Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces
Hahn, Michael; Pedersen, Thomas Sunn
2009-06-01
Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.
Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces
International Nuclear Information System (INIS)
Hahn, Michael; Pedersen, Thomas Sunn
2009-01-01
Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.
Hot electron plasma equilibrium and stability in the Constance B mirror experiment
International Nuclear Information System (INIS)
Chen, Xing.
1988-04-01
An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs
Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi
2017-10-01
Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).
Ion acceleration in non-equilibrium plasmas driven by fast drifting electron
Energy Technology Data Exchange (ETDEWEB)
Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)
2013-05-01
We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.
International Nuclear Information System (INIS)
Gordon, M.H.; Kruger, C.H.
1991-01-01
Emission measurements of temperature and electron density have been made downstream of a 50 kW induction plasma torch at temperatures and electron densities ranging between 6000 K and 8500 K and 10 to the 20th and 10 to the 21st/cu cm, respectively. Absolute and relative atomic line intensities, and absolute recombination continuum in both the visible and the UV were separately interpreted in order to characterize a recombining atmospheric argon plasma. Continuum measurements made in the UV at 270 nm were used to directly determine the kinetic electron temperature, independent of a Boltzmann equilibrium, assuming only that the electron velocity distribution is Maxwellian. The data indicate that a nonequilibrium condition exists in which the bound-excited and free electrons are nearly in mutual equilibrium down to the 4P level for electron densities as low as 2 x 10 to the 20th/cu m but that both are overpopulated with respect to the ground state due to finite recombination rates. 13 refs
The stationary non-equilibrium plasma of cosmic-ray electrons and positrons
Tomaschitz, Roman
2016-06-01
The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.
Interaction of non-equilibrium phonons with electron-hole plasmas in germanium
International Nuclear Information System (INIS)
Kirch, S.J.
1985-01-01
This thesis presents results of experiments on the interaction of phonons and photo-excited electron-hole plasmas in Ge at low temperature. The first two studies involved the low-temperature fluid phase known as the electron-hole liquid (EHL). The third study involved a wider range of temperatures and includes the higher temperature electron-hole plasma (EHP). In the first experiment, superconducting tunnel junctions are used to produce quasi-monochromatic phonons, which propagate through the EHL. The magnitude of the absorption of these non-equilibrium phonons gives a direct measure of the coupling constant, the deformation potential. In the second experiment, the nonequilibrium phonons are generated by laser excitation of a metal film. An unusual sample geometry allows examination of the EHL-phonon interaction near the EHL excitation surface. This coupling is examined for both cw and pulsed EHL excitation. In the third experiment, the phonons are byproducts of the photo-excited carrier thermalization. The spatial, spectral and temporal dependence of the recombination luminescence is examined. A phonon wind force is observed to dominate the transport properties of the EHL and the EHP. These carriers are never observed to move faster than the phonon velocity even during the laser pulse
International Nuclear Information System (INIS)
Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno
2016-01-01
The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N_2 and 20% O_2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10"1"3" cm"−"3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the
Nonideal plasmas as non-equilibrium media
International Nuclear Information System (INIS)
Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A
2003-01-01
Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations
Non equilibrium atomic processes and plasma spectroscopy
International Nuclear Information System (INIS)
Kato, Takako
2003-01-01
Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)
Equilibrium and stability of a rotating plasma
International Nuclear Information System (INIS)
Janssen, P.A.E.M.
1979-01-01
The author considers the equilibrium and stability of a rotating plasma. The kinetic equations for ions and electrons supplemented with the Maxwell equations and the appropriate boundary conditions are used. Two different models for the rotating plasma are considered: the equilibrium of a 'fast' rotating plasma (Magneto Hydrodynamic ordering) and the stability of a slowly rotating, 'weakly' unstable plasma (Finite Larmor Radius ordering). A striking difference between these orderings is the fact that, regarding the stability of the plasma, for a F.L.R. plasma viscosity effects due to the finite Larmor radius are important, whereas in a M.H.D. plasma they are negligible (at least to the required order). (Auth.)
Equilibrium plasma corona surfaces
International Nuclear Information System (INIS)
Ensley, D.L.
1979-07-01
The distribution of charge of one sign when the opposite charge density is given is determined. Poisson's equation is solved in plane geometry for a simple specified ion density. This automatically gives the inverse solution for a given electron density, by reversing the sign of the potential. Some solutions can approximate a microwave confined corona, for very over dense cases
International Nuclear Information System (INIS)
Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.
2011-01-01
A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.
Deviations from thermal equilibrium in plasmas
International Nuclear Information System (INIS)
Burm, K.T.A.L.
2004-01-01
A plasma system in local thermal equilibrium can usually be described with only two parameters. To describe deviations from equilibrium two extra parameters are needed. However, it will be shown that deviations from temperature equilibrium and deviations from Saha equilibrium depend on one another. As a result, non-equilibrium plasmas can be described with three parameters. This reduction in parameter space will ease the plasma describing effort enormously
Pre-equilibrium plasma dynamics
Energy Technology Data Exchange (ETDEWEB)
Heinz, U.
1986-01-01
Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)
Pre-equilibrium plasma dynamics
International Nuclear Information System (INIS)
Heinz, U.
1986-01-01
Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs
Foundations of atmospheric pressure non-equilibrium plasmas
Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny
2017-12-01
Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.
Non-equilibrium effects in the plasmas
International Nuclear Information System (INIS)
Einfeld, D.
1975-01-01
Radial dependences of non-equilibrium effects of a He plasma were studied in a wall-stabilized short-time discharge. The electron density (nsub(e) = 2.5 x 10 22 m -3 ), the electron temperature and the equilibrium shift were determined by calculations of the continuum beam density and the beam densities of one He-I and one He-II line, respectively. In the discharge axis, the overpopulation factors of the ground state of He-I and He-II are about 75. As the distance to the axis increases, they increase for He-I and decrease for He-II. Except for the usual errors of measurement, the overpopulation factors found here correspond to those calculated from the balance equations (Drawin). (orig./AK) [de
Plasma electron losses in a multidipole plasma
International Nuclear Information System (INIS)
Haworth, M.D.
1983-01-01
The magnitude of the plasma electron cusp losses in a multidipole plasma device is determined by using a plasma electron heating technique. This method consists of suddenly generating approximately monoenergetic test electrons inside the multidipole plasma, which is in a steady-state equilibrium prior to the introduction of the test electrons. The Coulomb collisions between the test electrons and the plasma electrons result in heating the plasma electrons. The experimentally measured time evolution of the plasma electron temperature is compared with that predicted by a kinetic-theory model which calculates the time evolution of the test electron and the plasma electron distribution functions. The analytical solution of the plasma electron heating rate when the test electrons are first introduced into the plasma predicts that there is no dependence on ion mass. Experimental results in helium, neon, argon, and krypton multidipole plasmas confirm this prediction. The time-evolved solution of the kinetic equations must be solved numerically, and these results (when coupled with the experimental heating results) show that the plasma electron cusp-loss width is on the order of an electron Larmor radius
FAST Plasma Scenarios and Equilibrium Configurations
International Nuclear Information System (INIS)
Calabro, G.; Crisanti, F.; Ramogida, G.; Cardinali, A.; Cucchiaro, A.; Maddaluno, G.; Pizzuto, A.; Pericoli Ridolfini, V.; Tuccillo, A.A.; Zonca, F.; Albanese, R.; Granucci, G.; Nowak, S.
2008-01-01
In this paper we present the Fusion Advanced Studies Torus (FAST) plasma scenarios and equilibrium configurations, designed to reproduce the ITER ones (with scaled plasma current) and suitable to fulfil plasma conditions for integrated studies of burning plasma physics, Plasma Wall interaction, ITER relevant operation problems and Steady State scenarios. The attention is focused on FAST flexibility in terms of both performance and physics that can be investigated: operations are foreseen at a wide range of parameters from high performance H-Mode (toroidal field, B T , up to 8.5 T; plasma current, I P , up to 8 MA) to advanced tokamak (AT) operation (I P =3 MA) as well as full non inductive current scenario (I P =2 MA). The coupled heating power is provided with 30MW delivered by an Ion Cyclotron Resonance Heating (ICRH) system (30-90MHz), 6 MW by a Lower Hybrid (LH) system (3.7 or 5 GHz) for the long pulse AT scenario, 4 MW by an Electron Cyclotron Resonant Heating (ECRH) system (170 GHz-B T =6T) for MHD and electron heating localized control and, eventually, with 10 MW by a Negative Ion Beam (NNBI), which the ports are designed to accommodate. In the reference H-mode scenario FAST preserves (with respect to ITER) fast ions induced as well as turbulence fluctuation spectra, thus, addressing the cross-scale couplings issue of micro- to meso-scale physics. The noninductive scenario at I P =2MA is obtained with 60-70 % of bootstrap and the remaining by LHCD. Predictive simulations of the H-mode scenarios described above have been performed by means of JETTO code, using a semi-empirical mixed Bohm/gyro-Bohm transport model. Plasma position and Shape Control studies are also presented for the reference scenario
Non-equilibrium synergistic effects in atmospheric pressure plasmas.
Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken
2018-03-19
Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.
Temperature relaxation in collisional non equilibrium plasmas
Energy Technology Data Exchange (ETDEWEB)
Potapenko, I.F.; Bobylev, A.V.; Azevedo, C.A.; Assis, A.S. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. We study the relaxation of a space uniform plasma composed of electrons and one species of ions. To simplified the consideration, standard approach is usually accepted: the distribution functions are considered to be a Maxwellian with time dependent electron T{sub e}(t) and ion T{sub i}(t) temperatures. This approach imposes a severe restriction on the electron/ion distributions that could be very far from the equilibrium. In the present work the problem is investigated on the basis of the nonlinear kinetic Fokker - Planck equation, which is widely used for the description of collisional plasmas. This equation has many applications in plasma physics as an intrinsic part of physical models, both analytical and numerical. A new detailed description of this classical problem of the collisional plasma kinetic theory is given. A deeper examination of the problem shows that the unusual perturbation theory can not be used. The part of the perturbation of the electron distribution has the character of a boundary layer in the neighborhood of small velocities. In this work the boundary layer is thoroughly studied. The correct distribution electron function is given. Nonmonotonic character of the distribution relaxation in the tail region is observed. The corrected formula for temperature equalization is obtained. The comparison of the calculation results with the asymptotic approach is made. We should stress the important role of the completely conservative different scheme used here, which keeps the symmetric properties of the nonlinear exact equation. This allows us to make calculations without numerical error accumulations, except for machine errors. (author)
Analysis of equilibrium and topology of tokamak plasmas
International Nuclear Information System (INIS)
Milligen, B.P. van.
1991-01-01
In a tokamak, the plasma is confined by means of a magnetic field. There exists an equilibrium between outward forces due to the pressure gradient in plasma and inward forces due to the interaction between currents flowing inside the plasma and the magnetic field. The equilibrium magnetic field is characterized by helical field lines that lie on nested toroidal surfaces of constant flux. The equilibrium yields values for global and local plasma parameters (e.g. plasma position, total current, local pressure). Thus, precise knowledge of the equilibrium is essential for plasma control, for the understanding of many phenomena occurring in the plasma (in particular departures from the ideal equilibrium involving current filamentation on the flux surfaces that lead to the formation of islands, i.e. nested helical flux surfaces), and for the interpretation of many different types of measurements (e.g. the translation of line integrated electron density measurements made by laser beams probing the plasma into a local electron density on a flux surface). The problem of determining the equilibrium magnetic field from external magnetic field measurements has been studied extensively in literature. The problem is 'ill-posed', which means that the solution is unstable to small changes in the measurement data, and the solution has to be constrained in order to stabilize it. Various techniques for handling this problem have been suggested in literature. Usually ad-hoc restrictions are imposed on the equilibrium solution in order to stabilize it. More equilibrium solvers are not able to handle very dissimilar measurement data which means information on the equilibrium is lost. The generally do not allow a straightforward error estimate of the obtained results to be made, and they require large amounts of computing time. This problems are addressed in this thesis. (author). 104 refs.; 42 figs.; 6 tabs
Ionization equilibrium in dense plasmas
International Nuclear Information System (INIS)
Ying, R.
1987-01-01
The average degree of ionization for a strongly coupled plasma is investigated and calculated. Two widely used approaches: the Saha equation method and the Thomas-Fermi (TF) statistical atomic model are adopted to determine the degree of ionization. Both methods are modified in a number of ways to include the strong-coupling effect in the plasma. In the Saha equation approach, the strong-coupling effects are introduced through: (i) a replacement of the Coulomb potential by a screened Debye potential; (ii) adoption of the Planck-Larkin partition function; (iii) description of the electron component by Fermi-Dirac statistics. The calculated degree of ionization exceeds that obtained from the original Saha equation, exhibits a minimum as a function of the density and shows an abrupt phase transition from weakly ionized to a fully ionized state. The zero-temperature TF model for compressed ions and the finite-temperature TF model for ions are investigated for the first time. In order to take into account the strong-coupling effect in a systematic way, a strong-coupling TF model is set up. Favorable results with the relatively simple approximations indicate that the newly established strong-coupling TF model is a more systematic and physically consistent approach
Probing of flowing electron plasmas
International Nuclear Information System (INIS)
Himura, H.; Nakashima, C.; Saito, H.; Yoshida, Z.
2001-01-01
Probing of streaming electron plasmas with finite temperature is studied. For the first time, a current-voltage characteristic of an electric probe is measured in electron plasmas. Due to the fast flow of the electron plasmas, the characteristic curve spreads out significantly and exhibits a long tail. This feature can be explained calculating the currents collected to the probe. In flowing electron plasmas, the distribution function observed in the laboratory frame is non-Maxwellian even if the plasmas come to a state of thermal equilibrium. Another significant feature of the characteristic is that it determines a floating potential where the current equals zero, despite there being very few ions in the electron plasma. A high impedance probe, which is popularly used to determine the space potential of electron plasmas, outputs the potential. The method is available only for plasmas with density much smaller than the Brillouin limit
Plasma equilibrium and instabilities in tokamaks
International Nuclear Information System (INIS)
Caldas, I.L.; Vannucci, A.
1985-01-01
A phenomenological introduction of some of the main theoretical and experimental features on equilibrium and instabilities in tokamaks is presented. In general only macroscopic effects are considered, being the plasma described as a fluid. (L.C.) [pt
Equilibrium fluctuation energy of gyrokinetic plasma
International Nuclear Information System (INIS)
Krommes, J.A.; Lee, W.W.; Oberman, C.
1985-11-01
The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8π = 1/2T/[1 + (klambda/sub D/) 2 ] valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs
Aerospace Applications of Non-Equilibrium Plasma
Blankson, Isaiah M.
2016-01-01
Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).
Loch, S. D.; Ballance, C. P.; Li, Y.; Fogle, M.; Fontes, C. J.
2015-03-01
Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe xvii 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe xvii spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.
Current control necessary for toroidal plasma equilibrium
International Nuclear Information System (INIS)
Nagao, S.
1987-01-01
It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt
Lower hybrid wave current ramp-up and plasma equilibrium
International Nuclear Information System (INIS)
Gong Xueyu
1996-01-01
Questions on lower hybrid driven current and plasma equilibrium are studied. With the induced electric field taken into account, a system of self-consistent equations is obtained. This theory has been applied to some moments of the current ramp-up phase for the Tokamak Engineering Test Breeder (TETB) to study the lower hybrid current drive and MHD equilibrium. So, better electron current and safety factor profiles are obtained
Plasma equilibrium and stability in stellarators
International Nuclear Information System (INIS)
Pustovitov, V.D.; Shafranov, V.D.
1987-01-01
A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived
Non-equilibrium in flowing atmospheric plasmas
International Nuclear Information System (INIS)
Haas, J.C.M. de.
1986-01-01
This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)
MHD equilibrium of heliotron J plasmas
International Nuclear Information System (INIS)
Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya
2004-01-01
MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)
Local thermodynamic equilibrium in rapidly heated high energy density plasmas
International Nuclear Information System (INIS)
Aslanyan, V.; Tallents, G. J.
2014-01-01
Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance
Equilibrium and stability in strongly inhomogeneous plasmas
International Nuclear Information System (INIS)
Mynick, H.E.
1978-10-01
The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability
Equilibrium of rotating and nonrotating plasmas in tokamaks
International Nuclear Information System (INIS)
Pustovitov, V.D.
2003-01-01
One studied plasma equilibrium in tokamak in case of toroidal rotation. Rotation associated centrifugal force is shown to result in decrease of equilibrium limit as to β. One analyzes unlike opinion and considers its supports. It is shown that in possible case of local improvement of equilibrium conditions associated with special selection of profile of plasma rotation rate, the combined integral effect turns to be negative one. But in case of typical conditions, decrease of equilibrium β caused by plasma rotation is negligible one and one may ignore effect of plasma rotation on its equilibrium for hot plasma [ru
International Nuclear Information System (INIS)
Zushi, H.; Hasegawa, M.; Hanada, K.; Idei, H.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Matsuoka, K.; Tashima, S.; Ishiguro, M.; Banerjee, S.; Sharma, S.K.; Liu, H.; Nishino, N.; Isobe, M.; Toi, K.; Okamura, S.; Maekawa, T.; Fukuyama, A.; Ejiri, A.; Yamaguchi, T.; Hiratsuka, J.; Takase, Y.; Kikuchi, Mitsuru; Ueda, Y.; Mitarai, O.
2012-11-01
Non-inductive current start-up via relativistic electron cyclotron resonance interaction is investigated for the high ratio (∼10%) of vertical B v to toroidal B t fields and the concave field lines in the QUEST spherical tokamak. In the start-up scenario with an internal poloidal field null (IPN), the fast current start-up rate of 0.3-0.5 MA/sec and correlation with mildly relativistic electrons accelerated due to multiple ECR interaction are observed. In steady state high β p equilibrium characterized by the inboard null (R s ∼ 0.7×R 0 ) and εβ p of 1.5 is achieved, where ε, β p are the inverse aspect ratio and poloidal beta, respectively. Relaxation oscillations in this equilibrium and confinement of the energetic electrons are discussed. (author)
Effect of Equilibrium Flow on Plasma Parameters
International Nuclear Information System (INIS)
Mukhopadhyay, S.; Lahiri, S.; Sakanaka, P.H.; Dasgupta, B.
2003-01-01
The transition to high confinement modes have been identified with the occurrence of strong shear flow near the plasma boundary. Plasma flow has also been associated with various instabilities, heating and other physical processes. As a result, it has become very important to study the effect of such flows on various plasma parameters. In this paper, we present the numerical solution of plasma equilibrium with incompressible toroidal and poloidal flows in several magnetic confinement configurations including tokamaks. The code, which was reported in the last conference, has been used to solve the problem in both circular and D-shaped devices. A parametric study on the generation of shear flow due to radial electric fields has been carried out. Through this study, it has been possible to generate plasma equilibria having sharp pressure gradients which are remarkably close to those reported in various H-mode experiments. The effects of flow on reverse shear equilibria and on the position of the magnetic axis has been studied. Finally, a detailed study has been carried out to understand the effect of flows on important plasma parameters, such as the poloidal flux function, β, energy confinement time
Non-equilibrium plasma chemistry at high pressure and its applications
International Nuclear Information System (INIS)
Bai Xiyao; Zhang Zhitao; Bai Mindong; Zhu Qiaoying
2000-01-01
A review is presented of research and development of gas discharge and non-equilibrium plasma including, new ideas of non-equilibrium plasma at high gas pressure. With special technology, strong electric fields (>400 Td) can be achieved by which electrons are accelerated suddenly, becoming high energy electrons (> 10 eV) at high pressure. On impact with the electrons, the gas molecules dissociate into ions, atomic ions, atoms and free radicals, and new substances or molecules can be synthesized through custom design. Chemical reaction difficult to achieve by conventional method can be realized or accelerated. Non-equilibrium plasma chemistry at high pressure has wide application prospects
Deviations from excitation equilibrium in optically thick mercury arc plasmas
International Nuclear Information System (INIS)
Karabourniotis, D.; Couris, S.; Damelincourt, J.J.
1989-01-01
Up to date mercury arcs at pressure greater than 1 atm have been investigated as plasma systems in local thermodynamic equilibrium (LTE) state. These studies have been motivated by the applications of mercury arcs, e.g., in the lighting industry. The LTE-assumption simplifies the use of spectroscopic diagnostics and the performance of species-concentration calculations. A high pressure mercury arc of about 1 atm had been considered in two possibilities: excitation and gas temperatures are the same, the electron temperature is higher and excitation and electron temperatures are the same, the gas temperature is lower. Recent measurements in mercury arcs reveal the existence of severe departures from thermal equilibrium and suggest the absence of excitation equilibrium in the axis and in the periphery in such an arc. The deviation from equilibrium leads to complicated distributions, such that the system cannot be described correctly by any single temperature. This becomes quite complicated when plasma inhomogeneity and strong reabsorption of the radiation are present
Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas
Polzin, Kurt A.; Ratcliffe, Alicia C.
2018-01-01
The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the
Stability of plasma in static equilibrium
Energy Technology Data Exchange (ETDEWEB)
Krusiial, M D; Oberman, N R [Project Matterhorn, Princeton University, Princeton, NJ (United States)
1958-07-01
Our purpose is to derive from the Boltzmann equation in the small m/e limit, criteria useful in the discussion of stability of plasmas in static equilibrium. At first we ignore collisions but later show their effects may be taken into account. Our approach yields a generalization of the usual energy principles for investigating the stability of hydromagnetic systems to situations where the effect of heat flow along magnetic lines is not negligible, and hence to situations where the strictly hydrodynamic approach is inapplicable. In the first two sections we characterize our general method of approach and delineate the properties of the small m/e limit which we use to determine the constants of the motion and the condition for static equilibrium. In the next two sections we calculate the first and second variations of the energy and conclude with a statement of the general stability criterion. In the final three sections we state several theorems which relate our stability criterion to those of ordinary hydromagnetic theory, we show how to take into account the effect of collisions, and briefly discuss the remaining problem of incorporating the charge neutrality condition into the present stability theory. (author)
Thermal equilibrium criteria in a nitrogen plasma
International Nuclear Information System (INIS)
Cilliers, W.A.; Hey, J.D.; Rash, J.P.S.
1975-01-01
A method for obtaining the lower electron density limit for LTE in a nitrogen plasma is described, whereby the experimentally determined ratio of the collisional-radiative ionization and recombination coefficients (S/α) is compared with the corresponding LTE value (Saha ratio). It is argued that if the electron density is increased from values of about 10 16 cm -3 , S/α should tend to the Saha ratio as LTE is approached For NII and NIII spectral lines, this is found to happen at an electron density of a few times 10 16 cm -3 when the electron temperature is about 3 eV, in good agreement with the LTE criterion of Griem. (author)
Electron plasma waves and plasma resonances
International Nuclear Information System (INIS)
Franklin, R N; Braithwaite, N St J
2009-01-01
In 1929 Tonks and Langmuir predicted of the existence of electron plasma waves in an infinite, uniform plasma. The more realistic laboratory environment of non-uniform and bounded plasmas frustrated early experiments. Meanwhile Landau predicted that electron plasma waves in a uniform collisionless plasma would appear to be damped. Subsequent experimental work verified this and revealed the curious phenomenon of plasma wave echoes. Electron plasma wave theory, extended to finite plasmas, has been confirmed by various experiments. Nonlinear phenomena, such as particle trapping, emerge at large amplitude. The use of electron plasma waves to determine electron density and electron temperature has not proved as convenient as other methods.
Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas
Energy Technology Data Exchange (ETDEWEB)
Merten, Jonathan A., E-mail: jmerten@astate.edu; Smith, Benjamin W., E-mail: bwsmith@chem.ufl.edu; Omenetto, Nicoló, E-mail: omenetto@chem.ufl.edu
2013-05-01
Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas.
Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas
International Nuclear Information System (INIS)
Merten, Jonathan A.; Smith, Benjamin W.; Omenetto, Nicoló
2013-01-01
Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas
Determination of gross plasma equilibrium from magnetic multipoles
Energy Technology Data Exchange (ETDEWEB)
Kessel, C.E.
1986-05-01
A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies.
Determination of gross plasma equilibrium from magnetic multipoles
International Nuclear Information System (INIS)
Kessel, C.E.
1986-05-01
A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies
A two-temperature chemical non-equilibrium modeling of DC arc plasma
International Nuclear Information System (INIS)
Qian Haiyang; Wu Bin
2011-01-01
To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)
Equilibrium state of colliding electron beams
Directory of Open Access Journals (Sweden)
R. L. Warnock
2003-10-01
Full Text Available We study a nonlinear integral equation that is a necessary condition on the equilibrium phase-space distribution function of stored, colliding electron beams. It is analogous to the Haïssinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in 1 degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove the existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, as would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.
Role of plasma equilibrium current in Alfven wave antenna optimization
International Nuclear Information System (INIS)
Puri, S.
1986-12-01
The modifications in the antenna loading produced by the plasma equilibrium current, the Faraday shield, and the finite electron temperature for coupling to the Alfven waves are studied using a self-consistent, three-dimensional, fully analytic periodic-loop-antenna model. The only significant changes are found to occur due to the plasma current and consist of an improved coupling (by a factor of ∝ 2.5) at low toroidal numbers (n ∝ 1-3). Despite this gain, however, the coupling to low n continues to be poor with R=0.03 Ω and Q=180 for n=2. Optimum coupling with R=0.71 Ω and Q=16.8 occurs for n=8 as was also the case in the absence of the plasma current. For the large n values, mode splitting due to the removal of the poloidal degeneracy combined with the finite electron temperatures effects lead to significant broadening of the energy absorption profile. Direct antenna coupling to the surface shear wave is small and no special provision, such as Faraday shielding, may be needed for preventing surface losses. The introduction of the Faraday screen, in fact, increases the coupling to the surface shear wave, possibly by acting as an impedance matching transformer between the antenna and the plasma. The finite electron temperature causes the predictable increase in the absorption width without influencing the antenna coupling. Thus the recommendations for antenna design for optimum coupling to the Alfven wave remain unaffected by the inclusion of the plasma current. Efficient coupling with capabilities for dynamic impedance tracking through purely electronic means may be obtained using a dense-cluster-array antenna with a toroidal configuration of n ∝ 8. (orig.)
Electron distribution functions in Io plasma torus
International Nuclear Information System (INIS)
Boev, A.G.
2003-01-01
Electron distribution functions measured by the Voyager 1 in different shares of the Io plasma torus are explained. It is proved that their suprathermal tails are formed by the electrical field induced by the 'Jupiter wind'. The Maxwellian parts of all these spectra characterize thermal equilibrium populations of electrons and the radiation of exited ions
Magnetohydrodynamic equilibrium with spheroidal plasma-vacuum interface
International Nuclear Information System (INIS)
Kaneko, Shobu; Chiyoda, Katsuji; Hirota, Isao.
1983-01-01
The Grad-Shafranov equations for an oblate and a prolate spheroidal plasmas are solved analytically under the assumptions, Bsub(phi) = 0 and dp/dpsi = constant. Here Bsub(phi) is the toroidal magnetic field, p is the kinetic pressure, and psi is the magnetic flux function. The plasmas in magnetohydrodynamic equilibrium are shown to be toroidal. The equilibrium magnetic-field configurations outside the spheroidal plasmas are considerably different from that of a spherical plasma. A line cusp or two point cusps appear outside the oblate or the prolate spheroidal plasma, respectively. (author)
Wave propagation in a quasi-chemical equilibrium plasma
Fang, T.-M.; Baum, H. R.
1975-01-01
Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.
Beta II compact torus experiment plasma equilibrium and power balance
International Nuclear Information System (INIS)
Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Prono, D.S.; Hartman, C.W.; Taska, J.
1982-01-01
In this paper we follow up some of our earlier work that showed the compact torus (CT) plasma equilibrium produced by a magnetized coaxial plasma gun is nearly force free and that impurity radiation plays a dominant role in determining the decay time of plasma currents in present generation experiments
International Nuclear Information System (INIS)
Wakalopulos, G.
1976-01-01
In the disclosed electron gun positive ions generated by a hollow cathode plasma discharge in a first chamber are accelerated through control and shield grids into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam having a distribution adjacent to the cathode emissive surface substantially the same as the distribution of the ion beam impinging upon the cathode. After passing through the grids and the plasma discharge chamber, the electron beam exits from the electron gun via a foil window. Control of the generated electron beam is achieved by applying a relatively low control voltage between the control grid and the electron gun housing (which resides at ground potential) to control the density of the positive ions bombarding the cathode
Plasma relativistic microwave electronics
International Nuclear Information System (INIS)
Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.
2001-01-01
One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru
International Nuclear Information System (INIS)
Sharma, Rohit; Singh, Kuldip
2014-01-01
In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter
Frontier of plasma physics. 'Research network on non-equilibrium and extreme state plasmas'
International Nuclear Information System (INIS)
Itoh, Sanae-I.; Fujisawa, Akihide; Kodama, Ryosuke; Sato, Motoyasu; Tanaka, Kazuo A.; Hatakeyama, Rikizo; Itoh, Kimitaka
2011-01-01
Plasma physics and fusion science have been applied to a wide variety of plasmas such as nuclear fusion plasmas, high-energy-density plasmas, processing plasmas and nanobio- plasmas. They are pioneering science and technology frontiers such as new energy sources and new functional materials. A large project 'research network on non-equilibrium and extreme state plasmas' is being proposed to reassess individual plasma researches from a common view of the non-equilibrium extreme plasma and to promote collaboration among plasma researchers all over the country. In the present review, recent collaborative works related to this project are being introduced. (T.I.)
Problems with the concept of plasma equilibrium in tokamaks
International Nuclear Information System (INIS)
Carreras, B.A.
1992-01-01
The equilibrium condition for a magnetically confined plasma in normally formulated in terms of macroscopic equations. In these equations, the plasma pressure is assumed to be a function of the magnetic flux with continuous derivatives. However, in three- dimensional systems this is not necessarily the case. Here, we look at the case of an intrinsically three-dimensional realistic tokamak, and we discuss the possible interconnection between the equilibrium and anomalous transport
Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas
International Nuclear Information System (INIS)
Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.
2001-01-01
For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed
Non-equilibrium phase transitions in complex plasma
International Nuclear Information System (INIS)
Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F
2010-01-01
Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.
Plasma equilibrium response modelling and validation on JT-60U
International Nuclear Information System (INIS)
Lister, J.B.; Sharma, A.; Limebeer, D.J.N.; Wainwright, J.P.; Nakamura, Y.; Yoshino, R.
2002-01-01
A systematic procedure to identify the plasma equilibrium response to the poloidal field coil voltages has been applied to the JT-60U tokamak. The required response was predicted with a high accuracy by a state-space model derived from first principles. The ab initio derivation of linearized plasma equilibrium response models is re-examined using an approach standard in analytical mechanics. A symmetric formulation is naturally obtained, removing a previous weakness in such models. RZIP, a rigid current distribution model, is re-derived using this approach and is compared with the new experimental plasma equilibrium response data obtained from Ohmic and neutral beam injection discharges in the JT-60U tokamak. In order to remove any bias from the comparison between modelled and measured plasma responses, the electromagnetic response model without plasma was first carefully tuned against experimental data, using a parametric approach, for which different cost functions for quantifying model agreement were explored. This approach additionally provides new indications of the accuracy to which various plasma parameters are known, and to the ordering of physical effects. Having taken these precautions when tuning the plasmaless model, an empirical estimate of the plasma self-inductance, the plasma resistance and its radial derivative could be established and compared with initial assumptions. Off-line tuning of the JT-60U controller is presented as an example of the improvements which might be obtained by using such a model of the plasma equilibrium response. (author)
Pulsed Plasma Electron Sources
Krasik, Yakov
2008-11-01
Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).
Updated Collisional Ionization Equilibrium Calculated for Optically Thin Plasmas
Savin, Daniel Wolf; Bryans, P.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.; Mitthumsiri, W.
2010-03-01
Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have carried out state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn as well as for Al-like to Ar-like ions of Fe. We have also carried out state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Dere (2007), we present improved collisional ionization equilibrium calculations (Bryans et al. 2006, 2009). We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni. This work is supported in part by the NASA APRA and SHP SR&T programs.
Applications of non-equilibrium plasma in chemical processes
International Nuclear Information System (INIS)
Patino, P.; Castro, A.
2003-01-01
By means of optical emission spectroscopy the population of O( 3 P) in a non-equilibrium, high voltage, oxygen plasma, and O( 3 P), H and OH in another of steam in radio frequency, have been followed. Reactions of both plasmas with liquid hydrocarbons have produced oxidation and/or hydrogenation, depending on the conditions of each one. (Author)
Collision integral and equilibrium distributions for a bounded plasma
International Nuclear Information System (INIS)
Zagorodnij, A.G.; Usenko, A.S.; Yakimenko, I.P.
1985-01-01
A kinetic equation of Balesku-Lennard type for multicomponent system of charged particle limited by two flat-parallel surfaces is derived on the basis of the general theory of electromagnetic fluctuations in plasma. Equilibrium values of collision integral for a plasma with arbitrary configuration boundaries are calculated and general ratios describing charged particles density profiles in such systems are obtained
Experimental approaches for studying non-equilibrium atmospheric plasma jets
Energy Technology Data Exchange (ETDEWEB)
Shashurin, A., E-mail: ashashur@purdue.edu [School of Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Keidar, M. [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052 (United States)
2015-12-15
This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.
A toroidal plasma MHD equilibrium code 'EQUCIR version 1'
International Nuclear Information System (INIS)
Ninomiya, Hiromasa; Shinya, Kichiro; Kameari, Akihisa.
1980-10-01
A new free-boundary toroidal MHD equilibrium code ''EQUCIR version 1'' has been developed. The central problems approached by this code is as follows: 1) The magnetic flux distribution of a plasma at equilibrium is determined in the given external field. 2) A set of circuit equations between the plasma and the external conductors are constructed. These circuit equations and the Grad-Shafranov equation are solved self-consistently and the time evolutions of plasma equilibria and currents in external conductors are determined at the same time. 3) The currents in the external conductors are determined so that the plasma cross-section and plasma parameters are to be maintained with desired ones. It is shown that this code is very useful for study of the tokamak plasma equilibria, for design of the poloidal coil system and for investigation of experimental results. (author)
Modelling Thomson scattering for systems with non-equilibrium electron distributions
Directory of Open Access Journals (Sweden)
Chapman D.A.
2013-11-01
Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.
A numerical solution for a toroidal plasma in equilibrium
International Nuclear Information System (INIS)
Hintz, E.; Sudano, J.P.
1982-01-01
The iterative techniques alternating direction implicit (ADI), sucessive ove-relaxation (SOR) and Gauss-Seidel are applied to a nonlinear elliptical second order differential equation (Grand-Shafranov). This equation was solve with the free boundary conditions plasma-vacuum interface over a rectangular section in cylindrical coordinates R and Z. The current density profile, plasma pressure profile, magnetic and isobaric surfaces are numerically determined for a toroidal plasma in equilibrium. (L.C.) [pt
A dissipative model of plasma equilibrium in toroidal systems
International Nuclear Information System (INIS)
Wobig, H.
