Horioka, K.; Meyerhofer, D.D.

    1987-01-01

    Studies of the effects of an electron collector on the electron flow in an ion diode and on diode impedance history are being done with an extractor geometry ion diode (B/sub r/ magnetic insulation field) on the LION accelerator (1.5 MV, 4Ω, 40 ns). The collector is a flux-penetrable metal protrusion on the inner radius of the anode that collects electrons. This device increases the diode operating impedance particularly during the later part of the pulse when the diode impedance collapses without the collector. In the present set of experiments, several thin wires are inserted into the anode and allowed to protrude a few millimeters into the A-K gap. These wires are damaged by the electron flow during the pulse and by measuring the length of the remaining wire, the distance of the electron layer from the anode can be inferred. The ion current density is also measured in three radial locations across the diode, giving a measure, through the Child-Langmuir law, of the effective gap spacing between the anode and the electron sheath. A simple model is proposed to account for the scaling of ion current density with the diode voltage observed in the experiment

  10. One- and two-electron processes in collisions of heavy ions with H2 and He

    International Nuclear Information System (INIS)

    Richard, P.; Hall, J.; Shinpaugh, J.L.; Sanders, J.M.; Tipping, T.N.; Zouros, T.J.M.; Lee, D.H.; Schmidt-Boecking, H.

    1987-01-01

    In this paper we present a description of the apparatus and results for experiments involving one- and two-electron processes in collisions of heavy ions with H 2 and He. The experiments were performed using one-electron and bare projectiles. In the first section we describe the measurement of pure ionization of one-electron projectiles by H 2 targets and compare with previous results for He targets. We also present the results for one-electron capture by the projectile from H 2 targets. The energy dependence of the cross sections is compared to theoretical predictions for atomic and molecular hydrogen targets. Both experiments were performed by measuring only the final charge state of the projectile. In the second section we describe the measurement of partial cross sections for the same collisions by measuring the target recoil charge state in coincidence with the projectile charge state. By this method we can measure pure single- and double-ionization of the target, pure single-electron transfer and transfer ionization, and pure double-electron transfer. This experiment is presently being performed for bare flourine on He; however, absolute cross sections are not available at the time of this conference. (orig.)

  11. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  12. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies

    International Nuclear Information System (INIS)

    Schowalter, Steven J.; Chen Kuang; Rellergert, Wade G.; Sullivan, Scott T.; Hudson, Eric R.

    2012-01-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  13. Delta-electron spectroscopy: An aid for the determination of reaction times in heavy ion reactions

    International Nuclear Information System (INIS)

    Skapa, H.

    1983-01-01

    For the systems I->Au and I->Bi at an incident energy of 6.2 MeV/u (I->Au) and 6.6 MeV/u (I->Bi) the emission probability of delta electrons was determined. In an energy range from 150 KeV to 1000 KeV electrons were spectroscoped in coincidence to elastically, quasielastically, and deep inelastically scattered ions. In deep inelastic reaction between reaction products with high and without a mean mass drift was discriminated. The contribution of the conversion electrons, determined from gamma spectra, extends in the range of deep inelastic reactions of about 60%. While the ratio of conversion electrons for deep inelastic events with large to such without mass drift shows a flat, monotoneous growth for the ratio of the measured emission probabilities a oscillation-like structure with about 400 KeV width results. An interpretation of this structure as interference effect by nuclear time delay yields for the case of large mass drift a nuclear retention time of 7.5 x 10 -21 s. (orig./HSI) [de

  14. Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas

    Directory of Open Access Journals (Sweden)

    Malvina B. Trzhaskovskaya

    2015-05-01

    Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.

  15. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer

    International Nuclear Information System (INIS)

    Zhong Hongying; Fu Jieying; Wang Xiaoli; Zheng Shi

    2012-01-01

    Highlights: ► Irradiation of photons with energies more than the band gap generates electron–hole pairs. ► Electron tunneling probability is dependent on the electron mobility. ► Tunneling electrons are captured by charge deficient atoms. ► Unpaired electrons induce cleavages of chemical bonds. - Abstract: Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ = 355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO 2 nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry.

