WorldWideScience

Sample records for electron microscope fishes

  1. An electron microscopic investigation into the possible source of new muscle fibres in teleost fish.

    Science.gov (United States)

    Stoiber, W; Sänger, A M

    1996-12-01

    This study is based on transmission electron microscopic (TEM) investigations of deep (fast, 'white') teleost fish muscle proliferation in early developmental stages of three European cyprinid species and the rainbow trout. Our fine structural findings provide evidence that early myotomal growth in these animals may utilize different mechanisms that are activated in close succession during early life history. First, initial enlargement of the deep muscle bulk in the embryo seems to be due to hypertrophy of the somite-cell derived stock of muscle fibres. Second, we suggest that deep muscle growth becomes additionally powered by attachment of presumptive myogenic cells that originate from and proliferate within the adjacent mesenchymal tissue lining. Third, mesenchyme-derived muscle cell precursors are thought to enter the myotomes via the myosepta. After migration between the pre-established muscle fibres these cells may function as myosatellite cells, thus at least partly providing the stem cell population for subsequent rapid hyperplastic growth. Finally, there is evidence that presumptive deep muscle satellite cells also proliferate by mitotic division in situ. A similar process of myogenic cell migration and proliferation may foster intermediate fibre differentiation. The model of myogenic cell migration is discussed in view of in vitro and in vivo data on satellite cell migratory power and with respect to temperature-induced and species dependent differences. As for the latter, our results indicate that patterns of muscle differentiation may diverge between a fast growing salmonid species and a moderately growing cyprinid species of similar final size. The model is compatible with the well-established idea that teleost muscle growth may rely on different subclasses of myosatellite cells.

  2. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  3. Light and electron microscopic analyses of Vasa expression in adult germ cells of the fish medaka.

    Science.gov (United States)

    Yuan, Yongming; Li, Mingyou; Hong, Yunhan

    2014-07-15

    Germ cells of diverse animal species have a unique membrane-less organelle called germ plasm (GP). GP is usually associated with mitochondria and contains RNA binding proteins and mRNAs of germ genes such as vasa. GP has been described as the mitochondrial cloud (MC), intermitochondrial cement (IC) and chromatoid body (CB). The mechanism underlying varying GP structures has remained incompletely understood. Here we report the analysis of GP through light and electron microscopy by using Vasa as a marker in adult male germ cells of the fish medaka (Oryzias latipes). Immunofluorescence light microscopy revealed germ cell-specific Vasa expression. Vasa is the most abundant in mitotic germ cells (oogonia and spermatogonia) and reduced in meiotic germ cells. Vasa in round spermatids exist as a spherical structure reminiscent of CB. Nanogold immunoelectron microscopy revealed subcellular Vasa redistribution in male germ cells. Vasa in spermatogonia concentrates in small areas of the cytoplasm and is surrounded by mitochondria, which is reminiscent of MC. Vasa is intermixed with mitochondria to form IC in primary spermatocytes, appears as the free cement (FC) via separation from mitochondria in secondary spermatocyte and becomes condensed in CB at the caudal pole of round spermatids. During spermatid morphogenesis, Vasa redistributes and forms a second CB that is a ring-like structure surrounding the dense fiber of the flagellum in the midpiece. These structures resemble those described for GP in various species. Thus, Vasa identifies GP and adopts varying structures via dynamic reorganization at different stages of germ cell development. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  5. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  6. Effect of mercury on the fish (Alburnus alburnus) chemoreceptor taste buds. A scanning electron microscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Pevzner, R.A.; Hernadi, L.; Salanki, J.

    1986-01-01

    Taste buds (TBS) were investigated by scanning electron microscopy on various parts of the oral cavity of the bleak. (Alburnus alburnus) after differently long exposures to mercury (300 ..mu..g/1 Hg/sup + +/). This low concentration of mercury did not result in lethal effect on the bleak even after 19 days long exposure, but produced morphological changes on the TBs, which showed duration dependency. The first sign of the morphological alteration on the TBs was observed after three days long exposure, when the microridge system of the epithelial cells became damaged and the mucus secretion increased on the apical surfaces of the TBs. On the TBs exposed for 10 days swollen microvilliar tips of the sensory cells could be observed besides the damage of the epithelial microridge system. On the TBs exposed for 19 days degenerative changes were detected on the microvilliar system of both the supporting and receptor cells. By this time completely degenerated TBs were frequently observed.

  7. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    Energy Technology Data Exchange (ETDEWEB)

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and

  8. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    Science.gov (United States)

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S.

    2013-11-01

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and

  9. Electron microscope studies

    International Nuclear Information System (INIS)

    Crewe, A.V.; Kapp, O.H.

    1992-01-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations

  10. Electron microscope studies

    Energy Technology Data Exchange (ETDEWEB)

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  11. Electron microscope phase enhancement

    Science.gov (United States)

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  12. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  13. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  14. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  15. Electron microscope studies

    International Nuclear Information System (INIS)

    Crewe, A.V.; Kapp, O.H.

    1990-01-01

    Our laboratory has made significant progress this year in devising improved electron-optical systems, in studying invertebrate hemoglobins with the STEM, and in achieving a workable sub-angstrom STEM. Our goal in electron optics is to improve resolution by producing spherical and chromatic aberration coefficients with signs opposite those of magnetic lenses. We have progressed toward this goal through calculations that explore the addition of electrodes to electron mirrors to reduce these two geometric aberrations and by devising a beam separation system that won't introduce asymmetrical aberrations. Some promising new designs of magnetic lenses for SEM applications have also been investigated. We have continued our exploration of the quaternary structure of the invertebrate hemoglobins and are now among the top laboratories in this area of expertise. In addition, we have overcome many of our electronic difficulties on the sub-angstrom STEM and have made significant progress toward achieving an operational system. The addition of an IBM RISC-6000 workstation to our lab has significantly increased our image processing capabilities

  16. Electron microscope studies

    International Nuclear Information System (INIS)

    Crewe, A.V.; Kapp, O.H.

    1991-01-01

    This year our laboratory has continued to make progress in the design of electron-optical systems, in the study of structure-function relationships of large multi-subunit proteins, in the development of new image processing software and in achieving a workable sub-angstrom STEM. We present an algebraic approach to the symmetrical Einzel (unipotential) lens wherein we simplify the analysis by specifying a field shape that meets some preferred set of boundary or other conditions and then calculate the fields. In a second study we generalize this approach to study of three element electrostatic lenses of which the symmetrical Einzel lens is a particular form. The purpose is to develop a method for assisting in the design of a lens for a particular purpose. In our biological work we study a stable and functional dodecameric complex of globin chains from the hemoglobin of Lumbricus terrestris. This is a complex lacking the ''linker'' subunit first imaged in this lab and required for maintenance of the native structure. In addition, we do a complete work-up on the hemoglobin of the marine polychaete Eudistylia vancouverii demonstrating the presence of a hierarchy of globin complexes. We demonstrate stable field-emission in the sub-angstrom STEM and the preliminary alignment of the beam. We continue our exploration of a algorithms for alignment of sequences of protein and DNA. Our computer facilities now include four second generation RISC workstations and we continue to take increasing advantage of the floating-point and graphical performance of these devices

  17. Spectral Interferometry with Electron Microscopes

    Science.gov (United States)

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  18. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  19. Scanning Electron Microscope Analysis System

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides the capability to examine surfaces microscopically with high resolution (5 nanometers), perform micro chemical analyses of these surfaces, and...

  20. Electron Microscope Center Opens at Berkeley.

    Science.gov (United States)

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  1. Designs for a quantum electron microscope.

    Science.gov (United States)

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Electron waves under the microscope

    International Nuclear Information System (INIS)

    Geim, A.

    2000-01-01

    If I were to explain to you what a velociraptor is, I would probably say that it looks like a small Tyrannosaurus rex and is about the same size as a dog. But what if you have never seen a picture of a T. rex? Every teacher or physicist trying to explain to students w hat an electron is'' has a similar, but more severe, problem. It usually takes months, if not years, of physics training to become familiar with imaginary pictures of electrons and then learn how to use them. Moreover, physicists need many different images depending on the phenomenon they want to address. However, in the last few years, real images of electron clouds and so-called quantum corrals have been taken. In the December issue of Physics World, Andrey Geim of the University of Manchester, UK, reveals how two recent experiments have allowed physicists to image electrons embedded deep inside semiconductors. (U.K.)

  3. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  4. Spectroscopy of electron irradiated polymers in electron microscope

    International Nuclear Information System (INIS)

    Faraj, S.H.; Salih, S.M.

    1981-01-01

    The damage induced by energetic electrons in the course of irradiation of polymers in a transmission electron microscope was investigated spectroscopically. Damage on the molecular level has been detected at very low exposure doses. These effects have been induced by electron doses less than that received by the specimen when it is situated at its usual place of the specimen stage in the electron microscope by a factor of 1,000. (author)

  5. Transmission electron microscope studies of extraterrestrial materials

    Science.gov (United States)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  6. Designs for a quantum electron microscope

    International Nuclear Information System (INIS)

    Kruit, P.; Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R.; Hammer, J.; Thomas, S.; Weber, P.; Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A.; Hommelhoff, P.; Berggren, K.K.

    2016-01-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  7. Designs for a quantum electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kruit, P., E-mail: p.kruit@tudelft.nl [Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hammer, J.; Thomas, S.; Weber, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Hommelhoff, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Berggren, K.K. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-15

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  8. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  9. Study of Scanning Tunneling Microscope control electronics

    International Nuclear Information System (INIS)

    Oliva, A.J.; Pancarobo, M.; Denisenko, N.; Aguilar, M.; Rejon, V.; Pena, J.L.

    1994-01-01

    A theoretical study of Scanning Tunneling Microscope control electronics is made. The knowledge of its behaviour allows us to determine accurately the region where the unstable operation could effect the measurements, and also to set the optimal working parameters. Each feedback circuitry compound is discussed as well as their mutual interaction. Different working conditions analysis and results are presented. (Author) 12 refs

  10. The Titan Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Jinschek, Jörg R.

    2009-01-01

    University of Denmark (DTU) provides a unique combination of techniques for studying materials of interest to the catalytic as well as the electronics and other communities [5]. DTU’s ETEM is based on the FEI Titan platform providing ultrahigh microscope stability pushing the imaging resolution into the sub...

  11. Exploring the environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Wagner, Jakob B.; Cavalca, Filippo; Damsgaard, Christian D.

    2012-01-01

    of the opportunities that the environmental TEM (ETEM) offers when combined with other in situ techniques will be explored, directly in the microscope, by combining electron-based and photon-based techniques and phenomena. In addition, application of adjacent setups using sophisticated transfer methods...

  12. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  13. Science 101: How Does an Electron Microscope Work?

    Science.gov (United States)

    Robertson, Bill

    2013-01-01

    Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…

  14. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  15. Ponderomotive phase plate for transmission electron microscopes

    Science.gov (United States)

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  16. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Digital management of an electron microscope unit

    International Nuclear Information System (INIS)

    Elea, N.; Dickson, M.; Munroe, P.

    2002-01-01

    Full text: Electron microscope units, especially those such as ours, which operate as a central infrastructural facility are increasingly asked to provide more service, over more instruments with decreasing, or limited, financial resources. We believe that staff time is best used performing electron microscopy, assisting users and maintaining instrumentation rather than in the pursuit of red tape. One solution to this problem has been the creation of a control system which performs all routine acts of data management, such as the archiving and accessing of digital data, providing access to bookings, and most importantly in the era of user pays services, logging time and billing users. The system we have created, developed and expanded allows the users themselves to access our server through any web-browser and make their own bookings or access and manipulate their data. Users themselves must log on to a microscope through swipecard readers before it can be used and log-off after use. Their time is logged precisely and an exquisitely fair user pays systems can be operated by transferring logged usage time to spreadsheets to calculate charges. Furthermore, this system acts as a method of user authentication and can be used to bar incompetent or unauthorised users. The system has recently been upgraded to increase its utility to include sensors that monitor the electron microscope operating environment, such as magnetic field, room temperature, water flow etc, so that if these parameters depart significantly from optimum levels electron microscope unit staff may be alerted. In this presentation the structure of our system will be described and the advantages and disadvantages of such a system will be discussed. Copyright (2002) Australian Society for Electron Microscopy Inc

  18. Electron microscopic radioautography of the cell

    International Nuclear Information System (INIS)

    Sarkisov, D.S.; Pal'tsyn, A.A.; Vtyurin, B.V.

    1980-01-01

    This monograph is the first one in the world literature that gives th generalised experience in application of the up-to-date method of structural and functional analysis, i.e. of electron-microscopic autography to study the dynamics of intracellular processes under normal conditions as well as under some pathogenic effects. Given herein are the data on synthesis of DNA and RNA in various structures of the nucleus, particularly in nucleoli, the regularities of the synthesis processes in the organellae of the same name are discussed; illustrated are the possibilities of structure analysis of biosynthesis intensity variations in the nucleus and cytoplasma in cells of liver miocardium, granulation tissue at different stages of morphological process; the results of electron-microscopic radioautography application in study of clinical biopsy material are given and the data obtained are discussed in the light of general pathology problems

  19. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  20. French contributions to electron microscopic radioautography

    International Nuclear Information System (INIS)

    Droz, B.

    1994-01-01

    The radio autographic contributions carried out by electron microscopists took a part to improve the methodology and to extend applications to major biological problems. As underlined by CP Leblonc radioautography has clarified the importance of renewing systems; one may truly say that radioautography has introduced the time dimension in histology. The sites of biosynthesis of different substances have been located on the sub cellar scale, and it is now possible to analyse the molecular migrations within cells. The development of in situ hybridization and of receptors binding sites at the ultrastructural level has enlarged the application field of electron microscope radioautography. 64 refs., 2 figs

  1. Indigenous development of scanning electron microscope

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Pal, Suvadip; Tikaria, Amit; Pious, Lizy; Dubey, B.P.; Chadda, V.K.

    2009-01-01

    Scanning electron microscope (SEM) is a precision instrument and plays very important role in scientific studies. Bhabha Atomic Research Centre has taken up the job of development of SEM indigenously. Standard and commercially available components like computer, high voltage power supply, detectors etc. shall be procured from market. Focusing and scanning coils, vacuum chamber, specimen stage, control hardware and software etc. shall be developed at BARC with the help of Indian industry. Procurement, design and fabrication of various parts of SEM are in progress. (author)

  2. Electron microscope studies on nuclear track filters

    International Nuclear Information System (INIS)

    Roell, I.; Siegmon, W.

    1982-01-01

    Nuclear track filters became more and more important in various fields of application. The filtration process can be described by a set of suitable parameters. For some applications it may be necessary to know the structure of the surface and the pores themselves. In most cases the etching process yields surfaces and pore geometries that are quite different from ideal planes and cylinders. In the presented work the production of different filter types will be described. The resulting surfaces and pore structures have been investigated by means of a scanning electron microscope. (author)

  3. Electron microscope autoradiography of isolated DNA molecules

    International Nuclear Information System (INIS)

    Delain, Etienne; Bouteille, Michel

    1980-01-01

    Autoradiographs of 3 H-thymidine-labelled DNA molecules were observed with an electron microscope. After ten months of exposure significant labelling was obtained with tritiated T7 DNA molecules which had a specific activity of 630,000 cpm/μg. Although isolated DNA molecules were not stretched out to such an extent that they could be rigorously compared to straight 'hot lines', the resolution was estimated and found to be similar to that obtained by autoradiography on thin plastic sections. The H.D. value was of the order of 1600A. From the known specific activity of the macromolecules, it was possible to compare the expected number of disintegrations from the samples to the number of grains obtained on the autoradiograms. This enabled us to calculate 1/ The absolute autoradiographic efficiency and 2/ The per cent ratio of thymidine residues labelled with tritium. These results throw some light on the resolution and sensitivity of electron microscope autoradiography of shadowed isolated macromolecules as compared to thin plastic sections

  4. Cathodoluminescence in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kociak, M., E-mail: mathieu.kociak@u-psud.fr [Laboratoire de Physique des Solides, Université Paris-SudParis-Sud, CNRS-UMR 8502, Orsay 91405 (France); Zagonel, L.F. [“Gleb Wataghin” Institute of Physics University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2017-05-15

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. - Highlights: • Reviews the field of STEM-CL. • Introduces the technical requirements and challenges for STEM-CL. • Introduces the different types of excitations probed by STEM-CL. • Gives comprehensive overview of the last fifteenth years in the field.

  5. Helium leak testing of scanning electron microscope

    International Nuclear Information System (INIS)

    Ahmad, Anis; Tripathi, S.K.; Mukherjee, D.

    2015-01-01

    Scanning Electron Microscope (SEM) is a specialized electron-optical device which is used for imaging of miniscule features on topography of material specimens. Conventional SEMs used finely focused high energy (about 30 KeV) electron beam probes of diameter of about 10nm for imaging of solid conducting specimens. Vacuum of the order of 10"-"5 Torr is prerequisite for conventional Tungsten filament type SEMs. One such SEM was received from one of our laboratory in BARC with a major leak owing to persisting poor vacuum condition despite continuous pumping for several hours. He-Leak Detection of the SEM was carried out at AFD using vacuum spray Technique and various potential leak joints numbering more than fifty were helium leak tested. The major leak was detected in the TMP damper bellow. The part was later replaced and the repeat helium leak testing of the system was carried out using vacuum spray technique. The vacuum in SEM is achieved is better than 10"-"5 torr and system is now working satisfactorily. (author)

  6. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  7. Nitrogen implantation with a scanning electron microscope.

    Science.gov (United States)

    Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J

    2018-01-08

    Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.

  8. A sub-cm micromachined electron microscope

    Science.gov (United States)

    Feinerman, A. D.; Crewe, D. A.; Perng, D. C.; Shoaf, S. E.; Crewe, A. V.

    1993-01-01

    A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance.

  9. The trajectories of secondary electrons in the scanning electron microscope.

    Science.gov (United States)

    Konvalina, Ivo; Müllerová, Ilona

    2006-01-01

    Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection.

  10. An electron microscope for the aberration-corrected era

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, O.L. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)], E-mail: krivanek.ondrej@gmail.com; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)

    2008-02-15

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

  11. An electron microscope for the aberration-corrected era

    International Nuclear Information System (INIS)

    Krivanek, O.L.; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W.