1985-10-01
In order to describe a steady-state plasma equilibrium in tokamaks, stellarators or other non-axisymmetric configurations, the model of ideal MHD with isotropic plasma pressure is widely used. The ideal MHD - model of a toroidal plasma equilibrium requires the existence of closed magnetic surfaces. Several numerical codes have been developed in the past to solve the three-dimensional equilibrium problem, but so far no existence theorem for a solution has been proved. Another difficulty is the formation of magnetic islands and field line ergodisation, which can only be described in terms of ideal MHD if the plasma pressure is constant in the ergodic region. In order to describe the formation of magnetic islands and ergodisation of surfaces properly, additional dissipative terms have to be incorporated to allow decoupling of the plasma and magnetic field. In a collisional plasma viscosity and inelastic collisions introduce such dissipative processes. In the model used a friction term proportional to the velocity v vector of the plasma is included. Such a term originates from charge exchange interaction of the plasma with a nuetral background. With these modifications, the equilibrium problem reduces to a set of quasilinear elliptic equations for the pressure, the electric potential and the magnetic field. The paper deals with an existence theorem based on the Fixed - Point method of Schauder. It can be shown that a self-consistent and unique equilibrium exists if the friction term is large and the plasma pressure is sufficiently low. The essential role of the dissipative terms is to remove the singularities of the ideal MHD model on rational magnetic surfaces. The problem has a strong similarity to Benard cell convection, and consequently similar behaviour such as bifurcation and exchange of stability are expected. (orig./GG)
Quick plasma equilibrium reconstruction based on GPU
International Nuclear Information System (INIS)
Xiao Bingjia; Huang, Y.; Luo, Z.P.; Yuan, Q.P.; Lao, L.
2014-01-01
A parallel code named P-EFIT which could complete an equilibrium reconstruction iteration in 250 μs is described. It is built with the CUDA TM architecture by using Graphical Processing Unit (GPU). It is described for the optimization of middle-scale matrix multiplication on GPU and an algorithm which could solve block tri-diagonal linear system efficiently in parallel. Benchmark test is conducted. Static test proves the accuracy of the P-EFIT and simulation-test proves the feasibility of using P-EFIT for real-time reconstruction on 65x65 computation grids. (author)
Non-equilibrium plasma reactor for natrual gas processing
International Nuclear Information System (INIS)
Shair, F.H.; Ravimohan, A.L.
1974-01-01
A non-equilibrium plasma reactor for natural gas processing into ethane and ethylene comprising means of producing a non-equilibrium chemical plasma wherein selective conversion of the methane in natural gas to desired products of ethane and ethylene at a pre-determined ethane/ethylene ratio in the chemical process may be intimately controlled and optimized at a high electrical power efficiency rate by mixing with a recycling gas inert to the chemical process such as argon, helium, or hydrogen, reducing the residence time of the methane in the chemical plasma, selecting the gas pressure in the chemical plasma from a wide range of pressures, and utilizing pulsed electrical discharge producing the chemical plasma. (author)
Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.
van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard
2017-08-01
A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.
Magnetic analysis of tokamak plasma with approximate MHD equilibrium solution
International Nuclear Information System (INIS)
Moriyama, Shin-ichi; Hiraki, Naoji
1993-01-01
A magnetic analysis method for determining equilibrium configuration parameters (plasma shape, poloidal beta and internal inductance) on a non-circular tokamak is described. The feature is to utilize an approximate MHD equilibrium solution which explicitly relates the configuration parameters with the magnetic fields picked up by magnetic sensors. So this method is suitable for the real-time analysis performed during a tokamak discharge. A least-squares fitting procedure is added to the analytical algorithm in order to reduce the errors in the magnetic analysis. The validity is investigated through the numerical calculation for a tokamak equilibrium model. (author)
The energy balance of a plasma in partial local thermodynamic equilibrium
Kroesen, G.M.W.; Schram, D.C.; Timmermans, C.J.; de Haas, J.C.M.
1990-01-01
The energy balance for electrons and heavy particles constituting a plasma in partial local thermodynamic equilibrium is derived. The formulation of the energy balance used allows for evaluation of the source terms without knowledge of the particle and radiation transport situation, since most of
Ionization equilibrium and radiation losses of molybdenum in a high temperature plasma
International Nuclear Information System (INIS)
1976-11-01
The ionization equilibrium and the associated radiation losses of molybdenum have been calculated as a function of the electron temperature. In the 1-2keV range the computed fractional abundances are supported by experimental facts obtained in T.F.R. Tokamak plasmas
Relaxation with high-speed plasma flows and singularity analysis in MHD equilibrium
International Nuclear Information System (INIS)
Shiraishi, Junya; Ohsaki, Shuichi; Yoshida, Zensho
2004-01-01
Relaxation model that leads to plasma confinement with rigid-rotation is presented. This model applies to Jupiter's magnetosphere. It is shown that the invariance of canonical angular momentum of electron fluid, which is realized by axisymmetry through self-organization process, yields plasma confinement. including poloidal flows in equilibrium equation makes the problem rather complicated. Singularity due to the poloidal flow is focused on. It is shown that the singular equation for equilibrium has the same structure as the equation for linear Alfven wave. Since the singular solution for equilibrium equation is physically inadequate, the singularity may be removed by another physical effect. The Hall-effect is taken into account as a singular perturbation that removes the singularity of equilibrium equation for ideal magnetohydrodynamics. (author)
Investigation of plasma equilibrium in HL-1 tokamak
International Nuclear Information System (INIS)
Lu Zhihong; Jiang Yunxia; Yang Jinwei; Zhang Baozhu; Qiu Wei; Qin Yunwen
1987-01-01
In this paper, the plasma equilibrium in HL-1 tokamak has been discussed. The horizontal and vertical displacement of plasma is measured using a symmetical magneic probe system, and the temporal evolution of displacements is given by a data acquisition system with micro-computer. The influence of various stray fields on plasma equilibrium has been analysed. The direction and value of horizontal stray field induced by the totoidal field coils and primary windings are determined using vertical displacement data. By adjusting parameters of internal and external vertical field, in the flat part of discharge current, the plasma can be kept in its equilibuium state at the place where is 3 cm outer of chamber certre, i.e nearby the centre of limiter
Non-Equilibrium Modeling of Inductively Coupled RF Plasmas
2015-01-01
wall can be approximated with the expression for an infinite solenoid , B(r = R) = µ0NIc, where quan- tities N and Ic are the number of turns per unit...Modeling of non-equilibrium plasmas in an induc- tively coupled plasma facility. AIAA Paper 2014– 2235, 2014. 45th AIAA Plasmadynamics and Lasers ...1993. 24th Plas- madynamics and Laser Conference, Orlando, FL. [22] M. Capitelli, I. Armenise, D. Bruno, M. Caccia- tore, R. Celiberto, G. Colonna, O
Equilibrium and nonequilibrium solvation and solute electronic structure
International Nuclear Information System (INIS)
Kim, H.J.; Hynes, J.T.
1990-01-01
When a molecular solute is immersed in a polar and polarizable solvent, the electronic wave function of the solute system is altered compared to its vacuum value; the solute electronic structure is thus solvent-dependent. Further, the wave function will be altered depending upon whether the polarization of the solvent is or is not in equilibrium with the solute charge distribution. More precisely, while the solvent electronic polarization should be in equilibrium with the solute electronic wave function, the much more sluggish solvent orientational polarization need not be. We call this last situation non-equilibrium solvation. We outline a nonlinear Schroedinger equation approach to these issues
Comparing DINA code simulations with TCV experimental plasma equilibrium responses
International Nuclear Information System (INIS)
Khayrutdinov, R.R.; Lister, J.B.; Lukash, V.E.; Wainwright, J.P.
2000-08-01
The DINA non-linear time dependent simulation code has been validated against an extensive set of plasma equilibrium response experiments carried out on the TCV tokamak. Limited and diverted plasmas are found to be well modelled during the plasma current flat top. In some simulations the application of the PF coil voltage stimulation pulse sufficiently changed the plasma equilibrium that the vertical position feedback control loop became unstable. This behaviour was also found in the experimental work, and cannot be reproduced using linear time-independent models. A single null diverted plasma discharge was also simulated from start-up to shut-down and the results were found to accurately reproduce their experimental equivalents. The most significant difference noted was the penetration time of the poloidal flux, leading to a delayed onset of sawtoothing in the DINA simulation. The complete set of frequency stimulation experiments used to measure the open loop tokamak plasma equilibrium response was also simulated using DINA and the results were analysed in an identical fashion to the experimental data. The frequency response of the DINA simulations agrees with the experimental results. Comparisons with linear models are also discussed to identify areas of good and only occasionally less good agreement. (author)
On the axially symmetric equilibrium of a magnetically confined plasma
International Nuclear Information System (INIS)
Lehnert, B.
1975-01-01
The axially symmetric equilibrium of a magnetically confined plasma is reconsidered, with the special purpose of studying high-beta schemes with a purely poloidal magnetic field. A number of special solutions of the pressure and magnetic flux functions are shown to exist, the obtained results may form starting-points in a further analysis of physically relevant configurations. (Auth.)
Equilibrium and perturbations in plasma-vacuum systems
International Nuclear Information System (INIS)
Mercier, C.
1974-01-01
Thermonuclear plasmas must be maintained far from all material contact. In order to realize this condition, one uses in the vacuum surrounding the plasma, a metal wall supposed perfectly conducting and currents whose positions and intensities have to be suitably chosen. The problem of equilibrium consists of finding a toroidal solution of the system of equations JxB=grad P, div B=0, J=rot B, B,J, and P being respectively the magnetic field, current intensity and plasma pressure. The problem can be solved in symmetry of revolution using cylindrical coordinates. The arrangement and intensity of the currents found will not be exactly realized due to, for exemple, technical reasons. Consequently, the first problem of equilibrium is considered as a first approximation and the configuration which will be obtained under imposed real conditions is computed as perturbed equilibria [fr
International Nuclear Information System (INIS)
Sosenko, P.; Pierre, Th.; Zagorodny, A.
2004-01-01
The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)
Wall ablation of heated compound-materials into non-equilibrium discharge plasmas
Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing
2017-02-01
The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results
Zhengfeng Fan; Yuanyuan Liu; Bin Liu; Chengxin Yu; Ke Lan; Jie Liu
2017-01-01
The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016)], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into...
MODULATED PLASMA ELECTRON BEAMS
Energy Technology Data Exchange (ETDEWEB)
Stauffer, L. H.
1963-08-15
Techniques have been developed for producing electron beams of two amperes or more, from a plasma within a hollow cathode. Electron beam energies of 20 kilovolts are readily obtained and power densities of the order of 10,000 kilowatts per square inch can be obtained with the aid of auxiliary electromagnetic focusing. An inert gas atmosphere of a few microns pressure is used to initiate and maintain the beam. Beam intensity increases with both gas pressure and cathode potential but may be controlled by varying the potential of an internal electrode. Under constant pressure and cathode potential the beam intensity may be varied over a wide range by adjusting the potential of the internal control electrode. The effects of cathode design on the volt-ampere characteristics of the beam and the design of control electrodes are described. Also, performance data in both helium and argon are given. A tentative theory of the origin of electrons and of beam formation is proposed. Applications to vacuum metallurgy and to electron beam welding are described and illustrated. (auth)
Directory of Open Access Journals (Sweden)
Zhengfeng Fan
2017-01-01
Full Text Available The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into the hot spot are less than unity assuming electrons and ions have the same temperature [Meezan et al., Phys. Plasmas 22, 062703 (2015], which is not self-consistent because it can lead to negative ablator mixing into the hot spot. Actually, this non-consistency implies ion-electron non-equilibrium within the hot spot. From our study, we can infer that ion-electron non-equilibrium exists in high-foot implosions and the ion temperature could be ∼9% larger than the equilibrium temperature in some NIF shots.
Plasma Wave Electronic Terahertz Technology
National Research Council Canada - National Science Library
Shur, Michael
2003-01-01
Plasma waves are oscillations of electron density in time and space. In deep submicron field effect transistors plasma wave frequencies lie in the terahertz range and can be tuned by applied gate bias...
Structure of the automatic system for plasma equilibrium position control
International Nuclear Information System (INIS)
Gubarev, V.F.; Krivonos, Yu.G.; Samojlenko, Yu.I.; Snegur, A.A.
1978-01-01
Considered are the principles of construction of the automatic system for plasma filament equilibrium position control inside the discharge chamber for the installation of a tokamak type. The combined current control system in control winding is suggested. The most powerful subsystem creates current in the control winding according to the program calculated beforehand. This system provides plasma rough equilibrium along the ''big radius''. The subsystem performing the current change in small limits according to the principle of feed-back coupling is provided simultaneously. The stabilization of plasma position is achieved in the discharge chamber. The advantage of construction of such system is in decreasing of the automatic requlator power without lowering the requirements to the accuracy of equilibrium preservation. The subsystem of automatic control of plasma position over the vertical is put into the system. Such an approach to the construction of the automatic control system proves to be correct; it is based on the experience of application of similar devices for some existing thermonuclear plants
Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas
Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito
2010-11-01
The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.
Equilibrium measurements on the REPUTE-1 RFP plasma
International Nuclear Information System (INIS)
Ji, H.; Toyama, H.; Shinohara, S.; Fujisawa, A.; Yamagishi, K.; Shimazu, Y.; Ejiri, A.; Shimoji, K.; Miyamoto, K.
1989-01-01
Global plasma equilibrium measurements by external magnetic probes are widely introduced on the toroidal plasmas, i.e. tokamaks or RFPs, because of their simplicity and convenience. The measurement principle is based on Shafranov's toroidal equilibrium theory, which gives simple relations between the global equilibrium quantity and the external fields. These relations are valid in the either case of existence or absence of ideal shell just out the plasma column, however, not valid in the case of the thin (or resistive) shell, whose skin time τ s has the same order of the current rise time τ r . A method introduced by Swain et al. is effective in this case, in which the plasma current I p is replaced by 6 filament currents. However, by this method it is dificult to include the effect of iron core and computation requires a lot (beyond 14) of the measurement of the fields or flux loop. In this paper we introduce a simple method which is based on fitting measured fields to the vacuum approximate solution of Grad-Shafranov equation. The computation requires only a few measurements (≥6) of the fields. REPUTE-1 device is characterized by a thin shell of 5 mm thickness whose skin time τ s for the penetration of the vertical field is 1 ms compared with τ r of 0.5 ms. The optimum discharges whose duration τ d are about 3 times of τ s have been obtained. In spite of various efforts including vertical-ohmic coils series connection experiments, toroidal ripple reduction experiments and port bypass plate installation experiments, until now τ d is still limited by 3.2 ms. We should think that the equilibrium of plasma is lost due to an unfavorable vertical field. In this paper we present the measurements of the time evolution of the plasma position from the flat-top phase to the termination phase, at that time the plasma begins to lose its equilibrium. The liner has a major radius R L of 82 cm and a minor radius a L of 22 cm. (author) 6 refs., 4 figs
International Nuclear Information System (INIS)
Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Bai, Jun; Wu, Jian; Jia, Shenli
2015-01-01
The equation of state, ionization equilibrium, and conductivity are the most important parameters for investigation of dense plasma. The equation of state is calculated with the non-ideal effects taken into consideration. The electron chemical potential and pressure, which are commonly used thermodynamic quantities, are calculated by the non-ideal free energy and compared with results of a semi-empirical equation of state based on Thomas-Fermi-Kirzhnits model. The lowering of ionization potential, which is a crucial factor in the calculation of non-ideal Saha equation, is settled according to the non-ideal free energy. The full coupled non-ideal Saha equation is applied to describe the ionization equilibrium of dense plasma. The conductivity calculated by the Lee-More-Desjarlais model combined with non-ideal Saha equation is compared with experimental data. It provides a possible approach to verify the accuracy of the equation of state and ionization equilibrium
Deviation from local thermodynamic equilibrium in a cesium-seeded argon plasma
International Nuclear Information System (INIS)
Stefanov, B.; Zarkova, L.
1985-11-01
The possibility of deviations from local thermodynamic equilibrium of a cesium seeded argon plasma has been analyzed. A four level model of cesium has been employed. Overpopulations of the ground state and the first excited state as well as the corresponding reduction of the electron density are calculated for cylindrical discharge structures by solving stationary rate equations. Numerical results are presented. These results indicate that in a large regime of plasma conditions the LTE assumption is valid for electron temperatures larger than 3000 K. (orig.)
Modeling of the equilibrium of a tokamak plasma
International Nuclear Information System (INIS)
Grandgirard, V.
1999-12-01
The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)
Model of opacity and emissivity of non-equilibrium plasma
International Nuclear Information System (INIS)
Politov V Y
2008-01-01
In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments
Goya - an MHD equilibrium code for toroidal plasmas
International Nuclear Information System (INIS)
Scheffel, J.
1984-09-01
A description of the GOYA free-boundary equilibrium code is given. The non-linear Grad-Shafranov equation of ideal MHD is solved in a toroidal geometry for plasmas with purely poloidal magnetic fields. The code is based on a field line-tracing procedure, making storage of a large amount of information on a grid unnecessary. Usage of the code is demonstrated by computations of equi/libria for the EXTRAP-T1 device. (Author)
Energy Technology Data Exchange (ETDEWEB)
Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)
2016-05-04
Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to
Energy Flow in Dense Off-Equilibrium Plasma
2016-07-15
brings the electron density and light emission into LTE at the measured spectral temperature while leaving the ions cold. Because of their large mass... measurements of ionization potential lowering and collision times indense plasmas, allowing us to distinguish between competing dense-plasma models...Hydrodynamic analysis of shockwaves generated by sparks yielded similar measurements ina different, more accessible system. Ultra-fast observations
Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall
International Nuclear Information System (INIS)
Krasheninnikova, Natalia S.; Tang Xianzhu
2011-01-01
Motivated by the Magnetized Target Fusion (MTF), a systematic investigation of the equilibrium properties of a 1D plasma sheath with a magnetic field parallel to the wall was carried out using analytical theory and kinetic simulations. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing conducting wall, which charges positively due to large ions gyro-radii. The analysis of the steady-state plasma and field profiles reveals the importance of the relation between electron and ion thermal Larmor radii and plasma Debye length. In particular, the sheath width scaling, the details of the particle flows and the break-down of force balance components exhibit different behaviors in three possible regimes. Despite our primary motivation, the results in this paper can also be applicable to the divertor and the first wall of tokamaks.
Energy Technology Data Exchange (ETDEWEB)
Chang, Zhengshi; Zhang, Guanjun [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Jiang, Nan; Cao, Zexian, E-mail: zxcao@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-03-14
Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10 cm wide active electrode and a frequency of applied voltage down to 0.5 Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH{sub 3} into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.
Static and dynamic control of plasma equilibrium in a Tokamak
International Nuclear Information System (INIS)
Blum, J.; Dei Cas, R.
1979-01-01
We are dealing here with the problem of controlling the plasma boundary and its displacements. Static control consists in determining the currents in the external coils of the Tokamak so that the plasma boundary has certain fixed characteristics: radial position, vertical elongation, desired shape. A self-consistent method is proposed here, considering a free plasma boundary, and using the techniques of optimal control of distributed parameter systems to solve the problem. The dynamic control problem considered in the second part of the paper is the control of the plasma radial displacements. An elaborate system of preprogramming and feedback control has been developed to ensure equilibrium and stability of the horizontal plasma motions. Optimal control techniques have been used to calculate the optimal primary coils configuration, the preprogramming voltages and the feedback gains. A new stability diagrams has been obtained which takes into account the erosion of the plasma by the limiter. All these calculations have been applied successfully to TFR 600 where thin liner and the presence of an iron core make the problem of stabilization of the radial displacements very difficult
Equilibrium state analysis of a nonneutral plasma under a uniform magnetic field
International Nuclear Information System (INIS)
Fernandez, J.E.; Molinari, V.G.; Sumini, M.A.
1990-01-01
By recourse to the Boltzmann H-theorem, the existence of a thermodynamic equilibrium state has been proved for a nonneutral plasma under an external magnetic field. The equation describing the density profile of ions or electrons has been found. The density equation has been numerically solved for a generic magnetic field and plasma frequency, giving a parametric limit for the confinement region. An appropriate change of variable allows to approximate the density equation whose analytical solution has been found. The approximated density closely fits the numerical solution of the original equation. (Author)
International Nuclear Information System (INIS)
Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.
1976-01-01
The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)
Optimization of tokamak plasma equilibrium shape using parallel genetic algorithms
International Nuclear Information System (INIS)
Zhulin An; Bin Wu; Lijian Qiu
2006-01-01
In the device of non-circular cross sectional tokamaks, the plasma equilibrium shape has a strong influence on the confinement and MHD stability. The plasma equilibrium shape is determined by the configuration of the poloidal field (PF) system. Usually there are many PF systems that could support the specified plasma equilibrium, the differences are the number of coils used, their positions, sizes and currents. It is necessary to find the optimal choice that meets the engineering constrains, which is often done by a constrained optimization. The Genetic Algorithms (GAs) based method has been used to solve the problem of the optimization, but the time complexity limits the algorithms to become widely used. Due to the large search space that the optimization has, it takes several hours to get a nice result. The inherent parallelism in GAs can be exploited to enhance their search efficiency. In this paper, we introduce a parallel genetic algorithms (PGAs) based approach which can reduce the computational time. The algorithm has a master-slave structure, the slave explore the search space separately and return the results to the master. A program is also developed, and it can be running on any computers which support massage passing interface. Both the algorithm and the program are detailed discussed in the paper. We also include an application that uses the program to determine the positions and currents of PF coils in EAST. The program reach the target value within half an hour and yield a speedup rate of 5.21 on 8 CPUs. (author)
International Nuclear Information System (INIS)
Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.
1993-01-01
Radial profiles of gas temperature, electron temperature, and electron density were measured in a free-burning atmospheric-pressure argon arc-discharge plasma using line-shape analysis of scattered laser light. This method yields gas temperature, electron temperature, and electron density directly, with no reliance on the assumption of local thermodynamic equilibrium (LTE). Our results show a significant departure from LTE in the center of the discharge, contrary to expectations
MHD equilibrium of toroidal fusion plasma with stationary flows
International Nuclear Information System (INIS)
Galkowski, A.
1994-01-01
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
Energy Technology Data Exchange (ETDEWEB)
Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)
2016-07-15
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.
MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA
International Nuclear Information System (INIS)
Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.
2011-01-01
We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.
Poloidal field coil design for known plasma equilibrium states
International Nuclear Information System (INIS)
Paulson, C.C.; Todd, A.M.M.; Reusch, M.F.
1986-01-01
The technique for obtaining plasma equilibria with given boundary conditions has long been known and understood. The inverse problem of obtaining a poloidal field (PF) coil system from a given plasma equilibrium has been widely studied, however its solution has remained largely an art form. An investigation, by the writers, of this fundamentally ill-posed inverse problem has resulted in a new understanding of the requirements that solutions must satisfy. A set of interacting computer codes has been written which may be used to successfully design PF coil systems capable of supporting given plasma equilibria. It is shown that for discrete coil systems with a reasonable number of elements the standard minimization of the R M S flux error can lead to undesirable results. Examples are given to show that an additional stability requirement must be imposed on the regularization parameter to obtain correct solutions. For some equilibria, the authors find that the inverse problem admits dual solutions corresponding to two possible magnetic field configurations that fit the constraining relations on the plasma surface equally well. An additional minimization of the absolute value of the limiter flux is required to discriminate between these solutions
Control strategy for plasma equilibrium in a tokamak
International Nuclear Information System (INIS)
Miskell, R.V.
1975-01-01
The dynamic control of the plasma position within the torus of a Tokamak fusion device is a significant factor in the development of nuclear fusion as an energy source. This investigation develops a state variable model of a TOKAMAK thermonuclear device, suitable for application of modern control theory techniques. The model considers eddy currents in the conducting shell surrounding the torus and the classical Shafranov equilibrium equation. The equations necessary to characterize the operating conditions of a TOKAMAK are cast in state variable form. Two control variables are selected, the vertical field current and the plasma temperature. The figure of merit chosen minimizes the shift of the plasma within the torus and considers position perturbations necessary to maintain the dense and hotter portions of the plasma profile in the center of the torus, i.e., overcome uneven poloidal fields due to the toroidal geometry. The model uses a Kalman filter to estimate unmeasured state variables, and uses the second variation of the calculus of variations to maintain an optimal control path. (Diss. Abstr. Int., B)
A numerical model of non-equilibrium thermal plasmas. I. Transport properties
Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong
2013-03-01
A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.
A numerical model of non-equilibrium thermal plasmas. I. Transport properties
Energy Technology Data Exchange (ETDEWEB)
Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)
2013-03-15
A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.
On thermalization of electron-positron-photon plasma
Energy Technology Data Exchange (ETDEWEB)
Siutsou, I. A., E-mail: siutsou@icranet.org [CAPES–ICRANet program, ICRANet–Rio, CBPF 22290-180, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ (Brazil); Aksenov, A. G. [Institute for Computer-Aided Design, Russian Academy of Sciences 123056, 2nd Brestskaya st., 19/18, Moscow (Russian Federation); Vereshchagin, G. V. [ICRANet 65122, p.le della Republica, 10, Pescara (Italy)
2015-12-17
Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.
On thermalization of electron-positron-photon plasma
Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.
2015-12-01
Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.
Light-induced electronic non-equilibrium in plasmonic particles.
Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar
2013-05-07
We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena.
Correlations in plasma in thermodynamic equilibrium; Les correlations dans un plasma en equilibre
Energy Technology Data Exchange (ETDEWEB)
Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
This paper treats of a fully, ionized plasma in thermodynamic equilibrium. An attempt is made at reviewing the calculation of spatial correlations in such a plasma. The equation of recurrence and the principle of superposition are used. The linear approximation is first treated. The next higher approximation is studied in the case of a neutral homogeneous and isotropic plasma. (author) [French] Un plasma completement ionise est en equilibre thermodynamique. On tente une mise au point du calcul des correlations de position dans ce plasma. On utilise les equations de recurrence et le principe de superposition. On expose d'abord l'approximation lineaire. Dans le cas d'un plasma neutre homogene et isotrope l'etude est poursuivie a l'approximation suivante. (auteur)
Electron cyclotron resonance plasma photos
Energy Technology Data Exchange (ETDEWEB)
Racz, R.; Palinkas, J. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)
2010-02-15
In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.
Electron cyclotron resonance plasma photos
International Nuclear Information System (INIS)
Racz, R.; Palinkas, J.; Biri, S.
2010-01-01
In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.
Electron energy distribution function control in gas discharge plasmas
International Nuclear Information System (INIS)
Godyak, V. A.
2013-01-01
The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated
Yoshino, R.; Nakamura, Y.; Neyatani, Y.
1997-08-01
In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system
Isodynamical (omnigenous) equilibrium in symmetrically confined plasma configurations
International Nuclear Information System (INIS)
Bernardin, M.P.; Moses, R.W.; Tataronis, J.A.
1986-01-01
Isodynamical or omnigenous equilibrium has the property that the magnitude of the magnetic field is constant on magnetic surfaces. It is shown that in plasma confinement configurations with one ignorable coordinate there are three possible classes of solutions, characterized by the properties of the curvature of the magnetic axis, the magnitude of the magnetic field on axis, and the closure of magnetic surfaces about the magnetic axis. Solutions belonging to class (i) have a straight magnetic axis, a finite field on axis, and closed magnetic surfaces. Solutions in class (ii) have a curved magnetic axis, closed magnetic surfaces, and a magnetic field that vanishes on axis. Finally, solutions in class (iii) have a curved magnetic axis, a finite magnetic field on axis, and open magnetic surfaces
Relativistic electron beam - plasma interaction with intense self-fields
International Nuclear Information System (INIS)
Davidson, R.C.
1984-01-01
The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc
Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.
Thermal equilibrium properties of an intense relativistic electron beam
International Nuclear Information System (INIS)
Davidson, R.C.; Uhm, H.S.
1979-01-01
The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0
Electromagnetic interactions in an electron-hole plasma
International Nuclear Information System (INIS)
1977-01-01
Certain problems electromagnetic interactions both of external SHF radiation with an electron-hole (eh) plasma and in the plasma itself are considered. The production and properties of a non-equilibrium eh plasma in semiconductors, pinch effect in a plasma of solids, strong electric fields in a plasma of inhomogeneous semiconductors and heat effects in a semiconductor plasma are discussed. The influence of a surface, kinetics of recombination processes in the semiconductor volume and the plasma statistics the spatial distribution of carriers, current characteristics and plasma recombination radiation under the conditions of pinch effect is described. The diagnostics methods of the phenomena are presented. The behaviour of diode structures with pn transitions in strong SHF fields is discussed. Special attention is paid to collective phenomena in the plasma of semiconductor devices and the variation of carrier density in strong fields. The appearance of electromotive force in inhomogeneous diode structures placed in strong SHF fields is considered
On atmospheric-pressure non-equilibrium plasma jets and plasma bullets
International Nuclear Information System (INIS)
Lu, X; Laroussi, M; Puech, V
2012-01-01
Atmospheric-pressure non-equilibrium plasma jets (APNP-Js), which generate plasma in open space rather than in a confined discharge gap, have recently been a topic of great interest. In this paper, the development of APNP-Js will be reviewed. Firstly, the APNP-Js are grouped based on the type of gas used to ignite them and their characteristics are discussed in detail. Secondly, one of the most interesting phenomena of APNP-Js, the ‘plasma bullet’, is discussed and its behavior described. Thirdly, the very recent developments on the behavior of plasma jets when launched in a controlled environment and pressure are also introduced. This is followed by a discussion on the interaction between plasma jets. Finally, perspectives on APNP-J research are presented. (paper)
Controlling competing electronic orders via non-equilibrium acoustic phonons
Schuett, Michael; Orth, Peter; Levchenko, Alex; Fernandes, Rafael
The interplay between multiple electronic orders is a hallmark of strongly correlated systems displaying unconventional superconductivity. While doping, pressure, and magnetic field are the standard knobs employed to assess these different phases, ultrafast pump-and-probe techniques opened a new window to probe these systems. Recent examples include the ultrafast excitation of coherent optical phonons coupling to electronic states in cuprates and iron pnictides. In this work, we demonstrate theoretically that non-equilibrium acoustic phonons provide a promising framework to manipulate competing electronic phases and favor unconventional superconductivity over other states. In particular, we show that electrons coupled to out-of-equilibrium anisotropic acoustic phonons enter a steady state in which the effective electronic temperature varies around the Fermi surface. Such a momentum-dependent temperature can then be used to selectively heat electronic states that contribute primarily to density-wave instabilities, reducing their competition with superconductivity. We illustrate this phenomenon by computing the microscopic steady-state phase diagram of the iron pnictides, showing that superconductivity is enhanced with respect to the competing antiferromagnetic phase.
International Nuclear Information System (INIS)
Ivanov, A. A.; Martynov, A. A.; Medvedev, S. Yu.; Poshekhonov, Yu. Yu.
2015-01-01
In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (with arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented
Stationary magnetohydrodynamic equilibrium of toroidal plasma in rotation
International Nuclear Information System (INIS)
Missiato, O.
1986-01-01
The stationary equations of classical magnetohydrodynamics are utilized to study the toroidal motion of a thermonuclear magnetically - confined plasma with toroidal symmetry (Tokamak). In the present work, we considered a purely toroidal stationary rotation and te problem is reduced to studing a second order partial differencial equation of eliptic type Maschke-Perrin. Assuming that the temperature remains constant on the magnetic surfaces, an analitic solution, valid for low Mach numbers (M ≤ 0 .4), was obtained for the above-mentioned equation by means of a technique developed by Pantuso Sudano. From the solution found, we traced graphs for the quantities which described the equilibrium state of the plasma, namely: mass density, pressure, temperature, electric current density and toroidal magnetic field. Finally we compare this analitical model with others works which utilized differents analitical models and numerical simulations. We conclude that the solutions obtained are in good agreement with the previos results. In addition, however, our model contains the results of Sudano-Goes with the additional advantage of employing much simple analitical expressions. (author) [pt
Electron temperature determination in LTE and non-LTE plasmas
International Nuclear Information System (INIS)
Eddy, T.L.
1983-01-01
This article discusses how most experimental investigations assume a type of ''thermal equilibrium'' in which the excited levels are assumed to be populated according to the electron kinetic temperature, in the determination of electron temperature in LTE and non-LTE plasmas. This is justified on the basis that electron collisions dominate the equilibration of adjacent excited levels as shown by Byron, Stabler and Boartz. The comparison of temperature values calculated by various common methods as a check for local thermodynamic equilibrium (LTDE) or local thermal equilibrium (LTE) of the upper excited levels and the free electrons has been shown to indicate the excitation temperature in all cases utilized. Thomas shows that the source function of the first excited level may be dominated by non-local radiation, which would usually result in a different population than local collisional excitation would provide. Ionization from upper levels is by collisional means. The result may yield different valued excitation and electron temperatures
An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium
Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.
2015-11-01
A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.
Nonlocal collisionless and collisional electron transport in low temperature plasmas
Kaganovich, Igor
2009-10-01
The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. A distinctive property of partially ionized plasmas is that such plasmas are always in a non-equilibrium state: the electrons are not in thermal equilibrium with the neutral species and ions, and the electrons are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal electron kinetics, nonlocal electrodynamics with collisionless electron heating, and nonlinear processes in the sheaths and in the bounded plasmas. Significant progress in understanding the interaction of electromagnetic fields with real bounded plasma created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton Plasma Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. Plasma Science 34, 895 (2006); Phys. Plasmas 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and
International Nuclear Information System (INIS)
Rincón, R.; Muñoz, J.; Calzada, M.D.
2015-01-01
Plasma torches are suitable plasma sources for a wide range of applications. The capability of these discharges to produce processes like sample excitation or decomposition of molecules inside them depends on the density of the plasma species and their energies (temperatures). The relation between these parameters determines the specific state of thermodynamic equilibrium in the discharge. Thus, the understanding of plasma possibilities for application purposes is related to the knowledge of the plasma thermodynamic equilibrium degree. In this paper a discussion about the equilibrium state for Ar plasmas generated by using a Torche à Injection Axiale sur Guide d'Ondes, TIAGO device, is presented. Emission spectroscopy techniques were used to measure gas temperature and electron density at the exit of the nozzle torch and along the dart. Boltzmann-plots as well as b p parameters were calculated to characterize the type and degree of departure from partial Local Saha Equilibrium (pLSE). This study indicates that the closer situation to Local Thermodynamic Equilibrium (LTE) of the plasma corresponds to larger Ar flows which highlights the importance of the nitrogen (atmosphere surrounding the plasma) in the kinetics of Ar-TIAGO discharges. - Highlights: • Discharges sustained in Ar using a TIAGO Torch show a significant departure from Local Thermodynamic Equilibrium. • Nitrogen entrance from surrounding air highly influences Thermodynamic Equilibrium. • Departure from LTE has been studied by means of Boltzmann plots and b p parameters. • The discharge is ionizing at the nozzle exit plasma, while along the dart it becomes recombining
Simulation of non-equilibrium many body electrons in RTD
Directory of Open Access Journals (Sweden)
A. H. Rezvani
2001-06-01
Full Text Available We inspected the exact solution of double barrier quantum well. The choice of proper boundary conditions has been taken into account. We eveluated the mechanism of resonant in this device. The density correlation matrix was calculated by using the exact solution of the time-dependent generalized nonlinear Schrodinger equation in the presence of electron-electron interaction. The result shows that there is no correlation dependence among the electrons at the equilibrium between contact regions. After biasing, we have calculated the density correlation matrix in the transient and steady state. The results of our calculations show the oscillatory plasmon current in the state of transient, while in the steaby state the correlation among the phase of electrons observed to be oscillatory in the whole region of the device.
Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-01-01
Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
Downshift of electron plasma oscillations in the electron foreshock region
International Nuclear Information System (INIS)
Fuselier, S.A.; Gurnett, D.A.; Fitzenreiter, R.J.; NASA, Goddard Space Flight Center, Greenbelt, MD)
1985-01-01
Electron plasma oscillations in the earth's electron foreshock region are observed to shift above and below the local electron plasma frequency. As plasma oscillations shift downward from the plasma frequency, their bandwidth increases and their wavelength decreases. Observations of plasma oscillations well below the plasma frequency are correlated with times when ISEE 1 is far downstream of the electron foreshock boundary. Although wavelengths of plasma oscillations below the plasma frequency satisfy k x lambda-De approximately 1 the Doppler shift due to the motion of the solar wind is not sufficient to produce the observed frequency shifts. A beam-plasma interaction with beam velocities on the order of the electron thermal velocity is suggested as an explanation for plasma oscillations above and below the plasma frequency. Frequency, bandwidth, and wavelength changes predicted from the beam-plasma interaction are in good agreement with the observed characteristics of plasma oscillations in the foreshock region. 28 references
Downshift of electron plasma oscillations in the electron foreshock region
International Nuclear Information System (INIS)
Fuselier, S.A.
1984-01-01
Electron plasma oscillations in the Earth's electron foreshock region are observed to shift above and below the local electron plasma frequency. As plasma oscillations shift from the plasma frequency, their bandwidth increases and their wavelength decreases. Observations of plasma oscillations well below the plasma frequency are correlated with times when ISEE-I is far downstream of the electron foreshock boundary. Although wavelengths of plasma oscillations below the plasma frequency satisfy klambda/sub De/ approx. = 1, the Doppler shift due to the motion of the solar wind is not sufficient to produce the observed frequency shifts. A beam-plasma interaction with beam velocities on the order of the electron thermal velocity is suggested as an explanation for plasma oscillations above and below the plasma frequency. Frequency, bandwidth, and wavelength changes predicted from the beam-plasma interaction are in good agreement with the observed characteristics of plasma oscillations in the foreshock region
High current plasma electron emitter
International Nuclear Information System (INIS)
Fiksel, G.; Almagri, A.F.; Craig, D.
1995-07-01
A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current, small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications
Equilibrium and stability of a toroidal-sector plasma discharge in an EXTRAP configuration
International Nuclear Information System (INIS)
Drake, J.R.
1982-02-01
Experimental studies of the equilibrium and stability of a sector of a toroidal EXTRAP plasma discharge have been studied. The high β plasma discharge, which had an Alfven transit time about 0.5 μsec, could be positioned in a stable equilibrium for the 300μsec time scale of the experiment. (author)
Determination of the secondary electron equilibrium using an extrapolation chamber
International Nuclear Information System (INIS)
Marshall, E.T.; Vaziri, K.; Krueger, F.P.; Cossairt, J.D.
1996-09-01
To ensure that the external personnel dosimetry program conducted by U. S. Department of Energy (DOE) contractors is of the highest quality, the DOE established the Department of Energy Laboratory Accreditation Program or DOELAP. The contractor's dosimetry program is assessed against the criteria set forth for dosimeter performance and the associated quality assurance and calibration programs. Although personnel dosimeters are not processed or calibrated by Fermilab, a proactive quality assurance program is in place to ensure accurate monitoring. This program includes quarterly blind testing of the dosimeters used by personnel. During the on-site assessment conducted of Fermilab's external dosimetry program during May 1994, an observation with regard to equipment maintenance and calibration was made: ''calibration personnel should probably review the electron secondary equilibrium needs at various irradiation distances from the 137 Cs irradiation systems'' The majority of the secondary electrons are generated through interactions of the beam with the collimator. Secondary electrons increase the low energy component of the radiation field, increasing the shallow doses measured. For dosimetric purposes, this increase needs to be defined so appropriate corrections to calculations or modifications to the facility can be made. Prompted by this observation, a study was designed to investigate the electron secondary equilibrium in the facility used for the blind testing by determining the dose equivalent as a function of depth in a tissue-equivalent medium. This presentation summarizes the methodology utilized and results of the investigation
Energy Technology Data Exchange (ETDEWEB)
Demirkhanov, R. A.; Kirov, A. G.; Stotland, M. A.; Malykh, N. I.; Horasanov, G. L.; Vishnevskij, N. K.; Gutkin, T. I.; Jampol' skij, I. R. [Fiziko-Tehnicheskij Institut Gosudarstvennogo Komiteta po Ispol' zovaniju Atomnoj Ehnergii SSSR, Sukhumi, SSSR (Russian Federation)
1966-04-15
The paper describes experiments conducted on the ''RT-0'' apparatus. It consists of a torus with large diameter 100 cm and with small diameter 10 cm. A toroidal magnetic field about 6 kOe is established along the chamber. The plasma is ignited at {>=}5 x 10{sup -4} Torr by means of a longitudinal rotating electric field of f = 8.3 Mc/s. Rotating around the small diameter is a high-frequency (540 kc/s) quadrupole field with H{phi} = 200 Oe at the chamber walls. When the low-induction capacitor bank is discharged on the loops located along the torus, a damped vortical electric field with maximum strength E{sub z} = 200 V cm{sup -1} and with half-period about 1 {mu}s may be generated within the chamber. The purposes of the experiments were: 1) To explain the equilibrium and stabilization of plasma in a quasi-constant toroidal magnetic field by using routing multipole high-frequency fields, on the assumption that the toroidal drift force, equal to Tilde-Operator (r/R)nkt, must be compensated by the electromagnetic wave pressure H{sup 2}/8{pi}; 2) To study the heating of plasma resulting from dissipation of the ''beam'' instability produced by a powerful beam of ''escaping electrons'' when the electric fields in the plasma are characterized by Ez >> Ec. The apparatus was used to carry out: a) Microwave measurements of plasma density, by using an interferometer of wave length {lambda} =2 mm, and observation of the plasma boundary by the reflected signal on the wave {lambda} = 17 mm; b) Recording of the behaviour of the H{sub {beta}} line in time and scanning of plasma luminescence in time, by using a photoelectric converter; c) measurement of the total intensity of the X-radiation in time, by using a scintillation counter; d) measurement of the current in the plasma and of the voltage in the bypass. The results show that a high-frequency igniting field of 8.3 Mc/s creates a plasma touching the walls with an average electron density 0.5 to 1 x 10{sup 13} cm{sup -3} and an
Control of tokamak plasma current and equilibrium with hybrid poloidal field coils
International Nuclear Information System (INIS)
Shimada, Ryuichi
1982-01-01
A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
International Nuclear Information System (INIS)
Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.
2015-01-01
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients
Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes
International Nuclear Information System (INIS)
Nagels-Silvert, V.
2004-09-01
The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)
Partial local thermal equilibrium in a low-temperature hydrogen plasma
International Nuclear Information System (INIS)
Hey, J.D.; Chu, C.C.; Rash, J.P.S.
1999-01-01
If the degree of ionisation is sufficient, competition between de-excitation by electron collisions and radiative decay determines the smallest principal quantum number (the so-called 'thermal limit') above which partial local thermodynamic equilibrium (PLTE) holds under the particular conditions of electron density and temperature. The LTE (PLTE) criteria of Wilson (JQSRT 1962;2:477-90), Griem (Phys Rev 1963;131:1170-6; Plasma Spectroscopy. New York: McGraw-Hill, 1964), Drawin (Z Physik 1969;228: 99-119), Hey (JQSRT 1976;16:69-75), and Fujimoto and McWhirter (Phys Rev A 1990;42:6588-601) are examined as regards their applicability to neutral atoms. For these purposes, we consider for simplicity an idealised, steady-state, homogeneous and primarily optically thin plasma, with some additional comments and numerical estimates on the roles of opacity and of atom-atom collisions. Particularly for atomic states of lower principal quantum number, the first two of the above criteria should be modified quite appreciably before application to neutral radiators in plasmas of low temperature, because of the profoundly different nature of the near-threshold collisional cross-sections for atoms and ions, while the most recent criterion should be applied with caution to PLTE of atoms in cold plasmas in ionisation balance. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept
2017-02-28
Colorado State University ETC Electron Transpiration Cooling LHTS Local Heat Transfer Simulation LTE Local Thermodynamic Equilibrium RCC Reinforced...ceramic electric material testing in plasma environment (not performed), 4. measurements and analysis of the Electron Transpiration Cooling (Sec. 4.2). 2...VKI 1D boundary layer code for computation of enthalpy and boundary layer parameters: a) iterate on ’virtually measured ’ heat flux, b) once enthalpy
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders
Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
International Nuclear Information System (INIS)
Brodin, G.; Stenflo, L.
2017-01-01
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Energy Technology Data Exchange (ETDEWEB)
Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)
2017-03-18
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
International Nuclear Information System (INIS)
Chen Kuan; Eddy, T.L.
1993-01-01
A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)
Steady equilibrium of a cylindrically symmetric plasma sustained by fueling
International Nuclear Information System (INIS)
Tomita, Yukihiro; Momota, Hiromu
1993-01-01
By introducing a novel and natural method to obtain a steady equilibrium, it is shown that a pressure gradient produced by the particle injection or resultant diamagnetic current can sustain only an equilibrium of a diffused linear pinch. For an extremely elongated FRC where magnetic field vanishes at a certain point, a seed current is needed to sustain configuration in a steady state equilibrium. A directed flow of fusion produced protons forms a seed current and consequently it sustains a steady FRC equilibrium by fueling only once D- 3 He burning takes place. Effects of anomalous transports on the sustainment are discussed. (author)
Radicals and Non-Equilibrium Processes in Low-Temperature Plasmas
Petrović, Zoran; Mason, Nigel; Hamaguchi, Satoshi; Radmilović-Radjenović, Marija
2007-06-01
Serbian Academy of Sciences and Arts and Institute of Physics, Belgrade. Each Symposium has sought to highlight a key topic of plasma research and the 5th EU - Japan symposium explored the role of Radicals and Non-Equilibrium Processes in Low-Temperature Plasmas since these are key elements of plasma processing. Other aspects of technologies for manufacturing integrated circuits were also considered. Unlike bio-medicine and perhaps politics, in plasma processing free radicals are `good radicals' but their kinetics are difficult to understand since there remains little data on their collisions with electrons and ions. One of the goals of the symposium was to facilitate communication between experimentalists and theorists in binary collision physics with plasma modellers and practitioners of plasma processing in order to optimize efforts to provide much needed data for both molecules and radicals of practical importance. The non-equilibrium nature of plasmas is critical in the efficient manufacturing of high resolution structures by anisotropic plasma etching on Si wafers since they allow separate control of the directionality and energy of ions and provide a high level of separation between the mean energies of electrons and ions. As nanotechnologies become practical, plasma processing may play a key role, not only in manufacturing of integrated circuits, but also for self-organization of massively parallel manufacturing of nanostructures. In this Symposium the key issues that are hindering the development of such new, higher resolution technologies were discussed and some possible solutions were proposed. In particular, damage control, fast neutral etching, processes at surface and modeling of profiles were addressed in several of the lectures. A wide range of topics are covered in this book including atomic and molecular collision physics - primarily focused towards formation and analysis of radicals, basic swarm data and breakdown kinetics, basic kinetics of RF and DC
Optical plasma torch electron bunch generation in plasma wakefield accelerators
Directory of Open Access Journals (Sweden)
G. Wittig
2015-08-01
Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.
Injection into electron plasma traps
International Nuclear Information System (INIS)
Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.
2003-01-01
Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory
Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment
International Nuclear Information System (INIS)
Morrison, Kyle A.; Paul, Stephen F.; Davidson, Ronald C.
2003-01-01
The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion
Study of plasma equilibrium during the AC current reversal phase in STOR-M
International Nuclear Information System (INIS)
Xiao, C.
2002-01-01
Alternating current (AC) tokamak operation and equilibrium studies have been performed on the STOR-M tokamak. The recent experiments have achieved consistent smooth current reversal through the implementation of a hybrid digital-analog position controller and by careful density control. In order to study the plasma equilibrium during the current reversal phase with negligible rotational transform, a segmented limiter with four isolated conducting plates has been installed. The plates can be connected outside the vacuum vessel, which allows measurements of currents flowing between limiter plates. When the current reversal is smooth with zero dwell time, the hydrogen line emission level and electron density remain finite, indicating a finite particle confinement. The current from the top to the bottom limiter plate is also finite and its direction is consistent with that of the grad-B drift. The observation suggests that the limiter and other conducting structures surrounding the plasmas plays the role, during the current reversal phase of AC tokamak operation, to short out the charge separation arising from the grad-B drift and to maintain a finite particle confinement. (author)
Dynamics and feedback control of plasma equilibrium position in a tokamak
International Nuclear Information System (INIS)
Burenko, O.
1983-01-01
A brief history of the beginnings of nuclear fusion research involving toroidal closed-system magnetic plasma containment is presented. A tokamak machine is defined mathematically for the purposes of plasma equilibrium position perturbation analysis. The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form. This symbolic form of the dynamics transfer function makes it possible to study the stability of a tokamak's plasma equilibrium position. Knowledge of the dynamics transfer function permits systematic syntheses of the required plasma displacement feedback control systems
Magnetohydrodynamic equilibrium and stability of spheromak with spheroidal plasma-vacuum interface
International Nuclear Information System (INIS)
Kaneko, Shobu; Kamitani, Atsushi; Takimoto, Akio.
1985-05-01
The analytic solutions to the Grad-Shafranov equation are obtained for a prolate and an oblate spheroidal plasma by using Hill's vortex model. Effects of a toroidal magnetic field Bsub(phi) on the MHD equilibrium configurations are investigated by using these analytic solutions. When Bsub(phi) is larger than that of the force-free configuration, the spheroidal plasmas in a vacuum magnetic field are shown to be unable in the MHD equilibrium. The several physical quantities on the equilibrium configuration are evaluated. The spheromak plasma is proved to be unstable if dp/d psi not equal 0 and d 2 V/d psi 2 >= 0 on the magnetic axis. Here p is the pressure and V(psi) the volume surrounded by a magnetic surface of psi=const. The equilibrium configurations of the spheroidal plasmas by using Hill's vortex model are shown to satisfy the above conditions, i.e., to be unstable. (author)
Equilibrium and stability of high-β plasmas in W7-AS
International Nuclear Information System (INIS)
Geiger, J.; Weller, A.; Nuehrenberg, C.; Werner, A.; Zarnstorff, M.; Kolesnichenko, Ya.I.
2003-01-01
In this paper the optimization of equilibrium and stability of high-β plasmas by means of the reduction of the Pfirsch-Schlueter currents is described. Furthermore the Alfven modes driven by neutral-beam injection are considered. (HSI)
Magnetohydrodynamic equilibrium and stability of spheromak with spheroidal plasma-vacuum interface
International Nuclear Information System (INIS)
Kaneko, Shobu; Kamitani, Atsushi; Takimoto, Akio
1985-01-01
The analytic solutions to the Grad-Shafranov equation are obtained for a prolate and an oblate spheroidal plasma by using Hill's vortex model. Effects of a toroidal magnetic field Bsub(phi) on the MHD equilibrium configurations are investigated by using these analytic solutions. When Bsub(phi) is stronger than that of the force-free configuration, the spheroidal plasmas in a vacuum magnetic field are shown to be unable in the MHD equilibrium. The several physical quantities on the equilibrium configuration are evaluated. The spheromak plasma is proved to be unstable if dp/d psi not equal 0 and d 2 V/d psi 2 >= 0 on the magnetic axis. Here p is the pressure and V(psi) the volume surrounded by a magnetic surface of psi = const. The equilibrium configurations of the spheroidal plasmas by using Hill's vortex model are shown to satisfy the above conditions, i.e., to be unstable. (author)
International Nuclear Information System (INIS)
Puchkov, V.A.
1998-01-01
A method for calculation of non-equilibrium fluctuations in a totally ionized stable plasma with taking into account the particle collisions is proposed. The spectrum of high-frequency fluctuations of the electric field is calculated by the developed method. The formula obtained for the spectrum takes into consideration both the Coulomb collisions and influence of collective effects on the collisions and is applicable for stable arbitrary distributions of electrons and ions
Instability Versus Equilibrium Propagation of Laser Beam in Plasma
Lushnikov, Pavel M.; Rose, Harvey A.
2003-01-01
We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam, that controls the transition between statistical equilibrium and non-equilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtain...
International Nuclear Information System (INIS)
Dobryakov, A.V.
1989-01-01
The equilibrium of a plasma filament with an inhomogeneos nonuniform field along an axis that has not any asymmetry has been considered for the first order of β=8 πp/B 2 and the curvature. The filament is assumed to be inside an ideally-conducting sheath with a circular cross-section. It is shown that the filament shift depends noticeably on this sheath. The plasma equilibrium has been considered as an example in a Drakon magnetic trap. 9 refs
Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall
International Nuclear Information System (INIS)
Krasheninnikova, Natalia S.; Tang Xianzhu
2010-01-01
Motivated by the magnetized target fusion (MTF) experiment [R. E. Siemon et al., Comments Plasma Phys. Controlled Fusion 18, 363 (1999)], a systematic investigation of the force balance and equilibrium plasma flows was carried out using analytical theory and the particle-in-cell code VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] for a one-dimensional plasma sheath with a magnetic field parallel to the wall. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing wall. The analysis of the steady-state force balance of the entire plasma as well as its individual components illuminates the roles that the hydrodynamic, magnetic, and electric forces play. In particular, when ρ thi D , the magnetic force balances the divergence of the pressure tensor. As the magnetic field is decreased, the electric force becomes prominent in areas where quasineutrality breaks, which can be a substantial part of the sheath. Its importance depends on the relation between three parameters, namely, electron and ion thermal Larmor radii and plasma Debye length: ρ the , ρ thi , and λ D . The relative importance of the electron and ion current in the magnetic or Lorentz force term can be understood through the analysis of the two-fluid force balance. It reveals that the current is carried primarily by the electrons. This is due to the direction of the electric field that helps confine the ions, but not the electrons, which are forced to carry a large current to confine themselves magnetically. In the regimes where the electric field is negligible, the ions also need the current for confinement, but in these cases the divergence of ion pressure tensor is much smaller than that of the electrons. Consequently the ion current is also smaller. The study of the electron and ion flow parallel to the wall clarifies this picture even further. In the regime of strong magnetic field, the
Laser frequency modulation with electron plasma
Burgess, T. J.; Latorre, V. R.
1972-01-01
When laser beam passes through electron plasma its frequency shifts by amount proportional to plasma density. This density varies with modulating signal resulting in corresponding modulation of laser beam frequency. Necessary apparatus is relatively inexpensive since crystals are not required.
International Nuclear Information System (INIS)
Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko
2009-01-01
The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).
Parallel application of plasma equilibrium fitting based on inhomogeneous platforms
International Nuclear Information System (INIS)
Liao Min; Zhang Jinhua; Chen Liaoyuan; Li Yongge; Pan Wei; Pan Li
2008-01-01
An online analysis and online display platform EFIT, which is based on the equilibrium-fitting mode, is inducted in this paper. This application can realize large data transportation between inhomogeneous platforms by designing a communication mechanism using sockets. It spends approximately one minute to complete the equilibrium fitting reconstruction by using a finite state machine to describe the management node and several node computers of cluster system to fulfill the parallel computation, this satisfies the online display during the discharge interval. An effective communication model between inhomogeneous platforms is provided, which could transport the computing results from Linux platform to Windows platform for online analysis and display. (authors)
Ion accumulation in an electron plasma confined on magnetic surfaces
International Nuclear Information System (INIS)
Berkery, John W.; Marksteiner, Quinn R.; Pedersen, Thomas Sunn; Kremer, Jason P.
2007-01-01
Accumulation of ions can alter and may destabilize the equilibrium of an electron plasma confined on magnetic surfaces. An analysis of ion sources and ion content in the Columbia Non-neutral Torus (CNT) [T.S. Pedersen, J.P. Kremer, R.G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgreen, and X. Sarasola, Fusion Sci. Technol. 50, 372 (2006)] is presented. In CNT ions are created preferentially at locations of high electron temperature, near the outer magnetic surfaces. A volumetric integral of n e ν iz gives an ion creation rate of 2.8x10 11 ions/s. This rate of accumulation would cause neutralization of a plasma with 10 11 electrons in about half a second. This is not observed experimentally, however, because currently in CNT ions are lost through recombination on insulated rods. From a steady-state balance between the calculated ion creation and loss rates, the equilibrium ion density in a 2x10 -8 Torr neutral pressure, 7.5x10 11 m -3 electron density plasma in CNT is calculated to be n i =6.2x10 9 m -3 , or 0.8%. The ion density is experimentally measured through the measurement of the ion saturation current on a large area probe to be about 6.0x10 9 m -3 for these plasmas, which is in good agreement with the predicted value
Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach
Pietanza, L. D.; Colonna, G.; Capitelli, M.
2017-12-01
Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.
Non-equilibrium microwave plasma for efficient high temperature chemistry
van den Bekerom, D.C.M.; den Harder, N.; Minea, T.; Palomares Linares, J.M.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.J.
2017-01-01
This article describes a flowing microwave reactor that is used to drive efficient non-equilibrium chemistry for the application of conversion/activation of stable molecules such as CO2, N2 and CH4. The goal of the procedure described here is to measure the in situ gas temperature and gas
Three-dimensional plasma equilibrium near a separatrix
International Nuclear Information System (INIS)
Reiman, A.H.; Pomphrey, N.; Boozer, A.H.
1988-08-01
The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs
Energy Technology Data Exchange (ETDEWEB)
Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia); Palay, Ethan, E-mail: david@mso.anu.edu.au [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)
2013-08-15
In this paper we develop tools for observers to use when analyzing nebular spectra for temperatures and metallicities, with two goals: to present a new, simple method to calculate equilibrium electron temperatures for collisionally excited line flux ratios, using the latest atomic data; and to adapt current methods to include the effects of possible non-equilibrium ''{kappa}'' electron energy distributions. Adopting recent collision strength data for [O III], [S III], [O II], [S II], and [N II], we find that existing methods based on older atomic data seriously overestimate the electron temperatures, even when considering purely Maxwellian statistics. If {kappa} distributions exist in H II regions and planetary nebulae as they do in solar system plasmas, it is important to investigate the observational consequences. This paper continues our previous work on the {kappa} distribution. We present simple formulaic methods that allow observers to (1) measure equilibrium electron temperatures and atomic abundances using the latest atomic data, and (2) to apply simple corrections to existing equilibrium analysis techniques to allow for possible non-equilibrium effects. These tools should lead to better consistency in temperature and abundance measurements, and a clearer understanding of the physics of H II regions and planetary nebulae.
Effect of secondary electron emission on the Jeans instability in a dusty plasma
International Nuclear Information System (INIS)
Sarkar, Susmita; Roy, Banamali; Maity, Saumyen; Khan, Manoranjan; Gupta, M. R.
2007-01-01
In this paper the effect of secondary electron emission on Jeans instability in a dusty plasma has been investigated. Due to secondary electron emission, dust grains may have two stable equilibrium states out of which one is negative and the other is positive. Here both cases have been considered separately. It has been shown that secondary electron emission enhances Jeans instability when equilibrium dust charge is negative. It has also been shown that growth rate of Jeans instability reduces with increasing secondary electron emission when equilibrium dust charge is positive
Energy Technology Data Exchange (ETDEWEB)
Miyakawa, M.; Murakami, T.; Suekane, T.; Okuno, Y.; Kabashima, S. [Tokyo Institute of Technology, Tokyo (Japan)
1996-10-20
Structure of non-equilibrium cesium seeded argon plasma excited with microwave power is simulated numerically. The plasmas produced at suitable microwave powers are found to consist of three regimes, that is, the region limited by charged particle loss toward the wall, the full seed ionization and the diffusion limited regions. The fully ionized seed plasma is produced within the skin-depth determined by the electrical conductivity of the plasma, and the thickness of the fully ionized seed plasma depends on the seed fractions gas pressure and microwave power. 15 refs., 6 figs.
Equilibrium of high beta plasma in closed magnetic line system (MBT)
International Nuclear Information System (INIS)
Gesso, H.; Shiina, S.; Saito, K.; Nogi, Y.; Osaniai, Y.; Yoshimura, H.; Todoroki, J.; Hamada, S.; Nihon Univ., Tokyo. Atomic Energy Research Inst.)
1985-01-01
The beta effects on the plasma equilibrium in Modified Bumpy Torus (MBT) sector, which is an asymmetric closed line system with l = 0 and fairly large l = +- 1 field distortions, are studied. For this purpose, the equilibrium of high beta plasma produced by theta-pinch is compared with that of betaless plasma numerically calculated from the measured magnetic field profiles in device. The equilibrium condition depends weakly on beta value, but the plasma cross-section is vertically elongated as the beta value increases. The m = 1 long wavelength MHD instability is not observed during the observation time of approx. 15 μs. These experimental results are compared with MHD theory based on the new ordering taking the finiteness of l = +- 1 field distortion (deltasub(+-1) > or approx. 1) into account, which suggests significant stabilizing effects due to self formation of magnetic well and also due to the conducting wall. (author)
Density effects on electronic configurations in dense plasmas
Faussurier, Gérald; Blancard, Christophe
2018-02-01
We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.
Extended quasiparticle approximation for relativistic electrons in plasmas
Directory of Open Access Journals (Sweden)
V.G.Morozov
2006-01-01
Full Text Available Starting with Dyson equations for the path-ordered Green's function, it is shown that the correlation functions for relativistic electrons (positrons in a weakly coupled non-equilibrium plasmas can be decomposed into sharply peaked quasiparticle parts and off-shell parts in a rather general form. To leading order in the electromagnetic coupling constant, this decomposition yields the extended quasiparticle approximation for the correlation functions, which can be used for the first principle calculation of the radiation scattering rates in QED plasmas.
Electron distribution function in electron-beam-excited plasmas
International Nuclear Information System (INIS)
Brau, C.A.
1976-01-01
In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation
Energy Technology Data Exchange (ETDEWEB)
Eichert, K.; Kaeppeler, H. J. [Institut fuer Plasmaforschung der Technischen Hochschule Stuttgart, Federal Republic of Germany (Germany)
1966-10-15
In previous publications, a system of equations was derived from the gas-kinetic description of a multi-component reacting plasma and employed for the calculation of one-dimensional subsonic flows. This system is now extended to include non-equilibrium excitation. No thermal or chemical equilibrium between the various components of the plasma is assumed. The components of the plasma considered are a non-reacting working fluid, an alkali metal vapour as a seeding material, ions of this seeding substance, and electrons. Three levels for the excited states are introduced. The reactions considered are excitation and ionization by electron collisions, and photo-ionization, as well as the corresponding reverse processes. For the reaction velocities, analytical equations are introduced permitting insertion of any excitation or ionization cross-sections of either experimental or theoretical origin. The method employed had been previously suggested by one of the authors. As examples, the degrees of excitation and ionization in the flow of a helium working fluid with 1% caesium seeding through a channel against transverse magnetic fields of 15 and 40 kg at Mach numbers of 0.7 and 0.8, respectively, were calculated. The results of the calculations show that for relatively small magnetic fields there is no rapid rise of the ionization to Saha-equilibrium as a function of electron temperature. A comparison with the results of a calculation neglecting excitation shows that especially for relatively large magnetic fields non-equilibrium excitation has an essential influence on the electron density and its approach to equilibrium. Neglecting excitation, there results a nearly frozen behaviour of the degree of ionization within channel lengths of technical interest for small magnetic fields. (author)
On the role of electron quantum tunneling in charging of dust grains in complex plasma
International Nuclear Information System (INIS)
Tyshetskiy, Yu.O.; Vladimirov, S.V.
2011-01-01
The aim of this work is calculate ion additional current associated with the quantum tunneling of plasma electrons, that are classically forbidden to overcome the repulsive potential barrier, onto the negatively charged grain. We compare this additional quantum tunneling current with the classical electron current from plasma onto the grain and analyze how this additional current affects the self-consistent equilibrium grain charge for different plasma parameters and grain sizes.
International Nuclear Information System (INIS)
Sodha, M. S.; Mishra, S. K.
2011-01-01
The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.
International Nuclear Information System (INIS)
Tsventoukh, M. M.
2010-01-01
A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those
Analysis of the plasma magnetohydrodynamic equilibrium in iron core transformer Tokamak HL-1M
International Nuclear Information System (INIS)
Chen Xiaoguang; Yuan Baoshan
1992-01-01
The physical and mathematical model are presented on the problem of MHD equilibrium with the self consistent in iron core transformer HL-1M. Calculation and analysis for the plasma equilibrium of the stable boundary and free boundary are shown respectively, in an axisymmetric equilibrium model of two dimensions. First, a variation formulation of the problem is written and the equations of the poloided flux ψ are solved by a finite element method; the Picard and Newton algorithms are tested for the non-linearities. The plasma boundary and the magnetic surfaces are being simulated, with the currents in the coils, the total plasma current, its current density function and the magnetic permeability of the iron being the data for the problem; a certain number of the characteristic parameter of the equilibrium configuration is calculated. Secondly, a simple method of calculation is adopted in the determination of equilibrium fields and currents in iron core HL-1M tokamak device. In the plasma equilibrium, the magnetic effect of the air gaps in the iron core and the iron magnetic shielded plate are considered in HL-1M device. Reliable data are provided for designing and constructing the poloidal field system of HL-1M device. A good computer code is constructed, which may be useful in operating on analysis for the future device
Numerical study for determining PF coil system parameters in MHD equilibrium of KT-2 tokamak plasma
International Nuclear Information System (INIS)
Ryu, J.; Hong, S.H.; Lee, K.W.; Hong, B.G.; In, S.R.; Kim, S.K.
1995-01-01
The KT-2 is a large-aspect-ratio medium-sized divertor tokamak in the conceptual design phase and planned to be operational in 1998 at the Korea Atomic Energy Research Institute (KAERI). Plasma equilibrium in tokamak can be acquired by controlling the current of poloidal field (PF) coils in appropriate geometries and positions. In this study, the authors have performed numerical calculations to achieve the various equilibrium conditions fitting given plasma shapes and satisfying PF current limitations. Usually an ideal magnetohydrodynamic (MHD) equation is used to obtain the equilibrium solution of tokamak plasma, and it is practical to take advantage of a numerical method in solving the MHD equation because it has nonlinear source terms. Two equilibrium codes have been applied to find a double-null configuration of free-boundary tokamak plasma in KT-2: one is of the authors' own developing and the other is a free-boundary tokamak equilibrium code (FBT) that has been used mainly for the verification of developed code's results. PF coil system parameters including their positions and currents are determined for the optimization of input power required when the specifications of KT-2 tokamak are met. Then, several sets of equilibrium conditions during the tokamak operation are found to observe the changes of poloidal field currents with the passing of operation time step, and the basic stability problems related with the magnetic field structure is also considered
Electron cyclotron emission imaging in tokamak plasmas
Munsat, T.; Domier, C.W.; Kong, X. Y.; Liang, T. R.; N C Luhmann Jr.,; Tobias, B. J.; Lee, W.; Park, H. K.; Yun, G.; Classen, I.G.J.; Donne, A. J. H.
2010-01-01
We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the
Dzifčáková, E.; Dudík, J.; Mackovjak, Š.
2016-05-01
Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org
Vlasov equilibrium and nonlocal stability properties of an inhomogeneous plasma column
International Nuclear Information System (INIS)
Davidson, R.C.
1976-01-01
A fully kinetic, nonlocal, matrix dispersion equation is derived for electrostatic perturbations about a spatially nonuniform cylindrical plasma equilibrium. The analysis is carried out for the class of radially confined rigid-rotor equilibria described by f 0 /subj/(x,v) = (n/subj/m/subj//2πT/subj/) F (H/sub perpendicular//T/subj/- ω/subj/P/sub theta//T/subj/,v/subz/), where P/sub theta/ is the canonical angular momentum, v/subz/ is the axial velocity, H/sub perpendicular/ is the perpendicular energy, and n/subj/, T/subj/, and ω/subj/ are constants. Assuming equilibrium charge neutrality and negligible spatial variation in the axial magnetic field B 0 e/subz/, it is shown that the particle trajectories (in the equilibrium electric and magnetic fields) and the orbit integrals required in the stability analysis can be evaluated in closed form. Expanding the perturbed electrostatic potential in terms of the vacuum eigenfunctions ]J/subl/(lambda/subn/r) closing-brace for the conducting cylinder leads to a matrix dispersion equation of the form det[delta/subn//sub prime//subn+ Σ/subj/chi/subj//subn//sub prime//subn(ω)]=0, where the susceptibility chi/subj//subn//sub prime//subn(ω) is expressed as a phase-space integral over f 0 /subj/(x,v) and known functions of ω, r lambda/subn/, etc. The limiting case of strongly magnetized electrons and unmagnetized ions is considered together with a preliminary application to the lower-hyprid-drift instability
Electron cyclotron heating (ECH) of tokamak plasmas
International Nuclear Information System (INIS)
Hoshino, Katsumichi
1990-01-01
Electron cyclotron heating (ECH) is one of the intense methods of plasma heating, and which utilizes the collisionless electron-cyclotron-resonance-interaction between the launched electromagnetic waves (called electron cyclotron waves) and electrons which are one of the constituents of the high temperature plasmas. Another constituent, namely the ions which are subject to nuclear fusion, are heated indirectly but strongly and instantly (in about 0.1 s) by the collisions with the ECH-heated electrons in the fusion plasmas. The recent progress on the development of high-power and high-frequency millimeter-wave-source enabled the ECH experiments in the middle size tokamaks such as JFT-2M (Japan), Doublet III (USA), T-10 (USSR) etc., and ECH has been demonstrated to be the sure and intense plasma heating method. The ECH attracts much attention for its remarkable capabilities; to produce plasmas (pre-ionization), to heat plasmas, to drive plasma current for the plasma confinement, and recently especially by the localization and the spatial controllability of its heating zone, which is beneficial for the fine controls of the profiles of plasma parameters (temperature, current density etc.), for the control of the magnetohydrodynamic instabilities, or for the optimization/improvement of the plasma confinement characteristics. Here, the present status of the ECH studies on tokamak plasmas are reviewed. (author)
International Nuclear Information System (INIS)
Koalaga, Zacharie
2002-01-01
The purpose of this paper is to study the influence of the choice of internal temperatures on the composition of C x H y O z N t plasmas out of thermodynamic equilibrium. The numerical calculation is specially performed for CH 2 plasma in the pressure range 0.1-1 MPa and for the electron temperature range 5000-30 000 K. Precisely, the investigation of this plasma allows one to show that the choice of internal temperatures can have more influence on plasma composition than the choice of the form of the two-temperature Saha and Guldberg-Waage laws. Indeed, for one of the supposed hypotheses, it is observed that the two forms of the two-temperature system used here can give the same equilibrium composition by uncoupling the excitation temperature of the diatomic and the monatomic species. Great attention must then be given to the adopted hypothesis for internal temperature and not only to the form of the two temperature system used. An accurate comparison between the two models requires the measurement of plasma parameters such as the various internal temperatures and the species concentration. Therefore, we have also carried out an analysis of the potential experimental diagnostics of these plasma parameters. Such diagnostics can help to test and validate theoretical models
Plasma lenses for focusing relativistic electron beams
International Nuclear Information System (INIS)
Govil, R.; Wheeler, S.; Leemans, W.