  16. Electron - ion recombination processes - an overview

    International Nuclear Information System (INIS)

    Hahn, Yukap

    1997-01-01

    Extensive theoretical and experimental studies have been carried out for the past 20 years on electron - ion recombination processes, as they are applied to the analysis of astrophysical and laboratory plasmas. We review the basic understanding gained through these efforts, with emphasis on some of the more recent progress made in recombination theory as the recombining system is affected by time-dependent electric fields and plasma particles at low temperature. Together with collisional ionization and excitation processes, recombination is important in determining ionization balance and excited-state population in non-equilibrium plasmas. The radiation emitted by plasmas is usually the principal medium with which to study the plasma condition, as it is produced mainly during the recombination and decay of excited states of ions inside the plasma. This is especially true when the plasma under study is not readily accessible by direct probes, as in astrophysical plasmas. Moreover, external probes may sometimes cause undesirable disturbances of the plasma. Electron-ion recombination proceeds in several different modes. The direct modes include three-body recombination (TBR) and one-step radiative recombination (RR), all to the ground- and singly-excited states of the target ions. By contrast, the indirect resonant mode is a two-step dielectronic recombination (DR), which proceeds first with the formation of doubly-excited states by radiationless excitation/capture. The resonant states thus formed may relax by autoionization and/or radiative cascades. For more exotic modes of recombination, we consider off-shell dielectronic recombination (radiative DR = RDR), in which an electron capture is accompanied by simultaneous radiative emission and excitation of the target ion. Some discussion on attachment of electrons to neutral atoms, resulting in the formation of negative ions, is also given. When resonance states involve one or more electrons in high Rydberg states

  17. On the electron-ion temperature ratio established by collisionless shocks

    Science.gov (United States)

    Vink, Jacco; Broersen, Sjors; Bykov, Andrei; Gabici, Stefano

    2015-07-01

    Astrophysical shocks are often collisionless shocks, in which the changes in plasma flow and temperatures across the shock are established not through Coulomb interactions, but through electric and magnetic fields. An open question about collisionless shocks is whether electrons and ions each establish their own post-shock temperature (non-equilibration of temperatures), or whether they quickly equilibrate in the shock region. Here we provide a simple, thermodynamic, relation for the minimum electron-ion temperature ratios that should be expected as a function of Mach number. The basic assumption is that the enthalpy-flux of the electrons is conserved separately, but that all particle species should undergo the same density jump across the shock, in order for the plasma to remain charge neutral. The only form of additional electron heating that we allow for is adiabatic heating, caused by the compression of the electron gas. These assumptions result in an analytic treatment of expected electron-ion temperature ratio that agrees with observations of collisionless shocks: at low sonic Mach numbers, Ms ≲ 2, the electron-ion temperature ratio is close to unity, whereas for Mach numbers above Ms ≈ 60 the electron-ion temperature ratio asymptotically approaches a temperature ratio of Te/Ti = me/ ⟨ mi ⟩. In the intermediate Mach number range the electron-ion temperature ratio scales as Te/Ti ∝ Ms-2. In addition, we calculate the electron-ion temperature ratios under the assumption of adiabatic heating of the electrons only, which results in a higher electron-ion temperature ratio, but preserves the Te/Ti ∝ Ms-2 scaling. We also show that for magnetised shocks the electron-ion temperature ratio approaches the asymptotic value Te/Ti = me/ ⟨ mi ⟩ for lower magnetosonic Mach numbers (Mms), mainly because for a strongly magnetised shock the sonic Mach number is larger than the magnetosonic Mach number (Mms ≤ Ms). The predicted scaling of the electron-ion

  18. Cross-sections of charge and electronic states change of particles at ion-ion and ion-molecule collisions

    International Nuclear Information System (INIS)

    Panov, M.N.; Afrosimov, V.V.; Basalaev, A.A.; Guschina, N.A.; Nikulin, V.K.

    2006-01-01

    The interactions of protons and alpha-particles with hydrocarbons are investigated. A quantum-mechanical computation of the electronic structure of all hydrocarbons from methane to butane and its fragment ions was performed in the Hartree-Fock RHF/UHF approximation using a GAMESS program (General Atomic Molecular Electron Structure System). The correlation energy was taken into account within the framework of MP2 perturbation theory. The structural parameters of the hydrocarbon molecules and their charged and neutral fragments were calculated in two cases: in the geometry of the parent molecule or of the relaxation states. The difference of the full energy of the same fragments in and out of brackets gives us the vibration excitation energies of the fragments at the moment of creation. Additional Mulliken effective charges (in electron charge units) of atoms in the fragments have been calculated. The calculations show that removing one electron from the ethane molecule without electronic excitation produced a single charged molecular ion in vibration state with binding energy of hydrogen atoms, some decimal eV. As results we obtain C 2 H 6 + and C 2 H 5 + . Additional fragmentation of hydrocarbon needs electronic excitation of produced single charged ions. Cross sections for electron capture and excitation processes in collisions between the hydrogen-like He + , B 4+ and O 7+ ions have been evaluated. The purpose of the theory within this project during the period under review was to get for the first time new data on Single-Electron Capture (SEC) and Excitation Processes (EP) in collisions of He + (1s) ions with hydrogen-like impurity ions B 4+ (1s) and O 7+ (1s) in the energy range for He + ions from 0.2 MeV to 3.0 MeV. The calculations were carried out by using the method of close-coupling equations with basis sets of eleven and ten quasimolecular two-electron states for reactions (1, 2) and (3, 4), respectively (entrance channel, seven charge transfer channels

  19. Electron capture by highly charged ions from surfaces and gases

    International Nuclear Information System (INIS)

    Allen, F.