    2008-01-01

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown

  12. Electron optical characteristics of a concave electrostatic electron mirror for a scanning electron microscope

    International Nuclear Information System (INIS)

    Hamarat, R.T.; Witzani, J.; Hoerl, E.M.

    1984-08-01

    Numerical computer calculations are used to explore the design characteristics of a concave electrostatic electron mirror for a mirror attachment for a conventional scanning electron microscope or an instrument designed totally as a scanning electron mirror microscope. The electron paths of a number of set-ups are calculated and drawn graphically in order to find the optimum shape and dimensions of the mirror geometry. This optimum configuration turns out to be the transition configuration between two cases of electron path deflection, towards the optical axis of the system and away from it. (Author)

  13. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  14. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  15. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave. ... fracture with LightSpeed (LS), ProTaper (PT) and EndoWave (Ew) rotary instruments.

  16. Development of superconducting cryo-electron microscope and its applications

    International Nuclear Information System (INIS)

    Iwatsuki, Masashi

    1988-01-01

    Recently, a superconducting cryo-electron microscope in which specimens are cooled to the liquid helium temperature (4.2 K) has been developed. The main components and functional features of this new microscope are reported together with application data on polyethylene, poly (4-methyl-1-pentene), valonia cellulose, rock salt, ice crystallites and ceramic superconductor. The resistance to electron radiation damage, of beam-sensitive specimens including polymers has been increased more than ten times. Thus, the microscope has made it possible to take high resolution images and to analyze the crystal-structure of micro-areas. (orig.) [de

  17. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  18. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  19. Energy dispersive X-ray analysis in the electron microscope

    CERN Document Server

    Bell, DC

    2003-01-01

    This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical me

  20. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. Microscopic recognition and identification of fish meal in compound feeds

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Prins, Theo; Rhee, van de N.; Vliege, J.J.M.; Pinckaers, V.G.Z.

    2017-01-01

    Fish meal is an accepted ingredient in compound feed. Unauthorised application is primarily enforced by visual inspection, i.e., microscopy. In order to document the visually available diversity, fragments of bones and scales of 17 teleost fish species belonging to seven different orders were

  2. Electron microscope study of irradiated beryllium oxide

    International Nuclear Information System (INIS)

    Bisson, A.A.

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. α) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10 19 , 9 x 10 19 and 2 x 10 20 n f cm -2 at a temperature below 100 deg. C. For the irradiation at 6 x 10 19 n f cm -2 , the defects are merely visible, but at 2 x l0 20 n f cm -2 the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [fr

  3. Shielded scanning electron microscope for radioactive samples

    International Nuclear Information System (INIS)

    Crouse, R.S.; Parsley, W.B.

    1977-01-01

    A small commercial SEM had been successfully shielded for examining radioactive materials transferred directly from a remote handling facility. Relatively minor mechanical modifications were required to achieve excellent operation. Two inches of steel provide adequate shielding for most samples encountered. However, samples reading 75 rad/hr γ have been examined by adding extra shielding in the form of tungsten sample holders and external lead shadow shields. Some degradation of secondary electron imaging was seen but was adequately compensated for by changing operating conditions

  4. Electron-microscopic autoradiography of tritiated testosterone in rat testis

    International Nuclear Information System (INIS)

    Frederik, P.M.; Molen, H.J. van der; Galjaard, H.; Klepper, D.

    1977-01-01

    The feasibility of a technique for autoradiography of diffusible substances has been further tested by analysing the localization of steroids in rats testes with the light- and electron-microscope. Testes of rats were perfused with tritiated testosterone (3 min) followed by 15-min perfusion with buffer containing a 100-fold excess of unlabelled testosterone. Tissue samples were frozen, freeze dried, fixed in osmium vapour and embedded in Epon. To exclude extraction of steroids, contact with water and other solvents was prevented during cutting of thin sections on an ultracryotome and further treatment for autoradiography. Light- and electron-microscopic observations indicated that the highest concentration of labelled testosterone was present within the basal parts of the Sertoli cell cytoplasm and in lipid inclusions of Sertoli cells within the seminiferous tubules. This is the first account of autoradiography of steroids at the electron-microscope level. (author)

  5. Analytical electron microscope study of eight ataxites

    Science.gov (United States)

    Novotny, P. M.; Goldstein, J. I.; Williams, D. B.

    1982-01-01

    Optical and electron optical (SEM, TEM, AEM) techniques were employed to investigate the fine structure of eight ataxite-iron meteorites. Structural studies indicated that the ataxites can be divided into two groups: a Widmanstaetten decomposition group and a martensite decomposition group. The Widmanstaetten decomposition group has a Type I plessite microstructure and the central taenite regions contain highly dislocated lath martensite. The steep M shaped Ni gradients in the taenite are consistent with the fast cooling rates, of not less than 500 C/my, observed for this group. The martensite decomposition group has a Type III plessite microstructure and contains all the chemical group IVB ataxites. The maximum taenite Ni contents vary from 47.5 to 52.7 wt % and are consistent with slow cooling to low temperatures of not greater than 350 C at cooling rates of not greater than 25 C/my.

  6. Electron microscope study of Sarcocystis sp

    Science.gov (United States)

    Zeve, V.H.; Price, D.L.; Herman, C.M.

    1966-01-01

    Sarcocystis sp. obtained from wild populations of grackles, Quiscalus quiscula (Linn.), were examined to clarify the effect of the parasite on the host. Electron micrographs are presented to show areas of muscle destruction adjacent to the parasite which appear to be mechanically produced by the parasite. The microtubules within the villus-like projections of the cyst suggest that their possible function is absorptive and/or conductive with regard to the production of a toxin or the conveyance of nutritive material to the developing cells. The proposed function of submembranous filaments and their relation to the conoid is discussed. Similarities in the ultrastructure to Toxoplasma and other protozoa tend to negate the relegation of Sarcocystis to the fungi and further emphasize its protozoan nature.

  7. Dental Wear: A Scanning Electron Microscope Study

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2014-01-01

    Full Text Available Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction studied by scanning electron microscopy (SEM. The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp, to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders. It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction.

  8. Scanning electron microscopic studies on bone tumors

    International Nuclear Information System (INIS)

    Itoh, Motoya

    1978-01-01

    Surface morphological observations of benign and malinant bone tumors were made by the use of scanning electron microscopy. Tumor materials were obtained directly from patients of osteogenic sarcomas, chondrosarcomas, enchondromas, giant cell tumors and Paget's sarcoma. To compare with these human tumors, the following experimental materials were also observed: P 32 -induced rat osteogenic sarcomas with their pulmonary metastatic lesions, Sr 89 -induced transplantable mouse osteogenic sarcomas and osteoid tissues arising after artificial fractures in mice. One of the most outstanding findings was a lot of granular substances seen on cell surfaces and their intercellular spaces in osteoid or chondroid forming tissues. These substances were considered to do some parts in collaborating extracellular matrix formation. Protrusions on cell surface, such as mucrovilli were more or less fashioned by these granular substances. Additional experiments revealed these substances to be soluble in sodium cloride solution. Benign osteoid forming cells, such as osteoblasts and osteoblastic osteosarcoma cells had granular substances on their surfaces and their intercellular spaces. On the other hand, undifferentiated transplantable osteosarcoma which formed on osteoid or chondroid matrix had none of these granular substances. Consequently, the difference of surface morphology between osteosarcoma cells and osteoblasts was yet to be especially concluded. (author)

  9. Scanning tunnel microscope with large vision field compatible with a scanning electron microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Stepanyan, G.A.; Khajkin, M.S.; Ehdel'man, V.S.

    1989-01-01

    A scanning tunnel microscope (STM) with the 20μm vision field and 1nm resolution, designed to be compatible with a scanning electron microscope (SEM), is described. The sample scanning area is chosen within the 3x10mm limits with a 0.1-1μm step. The STM needle is moved automatically toward the sample surface from the maximum distance of 10mm until the tunneling current appears. Bimorphous elements of the KP-1 piezocorrector are used in the STM design. The device is installed on a table of SEM object holders

  10. Electron microscopic observation at low temperature on superconductors

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Hashimoto, Hatsujiro; Yoshida, Hiroyuki.

    1991-01-01

    The authors have observed superconducting materials with a high resolution electron microscope at liquid helium temperature. First, observation was carried out on Nb system intermetallic compounds such as Nb 3 Al and Nb 3 Sn of Al 5 type and Nb 3 Ge of 11 type at extremely low temperature. Next, the observation of high temperature superconductive ceramics in the state of superconductivity was attempted. In this paper, first the development of the liquid helium sample holder for a 400 kV electron microscope to realize the observation is reported. Besides, the sample holder of Gatan Co. and an extremely low temperature, high resolution electron microscope with a superconducting lens are described. The purpose of carrying out the electron microscope observation of superconductors at low temperature is the direct observation of the crystalline lattice image in the state of superconductivity. Also the structural transformation from tetragonal crystals to rhombic crystals in Al 5 type superconductors can be observed. The results of observation are reported. (K.I.)

  11. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  12. New Scanning Electron Microscope Used for Cryogenic Tensile Testing

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    At CERN engineering department's installation for cryogenic tensile testing, the new scanning electron microscope (SEM) allows for detailed optical observations to be carried out. Using the SEM, surface coatings and tensile properties of materials can investigated in order to better understand how they behave under different conditions.

  13. Three-Dimensional Orientation Mapping in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Liu, Haihua; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    resolution of 200 nanometers (nm). We describe here a nondestructive technique that enables 3D orientation mapping in the transmission electron microscope of mono- and multiphase nanocrystalline materials with a spatial resolution reaching 1 nm. We demonstrate the technique by an experimental study...

  14. On the resolution of the electron microscopic radioautography

    International Nuclear Information System (INIS)

    Uchida, Kazuko; Daimon, Tateo; Kawai, Kazuhiro

    1981-01-01

    The aim of electron microscopic radioautography is to reveal the exact localization of certain substances at the macromolecular level. In order to attain this object the establishment of a fine grain development method is indispensable. Some of latent images are formed at the contact surface between the polyhedral halide silver grain and the section surface, where the impact of #betta# particles come directly from the section involved, and since it is in contact with the section it remains in place even after development and gelatin removal. This latent image finally becomes a developed silver grain in the electron microscope radioautogram. Although the limit of resolution in electron microscopic radioautography is supposed to be the diameter of halide silver grains in emulsion, it may be improved by considering the fact that the contact area between the halide silver grain and the section surface is the minimum unit of resolution. The minimum resolution of electron microscopic radioautography was determined histologically to be about 100A. (author)

  15. Improved coating and fixation methods for scanning electron microscope autoradiography

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1984-01-01

    A simple apparatus for emulsion coating is described. The apparatus is inexpensive and easily assembled in a standard glass shop. Emulsion coating for scanning electron microscope autoradiography with this apparatus consistently yields uniform layers. When used in conjunction with newly described fixation methods, this new approach produces reliable autoradiographs of undamaged specimens

  16. Scanning electron microscope facility for examination of radioactive materials

    International Nuclear Information System (INIS)

    Gibson, J.R.; Braski, D.N.

    1985-02-01

    An AMRAY model 1200B scanning electron microscope was modified to permit remote examination of radioactive specimens. Features of the modification include pneumatic vibration isolation of the column, motorized stage controls, improvements for monitoring vacuum, and a system for changing filaments without entering the hot cell

  17. Heat- and radiation-resistant scintillator for electron microscopes

    International Nuclear Information System (INIS)

    Kosov, A.V.; Petrov, S.A.; Puzyr', A.P.; Chetvergov, N.A.

    1987-01-01

    The use of a scintillator consisting of a single crystal of bismuth orthogermanate, which has high heat and radiation resistance, in REM-100, REM-200, and REM-100U electron microscopes is described. A study of the heat and radiation stabilities of single crystals of bismuth orthogermanate (Bi 4 Ge 3 O 12 ) has shown that they withstood multiple electron-beam heating redness (T ∼ 800 0 C) without changes in their properties

  18. Examples of electrostatic electron optics: The Farrand and Elektros microscopes and electron mirrors

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    2012-01-01

    The role of Gertrude Rempfer in the design of the Farrand and Elektros microscopes is evoked. The study of electron mirror optics, aberration correction using mirrors and the development of microscopes employing electron mirrors are recapitulated, accompanied by a full bibliography, of earlier publications in particular.

  19. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  20. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  1. Closed-Loop Autofocus Scheme for Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Cui Le

    2015-01-01

    Full Text Available In this paper, we present a full scale autofocus approach for scanning electron microscope (SEM. The optimal focus (in-focus position of the microscope is achieved by maximizing the image sharpness using a vision-based closed-loop control scheme. An iterative optimization algorithm has been designed using the sharpness score derived from image gradient information. The proposed method has been implemented and validated using a tungsten gun SEM at various experimental conditions like varying raster scan speed, magnification at real-time. We demonstrate that the proposed autofocus technique is accurate, robust and fast.

  2. Historical evolution toward achieving ultrahigh vacuum in JEOL electron microscopes

    CERN Document Server

    Yoshimura, Nagamitsu

    2014-01-01

    This book describes the developmental history of the vacuum system of the transmission electron microscope (TEM) at the Japan Electron Optics Laboratory (JEOL) from its inception to its use in today’s high-technology microscopes. The author and his colleagues were engaged in developing vacuum technology for electron microscopes (JEM series) at JEOL for many years. This volume presents a summary and explanation of their work and the technology that makes possible a clean ultrahigh vacuum. The typical users of the TEM are top-level researchers working at the frontiers of new materials or with new biological specimens. They often use the TEM under extremely severe conditions, with problems sometimes occurring in the vacuum system of the microscopes. JEOL engineers then must work as quickly as possible to improve the vacuum evacuation system so as to prevent the recurrence of such problems. Among the wealth of explanatory material in this book are examples of users’ reports of problems in the vacuum system of...

  3. Specimen holder for an electron microscope and device and method for mounting a specimen in an electron microscope

    NARCIS (Netherlands)

    Zandbergen, H.W.; Latenstein van Voorst, A.; Westra, C.; Hoveling, G.H.

    1996-01-01

    A specimen holder for an electron microscope, comprising a bar-shaped body provided adjacent one end with means for receiving a specimen, with means being present for screening the specimen from the environment at least temporarily in airtight and moisture-proof manner in a first position, which

  4. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft

    Science.gov (United States)

    Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.

    Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.

  6. Acute radiation nephritis. Light and electron microscopic observations

    International Nuclear Information System (INIS)

    Kapur, S.; Chandra, R.; Antonovych, T.

    1977-01-01

    Light and electron microscopy were used to observe acute radiation nephritis. By light microscopy the changes were of fibrinoid necrosis of the arteries and arterioles with segmental necrosis of the glomerular tufts. By electron microscopy the endocapillary cells reacted by hypertrophy and hyperplasia with increase in cytoplasmic organelles. In addition, disruption of endothelial and epithelial cells from the basement membranes were seen. It is concluded that the electron microscopic changes were unique and may be helpful in differentiating the necrotizing glomerulitis seen in other conditions, especially malignant hypertension

  7. Foucault imaging by using non-dedicated transmission electron microscope

    International Nuclear Information System (INIS)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-01-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  8. Foucault imaging by using non-dedicated transmission electron microscope

    Science.gov (United States)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  9. Foucault imaging by using non-dedicated transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  10. Use of a scanning electron microscope for examining radioactive materials

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Prouve, Michel.

    1981-05-01

    The LAMA laboratory of the Grenoble Nuclear Research Center participates in studies carried out by research teams on fuels. Post-irradiation studies are performed on irradiated pins for research and development and safety programs. A scanning electron microscope was acquired for this purpose. This microscope had to fulfill certain criteria: it had to be sufficiently compact for it to be housed in a lead enclosure; it had to be capable of being adapted to operate with remote handling control. The modifications made to this microscope are briefly described together with the ancillary equipment of the cell. In parallel with these operations, an interconnection was realized enabling materials to be transferred between the various sampling and sample preparation cells and the microscope cell with a small transfer cask. After two years operating experience the microscope performance has been assessed satisfactory. The specific radioactivity of the samples themselves cannot be incriminated as the only cause of loss in resolution at magnifications greater than x 10,000 [fr

  11. Characterization of quantum well structures using a photocathode electron microscope

    Science.gov (United States)

    Spencer, Michael G.; Scott, Craig J.

    1989-01-01

    Present day integrated circuits pose a challenge to conventional electronic and mechanical test methods. Feature sizes in the submicron and nanometric regime require radical approaches in order to facilitate electrical contact to circuits and devices being tested. In addition, microwave operating frequencies require careful attention to distributed effects when considering the electrical signal paths within and external to the device under test. An alternative testing approach which combines the best of electrical and optical time domain testing is presented, namely photocathode electron microscope quantitative voltage contrast (PEMQVC).

  12. Pulsed Power for a Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  13. Pulsed Power for a Dynamic Transmission Electron Microscope

    International Nuclear Information System (INIS)

    DeHope, W.J.; Browning, N.; Campbell, G.; Cook, E.; King, W.; Lagrange, T.; Reed, B.; Stuart, B.; Shuttlesworth, R.; Pyke, B.

    2009-01-01

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM

  14. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  15. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  16. Electron irradiation-induced destruction of carbon nanotubes in electron microscopes

    International Nuclear Information System (INIS)

    Molhave, Kristian; Gudnason, Sven Bjarke; Pedersen, Anders Tegtmeier; Clausen, Casper Hyttel; Horsewell, Andy; Boggild, Peter

    2007-01-01

    Observations of carbon nanotubes under exposure to electron beam irradiation in standard transmission electron microscope (TEM) and scanning electron microscope (SEM) systems show that such treatment in some cases can cause severe damage of the nanotube structure, even at electron energies far below the approximate 100 keV threshold for knock-on damage displacing carbon atoms in the graphene structure. We find that the damage we observe in one TEM can be avoided by use of a cold finger. This and the morphology of the damage imply that water vapour, which is present as a background gas in many vacuum chambers, can damage the nanotube structure through electron beam-induced chemical reactions. Though, the dependence on the background gas makes these observations specific for the presently used systems, the results demonstrate the importance of careful assessment of the level of subtle structural damage that the individual electron microscope system can do to nanostructures during standard use

  17. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluczyk

    2018-06-01

    Full Text Available Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA and semi-classical (hydrodynamic theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  18. Cooled CCDs for recording data from electron microscopes

    CERN Document Server

    Faruqi, A R

    2000-01-01

    A cooled-CCD camera based on a low-noise scientific grade device is described in this paper used for recording images in a 120 kV electron microscope. The primary use of the camera is for recording electron diffraction patterns from two-dimensionally ordered arrays of proteins at liquid-nitrogen temperatures leading to structure determination at atomic or near-atomic resolution. The traditional method for recording data in the microscope is with electron sensitive film but electronic detection methods offer the following advantages over film methods: the data is immediately available in a digital format which can be displayed on a monitor screen for visual inspection whereas a film record needs to be developed and digitised, a lengthy process taking at least several hours, prior to inspection; the dynamic range of CCD detectors is about two orders of magnitude greater with better linearity. The accuracy of measurements is also higher for CCDs, particularly for weak signals due to inherent fog levels in film. ...