1997-01-01
The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated
Measurement of the open loop plasma equilibrium response in TCV
International Nuclear Information System (INIS)
Coutlis, A.; Bandyopadhyay, I.; Lister, J.B.; Vyas, P.; Albanese, R.; Limebeer, D.J.N.; Villone, F.; Wainwright, J.P.
1999-01-01
A new technique and results are presented for the estimation of the open loop frequency response of the plasma on TCV. Voltages were applied to poloidal field coils and the resulting plasma current, position and shape related parameters were measured. The results are compared with the CREATE-L model, and good agreement is confirmed. The results are a significant advance on previous comparisons with closed loop data, which were limited by the role of feedback in the system. A simpler circuit equation model has also been developed in order to understand the reasons for the good agreement and identify which plasma properties are important in determining the response. The reasons for the good agreement with this model are discussed. An alternative modelling method has been developed, combining features of both the theoretical and experimental techniques. Its advantage is that it incorporates well defined knowledge of the electromagnetic properties of the tokamak with experimental data to derive plasma related parameters. This new model provides further insight into the plasma behaviour. (author)
Martorelli, Roberto
2016-01-01
We analyze the equilibrium configuration for a modulated beam with sharp boundaries exposed to the fields self-generated by the interaction with a plasma. Through a semi-analytical approach we show the presence of multiple equilibrium configurations and we determine the one more suitable for wakefield excitation. Once pointed out the absence of confinement for the front of the beam and the consequently divergence driven by the emittance, we study the evolution of the equilibrium configuration while propagating in the plasma, discarding all the others time-dependencies. We show the onset of a rigid backward drift of the equilibrium configuration and we provide an explanation in the increasing length of the first bunch.
Electron beam production by a plasma focus
International Nuclear Information System (INIS)
Smith, J.R.; Luo, C.M.; Schneider, R.F.; Rhee, M.J.
1984-01-01
Operation of a plasma focus as a Compact Pulsed Accelerator (CPA) for ions has been previously reported. The CPA consists of: (1) a 15 μF, 3 kJ capacitor, (2) a triggered spark gap, (3) a coaxial transmission line, and (4) a Mather geometry plasma gun. Recently the authors have investigated application of the CPA as an accelerator for electrons. In the previously reported work using the standard Mather plasma gun geometry, ions were accelerated away from the plasma gun and were therefore conveniently extracted for analysis, but electrons were directed into the hollow anode where extraction is blocked by the coaxial transmission line. For investigation of accelerated electrons a new plasma gun design which allows extraction of electrons has been developed. Details of the new plasma gun design and further results of beam diagnostics are discussed
Fluid dynamics of out of equilibrium boost invariant plasmas
Blaizot, Jean-Paul; Yan, Li
2018-05-01
By solving a simple kinetic equation, in the relaxation time approximation, and for a particular set of moments of the distribution function, we establish a set of equations which, on the one hand, capture exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the hierarchy of equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This correspondence sheds light on the underlying mechanism responsible for the apparent success of hydrodynamics in regimes that are far from local equilibrium.
Wake field in electron-positron plasmas
International Nuclear Information System (INIS)
Avinash, K.; Berezhiani, V.I.
1993-03-01
We study the creation of wake field in cold electron positron plasma by electron bunches. In the resulting plasma inhomogeneity we study the propagation of short electromagnetic pulse. In is found that wake fields can change the frequency of the radiation substantially. (author). 7 refs, 1 fig
An investigation of non-equilibrium effects in thermal argon plasmas
International Nuclear Information System (INIS)
Rosado, R.J.
1981-01-01
This thesis deals with the study of the validity of the assumption of Local Thermal Equilibrium (LTE) in the description of the parameters of a thermal argon plasma. The aim is twofold. As the studied plasma is close to, but not completely in equilibrium, the author first attempts to obtain a simple description of the plasma in terms of an LTE model in which suitable corrections for the deviations of the plasma parameters from their LTE values is introduced. To this end the plasma parameters are studied by means of a diagnostic method in which the assumption of LTE is not made. The evaluation of the usefulness of this method is the second aim of this thesis. (Auth.)
Electron distribution function in laser heated plasmas
International Nuclear Information System (INIS)
Fourkal, E.; Bychenkov, V. Yu.; Rozmus, W.; Sydora, R.; Kirkby, C.; Capjack, C. E.; Glenzer, S. H.; Baldis, H. A.
2001-01-01
A new electron distribution function has been found in laser heated homogeneous plasmas by an analytical solution to the kinetic equation and by particle simulations. The basic kinetic model describes inverse bremsstrahlung absorption and electron--electron collisions. The non-Maxwellian distribution function is comprised of a super-Gaussian bulk of slow electrons and a Maxwellian tail of energetic particles. The tails are heated due to electron--electron collisions and energy redistribution between superthermal particles and light absorbing slow electrons from the bulk of the distribution function. A practical fit is proposed to the new electron distribution function. Changes to the linear Landau damping of electron plasma waves are discussed. The first evidence for the existence of non-Maxwellian distribution functions has been found in the interpretation, which includes the new distribution function, of the Thomson scattering spectra in gold plasmas [Glenzer , Phys. Rev. Lett. 82, 97 (1999)
Electron screening and kinetic-energy oscillations in a strongly coupled plasma
International Nuclear Information System (INIS)
Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.
2004-01-01
We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma
International Nuclear Information System (INIS)
Amatuni, A.Ts.; Elbakyan, S.S.; Sekhpossyan, E.V.
1985-01-01
The possibility of the use of longitudinal field excited in a plasma by electron bunches to accelerate charged particles is investigated. It is shown that the highets value of accelerating fields proportional to the square root of factor of electrons in the bunch is achieved in the case when bunch particle density approaches a limit equal to the half of the the plasma electron equilibrium density
Initial conditions of non-equilibrium quark-gluon plasma evolution
International Nuclear Information System (INIS)
Shmatov, S.V.
2002-01-01
In accordance with the hydrodynamic Bjorken limit, the initial energy density and temperature for a chemical non-equilibrium quark-gluon system formed in the heavy ion collisions at the LHC are computed. The dependence of this value on the type of colliding nuclei and the collision impact parameter is studied. The principle possibility of the non-equilibrium quark-gluon plasma (QGP) formation in the light nuclei collisions is shown. The life time of QGP is calculated. (author)
Electron Beam Propagation in a Plasma
Directory of Open Access Journals (Sweden)
Kyoung W. Min
1988-06-01
Full Text Available Electron beam propagation in a fully ionized plasma has been studied using a one-dimensional particle simulation model. We compare the results of electrostatic simulations to those of electromagnetic simulations. The electrostatic results show the essential features of beam-plasma instability which accelerates ambient plasmas. The results also show the heating of ambient plasmas and the trapping of plasmas due to the locally generated electric field. The level of the radiation generated by the same non-relativistic beam is slightly higher than the noise level. We discuss the results in context of the heating of coronal plasma during solar flares.
The problem of evolution of toroidal plasma equilibrium
International Nuclear Information System (INIS)
Kostomarov, D.; Zaitsev, F.; Shishkin, A.
1999-03-01
This paper is devoted to an advanced mathematical model for a self-consistent description of the evolution of free boundary toroidal plasmas, with a description of numerical algorithms for the solution of the appropriate non-linear system of integro-differential equations, and discussion of some results from the model. (author)
Control strategy for plasma equilibrium in a tokamak
International Nuclear Information System (INIS)
Miskell, R.V.
1975-08-01
Dynamic control of the plasma position within the torus of a TOKAMAK fusion device is a significant factor in the development of nuclear fusion as an energy source. This investigation develops a state variable model of a TOKAMAK thermonuclear device, suitable for application of modern control theory techniques. (auth)
EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas
International Nuclear Information System (INIS)
Colonna, G.; D'Angola, A.
2012-01-01
EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.
Electron density and plasma dynamics of a colliding plasma experiment
Energy Technology Data Exchange (ETDEWEB)
Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)
2016-07-15
We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.
International Nuclear Information System (INIS)
Bosak, K.; Blum, J.; Joffrin, E.
2004-01-01
Recent development of real-time equilibrium code Equinox using a fixed-point algorithm allow major plasma magnetic parameters to be identified in real-time, using rigorous analytical method. The code relies on the boundary flux code providing magnetic flux values on the first wall of vacuum vessel. By means of least-square minimization of differences between magnetic field obtained from previous solution and the next measurements the code identifies the source term of the non-linear Grad-Shafranov equation. The strict use of analytical equations together with a flexible algorithm offers an opportunity to include new measurements into stable magnetic equilibrium code and compare the results directly between several tokamaks while maintaining the same physical model (i.e. no iron model is necessary inside the equilibrium code). The successful implementation of this equilibrium code for JET and Tore Supra has already been published. In this paper, we show the preliminary results of predictive runs of the Equinox code using the ITER geometry. Because the real-time control experiments of plasma profile at JET using the code has been shown unstable when using magnetic and polarimetric measurements (that could be indirectly translated into accuracy vs robustness tradeoff), we plan an outline of the algorithm that will allow us to further constrain the plasma current profile using the central value of pressure of the plasma in real-time in order to better define the poloidal beta (this constraint is not necessary with purely magnetic equilibrium). (authors)
Energy Technology Data Exchange (ETDEWEB)
Bosak, K.; Blum, J. [Universite de Nice-Sophia-Antipolis, Lab. J. A. Dieudonne, 06 - Nice (France); Joffrin, E. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee
2004-07-01
Recent development of real-time equilibrium code Equinox using a fixed-point algorithm allow major plasma magnetic parameters to be identified in real-time, using rigorous analytical method. The code relies on the boundary flux code providing magnetic flux values on the first wall of vacuum vessel. By means of least-square minimization of differences between magnetic field obtained from previous solution and the next measurements the code identifies the source term of the non-linear Grad-Shafranov equation. The strict use of analytical equations together with a flexible algorithm offers an opportunity to include new measurements into stable magnetic equilibrium code and compare the results directly between several tokamaks while maintaining the same physical model (i.e. no iron model is necessary inside the equilibrium code). The successful implementation of this equilibrium code for JET and Tore Supra has already been published. In this paper, we show the preliminary results of predictive runs of the Equinox code using the ITER geometry. Because the real-time control experiments of plasma profile at JET using the code has been shown unstable when using magnetic and polarimetric measurements (that could be indirectly translated into accuracy vs robustness tradeoff), we plan an outline of the algorithm that will allow us to further constrain the plasma current profile using the central value of pressure of the plasma in real-time in order to better define the poloidal beta (this constraint is not necessary with purely magnetic equilibrium). (authors)
Electron cyclotron heating of plasmas
International Nuclear Information System (INIS)
Guest, Gareth
2009-01-01
As nuclear fusion becomes an increasingly important potential energy source in these times of global oil and energy crises, the development of technologies that can lead to the realization of this virtually inexhaustible source of energy takes on ever greater urgency. Over the past decade electron cyclotron heating has undergone a significant maturation and has emerged as an essential component of the major approaches to achieving controlled nuclear fusion. The gyrotron, first developed in the Soviet Union, has made it possible to employ ECH in large tokamak and stellarator fusion devices by providing megawatts of microwave power at frequencies above 100 GHz. A contemporary VGT-8110 gyrotron, for example, shown here with Kevin Felch and Pat Cahalan of Communications and Power Industries, is capable of delivering 10 second pulses of 1 MW of power at 110 GHz. The present monograph addresses the ECH physics critical to the international fusion reactor experiment, ITER, but also presents the fundamentals of ECH that are essential to its successful implementation in applications that range from active experiments in planetary magnetospheres to commercial plasma sources for the manufacture of computer chips. The book seeks to convey the physics of ECH in an orderly and coherent fashion to a professional audience by presenting the basic theoretical foundations and then using the theory to interpret a number of established experimental results. Exercises are included to aid the reader in making the theory more concrete. (orig.)
Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping
International Nuclear Information System (INIS)
Lister, J.B.; Schnurrenberger, H.
1990-07-01
The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of Neural Network known as the multi-layer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author) 15 refs., 7 figs
Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping
International Nuclear Information System (INIS)
Lister, J.B.; Schnurrenberger, H.
1991-01-01
The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of neural network known as the multilayer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author). 17 refs, 8 figs, 2 tab
Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy
Directory of Open Access Journals (Sweden)
L. M. Zelenyi
2004-01-01
Full Text Available Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets
International Nuclear Information System (INIS)
Moriyama, Shin-ichi; Hiraki, Naoji
1996-01-01
The possibility of determining the current profile of tokamak plasma from the external magnetic measurements alone is investigated using an analytical model of tokamak equilibrium. The model, which is based on an approximate solution of the Grad-Shafranov equation, can set a plasma current profile expressed with four free parameters of the total plasma current, the poloidal beta, the plasma internal inductance and the axial safety factor. The analysis done with this model indicates that, for a D-shaped plasma, the boundary poloidal magnetic field prescribing the external magnetic field distribution is dependent on the axial safety factor in spite of keeping the boundary safety factor and the plasma internal inductance constant. This suggests that the plasma current profile is reversely determined from the external magnetic analysis. The possibility and the limitation of current profile determination are discussed through this analytical result. (author)
International Nuclear Information System (INIS)
Jelic, N.
2011-01-01
The plasma properties under high thermodynamic non-equilibrium condition, established due to the presence of electrically biased electrode, are investigated. Assumption of electron cut-off velocity distribution function (VDF), as done by Andrews and Varey in their investigations of the sheath region [J. Phys. A 3, 413 (1970)], has been extended here to both plasma and sheath regions. Analytic expressions for the moments of electron VDF, as well as for the electron screening temperature function dependence on the plasma-sheath local potential are derived. In deriving the ion velocity distribution the ''standard'' assumption of strict plasma quasineutrality, or equivalently vanishing of the plasma Debye length, is employed, whereas the ions are assumed to be generated at rest over the plasma region. However, unlike the standard approach of solving the plasma equation, where pure Boltzmann electron density profile is used, here we employ modified Boltzmann's electron density profile, due to cutoff effect of the electron velocity distribution. It is shown that under these conditions the quasineutrality equation solution is characterised by the electric field singularity for any negative value of the electrode bias potential as measured with respect to the plasma potential. The point of singularity i.e., the plasma length and its dependence on the electrode bias and sheath potential is established for the particular case of ionization profile mechanism proportional to the local electron density. Relevant parameters for the kinetic Bohm criterion are explicitly calculated for both ions and electrons, for arbitrary electrode bias.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others
2016-11-01
Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...
Local thermodynamic equilibrium in a laser-induced plasma evidenced by blackbody radiation
Hermann, Jörg; Grojo, David; Axente, Emanuel; Craciun, Valentin
2018-06-01
We show that the plasma produced by laser ablation of solid materials in specific conditions has an emission spectrum that is characterized by the saturation of the most intense spectral lines at the blackbody radiance. The blackbody temperature equals the excitation temperature of atoms and ions, proving directly and unambiguously a plasma in local thermodynamic equilibrium. The present investigations take benefit from the very rich and intense emission spectrum generated by ablation of a nickel-chromium-molybdenum alloy. This alternative and direct proof of the plasma equilibrium state re-opens the perspectives of quantitative material analyses via calibration-free laser-induced breakdown spectroscopy. Moreover, the unique properties of this laser-produced plasma promote its use as radiation standard for intensity calibration of spectroscopic instruments.
Electron conductivity model for dense plasmas
International Nuclear Information System (INIS)
Lee, Y.T.; More, R.M.
1984-01-01
An electron conductivity model for dense plasmas is described which gives a consistent and complete set of transport coefficients including not only electrical conductivity and thermal conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc--Righi coefficients. The model is useful for simulating plasma experiments with strong magnetic fields. The coefficients apply over a wide range of plasma temperature and density and are expressed in a computationally simple form. Different formulas are used for the electron relaxation time in plasma, liquid, and solid phases. Comparisons with recent calculations and available experimental measurement show the model gives results which are sufficiently accurate for many practical applications
Optical Measurements in Non-Equilibrium Plasmas and Flows
2009-09-01
of the polarizability , , of the medium and the time-varying incident electric field ,E(t). p(t) E(t) (14) Figure 2 Single...162 14 - 7 The polarizability is customarily expanded with respect to the vibrational normal coordinates (or “normal modes”), Q, of the molecule...spectrum, obtained from an argon glow discharge plasma at 50 mbar [36], is shown on the right side of Fig. 7. The inferred temperature is 479 ± 13 K
Equilibrium and linear analysis of rotating plasmas: fluid and guiding center results
International Nuclear Information System (INIS)
Iacono, R.
1990-06-01
This work is devoted to the equilibrium and stability of rotating plasmas. Apart from its theoretical interest, this subject has become of practical importance in fusion research, due to the use in recent tokamak experiments of auxiliary heating methods such as neutral-beam injection, which can produce large plasma flows. Flow velocities up to the ion sound speed have been measured on different machines and new phenomena associated with the flow, such as distorsions of the plasma equilibrium profiles, have been observed. As a consequence, flows must be included in the macroscopic description of plasma equilibrium, which is the basis for the analysis and the design of magnetic confinement machines, and the stability properties of equilibria with flows need to be investigated. Here, attention is centered on toroidal confinement machines and in particular on tokamaks. However, some of the results to be presented may be of interest also for other domains (strong mass flows also occur in astrophysical and geophysical contexts such as in the Jovian magnetosphere or in the Earth's magnetopause and plasmapause. It should be noted that equilibrium and, in particular, stability with flows are poorly understood at present. Therefore, many of the questions we will consider are of quite a general nature. We are not yet at the point where quantitative comparisons with specific experiments can be made. Even the choice of a convenient model to study plasma flow is far from being evident. So far most of the theoretical investigations have used the magnetohydrodynamic (MHD) model, which is one of the simplest descriptions of a plasma. In this work, however, it will be shown that, for rotating plasmas, the 'simple' MHD model can give very complicated and physically meaningless results, while more 'complicated' models can provide a simpler and more realistic description of the plasma behaviour. 65 refs., 8 figs., 3 tabs
Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows
2014-10-28
results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators
Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers
Energy Technology Data Exchange (ETDEWEB)
Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U
2006-11-21
We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.
Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission
International Nuclear Information System (INIS)
Jacquet, L.; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.
2015-01-01
The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and
Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission
Jacquet, L.; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.
2015-12-01
The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and the
Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission
Energy Technology Data Exchange (ETDEWEB)
Jacquet, L., E-mail: laurent.jacquet@cea.fr; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G. [CEA, DAM, DIF, F-91297 Arpajon (France)
2015-12-15
The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and
International Nuclear Information System (INIS)
Marchiori, G.; Grando, L.; Cavinato, M.
2007-01-01
The load assembly of RFX-mod consists of three toroidal conducting structures whose eddy currents affect the plasma equilibrium magnetic configuration. The high number of electromagnetic probes mounted on the components of the load assembly allowed to analyse the response of each structure to a variation of the magnetic field vertical component. The capability of evaluating the axisymmetric toroidal currents in the passive structures and therefore their contribution to the equilibrium configuration by a 2D FE MHD equilibrium code was validated. The design and implementation of a feedback control system of the magnetic field vertical component before the gas ionization allowed meeting the requirement of an accurate control of this quantity in view of operation at higher plasma current and independently of the magnetizing winding programming
Use of the stellarator expansion to investigate plasma equilibrium in modular stellarators
International Nuclear Information System (INIS)
Anania, G.; Johnson, J.L.; Weimer, K.E.
1982-11-01
A numerical code utilizing a large-aspect ratio, small-helical-distortion expansion is developed and used to investigate the effect of plasma currents on stellarator equilibrium. Application to modular stellarator configurations shows that a large rotational transform, and hence large coil deformation, is needed to achieve high-beta equilibria
Equilibrium and stability of high-beta plasma in a finite l=+-1 toroidal system
International Nuclear Information System (INIS)
Shiina, S.; Saito, K.; Todoroki, J.; Hamada, S.; Gesso, H.; Nogi, Y.; Osanai, Y.; Yoshimura, H.
1983-01-01
The equilibrium and stability are theoretically and experimentally investigated of high-beta plasma in the Modified Bumpy Torus, which is an asymmetric closed-line system with fairly large l=0 and l=+-1 field components. The finiteness of the l=+-1 component induces significant stabilizing effects due both to self formation of a magnetic well and to the conducting wall. (author)
Equilibrium and stability of high-beta plasma in Modified Bumpy Torus (MBT)
International Nuclear Information System (INIS)
Todoroki, J.; Shiina, S.; Saito, K.; Osanai, Y.; Nogi, Y.; Gesso, H.; Yagi, I.; Yokoyama, K.; Yoshimura, H.; Nihon Univ., Tokyo. Atomic Energy Research Inst.)
1977-01-01
The equilibrium and stability properties of the plasma in Modified Bumpy Torus, which is an asymmetric system with closed magnetic lines of force, is reported. For small beta value, the growth rate of m=1 mode instability in MBT can be smaller than that of Scyllac configuration. The results of 1/4 toroidal sector experiment are reported. (author)
Dilepton production from quark gluon plasma using non-equilibrium thermodynamics
International Nuclear Information System (INIS)
Sinha, B.
1984-01-01
The importance of the approach phase to the thermodynamic equilibrium has been investigated for dilepton production from quark-gluon plasma - an effective temperature for the quarks as Brounian particle in a heat bath of gluons has been suggested. The spectrum for low invariant mass is, as a consequence, sharper
Equilibrium fluctuations formulas for the quantum one-component plasma in a magnetic field
John, P.; Suttorp, L.G.
1993-01-01
The authors derive a complete set of equilibrium fluctuation formulae for the charge density, the current density and the energy density of the quantum one-component plasma in a magnetic field. The derivation is based on the use of imaginary-time-dependent Green functions and their Kubo transforms.
Plasma waves generated by rippled magnetically focused electron beams surrounded by tenuous plasmas
International Nuclear Information System (INIS)
Cuperman, S.; Petran, F.
1982-01-01
This chapter investigates the electrostatic instability and the corresponding unstable wave spectrum of magnetically focused neutralized rippled electron beams under spacelike conditions. Topics considered include general equations and equilibrium, the derivation of the dispersion relation, and the solution of the dispersion relation (long wavelength perturbations, short wavelength perturbations, the rippled beam). The results indicate that in the long wavelength limit two types of instability (extending over different frequency ranges) exist. An instability of the beam-plasma type occurs due to the interaction between the beam electrons and the surrounding plasm electrons at the beam-plasma interface. A parametric type instability is produced by the coupling of a fast forward wave and a fast backward wave due to the rippling (modulation) of the beam. It is demonstrated that in the short wavelength limit, surface waves which are stable for the laminar beam may become unstable in the rippled beam case
Dzifčáková, Elena; Dudík, Jaroslav
2018-03-01
Context. Transition region (TR) spectra typically show the Si IV 1402.8 Å line to be enhanced by a factor of 5 or more compared to the neighboring O IV 1401.2 Å, contrary to predictions of ionization equilibrium models and the Maxwellian distribution of particle energies. Non-equilibrium effects in TR spectra are therefore expected. Aims: To investigate the combination of non-equilibrium ionization and high-energy particles, we apply the model of the periodic electron beam, represented by a κ-distribution that recurs at periods of several seconds, to plasma at chromospheric temperatures of 104 K. This simple model can approximate a burst of energy release involving accelerated particles. Methods: Instantaneous time-dependent charge states of silicon and oxygen were calculated and used to synthesize the instantaneous and period-averaged spectra of Si IV and O IV. Results: The electron beam drives the plasma out of equilibrium. At electron densities of Ne = 1010 cm-3, the plasma is out of ionization equilibrium at all times in all cases we considered, while for a higher density of Ne = 1011 cm-3, ionization equilibrium can be reached toward the end of each period, depending on the conditions. In turn, the character of the period-averaged synthetic spectra also depends on the properties of the beam. While the case of κ = 2 results in spectra with strong or even dominant O IV, higher values of κ can approximate a range of observed TR spectra. Spectra similar to typically observed spectra, with the Si IV 1402.8 Å line about a factor 5 higher than O IV 1401.2 Å, are obtained for κ = 3. An even higher value of κ = 5 results in spectra that are exclusively dominated by Si IV, with negligible O IV emission. This is a possible interpretation of the TR spectra of UV (Ellerman) bursts, although an interpretation that requires a density that is 1-3 orders of magnitude lower than for equilibrium estimates. Movies associated to Fig. A.1 are available at http://https://www.aanda.org
Specific features of plasma equilibrium in closed mixed-type stellarators
International Nuclear Information System (INIS)
Shafranov, V.D.; Mikhajlov, M.I.
1992-01-01
High values of rotational transformation (i/2π>1) are studied in terms of their usefulness for plasma equilibrium using stellarators with spatial magnetic axis and circular cross section of averaged magnetic surfaces. It is shown that, in contrast to a conventional stellarator with circular magnetic axis, where ultimate equilibrium pressure grows proportionally (i/2π) 2 equilibrium in lost in more complex stellarators consisting of heterogeneous sections as rotational transformation approaches, over period of the system, whole-number values. At the same time, in case when the transformation approaches a whole-number value of i/2π, short-circuit of secondary currents occurs within one of the periods of the system and ultimate equilibrium pressure value can exceed that in a conventional stellarator having the same length of the system and rotational transformation value
International Nuclear Information System (INIS)
Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.
1982-01-01
The results of the experimental studies of the intense relativistic electron beam (IREB) propagation with ν/γ approximately 0.1, and γ approximately 1.6 (γ is an electron beam relativistic factor) in a collisionless plasma of small density over the 180 cm length are presented. Plasma is generated with the incomplete discharge over dielectric surface at the residual gas pressure of P approximately 10 -5 Torr. It is shown that the transportation efficiency may be essentially high, if the electron concentration in plasma satisfies the equilibrium conditions and if it is less or equal to the electron concentration in a beam. At concentration less than optimum one, the transportation efficiency decreases due to violations of equilibrium conditions. At high concentration the transportation efficiency also decreased due to the scattering and breaking on excited small-scale and plasma oscillations. The IREB propagation occurs without essential time delay under optimum conditions
Plasma production for electron acceleration by resonant plasma wave
International Nuclear Information System (INIS)
Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-01-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Plasma production for electron acceleration by resonant plasma wave
Energy Technology Data Exchange (ETDEWEB)
Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Electron cyclotron emission from thermal plasmas
International Nuclear Information System (INIS)
Fidone, I.; Granata, G.
1978-02-01
Electron cyclotron radiation from a warm inhomogeneous plasma is investigated. A direct calculation of the emissive power of a plasma slab is performed using Rytov's method and the result is compared with the solution of the transfer equation. It is found that, for arbitrary directions of emission, the two results differ, which reflects the fact that Kirchhoff's law is not generally obeyed
Influence of external 3D magnetic fields on helical equilibrium and plasma flow in RFX-mod
International Nuclear Information System (INIS)
Piovesan, P; Bonfiglio, D; Bonomo, F; Cappello, S; Carraro, L; Cavazzana, R; Gobbin, M; Marrelli, L; Martin, P; Martines, E; Momo, B; Piron, L; Puiatti, M E; Soppelsa, A; Valisa, M; Zanca, P; Zaniol, B
2011-01-01
A spontaneous transition to a helical equilibrium with an electron internal transport barrier is observed in RFX-mod as the plasma current is raised above 1 MA (Lorenzini R et al 2009 Nature Phys. 5 570). The helical magnetic equilibrium can be controlled with external three-dimensional (3D) magnetic fields applied by 192 active coils, providing proper helical boundary conditions either rotating or static. The persistence of the helical equilibrium is strongly increased in this way. A slight reduction in the energy confinement time of about 15% is observed, likely due to the increased plasma-wall interaction associated with the finite radial magnetic field imposed at the edge. A global helical flow develops in these states and is expected to play a role in the helical self-organization. In particular, its shear may contribute to the ITB formation and is observed to increase with the externally applied radial field. The possible origins of this flow, from nonlinear visco-resistive magnetohydrodynamic (MHD) and/or ambipolar electric fields, will be discussed.
Plasma channels for electron beam transport
International Nuclear Information System (INIS)
Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.
1988-01-01
In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented
Enhancement of Combustion and Flame Stabilization Using Transient Non-Equilibrium Plasma
2007-03-31
Plasma Chemistry, Taormina, Italy, ISPC-564, 22-27 June 2003. 8Ozlem, M.Y., Saveliev A.V., Porshnev, P.I., Fridman, A., Kennedy, L.A., "Non-Equilibrium...Kennedy, L.A., Saveliev , A. and Yardimci, O.M., "Gliding Arc Gas Discharge," Progress in Energy and Combustion Science, Vol. 25,1999, pp. 211-231...34Optical Diagnostics of Atmospheric Pressure Air Plasmas,"Plasma Sources Science and Technology, Vol. 12, May 2003, pp. 125-138.31Ozlem, M.Y., Saveliev
International Nuclear Information System (INIS)
Shukla, P.K.; Bharuthram, R.; Schlickeiser, R.
2004-01-01
It is shown that the dispersive Shukla mode [P.K. Shukla, Phys. Lett. A 316, 238 (2003)] can become unstable in the presence of equilibrium density and magnetic field inhomogeneities in a dusty plasma. A new dispersion relation for our nonuniform dusty magnetoplasma is derived and analyzed to show the modification of the Shukla mode frequency and its amplification due to combined action of the plasma density and magnetic field gradients. The present instability may account for the origin of low-frequency electromagnetic turbulence in molecular clouds and in cometary plasmas
Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators
International Nuclear Information System (INIS)
Lepikhin, N. D.; Pustovitov, V. D.
2013-01-01
Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p ‖ and p ⊥ (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p ‖ and p ⊥ are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p ‖ /p ⊥ or p ⊥ /p ‖ . A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p ⊥ with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p ⊥ on a magnetic surface. This does not happen in the other more complex case
Development of plasma cathode electron guns
Oks, Efim M.; Schanin, Peter M.
1999-05-01
The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.
Thermal structure of atmospheric pressure non-equilibrium plasmas
International Nuclear Information System (INIS)
Nozaki, Tomohiro; Unno, Yasuko; Okazaki, Ken
2002-01-01
The thermal structure of a methane-fed dielectric barrier discharge (DBD) and a atmospheric pressure glow-discharge (APG) has been extensively investigated in terms of time-averaged gas temperature profile between two parallel-plate electrodes separated by 1.0 mm. Emission spectroscopy of the rotational band of CH ((0, 0) A 2 Δ→X 2 Π:431 nm) was performed for this purpose. In order to minimize average temperature increase in the reaction field, DBD and APG were activated by 10 kHz with 2% duty cycle pulsed voltage (2 μs pulse width/100 μs interval). In DBD, temperature increase of a single microdischarge, on a time average, reached 200 K. It suddenly decreased below 100 K associated with the dark space formation near the dielectric barrier. Also, gas temperature in the surface discharge was fairly low because emission in these regions was limited within the initial stages of propagation (∼5 ns), whereas energy deposition would continue until microdischarge extinction; these facts implied that rotational temperature seemed to be far below the actual gas temperature in these regions. In APG, gas temperature was uniformly increased by positive column formation. In addition, a remarkable temperature increase due to negative glow formation was obtained only near the metallic electrode. For practical interest, we also investigated the net temperature increase with high frequency operations (AC-80 kHz), which depends not only on plasma properties, but also various engineering factors such as flow field, external cooling conditions, and total input power. In DBD, gas temperature in the middle of gas gap was significantly increased with increasing input power because of poor cooling conditions. In APG, in contrast, gas temperature near the electrodes was significantly increased associated with negative glow formation
International Nuclear Information System (INIS)
Liu, Yanhong; Chew, Lock Yue
2007-01-01
Equilibrium configurations of dusty plasmas with grains of different sizes, which interact through a screened Coulomb force field and confined by a two-dimensional quadratic potential, are studied using molecular dynamics simulation. The system configuration depends on the sizes, masses and charges of the grain species as well as the screening strength of the background plasma. The consideration of the grain size has established a different equilibrium configuration relative to that of point grains. In the new configurations, grains of different species separate into different shells, with the grains of larger mass and charge located away from the system center, forming a shell that surrounds the grains of smaller mass and charge at the system center. This configuration occurs beyond a critical grain radius, and its structure and size are determined by the competing effects between the inter-grain electrostatic repulsive force, the screening effect of the plasma and the mass-dependent confinement force of the quadratic potential
Energy Technology Data Exchange (ETDEWEB)
Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N. [State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)
2016-12-15
The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulas are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.
Observation of electron plasma waves in plasma of two-temperature electrons
International Nuclear Information System (INIS)
Ikezawa, Shunjiro; Nakamura, Yoshiharu.
1981-01-01
Propagation of electron plasma waves in a large and unmagnetized plasma containing two Maxwellian distributions of electrons is studied experimentally. Two kinds of plasma sources which supply electrons of different temperature are used. The temperature ratio is about 3 and the density ratio of hot to cool electrons is varied from 0 to 0.5. A small contamination of hot electrons enhances the Landau damping of the principal mode known as the Bohm-Gross mode. When the density of hot electrons is larger than about 0.2, two modes are observed. The results agree with theoretical dispersion relations when excitation efficiencies of the modes are considered. (author)
High-Current Plasma Electron Sources
International Nuclear Information System (INIS)
Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.
2002-01-01
In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2
Quasi-particle states of electron systems out of equilibrium
Czech Academy of Sciences Publication Activity Database
Velický, B.; Kalvová, Anděla; Špička, Václav
2007-01-01
Roč. 75, č. 19 (2007), 195125/1-195125/9 ISSN 1098-0121 R&D Projects: GA ČR GA202/04/0585 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : non-equilibrium * Green’s functions * quantum transport equations * quasi-particles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007
RF Electron Gun with Driven Plasma Cathode
Khodak, Igor
2005-01-01
It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.
International Nuclear Information System (INIS)
Tanaka, Yasunori
2006-01-01
A time-dependent, two-dimensional, two-temperature and chemical non-equilibrium model was developed for high-power Ar-N 2 pulse-modulated inductively coupled plasmas (PMICPs) at atmospheric pressure. The high-power PMICP is a new technique for sustaining high-power induction plasmas. It can control the plasma temperature and radical densities in the time domain. The PMICP promotes non-equilibrium effects by a sudden application of electric field, even in the high-power density plasmas. The developed model accounts separately for the time-dependent energy conservation equations of electrons and heavy particles. This model also considers reaction heat effects and energy transfer between electrons and heavy particles as well as enthalpy flow resulting from diffusion caused by the particle density gradient. Chemical non-equilibrium effects are also taken into account by solving time-dependent mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from 30 chemical reactions. Transport and thermodynamic properties of Ar-N 2 plasmas are calculated self-consistently using the first order approximation of the Chapman-Enskog method at each position and iteration using the local particle composition, heavy particle temperature and electron temperature. This model is useful to discuss time evolution in temperature, gas flow fields and distribution of chemical species
Time-dependent free boundary equilibrium and resistive diffusion in a tokamak plasma
International Nuclear Information System (INIS)
Selig, G.