    2008-01-01

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar 17+ and Ar 18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu -1 , charge-selected and then decelerated down to 5 eVu -1 for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar 17+ and Ar 18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu -1 , charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar 16+ and Xe 44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  20. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    International Nuclear Information System (INIS)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Carroll, D.C.; Clarke, R.J.; Neely, D.; Scott, G.G.

    2016-01-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z / A , a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  1. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    Science.gov (United States)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Carroll, D. C.; Clarke, R. J.; Neely, D.; Scott, G. G.; Borghesi, M.; Kar, S.

    2016-10-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z/A, a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  2. Electron cloud effects in intense, ion beam linacs theory and experimental planning for heavy-ion fusion

    International Nuclear Information System (INIS)

    Molvik, A.W.; Cohen, R.H.; Lund, S.M.; Bieniosek, F.M.; Lee, E.P.; Prost, L.R.; Seidl, P.A.; Vay, Jean-Luc

    2002-01-01

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Without special preparation a large fractional electron population ((ge)1%) is predicted in the High-Current Experiment (HCX), but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the ∼4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron flow is limited to drift velocities (E x B and (del)B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as the their effect on the ion beam

  3. Field and frequency modulated sub-THz electron spin resonance spectrometer

    Directory of Open Access Journals (Sweden)

    Christian Caspers

    2016-05-01

    Full Text Available 260-GHz radiation is used for a quasi-optical electron spin resonance (ESR spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH using field modulation. Original high-field ESR of 4f electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.

  4. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  5. An (e, 2e + ion) study of low-energy electron-impact ionization and fragmentation of tetrahydrofuran with high mass and energy resolutions

    Science.gov (United States)

    Ren, Xueguang; Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yoon; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2014-10-01

    We study the low-energy (E0 = 26 eV) electron-impact induced ionization and fragmentation of tetrahydrofuran using a reaction microscope. All three final-state charged particles, i.e., two outgoing electrons and one fragment ion, are detected in triple coincidence such that the momentum vectors and, consequently, the kinetic energies for charged reaction products are determined. The ionic fragments are clearly identified in the experiment with a mass resolution of 1 amu. The fragmentation pathways of tetrahydrofuran are investigated by measuring the ion kinetic energy spectra and the binding energy spectra where an energy resolution of 1.5 eV has been achieved using the recently developed photoemission electron source. Here, we will discuss the fragmentation reactions for the cations C4H8O+, C4H7O+, C2H3O+, C3H_6^+, C3H_5^+, C3H_3^+, CH3O+, CHO+, and C2H_3^+.

  6. Lessons learned with the SAGE spectrometer

    International Nuclear Information System (INIS)

    Sorri, J; Greenlees, P T; Jones, P; Julin, R; Konki, J; Pakarinen, J; Rahkila, P; Sandzelius, M; Uusitalo, J; Papadakis, P; Cox, D M; Herzberg, R D

    2012-01-01

    The SAGE spectrometer combines a high-efficiency γ-ray detection system with an electron spectrometer. Some of the design features have been known to be problematic and surprises have come up during the early implementation of the spectrometer. Tests related to bismuth germanate Compton-suppression shields, electron detection efficiency and an improved cooling system are discussed in the paper. (paper)

  7. Dual Electron Spectrometer for Magnetospheric Multiscale Mission: Results of the Comprehensive Tests of the Engineering Test Unit

    Science.gov (United States)

    Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.; hide

    2011-01-01

    The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.

  8. Electron-Cloud Simulation and Theory for High-Current Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Cohen, R; Friedman, A; Lund, S; Molvik, A; Lee, E; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-01-01

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize the distinguishing features of electron cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds. We also present results from several ingredients in this capability: (1) We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2) We simulate of the effect of specified electron cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics

  9. Electron-cloud simulation and theory for high-current heavy-ion beams

    Directory of Open Access Journals (Sweden)

    R. H. Cohen

    2004-12-01

    Full Text Available Stray electrons can arise in positive-ion accelerators for heavy-ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize the distinguishing features of electron-cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds (also applicable to other accelerators. We also present results from several ingredients in this capability. (1 We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2 We simulate the effect of specified electron-cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing-mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope “breathing” mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3 We report first results from a long-time-step algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics.