  19. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  20. In situ laser processing in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-15

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  1. Characteristics of different frequency ranges in scanning electron microscope images

    International Nuclear Information System (INIS)

    Sim, K. S.; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-01-01

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement

  2. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  3. Fabrication and electric measurements of nanostructures inside transmission electron microscope.

    Science.gov (United States)

    Chen, Qing; Peng, Lian-Mao

    2011-06-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  5. Electric field stimulation setup for photoemission electron microscopes.

    Science.gov (United States)

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  6. Resizing metal-coated nanopores using a scanning electron microscope.

    Science.gov (United States)

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spinning Carbon Nanotube Nanothread under a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark Schulz

    2011-08-01

    Full Text Available Nanothread with a diameter as small as one hundred nanometers was manufactured under a scanning electron microscope. Made directly from carbon nanotubes, and inheriting their superior electrical and mechanical properties, nanothread may be the world’s smallest man-made fiber. The smallest thread that can be spun using a bench-top spinning machine is about 5 microns in diameter. Nanothread is a new material building block that can be used at the nanoscale or plied to form yarn for applications at the micro and macro scales. Preliminary electrical and mechanical properties of nanothread were measured. The resistivity of nanothread is less than 10−5 Ω∙m. The strength of nanothread is greater than 0.5 GPa. This strength was obtained from measurements using special glue that cures in an electron microscope. The glue weakened the thread, thus further work is needed to obtain more accurate measurements. Nanothread will have broad applications in enabling electrical components, circuits, sensors, and tiny machines. Yarn can be used for various macroscale applications including lightweight antennas, composites, and cables.

  8. Scanning electron microscope autoradiography of critical point dried biological samples

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1980-01-01

    A technique has been developed for the localization of isotopes in the scanning electron microscope. Autoradiographic studies have been performed using a model system and a unicellular biflagellate alga. One requirement of this technique is that all manipulations be carried out on samples that are maintained in a liquid state. Observations of a source of radiation ( 125 I-ferritin) show that the nuclear emulsion used to detect radiation is active under these conditions. Efficiency measurement performed using 125 I-ferritin indicate that 125 I-SEM autoradiography is an efficient process that exhibits a 'dose dependent' response. Two types of labeling methods were used with cells, surface labeling with 125 I and internal labeling with 3 H. Silver grains appeared on labeled cells after autoradiography, removal of residual gelatin and critical point drying. The location of grains was examined on a flagellated green alga (Chlamydomonas reinhardi) capable of undergoing cell fusion. Fusion experiments using labeled and unlabeled cells indicate that 1. Labeling is specific for incorporated radioactivity; 2. Cell surface structure is preserved in SEM autoradiographs and 3. The technique appears to produce reliable autoradiographs. Thus scanning electron microscope autoradiography should provide a new and useful experimental approach

  9. Development of a secondary electron energy analyzer for a transmission electron microscope.

    Science.gov (United States)

    Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke

    2018-04-01

    A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.

  10. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  11. Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.

    2011-01-01

    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.

  12. Field Emission Scanning Electron Microscope (FESEM) Facility in BTI

    International Nuclear Information System (INIS)

    Cik Rohaida Che Hak; Foo, C.T.; Nor Azillah Fatimah Othman

    2015-01-01

    Field Emission Scanning Electron Microscope (FE-SEM) provides ultra-high resolution imaging at low accelerating voltages and small working distances. The GeminisSEM 500, a new FESEM imaging facility will be installed soon in MTEC, BTI. It provides resolution of the images is as low as 0.6 nm at 15 kV and 1.2 nm at 1 kV, allowing examination of the top surface of nano powders, nano film and nano fiber in the wide range of applications such as mineralogy, ceramics, polymer, metallurgy, electronic devices, chemistry, physics and life sciences. This system is equipped with several detectors to detect various signals such as secondary electrons (SE) detector for topographic information and back-scattered electrons (BSE) detector for materials composition contrast. Energy dispersive x-ray spectroscopy (EDS) with detector energy resolution of < 129 eV and detection limit in the range of 1000-3000 ppm coupled with FE-SEM is used to determine the chemical composition of micro-features including boron (B) to uranium (U). Wavelength dispersive x-ray spectroscopy (WDS) which has detector resolution of 2-20 eV and detection limit of 30-300 ppm coupled with FE-SEM is used to detect elements that cannot be resolved with EDS. The ultra-high resolution imaging combined with the high sensitivity WDS helps to resolve the thorium and rare earth elemental analysis. (author)

  13. Microstructure of steel X 20 Cr 13 in the electron microscopical picture

    International Nuclear Information System (INIS)

    Gesatzke, W.

    1982-01-01

    The tempered microstructure of the steel X 20 Cr 13 is described by an electron microscopical overall picture and additional information is gained which would not be possible with the optical microscope. The large transmission area permits one to quantitatively evaluate a microstructure component which due to its small size can only be measured with electron microscope pictures. (orig.) [de

  14. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    International Nuclear Information System (INIS)

    Sudheer,; Tiwari, P.; Rai, V. N.; Srivastava, A. K.; Mukharjee, C.

    2015-01-01

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique

  15. Permanent magnet finger-size scanning electron microscope columns

    Energy Technology Data Exchange (ETDEWEB)

    Nelliyan, K., E-mail: elenk@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-07-21

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  16. Electron-microscope study of cloud and fog nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, S; Okita, T

    1952-01-01

    Droplets of clouds on a mountain and of fog in an urban area were captured and the form, nature and size of their nuclei were studied by means of an electron-microscope and by a chamber of constant humidity. These nuclei have similar form and nature to the hygroscopic particles in haze and to the artificially produced combustion particles. No sea-salt nuclei were found in our observations, therefore, sea-spray appears to be an insignificant source of condensation nuclei. It was found that both the cloud and the fog nuclei originated in combustion products which were the mixture of hygroscopic and non-hygroscopic substances, and that the greater part of the nuclei did not contain pure sulfuric acid.

  17. Pigmentosis tubae, a new entity: light and electron microscopic study

    International Nuclear Information System (INIS)

    Herrera, G.A.; Reimann, B.E.; Greenberg, H.L.; Miles, P.A.

    1983-01-01

    The authors noted an unusual finding in the fallopian tubes of a 31-year-old woman who had received external and internal whole pelvis radiotherapy for squamous cell carcinoma of the cervix. Aggregates of macrophages containing pigment, identified in a subepithelial location, were reminiscent of melanosis coli, which is caused by abuse of anthracene-containing laxatives. Electron microscopic examination of the pigment revealed cytoplasmic material with the appearance of lipofuscin, identical to the pigment described in cases of colonic melanosis. After a careful study of possible etiologic agents, it was concluded that the pigment most likely resulted from cellular damage caused by radiotherapy. The authors are not aware of any other reported case of this entity, which will be called pigmentosis tubae

  18. Permanent magnet finger-size scanning electron microscope columns

    International Nuclear Information System (INIS)

    Nelliyan, K.; Khursheed, A.

    2011-01-01

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  19. Trichomes of Cannabis sativa as viewed with scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, M C; Krikorian, A D

    1975-06-01

    Direct examination of fresh, unfixed and uncoated specimens from vegetative and floral parts of Cannabis sativa with the scanning electron microscope enables one to obtain a faithful representation of their surface morphology. The presence of two major types of trichomes has been confirmed: a glandular type comprising or terminating in a globoid structure, and a conically-shaped nonglandular type. Moreover, three or possibly four distinct glandular types can be distinguished: sessile globoid, small-stalked and large-stalked globoid, and a peltate type. The nonglandular trichomes can be distinguished by the nature of their surfaces: those with a warty surface, and those which are relatively smooth. The range of size and distribution, and the special features of all these types of trichomes are also provided.

  20. Mucopolysaccharides in the trabecular meshwork. Light and electron microscopic autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Yoshitaka; Yamana, Yasuo; Abe, Masahiro (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1982-09-01

    The localization of /sup 35/S-sulfate and /sup 3/H-glucosamine in the trabecular region of the hamster was studied by light and electron microscopic autoradiography after the intraperitoneal injection. Exposed silver grains of /sup 35/S-sulfate were concentrated in the trabecular meshwork, sclera and cornea, and grains of /sup 35/H-glucosamine were localized in the trabecular region. The radioactivity of both isotopes was observed in the Golgi apparatuses of the endothelial cells and fibroblasts in Schlemm's canal and the trabecular meshwork. Thereafter, the grains were noted over the entire cytoplasm, except for the nucleus, and then were incorporated into the amorphous substance and collagen fibers in the juxtacanalicular connective tissue. These results suggest that endothelial cells in the trabecular region synthesize and secrete the sulfated mucopolysaccharides and hyaluronic acid.

  1. Electron microscopic study on SrGdMnO4

    International Nuclear Information System (INIS)

    Nakano, Hiromi; Ishizawa, Nobuo; Kamegashira, Naoki; Zulhadjri; Shishido, Toetsu

    2006-01-01

    Single crystals of SrGdMnO 4 have been synthesized by the floating zone method. The structure was characterized as the K 2 NiF 4 -type, using X-ray diffraction (XRD) and a transmission electron microscope (TEM). Presence of weak reflections breaking the archetypal tetragonal symmetry was observed from the selected area diffraction (SAD). The compound was found to have an orthorhombic unit cell of a ≅ b = 0.532(4) nm, c = 1.271(6) nm, by taking the a and b axes along the diagonal directions on the basal plane of the tetragonal archetype. Structural change occurred around 1018 K. The weak reflections disappeared in the SAD pattern, suggesting that crystal is of the archetype above 1018 K

  2. Transmission electron microscope sample holder with optical features

    Science.gov (United States)

    Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  3. In situ ion etching in a scanning electron microscope

    International Nuclear Information System (INIS)

    Dhariwal, R.S.; Fitch, R.K.

    1977-01-01

    A facility for ion etching in a scanning electron microscope is described which incorporates a new type of electrostatic ion source and viewing of the specimen is possible within about 30 sec after terminating the ion bombardment. Artefacts produced during etching have been studied and cone formation has been followed during its growth. The instrument has provided useful structural information on metals, alloys, and sinters. However, although insulating materials, such as plastics, glass and resins, have been successfully etched, interpretation of the resultant micrographs is more difficult. Ion etching of soft biological tissues, such as the rat duodenum was found to be of considerable interest. The observed structural features arise from the selective intake of the heavy fixation elements by different parts of the tissue. Hard biological materials, such as dental tissues and restorative materials, have also been studied and the prismatic structure of the enamel and the form and distribution of the dentinal tubules have been revealed. (author)

  4. A scanning electron microscopic investigation of ceramic orthodontic brackets

    International Nuclear Information System (INIS)

    McDonald, F.; Toms, A.P.

    1990-01-01

    Ceramic brackets were introduced to overcome the esthetic disadvantages of stainless steel brackets. The clinical impression of these brackets is very favorable. However, the sliding mechanics used in the Straightwire (A Company, San Diego, CA, USA) system appear to produce slower tooth movements with ceramic compared to stainless steel brackets. To determine whether this was due to any obvious mechanical problem in the bracket slot, Transcend (Unitek Corporation/3M, Monrovia, CA, USA) ceramic brackets were examined by a scanning electron microscope and compared to stainless steel brackets.Consistently, large surface defects were found in the ceramic bracket slots that were not present in the metal bracket slots. These irregularities could obviously hinder the sliding mechanics of the bracket slot-archwire system and create a greater demand on anchorage. Conversely, the fitting surface of the Transcend ceramic bracket showed extremely smooth surface characteristics, and it would seem advisable for the manufacturers to incorporate this surface within the bracket slot. (author)

  5. Characterization of polycapillary optics installed in an analytical electron microscope

    International Nuclear Information System (INIS)

    Takano, Akira; Maehata, Keisuke; Iyomoto, Naoko; Hara, Toru; Mitsuda, Kazuhisa; Yamasaki, Noriko; Tanaka, Keiichi

    2016-01-01

    An energy-dispersive spectrometer with a superconducting transition edge sensor (TES) microcalorimeter mounted on a scanning transmission electron microscope (STEM) is developed to enhance the accuracy of nanoscale materials analysis. TES microcalorimeters generally have sensitive surface areas of the order of 100 × 100 µm 2 . Also, the magnetic field generated by the STEM objective lens means that a TES microcalorimeter cannot be placed in a STEM column. We therefore use polycapillary optics to collect the X-rays. In this study, X-rays are collected from a STEM specimen and are then focused on a silicon drift detector; from these measurements, the optics are characterized and the experimental results are compared with the design of the optics. (author)

  6. Quantitative electron microscopical autoradiography of calcium during dentinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y [Tokyo Dental Coll. (Japan); Frank, R M

    1975-03-01

    /sup 45/Ca migration from the dental papilla and the odontablasts towards predentin and dentin has been studied through electron microscopical autoradiography in toothgerms of newborn cats. A quantitative procedure was applied to the study of the /sup 45/Ca migration in dentinogenesis. Two pathways of almost identical importance have been demonstrated. The direct pathway followed the intercellular spaces of the dental papilla and of the odontoblasts and reached the dentin via predentin. The second road, after passage through the intercellular spaces of the dental papilla, consisted of an intracellular migration through the odontoblast. The mitochondria and the golgi apparatus were progressively the most labelet at 5 min., 30 min. and 1 h. after intravenous injection. The calcium diffused into the odontablastic process without being associated with the dense granule. At 6 hours, maximum radioactivity was observed in the intertubular dentin.

  7. Quantitative electron microscopical autoradiography of calcium during amelogenesis

    International Nuclear Information System (INIS)

    Nagai, Yoshinori; Frank, R.M.

    1975-01-01

    The migration of 45 Ca through the stratum intermedium and through the secreting ameloblasts towards enamel has been studied by electron microscopical autoradiography in the toothgerms of newborn cats. A quantitative procedure was applied to the study of the 45 Ca migration in amelogenesis and two pathways were demonstrated. The relatively more important direct route passed through the stratum intermedium and the ameloblast intercellular spaces and reached the enamel directly. The second pathway consisted of an intracellular migration through the ameloblast. 45 Ca penetrated the cell through its basal pole. The mitochondrias were the most highly labeled organelles at the different experimental time intervals studied. A total absence of silver grains was noted over the secretory ameloblastic bodies. At 6 hours, the highest labeling was observed over enamel. (auth.)

  8. Fabrication and electric measurements of nanostructures inside transmission electron microscope

    International Nuclear Information System (INIS)

    Chen, Qing; Peng, Lian-Mao

    2011-01-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. -- Research highlights: → We review in-situ works using manipulation holder in TEM. → In-situ electric measurements, fabrication and structure modification are focused. → We discuss important issues that should be considered for reliable results. → In-situ TEM is becoming a very powerful tool for many research fields.

  9. Contained scanning electron microscope facility for examining radioactive materials

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1986-03-01

    At the Savannah River Laboratory (SRL) radioactive solids are characterized with a scanning electron microscope (SEM) contained in a glove box. The system includes a research-grade Cambridge S-250 SEM, a Tracor Northern TN-5500 x-ray and image analyzer, and a Microspec wavelength-dispersive x-ray analyzer. The containment facility has a glove box train for mounting and coating samples, and for housing the SEM column, x-ray detectors, and vacuum pumps. The control consoles of the instruments are located outside the glove boxes. This facility has been actively used since October 1983 for high alpha-activity materials such as plutonium metal and plutonium oxide powders. Radioactive defense waste glasses and contaminated equipment have also been examined. During this period the facility had no safety-related incidents, and personnel radiation exposures were maintained at less than 100 mrems

  10. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    Science.gov (United States)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  11. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  12. Characterization of Emulsions of Fish Oil and Water by Cryo Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Horn, Anna Frisenfeldt; Jacobsen, Charlotte

    Addition of fish oil to industrially prepared food products is attractive to the food industry because of the well-documented health effects of the omega 3 fatty acids in the fish oil [1]. Polyunsaturated Fatty Acids including omega 3 fatty acids are highly susceptible to lipid oxidation due...... to the many double bonds. Emulsions of fish oil in water are potential candidates for a delivery system of fish oil to food products. It has been suggested that oxidation of oil-in-water emulsions is initiated at the interface between oil and water. It has also been proposed that oxidation is to some extent...... is to characterize fish oil in water emulsions with respect to oil droplet size, distribution, and ultimately to view the structure and thickness of the interface layer. A freeze-fractured surface viewed at low temperatures under the scanning electron microscope is a promising strategy to reveal variations...

  13. Visualization of atomic distances at the 1MV electron microscope: first results obtained on the Grenoble 1MV microscope

    International Nuclear Information System (INIS)

    Bourret, A.

    1975-01-01

    Practical and theoretical conditions for obtaining high resolution lattice images are presented. The use of a high voltage electron microscope is particularly powerful to visualize distances smaller than 3A. A 2A resolution test on (200) gold planes has been carried out on the Grenoble 1MV microscope. It would be possible at this level to study the crystalline defects such as dislocations or grain boundaries [fr

  14. Field electron emission spectrometer combined with field ion/electron microscope as a field emission laboratory

    International Nuclear Information System (INIS)

    Shkuratov, S.I.; Ivanov, S.N.; Shilimanov, S.N.