2012-12-01
In a Tokamak, in order to create the necessary conditions for nuclear fusion to occur, a plasma is maintained by applying magnetic fields. Under the hypothesis of an axial symmetry of the tokamak, the study of the magnetic configuration at equilibrium is done in two dimensions, and is deduced from the poloidal flux function. This function is solution of a non linear partial differential equation system, known as equilibrium problem. This thesis presents the time dependent free boundary equilibrium problem, where the circuit equations in the tokamak coils and passive conductors are solved together with the Grad-Shafranov equation to produce a dynamic simulation of the plasma. In this framework, the Finite Element equilibrium code CEDRES has been improved in order to solve the aforementioned dynamic problem. Consistency tests and comparisons with the DINA-CH code on an ITER vertical instability case have validated the results. Then, the resistive diffusion of the plasma current density has been simulated using a coupling between CEDRES and the averaged one-dimensional diffusion equation, and it has been successfully compared with the integrated modeling code CRONOS. (author)
Moderate pressure plasma source of nonthermal electrons
Gershman, S.; Raitses, Y.
2018-06-01
Plasma sources of electrons offer control of gas and surface chemistry without the need for complex vacuum systems. The plasma electron source presented here is based on a cold cathode glow discharge (GD) operating in a dc steady state mode in a moderate pressure range of 2–10 torr. Ion-induced secondary electron emission is the source of electrons accelerated to high energies in the cathode sheath potential. The source geometry is a key to the availability and the extraction of the nonthermal portion of the electron population. The source consists of a flat and a cylindrical electrode, 1 mm apart. Our estimates show that the length of the cathode sheath in the plasma source is commensurate (~0.5–1 mm) with the inter-electrode distance so the GD operates in an obstructed regime without a positive column. Estimations of the electron energy relaxation confirm the non-local nature of this GD, hence the nonthermal portion of the electron population is available for extraction outside of the source. The use of a cylindrical anode presents a simple and promising method of extracting the high energy portion of the electron population. Langmuir probe measurements and optical emission spectroscopy confirm the presence of electrons with energies ~15 eV outside of the source. These electrons become available for surface modification and radical production outside of the source. The extraction of the electrons of specific energies by varying the anode geometry opens exciting opportunities for future exploration.
Departures from thermal equilibrium in a dense Z-pinch plasma
International Nuclear Information System (INIS)
Neufeld, C.R.
1979-01-01
This paper presents on analysis of several features of the emission spectrum obtained from a dense hydrogen Z-pinch plasma. The spectrum is characterized by an extremely broad H/sub β/ line and by the absence of an emission line at the H/sub b/ wavelength. Comparison with theory shows that the spectrum is inconsistent with the assumption of a thermal or collision-dominated plasma. The assumption of a substantial overpopulation of the atomic-hydrogen excited levels, ascribed to a rising degree of plasma ionization, provides a satisfactory description of the observed spectrum. This result illustrates the difficulty of establishing valid equilibrium criteria for transient plasmas, even in the case of plasma densities as high as 10 19 cm -3
An equilibrium model for tungsten fuzz in an eroding plasma environment
International Nuclear Information System (INIS)
Doerner, R.P.; Baldwin, M.J.; Stangeby, P.C.
2011-01-01
A model equating the growth rate of tungsten fuzz on a plasma-exposed surface to the erosion rate of the fuzzy surface is developed to predict the likelihood of tungsten fuzz formation in the steady-state environment of toroidal confinement devices. To date this question has not been answered because the operational conditions in existing magnetic confinement machines do not necessarily replicate those expected in future fusion reactors (i.e. high-fluence operation, high temperature plasma-facing materials and edge plasma relatively free of condensable impurities). The model developed is validated by performing plasma exposure experiments at different incident ion energies (thereby varying the erosion rate) and measuring the resultant fuzz layer thickness. The results indicate that if the conditions exist for fuzz development in a steady-state plasma (surface temperature and energetic helium flux), then the erosion rate will determine the equilibrium thickness of the surface fuzz layer.
Plasma heating by a relativistic electron beam
International Nuclear Information System (INIS)
Janssen, G.C.A.M.
1983-01-01
This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)
Non-equilibrium thermionic electron emission for metals at high temperatures
Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.
2015-08-01
Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.
Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines
Directory of Open Access Journals (Sweden)
P. Guio
Full Text Available In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the Eiscat VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20-30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N_{2} and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift velocity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.
Key words. Ionosphere (electric fields and currents; solar radiation and cosmic ray effects
Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines
Directory of Open Access Journals (Sweden)
P. Guio
1999-07-01
Full Text Available In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the Eiscat VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20-30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N2 and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift velocity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.Key words. Ionosphere (electric fields and currents; solar radiation and cosmic ray effects
IEFIT - An Interactive Approach to High Temperature Fusion Plasma Magnetic Equilibrium Fitting
International Nuclear Information System (INIS)
Peng, Q.; Schachter, J.; Schissel, D.P.; Lao, L.L.
1999-01-01
An interactive IDL based wrapper, IEFIT, has been created for the magnetic equilibrium reconstruction code EFIT written in FORTRAN. It allows high temperature fusion physicists to rapidly optimize a plasma equilibrium reconstruction by eliminating the unnecessarily repeated initialization in the conventional approach along with the immediate display of the fitting results of each input variation. It uses a new IDL based graphics package, GaPlotObj, developed in cooperation with Fanning Software Consulting, that provides a unified interface with great flexibility in presenting and analyzing scientific data. The overall interactivity reduces the process to minutes from the usual hours
Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization
Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert
2001-10-01
Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.
Kinetic electron model for plasma thruster plumes
Merino, Mario; Mauriño, Javier; Ahedo, Eduardo
2018-03-01
A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.
Electron plasma oscillations in the Venus foreshock
Crawford, G. K.; Strangeway, R. J.; Russell, C. T.
1990-01-01
Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.
Electron plasma oscillations in the Venus foreshock
International Nuclear Information System (INIS)
Crawford, G.K.; Strangeway, R.J.; Russell, C.T.
1990-01-01
Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations
Electron relaxation properties of Ar magnetron plasmas
Xinjing, CAI; Xinxin, WANG; Xiaobing, ZOU
2018-03-01
An understanding of electron relaxation properties in plasmas is of importance in the application of magnetrons. An improved multi-term approximation of the Boltzmann equation is employed to study electron transport and relaxation properties in plasmas. Elastic, inelastic and nonconservative collisions between electrons and neutral particles are considered. The expressions for the transport coefficients are obtained using the expansion coefficients and the collision operator term. Numerical solutions of the matrix equations for the expansion coefficients are also investigated. Benchmark calculations of the Reid model are presented to demonstrate the accuracy of the improved multi-term approximation. It is shown that the two-term approximation is generally not accurate enough and the magnetic fields can reduce the anisotropy of the velocity distribution function. The electron relaxation properties of Ar plasmas in magnetrons for various magnetic fields are studied. It is demonstrated that the energy parameters change more slowly than the momentum parameters.
Finite length thermal equilibria of a pure electron plasma column
International Nuclear Information System (INIS)
Prasad, S.A.; O'Neil, T.M.
1979-01-01
The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length
Electronic structure and equilibrium properties of hcp titanium
Indian Academy of Sciences (India)
The electronic structures of hexagonal-close-packed divalent titanium (3-d) and zirconium (4-d) transition metals are studied by using a non-local model potential method. From the present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity of these two metals are determined and ...
Physics colloquium: Electron counting in quantum dots in and out of equilibrium
Geneva University
2011-01-01
GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92olé Lundi 31 octobre 2011 17h00 - Ecole de Physique, Auditoire Stueckelberg PHYSICS COLLOQUIUM « Electron counting in quantum dots in and out of equilibrium » Prof. Klaus Ensslin Solid State Physics Laboratory, ETH Zurich, 8093 Zurich, Switzerland Electron transport through quantum dots is governed by Coulomb blockade. Using a nearby quantum point contact the time-dependent charge flow through quantum dots can be monitored on the basis of single electrons. This way electron transport has been investigated in equilibrium as well as out of equilibrium. Recently it has become possible to experimentally verify the fluctuation theorem. The talk will also address electron counting experiments in grapheme. Une verrée ...
Energy Technology Data Exchange (ETDEWEB)
Nagels-Silvert, V
2004-09-15
The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Nagels-Silvert, V
2004-09-15
The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)
Equilibrium and stability properties of relativistic electron rings and E-layers
International Nuclear Information System (INIS)
Uhm, H.
1976-01-01
Equilibrium and stability properties of magnetically confined partially-neutralized thin electron ring and E-layer are investigated using the Vlasov-Maxwell equations. The analysis is carried out within the context of the assumption that the minor dimensions (a,b) of the system are much less than the collisionless skin depth (c/antiω/sub p/). The equilibrium configuration of the E-layer is assumed to be an infinitely long, azimuthally symmetric hollow electron beam which is aligned parallel to a uniform axial magnetic field. On the other hand, the electron ring is located at the midplane of an externally imposed mirror field which acts to confine the ring both axially and radially. The equilibrium properties of the E-layer and electron ring are obtained self-consistently for several choices of equilibrium electron distribution function. The negative-mass instability analysis is carried out for the relativistic E-layer equilibrium in which all of the electrons have the same transverse energy and a spread in canonical angular momentum, assuming a fixed ion background. The ion resonance instability properties are investigated for a relativistic nonneutral E-layer aligned parallel to a uniform magnetic field and located between two ground coaxial cylindrical conductors. The stability properties of a nonrelativistic electron ring is investigated within the framework of the linearized Vlasov-Poisson equations. The dispersion relation is obtained for the self-consistent electron distribution function in which all electrons have the same value of energy an the same value of canonical angular momentum. The positive ions in the electron ring are assumed to form an immobile partially neutralizing background. The stability criteria as well as the instability growth rates are derived and discussed including the effect of geometrical configuration of the system. Equilibrium space-charge effects play a significant role in stability behavior
Equilibrium and stability studies for high beta plasmas in torsatron/heliotron devices
International Nuclear Information System (INIS)
Carreras, B.A.; Cooper, W.A.; Charlton, L.A.
1983-01-01
The equilibrium and stability properties of high β plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (Asub(p) <= 8), the self-stabilizing effect of the magnetic axis shift is large enough to open a direct path to the second stability regime. (author)
Equilibrium and stability studies for high-beta plasmas in torsatron/heliotron devices
International Nuclear Information System (INIS)
Carreras, B.A.; Charlton, L.A.; Cooper, W.A.
1983-01-01
The equilibrium and stability properties of high-#betta# plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (A/sub p/ less than or equal to 8), the self-stabilizing effect of the magnetic-axis shift is large enough to open a direct path to the second-stability regime
Electron beam induced emission from carbon plasmas
International Nuclear Information System (INIS)
Whetstone, S.; Kammash, T.
1989-01-01
Plasma use as a lasing medium has many potential advantages over conventional techniques including increased power levels and greater wavelength ranges. The basic concept is to heat and then rapidly cool a plasma forcing inversion through bottleneck creation between the recombination reaction populating a given energy level and the subsequent decay processes. Much effort has been devoted to plasmas heated by lasers and pinch devices. The authors are concerned here with electron beam heated plasmas focusing on the CIV 5g-4f transition occurring at 2530 Angstroms. These studies were initiated to provide theoretical support for experiments being performed at the University of Michigan using the Michigan Electron Long-Pulse Beam Accelerator (MELBA)
Toroidal confinement of non-neutral plasma - A new approach to high-beta equilibrium
International Nuclear Information System (INIS)
Yoshida, Z.; Ogawa, Y.; Morikawa, J.
2001-01-01
Departure from the quasi-neutral condition allows us to apply significant two-fluid effects that impart a new freedom to the design of high-performance fusion plasma. The self-electric field in a non-neutralized plasma induces a strong ExB-drift flow. A fast flow produces a large hydrodynamic pressure that can balance with the thermal pressure of the plasma. Basic concepts to produce a toroidal non-neutral plasma have been examined on the internal-conductor toroidal confinement device Proto-RT. A magnetic separatrix determines the boundary of the confinement region. Electrons describe chaotic orbits in the neighborhood of the magnetic null point on the separatrix. The chaos yields collisionless diffusion of electrons from the particle source (electron gun) towards the confinement region. Collisionless heating also occurs in the magnetic null region, which can be applied to produce a plasma. (author)
Equilibrium, confinement and stability of runaway electrons in tokamaks
International Nuclear Information System (INIS)
Spong, D.A.
1976-03-01
Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits are analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models
Evaluation of remote maintenance schemes by plasma equilibrium analysis in Tokamak DEMO reactor
International Nuclear Information System (INIS)
Utoh, Hiroyasu; Tobita, Kenji; Asakura, Nobuyuki; Sakamoto, Yoshiteru
2014-01-01
Highlights: • The remote maintenance schemes in DEMO reactor were evaluated by the plasma equilibrium analysis. • Horizontal sector transport maintenance scheme requires the largest total PF coil current. • The difference of total PF coil current for MHD equilibrium in between the large segmented divertor maintenance and the segmentalized divertor maintenance was about 10%. - Abstract: The remote maintenance schemes in a DEMO reactor are categorized by insertion direction, blanket segmentation, and divertor maintenance scheme, and are quantitatively evaluated by analysing the plasma equilibrium. The positions of the poloidal field (PF) coil are limited by the size of the toroidal field (TF) coil and the maintenance port layout of each remote maintenance scheme. Because the PF coils are located near the larger TF coil and far from the plasma surface, the horizontal sector transport maintenance scheme requires the largest part of total PF coil current, 25% larger than that required for separated sector transport using vertical maintenance ports with segmented divertor maintenance (SDM). In the unsegmented divertor maintenance (UDM) scheme, the total magnetic stored energy in the PF coils at plasma equilibrium is about 30% larger than that stored in the SDM scheme, but the time required for removal and installation of all the divertor cassettes in the UDM scheme is roughly a third of that required in the SDM scheme because the number of divertor cassettes in the UDM scheme is a third of that in the SDM scheme. From the viewpoint of simple maintenance operations, the merit of the UDM scheme has more merit than the SDM scheme
Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas
International Nuclear Information System (INIS)
Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.
1995-01-01
We present the extension of the supertransition-array (STA) theory to include configuration widths in the spectra of local thermodynamic equilibrium (LTE) plasmas. Exact analytic expressions for the moments of a STA are given, accounting for the detailed contributions of individual levels within the configurations that belong to a STA. The STA average energy is shifted and an additional term appears in its variance. Various cases are presented, demonstrating the effect of these corrections on the LTE spectrum
First principles modeling of hydrocarbons conversion in non-equilibrium plasma
Energy Technology Data Exchange (ETDEWEB)
Deminsky, M.A.; Strelkova, M.I.; Durov, S.G.; Jivotov, V.K.; Rusanov, V.D.; Potapkin, B.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)
2001-07-01
Theoretical justification of catalytic activity of non-equilibrium plasma in hydrocarbons conversion process is presented in this paper. The detailed model of highest hydrocarbons conversion includes the gas-phase reactions, chemistry of the growth of polycyclic aromatic hydrocarbons (PAHs), precursor of soot particles formation, neutral, charged clusters and soot particle formation, ion-molecular gas-phase and heterogeneous chemistry. The results of theoretical analysis are compared with experimental results. (authors)
Correlations in a partially degenerate electron plasma
Energy Technology Data Exchange (ETDEWEB)
Chihara, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
The density-functional theory proves that an ion-electron mixture can be treated as a one-component liquid interacting only via a pairwise interaction in the evaluation of the ion-ion radial distribution function (RDF), and provides a set of integral equations: one is an integral equation for the ion-ion RDF and another for an effective ion-ion interaction, which depends on the ion-ion RDF. This formulation gives a set of integral equation to calculate plasma structures with combined use of the electron-electron correlations in a partially degenerate electron plasma. Therefore, it is important for this purpose to determine the electron-electron correlations at a arbitrary temperature. Here, they are calculated by the quantal version of the hypernetted chain (HNC) equation. On the basis of the jellium-vacancy model, the ionic and electronic structures of rubidium are calculated for the range from liquid metal to plasma states by increasing the temperature at the fixed density using the electron-correlation results. (author)
Bifurcation of plasma cylinder equilibrium into a stationary helical flow with magnetic islands
International Nuclear Information System (INIS)
Gubarev, V.F.; Dmitrenko, A.G.; Fesenko, A.I.
1985-01-01
Introduction of the low-hydrodynamic viscosity into the system of nonlinear MHD-equations enabled to use the bifurcation theory for the investigation into nonlinear phenomena connected with a tearing mode. The existance of a stable stationary helical flow with magnetic islands in the vicinity of a neutral curve is established. Fransfer from an axisymmetric equilibrium of a plasma cylinder to a helical one takes place only under soft conditions at both sides of the neutral curve. This result confirms the fact that the tearing mode, actually, is not an instability and may be con sidered only as a reason of formation of equilibrium with splitted magnetic surfaces. Really, changing the q 0 parameter (q 0 is the value proportional to a value of stability margin) at the plasma filament boundary a plasma equilibrium is attained corresponding to a stable branch of the bifurcation curve. In this case, a stable branch of the bifurcation curve corresponds to a helical stationary flow with magnetic islands in the instabwility region determined from the linear theory
Effect of bootstrap current on MHD equilibrium beta limit in heliotron plasmas
International Nuclear Information System (INIS)
Watanabe, K.Y.
2001-01-01
The effect of bootstrap current on the beta limit of MHD equilibria is studied systematically by an iterative calculation of MHD equilibrium and the consistent bootstrap current in high beta heliotron plasmas. The LHD machine is treated as a standard configuration heliotron with an L=2 planar axis. The effects of vacuum magnetic configurations, pressure profiles and the vertical field control method are studied. The equilibrium beta limit with consistent bootstrap current is quite sensitive to the magnetic axis location for finite beta, compared with the currentless cases. For a vacuum configuration with the magnetic axis shifted inwards in the torus, even in the high beta regimes, the bootstrap current flows to increase the rotational transform, leading to an increase in the equilibrium beta limit. On the contrary, for a vacuum configuration with the magnetic axis shifted outwards in the torus, even in the low beta regimes, the bootstrap current flows so as to reduce the rotational transform; therefore, there is an acceleration of the Shafranov shift increase as beta increases, leading to a decrease in the equilibrium beta limit. The pressure profiles and vertical field control methods influence the equilibrium beta limit through the location of the magnetic axis for finite beta. These characteristics are independent of both device parameters, such as magnetic field strength, and device size in the low collisional regime. (author)
Magnetized relativistic electron-ion plasma expansion
Benkhelifa, El-Amine; Djebli, Mourad
2016-03-01
The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.
Characterization of electron cyclotron resonance hydrogen plasmas
International Nuclear Information System (INIS)
Outten, C.A.
1990-01-01
Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V p ), electron density (N e ), electron temperature (T e ), ion energy (T i ), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V p = 30 ± 5 eV, N e = 1 x 10 8 cm -3 , and T e = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T i ≤ 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 x 10 16 /cm 2 -sec. at a pressure of 1 x 10 -4 Torr and for 50 Watts of absorbed power. 19 refs
Energy Technology Data Exchange (ETDEWEB)
Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br
2004-07-01
Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)
Mode coupling of electron plasma waves
International Nuclear Information System (INIS)
Harte, J.A.
1975-01-01
The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency
Study on intense relativistic electron beam propagation in a low density collisionless plasma
International Nuclear Information System (INIS)
Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.
1982-01-01
The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam
Electron cloud simulation of the ECR plasma
International Nuclear Information System (INIS)
Racz, R.; Biri, S.; Palinkas, J.
2011-01-01
Complete text of publication follows. The plasma of the Electron Cyclotron Resonance Ion Source (ECRIS) of ATOMKI is being continuously investigated by different diagnostic methods: using small-sized probes or taking X-ray and visible light photographs. In 2011 three articles were published by our team in a special edition of the IEEE Transactions on Plasma Science (Special Issue on Images in Plasma Science) describing our X-ray and visible light measurements and plasma modeling and simulating studies. Simulation is in many cases the base for the analysis of the photographs. The outcomes of the X-ray and visible light experiments were presented already in earlier issues of the Atomki Annual Report, therefore in this year we concentrate on the results of the simulating studies. The spatial distribution of the three main electron components (cold, warm and hot electron clouds) of the ECR plasmas was simulated by TrapCAD code. TrapCAD is a 'limited' plasma simulation code. The spatial and energy evolution of a large number of electrons can be realistically followed; however, these particles are independent, and no particle interactions are included. In ECRISs, the magnetic trap confines the electrons which keep together the ion component by their space charge. The electrons gain high energies while the ions remain very cold throughout the whole process. Thus, the spatial and energy simulation of the electron component gives much important and numerical information even for the ions. The electron components of ECRISs can artificially be grouped into three populations: cold, warm, and hot electrons. Cold electrons (1-200 eV) have not been heated by the microwave; they are mainly responsible for the visible light emission of the plasma. The energized warm electrons (several kiloelectronvolts) are able to ionize atoms and ions and they are mainly responsible for the characteristic Xray photons emitted by the plasma. Electrons having much higher energy than necessary for
Launched electrons in plasma opening switches
International Nuclear Information System (INIS)
Mendel, C.W. Jr.; Rochau, G.E.; Sweeney, M.A.; McDaniel, D.H.; Quintenz, J.P.; Savage, M.E.; Lindman, E.L.; Kindel, J.M.
1989-01-01
Plasma opening switches have provided a means to improve the characteristics of super-power pulse generators. Recent advances involving plasma control with fast and slow magnetic fields have made these switches more versatile, allowing for improved switch uniformity, triggering, and opening current levels that are set by the level of auxiliary fields. Such switches necessarily involve breaks in the translational symmetry of the transmission line geometry and therefore affect the electron flow characteristics of the line. These symmetry breaks are the result of high electric field regions caused by plasma conductors remaining in the transmission line, ion beams crossing the line, or auxilliary magnetic field regions. Symmetry breaks cause the canonical momentum of the electrons to change, thereby moving them away from the cathode. Additional electrons are pulled from the cathode into the magnetically insulated flow, resulting in an excess of electron flow over that expected for the voltage and line current downstream of the switch. We call these electrons ''launched electrons''. Unless they are recaptured at the cathode or else are fed into the load and used beneficially, they cause a large power loss downstream. This paper will show examples of SuperMite and PBFA II data showing these losses, explain the tools we are using to study them, and discuss the mechanisms we will employ to mitigate the problem. The losses will be reduced primarily by reducing the amount of launched electron flow. 7 refs., 9 figs
Electronic structure and equilibrium properties of hcp titanium and ...
Indian Academy of Sciences (India)
-d) and zirco- nium (4-d) transition metals are studied by using a non-local model potential method. From the present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity of these two metals are ...
On non-equilibrium atmospheric pressure plasma jets and plasma bullet
Lu, Xinpei
2012-10-01
Because of the enhanced plasma chemistry, atmospheric pressure nonequilibrium plasmas (APNPs) have been widely studied for several emerging applications such as biomedical applications. For the biomedical applications, plasma jet devices, which generate plasma in open space (surrounding air) rather than in confined discharge gaps only, have lots of advantages over the traditional dielectric barrier discharge (DBD) devices. For example, it can be used for root canal disinfection, which can't be realized by the traditional plasma device. On the other hand, currently, the working gases of most of the plasma jet devices are noble gases or the mixtures of the noble gases with small amount of O2, or air. If ambient air is used as the working gas, several serious difficulties are encountered in the plasma generation process. Amongst these are high gas temperatures and disrupting instabilities. In this presentation, firstly, a brief review of the different cold plasma jets developed to date is presented. Secondly, several different plasma jet devices developed in our lab are reported. The effects of various parameters on the plasma jets are discussed. Finally, one of the most interesting phenomena of APNP-Js, the plasma bullet is discussed and its behavior is described. References: [1] X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012); [2] Y. Xian, X. Lu, S. Wu, P. Chu, and Y. Pan, Appl. Phys. Lett. 100, 123702 (2012); [3] X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. Chu, and Y. Pan, J. Phys. D 45, 165205 (2012).
Implementation of GPU parallel equilibrium reconstruction for plasma control in EAST
Energy Technology Data Exchange (ETDEWEB)
Huang, Yao, E-mail: yaohuang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science & Technology, University of Science & Technology of China (China); Luo, Z.P.; Yuan, Q.P.; Pei, X.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yue, X.N. [School of Nuclear Science & Technology, University of Science & Technology of China (China)
2016-11-15
Highlights: • We described parallel equilibrium reconstruction code P-EFIT running on GPU was integrated with EAST plasma control system. • Compared with RT-EFIT used in EAST, P-EFIT has better spatial resolution and full algorithm of EFIT per iteration. • With the data interface through RFM, 65 × 65 spatial grids P-EFIT can satisfy the accuracy and time feasibility requirements for plasma control. • Successful control using ISOFLUX/P-EFIT was established in the dedicated experiment during the EAST 2014 campaign. • This work is a stepping-stone towards versatile ISOFLUX/P-EFIT control, such as real-time equilibrium reconstruction with more diagnostics. - Abstract: Implementation of P-EFIT code for plasma control in EAST is described. P-EFIT is based on the EFIT framework, but built with the CUDA™ architecture to take advantage of massively parallel Graphical Processing Unit (GPU) cores to significantly accelerate the computation. 65 × 65 grid size P-EFIT can complete one reconstruction iteration in 300 μs, with one iteration strategy, it can satisfy the needs of real-time plasma shape control. Data interface between P-EFIT and PCS is realized and developed by transferring data through RFM. First application of P-EFIT to discharge control in EAST is described.
Centrifugal Separation and Equilibration Dynamics in an Electron-Antiproton Plasma
International Nuclear Information System (INIS)
Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Bertsche, W.; Butler, E.; Charlton, M.; Deller, A.; Eriksson, S.; Humphries, A. J.; Madsen, N.; Werf, D. P. van der; Cesar, C. L.; Friesen, T.
2011-01-01
Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.
Centrifugal separation and equilibration dynamics in an electron-antiproton plasma
Andresen, G B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Deller, A; Eriksson, S; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Gutierrez, A; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori
2011-01-01
Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.
Dynamic trapping of electrons in space plasmas
International Nuclear Information System (INIS)
Brenning, N.; Bohm, M.; Faelthammar, C.G.
1989-12-01
The neutralization of positive space charge is studied in a case where heavy positive ions are added to a limited region of length L in a collisionfree magnetized plasma. It is found that electrons which become accelerated towards the positive space charge can only achieve a partial neutralization: they overshoot, and the positive region becomes surrounded by negative space charges which screen the electric field from the surroundings. The process is studied both analytically and by computer simulations with consistent results: large positive potentials (U>>kT e /e) can be built up with respect to the surrounding plasma. In the process of growth, the potential maximum traps electrons in transit so that quasineutrality is maintained. The potential U is proportional to the ambient electron temperature and the square of the plasma density increase, but independent of both the ion injection rate and the length L. The process explains several features of the Porcupinge xenon beam injection experiment. It could also have importance for the electrodynamic coupling between plasmas of different densities, e.g. the injection of neutral clouds in the ionosphere of species that becomes rapidly photoionized, or penetration of dense plasma clouds from the solar wind into the magnetosphere. (31 refs.) (authors)
A MHD equilibrium code 'EQUCIR version 2' applicable to up-down asymmetric toroidal plasma
International Nuclear Information System (INIS)
Shinya, Kichiro; Ninomiya, Hiromasa
1981-01-01
Computer code EQUCIR version 2, which can analyse tokamak plasma equilibrium without assuming up-down symmetry with respect to the mid-plane, has been developed. This code is essentially the same as EQUCIR version 1 which has already been reported and can deal with only symmetrical plasma with respect to the mid-plane. Because data input stream is slightly different from version 1 physical background of the change and the method of calculation are explained. Data input manual for the different points is also summarized. The code has been applied to the analysis of INTOR single-null divertor plasmas and to the design of hybrid poloidal coils resulting in useful and powerful means for the design. (author)
Equilibrium and dynamics of uniform density ellipsoidal non-neutral plasmas
International Nuclear Information System (INIS)
Dubin, D.H.E.
1993-01-01
When a single-species plasma is confined in a harmonic Penning trap at cryogenic temperature, the thermal equilibrium is approximately a uniform density spheroid (ellipsoid of revolution). Normal modes corresponding to quadrupole excitations of this plasma have recently been measured. In this paper, nonlinear equations of motion are derived for these quadrupole oscillations. For large amplitudes, the oscillations deform a spheroidal plasma into a triaxial ellipsoid with time-dependent shape and orientation. The integrals of the motion are found and the cylindrically symmetric finite-amplitude oscillations of a spheroid are studied. An analysis of all possible ellipsoidal equilibria is also carried out. New equilibria are discovered which correspond to finite-amplitude versions of the noncylindrically symmetric linear quadrupole oscillations. The equilibria are shown to fall into two classes in which the ellipsoids are either tilted or aligned with respect to the magnetic field. Some of these equilibria have densities well above the Brillouin limit
Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.
Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent
2009-01-01
Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.
Nonquasineutral electron vortices in nonuniform plasmas
Energy Technology Data Exchange (ETDEWEB)
Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)
2014-11-15
Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.
The electronic pressure in dense plasmas
International Nuclear Information System (INIS)
Pozwolski, A.E.
1982-01-01
A thermodynamic calculation of the electronic pressure in a dense plasma is given. Approximations involved by the use of the Debye length are avoided, so the above theory remains valid even if the Debye length is smaller than the interionic distance. (author)
Twisted electron-acoustic waves in plasmas
International Nuclear Information System (INIS)
Aman-ur-Rehman; Ali, S.; Khan, S. A.; Shahzad, K.
2016-01-01
In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q_e_f_f accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.
International Nuclear Information System (INIS)
Whitney, K.G.; Pulsifer, P.E.
1993-01-01
Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states
International Nuclear Information System (INIS)
Gruber, R.; Degtyarev, L.M.; Kuper, A.; Martynov, A.A.; Medvedev, S.Yu.; Shafranov, V.D.
1996-01-01
Equations for the three-dimensional equilibrium of a plasma are formulated in the poloidal representation. The magnetic field is expressed in terms of the poloidal magnetic flux Ψ and the poloidal electric current F. As a result, three-dimensional equilibrium configurations are analyzed with the help of a set of equations including the elliptical equation for the poloidal flux, the magnetic differential equation for the parallel current, and the equations for the basis vector field b. To overcome the difficulties associated with peculiarities that can arise in solving the magnetic differential equation at rational toroidal magnetic surfaces, small regulating corrections are introduced into the proposed set of equations. In this case, second-order differential terms with a small parameter appear in the magnetic differential equations. As a result, these equations take the form of elliptical equations. Three versions of regulating corrections are proposed. The equations obtained can be used to develop numerical codes for calculating three-dimensional equilibrium plasma configurations with an island structure
Toroidal equilibrium of a non-neutral plasma with toroidal current, inertia and pressure
International Nuclear Information System (INIS)
Bhattacharyya, S.N.; Avinash, K.
1992-01-01
Equilibrium of non-neutral clouds in a toroidal vessel with toroidal magnetic field is demonstrated in the presence of a toroidal current, finite mass and finite pressure. With a toroidal current, it is shown that in a large-aspect-ratio conducting torus the equilibrium is governed by competition between forces produced by image charges and image currents. When μ 0 ε 0 E r 2 >B θ 2 (whe re E r and B θ are the self electrostatic and self magnetic fields of the cloud), the confinement is electrostatic and plasma shifts inwards; when μ 0 ε 0 E r 2 θ 2 , the confinement is magnetic and plasma shifts outwards. For μ 0 ε 0 E r 2 = B θ 2 there is no equilibrium. With finite mass or finite pressure, it is shown, in a large-aspect-ratio approximation, that the fluid drift surfaces and equipotential surfaces are displaced with respect to each other. In both cases the fluid drift surfaces are shifted inwards from the equipotential surfaces. (author)
International Nuclear Information System (INIS)
Watanabe, Tetsuya; Hara, Hirohisa; Yamamoto, Norimasa; Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi
2013-01-01
Spectroscopic observations of EUV emission lines in the transition region (TR) and the corona provide unique information on physical conditions in the outer atmosphere of the Sun. The EUV Imaging Spectrometer (EIS) on board the Hinode satellite is capable of observing, for the first time in EUV, spectra and monochromatic images of plasmas in the solar TR and corona; these plasmas could possibly be in non-ionization-equilibrium conditions. EIS observes over two-wavelength bands of 170 - 210 Å and 250 - 290 Å, with typical time-resolutions of 1 - 10 seconds. Iron line emissions emerging from these wavelengths reveal that dynamic plasma accelerations and heating take place in the solar atmosphere. On the other hand, the tracer-encapsulated-pellet (TESPEL) experiments provide spectral information of EUV emission lines from iron ions produced in the Large Helical Device (LHD). Relatively cool plasmas with electron temperatures similar to those of the solar corona can be generated by controlling the neutral beam injector (NBI) system. A time-dependent collisional radiative (CR) model for elemental iron is developed as a common tool to diagnose temperatures and densities of those plasmas in the Sun and in LHD; no systematic model yet exists for iron ions in the L- and M-shell ionization stages, which are very important for coronal plasma diagnostics. Adopting the best available theoretical calculations, as well as generating the experimental data, we improve the atomic parameters of highly charged iron ions, and these results are used to extract more accurate diagnostic information out of the EIS spectra. (author)
Fukuda, Takeshi
The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.
International Nuclear Information System (INIS)
Bystrenko, O; Bystrenko, T
2010-01-01
The properties of non-equilibrium magnetized plasmas confined in planar geometry are studied on the basis of first-principle microscopic Langevin dynamics computer simulations. The non-equilibrium state of plasmas is maintained due to the recombination and generation of charges. The intrinsic microscopic structure of non-equilibrium steady-state magnetized plasmas, in particular the inter-particle correlations and self-organization of vortex structures, are examined. The simulations have been performed for a wide range of parameters including strong plasma coupling, high charge recombination and generation rates and intense magnetic field. As is shown in simulations, the non-equilibrium recombination and generation processes trigger the formation of ordered dissipative or coherent drift vortex states in 2D plasmas with distinctly spatially separated components, which are far from thermal equilibrium. This is evident from the unusual properties of binary distributions and behavior of the Coulomb energy of the system, which turn out to be quite different from the ones typical for the equilibrium state of plasmas under the same conditions.
Interaction of the Modulated Electron Beam with Plasma: Kinetic Effects
International Nuclear Information System (INIS)
Anisimov, I.O.; Kiyanchuk, M.J.; Soroka, S.V.; Velikanets', D.M.
2006-01-01
Evolution of the velocity distribution functions of plasma and beam electrons during modulated electron beam propagation in homogeneous and inhomogeneous plasmas was studied numerically. Velocity distribution function of plasma electrons at the late time moments strongly differs from the initially Maxwellian one. In the regions of strong electric field plasma electrons' bunches are formed. Comparison of distribution functions of beam electrons for modulated and non-modulated beams shows that deep initial modulation suppresses resonant instability development. In the inhomogeneous plasma acceleration of electrons in the plasma resonance point can be observed
Plasma electron hole kinematics. I. Momentum conservation
Energy Technology Data Exchange (ETDEWEB)
Hutchinson, I. H.; Zhou, C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2016-08-15
We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.
Generation of Suprathermal Electrons by Collective Processes in Collisional Plasma
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2017-11-01
The ubiquity of high-energy tails in the charged particle velocity distribution functions (VDFs) observed in space plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron velocity distribution function (EVDF) in a collisional plasma. This process involves a newly discovered electrostatic bremsstrahlung (EB) emission that is effective in a plasma in which binary collisions are present. The steady-state EVDF dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a feature commonly observed in many space plasma environments. In order to demonstrate this, the system of self-consistent particle- and wave-kinetic equations are numerically solved with an initially Maxwellian EVDF and Langmuir wave spectral intensity, which is a state that does not reflect the presence of EB process, and hence not in force balance. The EB term subsequently drives the system to a new force-balanced steady state. After a long integration period it is demonstrated that the initial Langmuir fluctuation spectrum is modified, which in turn distorts the initial Maxwellian EVDF into a VDF that resembles the said core-suprathermal VDF. Such a mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.