  10. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  11. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  12. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  13. Surface-site-selective study of valence electronic states of a clean Si(111)-7x7 surface using Si L23VV Auger electron and Si 2p photoelectron coincidence measurements

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Tahara, Masashi; Nagaoka, Shin-ichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2011-01-01

    Valence electronic states of a clean Si(111)-7x7 surface are investigated in a surface-site-selective way using high-resolution coincidence measurements of Si pVV Auger electrons and Si 2p photoelectrons. The Si L 23 VV Auger electron spectra measured in coincidence with energy-selected Si 2p photoelectrons show that the valence band at the highest density of states in the vicinity of the rest atoms is shifted by ∼0.95 eV toward the Fermi level (E F ) relative to that in the vicinity of the pedestal atoms (atoms directly bonded to the adatoms). The valence-band maximum in the vicinity of the rest atoms, on the other hand, is shown to be shifted by ∼0.53 eV toward E F relative to that in the vicinity of the pedestal atoms. The Si 2p photoelectron spectra of Si(111)-7x7 measured in coincidence with energy-selected Si L 23 VV Auger electrons identify the topmost surface components, and suggest that the dimers and the rest atoms are negatively charged while the pedestal atoms are positively charged. Furthermore, the Si 2p-Si L 23 VV photoelectron Auger coincidence spectroscopy directly verifies that the adatom Si 2p component (usually denoted by C 3 ) is correlated with the surface state just below E F (usually denoted by S 1 ), as has been observed in previous angle-resolved photoelectron spectroscopy studies.

  14. Electron string ion sources for carbon ion cancer therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Katagiri, K.; Noda, K. [National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  15. Effect of electronic spatial extents (ESE) of ions on overpotential of lithium ion capacitors

    International Nuclear Information System (INIS)

    Xu, Fan; Lee, Chung ho; Koo, Chong Min; Jung, Cheolsoo

    2014-01-01

    Highlights: •Electronic spatial extent (ESE) of ion characterizes its electron density volume. •The ESE of ion proposes to assess overpotential of nanoporous capacitor. •Anion with low ESE shows low overpotential of the capacitor. •The ESE is more realistic to assess overpotential than conductivity or ion size. -- Abstract: The electronic spatial extent (ESE) of ions was defined as a major concept for assessing the cause of overpotential in the charging and discharging processes of a nanoporous activated carbon (AC) electrode. The performance degradation of AC/Li half-cells was caused by the overpotential, which was in discord with the electrolyte conductivity and ion size. Compared to the overpotential with the salt concentration, the AC/Li half-cell with a high concentration had a smaller overpotential, and its discharge patterns were similar to the curves obtained from the half-cells with a smaller ESE of BF 4 − ion. The ESE is a more realistic solution for determining the overpotential of the nanoporous capacitor, such as supercapacitor and Li ion capacitor, because its capacity is dependent on the electron density at the electric double layer of the capacitor electrode

  16. Identification of very low energy projectile autoionizing transitions in high velocity collisions using zero-degree Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Liao, C.; Montenegro, E.C.; Hagmann, S.; Richard, P.; Grabbe, S.; Bhalla, C.P.; Wong, K.L.

    1995-01-01

    The unusual looking ''mesa''-shaped cusp observed in O 3+ collisions with He [N. Stolterfoht et al., Proc. 2nd US-Mexico Symp. on Atomic and Molecular Phy. eds. A. Cisneros and T. Morgan (Instituto de Fysica, Cuernavaca, Mexico, 1986) p. 51.], has been investigated using zero-degree electron spectroscopy, in both high resolution singles measurements and lower resolution electron-projectile coincidence measurements at 10, 15 and 23 MeV. The high resolution studies indicate the ''mesa'' peak to be actually composed of primarily two (other than the cusp) very strong autoionizing peaks corresponding to energies of 60 and 100 meV in the emitter frame. The coincidence studies, indicate these lines to originate from excitation of the O 3+ ion followed by autoionization. Ongoing Hartree-Fock-Slater calculations, severely tested at these extremely small transition energies, indicate that these lines can indeed result from the autoionization of t he O 3+ (1s 2 2s2p5l) Rydberg states produced during the collision. Furthermore, the unusually sharp edges of these lines giving rise to the characteristic ''mesa''-shape look, can be explained in terms of the kinematic constraints imposed by the energy and angular acceptance range of the spectrometer. (orig.)