    1996-01-01

    The facility, combining the field ion microscope, field electron emission microscope and field electron emission spectrometer, is described. Combination of three methodologies makes it possible to carry out the complete cycle of emission studies. Atom-plane and clean surface of the studied samples is prepared by means of field evaporation of the material atom layers without any thermal and radiation impact. This enables the study of atom and electron structure of clean surface of the wide range materials, the study whereof through the field emission methods was previously rather difficult. The temperature of the samples under study changes from 75 up to 2500 K. The energy resolution of the electron analyzer equals 30 MeV. 19 refs., 10 figs

  15. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  16. Cathodoluminescence of semiconductors in the scanning electron microscope

    International Nuclear Information System (INIS)

    Noriegas, Javier Piqueras de

    2008-01-01

    Full text: Cathodoluminescence (CL) in the scanning electron microscope (SEM) is a nondestructive technique, useful for characterization of optical and electronic properties of semiconductors, with spatial resolution. The contrast in the images of CL is related to the presence of crystalline defects, precipitates or impurities and provides information on their spatial distribution. CL spectra allows to study local energy position of localized electronic states. The application of the CL is extended to semiconductor very different characteristics, such as bulk material, heterostructures, nanocrystalline film, porous semiconductor, nanocrystals, nanowires and other nano-and microstructures. In the case of wafers, provides information on the homogeneity of their electronic characteristics, density of dislocations, grain sub frontiers, distribution of impurities and so on. while on the study of heterostructures CL images can determine, for example, the presence of misfit dislocations at the interface between different sheets, below the outer surface of the sample. In the study of other low dimensional structures, such as nanocrystalline films, nanoparticles and nano-and microstructures are observed elongated in some cases quantum confinement effects from the CL spectra. Moreover, larger structures, the order of hundreds of nanometers, with forms of wires, tubes or strips, is that in many semiconductor materials, mainly oxides, the behavior of luminescence is different from bulk material. The microstructures have a different structure of defects and a greater influence of the surface, which in some cases leads to a higher emission efficiency and a different spectral distribution. The presentation describes the principle of the CL technique and examples of its application in the characterization of a wide range of both semiconductor materials of different composition, and of different sizes ranging from nanostructures to bulk samples

  17. Electron microscope investigation into dislocation structure of cast aluminium alloys

    International Nuclear Information System (INIS)

    Zolotorevskij, V.S.; Orelkina, T.A.; Istomin-Kastrovskij, V.V.

    1978-01-01

    By applying the diffraction electron microscopy method, the general specific features of the disclocation structure of cast binary alloys of aluminium with different additions were established. It is shown that in most alloys, when they undergo cooling in the process of crystallization at the rate of about 850 deg/min, the cellular dislocation structure is formed. It is shown that in all the alloys studied, the total density of dislocations of one order is about-10 9 cm -2 , which exceeds by 1 to 2 orders of magnitude the value which follows from the Tiller theory of concentration stresses. It has been experimentally established that the contribution of shrinkage and thermal stresses to the formation of a dislocation structure is rather insignificant; yet the dislocation density values calculated according to the size of dendritic cells and the medium angles of their disorientation are close to those determined by the electron-microscopic method. This is the basis for making a supposition that the greater part of the dislocations in castings are formed as a result of comparing dendritic branches with one another, which are disoriented in respect to each other

  18. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  19. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Collaborative Research and Development. Delivery Order 0006: Transmission Electron Microscope Image Modeling and Semiconductor Heterointerface Characterization

    National Research Council Canada - National Science Library

    Mahalingam, Krishnamurthy

    2006-01-01

    .... Transmission electron microscope (TEM) characterization studies were performed on a variety of novel III-V semiconductor heterostructures being developed for advanced optoelectronic device applications...

  1. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion

    International Nuclear Information System (INIS)

    Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E.

    2003-01-01

    A scanning tunneling microscope (STM) with a compact, three-dimensional, inertial slider design is presented. Inertial sliding of the STM tip, in three dimensions, enables coarse motion and scanning using only one piezoelectric tube. Using the same electronics both for scanning and inertial sliding, step lengths of less than 5% of the piezo range were achieved. The compact design, less than 1 cm3 in volume, ensures a low mechanical noise level and enables us to fit the STM into the sample holder of a transmission electron microscope (TEM), while maintaining atomic scale resolution in both STM and TEM imaging

  2. Electron sputtering in the analytical electron microscope: Calculations and experimental data

    International Nuclear Information System (INIS)

    Zaluzec, N.J.; Mansfield, J.F.

    1987-03-01

    The environment of the electron microscope is particularly severe when one considers the energy deposited in a specimen during typical experimental conditions. Conventional imaging experiments tend to employ electron current densities ranging from ∼0.1 to 1 A/cm 2 while during microanalysis conditions probe current densities can range from 10 to values as high as 10 5 A/cm 2 . At 100 kV this corresponds to power densities from 100 Kilowatts/cm 2 to 10 4 Megawatts/cm 2 . These energy deposition rates can result in electron irradiation damage which can substantially alter the structure and composition of a specimen through either ionization damage in organics or by displacement damage in inorganics and/or combinations thereof. For the most part materials scientists operating an analytical electron microscope (AEM) in the 100 to 200 kV regime studying metallic and/or ceramic specimens have been spared the need to consider either of these effects as their specimens have tended to be sufficiently resilient. However, the advent of the new medium voltage microscopes operating in the 300 to 400 kV regime with high brightness guns and clean or ultrahigh vacuum systems has necessitated a reevaluation of the effects of higher voltage operation in light of the destructive nature of the electron beam particularly under microanalysis conditions

  3. Microscopic appearance analysis of raw material used for the production of sintered UO2 by scanning electron microscope

    International Nuclear Information System (INIS)

    Liu feiming

    1992-01-01

    The paper describes the microscopic appearance of UO 2 , U 3 O 8 , ADU and AUC powders used for the production of sintered UO 2 slug of nuclear fuel component of PWR. The characteristic analysis of the microscopic appearance observed by scanning electron microscope shows that the quality and finished product rate of sintered UO 2 depend on the appearance characteristic of the active Uo 2 powder, such as grade size and its distribution, spherulitized extent, surface condition and heap model etc.. The addition of U 3 O 8 to the UO 2 powder improves significantly the quality and the finished product rate. The mechanism of this effect is discussed on the basis of the microscopic appearance characteristic for two kinds of powder

  4. Electron Source Brightness and Illumination Semi-Angle Distribution Measurement in a Transmission Electron Microscope.

    Science.gov (United States)

    Börrnert, Felix; Renner, Julian; Kaiser, Ute

    2018-05-21

    The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).

  5. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Wide-range tunable magnetic lens for tabletop electron microscope

    International Nuclear Information System (INIS)

    Chang, Wei-Yu; Chen, Fu-Rong

    2016-01-01

    A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV. - Highlights: • A compact condenser lens combines both permanent magnet and coils. • A tunable lens is designed to keep the same focal point for voltage 1 to 15 kV. • A miniature tunable lens which can directly fit into tabletop SEM.

  7. Contact detection for nanomanipulation in a scanning electron microscope.

    Science.gov (United States)

    Ru, Changhai; To, Steve

    2012-07-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. AIMgSil Alloy Characterization Using Transmission Electron Microscope (TEM)

    International Nuclear Information System (INIS)

    Masrukan; Elman, P.

    1996-01-01

    The aging alloy of AIMgSil containing Mg 2 Si of 1.29 % has been done with the following steps: e.q (a) part of the specimen was heated at 400 o C during 3 hours, and (b) the other part was done with solution treatment at 550 o C followed by quenching. After quenching a part of the specimen was aged at room temperature and other specimen was aged at 160 o C during 16 hours. After the specimen had been heated, then it was shaped into thin foil to be examined by Transmission Electron Microscope. The result showed that the heating at temperature of 400 o C during 3 hours created a second phase (i.e.Mg 2 Si) was like stick shape with the hexagonal structure at [0111] orientation and matrix [001], and the hardness was 31 HB. The aging of specimen at room temperature gave result a GP zone which was like the needles shape in the dislocation area of the face center cubic structure at [111] orientation and [111] matrix. The hardness obtained was 64 HB. In the other hand the aging process at temperature of 160 o C within 16 hours have resulted the precipitate which was greater than that of the former needle shaped as the face center cubic structure without dislocation at matrix with [111] orientation and [114] matrix. The hardness at this condition was 94 HB

  9. Radioactive and electron microscope analysis of effluent monitor sample lines

    International Nuclear Information System (INIS)

    Kowalski, J.F.

    1986-01-01

    Effluent air sampling at nuclear power plant often leads to the question ''How representative is the sample of the effluent stream?'' Samples from radiation monitors are typically obtained at great distances from the sample nozzle because of high background concerns under postulated accidents. Sample line plateout during normal effluent sampling becomes the major concern. A US Nuclear Regulatory Commission inspection raised a concern that monitors were not collecting representative samples per ANSI standard N13.1. A comprehensive 2-yr study at Beaver Valley was performed during normal effluent releases in two phases: 1) weekly charcoal and glass fiber filter samples were analyzed for radioactivity for 6 months, and 2) nuclepore membrane filter samples were analyzed by electron microscope for 4- and 6-h periods. A specially designed test nozzle was directly inserted into an effluent stream for comparison with the radiation monitor samples. Particle behavior characteristics can be determined during effluent releases using a simple test probe. While particle plateout was the major purpose of the study, other particle behavior characteristics were evident and equally as important. Particle travel through long sample lines can also lead to (a) agglomeration or the coagulation of smaller particles to form larger ones, (b) particle splitting or fracturing upon impact with the sample line interior walls, and (c) resuspension of large particles in sample lines

  10. Contact detection for nanomanipulation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Ru, Changhai; To, Steve

    2012-01-01

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. -- Highlights: ► We presents a simple method for obtaining the depth information in SEM-based nanomanipulation. ► Detecting contact between an end-effector and a target surface using SEM as a vision sensor. ► Additional touch/force sensors or specialized hardware need not be added. ► Achieved high repeatability and accuracy. ► Complete automatic contact detection within typically 60 s.

  11. Wide-range tunable magnetic lens for tabletop electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Yu; Chen, Fu-Rong, E-mail: fchen1@me.com

    2016-12-15

    A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV. - Highlights: • A compact condenser lens combines both permanent magnet and coils. • A tunable lens is designed to keep the same focal point for voltage 1 to 15 kV. • A miniature tunable lens which can directly fit into tabletop SEM.

  12. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  13. Contact detection for nanomanipulation in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Changhai, E-mail: rchhai@gmail.com [Automation College, Harbin Engineering University, Harbin 150001 (China); Robotics and Microsystems Center, Soochow University, Jiangsu 215021 (China); To, Steve, E-mail: Steve.to@utoronto.ca [Department of Mechanical and Industry Engineering, University of Toronto, Ontario, Canada M5S3G8 (Canada)

    2012-07-15

    Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000 Multiplication-Sign magnification while inducing little end-effector damage. -- Highlights: Black-Right-Pointing-Pointer We presents a simple method for obtaining the depth information in SEM-based nanomanipulation. Black-Right-Pointing-Pointer Detecting contact between an end-effector and a target surface using SEM as a vision sensor. Black-Right-Pointing-Pointer Additional touch/force sensors or specialized hardware need not be added. Black-Right-Pointing-Pointer Achieved high repeatability and accuracy. Black-Right-Pointing-Pointer Complete automatic contact detection within typically 60 s.

  14. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    Science.gov (United States)

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  16. The Design and Construction of a Simple Transmission Electron Microscope for Educational Purposes.

    Science.gov (United States)

    Hearsey, Paul K.

    This document presents a model for a simple transmission electron microscope for educational purposes. This microscope could demonstrate thermonic emission, particle acceleration, electron deflection, and flourescence. It is designed to be used in high school science courses, particularly physics, taking into account the size, weight, complexity…

  17. Remote control scanning electron microscope with Web operation

    International Nuclear Information System (INIS)

    Yamada, A.; Hirahara, O.; Date, M.; Lozbin, V.; Tsuchida, T.; Sugano, N.

    2002-01-01

    Full text: Recently, SEM (Scanning Electron Microscope) and the other observation instruments are coming to use a LAN (Local Area Network) to save the image in the database. We developed a remote control system in which SEM image and Control interface is indicated on the WEB Browser. In this system, SEM can be controlled by an external (client) PC installed in a general WEB Browser (Internet Explorer). Accordingly, operation interface can be indicated on the WEB browser. A JSM-6700F is connected to a LAN, and so a client PC can control the microscope. The JSM-6700F has two lines to the LAN for image transfer and communication with the SEM control. In order to transfer the image, the image size squeezes from 1280 x 1024-pixels (SEM image size) to 640x480-pixels for quick transfer. The image signal (640 x 480-pixels) is connected to the video server only, and then the image transfers to the client PC via LAN. The SEM control communicates with client PC for external command. On the other hand, the SEM control interface and the image are indicated on WEB Browser (Internet explorer). The SEM control interface is composed of the SEM image area and the SEM control part. The SEM image indicates the 640x480-pixels live image. This live image is being used as a high resolution live image transfer in the image transfer technology which a network is used for at present. If it is LAN beyond 10 base, this indication of an image can be transferred fully. When it is connected in the small line of the capacity, the refresh speed of the image becomes slow because of image data doesn't finish transferring it. In such a case, image size can be changed smaller by the LAN conditions. When a high quality image is necessary, the image of 1280 x 1024-pixels is saved on a SEM (server) side by choosing the image save button. At the same time, the file kept in SEM (server) is transferred to the client PC automatically, so that we can display a high quality image on the client PC side. The

  18. Neural Network for Nanoscience Scanning Electron Microscope Image Recognition.

    Science.gov (United States)

    Modarres, Mohammad Hadi; Aversa, Rossella; Cozzini, Stefano; Ciancio, Regina; Leto, Angelo; Brandino, Giuseppe Piero

    2017-10-16

    In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.

  19. Electron microscopic study on radiosensitivity of uterine cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, S; Shiozawa, K; Tsukamoto, T; Noguchi, H; Tsukahara, Y [Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Medicine

    1974-11-01

    The effects of 1000 R of tele-cobalt upon the changes in the primary lesions of uterine cervical cancer with time were studied with an electron microscope. In addition, twenty cases which were proven to have cancer tissues (10 cases of IInd stage of cancer, 8 cases of IIIrd stage of cancer and 2 cases of IVth stage of cancer) were studied. Four cases were favourably sensitive, 7 cases moderately sensitive and 9 cases unfavourably sensitive to radiation. In favourably radio-sensitive cases, the changes in the cancer cells first appeared in the nucleus. There were other changes such as local clumping of chromatin and, specifically, vacuolization of the nucleus. The changes in the endoplasmic reticulum appeared somewhat late. In addition, the disturbance of mitochondria and the decrease or disappearance of ribosomes were specifically due to radiation injury. From the point of view of changes with time, Golgi's apparatus was enlarged and the membrane of the endoplasmic reticulum was degenerated at the 1st day. At the 3rd day, vacuolization of the nucleus appeared, the nuclear corpuscles were increased, the nucleoplasm became thin, and mitochondria was enlarged and degenerated. At the 5th day, the nuclear membrane disappeared, the nucleus was destroyed, large vacuolization of the endoplasmic reticulum was seen, free ribosomes were decreased, and changes around the endoplasmic reticulum were observed. At the 7th day, collagen around the endoplasmic reticulum appeared. In favourably radiosensitive cases, individual tumor cells showed the same degeneration, which fairly corresponded to that evaluated by the histological observation. The disturbance of the cells was caused by radiation, so-called ''burning'' of the cells. Radiation protection of the cells against burning was considered in terms of their radiosensitivity.

  20. Digital acquisition and processing of electron micrographs using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Engel, A.; Christen, F.; Michel, B.

    1981-01-01

    A digital acquisition system that collects multichannel information from a scanning transmission electron microscope (STEM) and its application are described. The hardware comprises (i) single electron counting detectors, (ii) a digital scan generator, (iii) a digital multi-channel on-line processor, (iv) an interface to a minicomputer, and (v) a display system. Experimental results characterizing these components are presented, and their performance is discussed. The software includes assembler coded programs for dynamic file maintenance and fast acquisition of image data, a display driver, and FORTRAN coded application programs. The usefulness of digitized STEM is illustrated by a variety of biological applications. (orig.)

  1. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  2. Spin polarized electron source technology transferred from HE accelerators to electron microscopes

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2009-01-01

    For many years, we have developed a technology of spin-polarized-electron-source (PES) for a future linear collider project (ILC). Various new techniques for achieving high polarization, high quantum efficiency, high current density, sub-nanosecond multi-bunch generation etc. were developed. Two fundamental technologies; reduction of dark current and preparation of extremely high vacuum environment to protect the Negative Electron Affinity (NEA) surface have been also developed. Using these PES technologies and a new transmission type photocathode, we recently succeeded in producing the high brightness and high polarization electron beam for the low energy electron microscope (LEEM). Our Spin-LEEM system enables the world-first dynamic observation of surface magnetic domain formed by evaporation on the metal substrate with ∼ 20 nm space resolutions. (author)

  3. Simulation of electron displacement damage in a high voltage electron microscope

    International Nuclear Information System (INIS)

    Ono, Susumu; Kanaya, Koichi

    1979-01-01

    By applying the fundamental theory of the neutron cooling to the conservation law of energy and momentum, the threshold energies of incident electrons for displacing atoms are calculated and illustrated periodically for the atomic number. And the observable damage due to the secondary action of displaced atoms in the practical use of a high voltage electron microscope is described for several materials and accelerating voltages. The trajectories of incident electrons and displaced atoms in several materials are simulated by a Monte-Carlo method, using rigorous formulas of electron scattering events, i.e. elastic and inelastic scattering cross-sections, ionization loss and plasmon excitation. The simulation results are substantially agreement with experiments. (author)

  4. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  5. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    International Nuclear Information System (INIS)

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  6. Transmission electron microscope studies of crystalline LiNbO3

    International Nuclear Information System (INIS)

    Pareja, R.; Gonzalez, R.; Chen, Y.

    1984-01-01

    Transmission electron microscope investigations in both as-grown and hydrogen-reduced LiNbO 3 reveal that niobium oxide precipitates can be produced by in situ irradiations in the electron microscope. The precipitation process is produced by a combined effect of ionizing electrons and the thermal heating of the specimens during irradiation. It is proposed that the composition of the precipitates is primarily Nb 2 O 5

  7. Apparatus and methods for controlling electron microscope stages

    Science.gov (United States)

    Duden, Thomas

    2015-08-11

    Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a plurality of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.