Relativistic runaway electrons in tokamak plasmas
International Nuclear Information System (INIS)
Jaspers, R.E.
1995-01-01
Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP)
International Nuclear Information System (INIS)
Peerenboom, Kim; Van Boxtel, Jochem; Janssen, Jesper; Van Dijk, Jan
2014-01-01
The usage of the local thermodynamic equilibrium (LTE) approximation can be a very powerful assumption for simulations of plasmas in or close to equilibrium. In general, the elemental composition in LTE is not constant in space and effects of mixing and demixing have to be taken into account using the Stefan–Maxwell diffusion description. In this paper, we will introduce a method to discretize the resulting coupled set of elemental continuity equations. The coupling between the equations is taken into account by the introduction of the concept of a Péclet matrix. It will be shown analytically and numerically that the mass and charge conservation constraints can be fulfilled exactly. Furthermore, a case study is presented to demonstrate the applicability of the method to a simulation of a mercury-free metal-halide lamp. The source code for the simulations presented in this paper is provided as supplementary material (stacks.iop.org/JPhysD/47/425202/mmedia). (paper)
Elemental transport coefficients in viscous plasma flows near local thermodynamic equilibrium
International Nuclear Information System (INIS)
Orsini, Alessio; Kustova, Elena V.
2009-01-01
We propose a convenient formulation of elemental transport coefficients in chemically reacting and plasma flows locally approaching thermodynamic equilibrium. A set of transport coefficients for elemental diffusion velocities, heat flux, and electric current is introduced. These coefficients relate the transport fluxes with the electric field and with the spatial gradients of elemental fractions, pressure, and temperature. The proposed formalism based on chemical elements and fully symmetric with the classical transport theory based on chemical species, is particularly suitable to model mixing and demixing phenomena due to diffusion of chemical elements. The aim of this work is threefold: to define a simple and rigorous framework suitable for numerical implementation, to allow order of magnitude estimations and qualitative predictions of elemental transport phenomena, and to gain a deeper insight into the physics of chemically reacting flows near local equilibrium.
Surfaces electrons at dielectric plasma walls
International Nuclear Information System (INIS)
Heinisch, Rafael Leslie
2013-01-01
The concept of the electron surface layer introduced in this thesis provides a framework for the description of the microphysics of the surplus electrons immediately at the wall and thereby complements the modelling of the plasma sheath. In this work we have considered from a surface physics perspective the distribution and build-up of an electron adsorbate on the wall as well as the effect of the negative charge on the scattering of light by a spherical particle immersed in a plasma. In our electron surface layer model we treat the wall-bound electrons as a wall-thermalised electron distribution minimising the grand canonical potential and satisfying Poisson's equation. The boundary between the electron surface layer and the plasma sheath is determined by a force balance between the attractive image potential and the repulsive sheath potential and lies in front of the crystallographic interface. Depending on the electron affinity χ, that is the offset of the conduction band minimum to the potential in front of the surface, two scenarios for the wall-bound electrons are realised. For χ 0 electrons penetrate into the conduction band where they form an extended space charge. These different scenarios are also reflected in the electron kinetics at the wall which control the sticking coefficient and the desorption time. If χ -3 . For χ>0 electron physisorption takes place in the conduction band. For this case sticking coefficients and desorption times have not been calculated yet but in view of the more efficient scattering with bulk phonons, responsible for electron energy relaxation in this case, we expect them to be larger than for the case of χ 0 the electrons in the bulk of the particle modify the refractive index through their bulk electrical conductivity. In both cases the conductivity is limited by scattering with surface or bulk phonons. Surplus electrons lead to an increase of absorption at low frequencies and, most notably, to a blue-shift of an
Nonlinear electron transport in magnetized laser plasmas
International Nuclear Information System (INIS)
Kho, T.H.; Haines, M.G.
1986-01-01
Electron transport in a magnetized plasma heated by inverse bremsstrahlung is studied numerically using a nonlinear Fokker--Planck model with self-consistent E and B fields. The numerical scheme is described. Nonlocal transport is found to alter many of the transport coefficients derived from linear transport theory, in particular, the Nernst and Righi--Leduc effects, in addition to the perpendicular heat flux q/sub perpendicular/, are substantially reduced near critical surface. The magnetic field, however, remains strongly coupled to the nonlinear q/sub perpendicular/ and, as has been found in hydrosimulations, convective amplification of the magnetic field occurs in the overdense plasma
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....
Nonlinear wavenumber of an electron plasma wave
International Nuclear Information System (INIS)
Vidmar, P.J.; Malmberg, J.H.; Starke, T.P.
1976-01-01
The wavenumber of a large-amplitude electron plasma wave propagating on a collisionless plasma column is measured. The wavenumber is shifted from that of a small-amplitude wave of the same frequency. This nonlinear wavenumber shift, deltak/subr/, depends on position, frequency, and initial wave amplitude, Phi. The observed spatial oscillations of deltak/subr/ agree qualitatively with recent theories. Experimentally deltak/subr/proportionalk/subi/S (Phi) rootPhi where k/subi/ is the linear Landau damping coefficient, S (Phi) equivalentk/subi/(Phi)/k/subi/, and k/subi/(Phi) is the initial damping coefficient which depends on Phi
Electron-helium scattering in Debye plasmas
International Nuclear Information System (INIS)
Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor; Janev, R. K.
2011-01-01
Electron-helium scattering in weakly coupled hot-dense (Debye) plasma has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe plasma Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a 0 ). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.
International Nuclear Information System (INIS)
Taylor, G.; Arunasalam, V.; Efthimion, P.C.; Grek, B.
1993-01-01
A primary objective of the TFTR program since 1986 has been the study and optimization of deuterium Supershot plasmas. These plasmas are predominantly heated by 90-110 keV neutral deuterium beams (P NBI /P OH >30), central ion temperatures are ∝30 keV and central electron temperatures from ECE (T ECE ) often exceed 10 keV. Central electron temperature data measured with a TV Thomson scattering (TVTS) system (T TVTS ) during the period 1987-1990 have been compared with data from three different ECE instruments on TFTR. Although T ECE ∝T TVTS for temperatures below 6 keV, there is a systematically increasing disagreement at higher electron temperatures, with T ECE ∝1.2 T TVTS for T TVTS in the range 9-10 keV. Recent theoretical work on the ECE radiation temperature of non-equilibrium plasmas indicates that for a bi-Maxwellian electron velocity distribution with a ratio of tail to bulk electron density η, a bulk temperature T b , and a hot tail temperature T h , the perpendicular ECE radiation temperature is given by T ECE ∝T b {1+η(T h /T b )}, for η ECE would be enhanced over T TVTS by a factor which depends on η and T h . This paper investigates whether the discrepancy between T TVTS and T ECE seen in TFTR Supershots at high electron temperatures is due to the presence of a hot electron tail component. The extraordinary mode ECE spectrum at the second, third and fourth harmonics is measured on the horizontal midplane by an absolutely calibrated ECE Michelson interferometer. This ECE spectrum is compared with the output from a time-independent transport code with relativistic opacity which solves the three-dimensional ECE radiation transport in a toroidally symmetric, two-dimensional geometry and uses measured electron density and temperature profiles from the TVTS system. (orig.)
Energy principle for excitations in plasmas with counterstreaming electron flows
Kumar, Atul; Shukla, Chandrasekhar; Das, Amita; Kaw, Predhiman
2018-05-01
A relativistic electron beam propagating through plasma induces a return electron current in the system. Such a system of interpenetrating forward and return electron current is susceptible to a host of instabilities. The physics of such instabilities underlies the conversion of the flow kinetic energy to the electromagnetic field energy. Keeping this in view, an energy principle analysis has been enunciated in this paper. Such analyses have been widely utilized earlier in the context of conducting fluids described by MHD model [I. B. Bernstein et al., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 244(1236), 17-40 (1958)]. Lately, such an approach has been employed for the electrostatic two stream instability for the electron beam plasma system [C. N. Lashmore-Davies, Physics of Plasmas 14(9), 092101 (2007)]. In contrast, it has been shown here that even purely growing mode like Weibel/current filamentation instability for the electron beam plasma system is amenable to such a treatment. The treatment provides an understanding of the energetics associated with the growing mode. The growth rate expression has also been obtained from it. Furthermore, it has been conclusively demonstrated in this paper that for identical values of S4=∑αn0 αv0α 2/n0γ0 α, the growth rate is higher when the counterstreaming beams are symmetric (i.e. S3 = ∑αn0αv 0α/n0γ0α = 0) compared to the case when the two beams are asymmetric (i.e. when S3 is finite). Here, v 0α, n0α and γ0α are the equilibrium velocity, electron density and the relativistic factor for the electron species `α' respectively and n0 = ∑αn0α is the total electron density. Particle - In - Cell simulations have been employed to show that the saturated amplitude of the field energy is also higher in the symmetric case.
Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons
El-Hanbaly, A. M.; El-Shewy, E. K.; Kassem, A. I.; Darweesh, H. F.
2016-01-01
The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained. The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.
Dynamical Cooper pairing in non-equilibrium electron-phonon systems
Energy Technology Data Exchange (ETDEWEB)
Knap, Michael [Technical University of Munich (Germany); Harvard University (United States); Babadi, Mehrtash; Refael, Gil [Caltech (United States); Martin, Ivar [Argonne National Laboratory (United States); Demler, Eugene [Harvard University (United States)
2016-07-01
Ultrafast laser pulses have been used to manipulate complex quantum materials and to induce dynamical phase transitions. One of the most striking examples is the transient enhancement of superconductivity in several classes of materials upon irradiating them with high intensity pulses of terahertz light. Motivated by these experiments we analyze the Cooper pairing instabilities in non-equilibrium electron-phonon systems. We demonstrate that the light induced non-equilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We analyze the competition between these effects and show that in a broad range of parameters the dynamic enhancement of Cooper pair formation dominates over the increase in the scattering rate. This opens the possibility of transient light induced superconductivity at temperatures that are considerably higher than the equilibrium transition temperatures. Our results pave new pathways for engineering high-temperature light-induced superconducting states.
The King model for electrons in a finite-size ultracold plasma
Energy Technology Data Exchange (ETDEWEB)
Vrinceanu, D; Collins, L A [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Balaraman, G S [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2008-10-24
A self-consistent model for a finite-size non-neutral ultracold plasma is obtained by extending a conventional model of globular star clusters. This model describes the dynamics of electrons at quasi-equilibrium trapped within the potential created by a cloud of stationary ions. A random sample of electron positions and velocities can be generated with the statistical properties defined by this model.
International Nuclear Information System (INIS)
Zaghloul, Mofreh R.
2003-01-01
Flibe (2LiF-BeF2) is a molten salt that has been chosen as the coolant and breeding material in many design studies of the inertial confinement fusion (ICF) chamber. Flibe plasmas are to be generated in the ICF chamber in a wide range of temperatures and densities. These plasmas are more complex than the plasma of any single chemical species. Nevertheless, the composition and thermodynamic properties of the resulting flibe plasmas are needed for the gas dynamics calculations and the determination of other design parameters in the ICF chamber. In this paper, a simple consistent model for determining the detailed plasma composition and thermodynamic functions of high-temperature, fully dissociated and partially ionized flibe gas is presented and used to calculate different thermodynamic properties of interest to fusion applications. The computed properties include the average ionization state; kinetic pressure; internal energy; specific heats; adiabatic exponent, as well as the sound speed. The presented results are computed under the assumptions of local thermodynamic equilibrium (LTE) and electro-neutrality. A criterion for the validity of the LTE assumption is presented and applied to the computed results. Other attempts in the literature are assessed with their implied inaccuracies pointed out and discussed
International Nuclear Information System (INIS)
Filippov, A V
2015-01-01
This paper is devoted to a careful study of two charge interaction in an equilibrium plasma within the Debye approximation. The effect of external boundary conditions for the electric field strength and potential on the electrostatic force is studied. The problem is solved by the method of potential decomposition into Legendre polynomials up to the fifth multipole term included. It is shown that the effect of attraction of identically charged macroparticles is explained by the influence of the external boundary. When the size of a calculation cell is increased the attraction effect disappears and the electrostatic force is well described by the screened Debye-Hückel potential. (paper)
Synthesis of silane and silicon in a non-equilibrium plasma jet
Calcote, H. F.; Felder, W.
1977-01-01
The feasibility of using a non-equilibrium hydrogen plasma jet as a chemical synthesis tool was investigated. Four possible processes were identified for further study: (1) production of polycrystalline silicon photovoltaic surfaces, (2) production of SiHCl3 from SiCl4, (3) production of SiH4 from SiHCl3, and (4) purification of SiCl4 by metal impurity nucleation. The most striking result was the recognition that the strongly adhering silicon films, amorphous or polycrystalline, produced in our studies could be the basis for preparing a photovoltaic surface directly; this process has potential advantages over other vapor deposition processes.
Equilibrium structure of the plasma sheet boundary layer-lobe interface
Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.
1990-01-01
Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.
Electron equilibrium for parallel plate ionization chambers in gamma radiation fields
International Nuclear Information System (INIS)
Caldas, L.; Albuquerque, M. da P.P.
1989-08-01
Parallel plate ionization chambers, designed and constructed for use in low energy X-radiation fields, were tested in gamma radiation beams ( 6 Co and 137 Cs) of two different Calibration Laboratories, in order to study the electron equilibrium occurrence and to verify the possibility of their use for the detection of the kind of radiation too. (author) [pt
Non-perturbative calculation of equilibrium polarization of stored electron beams
International Nuclear Information System (INIS)
Yokoya, Kaoru.
1992-05-01
Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)
Energy Technology Data Exchange (ETDEWEB)
Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.
International Nuclear Information System (INIS)
Gates, D.A.; Ferron, J.R.; Bell, M.; Gibney, T.; Johnson, R.; Marsala, R.J.; Mastrovito, D.; Menard, J.E.; Mueller, D.; Penaflor, B.; Sabbagh, S.A.; Stevenson, T.
2005-01-01
Plasma shape control using real-time equilibrium reconstruction has been implemented on the National Spherical Torus Experiment (NSTX). The rtEFIT code originally developed for use on DIII-D was adapted for use on NSTX. The real-time equilibria provide calculations of the flux at points on the plasma boundary, which is used as input to a shape control algorithm known as isoflux control. The flux at the desired boundary location is compared to a reference flux value, and this flux error is used as the basic feedback quantity for the poloidal-field coils on NSTX. The hardware that comprises the control system is described, as well as the software infrastructure. Examples of precise boundary control are also presented
Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas
Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.
1998-05-01
Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.
Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas
International Nuclear Information System (INIS)
Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.
1998-01-01
Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet close-quote s model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature T z . An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z * and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated. copyright 1998 American Institute of Physics
Equilibrium and stability of theta-pinch plasma in modified toroidal multiple mirror field
International Nuclear Information System (INIS)
Shiina, S.; Saito, K.; Osanai, Y.; Itagaki, T.; Karakizawa, T.; Gesso, H.; Todoroki, J.; Kawakami, I.; Yoshimura, H.
1976-01-01
To confine a high-beta plasma a new toroidal magnetic configuration with closed lines of force has been proposed [1]. The configuration is an appropriate superposition of l = 0, l = +- 1, l = +- 2,sup(...), helical fields. In this experiment, it is generated by modifying the multiple mirror field by enclosing the discharge tube in a copper shell which has longitudinal gap. This configuration is preferred for the wall stabilizing effect to that with the separated helical windings. The characteristics of the equilibrium conditions are examined based on the near-axis approximation theory and compared with the experimental results. The stability of plasma in the configurations with l = 0 field and with superposition of l = 0, l = +- 2 fields is investigated in linear geometry. (author)
Ideal MHD equilibrium of a weakly toroidal plasma column with elongated cross-section
International Nuclear Information System (INIS)
Heesch, E.J.M. van; Schuurman, W.
1980-07-01
Solutions are obtained of the ideal MHD equations describing the equilibrium of a weakly toroidal plasma with an elliptic cross-section surrounded by a force-free magnetic field with constant ratio between current density and magnetic field strength. The force-free field parameter causes the stagnation points to recede along the major axis of the ellipse. Above a certain value of the force-free field parameter, stagnation points do not exist, so that the compression ratio of the plasma column is no longer limited. The analysis was carried out to first order in the force-free field parameter as well as to second order for an estimate of the error
Electron beam interaction with space plasmas.
Krafft, C.; Bolokitin, A. S.
1999-12-01
Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.
International Nuclear Information System (INIS)
Belkhiri, Madeny
2014-01-01
In hot dense plasmas, the free-electron and ion spatial distribution may strongly affect the atomic structure. To account for such effects we have implemented a potential correction based on the uniform electron gas model and on a Thomas-Fermi Approach in the Flexible Atomic Code (FAC). This code has been applied to obtain energies, wave-functions and radiative rates modified by the plasma environment. In hydrogen-like ions, these numerical results have been successfully compared to an analytical calculation based on first-order perturbation theory. In the case of multi-electron ions, we observe level crossings in agreement with another recent model calculation. Various methods for the collision cross-section calculations are reviewed. The influence of plasma environment on these cross-sections is analyzed in detail. Some analytical expressions are proposed for hydrogen-like ions in the limit where Born or Lotz approximations apply and are compared to the numerical results from the FAC code. Finally, from this work, we study the influence of the plasma environment on our collisional-radiative model so-called Foch. Because of this environment, the mean charge state of the ions increases. The line shift is observed on the bound-bound emission spectra. A good agreement is found between our work and experimental data on a Titanium plasma. (author) [fr
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.
2009-11-01
Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v vph diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.
International Nuclear Information System (INIS)
Kolokolov, N.B.; Kudryavtsev, A.A.; Romanenko, V.A.
1989-01-01
Methods of controlling fast part of electron distribution function (DF) in nonlocal regime of current-free plasma are suggested and realized. Artificially created step in DF fast part has a simple link with frequencies of electron-electron and elastic electron-atom collisions that may be defined in the corresponding experiments
Electron thermal transport in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Konings, J A
1994-11-30
The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).
International Nuclear Information System (INIS)
Rajkhowa, Kavita Rani; Bujarbarua, S.; Dwivedi, C.B.
1999-01-01
The present contribution tries to find a scientific answer to the question of stability of an equilibrium plasma sheath in a colloidal plasma system under external gravity effect. A model equilibrium of hydrodynamical character has been discussed on the basis of quasi-hydrostatic approximation of levitational condition. It is found that such an equilibrium is highly unstable to a modified-ion acoustic wave with a conditional likelihood of linear driving of the so-called acoustic mode too. Thus, it is reported (within fluid treatment) that a plasma-sheath edge in a colloidal plasma under external gravity effect could be highly sensitive to the acoustic turbulence. Its consequential role on possible physical mechanism of Coulomb phase transition has been conjectured. However, more rigorous calculations as future course of work are required to corroborate our phenomenological suggestions. (author)
Electron beam interaction with space plasmas
International Nuclear Information System (INIS)
Krafft, C.; Volokitin, A.S.
1999-01-01
Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification. Recently, theoretical studies of the nonlinear evolution of a thin monoenergetic electron beam injected in a magnetized plasma and interacting with a whistler wave packet have led to new results. The influence of an effective dissipation process connected with whistler wave field leakage out of the beam volume to infinity (that is, effective radiation outside the beam) on the nonlinear evolution of beam electrons distribution in phase space has been studied under conditions relevant to active space experiments and related laboratory modelling. The beam-waves system's evolution reveals the formation of stable nonlinear structures continuously decelerated due to the effective friction imposed by the strongly dissipated waves. The nonlinear interaction between the electron bunches and the wave packet are discussed in terms of dynamic energy exchange, particle trapping, slowing down of the beam, wave dissipation and quasi-linear diffusion. (author)
Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces
Directory of Open Access Journals (Sweden)
Eloisa Sardella
2016-06-01
Full Text Available Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides or organic (drugs and biomolecules compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors.
Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic
Energy Technology Data Exchange (ETDEWEB)
Dorchies, F., E-mail: dorchies@celia.u-bordeaux1.fr [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence (France); Recoules, V. [CEA-DAM-DIF, F-91297 Arpajon (France)
2016-10-31
The advent of femtosecond lasers has shed new light on non-equilibrium high energy density physics. The ultrafast energy absorption by electrons and the finite rate of their energy transfer to the lattice creates non-equilibrium states of matter, triggering a new class of non-thermal processes from the ambient solid up to extreme conditions of temperature and pressure, referred as the warm dense matter regime. The dynamical interplay between electron and atomic structures is the key issue that drives the ultrafast phase transitions dynamics. Bond weakening or bond hardening are predicted, but strongly depends on the material considered. Many studies have been conducted but this physics is still poorly understood. The experimental tools used up-to-now have provided an incomplete insight. Pure optical techniques measure only indirectly atomic motion through changes in the dielectric function whereas X-ray or electron diffraction only probes the average long-range order. This review is dedicated to recent developments in time-resolved X-ray absorption near-edge spectroscopy, which is expected to give a more complete picture by probing simultaneously the modifications of the near-continuum electron and local atomic structures. Results are reported for three different types of metals (simple, transition and noble metals) in which a confrontation has been carried out between measurements and ab initio simulations.
International Nuclear Information System (INIS)
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei
2015-01-01
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections
International Nuclear Information System (INIS)
Rouet, J.L.; Feix, M.R.
1996-01-01
The test particle picture is a central theory of weakly correlated plasma. While experiments and computer experiments have confirmed the validity of this theory at thermal equilibrium, the extension to meta-equilibrium distributions presents interesting and intriguing points connected to the under or over-population of the tail of these distributions (high velocity) which have not yet been tested. Moreover, the general dynamical Debye cloud (which is a generalization of the static Debye cloud supposing a plasma at thermal equilibrium and a test particle of zero velocity) for any test particle velocity and three typical velocity distributions (equilibrium plus two meta-equilibriums) are presented. The simulations deal with a one-dimensional two-component plasma and, moreover, the relevance of the check for real three-dimensional plasma is outlined. Two kinds of results are presented: the dynamical cloud itself and the more usual density (or energy) fluctuation spectrums. Special attention is paid to the behavior of long wavelengths which needs long systems with very small graininess effects and, consequently, sizable computation efforts. Finally, the divergence or absence of energy in the small wave numbers connected to the excess or lack of fast particles of the two above mentioned meta-equilibrium is exhibited. copyright 1996 American Institute of Physics
Observation of bifurcation phenomena in an electron beam plasma system
International Nuclear Information System (INIS)
Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.
1995-01-01
When an electron beam is injected into a plasma, unstable waves are excited spontaneously near the electron plasma frequency f pe by the electron beam plasma instability. The experiment on subharmonics in an electron beam plasma system was performed with a glow discharge tube. The bifurcation of unstable waves with the electron plasma frequency f pe and 1/2 f pe was observed using a double-plasma device. Furthermore, the period doubling route to chaos around the ion plasma frequency in an electron beam plasma system was reported. However, the physical mechanism of bifurcation phenomena in an electron beam plasma system has not been clarified so far. We have studied nonlinear behaviors of the electron beam plasma instability. It was found that there are some cases: the fundamental unstable waves and subharmonics of 2 period are excited by the electron beam plasma instability, the fundamental unstable waves and subharmonics of 3 period are excited. In this paper, we measured the energy distribution functions of electrons and the dispersion relation of test waves in order to examine the physical mechanism of bifurcation phenomena in an electron beam plasma system
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyong Nam; Lee, Seung Min; Mishra, Anurag [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)
2016-01-01
Recently, non-equilibrium atmospheric pressure plasma, especially those operated at low gas temperatures, have become a topic of great interest for the processing of flexible and printed electronic devices due to several benefits such as the reduction of process and reactor costs, the employment of easy-to-handle apparatuses and the easier integration into continuous production lines. In this review, several types of typical atmospheric pressure plasma sources have been addressed, and the processes including surface treatment, texturing and sintering for application to flexible and printed electronic devices have been discussed.
Acceleration of electrons and supplementary ionization during parametrical plasma heating
International Nuclear Information System (INIS)
Grach, S.M.; Mityakov, N.A.; Trakhtengerts, V.Yu.; AN SSSR, Gor'kij. Inst. Prikladnoj Fiziki)
1986-01-01
Acceleration of electrons by plasma waves in partially ionized plasma is considered with provision for the effects of turbulent scattering and formation of secondary electrons, which are produced in the process of electron shock ionization. It is shown that the avalanche density growth of electrons accelerated up to 1-2 ionization potential (instability) takes place beginning from some critical density of plasma waves. Density of fast electrons is found out along with plasma wave energy density at the stage of instability saturation. Additional concentration of a background plasma, which manifests itself due to ionization, is evaluated
Criteria governing electron plasma waves in a two-temperature plasma
International Nuclear Information System (INIS)
Dell, M.P.; Gledhill, I.M.A.; Hellberg, M.A.
1987-01-01
Using a technique based on the saddle-points of the dielectric function, criteria are found which govern the behaviour of electron plasma waves in plasmas with two electron populations having different temperatures. (orig.)
Nonlinear dust acoustic waves in a charge varying dusty plasma with suprathermal electrons
International Nuclear Information System (INIS)
Tribeche, Mouloud; Bacha, Mustapha
2010-01-01
Arbitrary amplitude dust acoustic waves in a dusty plasma with a high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from the Boltzmann distribution on the dust acoustic soliton are then considered. The dust charge variation makes the dust acoustic soliton more spiky. The dust grain surface collects less electrons as the latter evolves far away from their thermodynamic equilibrium. The dust accumulation caused by a balance of the electrostatic forces acting on the dust grains is more effective for lower values of the electron spectral index. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. Our results may explain the strong spiky waveforms observed in auroral plasmas.
On the quantum Landau collision operator and electron collisions in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Daligault, Jérôme, E-mail: daligaul@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2016-03-15
The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.
On the quantum Landau collision operator and electron collisions in dense plasmas
Daligault, Jérôme
2016-03-01
The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.
Slowly moving test charge in two-electron component non-Maxwellian plasma
International Nuclear Information System (INIS)
Ali, S.; Eliasson, B.
2015-01-01
Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed
International Nuclear Information System (INIS)
Ohno, N.; Motoyama, M.; Takamura, S.
2001-01-01
Investigation of plasma detachment is still one of the most important subjects in the edge plasma of magnetically confined fusion devices. It was found that volumetric plasma recombination plays an essential role on reduction of particle flux in detached plasmas. The volumetric plasma recombination process has been confirmed in several diverted tokamaks and linear simulators by observing line emission from highly excited states due to three-body recombination process and continuum emission due to radiative recombination process. Electron temperature and density in the detached plasma were also evaluated from analysis of the light emission. To determine the electron temperature, the line emission spectrum is analyzed to calculate the population densities of excited levels. The population distribution among the highly excited states follows the Saha-Boltzmann distribution very closely. This implies that those states are in local thermal equilibrium (LTE) condition with free electrons in plasma so that the electron temperature can be obtained by using method of Boltzmann plot. Another method to determine the electron temperature is to compare the observed continuum spectrum with the theoretically calculated one. In our experiments using the linear diverter simulator, however, there is a clear difference for two evaluated values. One of the possible reasons is thought to be that there is a small amount of energetic electrons existing in detached recombining region. In order to evaluate the electron temperature more preciously, we need to investigate the influence of the energetic electrons on the evaluation of bulk electron temperature in a detached plasma. Collisonal-radiative (GR) model has been utilized for analyzing the light emission intensities from plasma. However, Maxwellian electron distribution function is usually assumed in the CR model. In this paper, we report a quantitative analysis of the line emission spectrum in the detached recombining plasmas by
Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.
Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A
2015-08-13
The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Plasma treatment for producing electron emitters
Coates, Don Mayo; Walter, Kevin Carl
2001-01-01
Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.
Production of accelerated electrons near an electron source in the plasma resonance region
International Nuclear Information System (INIS)
Fedorov, V.A.
1989-01-01
Conditions of generation of plasma electrons accelerated and their characteristics in the vicinity of an electron source are determined. The electron source isolated electrically with infinitely conducting surface, being in unrestricted collisionless plasma ω 0 >>ν, where ω 0 - plasma frequency of nonperturbated plasma, ν - frequency of plasma electron collisions with other plasma particles, is considered. Spherically symmetric injection of electrons, which rates are simulated by ω frequency, occurs from the source surface. When describing phenomena in the vicinity of the electron source, one proceeds from the quasihydrodynamic equation set
International Nuclear Information System (INIS)
Sarkar, Susmita; Maity, Saumyen; Banerjee, Soumyajyoti
2011-01-01
In this paper, we have investigated the role of secondary electron emission on Jean's instability in a complex plasma in the presence of nonthermal ions. The equilibrium dust surface potential has been considered negative and hence primary and secondary electron temperatures are equal. Such plasma consists of three components: Boltzman distributed electrons, nonthermal ions and negatively charged inertial dust grains. From the linear dispersion relation, we have calculated the real frequency and growth rate of Jean's instability. Numerically, we have shown that for strong ion nonthermality Jean's mode is unstable. Growth of the instability reduces and the real part of the wave frequency increases with increasing secondary electron emission from dust grains. Hence, strong secondary electron emission suppresses Jean's instability in a complex plasma even when ion nonthermality is strong and equilibrium dust charge is negative.
Electronic equilibrium as a function of depth in tissue from cobalt-60 point source exposures
International Nuclear Information System (INIS)
Myrick, J.A.
1994-08-01
The Nuclear Regulatory Commission has set the basic criteria for assessing skin dose stemming from hot particle contaminations. Compliance with 10 CFR 20.101 requires that exposure to the skin be evaluated over a 1 cm 2 area at a depth of 0.007 cm. Skin exposure can arise from both the beta and gamma components of radioactive particles and gamma radiation can contribute significantly to skin doses. The gamma component of dose increases dramatically when layers of protective clothing are interposed between the hot particle source and the skin, and in cases where the hot particle is large in comparison to the range of beta particles. Once the protective clothing layer is thicker than the maximum range of the beta particles, skin dose is due solely to gamma radiation. Charged particle equilibrium is not established at shallow depths. The degree of electronic equilibrium establishment must be assessed for shallow doses to prevent the over-assessment of skin dose because conventional fluence-to-dose conversion factors are not applicable. To assess the effect of electronic equilibrium, selected thicknesses of tissue equivalent material were interposed between radiochromic dye film and a 60 Co hot particle source and dose was measured as a function of depth. These measured values were then compared to models which are used to calculate charged particle equilibrium. The Miller-Reece model was found to agree closely with the experimental data while the Lantz-Lambert model overestimated dose at shallow depths
Electron cyclotron emission spectroscopy on thermonuclear plasmas
International Nuclear Information System (INIS)
Tubbing, B.J.D.
1987-01-01
Analysis of electron cyclotron emission (ECE) enables one to infer the radial profile of the electron temperature in tokamaks. The Dutch FOM institute for plasma physics has designed, built, installed and operated a grating polychromator for ECE measurements at JET. This thesis deals with a few instrumental aspects of this project and with applications of ECE measurements in tokamak physics studies. Ch. 3 and 4 deal with the wave transport in ECE systems. In Ch. 3 a method is developed to infer the mode conversion, which is a source for transmission losses, in a waveguide component from the antenna pattern of its exit aperture. In Ch. 4 the design and manufacture of the waveguide transition system to the grating polychromator are described. In Ch. 5 a method is reported for calibration of the spectrometers, based on the use of a microwave source which simulates a large area blackbody of very high temperature. The feasibility of the method is tested by applying it to two different ECE systems. In Ch. 6 a study of heat pulse propagation in tokamak plasma's, based on measurement of the electron temperature with the grating polychromator, is presented. 105 refs.; 48 figs.; 8 tabs
Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.
2018-03-01
The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.
Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING
2017-11-01
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.
Electron density measurements on the plasma focus
International Nuclear Information System (INIS)
Rueckle, B.
1976-01-01
The paper presents a determination of the maximum electron density in a plasma focus, produced with the NESSI experimental setup, by the method of laser beam deflection. For each discharge a time-resolved measurement was performed at four different places. Neutron efficiency as well as the time of the initial X-ray emission was registrated. The principle and the economic aspects of the beam deflection method are presented in detail. The experimental findings and the resulting knowledge of the neutron efficiency are discussed. (GG) [de
Non-equilibrium modeling of UV laser induced plasma on a copper target in the presence of Cu{sup 2+}
Energy Technology Data Exchange (ETDEWEB)
Ait Oumeziane, Amina, E-mail: a.aitoumeziane@gmail.com; Liani, Bachir [Laboratoire de Physique Théorique, Abou Beker Blekaid University (Algeria); Parisse, Jean-Denis [IUSTI UMR CNRS 7343, Aix-Marseille University (France); French Air School, Salon de Provence (France)
2016-03-15
This work is a contribution to the understanding of UV laser ablation of a copper sample in the presence of Cu{sup 2+} species as well as electronic non-equilibrium in the laser induced plasma. This particular study extends a previous paper and develops a 1D hydrodynamic model to describe the behavior of the laser induced plume, including the thermal non-equilibrium between electrons and heavy particles. Incorporating the formation of doubly charged ions (Cu{sup 2+}) in such an approach has not been considered previously. We evaluate the effect of the presence of doubly ionized species on the characteristics of the plume, i.e., temperature, pressure, and expansion velocity, and on the material itself by evaluating the ablation depth and plasma shielding effects. This study evaluates the effects of the doubly charged species using a non-equilibrium hydrodynamic approach which comprises a contribution to the understanding of the governing processes of the interaction of ultraviolet nanosecond laser pulses with metals and the parameter optimization depending on the intended application.
Radial structure of curvature-driven instabilities in a hot-electron plasma
International Nuclear Information System (INIS)
Spong, D.A.; Berk, H.L.; Van Dam, J.W.
1984-01-01
A nonlocal analysis of curvature-driven instabilities for a hot-electron ring interacting with a warm background plasma has been made. Four different instability modes characteristic of hot-electron plasmas have been examined: the high-frequency hot-electron interchange (at frequencies larger than the ion-cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot-electron interchange (at frequencies below the ion-cyclotron frequency). The decoupling condition between core and hot-electron plasmas has also been examined, and its influence on the background and hot-electron interchange stability boundaries has been studied. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment. The calculations given here indicate the necessity of having core plasma outside the ring to prevent the destabilizing wave resonance of the precessional mode with a cold plasma
Magnetohydrodynamic theory of plasma equilibrium and stability in stellarators: Survey of results
International Nuclear Information System (INIS)
Shafranov, V.D.
1983-01-01
The main advantage of a stellarator is its capability of steady-state operation. It can be exploited as a reactor if stable plasma confinement can be achieved with #betta#approx.10%. Therefore, this limiting pressure value is a key factor in stellarator development. This paper contains a survey of current ideas on the magnetohydrodynamic equilibrium and stability properties of stellarators with sufficiently high pressure. Here, any system of nested toroidal magnetic surfaces generated by external currents is considered a stellarator. Systems produced by helical or equivalent windings, including torsatrons and heliotrons, will be called ordinary stellarators, in contrast to those with spatial axes. It is shown that adequate confinement can be achieved
MHD equilibrium and pressure driven instability in L=1 heliotron plasmas
International Nuclear Information System (INIS)
Nakamura, Y.; Suzuki, Y.; Yamagishi, O.; Kondo, K.; Nakajima, N.; Hayashi, T.; Monticello, D.A.; Reiman, A.H.