  17. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  18. A method for atomic spectroscopy of highly charged ions in the Pm isoelectronic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Oe

    1995-08-01

    The aim was to search for alkali-like spectra in the Promethium isoelectronic sequence. Pb{sup 22+} ions were produced by means of an ECR-ion source and accelerated towards a target of He gas. Colliding with He atoms the Pb{sup 22+} ions are likely to capture an electron, thus forming an excited Pm-like ion (Pb{sup 21+}). A 2 m grazing-incidence spectrometer was used for recording the spectra arising as the accelerated ions impinge on the target. No lines were recorded throughout the wavelength region where the spectrometer is sensitive. Further experiments are needed to make clear if this is due to experimental errors or not. 14 refs, 8 figs.

  19. Study on the eγ coincidences in the 169Lu decay

    International Nuclear Information System (INIS)

    Batsev, S.; Bonch-Osmolovskaya, N.A.; Budzyak, A.; Kuznetsov, V.V.; Usmanov, R.R.

    1979-01-01

    The 169 Lu→ 169 Yb decay scheme was analyzed on the basis of measurements of eγ coincidence. The 169 Lu sources were obtained by irradiating a tantalum target by 660 MeV protons. The eγ-coincidence spectra were measured by an ironless β-spectrometer with a toroidal magnetic field and a detector. The γ-ray and eγ-coincidence spectra were processed by a computer. The results of processing the 169 Lu coincidence spectra are tabulated. No excited states of 169 Yb not confirmed by γγ and eγ coincidences (except for the head level of the 3/2 + (651) 720 keV band) remain in the 169 Lu decay scheme proposed. Weak transitions with the total intensity of no more than 3.3% per a 169 Lu decay have remained unarranged, they should discharge weakly excited levels of 169 Yb. Probabilities of the 169 Yb level population per a 169 Lu decay and the corresponding values of probabilities of transitions in them are presented. As a whole, the 169 Lu decay scheme involves 60 levels, 31 states of them are new

  20. The high-acceptance dielectron spectrometer HADES

    International Nuclear Information System (INIS)

    Agakichiev, G.; Destefanis, M.; Gilardi, C.; Kirschner, D.; Kuehn, W.; Lange, J.S.; Lehnert, J.; Lichtblau, C.; Lins, E.; Metag, V.; Mishra, D.; Novotny, R.; Pechenov, V.; Pechenova, O.; Perez Cavalcanti, T.; Petri, M.; Ritman, J.; Salz, C.; Schaefer, D.; Skoda, M.; Spataro, S.; Spruck, B.; Toia, A.; Agodi, C.; Coniglione, R.; Cosentino, L.; Finocchiaro, P.; Maiolino, C.; Piattelli, P.; Sapienza, P.; Vassiliev, D.; Alvarez-Pol, H.; Belver, D.; Cabanelas, P.; Castro, E.; Duran, I.; Fernandez, C.; Fuentes, B.; Garzon, J.A.; Kurtukian-Nieto, T.; Rodriguez-Prieto, G.; Sabin-Fernandez, J.; Sanchez, M.; Vazquez, A.; Atkin, E.; Volkov, Y.; Badura, E.; Bertini, D.; Bielcik, J.; Bokemeyer, H.; Dahlinger, M.; Daues, H.W.; Galatyuk, T.; Garabatos, C.; Gonzalez-Diaz, D.; Hehner, J.; Heinz, T.; Hoffmann, J.; Holzmann, R.; Koenig, I.; Koenig, W.; Kolb, B.W.; Kopf, U.; Lang, S.; Leinberger, U.; Magestro, D.; Muench, M.; Niebur, W.; Ott, W.; Pietraszko, J.; Rustamov, A.; Schicker, R.M.; Schoen, H.; Schoen, W.; Schroeder, C.; Schwab, E.; Senger, P.; Simon, R.S.; Stelzer, H.; Traxler, M.; Yurevich, S.; Zovinec, D.; Zumbruch, P.; Balanda, A.; Kozuch, A.; Przygoda, W.; Bassi, A.; Bassini, R.; Boiano, C.; Bartolotti, A.; Brambilla, S.; Bellia, G.; Migneco, E.; Belyaev, A.V.; Chepurnov, V.; Chernenko, S.; Fateev, O.V.; Ierusalimov, A.P.; Smykov, L.; Troyan, A.Yu.; Zanevsky, Y.V.; Benovic, M.; Hlavac, S.; Turzo, I.; Boehmer, M.; Christ, T.; Eberl, T.; Fabbietti, L.; Friese, J.; Gernhaeuser, R.; Gilg, H.; Homolka, J.; Jurkovic, M.; Kastenmueller, A.; Kienle, P.; Koerner, H.J.; Kruecken, R.; Maier, L.; Maier-Komor, P.; Sailer, B.; Schroeder, S.; Ulrich, A.; Wallner, C.; Weber, M.; Wieser, J.; Winkler, S.; Zeitelhack, K.; Boyard, J.L.; Genolini, B.; Hennino, T.; Jourdain, J.C.; Moriniere, E.; Pouthas, J.; Ramstein, B.; Rosier, P.; Roy-Stephan, M.; Sudol, M.; Braun-Munzinger, P.; Diaz, J.; Dohrmann, F.; Dressler, R.; Enghardt, W.; Heidel, K.; Hutsch, J.; Kanaki, K.; Kotte, R.; Naumann, L.; Sobiella, M.; Wuestenfeld, J.; Zhou, P.; Dybczak, A.; Jaskula, M.; Kajetanowicz, M.; Kidon, L.; Korcyl, K.; Kulessa, R.; Malarz, A.; Michalska, B.; Otwinowski, J.; Ploskon, M.; Prokopowicz, W.; Salabura, P.; Szczybura, M.; Trebacz, R.; Walus, W.; Wisniowski, M.; Wojcik, T.; Froehlich, I.; Lippmann, C.; Lorenz, M.; Markert, J.; Michel, J.; Muentz, C.; Pachmayer, Y.C.; Rosenkranz, K.; Stroebele, H.; Sturm, C.; Tarantola, A.; Teilab, K.; Wang, Y.; Zentek, A.; Golubeva, M.; Guber, F.; Ivashkin, A.; Karavicheva, T.; Kurepin, A.; Lapidus, K.; Reshetin, A.; Sadovsky, A.; Shileev, K.; Tiflov, V.; Grosse, E.; Kaempfer, B.; Iori, I.; Krizek, F.; Kugler, A.; Marek, T.; Novotny, J.; Pleskac, R.; Pospisil, V.; Sobolev, Yu.G.; Suk, M.; Taranenko, A.; Tikhonov, A.; Tlusty, P.; Wagner, V.; Mousa, J.; Parpottas, Y.; Tsertos, H.; Nekhaev, A.; Smolyankin, V.; Palka, M.; Roche, G.; Schmah, A.; Stroth, J.