  8. A simple way to obtain backscattered electron images in a scanning transmission electron microscope.

    Science.gov (United States)

    Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki

    2014-08-01

    We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. METHOD FOR OBSERVATION OF DEEMBEDDED SECTIONS OF FISH GONAD BY SCANNING ELECTRON MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.

  10. Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film.

    Science.gov (United States)

    Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady

    2018-06-01

    Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent. (paper)

  12. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    Science.gov (United States)

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  13. Electron microscopical studies of the common bile duct in reindeer

    Directory of Open Access Journals (Sweden)

    Timo Rahko

    1990-08-01

    Full Text Available In a previous publication the authors have described some ultrastructural characteristics of granulated cells in the common bile duct of the reindeer. On the basis of the same material, electron microscopic observations on other tissue elements of bile duct wall are now reported. The surface and glandular epithelium were composed of tall columnar epithelial cells with villous structures on the luminal surfaces. The parietal cytoplasmic membranes of epithelial cells were equipped with intercellular desmosomes while intraepithelial globule leucocytes did not form any junctional complex with other cells. Apical cytoplasmic areas of superficial epithelial cells showed electron-dense small bodies possibly consisting of mucinous substances. The goblet and deep glandular cells, on the other hand, contained numerous large mucin granules with less electron-dense matrices. It appears that their secretions are more abundant than those in superficial epithelial cells which obviously are absorptive as their main function. The nuclei and other cytoplasmic organelles showed profiles similar to those in epithelial cells generally. The lumen of the bile ducts was usually empty or contained fine-granular or amorphous material. An unusual feature was the presence of parts of globule leucocytes or even almost whole cells occurring freely in ductal secretions.Elektronimikroskooppinen tutkimus yhteisen sappikäytävän rakenteesta porolla.Abstract in Finnish / Yhteenveto: Aikaisemmassa julkaisussa tekijät kuvasivat poron yhteisen sappikäytävän (ductus hepaticus communis seinämän jyväsellisten solujen hienorakennetta. Tässä artikkelissa selostetaan saman aineiston perusteella (6 tervettä teurasporoa elektronimikroskooppisia havaintoja sappikäytäväseinämän muista kudosrakenteista. Sappikäytäväseinämän pinta- ja rauhasepiteeli koostuu korkeista epiteelisoluista. Pinnallisia epiteelisoluja kattavat säännölliset mikrovillukset, ja niillä on vain v

  14. Complex composition film condensation in the sluice device of an electron microscope

    International Nuclear Information System (INIS)

    Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.

    1994-01-01

    Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films

  15. Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    The oxidation of nickel particles was studied in situ in an environmental transmission electron microscope in 3.2 mbar of O2 between ambient temperature and 600°C. Several different transmission electron microscopy imaging techniques, electron diffraction and electron energy-loss spectroscopy were...... diffusion of Ni2+ along NiO grain boundaries, self-diffusion of Ni2+ ions and vacancies, growth of NiO grains and nucleation of voids at Ni/NiO interfaces. We also observed the formation of transverse cracks in a growing NiO film in situ in the electron microscope....

  16. Differential ultrahigh-vacuum pump for electron microscope

    International Nuclear Information System (INIS)

    Kroshkov, A.A.; Aseev, A.L.; Baranova, E.A.; Latyshev, A.V.; Yakushenko, O.A.

    1985-01-01

    A differential cryogenic pump for the JEM-7A microscope is described. It reduces the vacuum pressure in the region of the specimen. The device allows tilting and movement of the specimen, direct electrical heating, measurement of specimen temperature, and deposition of films of various substances on the specimen surface. A diagram of the pump shows its placement in the objective chamber of the microscope. The fittings are equipped with bellows and provide for input and output of liquid nitrogen or liquid-helium vapor coolants. The enumerated results attest to a reduction of residual atmospheric pressure in the area of the specimen and the possibility of producing a pure silicon surface in the described device

  17. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    Science.gov (United States)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Evolutionary developments in x ray and electron energy loss microanalysis instrumentation for the analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nester J.

    Developments in instrumentation for both X ray Dispersive and Electron Energy Loss Spectroscopy (XEDS/EELS) over the last ten years have given the experimentalist a greatly enhanced set of analytical tools for characterization. Microanalysts have waited for nearly two decades now in the hope of getting a true analytical microscope and the development of 300 to 400 kV instruments should have allowed us to attain this goal. Unfortunately, this has not generally been the case. While there have been some major improvements in the techniques, there has also been some devolution in the modern AEM (Analytical Electron Microscope). In XEDS, the majority of today's instruments are still plagued by the hole count effect, which was first described in detail over fifteen years ago. The magnitude of this problem can still reach the 20 percent level for medium atomic number species in a conventional off-the-shelf intermediate voltage AEM. This is an absurd situation and the manufacturers should be severely criticized. Part of the blame, however, also rests on the AEM community for not having come up with a universally agreed upon standard test procedure. Fortunately, such a test procedure is in the early stages of refinement. The proposed test specimen consists of an evaporated Cr film approx. 500 to 1000A thick supported upon a 3mm diameter Molybdenum 200 micron aperture.

  19. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  20. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Correlation between mechanical vibrations and resolving power of an electron microscope

    International Nuclear Information System (INIS)

    Lopez, J.J.

    1975-01-01

    The mechanical vibrations of the Grenoble 1MV electron microscope are analyzed. The solutions used to obtain a stability in the order of 3.10 -6 are exposed. A resolution of 1,8A should be achieved [fr

  2. Use of high voltage electron microscope to simulate radiation damage by neutrons

    International Nuclear Information System (INIS)

    Mayer, R.M.

    1976-01-01

    The use of the high voltage electron microscope to simulate radiation damage by neutrons is briefly reviewed. This information is important in explaining how alloying affects void formation during neutron irradiation

  3. Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope

    NARCIS (Netherlands)

    de Jonge, N.; van Druten, N.J.

    2003-01-01

    Individual multiwalled carbon nanotube field emitters were prepared in a scanning electron microscope. The angular current density, energy spectra, and the emission stability of the field-emitted electrons were measured. An estimate of the electron source brightness was extracted from the

  4. Instrumentation at the National Center for Electron Microscopy: the Atomic Resolution Microscope

    International Nuclear Information System (INIS)

    Gronsky, R.; Thomas, G.

    1983-01-01

    The Atomic Resolution Microscope (ARM) is one of two unique high voltage electron microscopes at the Lawrence Berkeley Laboratory's National Center for Electron Microscopy (NCEM). The latest results from this new instrument which was manufactured by JEOL, Ltd. to the performance specifications of the NCEM, delivered in January of 1983, and soon to be open to access by the entire microscopy community are given. Details of its history and development are given and its performance specifications are reviewed

  5. Performance of ultrahigh resolution electron microscope JEM-4000EX and some applications of high Tc superconductors

    International Nuclear Information System (INIS)

    Honda, T.; Ibe, K.; Ishida, Y.; Kersker, M.M.

    1989-01-01

    The high resolution electron microscope is powerful for modern materials science because of its direct observation capability for the atomic structure of materials. the JEM-4000EX, a 400 kV accelerating voltage electron microscope whose objective lens has a 1 mm spherical aberration coefficient, has a 0.168 nm theoretical resolving power. Using this microscope, atomic structure images of high Tc superconductor such as Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O and Tl-Ca-Ba-Cu-O are reported

  6. Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment

    Directory of Open Access Journals (Sweden)

    Michael B. Sherman

    2015-05-01

    Full Text Available A unique biological safety level (BSL-3 cryo-electron microscopy facility with a 200 keV high-end cryo-electron microscope has been commissioned at the University of Texas Medical Branch (UTMB to study the structure of viruses and bacteria classified as select agents. We developed a microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system. In this paper we report on testing digital camera sensors (both CCD and CMOS direct detector in a BSL-3 environment, and microscope performance after chlorine dioxide (ClO2 decontamination cycles.

  7. Scanning electron microscope - some aspects of the instrument and its applications

    International Nuclear Information System (INIS)

    Thatte, M.R.

    1976-01-01

    Development of the science of microscopy leading to three different types of microscopes - the optical, the conventional transmission electron microscope (CTEM) and the scanning electron microscope(SEM) has been discussed. Special advantages of the SEM in the solution of problems in industrial laboratories are mentioned. A brief reference to the latest instruments announced by Siemens AG shows the modern trends in the technique. A close similarity in image building between SEM and television is indicated. Operational anatomy of the SEM is reviewed. (author)

  8. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  9. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires

    International Nuclear Information System (INIS)

    Zubkov, Evgeniy

    2013-01-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  10. Comparison of Electron Imaging Modes for Dimensional Measurements in the Scanning Electron Microscope.

    Science.gov (United States)

    Postek, Michael T; Vladár, András E; Villarrubia, John S; Muto, Atsushi

    2016-08-01

    Dimensional measurements from secondary electron (SE) images were compared with those from backscattered electron (BSE) and low-loss electron (LLE) images. With the commonly used 50% threshold criterion, the lines consistently appeared larger in the SE images. As the images were acquired simultaneously by an instrument with the capability to operate detectors for both signals at the same time, the differences cannot be explained by the assumption that contamination or drift between images affected the SE, BSE, or LLE images differently. Simulations with JMONSEL, an electron microscope simulator, indicate that the nanometer-scale differences observed on this sample can be explained by the different convolution effects of a beam with finite size on signals with different symmetry (the SE signal's characteristic peak versus the BSE or LLE signal's characteristic step). This effect is too small to explain the >100 nm discrepancies that were observed in earlier work on different samples. Additional modeling indicates that those discrepancies can be explained by the much larger sidewall angles of the earlier samples, coupled with the different response of SE versus BSE/LLE profiles to such wall angles.

  11. Path-separated electron interferometry in a scanning transmission electron microscope

    Science.gov (United States)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  12. Light and electron microscope assessment of the lytic activity of ...

    African Journals Online (AJOL)

    The Microcystis cells were exposed to copper, B. mycoides B16 and Triton X-100, in order to ascertain the level of cell membrane damage. The membrane cell damage ... The electron microscopy observations appeared to reveal at least two mechanisms of Microcystis lysis (contact and parasitism). The light and electron ...

  13. A new program for the design of electron microscopes

    Czech Academy of Sciences Publication Activity Database

    Lencová, Bohumila; Zlámal, J.

    2008-01-01

    Roč. 1, č. 1 (2008), s. 315-324 ISSN 1875-3892. [International Conference on Charged Particle Optics /7./ CPO-7. Cambridge, 24.07.2006-28.07.2006] Institutional research plan: CEZ:AV0Z20650511 Keywords : finite element method * electron lenses and deflectors * computer-aided design * user interface Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  14. An Electron Microscope Study of the Yeast Pityrosporum ovale

    NARCIS (Netherlands)

    Kreger-van Rij, N.J.W.; Veenhuis, M.

    1970-01-01

    Cells of Pityrosporum ovale were prepared for electron microscopy by different methods of fixation and embedding, all of them causing some degree of damage to the cells. Apart from the usual organelles seen in other yeast cells, a body was found which showed an electron-dense outer layer and an

  15. Note: A scanning electron microscope sample holder for bidirectional characterization of atomic force microscope probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Alon; Goh, M. Cynthia [Department of Chemistry and Institute for Optical Sciences, University of Toronto, 80 St. George Street, Toronto M5S 3H6 (Canada)

    2012-03-15

    A novel sample holder that enables atomic force microscopy (AFM) tips to be mounted inside a scanning electron microscopy (SEM) for the purpose of characterizing the AFM tips is described. The holder provides quick and easy handling of tips by using a spring clip to hold them in place. The holder can accommodate two tips simultaneously in two perpendicular orientations, allowing both top and side view imaging of the tips by the SEM.

  16. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    Science.gov (United States)

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  17. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.

    Science.gov (United States)

    Kumar, Vineet

    2011-12-01

    The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.

  18. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.

    Science.gov (United States)

    Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y

    2011-06-01

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Local texture measurements with the scanning electron microscope

    International Nuclear Information System (INIS)

    Gottstein, G.; Engler, O.

    1993-01-01

    Techniques for convenient measurement of the crystallographic orientation of small volumes in bulk samples by electron diffraction in the SEM are discussed. They make use of Selected Area Electron Channelling Patterns (SAECP) and Electron Back Scattering Patterns (EBSP). The principle of pattern formation as well as measuring and evaluation procedure are introduced. The methods offer a viable procedure for obtaining information on the spatial arrangement of orientations, i.e. on orientation topography. Thus, they provide a new level of information on crystallographic texture. An application of the techniques for local texture measurements is demonstrated by an example, namely for investigation of considering the recrystallization behaviour of binary Al-1.3% Mn with large precipitates. Finally, further developments of the EBSP technique are addressed. (orig.)

  1. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  2. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    of resolution. Using suitably clean gases, modified pumping schemes, and short pathways through dense gas regions, these issues are now circumvented. Here we provide an account of best practice using environmental transmission electron microscopy on catalytic systems illustrated using select examples from......Over time, there has been an increasing interest in observing catalysts in their operating environment at high spatial resolution and ultimately to determine the structure of a catalytically active surface. One tool with the potential to do exactly this in direct space is the transmission electron...

  3. Secondary mineralization in carious lesions of human dentin. Electron-probe, electron microscope, and electron diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, H [Tokyo Dental Coll. (Japan)

    1975-02-01

    Dentinal carious lesions having a remineralized surface layer were studied by means electron-probe microanalysis, electron microscopy, electron diffraction. As the results of electron-probe study, F, Mg, and Na were found to be distributed mainly in the remineralized surface layer and S in the decalcified region where decreases in Ca, P, and Mg concentration were usually observed. The decrease in Mg concentration always started earlier than that of Ca and P concentration. Electron microscope and electron diffraction studies revealed that apatic crystals in the remineralized surface layer were much larger than those in the intact dentin. Although they were less conspicuous, crystals in the decalcified region also were larger than those in the intact region. Dentinal tubules, occluded by many crystals, were frequently seen during the observations. Crystals in the tubules varied in morphology, showing granular, needle, rhomboid, and tabular shapes. By means of electron diffraction, the granular- or needle-shaped crystals were identified as apatite and the rhomboid-shaped crystals as whitlockite. Some of the tabular-shaped crystals appeared to be cotacalcium phosphate.

  4. Wave Optical Calculation of Probe Size in Low Energy Scanning Electron Microscope

    Czech Academy of Sciences Publication Activity Database

    Radlička, Tomáš

    2015-01-01

    Roč. 21, S4 (2015), s. 212-217 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : scanning electron microscope * optical calculation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  5. Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope

    International Nuclear Information System (INIS)

    Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

    1981-01-01

    The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected

  6. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  7. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruct...

  8. Ant-egg cataract. An electron microscopic study

    DEFF Research Database (Denmark)

    Schrøder, H D; Nissen, S H

    1979-01-01

    an intermittent growth of the structure. In the ant-eggs, as well as in some areas separate from these, membrane limited cytoplasmic bodies could be seen in many cases, the membranes of which were partly joint and partly separated by an electron dense material. It is suggested that the calcifications seen...

  9. Examination of Graphene in a Scanning Low Energy Electron Microscope

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Frank, Luděk

    2015-01-01

    Roč. 21, S3 (2015), s. 29-30 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : graphene * LEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  10. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  11. Progress in x-ray microanalysis in the analytical electron microscope

    International Nuclear Information System (INIS)

    Williams, D.B.

    1987-01-01

    Analytical electron microscopes (AEM) consisting of x-ray energy dispersive spectrometers (EDS) interfaced to scanning transmission electron microscopes have been available for more than a decade. During that time, progress towards reaching the fundamental limits of the technique has been slow. The progress of x-ray microanalysis in AEM is examined in terms of x-ray detector technology; the EDS/AEM interface; accuracy of microanalysis; and spatial resolution and detectability limits. X-ray microanalysis in the AEM has substantial room for improvement in terms of the interface between the detector and the microscope. Advances in microscope design and software should permit 10nm resolution with detectability limits approaching 0.01wt percent. 16 refs., 2 figs., 1 tab

  12. A Simple Metric for Determining Resolution in Optical, Ion, and Electron Microscope Images.

    Science.gov (United States)

    Curtin, Alexandra E; Skinner, Ryan; Sanders, Aric W

    2015-06-01

    A resolution metric intended for resolution analysis of arbitrary spatially calibrated images is presented. By fitting a simple sigmoidal function to pixel intensities across slices of an image taken perpendicular to light-dark edges, the mean distance over which the light-dark transition occurs can be determined. A fixed multiple of this characteristic distance is then reported as the image resolution. The prefactor is determined by analysis of scanning transmission electron microscope high-angle annular dark field images of Si. This metric has been applied to optical, scanning electron microscope, and helium ion microscope images. This method provides quantitative feedback about image resolution, independent of the tool on which the data were collected. In addition, our analysis provides a nonarbitrary and self-consistent framework that any end user can utilize to evaluate the resolution of multiple microscopes from any vendor using the same metric.

  13. Design of Pixellated CMOS Photon Detector for Secondary Electron Detection in the Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Joon Huang Chuah

    2011-01-01

    Full Text Available This paper presents a novel method of detecting secondary electrons generated in the scanning electron microscope (SEM. The method suggests that the photomultiplier tube (PMT, traditionally used in the Everhart-Thornley (ET detector, is to be replaced with a configurable multipixel solid-state photon detector offering the advantages of smaller dimension, lower supply voltage and power requirements, and potentially cheaper product cost. The design of the proposed detector has been implemented using a standard 0.35 μm CMOS technology with optical enhancement. This microchip comprises main circuit constituents of an array of photodiodes connecting to respective noise-optimised transimpedance amplifiers (TIAs, a selector-combiner (SC circuit, and a postamplifier (PA. The design possesses the capability of detecting photons with low input optical power in the range of 1 nW with 100 μm × 100 μm sized photodiodes and achieves a total amplification of 180 dBΩ at the output.

  14. The Physical Characterization of Liposome Salicylic Acid Using Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Elman Panjaitan

    2008-01-01

    The physical characterization of liposome, formulated from salicylic acid using thin film hydration methods with cholesterol and soybean lecithin, has been done. The formula was characterized by optical microscopes and Transmission Electron Microscope (TEM). The observation result shows that the salicylic acid can be formulated to liposomes. Soybean lecithin combined with cholesterol (600 mg : 20 mg) was the best formula and the liposome was spherical vesicle like with dimension about 70 nm unit 800 nm. (author)

  15. Some applications of the high voltage electron microscope in physical metallurgy

    International Nuclear Information System (INIS)

    Regnier, P.; Thomas de Montpreville, C.