2003-01-01
Free boundary MHD equilibrium properties of Heliotron J are investigated by VMEC, HINT and PIES codes, and ideal MHD stability properties are studied by the Mercier criterion, the ballooning mode equation and the CAS3D global stability code. It is shown by the equilibrium calculations that the change of the plasma boundary shape is substantial in a low shear helical system even if the beta is relatively low. Preliminary comparison between PIES results and HINT results shows that the beta value at which the magnetic island begin to be perceptible is almost the same in both codes, but the island width seems to be different. From the stability analysis, good correlation is found between local and global analyses for the three dimensional(3D) or helical ballooning mode whose mode structure shows strong poloidal and toroidal mode (helical mode) coupling. In the helical ballooning mode, the Eigenmode is localized within a flux tube. It is also found that the positive shear of the rotational transform is favorable for the 3D ballooning mode stability in a low shear helical system. (author)
Electron waves and resonances in bounded plasmas
Vandenplas, Paul E
1968-01-01
General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.
Collective phenomena in the non-equilibrium quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Schenke, Bjoern Peter
2008-07-03
In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient q. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy. (orig.)
Electron Energy Distribution and Transfer Phenomena in Non-Equilibrium Gases
2016-09-01
Zhang, W. Van Gaens, B. Van Gessel, S. Hofmann, E. Van Veldhuizen , A. Bogaerts and P. Bruggeman, "Spatially resolved ozone densities and gas...34 Plasma Phys. Control. Fusion, Vol. 57, No. 1 (2015) 014026. [4] B. Van Gessel, R. Brandenburg and P. Bruggeman, "Electron properties and air mixing...025031. [32] M. Van de Sande, Laser Scattering on Low Temperature Plasmas, Netherlands: Eindhoven, University of Technology, 2002. 40 DISTRIBUTION
Electron plasma oscillations at arbitrary Debye lengths
International Nuclear Information System (INIS)
Lehnert, B.
1990-12-01
A solution is presented for electron plasma oscillation in a thermalized homogeneous plasma, at arbitrary ratios between the Debye length λ D and the perturbation wave length λ. The limit λ D D >> λ corresponds to the free-streaming limit of strong kinetic phase-mixing due to large particle excursions. A strong large Debye distance (LDD) effect already appears when λ D > approx λ. The initial amplitude of the fluid-like contribution to the macroscopic density perturbation then becomes small as compared to the contribution from the free-streaming part. As a consequence, only a small fraction of the density perturbation remains after a limited number of kinetic damping times of the free-streaming part. The analysis further shows that a representation in terms of normal model of the form exp(-iωt) leads to amplitude factors of these modes which are related to each other and which depend on the combined free-streaming and fluid behaviour of the plasma. Consequently, these modes are coupled and cannot be treated as being independent of each other. (au)
Microwave interaction with hot electron plasmas
International Nuclear Information System (INIS)
Tanaka, M.; Fujiwara, M.; Ikegami, H.
1980-01-01
A numerical calculation is presented of ray trajectories and cyclotron damping for toroidal plasmas using geometrical optics. In the absorption region, group velocity does not always coincide with the velocity of energy flow, therefore it should be careful to apply the geometrical optics to finite temperature plasmas. In these calculations, attention is paid mainly to the finite temperature effect on ray tracing. Some numerical results for ordinary waves are presented. Second, new cutoff and resonance appear in the plasmas with anisotropic electron temperature. This resonance frequency is shifted from the usual cyclotron resonance by an amount proportional to T 11 /mc 2 , so that one can determine T 11 when this resonance frequency is measured. A simple discussion is given. The results are presented of recent density measurement on Nagoya Bumpy Torus obtained by interferometer system with different frequencies, 35 GHz and 55 GHz. The results are different than each other in T-mode. The possible reasons for these differences are enumerated in this section
Danehkar, A.
2018-06-01
Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.
Electronic cyclotron radiation amplification in thermonuclear plasmas
International Nuclear Information System (INIS)
Ziebell, L.F.
1983-01-01
The amplified emission of electron cyclotron radiation near the fundamental frequency from an inhomogeneous, anisotropic plasma slab is investigated in a linear theory. Plasma polarization effects are consistently included. Expressions are developed in the WKB approximation for emission in the ordinary and the extraordinary modes, for propagation perpendicular to the magnetic field. Numerical results are given for the extraordinary mode, for which effects are strongest. For the case of a loss-cone-type electron momentum distribution, it is shown that the amplification is sensitively dependent on the ratio of parallel-to-perpendicular temperature and on inhomogeneities in the magnetic field. The dependence of the amplification on the distribution is further investigated by considering superpositions of loss-cone and Maxwellian components. It is show that the presence of a Maxwellian component in general reduces the emission relative to the pure loss-cone case, and situations occur in which a layer in the slab very effectively absorbs all the radiation amplified elsewhere. A peculiar behaviour of the refractive index, which occurs in the transition from the pure loss-cone to the pure Maxwellian case, is discussed. (author)
Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko
2009-01-01
The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.
Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films
Energy Technology Data Exchange (ETDEWEB)
Chase, T. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Trigo, M.; Reid, A. H.; Dürr, H. A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Wang, X. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Reis, D. A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)
2016-01-25
We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.
Flute-interchange stability in a hot electron plasma
International Nuclear Information System (INIS)
Dominguez, R.R.
1980-01-01
Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects
Parametric excitation electromagnetic radiation in a bounded non-equilibrium plasma
International Nuclear Information System (INIS)
Balakirev, V.A.; Tolstoluzhskij, A.P.
1981-01-01
An excitation mechanism of electromagnetic radiation in a bounded plasma-beam system which is based on the process of induced scattering of electron beam-strengthened high-frequency wave (HF) of a plasma waveguide with an ion-sound wave, is investigated. It is shown that the process under investigation is an effective mechanism of electromagnetic radiation production. Up to 73 % of the beam power is trabsformed to the electromagnetic radiation under the conditions considered. As the frequency of the irradiated wave is close to the plasma frequency it can vary within wide limits by the change in plasma density. It is noted that the necessary condition of electromagnetic radiation production in the mechanism under consideration has the form of inequality ωsub(l)-ωsub(s)/(ksub(l)-ksub(s)>c (ωsub(l) - frequency of HF wave, ωsub(s)- frequency of ion-sound wave) and is less rigid as compared with the synchronism conditions for three-wave resonant interaction of proper oscillations. Therefore, the considered induced scattering process is less sensitive to a possible inhomogeneity of plasma density [ru
Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.
2018-02-01
The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.
Relativistic degenerate electron plasma in an intense magnetic field
International Nuclear Information System (INIS)
Delsante, A.E.; Frankel, N.E.
1978-01-01
The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained
Sarfraz, M.; Farooq, H.; Abbas, G.; Noureen, S.; Iqbal, Z.; Rasheed, A.
2018-03-01
Thermal momentum space anisotropy is ubiquitous in many astrophysical and laboratory plasma environments. Using Vlasov-Maxwell's model equations, a generalized polarization tensor for a collisionless ultra-relativistic unmagnetized electron plasma is derived. In particular, the tensor is obtained by considering anisotropy in the momentum space. The integral of moments of Fermi-Dirac distribution function in terms of Polylog functions is used for describing the border line plasma systems (T/e TF e ≈1 ) comprising arbitrary electron degeneracy, where Te and TF e, are thermal and Fermi temperatures, respectively. Furthermore, the effects of variation in thermal momentum space anisotropy on the electron equilibrium number density and the spectrum of electromagnetic waves are analyzed.
Ion-Ion Plasmas Produced by Electron Beams
Fernsler, R. F.; Leonhardt, D.; Walton, S. G.; Meger, R. A.
2001-10-01
The ability of plasmas to etch deep, small-scale features in materials is limited by localized charging of the features. The features charge because of the difference in electron and ion anisotropy, and thus one solution now being explored is to use ion-ion plasmas in place of electron-ion plasmas. Ion-ion plasmas are effectively electron-free and consist mainly of positive and negative ions. Since the two ion species behave similarly, localized charging is largely eliminated. However, the only way to produce ion-ion plasmas at low gas pressure is to convert electrons into negative ions through two-body attachment to neutrals. While the electron attachment rate is large at low electron temperatures (Te < 1 eV) in many of the halogen gases used for processing, these temperatures occur in most reactors only during the afterglow when the heating fields are turned off and the plasma is decaying. By contrast, Te is low nearly all the time in plasmas produced by electron beams, and therefore electron beams can potentially produce ion-ion plasmas continuously. The theory of ion-ion plasmas formed by pulsed electron beams is examined in this talk and compared with experimental results presented elsewhere [1]. Some general limitations of ion-ion plasmas, including relatively low flux levels, are discussed as well. [1] See the presentation by D. Leonhardt et al. at this conference.
A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma
International Nuclear Information System (INIS)
Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Kroesen, G M W
2014-01-01
The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been obtained before in a non-LTE simulation. Probably, realistic numerical studies of this type of plasma were hindered by numerical problems, preventing the non-LTE simulations to show characteristic physical mechanisms such as thermal constriction. In this paper we show that with the help of appropriate numerical strategies thermal constriction can be obtained in a non-LTE simulation. To this end, a new source term linearization technique is developed, which ensures physical solutions even near chemical equilibrium where the composition is dominated by chemical source terms. Results of the model are compared with experiments on Pilot-PSI and show good agreement with pressure and voltage measurements in the source. (paper)
Modelling and experimentation of the SO2 remotion through a plasma out of thermal equilibrium
International Nuclear Information System (INIS)
Moreno S, H.; Pacheco P, M.; Pacheco S, J.; Cruz A, A.
2005-01-01
In spite of the measures that have taken for the decrease of the emitted pollution by mobile sources ( T oday it doesn't Circulate , implementation of catalysts in those exhaust pipes,...), the pollution in the Valley of Mexico area overcomes the limits fixed by Mexican standards several days each year. It is foreseen that for 2020 those emissions of pollutants will be increase considerably, as example we can mention to the sulfur oxides which will be increase a 48% with regard to 1998. The purpose of this work is of proposing a technique for the degradation of the sulfur dioxide (SO 2 ) that consists in introducing this gas to a plasma out of thermal equilibrium where its were formed key radicals (O, OH) for its degradation. The proposed reactor has the advantage of combining the kindness of the dielectric barrier discharge and of corona discharge, besides working to atmospheric pressure and having small dimensions. The first obtained results of the modelling of the degradation of the SO 2 in plasma as well as those experimentally obtained are presented. (Author)
CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver
Energy Technology Data Exchange (ETDEWEB)
Albanese, R. [Ass. EURATOM/ENEA/CREATE, Universita’ di Napoli “Federico II”, Naples (Italy); Ambrosino, R. [Ass. EURATOM/ENEA/CREATE, Universita’ di Napoli “Parthenope”, Naples (Italy); Mattei, M., E-mail: massimiliano.mattei@unina2.it [Ass. EURATOM/ENEA/CREATE, Seconda Universita’ di Napoli, Naples (Italy)
2015-10-15
CREATE-NL+ is a FEM (Finite Elements Method) solver of the free boundary dynamic plasma equilibrium problem, i.e. the MHD (Magneto Hydro Dynamics) time evolution of 2D axisymmetric plasmas in toroidal nuclear fusion devices, including eddy currents in the passive structures, and feedback control laws for current, position and shape control. This is an improved version of the CREATE-NL code developed in 2002 which was validated on JET and used for the design of the XSC (eXtreme Shape Controller), and for simulation studies on many existing and future tokamaks. A significant improvement was the use of a robust numerical scheme for the calculation of the Jacobian matrix within the Newton based scheme for the solution of the FEM nonlinear algebraic equations. The improved capability of interfacing with other codes, and a general decrease of the computational burden for the simulation of long pulses with small time steps makes this code a flexible tool for the design and testing of magnetic control in a tokamak.
CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver
International Nuclear Information System (INIS)
Albanese, R.; Ambrosino, R.; Mattei, M.
2015-01-01
CREATE-NL+ is a FEM (Finite Elements Method) solver of the free boundary dynamic plasma equilibrium problem, i.e. the MHD (Magneto Hydro Dynamics) time evolution of 2D axisymmetric plasmas in toroidal nuclear fusion devices, including eddy currents in the passive structures, and feedback control laws for current, position and shape control. This is an improved version of the CREATE-NL code developed in 2002 which was validated on JET and used for the design of the XSC (eXtreme Shape Controller), and for simulation studies on many existing and future tokamaks. A significant improvement was the use of a robust numerical scheme for the calculation of the Jacobian matrix within the Newton based scheme for the solution of the FEM nonlinear algebraic equations. The improved capability of interfacing with other codes, and a general decrease of the computational burden for the simulation of long pulses with small time steps makes this code a flexible tool for the design and testing of magnetic control in a tokamak.
Energy Technology Data Exchange (ETDEWEB)
Arnquist, Isaac J.; Holcombe, James A., E-mail: holcombe@mail.utexas.edu
2012-10-15
The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (K{sub app}) and intrinsic (K{sub int}) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu{sup 2+} for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu{sup 2+} and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu{sup 2+} can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu{sup 2+} ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data K{sub app} and K{sub int} were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log K{sub app} values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log K{sub int} values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log K{sub int} at pH 9.53 was in good agreement with literature values obtained from alternative methods, K{sub int} at pH 7.93 was about 2.5 Multiplication-Sign larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the 'intrinsic' binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at p
Nonlinear magnetic electron tripolar vortices in streaming plasmas.
Vranjes, J; Marić, G; Shukla, P K
2000-06-01
Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with characteristic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized plasma) or self-generated (for the unmagnetized plasma case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.
Interferometer for electron density measurement in exploding wire plasma
International Nuclear Information System (INIS)
Batra, Jigyasa; Jaiswar, Ashutosh; Kaushik, T.C.
2016-12-01
Mach-Zehnder Interferometer (MZI) has been developed for measuring electron density profile in pulsed plasmas. MZI is to be used for characterizing exploding wire plasmas for correlating electron density dynamics with x-rays emission. Experiments have been carried out for probing electron density in pulsed plasmas produced in our laboratory like in spark gap and exploding wire plasmas. These are microsecond phenomenon. Changes in electron density have been registered in interferograms with the help of a streak camera for specific time window. Temporal electron density profiles have been calculated by analyzing temporal fringe shifts in interferograms. This report deals with details of MZI developed in our laboratory along with its theory. Basic introductory details have also been provided for exploding wire plasmas to be probed. Some demonstrative results of electron density measurements in pulsed plasmas of spark gap and single exploding wires have been described. (author)
International Nuclear Information System (INIS)
Austria, Elmer S. Jr.; Lamorena-Lim, Rheo B.
2015-01-01
Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique is an approach used to quantitatively measure elemental composition of samples without the use of standard reference materials (SRMs). Due to the unavailability of most SRMs for specific samples, the CF-LIBS approach is steadily becoming more prevalent. CF-LIBS also minimizes interferences from the sample matrix by accounting spectral line intensifies of different elements. The first part of the CF-LIBS algorithm is the calculation of plasma temperature and electron density of the sample while the second part deals with the self-absorption correction and quantitative elemental analysis. In this study, the precursor parameters for the algorithm - plasma temperature and electron density - were measured through the neutral atom and ion line emissions of Fe and Cu in the time window of 0.1 to 10 μs. Plasma from river sediment samples were produced by a 1064 nm nanosecond pulsed Nd:YAG laser at atmospheric pressure. The plasma temperature and electron density were calculated from the Boltzmann plot and Saha-Boltzmann equation methods, respectively. These precursor parameters can be used in calculating the time window wherein the plasma is optically thin at local thermodynamic equilibrium (LTE) and for quantitative multi-elemental analysis. (author)
Electron plasma dynamics during autoresonant excitation of the diocotron mode
Energy Technology Data Exchange (ETDEWEB)
Baker, C. J., E-mail: cbaker@physics.ucsd.edu; Danielson, J. R., E-mail: jrdanielson@ucsd.edu; Hurst, N. C., E-mail: nhurst@physics.ucsd.edu; Surko, C. M., E-mail: csurko@ucsd.edu [Physics Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)
2015-02-15
Chirped-frequency autoresonant excitation of the diocotron mode is used to move electron plasmas confined in a Penning-Malmberg trap across the magnetic field for advanced plasma and antimatter applications. Plasmas of 10{sup 8} electrons, with radii small compared to that of the confining electrodes, can be moved from the magnetic axis to ≥90% of the electrode radius with near unit efficiency and reliable angular positioning. Translations of ≥70% of the wall radius are possible for a wider range of plasma parameters. Details of this process, including phase and displacement oscillations in the plasma response and plasma expansion, are discussed, as well as possible extensions of the technique.
Effects of emitted electron temperature on the plasma sheath
International Nuclear Information System (INIS)
Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.
2014-01-01
It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T e /e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux
Energy Technology Data Exchange (ETDEWEB)
O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)
2012-10-08
A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.
International Nuclear Information System (INIS)
Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.
2012-01-01
Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.
Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V
2012-02-01
Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.
Strict calculation of electron energy distribution functions in inhomogeneous plasmas
International Nuclear Information System (INIS)
Winkler, R.
1996-01-01
It is objective of the paper to report on strict calculations of the velocity or energy distribution function function and related macroscopic properties of the electrons from appropriate electron kinetic equations under various plasma conditions and to contribute to a better understanding of the electron behaviour in inhomogeneous plasma regions. In particular, the spatial relaxation of plasma electrons acted upon by uniform electric fields, the response of plasma electrons on spatial disturbances of the electric field, the electron kinetics under the impact of space charge field confinement in the dc column plasma and the electron velocity distribution is stronger field as occurring in the electrode regions of a dc glow discharge is considered. (author)
On Electron Hole Evolution in Inhomogeneous Plasmas
Kuzichev, I.; Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.
2017-12-01
Electron holes (EHs) are the stationary localized non-linear structures in phase space existing due to an electron population trapped within EH electrostatic potential. EHs were found to be a common phenomenon in the Earth's magnetosphere. Such structures were observed in reconnecting current sheets, injection fronts in the outer radiation belt, and in many other situations. EHs usually propagate along magnetic field lines with velocities about electron thermal velocity, are localized on the scale of about 4-10 Debye lengths, and have the field amplitude up to hundreds of mV/m. Generation of these structures, evolution, and their role in relaxation of instabilities and energy dissipation, particle energization, supporting large-scale potential drops is under active investigation. In this report, we present the results of 1.5D gyrokinetic Vlasov-Maxwell simulations of the EH evolution in plasmas with inhomogeneous magnetic field and inhomogeneous density. Our calculations show that the inhomogeneity has a critical effect on the EH dynamics. EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. During the deceleration of EH, the potential drop (weak double layer) along EH is generated. Such a potential drop might be experimentally observable even for single EH in the reconnecting current sheets. The same holds for the propagation in the plasma with inhomogeneous density. For some parameters of the system, the deceleration results in the turning of the hole. The interesting feature of this process is that the turning point depends only on the EH parameters, being independent of the average inhomogeneity scale. Our calculations also demonstrate the significant difference between "quasi-particle" concept and real evolution of the hole. Indeed, the EH is accelerated (decelerated) faster than it follows from a quasi-particle energy conservation law. It indicates
Grid system design on the plasma cathode electron source
International Nuclear Information System (INIS)
Agus Purwadi
2014-01-01
It has been designed the grid system on the Plasma Cathode Electron Source (PCES). Grid system with the electron emission hole of (15 x 60) cm 2 , the single aperture grid size of (0,5 x O,5) mm 2 and the grid wire diameter of 0,25 mm, will be used on the plasma generator chamber. If the sum of grid holes known and the value of electron emission current through every the grid hole known too then the total value of electron emission Current which emits from the plasma generator chamber can be determined It has been calculated the value of electron emission current I e as function of the grid radius r e =(0.28, 0.40, 0.49, 0.56, 0.63, 0.69) mm on the electron temperature of T e = 5 eV for varying of the value plasma electron densities n e = (10 15 , 10 16 , 10 17 , 10 18 ) m -3 . Also for the value of electron emission current fe as function of the grid radius r e = (0.28, 0.40, 0.49. 0.56, 0.63,0.69) mm on the electron density n e = 10 17 m -3 for varying of the value of plasma electron temperatures T e = (1, 2, 3, 4, 5) eV. electron emission current will be increase by increasing grid radius, electron temperature as well as plasma electron density. (author)
Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak
Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG
2018-04-01
The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.
Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng
2018-01-15
Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9 mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.
Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.
2018-01-01
The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.
International Nuclear Information System (INIS)
Bakshi, V.
1988-01-01
The Stark widths of seven Ar I transitions are reported. Axial line shape data from an atmospheric d.c. argon plasma jet were Abel-inverted to obtain radial line shapes. The electron-density was determined by Stark width measurements of the hydrogen H β transition. In the electron-density region of ≤6 x 10 22 m -3 the experimental Ar I Stark widths are fitted to a linear dependence on the electron-density. Values of Stark width extrapolated to other electron densities are compared to measurements reported in the literature on the 4s-4p array. Experimental values are up to 45% smaller than those predicted by Griem's theory of Stark broadening. Conditions for local thermodynamic equilibrium (LTE) to exist in an atmospheric argon plasma jet were studied. The experiment measures the emission coefficient of seven Ar I transitions and the line shape of the hydrogen H beta transition. After transforming the side-on data into radial space the excited neutral argon atom-density and the electron-density are determined. It is found LTE does not exist below an electron-density of 6 x 10 33 m -3 in the experimental conditions
A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics
Kretchmer, Joshua S.; Chan, Garnet Kin-Lic
2018-02-01
We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.
Focusing of relativistic electron bunch, moving in cylindrical plasma waveguide
International Nuclear Information System (INIS)
Amatuni, A.Ts.; Ehlbakyan, S.S.; Sekhpossyan, E.V.
1994-01-01
The problem on the focusing of electron bunches moving with the relativistic velocity along the axis of cylindrical overdense plasma waveguide with the conducting internal surface is considered. The existence of periodic and nonperiodic components of the fields, generated in the plasma is shown. The conditions of electron bunch self-focusing by transverse electrical field and azimuthal magnetic field are derived. The possibility of the acceleration and focusing of electron or positron bunches by driving electron bunch wake field is discussed. The conditions, when the bunch in plasma waveguide moves without wake fields generating are obtained, which could be of the interest for the transport of relativistic electron (positron) bunches. 5 refs
Electron collision effects on the bremsstrahlung emission in Lorentzian plasmas
International Nuclear Information System (INIS)
Jung, Young-Dae; Kato, Daiji
2009-06-01
The electron-electron collision effects on the electron-ion bemsstranhlung process are investigated in warm Lorentzian plasmas. The effective electron-ion interaction potential is obtained by including the far-field terms caused by the electron-electron collisions with the effective Debye length in Lorentzian plasmas. The bremsstranhlung radiation cross section is obtained as a function of the electron energy, photon energy, collision frequency, spectral index, and Debye length using the Born approximation for the initial and final states of the projectile electron. It is shown that the non-Maxwellian character suppresses the bremsstrahlung radiation cross section. It is also shown that the electron-electron collision effect enhances the bremsstrahlung emission spectrum. In addition, the bremsstrahlung radiation cross section decreases with an increase of the plasma temperature. (author)
Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas
Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.
2015-01-01
In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.
Measurements of beat wave accelerated electrons in a toroidal plasma
International Nuclear Information System (INIS)
Rogers, J.H.
1992-06-01
Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v e ph e (v ph was varied 2v e ph e ), where v e is the electron thermal velocity, (kT e /m e ) 1/2 . As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted
Vortices, Reconnection and Turbulence in High Electron-Beta Plasmas
International Nuclear Information System (INIS)
Stenzel, R. L.
2004-01-01
Plasmas in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such plasmas can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the electrons. This project focuses on the detailed study of the transition regime of these plasmas
Interaction of ultrarelativistic electron and proton bunches with dense plasmas
Rukhadze, A A
2012-01-01
Here we discuss the possibility of employment of ultrarelativistic electron and proton bunches for generation of high plasma wakefields in dense plasmas due to the Cherenkov resonance plasma-bunch interaction. We estimate the maximum amplitude of such a wake and minimum system length at which the maximum amplitude can be generated at the given bunch parameters.
Spectroscopic and electron-ion collision data for plasma impurities
International Nuclear Information System (INIS)
Faenov, A.; Marchand, R.; Tawara, H.; Vainshtein, L.; Wiese, W.
1992-01-01
This Working Group Report briefly reviews and summarizes the available spectroscopic and electron-ion collision data for plasma impurities. Included are lithium, neon, and argon, which, although they are not plasma impurities per se, are introduced into the plasma through the application of diagnostic techniques. 32 refs, 2 tabs
Calculation of the primary dose in the absence of electronic equilibrium
International Nuclear Information System (INIS)
Petrov, D.E.
1995-01-01
In a multilayered media at points close to the boundary of any two layers of different electronic densities, the absorbed dose due to primary radiation, can be estimated by means of secondary electrons. Assuming monoenergetic megavoltage photons incident on a two layered media, the Compton effect is a predominant mode of interaction, the primary dose is due to the electrons set into motion from the first interaction. The dose is divided into components from the upper and lower layers. The beam width must be large enough so that all electrons scattered at some angle could pass through detector point. General expression for the dose is a product of the initial photon flux at some depth, the Klein-Nisha cross section, and the ionizational mass stopping power integrated over azimuthal angle. The factor taking into account real geometry is out of the sign of integral. The latter depends only on the distance between the interface and detector for the given consequence of layers. At the interface there is a peak or drop of the dose determined by the ratio of the stopping powers under the sign of the integral. At points beyond the interface the dose decreases or increases up to electronic equilibrium region where the absorbed dose and the kerma are parallel to each other. The peak width at the base is determined by the free range of the electron with the maximum possible energy after the Compton scattering
International Nuclear Information System (INIS)
Akovali, Guneri
2004-01-01
Non equilibrium plasma studies in Turkey can be considered as organized on two different lines: surface modification studies and plasma polymerization studies. Plasma surface modification studies: In different laboratories in Turkey the modification of materials' surfaces by plasma covers a wide spectra, for example: fibers (Carbon (CF) and polyacrylonitrile (PAN)), fabrics (PET/Cotton and PET/PA), biomaterials-food oriented (PU), denture Acrylic matrix, plasmochemical modification of a (PE and PP) film surface by several selected silicon and tin containing monomers, polymer blends and composites, recycled rubber and epoxy systems, etc. Plasma polymerization studies: This topic is accomplished by a great number of projects, for instance: plasma initiation polymerization and copolymerization of Styrene and MMA, Plasma-initiated polymerizations of Acrylamide (AA), kinetics of polymer deposition of several selected saturated hydrocarbons, silanization treatments by hexamethyldisilazane (HDMS), Plasma initiated polymerization (PIP) of allyl alcohol and 1-propano, (PSP) and (PIP) studies related to activated charcoal are done to explore their applications in haemoperfusion, an amperometric alcohol single-layer electrode is prepared by (EDA) plasma polymerization, preparation of mass sensitive immuno sensors and single layer multi enzyme electrodes by plasma polymerisation technique, etc
International Nuclear Information System (INIS)
Yuan Zhongcai; Shi Jiaming; Xu Bo
2005-01-01
The plasma diagnostic method using the transmission attenuation of microwaves at double frequencies (PDMUTAMDF) indicates that the frequency and the electron-neutral collision frequency of the plasma can be deduced by utilizing the transmission attenuation of microwaves at two neighboring frequencies in a non-magnetized plasma. Then the electron density can be obtained from the plasma frequency. The PDMUTAMDF is a simple method to diagnose the plasma indirectly. In this paper, the interaction of electromagnetic waves and the plasma is analyzed. Then, based on the attenuation and the phase shift of a microwave in the plasma, the principle of the PDMUTAMDF is presented. With the diagnostic method, the spatially mean electron density and electron collision frequency of the plasma can be obtained. This method is suitable for the elementary diagnosis of the atmospheric-pressure plasma
UV laser ionization and electron beam diagnostics for plasma lenses
International Nuclear Information System (INIS)
Govil, R.; Volfbeyn, P.; Leemans, W.
1995-04-01
A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated
Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam
Gurovich, Victor Ts.; Fel, Leonid G.
2011-01-01
We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].
Structure of liquid alkali metals as electron-ion plasmas
International Nuclear Information System (INIS)
Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.
1980-08-01
The static structure factor of liquid alkali metals near freezing, and its dependence on temperature and pressure, are evaluated in an electron-ion plasma model from an accurate theoretical determination of the structure factor of the one-component classical plasma and electron-screening theory. Very good agreement is obtained with the available experimental data. (author)
Evaluations of the electron energy distribution in multidipole plasmas
International Nuclear Information System (INIS)
Taylor, G.R.; Kessel, M.A.; Sealock, J.W.
1980-01-01
In a previous paper a preliminary evaluation of the electron energy distribution in multidipole plasmas was presented. A polynominal regression technique for evaluating the distribution function from Langmuir probe current-voltage characteristics was described. This paper presents an extension of that analysis and the evaluations of the electron energy distributions in multidipole argon and hydrogen plasmas
Wave function of free electron in a strong laser plasma
International Nuclear Information System (INIS)
Zhu Shitong; Shen Wenda; Guo Qizhi
1993-01-01
The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed
Quasilinear theory of the ordinary-mode electron-cyclotron resonance in plasmas
International Nuclear Information System (INIS)
Arunasalam, V.; Efthimion, P.C.; Hosea, J.C.; Hsuan, H.; Taylor, G.
1983-11-01
A coupled set of equations, one describing the time evolution of the ordinary-mode wave energy and the other describing the time evolution of the electron distribution function is presented. The wave damping is mainly determined by T/sub parallel/ while the radiative equilibrium is mainly an equipartition with T/sub perpendicular/. The time rate of change of T/sub perpendicular/, T/sub parallel/, particle (N 0 ), and current (J/sub parellel/) densities are examined for finite k/sub parallel/ electron-cyclotron-resonance heating of plasmas
Ion-acoustic supersolitons and double layers in plasmas with nonthermal electrons
Gao, D.-N.; Zhang, J.; Yang, Y.; Duan, W.-S.
2017-08-01
Supersoliton (SS) can be mainly featured in two ways, namely, by focusing on subsidiary maxima on its electric field or by meeting the requirement that the appropriate Sagdeev pseudopotential (SP) has three local extrema between the equilibrium conditions and its amplitude. In this paper, by using the SP method, double layers and ion-acoustic SSs are studied in a plasma with Maxwellian cold electrons, nonthermal hot electrons, and fluid ions. The existence of the SS regime in parameter space is obtained in a methodical fashion. The existence domains for positive solitary waves are also presented. It is found that there is no SSs at the acoustic speed.
Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas
International Nuclear Information System (INIS)
Camenen, Y.; Pochelon, A.; Behn, R.; Bottino, A.; Bortolon, A.; Coda, S.; Karpushov, A.; Sauter, O.; Zhuang, G.
2007-01-01
The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of -0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated
Investigation of electron heating in laser-plasma interaction
Directory of Open Access Journals (Sweden)
A Parvazian
2013-03-01
Full Text Available In this paper, stimulated Raman scattering (SRS and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-SRS and dominateing initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-SRS plasma waves with high phase velocities. This tow-stage electron acceleration is more efficient due to the coexistence of these two instabilities.
Investigation of electron heating in laser-plasma interaction
International Nuclear Information System (INIS)
Parvazian, A.; Haji Sharifi, K.
2013-01-01
In this paper, stimulated Raman scattering and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-stimulated Raman scattering and dominating initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-stimulated Raman scattering plasma waves with high phase velocities. This two-stage electron acceleration is more efficient due to the coexistence of these two instabilities.
International Nuclear Information System (INIS)
Hasse, R.W.; Boine-Frankenheim, O.
2004-01-01
Based on the theories of Piwinski, Bjorken-Mtingawa and Martini of Coulomb scattering, expressions for the heating rates due to intrabeam scattering were known since a long time. Simplifications by Wei-Parzen and Rao and Piwinski led to analytic approximations which are easily applicable to existing lattices. We use these approximations and also the formulae from thermal equilibration of Struckmeier and equate them to either constant cooling rates from electron cooling or to the Novosibirsk cooling rates for electron cooling to calculate the equilibrium values of the horizontal and vertical emittances and the momentum spread (longitudinal emittance) for typical beams in the ESR or in the HESR. For constant cooling and all approximation formulae the ratio of current to the product of the three emittances remains almost constant. This yields a slope of the momentum spread with current between 0.2 and 0.3, in agreement with experimental data. Using the Novosibirsk cooling rates this slope is much larger
Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents.
Dzhioev, Alan A; Kosov, Daniel S; von Oppen, Felix
2013-04-07
We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequilibrium Green's functions to derive a Langevin equation for the reaction coordinate. Due to the out of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the Langevin equation depend locally on the reaction coordinate. As an example, we consider the dissociation of diatomic molecules induced by the electronic current from a scanning tunnelling microscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes which are intricately interconnected: a modification of the potential energy barrier and heating of the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent temperature is an alternative mechanism for current-induced chemical reactions, which is distinctly different from the usual paradigm of pumping vibrational degrees of freedom.
International Nuclear Information System (INIS)
Do, Van-Nam
2014-01-01
We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)
International Nuclear Information System (INIS)
Coste, Ph.; Aubert, J.; Lejeune, C.
1991-01-01
The extensive development of ion beam technologies in the last years, in particular for thin film deposition and etching, poses the problem of predicting the behaviour of the ion beam from convenient models. One of the existing models, the 'perfect linear model', is easy to use and provides information about the geometrical parameters of the ion beam envelope. In this model, however, the plasma potential must be close to the plasma electrode potential. Now, ion sources with electrostatic containment of the ionizing electrons -very attractive because of their improved ionization efficiency - have a plasma potential higher than the plasma electrode potential. Thus, a space-charge sheath with a non-negligible thickness exists, which modifies the equilibrium conditions of the plasma meniscus and, therefore, the initial divergence of the ion beam. In this paper an adaptation of the perfect linear model for ion beam formation to the case of plasma sources with electron electrostatic containment is presented. (author)
Electron acceleration using laser produced plasmas
CERN. Geneva; Landua, Rolf
2005-01-01
Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.
Heller, C. M.; Campbell, I. H.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.
1997-04-01
We report electroabsorption measurements of the built-in electrostatic potential in metal/C60-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C60 molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C60-doped poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C60-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C60 molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C60 and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C60 in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV.
Plasma wave observations during electron and ion gun experiments
International Nuclear Information System (INIS)
Olsen, R.C.; Lowery, D.R.; Weddle, L.E.
1988-01-01
Plasma wave instruments with high temporal and frequency resolution in the 0-6 kHz frequency range have been used to monitor electron gun-employing charge control experiments with the USAF/NASA p78-2 satellite, in order to determine whether plasma wave signatures consistent with the previous inference of electron heating were present. Strong plasma waves were noted near the electron gyrofrequency; these waves can heat ambient low energy electrons, as previously inferred. Attention is given to the two distinct classes of behavior revealed by the ion gun experiments. 16 references
International Nuclear Information System (INIS)
Diwakar, P.K.; Hahn, D.W.