    2009-01-01

    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 , a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range (0.1< p< 1.0 GeV/c). This paper describes the main features and the performance of the detector system. (orig.)

  1. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  2. Free-electron lasers with magnetized ion-wiggler

    International Nuclear Information System (INIS)

    Mehdian, H.; Jafari, S.; Hasanbeigi, A.; Ebrahimi, F.

    2009-01-01

    Significant progress has been made using laser ionized channels to guide electron beams in the ion focus regime in a free-electron laser. Propagation of an electron beam in the ion focusing regime (IFR) allows the beam to propagate without expanding from space-charge repulsion. The ninth-degree polynomial dispersion relation for electromagnetic and space-charge waves is derived analytically by solving the electron momentum transfer and wave equations. The variation of resonant frequencies and peak growth rates with axial magnetic field strength has been demonstrated. Substantial enhancement in peak growth rate is obtained as the axial field frequency approaches the gyroresonance frequency.

  3. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  4. Two-arm electron/photon/hadron spectrometer TALES collaboration

    International Nuclear Information System (INIS)

    Hayano, R.S.; Sakurai, H.; Shigaki, K.

    1990-12-01

    To discover and probe the existence of a quark gluon plasma, it would seem desirable to have a detector which is sensitive to as many of the proposed 'signatures' as possible, so that they could all be observed and turned on and off in a predictable, reproducible, controllable and unified way. By emphasizing an open geometry experiment, optimized for detecting low-mass, low P T electron-positron pairs, a reasonably comprehensive measurement of the majority of the quark gluon plasma signatures must be obtained. Thus, the report first addresses physics motivation and goals, focusing on dielectron production; π 0 , η and direct photon measurements; global event characterization; identified hadron P T spectra; and charm production. An overview of the proposed central detector is then presented. Next, major detector components and expected performance are discussed, focusing on tracking, electron-pair reconstruction (a gas ring-imaging Cerenkov RICH counter), Dalitz-decay rejection, a highly-segmented electromagnetic calorimeter, global event characterization, an optical forward spectrometer, and a summary of performance. Finally, the report describes major research and development items and estimated costs. (N.K.)

  5. Experimental determination of the electron-avalanche and the electron-ion recombination coefficient

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.

    1980-01-01

    The electron-ion recombination coefficient γ and the avalanche coefficient δ = (α − a) · vd, where α and a are the ionizat ion and attachment coefficients respectively and vd the drift velocity of the electrons, have been experimentally determined in a self-sustained CO2-laser system (1:1:3 mixture)

  6. Ion surface collisions on surfaces relevant for fusion devices

    International Nuclear Information System (INIS)

    Rasul, B.; Endstrasser, N.; Zappa, F.; Grill, V.; Scheier, P.; Mark, T.