    1976-01-01

    The high voltage electron microscope (HVEM) is a microscope with a much higher penetration than the usual ones, as well as being a remarkable irradiation machine. The possible applications of the HVEM related to its advantages over the conventional microscopes are first discussed. The simultaneous use of the HVEM as an irradiation machine and an observation tool is then discussed, experiments carried in the laboratory being referred to. The last use of the HVEM makes it an irreplaceable tool for continuously following the clustering of irradiation defects [fr

  16. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia

    2002-01-01

    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  17. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  18. Practical Use of Scanning Low Energy Electron Microscope (SLEEM)

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Mikmeková, Šárka; Konvalina, Ivo; Frank, Luděk

    2016-01-01

    Roč. 22, S3 (2016), s. 1650-1651 ISSN 1431-9276 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy * SLEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  19. Thinning of specimens for examination under the electron microscope

    International Nuclear Information System (INIS)

    Franks, J.

    1982-01-01

    Heretofore specimens have been thinned to penetration for examination by electron microscopy techniques, by ion erosion techniques. A more rapid technique is disclosed employing a beam or beams comprised solely of neutral particles. In tests carried out using this technique the sputtering rate from a sample specimen has been shown to be several percentages greater using a neutral source than from an ion source with the same flux density. (author)

  20. Electron microscopic analysis of rotavirus assembly-replication intermediates

    International Nuclear Information System (INIS)

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.

    2015-01-01

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy

  1. Electron microscopic analysis of rotavirus assembly-replication intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Crystal E.; Kelly, Deborah F. [Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA (United States); McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu [Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA (United States); Department of Biomedical Sciences and Pathobiology, Virginia—Maryland Regional College of Veterinary Medicine, Blacksburg, VA (United States)

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.

  2. Development of an environmental high-voltage electron microscope for reaction science.

    Science.gov (United States)

    Tanaka, Nobuo; Usukura, Jiro; Kusunoki, Michiko; Saito, Yahachi; Sasaki, Katuhiro; Tanji, Takayoshi; Muto, Shunsuke; Arai, Shigeo

    2013-02-01

    Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.

  3. Transmission electron microscopic study of reduced Ca2UO5

    International Nuclear Information System (INIS)

    Krasevec, V.; Prodan, A.; Holc, J.; Kolar, D.

    1983-01-01

    Structural changes of Ca 2 UO 5 during reduction in hydrogen were studied by transmission electron microscopy. It was shown that monoclinic Ca 2 UO 5 changes into triclinic Ca 4 U 2 O 9 . They are related, respectively, to the fluorite and the bixbyite (C-M 2 O 3 ) structures, so that the product is a superstructure of the latter. Reduction occurs along the (100)/sub t/ planes originating from the (006)/sub m/ planes of the parent structure by diminishing the coordination number of the Ca cation from 7 to 6. 5 figures

  4. Scanning Electron Microscopic Hair Shaft Analysis in Ectodermal Dysplasia Syndromes.

    Science.gov (United States)

    Hirano-Ali, Stefanie A; Reed, Ashley M; Rowan, Brandon J; Sorrells, Timothy; Williams, Judith V; Pariser, David M; Hood, Antoinette F; Salkey, Kimberly

    2015-01-01

    The objective of the current study was to catalog hair shaft abnormalities in individuals with ectodermal dysplasia (ED) syndromes using scanning electron microscopy (SEM) and to compare the findings with those in unaffected controls. This is the second of a two-part study, the first of which used light microscopy as the modality and was previously published. Scanning electron microscopy was performed in a blinded manner on hair shafts from 65 subjects with seven types of ED syndromes and 41 unaffected control subjects. Assessment was performed along the length of the shaft and in cross section. Hair donations were collected at the 28th Annual National Family Conference held by the National Foundation for Ectodermal Dysplasia. Control subjects were recruited from a private dermatology practice and an academic children's hospital outpatient dermatology clinic. SEM identified various pathologic hair shaft abnormalities in each type of ED and in control patients. When hairs with all types of ED were grouped together and compared with those of control patients, the difference in the presence of small diameter and shallow and deep grooves was statistically significant (p < 0.05). When the EDs were separated according to subtype, statistically significant findings were also seen. SEM is a possible adjuvant tool in the diagnosis of ED syndromes. There are significant differences, with high specificity, between the hairs of individuals with ED and those of control subjects and between subtypes. © 2015 Wiley Periodicals, Inc.

  5. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  6. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  7. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  8. Influence of cathode geometry on electron dynamics in an ultrafast electron microscope

    Directory of Open Access Journals (Sweden)

    Shaozheng Ji

    2017-09-01

    Full Text Available Efforts to understand matter at ever-increasing spatial and temporal resolutions have led to the development of instruments such as the ultrafast transmission electron microscope (UEM that can capture transient processes with combined nanometer and picosecond resolutions. However, analysis by UEM is often associated with extended acquisition times, mainly due to the limitations of the electron gun. Improvements are hampered by tradeoffs in realizing combinations of the conflicting objectives for source size, emittance, and energy and temporal dispersion. Fundamentally, the performance of the gun is a function of the cathode material, the gun and cathode geometry, and the local fields. Especially shank emission from a truncated tip cathode results in severe broadening effects and therefore such electrons must be filtered by applying a Wehnelt bias. Here we study the influence of the cathode geometry and the Wehnelt bias on the performance of a photoelectron gun in a thermionic configuration. We combine experimental analysis with finite element simulations tracing the paths of individual photoelectrons in the relevant 3D geometry. Specifically, we compare the performance of guard ring cathodes with no shank emission to conventional truncated tip geometries. We find that a guard ring cathode allows operation at minimum Wehnelt bias and improve the temporal resolution under realistic operation conditions in an UEM. At low bias, the Wehnelt exhibits stronger focus for guard ring than truncated tip cathodes. The increase in temporal spread with bias is mainly a result from a decrease in the accelerating field near the cathode surface. Furthermore, simulations reveal that the temporal dispersion is also influenced by the intrinsic angular distribution in the photoemission process and the initial energy spread. However, a smaller emission spot on the cathode is not a dominant driver for enhancing time resolution. Space charge induced temporal broadening

  9. Influence of cathode geometry on electron dynamics in an ultrafast electron microscope.

    Science.gov (United States)

    Ji, Shaozheng; Piazza, Luca; Cao, Gaolong; Park, Sang Tae; Reed, Bryan W; Masiel, Daniel J; Weissenrieder, Jonas

    2017-09-01

    Efforts to understand matter at ever-increasing spatial and temporal resolutions have led to the development of instruments such as the ultrafast transmission electron microscope (UEM) that can capture transient processes with combined nanometer and picosecond resolutions. However, analysis by UEM is often associated with extended acquisition times, mainly due to the limitations of the electron gun. Improvements are hampered by tradeoffs in realizing combinations of the conflicting objectives for source size, emittance, and energy and temporal dispersion. Fundamentally, the performance of the gun is a function of the cathode material, the gun and cathode geometry, and the local fields. Especially shank emission from a truncated tip cathode results in severe broadening effects and therefore such electrons must be filtered by applying a Wehnelt bias. Here we study the influence of the cathode geometry and the Wehnelt bias on the performance of a photoelectron gun in a thermionic configuration. We combine experimental analysis with finite element simulations tracing the paths of individual photoelectrons in the relevant 3D geometry. Specifically, we compare the performance of guard ring cathodes with no shank emission to conventional truncated tip geometries. We find that a guard ring cathode allows operation at minimum Wehnelt bias and improve the temporal resolution under realistic operation conditions in an UEM. At low bias, the Wehnelt exhibits stronger focus for guard ring than truncated tip cathodes. The increase in temporal spread with bias is mainly a result from a decrease in the accelerating field near the cathode surface. Furthermore, simulations reveal that the temporal dispersion is also influenced by the intrinsic angular distribution in the photoemission process and the initial energy spread. However, a smaller emission spot on the cathode is not a dominant driver for enhancing time resolution. Space charge induced temporal broadening shows a close to

  10. Electron microscope observation of single - crystalline beryllium thin foils

    International Nuclear Information System (INIS)

    Antolin, J.; Poirier, J.P.; Dupouy, J.M.

    1965-01-01

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3 . (authors) [fr

  11. Transmission electron microscope cells for use with liquid samples

    Science.gov (United States)

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  12. A video-amplifier device for the transmission-type electron microscope ELMISCOP I of Siemens

    International Nuclear Information System (INIS)

    Groboth, G.; Hoerl, E.M.

    1975-01-01

    In order to get a visual image of the sample at the final screen of a transmission-type electron microscope and to keep at the same time the sample at low temperature a video-amplifier device has been developed by the authors. Details about its design and the necessary reconstruction of the electron microscope equipment are given. The beam current density at the transparent screen is reduced to 10 -12 -10 -13 A.cm -2 . Moreover the costs of this video-amplifier device are lower than those available. (CR)

  13. Visualizing Morphological Changes of Abscission Zone Cells in Arabidopsis by Scanning Electron Microscope.

    Science.gov (United States)

    Shi, Chun-Lin; Butenko, Melinka A

    2018-01-01

    Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.

  14. Scanning tunnelling microscope imaging of nanoscale electron density gradients on the surface of GaAs

    International Nuclear Information System (INIS)

    Hamilton, B; Jacobs, J; Missous, M

    2003-01-01

    This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined

  15. Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D.; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2010-01-01

    We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

  16. An investigation of the electron irradiation of graphite in a helium atmosphere using a modified electron microscope

    International Nuclear Information System (INIS)

    Burden, A.P.; Hutchison, J.L.

    1997-01-01

    The behaviour of graphite particles immersed in helium gas and irradiated with an electron-beam has been investigated. Because this treatment was performed in a modified high resolution transmission electron microscope, the rapid morphological and microstructural changes that occurred could be directly observed. The results have implications for future controlled environment microscopy of carbonaceous materials and the characterisation of such microscopes. It is also shown that the processes can provide insight into ion-irradiation induced damage of graphite and the mechanism of fullerene generation. (Author)

  17. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  18. Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami.

    Science.gov (United States)

    Mallik, Leena; Dhakal, Soma; Nichols, Joseph; Mahoney, Jacob; Dosey, Anne M; Jiang, Shuoxing; Sunahara, Roger K; Skiniotis, Georgios; Walter, Nils G

    2015-07-28

    DNA provides an ideal substrate for the engineering of versatile nanostructures due to its reliable Watson-Crick base pairing and well-characterized conformation. One of the most promising applications of DNA nanostructures arises from the site-directed spatial arrangement with nanometer precision of guest components such as proteins, metal nanoparticles, and small molecules. Two-dimensional DNA origami architectures, in particular, offer a simple design, high yield of assembly, and large surface area for use as a nanoplatform. However, such single-layer DNA origami were recently found to be structurally polymorphous due to their high flexibility, leading to the development of conformationally restrained multilayered origami that lack some of the advantages of the single-layer designs. Here we monitored single-layer DNA origami by transmission electron microscopy (EM) and discovered that their conformational heterogeneity is dramatically reduced in the presence of a low concentration of dimethyl sulfoxide, allowing for an efficient flattening onto the carbon support of an EM grid. We further demonstrated that streptavidin and a biotinylated target protein (cocaine esterase, CocE) can be captured at predesignated sites on these flattened origami while maintaining their functional integrity. Our demonstration that protein assemblies can be constructed with high spatial precision (within ∼2 nm of their predicted position on the platforms) by using strategically flattened single-layer origami paves the way for exploiting well-defined guest molecule assemblies for biochemistry and nanotechnology applications.

  19. Electron microscopic examination of uncultured soil-dwelling bacteria.

    Science.gov (United States)

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  20. In situ fatigue loading stage inside scanning electron microscope

    Science.gov (United States)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.

  1. Classification of heterogeneous electron microscopic projections into homogeneous subsets

    International Nuclear Information System (INIS)

    Herman, G.T.; Kalinowski, M.

    2008-01-01

    The co-existence of different states of a macromolecular complex in samples used by three-dimensional electron microscopy (3D-EM) constitutes a serious challenge. The single particle method applied directly to such heterogeneous sets is unable to provide useful information about the encountered conformational diversity and produces reconstructions with severely reduced resolution. One approach to solving this problem is to partition heterogeneous projection set into homogeneous components and apply existing reconstruction techniques to each of them. Due to the nature of the projection images and the high noise level present in them, this classification task is difficult. A method is presented to achieve the desired classification by using a novel image similarity measure and solving the corresponding optimization problem. Unlike the majority of competing approaches, the presented method employs unsupervised classification (it does not require any prior knowledge about the objects being classified) and does not involve a 3D reconstruction procedure. We demonstrate a fast implementation of this method, capable of classifying projection sets that originate from 3D-EM. The method's performance is evaluated on synthetically generated data sets produced by projecting 3D objects that resemble biological structures

  2. Exploring the magnetic and organic microstructures with photoemission electron microscope

    International Nuclear Information System (INIS)

    Wei, D.H.; Chan, Yuet-Loy; Hsu, Yao-Jane

    2012-01-01

    Highlights: ► PEEM with polarized photon enables additional image contrasts and physical insights. ► XMCD-based images reveal the shape-dependent domains in Ni80Fe20 microstructures. ► XLD-based images confirm the success of molecular orientation controls. ► The two interfaces in Co–Pn–Co structures are magnetically and chemically different. -- Abstract: We present photoemission electron microscopy (PEEM) studies on geometrically constrained ferromagnetic, organic, and organics–ferromagnet hybrid structures. Powered by an elliptically polarized undulator, the PEEM at Taiwan Light Source (TLS) is capable of recording polarization enhanced X-ray images and has been employed to examine the domain configurations in a lithographically patterned permalloy film as well as the orientations of pentacene molecules adsorbed on self-assembled monolayers (SAMs) modified gold surfaces. In addition, magnetic images acquired on cobalt/pentacene and pentacene/cobalt bilayers reveal that in hybrid structures the order of thin film deposition can lead to distinct domain configurations. Spectroscopic evidence further suggests that there is significant orbital hybridization at the interface where metallic cobalt was deposited directly on organic pentacene.

  3. Exploring the magnetic and organic microstructures with photoemission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wei, D.H., E-mail: dhw@nsrrc.org.tw [National Synchrotron Radiation Research Center, Hsinchu Science Park, 30076 Hsinchu, Taiwan (China); Chan, Yuet-Loy; Hsu, Yao-Jane [National Synchrotron Radiation Research Center, Hsinchu Science Park, 30076 Hsinchu, Taiwan (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PEEM with polarized photon enables additional image contrasts and physical insights. Black-Right-Pointing-Pointer XMCD-based images reveal the shape-dependent domains in Ni80Fe20 microstructures. Black-Right-Pointing-Pointer XLD-based images confirm the success of molecular orientation controls. Black-Right-Pointing-Pointer The two interfaces in Co-Pn-Co structures are magnetically and chemically different. -- Abstract: We present photoemission electron microscopy (PEEM) studies on geometrically constrained ferromagnetic, organic, and organics-ferromagnet hybrid structures. Powered by an elliptically polarized undulator, the PEEM at Taiwan Light Source (TLS) is capable of recording polarization enhanced X-ray images and has been employed to examine the domain configurations in a lithographically patterned permalloy film as well as the orientations of pentacene molecules adsorbed on self-assembled monolayers (SAMs) modified gold surfaces. In addition, magnetic images acquired on cobalt/pentacene and pentacene/cobalt bilayers reveal that in hybrid structures the order of thin film deposition can lead to distinct domain configurations. Spectroscopic evidence further suggests that there is significant orbital hybridization at the interface where metallic cobalt was deposited directly on organic pentacene.

  4. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.

    Science.gov (United States)

    Dohi, Hideto; Kruit, Pieter

    2018-06-01

    Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed

  5. Choice of operating voltage for a transmission electron microscope

    International Nuclear Information System (INIS)

    Egerton, R.F.

    2014-01-01

    An accelerating voltage of 100–300 kV remains a good choice for the majority of TEM or STEM specimens, avoiding the expense of high-voltage microscopy but providing the possibility of atomic resolution even in the absence of lens-aberration correction. For specimens thicker than a few tens of nm, the image intensity and scattering contrast are likely to be higher than at lower voltage, as is the visibility of ionization edges below 1000 eV (as required for EELS elemental analysis). In thick (>100 nm) specimens, higher voltage ensures less beam broadening and better spatial resolution for STEM imaging and EDX spectroscopy. Low-voltage (e.g. 30 kV) TEM or STEM is attractive for a very thin (e.g. 10 nm) specimen, as it provides higher scattering contrast and fewer problems for valence-excitation EELS. Specimens that are immune to radiolysis suffer knock-on damage at high current densities, and this form of radiation damage can be reduced or avoided by choosing a low accelerating voltage. Low-voltage STEM with an aberration-corrected objective lens (together with a high-angle dark-field detector and/or EELS) offers atomic resolution and elemental identification from very thin specimens. Conventional TEM can provide atomic resolution in low-voltage phase-contrast images but requires correction of chromatic aberration and preferably an electron-beam monochromator. Many non-conducting (e.g. organic) specimens damage easily by radiolysis and radiation damage then determines the TEM image resolution. For bright-field scattering contrast, low kV can provide slightly better dose-limited resolution if the specimen is very thin (a few nm) but considerably better resolution is possible from a thicker specimen, for which higher kV is required. Use of a phase plate in a conventional TEM offers the most dose-efficient way of achieving atomic resolution from beam-sensitive specimens. - Highlights: • 100–300 kV accelerating voltage is suitable for TEM specimens of typical

  6. Dynamic Low-Vacuum Scanning Electron Microscope Freeze Drying Observation for Fresh Water Algae

    International Nuclear Information System (INIS)

    Mohsen, H.T.; Ghaly, W.A.; Zahran, N.F.; Helal, A.I.

    2010-01-01

    A new perpetration method for serving in dynamic examinations of the fresh water algae is developed in connection with the Low-Vacuum Scanning Electron Microscope (LV-SEM) freeze drying technique. Specimens are collected from fresh water of Ismailia channel then transferred directly to freeze by liquid nitrogen and dried in the chamber of the scanning electron microscope in the low vacuum mode. Scanning electron micrographs revealed that the drying method presented the microstructure of algae. Dehydration in a graded ethanol series is not necessary in the new method. Dried algae specimen is observed in SEM high vacuum mode after conductive coating at higher resolution. Low-vacuum SEM freeze drying technique is a simple, time-saving and reproducible method for scanning electron microscopy that is applicable to various aquatic microorganisms covered with soft tissues.