2008-01-01
To further develop laser-induced breakdown spectroscopy (LIBS) as an analytical technique, it is necessary to better understand the fundamental processes and mechanisms taking place during the plasma evolution. This paper addresses the very early plasma dynamics (first 100 ns) using direct plasma imaging, light scattering, and transmission measurements from a synchronized 532-nm probe laser pulse. During the first 50 ns following breakdown, significant Thomson scattering was observed while the probe laser interacted with the laser-induced plasma. The Thomson scattering was observed to peak 15-25 ns following plasma initiation and then decay rapidly, thereby revealing the highly transient nature of the free electron density and plasma equilibrium immediately following breakdown. Such an intense free electron density gradient is suggestive of a non-equilibrium, free electron wave generated by the initial breakdown and growth processes. Additional probe beam transmission measurements and electron density measurements via Stark broadening of the 500.1-nm nitrogen ion line corroborate the Thomson scattering observations. In concert, the data support the finding of a highly transient plasma that deviates from local thermodynamic equilibrium (LTE) conditions during the first tens of nanoseconds of plasma lifetime. The implications of this early plasma transient behavior are discussed in the context of plasma-analyte interactions and the role on LIBS measurements
Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma
International Nuclear Information System (INIS)
Gyergyek, T.; Cercek, M.; Erzen, D.
2003-01-01
Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities
International Nuclear Information System (INIS)
Feng Hongyan; Zhu Shunguan; Zhang Lin; Wan Xiaoxia; Li Yan; Shen Ruiqi
2010-01-01
Emission spectra of a semiconductor bridge (SCB) plasma in a visible range was studied in air. The electron density was measured in a conventional way from the broadening of the A1 I 394.4 nm Stark width. Based on the Saha equation, a system for recording the intensity of Si I 390.5 nm and Si II 413.1 nm was designed. With this technique, the SCB plasma electron density was measured well and accurately. Moreover, the electron density distribution Vs time was acquired from one SCB discharge. The individual result from the broadening of the Al I 394.4 nm Stark width and Saha equation was all in the range of 10 15 cm -3 to 10 16 cm -3 . Finally the presumption of the local thermodynamic equilibrium (LTE) condition was validated.
Equilibrium and non-equilibrium phenomena in arcs and torches
Mullen, van der J.J.A.M.
2000-01-01
A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.
Plasma response to electron energy filter in large volume plasma device
International Nuclear Information System (INIS)
Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.
2013-01-01
An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.
2012-10-01
Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.
MICROWAVE NOISE MEASUREMENT OF ELECTRON TEMPERATURES IN AFTERGLOW PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Leiby, Jr., C. C.; McBee, W. D.
1963-10-15
Transient electron temperatures in afterglow plasmas were determined for He (5 and 10 torr), Ne, and Ne plus or minus 5% Ar (2.4 and 24 torr) by combining measurements of plasma microwave noise power, and plasma reflectivity and absorptivity. Use of a low-noise parametric preamplifier permitted continuous detection during the afterglow of noise power at 5.5 Bc in a 1 Mc bandwidth. Electron temperature decays were a function of pressure and gas but were slower than predicted by electron energy loss mechanisms. The addition of argon altered the electron density decay in the neon afterglow but the electron temperature decay was not appreciably changed. Resonances in detected noise power vs time in the afterglow were observed for two of the three plasma waveguide geometries studied. These resonances correlate with observed resonances in absorptivity and occur over the same range of electron densities for a given geometry independent of gas type and pressure. (auth)
PIC simulation of electron acceleration in an underdense plasma
Directory of Open Access Journals (Sweden)
S Darvish Molla
2011-06-01
Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons
Electron acoustic solitary waves in unmagnetized two electron population dense plasmas
International Nuclear Information System (INIS)
Mahmood, S.; Masood, W.
2008-01-01
The electron acoustic solitary waves are studied in unmagnetized two population electron quantum plasmas. The quantum hydrodynamic model is employed with the Sagdeev potential approach to describe the arbitrary amplitude electron acoustic waves in a two electron population dense Fermi plasma. It is found that hot electron density hump structures are formed in the subsonic region in such type of quantum plasmas. The wave amplitude as well as the width of the soliton are increased with the increase of percentage presence of cold (thinly populated) electrons in a multicomponent quantum plasma. It is found that an increase in quantum diffraction parameter broadens the nonlinear structure. Furthermore, the amplitude of the nonlinear electron acoustic wave is found to increase with the decrease in Mach number. The numerical results are also presented to understand the formation of solitons in two electron population Fermi plasmas.
Relativistic nonlinear waves of cyclotron in electron and electron-ion plasmas
International Nuclear Information System (INIS)
Bruno, R.
1981-12-01
Dispersion relations for electron-cyclotron and ion-cyclotron waves are examined in two models of plasmas, the first propagating in fluent electronic plasmas (''streaming'') as well as in fluent electron-ionic plasmas, and the last in fluent electron-ionic plasmas. The identification of the propagation modes is realized with the aid of a special technique of polinomial expantion of the dispersion relation in the limit of large frequencies and short wavelenghts. The analisys so developed on these dispersion relations for fluent plasmas show that: (i) the wave amplitudes are frequency dependent; (ii) the ''resonances'' frequencies of the respective estationary plasmas must be re-examined with the relations between wave amplitudes and the propagation frequencies near these frequencies; (iii) the electric field amplitudes for the non-linear waves of electron-cyclotron and ion-cyclotron go to zero in the limits of the respective cyclotron frequencies in both fluent plasma models. (M.W.O.) [pt
H2+ embedded in a Debye plasma: Electronic and vibrational properties
International Nuclear Information System (INIS)
Angel, M.L.; Montgomery, H.E.
2011-01-01
The effect of plasma screening on the electronic and vibrational properties of the H 2 + molecular ion was analyzed within the Born-Oppenheimer approximation. When a molecule is embedded in a plasma, the plasma screens the electrostatic interactions. This screening is accounted in the Schroedinger equation by replacing the Coulomb potentials with Yukawa potentials that incorporate the Debye length as a screening parameter. Variational expansions in confocal elliptical coordinates were used to calculate energies of the 1sσ g and 2pσ u states over a range of Debye lengths and bond distances. When the Debye length is comparable to the equilibrium bond distance, the dissociation energy is reduced while the equilibrium internuclear separation is increased. Expectation values, static dipole polarizabilities and spectroscopic constants were calculated for the 1sσ g state. - Highlights: → Effect of plasma screening on the properties of the H 2 + molecular ion. → Used a variational wavefunction in confocal elliptical coordinates. → Potential energy curves for the ground and first excited state are presented. → Decreasing Debye length increases polarizability of the electron distribution.
Evaporation of carbon using electrons of a high density plasma
International Nuclear Information System (INIS)
Muhl, S.; Camps, E.; Escobar A, L.; Garcia E, J.L.; Olea, O.
1999-01-01
The high density plasmas are used frequently in the preparation of thin films or surface modification, for example to nitridation. In these processes, are used mainly the ions and the neutrals which compose the plasma. However, the electrons present in the plasma are not used, except in the case of chemical reactions induced by collisions, although the electron bombardment usually get hot the work piece. Through the adequate polarization of a conductor material, it is possible to extract electrons from a high density plasma at low pressure, that could be gotten the evaporation of this material. As result of the interaction between the plasma and the electron flux with the vapor produced, this last will be ionized. In this work, it is reported the use of this novelty arrangement to prepare carbon thin films using a high density argon plasma and a high purity graphite bar as material to evaporate. It has been used substrates outside plasma and immersed in the plasma. Also it has been reported the plasma characteristics (temperature and electron density, energy and ions flux), parameters of the deposit process (deposit rate and ion/neutral rate) as well as the properties of the films obtained (IR absorption spectra and UV/Vis, elemental analysis, hardness and refractive index. (Author)
Atto-second control of collective electron motion in plasmas
International Nuclear Information System (INIS)
Borot, Antonin; Malvache, Arnaud; Chen, Xiaowei; Jullien, Aurelie; Lopez-Martens, Rodrigo; Geindre, Jean-Paul; Audebert, Patrick; Mourou, Gerard; Quere, Fabien
2012-01-01
Today, light fields of controlled and measured waveform can be used to guide electron motion in atoms and molecules with atto-second precision. Here, we demonstrate atto-second control of collective electron motion in plasmas driven by extreme intensity (approximate to 10 18 W cm -2 ) light fields. Controlled few-cycle near-infrared waves are tightly focused at the interface between vacuum and a solid-density plasma, where they launch and guide sub-cycle motion of electrons from the plasma with characteristic energies in the multi-kilo-electron-volt range-two orders of magnitude more than has been achieved so far in atoms and molecules. The basic spectroscopy of the coherent extreme ultraviolet radiation emerging from the light-plasma interaction allows us to probe this collective motion of charge with sub-200 as resolution. This is an important step towards atto-second control of charge dynamics in laser-driven plasma experiments. (authors)
Plasma density profiles and finite bandwidth effects on electron heating
International Nuclear Information System (INIS)
Spielman, R.B.; Mizuno, K.; DeGroot, J.S.; Bollen, W.M.; Woo, W.
1980-01-01
Intense, p-polarized microwaves are incident on an inhomogeneous plasma in a cylindrical waveguide. Microwaves are mainly absorbed by resonant absorption near the critical surface (where the plasma frequency, ω/sub pe/, equals the microwave frequency, ω/sub o/). The localized plasma waves strongly modify the plasma density. Step-plateau density profiles or a cavity are created depending on the plasma flow speed. Hot electron production is strongly affected by the microwave bandwidth. The hot electron temperature varies as T/sub H/ is proportional to (Δ ω/ω) -0 25 . As the hot electron temperature decreases with increasing driver bandwidth, the hot electron density increases. This increase is such that the heat flux into the overdense region (Q is proportional to eta/sub H/T/sub H/ 3 2 ) is nearly constant
Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Maity, Chandan [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2014-07-15
Space-time evolution of Langmuir oscillations in a cold homogeneous electron-positron-ion plasma has been analyzed by employing a straightforward perturbation expansion method, showing phase-mixing and, thus, wave-breaking of excited oscillations at arbitrary amplitudes. Within an assumption of infinitely massive ions, an approximate phase-mixing time is found to scale as ω{sub pe}t{sub mix}∼[(6/δ{sup 2})((2−α){sup 5/2}/(1−α))]{sup 1/3}, where “δ” and “α” (= n{sub 0i}/n{sub 0e}) are the amplitude of perturbation and the ratio of equilibrium ion density to equilibrium electron density, respectively, and ω{sub pe}∼√(4πn{sub 0e}e{sup 2}/m) is the electron plasma frequency. The results presented on phase-mixing of Langmuir modes in multispecies plasmas are expected to be relevant to laboratory and astrophysical environments.
Conductivity of cesium-seeded atmospheric pressure plasmas near thermal equilibrium
Energy Technology Data Exchange (ETDEWEB)
Harris, L. P.
1963-04-15
Measurements were made of the electric conductivities of gaseous mixtures formed by the addition of small fractions of cesium vapor to nitrogen, helium, neon, or argon. The mixtures studied were maintained near thermal equilibrium at temperatures in the 1500 to 2000 deg K range and a total pressure of 1 atm. The cesium vapor pressures ranged over two decades, from 0.1 to 10 torr. The apparatus consists, in essence, of two heated zones connected by a slow flow. The first zone is a low-temperature (200 to 400 deg C) oven where the body-gas flow picks up the cesium vapor. The second zone is a small electrically heated furnace (1250 to 1850 deg C) containing a diode test section. The principal measurements taken were the seeding temperature, furnace temperature, and voltages and currents in the test section. The results exhibit variations with temperature, seeding pressure, and gas species that correlate reasonably well with simple theory and values for electron collision frequencies and cross sections taken from the literature. (auth)
Heat-equilibrium low-temperature plasma decay in synthesis of ammonia via transient components N2H6
International Nuclear Information System (INIS)
Cao Guobin; Song Youqun; Chen Qing; Zhou Qiulan; Cao Yun; Wang Chunhe
2001-01-01
The author introduced a new method of heat-equilibrium low-temperature plasma in ammonia synthesis and a technique of continuous real-time inlet sampling mass-spectrometry to detect the reaction channel and step of the decay of transient component N 2 H 6 into ammonia. The experimental results indicated that in the process of ammonia synthesis by discharge of N 2 and H 2 mixture, the transient component N 2 H 6 is a necessary step
International Nuclear Information System (INIS)
Jung, Y.
1997-01-01
In dense plasmas, dynamic plasma screening effects are investigated on 1s→2p dipole transition probabilities for electron-impact excitation of hydrogenic ions. The electron endash ion interaction potential is considered by introduction of the plasma dielectric function. A semiclassical straight-line trajectory method is applied to the path of the projectile electron in order to visualize the semiclassical transition probability as a function of the impact parameter, projectile energy, and plasma parameters. The transition probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the electron thermal velocity, then the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low-energy projectiles. It is also found that the static plasma screening formula obtained by the Debye endash Hueckel model overestimates the plasma screening effects on the atomic excitation processes in dense plasmas. copyright 1997 American Institute of Physics
Correlation function and electronic spectral line broadening in relativistic plasmas
Directory of Open Access Journals (Sweden)
Douis S.
2013-01-01
Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.
Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source
International Nuclear Information System (INIS)
Toader, D.; Craciun, G.; Manaila, E.; Oproiu, C.; Marghitu, S.
2009-01-01
This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES L V) with a plasma electron source (PES L V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP L V source.
Cross-field Mobility in a Pure Electron Plasma
International Nuclear Information System (INIS)
Fossum, E.C.; King, L.B.
2006-01-01
An electron trapping apparatus was constructed in order to study electron dynamics in the defining electric and magnetic field of a Hall-effect thruster. The approach presented here decouples the cross-field mobility from plasma effects by conducting measurements on a pure electron plasma in a highly controlled environment. Dielectric walls are removed completely eliminating all wall effect; thus, electrons are confined solely by a radial magnetic field and a crossed, independently-controlled, axial electric field that induces the closed-drift azimuthal Hall current. Electron trajectories and cross-field mobility were examined in response to electric and magnetic field strength and background neutral density
Electron Cyclotron Resonance Heating of a High-Density Plasma
DEFF Research Database (Denmark)
Hansen, F. Ramskov
1986-01-01
Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...... of the electron cyclotron frequency. These are injected obliquely from the outside of the tokamak near an optimal angle to the magnetic field lines. This method involves two mode conversions. The ordinary waves are converted into extraordinary waves near the plasma cut-off layer. The extraordinary waves...... are subsequently converted into electrostatic electron Bernstein waves at the upper hybrid resonance layer, and the Bernstein waves are completely absorbed close to the plasma centre. Results are presented from ray-tracinq calculations in full three-dimensional geometry using the dispersion function for a hot non...
Ion-acoustic solitons in a plasma with electron beam
International Nuclear Information System (INIS)
Esfandyari, A. R.; Khorram, S.
2001-01-01
Ion-acoustic solitons in a collisionless plasma consisting of warm ions, hot isothermal electrons and a electron beam are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries and modified Korteweg-de Vries temperature and electron beam on ion acoustic equations. The effect of ion solitons are investigated
Directory of Open Access Journals (Sweden)
Malvina B. Trzhaskovskaya
2015-05-01
Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.
Energy Technology Data Exchange (ETDEWEB)
Das, B.; Basu, A.; Das, J.; Bhattacharya, D.P., E-mail: d_p_bhattacharya@rediffmail.com
2015-10-01
The energy balance equation for the electron–phonon system is recast taking the degeneracy of the carrier ensemble into account. The effect of degeneracy on the field dependence of the temperature of the non-equilibrium carriers has been studied by solving the same equation. The high field distribution function of the carriers is assumed to be given by the Fermi Dirac function at the field dependent carrier temperature. The distribution function has been approximated in a way that facilitates analytical solution of the problem without any serious loss of accuracy. The field dependence of the electron temperature thus obtained seems to be significantly different from what follows had the degeneracy not been taken into account. The agreement of the results obtained from the present analysis with the available experimental data for Ge and InSb are quite satisfactory. The scope of further refinement of the present theory is highlighted.
H TO Zn IONIZATION EQUILIBRIUM FOR THE NON-MAXWELLIAN ELECTRON κ-DISTRIBUTIONS: UPDATED CALCULATIONS
International Nuclear Information System (INIS)
Dzifčáková, E.; Dudík, J.
2013-01-01
New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian κ-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The κ-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.
Energy Technology Data Exchange (ETDEWEB)
Ham, C. J., E-mail: christopher.ham@ccfe.ac.uk; Chapman, I. T.; Kirk, A.; Saarelma, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)
2014-10-15
It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements [Chapman et al., Plasma Phys. Controlled Fusion 54, 105013 (2012)]. We produce a free boundary three-dimensional equilibrium of a lower single null MAST relevant plasma using VMEC [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)]. The safety factor and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying n = 3 and n = 6 magnetic perturbations using the resonant magnetic perturbation (RMP) coils. A midplane displacement of over ±1 cm is seen when the full current is applied. The current in the coils is scanned and a linear relationship between coil current and midplane displacement is found. The pressure gradient in real space in different toroidal locations is shown to change when RMPs are applied. This effect should be taken into account when diagnosing plasmas with RMPs applied. The helical Pfirsch-Schlüter currents which arise as a result of the assumption of nested flux surfaces are estimated for this equilibrium. The effect of this non-axisymmetric equilibrium on infinite n ballooning stability is investigated using COBRA [Sanchez et al., J. Comput. Phys. 161, 576–588 (2000)]. The infinite n ballooning stability is analysed for two reasons; it may give an indication of the effect of non-axisymmetry on finite n peeling-ballooning modes, responsible for ELMs; and
Comparison of macroscopic properties of electrons in plasmas of beam-plasma and glow discharges
International Nuclear Information System (INIS)
Winkler, R.; Wilhelm, J.; Starykh, V.V.
1979-01-01
The theoretical basis of the comparison are adequate Boltzmann equations for the electron component of the beam discharge plasma and the glow discharge plasma. We included the turbulent field or the direct electric field in the mentioned plasma types and all important binary collision processes as well as the Coulomb interaction between the charged particles. The comparison was performed in hydrogen under the condition of equal power input per volumen unit of both plasmas in dependence of the turbulence energy per one electron U, for the ionization degree (nsub(e)/N)sub(g) = 10 -6 and the pressure p 0 sup(g) = 1 Torr of the glow discharge plasma and for the ionization degrees (nsub(e)/N)sub(b) = 10 -3 , 10 -2 , 10 -1 and the pressure p 0 sup(b) = 10 -2 Torr of the beam discharge plasma which are typical for the existence of both plasma types. Based upon the numerical solutions of the Boltzmann equations under the mentioned additional conditions we compared the energy distribution functions of the electrons, the mean energy and the power losses of the electrons due to the different collision processes with the molecules and the ions. Especially a law for similarity of the electron kinetics of the two collision dominated plasma types was found and the main channels for the transfer of the field energy in both plasmas were determined. The results obtained were applied for assesing the perspectives of the beam discharged plasma as a plasmachemical reactor. (author)
Energy exchange in strongly coupled plasmas with electron drift
International Nuclear Information System (INIS)
Akbari-Moghanjoughi, M.; Ghorbanalilu, M.
2015-01-01
In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam
Determination of Jupiter's electron density profile from plasma wave observations
International Nuclear Information System (INIS)
Gurnett, D.A.; Scarf, F.L.; Kurth, W.S.; Shaw, R.R.; Poynter, R.L.
1981-01-01
This paper summarizes the electron density measurements obtained in the Jovian magnetosphere from the plasma wave instruments on the Voyager 1 and 2 spacecraft. Three basic techniques are discussed for determining the electron density: (1) local measurements from the low-frequency cutoff of continuum radiation, (2) local measurements from the frequency of upper hybrid resonance emissions, and (3) integral measurements from the dispersion of whistlers. The limitations and advantages of each technique are critically reviewed. In all cases the electron densities are unaffected by spacecraft charging or sheath effects, which makes these measurements of particular importance for verifying in situ plasma and low-energy charged particle measurments. In the outer regions of the dayside magnetosphere, beyond about 40 R/sub J/, the electron densities range from about 3 x 10 -3 to 3 x 10 -2 cm -3 . On Voyager 2, several brief excursions apparently occurred into the low-density region north of the plasma sheet with densities less than 10 -3 cm -3 . Approaching the planet the electron density gradually increases, with the plasma frequency extending above the frequency range of the plasma wave instrument (56 kHz, or about 38 electrons cm -3 ) inside of about 8 R/sub J/. Within the high-density region of the Io plasma torus, whistlers provide measurements of the north-south scale height of the plasma torus, with scale heights ranging from about 0.9 to 2.5 R/sub J/
Modeling of the equilibrium of a tokamak plasma; Modelisation de l'equilibre d'un plasma de tokamak
Energy Technology Data Exchange (ETDEWEB)
Grandgirard, V
1999-12-01
The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)
Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi
2014-10-01
For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).
International Nuclear Information System (INIS)
Ionita, C.; Balan, P.; Schrittwieser, R.; Cabral, J.A.; Fernandes, H.; Figueiredo, H. F.C.; Varandas, C.
2001-01-01
We have recently started to use electron-emissive probes for direct measurements of the plasma potential and its fluctuations in the edge region of the plasma ring in the tokamak ISTTOK in Lisbon, Portugal. This method is based on the fact that the electron emission current of such a probe is able to compensate electron temperature variations and electron drifts, which can occur in the edge plasma region of magnetized fusion devices, and which are making measurements with cold probes prone to errors. In this contribution we present some of the first results of our investigations in ISTTOK.(author)
Linear and nonlinear electrostatic modes in a nonuniform magnetized electron plasma
International Nuclear Information System (INIS)
Vranjes, J.; Shukla, P.K.; Kono, M.; Poedts, S.
2001-01-01
Linear and nonlinear low-frequency modes in a magnetized electron plasma are studied, taking into account a proper description of the equilibrium plasma state that is inhomogeneous. Assuming a homogeneous magnetic field and sheared plasma flows, flute-like perturbations are studied in the presence of density and potential gradients. Linear analysis reveals the presence of a streaming instability and depicts conditions for global linear spiral mode. In the nonlinear domain, a tripolar vortex, which is driven and carried by the flow, is found. Also investigated are the consequences of a magnetic shear as well as nonuniformities along the magnetic field lines, which are shown to be responsible for the possible annulment of the magnetic shear effects. Streaming along the lines of the sheared magnetic field is also studied. A variety of nonlinear structures (viz. global multipolar vortices, local vortex chains, and tripolar vortices) is shown to be the consequence of the simultaneous action of the parallel and perpendicular flows
Spectral measurements of electron temperature in nonequilibrium highly ionized He plasma
International Nuclear Information System (INIS)
Korshunov, O V; Chinnov, V F; Kavyrshin, D I; Ageev, A G
2016-01-01
It has been experimentally shown that highly ionized He arc plasma does not achieve local thermodynamic equilibrium expected for plasmas with electron concentrations above 1 × 10 16 cm -3 like argon plasma. We have found that the reason for this deviation is strong nonisotropy of plasma. Triple electron recombination with temperatures of 2.5-3 eV is almost absent. Charged particles move from the arc ( r = 1 mm) to chamber walls due to ambipolar diffusion creating ionization nonequilibrium over the excited states rendering Boltzmann distribution and Saha equation inapplicable for determining electron temperature. A method for determining electron temperature is suggested that is based on using the relative intensities of the atomic and ion lines. Its advantage lies in an energy gap between these lines’ states over 50 eV that reduces the influence of nonequilibrium on the result. This influence can be taken into account if the ionization energies of emitting states of atom and ion have close values. The suggested method can be expanded for any media including those with dimensional nonisotropy that have both atomic and ion lines in their emission spectra. (paper)
Electron current extraction from a permanent magnet waveguide plasma cathode
Energy Technology Data Exchange (ETDEWEB)
Weatherford, B. R.; Foster, J. E. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kamhawi, H. [NASA Glenn Research Center, Cleveland, Ohio 44135 (United States)
2011-09-15
An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed.
Relativistic electromagnetic waves in an electron-ion plasma
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Arbitrary electron acoustic waves in degenerate dense plasmas
Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.
2017-05-01
A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.
Quantum tunneling resonant electron transfer process in Lorentzian plasmas
International Nuclear Information System (INIS)
Hong, Woo-Pyo; Jung, Young-Dae
2014-01-01
The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed
Hot-electron-plasma accumulation in the CIRCE mirror experiment
International Nuclear Information System (INIS)
Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.
1975-01-01
In the CIRCE experiment, the plasma is obtained by the trapping of a plasma injected into a magnetic bottle by electron heating at cyclotron resonance. The plasma density lies between 5x10 11 cm -3 and 10 12 cm -3 , the electron temperature is about 100 keV and the ion temperature is in the range of few hundred electronvolts. Gross instabilities are not observed. The ratio of the plasma density to the neutral-gas density inside the plasma is higher than 100. A few kilowatts of r.f. power at 8 GHz are sufficient to obtain these results, a fact which looks encouraging as far as the creation of a more effective fast-neutral-target plasma using the CIRCE-experiment concept is concerned. (author)
Electron-electron collision effects on the bremsstrahlung emission in Lorentzian plasmas
International Nuclear Information System (INIS)
Jung, Young-Dae; Kato, Daiji
2009-01-01
Electron-electron collision effects on the electron-ion bremsstrahlung process are investigated in Lorentzian plasmas. The effective electron-ion interaction potential is obtained by including the far-field terms caused by electron-electron collisions with an effective Debye length in Lorentzian plasmas. The bremsstrahlung radiation cross section is obtained as a function of the electron energy, photon energy, collision frequency, spectral index and Debye length using the Born approximation for the initial and final states of the projectile electron. It is shown that the non-Maxwellian character suppresses the bremsstrahlung radiation cross section. It is also shown that the electron-electron collision effect enhances the bremsstrahlung emission spectrum. In addition, the bremsstrahlung radiation cross section decreases with an increase in the plasma temperature.
Electron Heating of LHCD Plasma in HT-7 Tokamak
International Nuclear Information System (INIS)
Ding Yonghua; Wan Baonian; Lin Shiyao; Chen Zhongyong; Hu Xiwei; Shi Yuejiang; Hu Liqun; Kong Wei; Zhang Xiaoqing
2006-01-01
Electron heating via lower hybrid current drive (LHCD) has been investigated in HT-7 superconducting tokamak. Experiments show that the central electron temperature T e0 , the volume averaged electron temperature e > and the peaking factor of the electron temperature Q Te = T e0 / e > increase with the lower hybrid wave (LHW) power. Simultaneously the electron heating efficiency and the electron temperature as the function of the central line-averaged electron density (n e ) and the plasma current (I p ) have also been investigated. The experimental results are in a good agreement with those of the classical collision theory and the LHW power deposition theory
''Heavy light bullets'' in electron-positron plasma
International Nuclear Information System (INIS)
Berezhiani, V.I.; Mahajan, S.M.
1995-03-01
The nonlinear propagation of circularly polarized electromagnetic waves with relativistically strong amplitudes in an unmagnetized hot electron-positron plasma with a small fraction of ions is investigated. The possibility of finding localized solutions in such a plasma is explored. It is shown that these plasmas support the propagation of ''heavy light bullets''; nondiffracting and nondispersive electromagnetic (EM) pulses with large density bunching. (author). 24 refs, 12 figs
Kinetic modelling of runaway electron avalanches in tokamak plasmas.
Czech Academy of Sciences Publication Activity Database
Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos
2015-01-01
Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015
Electron cyclotron resonance heating in a short cylindrical plasma ...
Indian Academy of Sciences (India)
The power mode conversion efficiency is estimated to be ... has also found application in electron cyclotron current drive (ECCD) in fusion ... (few GHz) of microwave sources, a small linear ECR plasma system can also serve ..... References.
International Nuclear Information System (INIS)
Bradley, J. III; Sharp, G.; Gahl, J.M. Kuznetsov, V.; Rockett, P.; Hunter, J.
1995-01-01
Tokamak disruption simulation experiments are being conducted at the University of New Mexico (UNM) using the PLADIS I plasma gun system. PLADIS I is a high power, high energy coaxial plasma gun configured to produce an intense plasma beam. First wall candidate materials are placed in the beam path to determine their response under disruption relevant energy densities. An optically thick vapor shield plasma has been observed to form above the target surface in PLADIS I. Various diagnostics have been used to determine the characteristics of the incident plasma and the vapor shielding plasma. The cross sectional area of the incident plasma beam is a critical characteristic, as it is used in the calculation of the incident plasma energy density. Recently, a HeNe interferometer in the Mach-Zehnder configuration has been constructed and used to probe the electron density of the incident plasma beam and vapor shield plasma. The object beam of the interferometer is scanned across the plasma beam on successive shots, yielding line integrals of beam density on different chords through the plasma. Data from the interferometer is used to determine the electron density profile of the incident plasma beam as a function of beam radius. This data is then used to calculate the effective beam area. Estimates. of beam area, obtained from other diagnostics such as damage targets, calorimeter arrays and off-axis measurements of surface pressure, will be compared with data from the interferometer to obtain a better estimate of the beam cross sectional area
Measurements of plasma temperature and electron density in laser
Indian Academy of Sciences (India)
The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time window of 300–2000 ns. An echelle spectrograph coupled with a gated intensified charge coupled detector is used to record the plasma emissions.
International Nuclear Information System (INIS)
Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Szepesi, G.; Bortolon, A.; Duval, B. P.; Federspiel, L.; Karpushov, A. N.; Piras, F.; Sauter, O.
2010-01-01
The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak a Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.
Optimization and application of electron acceleration in relativistic laser plasmas
International Nuclear Information System (INIS)
Koenigstein, Thomas
2013-01-01
This thesis describes experiments and simulations of the acceleration of electrons to relativistic energies (toward γ e ∼ 10 3 ) by structures in plasmas which are generated by ultrashort (pulse length < 10 -14 s) laser pulses. The first part of this work discusses experiments in a parameter space where quasimonoenergetic electron bunches are generated in subcritical (gaseous) plasmas and compares them to analytical scalings. A primary concern in this work is to optimize the stability of the energy and the pointing of the electrons. The second part deals with acceleration of electrons along the surface of solid substrates by laser-plasma interaction. The measurements show good agreement with existing analytical scalings and dedicated numerical simulations. In the third part, two new concepts for multi-stage acceleration will be presented and parameterised by analytical considerations and numerical simulations. The first method uses electron pairs, as produced in the first part, to transfer energy from the first bunch to the second by means of a plasma wave. The second method utilizes a low intensity laser pulse in order to inject electrons from a neutral gas into the accelerating phase of a plasma wave. The final chapter proposes and demonstrates a first application that has been developed in collaboration with ESA. The use of electron beams with exponential energy distribution, as in the second part of this work, offers the potential to investigate the resistance of electronic components against space radiation exposure.
Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator
Energy Technology Data Exchange (ETDEWEB)
Kirby, Neil; /SLAC
2009-10-30
Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped
Energy Technology Data Exchange (ETDEWEB)
Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)
2016-11-15
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Electron plasma waves in CO/sub 2/ laser plasma interactions
International Nuclear Information System (INIS)
Baldis, H.A.; Villeneuve, D.M.; Walsh, C.J.
1984-01-01
During the past few years, the use of Thomson scattering in CO/sub 2/ laser produced plasmas has permitted the identification and study of electron plasma waves and ion waves, driven by various instabilities in the plasma corona, such as Stimulated Raman Scattering (SRS), two plasmon decay, and Stimulated Brillouin Scattering (SBS). Since these instabilities may coexist in the plasma, the density fluctuations associated with one wave may influence the behaviour of one or more of the other instabilities. The authors discuss the experimental evidence of such effects and, in particular, the consequences of a recent experiment in which the ion waves driven by SBS were observed to adversely affect the production of the electron plasma waves driven by SRS. In that experiment, a strong correlation was observed between the onset of SBS and the disappearance of the electron plasma waves driven by SRS at low densities (n/sub e/ n/sub e/ > 0.05 n/sub c/)
Energy Technology Data Exchange (ETDEWEB)
Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
2016-09-01
We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.
Electron and ion magnetohydrodynamic effects in plasma opening switches
International Nuclear Information System (INIS)
Grossmann, J.M.; DeVore, C.R.; Ottinger, P.F.
1993-01-01
Preliminary results are presented of a numerical code designed to investigate electron and ion magnetohydrodynamic effects in plasma erosion opening switches. The present model is one-dimensional and resolves effects such as the JxB deformation of the plasma, and the penetration of magnetic field either by anomalous resistivity or electron magnetohydrodynamics (Hall effect). Comparisons with exact analytic results and experiment are made
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
Vibrational, atomical and electronic relaxation in a nitrogen plasma jet
International Nuclear Information System (INIS)
Asselin, P.; Dudeck, M.
1994-07-01
This is a simplified approach of the characterization of a plasma stationary flow in chemical and electronic disequilibrium conditions by Navier-Stokes equations. The INCA code (AMTEC, USA) is a three-dimensional monolithic calculation code. A computer program for a mono-dimensional evolution of the formed species concentrations in a nitrogen plasma, including conservative equations of vibrational and electronic energies in order to deduce the corresponding temperature profiles. (A.B.). 14 refs., 17 figs., 2 tabs
Industrial application of electron sources with plasma emitters
Belyuk, S I; Rempe, N G
2001-01-01
Paper contains a description, operation, design and parameters of electron sources with plasma emitters. One presents examples of application of these sources as part of automated electron-beam welding lines. Paper describes application of such sources for electron-beam deposition of composite powders. Electron-beam deposition is used to rebuild worn out part and to increase strength of new parts of machines and tools. Paper presents some examples of rebuilding part and the advantages gained in this case
Study of the hollow cathode plasma electron-gun
International Nuclear Information System (INIS)
Zhang Yonghui; Jiang Jinsheng; Chang Anbi
2003-01-01
For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond
International Nuclear Information System (INIS)
Ohnuma, T.; Watanabe, T.; Sanuki, H.
1981-08-01
Propagation characteristics and refractive effects of an oblique electron thermal mode without boundary effects below the electron plasma frequency are studied experimentally and theoretically in an inhomogeneous magnetized plasma. The behavior of this mode observed experimentally was confirmed by the theoretical analysis based on a new type of ray theory. (author)
Energy Technology Data Exchange (ETDEWEB)
Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); University of the Western Cape, Belville (South Africa); Devanandhan, S., E-mail: devanandhan@gmail.com [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa)
2016-08-15
A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of “burst a” event by Viking satellite on the auroral field lines.
Gushenets, V I
2001-01-01
One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition
Fan, Zhengfeng; Liu, Jie
2016-10-01
We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.
Analysis of core plasma heating and ignition by relativistic electrons
International Nuclear Information System (INIS)
Nakao, Y.
2002-01-01
Clarification of the pre-compressed plasma heating by fast electrons produced by relativistic laser-plasma interaction is one of the most important issues of the fast ignition scheme in ICF. On the basis of overall calculations including the heating process, both by relativistic hot electrons and alpha-particles, and the hydrodynamic evolution of bulk plasma, we examine the feature of core plasma heating and the possibility of ignition. The deposition of the electron energy via long-range collective mode, i.e. Langmuir wave excitation, is shown to be comparable to that through binary electron-electron collisions; the calculation neglecting the wave excitation considerably underestimates the core plasma heating. The ignition condition is also shown in terms of the intensity I(h) and temperature T(h) of hot electrons. It is found that I(h) required for ignition increases in proportion to T(h). For efficiently achieving the fast ignition, electron beams with relatively 'low' energy (e.g.T(h) below 1 MeV) are desirable. (author)