    2006-01-01

    Full text: One of the great challenges of fusion research is the compatibility of reactor grade plasmas with plasma facing materials coating the inner walls of a fusion reactor. The question of which surface coating should be used is of particular interest for the design of ITER. The impact of energetic plasma particles leads to sputtering of wall material into the plasma. A possible solution for the coating of plasma facing walls would be the use of special carbon surfaces. Investigations of these various surfaces have been started at BESTOF ion-surface collision apparatus. Experiment beam of singly charged molecular ions of hydrocarbon molecules, i.e. C 2 H + 4 , is generated in a Nier-type electron impact ionization source at an electron energy of about 70 eV. In the first double focusing mass spectrometer the ions are mass and energy analyzed and afterwards refocused onto a surface. The secondary reaction products are monitored using a Time Of Flight mass spectrometer. The secondary ion mass spectra are recorded as a function of the collision energy for different projectile ions and different surfaces. A comparison of these spectra show for example distinct changes in the survival probability of the same projectile ion C 2 H + 4 for different surfaces. (author)

  7. Emission of low-energetic electrons in collisions of heavy ions with solid targets; Emission niederenergetischer Elektronen in Stoessen von schweren Ionen mit Festkoerpertargets

    Energy Technology Data Exchange (ETDEWEB)

    Lineva, Natallia

    2008-07-15

    At the UNILAC accelerator, we have initiated a project with the objective to investigate lowenergy electrons, emitted from solid, electrically conductive targets after the impact of swift light and heavy ions. For this purposes, we have installed, optimized, and put into operation an electrostatic toroidal electron spectrometer. First, investigations of electrons, emitted from solid-state targets after the bombardment with a monochromatic electron beam from an electron gun, has been carried out. The proposed method combines the results of the measurements with the results of dedicated Monte Carlo simulations. The method has been elaborated in a case study for carbon targets. The findings have been instrumental for the interpretation of our measurements of electrons emitted in collisions of swift ions with the same carbon targets. Our investigations focused on following ion beams: protons and (H{sup +}{sub 3})-molecules of the same energy, as well as on carbon ions with two different energies. Thin carbon, nickel, argon and gold foils has been used as targets. Electrons in the energy range between 50 eV and 1 keV have been investigated. The measured electron distributions, both integral as well as differential with respect to the polar angle, have been compared to simple standard theories for gases as well as to the results of TRAX simulations, the latter being based on data from gaseous targets. Dedicated TRAX simulations have been performed only for the carbon targets, applying the method mentioned above. Within our experimental uncertainties, we observe a good agreement of the measured and TRAX simulated data. That leads us to the conclusion that - as a first order approximation - the electron emission pattern from ion-atom collisions in solid-state targets and the one from single collisions in gases are similar. (orig.)

  8. Electron cooling of PB$^{54+}$ ions in the low energy ion ring (LEIR)

    CERN Document Server

    Bosser, Jacques; Chanel, M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Tranquille, G

    1998-01-01

    For the preparation of dense bunches of lead ions for the LHC, electron cooling will be essential for accumula tion in a storage ring at 4.2 MeV/u. Tests have been carried out on the LEAR ring (renamed LEIR for Low Energy Ion Ring) in order to determine the optimum parameters for a future state-of-the-art electron cooling device which would be able to cool linac pulses of lead ions in less than 100 ms. The experiments focused on the generation of a stable high intensity electron beam that is needed to free space in both longitudinal and transverse phase space for incoming pulses. Investigations on the ion beam lifetime in the presence of the electron beam and on the dependency of the cooling times on the optical settings of the storage ring will also be discussed. This paper concentrates on the cooling aspects with the multiturn injection, vacuum, and high intensity aspects discussed in a companion paper at this conference.

  9. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  10. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  11. The VESUVIO electron volt neutron spectrometer

    Science.gov (United States)

    Mayers, J.; Reiter, G.