  7. APPLICATION OF SCANNING ELECTRON MICROSCOPE EQUIPPED WITH THE MICROANALYSIS SYSTEM FOR INVESTIGATION OF BRASS COVERING

    Directory of Open Access Journals (Sweden)

    T. P. Kurenkova

    2010-01-01

    Full Text Available The possibilities of application of scanning electronic microscope equipped with microanalysis system for investigation of the brass covering quality by slug for production of wire and metal cord particularly of change of copper concentration by covering thickness and slug perimeter, revealing of ?-phase allocation presence and character, determination of defect reasons, are shown.

  8. Practical application of HgI2 detectors to a space-flight scanning electron microscope

    Science.gov (United States)

    Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1989-01-01

    Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.

  9. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Science.gov (United States)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  10. Minimal exposure technique in the Cambridge University 600kV high resolution electron microscope

    International Nuclear Information System (INIS)

    Fryer, J.R.; Cleaver, J.R.A.; Smith, D.J.

    1980-01-01

    Radiation damage due to the incident electron beam imposes a fundamental limitation on the information obtainable by electron microscopy about organic materials; it is desirable therefore that exposure of the specimen to the electron beam should be restricted to the actual period during which the image is being recorded. A description is given of methods employed in the observation of the organic aromatic hydrocarbons quaterrylene, ovalene and coronene with the Cambridge University 600kV high resolution electron microscope (HREM). In particular, the condenser-objective mode of operation of this microscope lends itself to the use of an area-defining aperture below the second condenser lens conjugate with the specimen. Furthermore, operation at the higher accelerating voltage of this instrument could be anticipated to reduce the rate of damage, depending on the dominant beam-specimen interaction, whilst the increased width of the first broad band of the contrast transfer function of this microscope at the optimum defocus may overcome the reported resolution limitation of current 100kV microscopes for the observation of related materials. (author)

  11. Theory of life time measurements with the scanning electron microscope: steady state

    NARCIS (Netherlands)

    Berz, F.; Kuiken, H.K.

    1976-01-01

    A theoretical steady state analysis is given of the scanning electron microscope method of measuring bulk life time in diodes, where the plane of the junction is perpendicular to the surface. The current in the junction is obtained as a function of the beam power, the beam penetration into the

  12. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    International Nuclear Information System (INIS)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha; Ropers, Claus

    2015-01-01

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy

  13. Facilities for in situ ion beam studies in transmission electron microscopes

    International Nuclear Information System (INIS)

    Allen, C.W.; Ohnuki, S.; Takahashi, H.

    1993-08-01

    Interfacing an ion accelerator to a transmission electron microscope (TEM) allows the analytical functions of TEM imaging and electron diffraction from very small regions to be employed during ion-irradiation effects studies. At present there are ten such installations in Japan, one in France and one in the USA. General specifications of facilities which are operational in 1993 are summarized, and additional facilities which are planned or being proposed are briefly described

  14. A design for a subminiature, low energy scanning electron microscope with atomic resolution

    International Nuclear Information System (INIS)

    Eastham, D. A.; Edmondson, P.; Greene, S.; Donnelly, S.; Olsson, E.; Svensson, K.; Bleloch, A.

    2009-01-01

    We describe a type of scanning electron microscope that works by directly imaging the electron field-emission sites on a nanotip. Electrons are extracted from the nanotip through a nanoscale aperture, accelerated in a high electric field, and focused to a spot using a microscale Einzel lens. If the whole microscope (accelerating section and lens) and the focal length are both restricted in size to below 10 μm, then computer simulations show that the effects of aberration are extremely small and it is possible to have a system with approximately unit magnification at electron energies as low as 300 eV. Thus a typical emission site of 1 nm diameter will produce an image of the same size, and an atomic emission site will give a resolution of 0.1-0.2 nm (1-2 A). Also, because the beam is not allowed to expand beyond 100 nm in diameter, the depth of field is large and the contribution to the beam spot size from chromatic aberrations is less than 0.02 nm (0.2 A) for 500 eV electrons. Since it is now entirely possible to make stable atomic sized emitters (nanopyramids), it is expected that this instrument will have atomic resolution. Furthermore the brightness of the beam is determined only by the field emission and can be up to 1x10 6 times larger than in a typical (high energy) electron microscope. The advantages of this low energy, bright-beam electron microscope with atomic resolution are described and include the possibility of it being used to rapidly sequence the human genome from a single strand of DNA as well as being able to identify atomic species directly from the elastic scattering of electrons

  15. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope

    OpenAIRE

    Nazin, G. V.; Wu, S. W.; Ho, W.

    2005-01-01

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks correspondi...

  16. Electron microscopic identification of Zinga virus as a strain of Rift Valley fever virus.

    Science.gov (United States)

    Olaleye, O D; Baigent, C L; Mueller, G; Tomori, O; Schmitz, H

    1992-01-01

    Electron microscopic examination of a negatively stained suspension of Zinga virus showed particles 90-100 nm in diameter, enveloped with spikes 12-20 nm in length and 5 nm in diameter. Further identification of the virus by immune electron microscopy showed the reactivity of human Rift Valley fever virus-positive serum with Zinga virus. Results of this study are in agreement with earlier reports that Zinga virus is a strain of Rift Valley fever virus.

  17. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  18. Optical and mechanical design for 1 nm resolution Auger spectroscopy in an electron microscope

    International Nuclear Information System (INIS)

    Bleeker, A.J.

    1991-01-01

    Detailed information about the atomic structure of surfaces and interfaces is vital for the progress in materials science and physics. One widely used surface sensitive technique is Auger spectroscopy (AS). This technique, in which the electron energy spectrum emerging from the sample is evaluated, gives information about the average elemental composition of the surface over a relative large surface area (>30nm). Electron microscopy (EM), on the other hand, is capable of producing surface structural, but no elemental, information with almost atomic resolution. EM and AS techniques have not been combined so far because of the different nature of the instrumentation used in both techniques. In AS instruments the sample is placed in an Ultra High Vacuum (UHV) system with a relatively large open space around the sample. In EM the sample is situated in the tight volume between the magnetic polepieces of the probe forming objective lens. The space around the sample is therefore tight. Furthermore the vacuum in most electron microscopes is not in UHV range. Radical mechanical changes to improve the vacuum are necessary to do AS in an electron microscope. Since the sample is immersed in the strong magnetic field of the objective lens the Auger electrons can not be extracted with conventional electrostatical methods. The only possibility to extract the Auger electrons is through the upper bore of the objective lens. However, this has large implications on the optical system of the microscope and requires a thorough investigation of the extraction of the Auger electrons. In this work it will be discussed how the surface sensitive AS can be combined with the high spatial resolution of the electron microscope in a practical instrument. (author). 102 refs.; 81 figs.; 4 tabs

  19. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  20. Towards native-state imaging in biological context in the electron microscope

    Science.gov (United States)

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  1. Light and scanning electron microscopic examination of hair in Garlic's syndrome

    International Nuclear Information System (INIS)

    Celik, Hakan H.; Tunali, S.; Tatar, I.; Aldur, Muhammad M.; Tore, H.

    2007-01-01

    Grisceli syndrome is a rare disease is a rare disease characterized by pigment dilution, partial albinism, variable cellular immunodeficiency and an acute phase of uncontrolled T-lymphocyte macrophage activation. Griscelli et al described this syndrome in 1978. Since then, only approximately, 60 cases have been reported, most from Turkish and Mediterranean population. In microscopic examination, silvery grey hair with large clumped melanosomes on the hair shaft is the diagnostic finding. Here, we present scanning electron microscopic study of hair in 2 cases of Griscelli syndrome where the hair showed normal cuticular pattern but nodular structures were present as an abnormal finding. (author)

  2. Electron microscope studies. Progress report, 1 July 1964--1 June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  3. Pleomorphic (giant cell) carcinoma of the intestine. An immunohistochemical and electron microscopic study

    DEFF Research Database (Denmark)

    Bak, Martin; Teglbjaerg, P S

    1989-01-01

    reaction for neuron-specific enolase (NSE) was found in three tumors and a positive reaction for chromogranin was found in one tumor. On electron microscopic study, intracytoplasmic whorls of intermediate filaments were seen in the perinuclear area. Dense core "neurosecretory" granules were rarely seen......Pleomorphic (giant cell) carcinomas have been described in the lungs, thyroid, pancreas, and gallbladder. Two pleomorphic carcinomas of the small bowel and two of the large bowel are presented. On light microscopic study, the carcinomas were solid, without squamous or glandular differentiation...

  4. Ultrastructural alterations in ciliary cells exposed to ionizing radiation. A scanning and transmission electron microscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Baldetorp, L; Mecklenburg, C v; Haakansson, C H [Lund Univ. (Sweden). Hospital; Lund Univ. (Sweden). Dept. of Zoology)

    1977-01-01

    Early effects of ionizing radiation were investigated in an experimental in vitro system using the ciliary cells of the tracheal mucous membrane of the rabbit, irradiated at 30/sup 0/C and at more than 90% humidity. The changes in physiological activities of the ciliary cells caused by irradation were continously registered during the irradation. The specimens were examined immediately after irradiation electron microscopically. The morphological changes in irradiated material after 10-70 Gy are compared with normal material. After 40-70 Gy, scanning electron microscopy revealed the formation of vesicles on cilia, and club-like protrusions and adhesion of their tips. After 30-70 Gy, a swelling of mitochondrial membranes and cristae was apparent transmission electron microscopically. The membrane alterations caused by irradiation are assumed to disturb the permeability and flow of ATP from the mitochondria, which in turn leads to the recorded changes in the activity of the ciliated cells.

  5. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  6. The improved stability of an organic crystal in the Hitachi HV-1 high vacuum electron microscope

    International Nuclear Information System (INIS)

    Hartman, R.S.; Hartman, R.E.; Alsberg, H.; Nathan, R.

    1974-01-01

    A specimen of crystalline indanthrene olive T was placed in the HV-1, which was then pumped for 2 hours. The 25 A bright field fringe pattern was then observed on the TV monitor. Deterioration was noted very shortly, and the electron microscope was then pumped for three days, after which another field was subjected to the same level of irradiation by 50 KV electrons. It was found that there was little if any deterioration even after 20 minutes. It was concluded that it is possible to find conditions in a transmission EM where stability far exceeds that predicted by current theories of radiation damage or demonstrated by conventional electron microscopes. (R.L.)

  7. Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Alloyeau, D., E-mail: alloyeau.damien@gmail.com [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Hsieh, W.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Anderson, E.H.; Hilken, L. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States); Benner, G. [Carl Zeiss NTS GmbH, Oberkochen 73447 (Germany); Meng, X. [Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720-1770 (United States); Chen, F.R. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Kisielowski, C. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States)

    2010-04-15

    Using two levels of electron beam lithography, vapor phase deposition techniques, and FIB etching, we have fabricated an electrostatic Boersch phase plate for contrast enhancement of weak phase objects in a transmission electron microscope. The phase plate has suitable dimensions for the imaging of small biological samples without compromising the high-resolution capabilities of the microscope. A micro-structured electrode allows for phase tuning of the unscattered electron beam, which enables the recording of contrast enhanced in-focus images and in-line holograms. We have demonstrated experimentally that our phase plate improves the contrast of carbon nanotubes while maintaining high-resolution imaging performance, which is demonstrated for the case of an AlGaAs heterostructure. The development opens a new way to study interfaces between soft and hard materials.

  8. Toxicological effects and recovery of the corneal epithelium in Cyprinus carpio communis Linn. exposed to monocrotophos: an scanning electron microscope study.

    Science.gov (United States)

    Uppal, Ravneet Kaur; Johal, Mohinder Singh; Sharma, Madan Lal

    2015-05-01

    This study was conducted based on the evidence of fish habitats in North India being affected by organophosphate pesticides draining from agricultural fields into bodies of water, especially during the rainy season. Various tissues of fish such as scales, gills ovaries, kidney, and liver have been studied from the toxicological point of view, but the toxicological effects of aquatic pollutants on fish cornea have not been investigated to date. We conducted comparative toxicological studies on the cornea of Cyprinus carpio communis using two sublethal (0.038 and 0.126 ppm) concentrations of monocrotophos pesticide for 30 days. Corneas from all the groups were evaluated by a scanning electron microscope. The fish exposed to the monocrotophos pesticide developed corneal necrosis due to the formation of crystalloid-like structures, thinning and shrinkage of microridges on the corneal epithelium. After 30 days, fish from the monocrotophos-treated tank were transferred to normal environmental conditions. After 60 days under natural condition, epithelial cells did not fully recover. In conclusion, exposure to monocrotophos induces irreversible changes in the cornea of C. carpio communis. As fish and mammalian visual systems share many similarities, the reported finding may offer useful insights for further toxicological and ophthalmological studies in humans. © 2013 American College of Veterinary Ophthalmologists.

  9. Progress in element analysis on a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Tivol, W.F.; Barnard, D.; Guha, T.

    1985-01-01

    X-Ray microprobe (XMA) and electron energy-loss (EELS) spectrometers have been installed on the high-voltage electron microscope (HVEM). The probe size has been measured and background reduction is in progress for XMA and EELS as are improvements in electron optics for EELS and sensitivity measurements. XMA is currently useful for qualitative analysis and has been used by several investigators from our laboratory and outside laboratories. However, EELS background levels are still too high for meaningful results to be obtained. Standards suitable for biological specimens are being measured, and a library for quantitative analysis is being compiled

  10. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  11. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.

    Science.gov (United States)

    Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A

    2016-11-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.

  12. Characterization of Li-rich layered oxides by using transmission electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Zhao

    2017-07-01

    Full Text Available Lithium-rich layered oxides (LrLOs deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay. Keywords: Lithium-ion battery, Transmission electron microscope, Lithium-rich layered oxide, Cathode material

  13. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  14. Analysis of improvement in performance and design parameters for enhancing resolution in an atmospheric scanning electron microscope.

    Science.gov (United States)

    Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan

    2015-12-01

    The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Soft X-ray imaging with axisymmetry microscope and electronic readout

    International Nuclear Information System (INIS)

    Sauneuf, A.; Cavailler, C.; Henry, Ph.; Launspach, J.; Mascureau, J. de; Rostaing, M.

    1984-11-01

    An axisymmetric microscope with 10 X magnification has been constructed; its resolution has been measured using severals grids, backlighted by an X-ray source and found to be near 25 μm. So it could be used to make images of laser driven plasmas in the soft X-ray region. In order to see rapidly those images we have associated it with a new detector. It is a small image converter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a CCD working in the spectral range. An electronic image readout chain, which is identical to those we use with streak cameras, then processes automatically and immediatly the images given by the microscope

  16. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Ralston, H.J.; Ralston, D.D.

    1979-01-01

    The projection of dorsal root fibres to the motor nucleus of the macaque monkey spinal cord has been examined utilizing light and electron microscopic autoradiography. Light microscopy demonstrates a very sparse labelling of primary afferent fibres in the ventral horn. Silver grains overlying radioactive sources are frequently clustered into small groups, often adjacent to dendritic profiles. Under the electron microscope, myelinated axons and a few large synaptic profiles containing rounded synaptic vesicles were overlain by numerous silver grains. These labelled profiles made synaptic contact with dendrites 1 - 3 micrometers in diameter. The labelled profiles did not contact cell bodies or large proximal dendrites of ventral horn neutrons. Frequently, small synaptic profiles containing flattened vesicles were presynaptic to the large labelled terminals and it is suggested that these axoaxonal synapses may mediate presynaptic inhibition of the primary afferent fibres. The relationship of the present findings to previously published physiological and anatomical studies is discussed. (author)

  17. Scanning Electron Microscope Calibration Using a Multi-Image Non-Linear Minimization Process

    Science.gov (United States)

    Cui, Le; Marchand, Éric

    2015-04-01

    A scanning electron microscope (SEM) calibrating approach based on non-linear minimization procedure is presented in this article. A part of this article has been published in IEEE International Conference on Robotics and Automation (ICRA), 2014. . Both the intrinsic parameters and the extrinsic parameters estimations are achieved simultaneously by minimizing the registration error. The proposed approach considers multi-images of a multi-scale calibration pattern view from different positions and orientations. Since the projection geometry of the scanning electron microscope is different from that of a classical optical sensor, the perspective projection model and the parallel projection model are considered and compared with distortion models. Experiments are realized by varying the position and the orientation of a multi-scale chessboard calibration pattern from 300× to 10,000×. The experimental results show the efficiency and the accuracy of this approach.

  18. Accumulation of enriched uranium UO2F2 in ultrastructure as studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Yuanchang

    1992-01-01

    A study was made on the retention of soluble enriched uranium UO 2 F 2 in ultrastructure by electron microscopic autoradiography. The early dynamic accumulation of radioactivity in the body showed that enriched uranium UO 2 F 2 was mainly localized in kidneys, especially accumulated in epithelial cells of proximal convoluted tubules leading to degeneration and necrosis of the tubules. In liver cells, enriched uranium UO 2 F 2 at first deposited in nuclei of the cells and in soluble proteins of the plasma, and later accumulated selectively in mitochondria and lysosomes. On electron microscopic autoradiographic study it was shown that the dynamic retention of radioactivity of enriched uranium UO 2 F 2 in skeleton increased steadily through the time period of exposure. Enriched uranium UO 2 F 2 chiefly deposited in nuclei and mitochondria of osteoblasts as well as of osteoclasts

  19. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    Science.gov (United States)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2017-04-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  20. Development and application of a window-type environmental cell in high voltage electron microscope

    International Nuclear Information System (INIS)

    Wakasugi, Takenobu; Isobe, Shigehito; Umeda, Ayaka; Wang, Yongming; Hashimoto, Naoyuki; Ohnuki, Somei

    2013-01-01

    Highlights: ► A window-type environmental cell for a high voltage electron microscope (HVEM) is developed. ► In situ HVEM image of Pd under an H2 gas pressure is obtained. ► The effect of the window materials on the resolution and contamination of the HVEM image is tested. -- Abstract: A close type of an environmental cell was developed for a high voltage electron microscope. Using this cell allowed an in situ observation of hydrogenation in Pd particles under H 2 gas of 0.05 MPa at RT. Two types of window films, Tri-Acetyl-Cellulose (TAC) and Silicon Nitride (SiN), were used for testing the contamination on the sample, as well as the strength for pressure. We confirmed the hydrogenation in diffraction patterns and images, and additionally the image resolution of 0.19 nm was obtained by using a SiN film with a thickness of 17 nm

  1. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

    International Nuclear Information System (INIS)

    Behan, G; Nellist, P D

    2008-01-01

    The use of spherical aberration correctors in the scanning transmission electron microscope (STEM) has the effect of reducing the depth of field of the microscope, making three-dimensional imaging of a specimen possible by optical sectioning. Depth resolution can be improved further by placing aberration correctors and lenses pre and post specimen to achieve an imaging mode known as scanning confocal electron microscopy (SCEM). We present the calculated incoherent point spread functions (PSF) and optical transfer functions (OTF) of a STEM and SCEM. The OTF for a STEM is shown to have a missing cone region which results in severe blurring along the optic axis, which can be especially severe for extended objects. We also present strategies for reconstruction of experimental data, such as three-dimensional deconvolution of the point spread function.