    2012-04-01

    This paper describes the VESUVIO electron volt neutron spectrometer at the ISIS pulsed neutron source and its data analysis routines. VESUVIO is used primarily for the measurement of proton momentum distributions in condensed matter systems, but can also be used to measure the kinetic energies of heavier masses and bulk in-situ sample compositions. A series of VESUVIO runs on the same zirconium hydride sample over the past two years show that (1) kinetic energies of protons can be measured to an absolute accuracy of ˜1%. (2) Measurements of the proton momentum distribution n(p) are highly reproducible from run to run. This shows that small changes in kinetic energy and the detailed shape of n(p) with parameters such as temperature, pressure and sample composition can be reliably extracted from VESUVIO data. (3) The impulse approximation (IA) is well satisfied on VESUVIO. (4) The small deviations from the IA due to the finite momentum transfer of measurement are well understood. (5) There is an anomaly in the magnitude of the inelastic neutron cross-section of the protons in zirconium hydride, with an observed reduction of 10% ± 0.3% from that given in standard tables. This anomaly is independent of energy transfer to within experimental error. Future instrument developments are discussed. These would allow the measurement of n(p) in other light atoms, D, 3He, 4He, Li, C and O and measurement of eV electronic and magnetic excitations.

  12. The VESUVIO electron volt neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J; Reiter, G

    2012-01-01

    This paper describes the VESUVIO electron volt neutron spectrometer at the ISIS pulsed neutron source and its data analysis routines. VESUVIO is used primarily for the measurement of proton momentum distributions in condensed matter systems, but can also be used to measure the kinetic energies of heavier masses and bulk in-situ sample compositions. A series of VESUVIO runs on the same zirconium hydride sample over the past two years show that (1) kinetic energies of protons can be measured to an absolute accuracy of ∼1%. (2) Measurements of the proton momentum distribution n(p) are highly reproducible from run to run. This shows that small changes in kinetic energy and the detailed shape of n(p) with parameters such as temperature, pressure and sample composition can be reliably extracted from VESUVIO data. (3) The impulse approximation (IA) is well satisfied on VESUVIO. (4) The small deviations from the IA due to the finite momentum transfer of measurement are well understood. (5) There is an anomaly in the magnitude of the inelastic neutron cross-section of the protons in zirconium hydride, with an observed reduction of 10% ± 0.3% from that given in standard tables. This anomaly is independent of energy transfer to within experimental error. Future instrument developments are discussed. These would allow the measurement of n(p) in other light atoms, D, 3 He, 4 He, Li, C and O and measurement of eV electronic and magnetic excitations. (paper)

  13. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF

    International Nuclear Information System (INIS)

    Casey, D. T.; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Rosenberg, M. J.; Rinderknecht, H.; Manuel, M. J.-E.; Gatu Johnson, M.; Schaeffer, J. C.; Frankel, R.; Sinenian, N.; Childs, R. A.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Burke, M.; Roberts, S.

    2011-01-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  14. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Séguin, F H; Li, C K; Rosenberg, M J; Rinderknecht, H; Manuel, M J-E; Gatu Johnson, M; Schaeffer, J C; Frankel, R; Sinenian, N; Childs, R A; Petrasso, R D; Glebov, V Yu; Sangster, T C; Burke, M; Roberts, S

    2011-07-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  15. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  16. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  17. Tritium ions in the Source and Transport Section (STS) of KATRIN

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Manuel [Karlsruhe Institute of Technology (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims at the model independent measurement of the electron neutrino mass. It is designed for a neutrino mass sensitivity of 0.2 eV (90% CL) after three years of measurement time. KATRIN measures the end point of the tritium beta decay spectrum using a MAC-E filter and a Windowless Gaseous Tritium Source (WGTS). While neutral tritium gas molecules are pumped through the WGTS, the decay electrons are guided to the detector with a magnetic field. Tritium ions, however, also leave the WGTS following the magnetic field lines. For KATRIN measurements it is imperative to prevent tritium ions from reaching the detector or the spectrometers, where they could decay and cause an indistinguishable background. Ion blocking measures are implemented by electric blocking potentials and electric dipoles to drift out trapped ions. Their effective operation will be tested during KATRIN commissioning measurements: The ion flux between STS and spectrometers can be measured with the Forward Beam Monitor (FBM). It offers a manipulator arm to introduce a detector into the flux tube. For ion detection, a Faraday Cup for the FBM is being designed and constructed.

  18. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  19. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-01

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  20. Design and construction of a high-stability, low-noise power supply for use with high-resolution electron energy loss spectrometers

    International Nuclear Information System (INIS)

    Katz, J.E.; Davies, P.W.; Crowell, J.E.; Somorjai, G.A.

    1982-01-01

    The design and construction of a high-stability, low-noise power supply which provides potentials for the lens and analyzer elements of a 127 0 Ehrhardt-type high-resolution electron energy loss spectrometer (HREELS) is described. The supply incorporates a filament emission-control circuit and facilities for measuring electron beam current at each spectrometer element, thus facilitating optimal tuning of the spectrometer. Spectra obtained using this supply are shown to have a four-fold improvement in signal-to-noise ratio and a higher resolution of the vibrational loss features when compared with spectra taken using a previously existing supply based on passive potential divider networks