  2. Revealing the 1 nm/s Extensibility of Nanoscale Amorphous Carbon in a Scanning Electron Microscope

    DEFF Research Database (Denmark)

    Zhang, Wei

    2013-01-01

    In an ultra-high vacuum scanning electron microscope, the edged branches of amorphous carbon film (∼10 nm thickness) can be continuously extended with an eye-identifying speed (on the order of ∼1 nm/s) under electron beam. Such unusual mobility of amorphous carbon may be associated with deformation...... promoted by the electric field, which resulted from an inner secondary electron potential difference from the main trunk of carbon film to the tip end of branches under electron beam. This result demonstrates importance of applying electrical effects to modify properties of carbon materials. It may have...... positive implications to explore some amorphous carbon as electron field emission device. SCANNING 35: 261-264, 2013. © 2012 Wiley Periodicals, Inc....

  3. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  4. Electronic zooming TV readout system for an x-ray microscope

    International Nuclear Information System (INIS)

    Kinoshita, K.; Matsumura, T.; Inagaki, Y.; Hirai, N.; Sugiyama, M.; Kihara, H.; Watanabe, N.; Shimanuki, Y.

    1993-01-01

    The electronic zooming TV readout system using the X-ray zooming tube has been developed for purposes of real-time readout of very high resolution X-ray image, e.g. the output image from an X-ray microscope. The system limiting resolution is 0.2∼0.3 μm and it is easy to operate in practical applications

  5. Solving Research Tasks Using Desk top Scanning Electron Microscope Phenom ProX

    Directory of Open Access Journals (Sweden)

    Vertsanova, O.V.

    2014-03-01

    Full Text Available Phenom ProX — morden effective universal desktop Scanning Electron Microscope with integrated EDS system. Phenom-World helps customers to stay competitive in a world where critical dimensions are continuously getting smaller. All Phenom desktop systems give direct access to the high resolution and high-quality imaging and analysis required in a large variety of applications. They are affordable, flexible and a fast tool enabling engineers, technicians, researchers and educational professionals to investigate micron and submicron structures.

  6. Examination of mycological samples by means of the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1973-04-01

    Full Text Available Three species of Siphomycetes: Rhizopus arhizus, Rhizopus equinus and Rhizopus nigricans, as well as a Septomycete: Emericella nidulans, have been examined by means of a scanning electron microscope. Among the difjerent Rhizopus, this technique showed differences in the appearance of the sporangia. In Emericella nidulans, scanning microscopy enábled one to ascertain that the "Hull cells" were completely hollow and also demonstrated the ornemented aspect of the ascospores.

  7. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Science.gov (United States)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  8. Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics

    International Nuclear Information System (INIS)

    Dragt, A.J.

    1987-01-01

    A review is given of elementary Lie algebraic methods for treating Hamiltonian systems. This review is followed by a brief exposition of advanced Lie algebraic methods including resonance bases and conjugacy theorems. Finally, applications are made to the design of third-order achromats for use in accelerators, to the design of subangstroem resolution electron microscopes, and to the classification and study of high order aberrations in light optics. (orig.)

  9. Electronic structure and microscopic model of CoNb2O6

    Science.gov (United States)

    Molla, Kaimujjaman; Rahaman, Badiur

    2018-05-01

    We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.

  10. Congenital adenoma of the iris and ciliary body: light and electron microscopic observations.

    OpenAIRE

    Rennie, I G; Parsons, M A; Palmer, C A

    1992-01-01

    A 23-year-old man had a lesion in the right inferior iris which appeared to have enlarged since it was first seen when the patient was aged 5 years. The lesion was excised by a partial iridocyclectomy. Histopathologically the neoplasm was composed of both pigmented and non-pigmented cells. Pseudoacini, containing acid mucopolysaccharides, were present throughout the tumour matrix. Electron microscopically the non-pigmented cells were found to possess a convoluted plasmalemma, abundant rough e...

  11. Electron microscopic evaluation of a gold glaucoma micro shunt after explantation.

    Science.gov (United States)

    Berk, Thomas A; Tam, Diamond Y; Werner, Liliana; Mamalis, Nick; Ahmed, Iqbal Ike K

    2015-03-01

    We present a case of an explanted gold glaucoma micro shunt (GMS Plus) and the subsequent light and electron microscopic analyses. The shunt was implanted in a patient with medically refractive glaucoma. The intraocular pressure (IOP) was stable at 12 mm Hg 6 months postoperatively but spiked to 26 mm Hg 6 months later; membranous growth was visible on the implant gonioscopically. A second gold micro shunt was placed 2 years after the first. The IOP was 7 mm Hg 1 week postoperatively but increased to 23 mm Hg 3 weeks later; similar membranous growth was visible on this implant. One of the shunts was explanted, and light and scanning electron microscopic analyses revealed encapsulation around the shunt exterior and connective tissue invasion of the microstructure. This represents the first electron microscopic analysis of an explanted gold glaucoma micro shunt and the first unequivocal images of the fibrotic pseudo-capsule traversing its microchannels and fenestrations. Dr. Ahmed is a consultant to and has received research grants from Solx, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold.

    Science.gov (United States)

    Hutchison, N J; Langer-Safer, P R; Ward, D C; Hamkalo, B A

    1982-11-01

    In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average

  13. X-ray analysis of a single aerosol particle with combination of scanning electron microscope and synchrotron radiation X-ray microscope

    International Nuclear Information System (INIS)

    Toyoda, Masatoshi; Kaibuchi, Kazuki; Nagasono, Mitsuru; Terada, Yasuko; Tanabe, Teruo; Hayakawa, Shinjiro; Kawai, Jun

    2004-01-01

    We developed a microscope by a combination of synchrotron radiation X-ray fluorescence (SR-XRF) microscope and scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDX). SR-XRF is appropriate to detect trace and micro amount of elements and sensitive to heavy elements in an analyte but it cannot observe the real time image. SEM-EDX can observe the secondary electron image of a single particle in real time and is appropriate to detect lighter elements. This combination microscope can ensure the identification of the XRF spectrum to the SEM image without transferring the sample. For aerosol analysis, it is important to analyze each particle. The present method makes feasible to analyze not only the average elemental composition as the total particles but also elemental composition of each particle, which is dependent on the particle shape and size. The microscope was applied to an individual aerosol particle study. The X-ray spectra were different among the particles, but also different between SR-XRF and SEM-EDX for the same particle, due to the difference in fluorescence yields between X-ray excitation and electron excitation

  14. SEM analysis of ionizing radiation effects in linear integrated circuits. [Scanning Electron Microscope

    Science.gov (United States)

    Stanley, A. G.; Gauthier, M. K.

    1977-01-01

    A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.

  15. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    International Nuclear Information System (INIS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-01-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  16. The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Chapman, J.N.; Waddell, E.M.; Batson, P.E.; Ferrier, R.P.

    1979-01-01

    The most widely used method of investigating ferromagnetic films in the transmission electron microscope is the Fresnel or defocus mode of Lorentz microscopy. This may be implemented either in a fixed beam or a scanning instrument. Despite a rather inefficient utilization of electrons, several advantages accrue if the latter is used, and provided it is equipped with a field emission gun, low noise images may be obtained in acceptable recording times. To extract quantitative estimates of domain wall widths from such images it is necessary to measure accurately both instrumental and specimen parameters. Methods for this are discussed and an example of an analysis using a polycrystalline permalloy film is given. (Auth.)

  17. Transmission electron-microscopic studies of structural changes in polycrystalline graphite after high temperature irradiation

    International Nuclear Information System (INIS)

    Platonov, P.A.; Gurovich, B.A.; Shtrombakh, Ya.I.; Karpukhin, V.I.

    1985-01-01

    Transmission electron-microscopic investigation of polycrystalline graphite before and after irradiation is carried out. The direct use of graphite samples after ion thinning, as an inquiry subject is the basic peculiarity of the work. Main structural components of MPG-6 graphite before and after irradiation are revealed, the structural mechanism of the reactor graphite destruction under irradiation is demonstrated. The mean values of L αm and L cm crystallite dimensions are determined. Radiation defects, occuring in some crystallites after irradiation are revealed by the dark-field electron microscopy method

  18. Transmission electron microscopic method for gene mapping on polytene chromosomes by in situ hybridization

    OpenAIRE

    Wu, Madeline; Davidson, Norman

    1981-01-01

    A transmission electron microscope method for gene mapping by in situ hybridization to Drosophila polytene chromosomes has been developed. As electron-opaque labels, we use colloidal gold spheres having a diameter of 25 nm. The spheres are coated with a layer of protein to which Escherichia coli single-stranded DNA is photochemically crosslinked. Poly(dT) tails are added to the 3' OH ends of these DNA strands, and poly(dA) tails are added to the 3' OH ends of a fragmented cloned Drosophila DN...

  19. Record number (11 000) of interference fringes obtained by a 1 MV field-emission electron microscope

    International Nuclear Information System (INIS)

    Akashi, Tetsuya; Harada, Ken; Matsuda, Tsuyoshi; Kasai, Hiroto; Tonomura, Akira; Furutsu, Tadao; Moriya, Noboru; Yoshida, Takaho; Kawasaki, Takeshi; Kitazawa, Koichi; Koinuma, Hideomi

    2002-01-01

    An electron biprism for a 1 million-volt field-emission electron microscope was developed. This biprism is controlled similarly as a specimen holder so that it can be driven and rotated precisely and is tough against mechanical vibration and stray magnetic field. We recorded the maximum number of interference fringes by using this biprism in order to confirm the overall performance as a holography electron microscope, and obtained a world record of 11,000 interference fringes

  20. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM)

    International Nuclear Information System (INIS)

    LaGrange, Thomas; Campbell, Geoffrey H.; Reed, B.W.; Taheri, Mitra; Pesavento, J. Bradley; Kim, Judy S.; Browning, Nigel D.

    2008-01-01

    Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10 nm for single-shot imaging using 15 ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions

  1. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM)

    Energy Technology Data Exchange (ETDEWEB)

    LaGrange, Thomas [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)], E-mail: lagrange@llnl.gov; Campbell, Geoffrey H.; Reed, B.W.; Taheri, Mitra; Pesavento, J. Bradley [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Kim, Judy S.; Browning, Nigel D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616 (United States)

    2008-10-15

    Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10 nm for single-shot imaging using 15 ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions.

  2. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    Science.gov (United States)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-09-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1,2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  3. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-01-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2 /Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  4. Irradiation-related amorphization and crystallization: In situ transmission electron microscope studies

    International Nuclear Information System (INIS)

    Allen, C.W.

    1994-01-01

    Interfacing an ion accelerator to a transmission electron microscope (TEM) allows the analytical functions of TEM imaging and diffraction to be employed during ion-irradiation effects studies. At present there are twelve such installations in Japan, one in France and one in the US. This paper treats several aspects of in situ studies involving electron and ion beam induced and enhanced phase transformations and presents results of several in situ experiments to illustrate the dynamics of this approach in the materials science of irradiation effects. The paper describes the ion- and electron-induced amorphization of CuTi; the ion-irradiation-enhanced transformation of TiCr 2 ; and the ion- and electron-irradiation-enhanced crystallization of CoSi 2

  5. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  6. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  7. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  8. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    Science.gov (United States)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  9. Top-down topography of deeply etched silicon in the scanning electron microscope

    International Nuclear Information System (INIS)

    Wells, Oliver C.; Murray, Conal E.; Rullan, Jonathan L.; Gignac, Lynne M.

    2004-01-01

    It is proposed to measure the cross sections of steep-sided etched lines and similar deep surface topography on partially completed silicon integrated circuit wafers using either the backscattered electron (BSE) or the low-loss electron (LLE) image in the scanning electron microscope (SEM). These images contain regions where the collected signal is zero because there is no direct line of sight between the landing point of the electron beam on the specimen and the BSE or LLE detector. It is proposed to use the boundary of such a region in the SEM image as a geometrical line to measure the surface topography. Or alternatively, a shadow can be seen in the distribution of either BSE or LLE with an image-forming detector system. The use of this shadow position on the detector to measure deep surface topography will be demonstrated

  10. Multi-technique application of a double reflection electron emission microscope

    International Nuclear Information System (INIS)

    Jian-liang, J.; Bao-gui, S.; Guo-jun, Z

    2002-01-01

    Full text: In this paper the results acquired with the most recently developed double reflection electron emission microscope applied in different imaging modes are presented. The novel illumination system is based on a (100)-oriented single crystalline W wire electron microreflector and an electron gun placed in the back focal plane of the immersion objective. After being elastically reflected from the W tip surface, the primary electrons of energy ranging from 1 to 6 keV are decelerated to the desired impact energy in the range 0 to 200 eV for mirror electron microscopy (MEM), low energy electron emission microscopy (LEEM) and low energy electron diffraction (LEED) modes or to 5 keV for the secondary electron imaging mode. Photoelectron emission microscopy (PEEM), MEM, LEEM, secondary images of Pd/Si(111) and a set of selected area LEED patterns of the W(100) surface taken at energies ranging from 5 to 40 eV are presented for the first time. Copyright (2002) Australian Society for Electron Microscopy Inc

  11. Use of an axisymmetric microscope with electronic readout for collecting soft X-ray images

    International Nuclear Information System (INIS)

    Cavailler, C.; Henry, P.; Launspach, J.; De Mascureau, J.; Millerioux, M.; Rostaing, M.; Sauneuf, R.

    1984-08-01

    The axisymmetric microscope, first discussed by Wolter, provides high resolution and sensitivity for investigating the soft X-ray emission of laser-driven plasmas. Such a device having a 10 X magnification has been constructed. We present a comparison between the images of laser-driven plasmas given by this microscope and by a 10 X pinhole camera. Until now these images were recorded on X-ray film. We have shown that film could be replaced by C.C.D. in a pinhole camera when the photon energy lies within the 1-10 keV range. Below 1 keV the quantum yield is too low so we have used an image converter tube made by RTC. It is a diode-inverter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a C.C.D. working in the visible spectral fields. An electronic image readout chain, which is identical to those associated with streak cameras, then processes automatically and immediately the images given by the microscope [fr

  12. Study of skin of an Egyptian mummy using a scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Mańkowska-Pliszka Hanna

    2017-06-01

    Full Text Available The first study of modified human remains using an electron microscope was carried out at the end of the 1950 and in 1979 the first result of the study involving a scanning electron microscope (SEM was published for the first time. The study was mainly focused on the structure of tissues and cells. With the help of this technique cell and tissue elements, viruses and bacterial endospores as well as the structure of epithelium and the collagen contents of dermis were identified and described. In the above-mentioned case the object of the study using a SEM was a free part of the right hand (forearm with the dorsal and palmar parts of hand of unknown origin, with signs of mummification revealed during microscopic analysis. Our study was aimed at finding the answer to the question if the mummification of the studied limb was natural or intentional, and if the study using a SEM could link the anonymous remains with ancient Egypt.

  13. Electron microscopic study of the spilt irradiation effects on the rat parotid ductal cells

    International Nuclear Information System (INIS)

    Kim, Sung Soo; Lee, Sang Rae

    1988-01-01

    This study was designed to investigate the effects of split irradiation on the salivary ductal cells, especially on the intercalated cells of the rat parotid glands. For this study, 24 Sprague-Dawley strain rats were irradiated on the head and neck region with two equal split doses of 9 Gy for a 4 hours interval by Co-60 teletherapy unit, Picker's mode l 4M 60. The conditions of irradiation were that field size, dose rate, SSD and depth were 12 X 5 cm, 222 cGy/min, 50 cm and 1 cm, respectively. The experimental animals were sacrificed 1, 2, 3, 6, 12, hours and 1, 3, 7, days after the irradiation and the changes of the irradiated intercalated cells of the parotid glands were examined under light and electron microscope. The results were as follows: 1. By the split irradiation, the degenerative changes of intercalated cells of the parotid glands appeared at 3 hours after irradiation and the most severe cellular degeneration observed at 6 hours after irradiation. The repair processes began from 12 hours after irradiation and have matured progressively. 2. Under electron microscope, loss of nuclear membrane, microvilli and secretory granules, derangement of chromosomes, degeneration of cytoplasm, atrophy or reduction of intracytoplasmic organelles were observed in the intercalated ductal cells after split irradiation. 3. Under light microscope, derangement of ductal cells, widening of cytoplasms and nuclei, hyperchromatism and proliferation of ductal cells were observed in intercalated ducts after split irradiation.

  14. Modeling secondary electron emission from nanostructured materials in helium ion microscope

    International Nuclear Information System (INIS)

    Ohya, K.; Yamanaka, T.

    2013-01-01

    Charging of a SiO 2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers ( 2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO 2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO 2 layer

  15. A new approach to nuclear microscopy: The ion-electron emission microscope

    International Nuclear Information System (INIS)

    Doyle, B.L.; Vizkelethy, G.; Walsh, D.S.; Senftinger, B.; Mellon, M.

    1998-01-01

    A new multidimensional high lateral resolution ion beam analysis technique, Ion-Electron Emission Microscopy or IEEM is described. Using MeV energy ions, IEEM is shown to be capable of Ion Beam Induced Charge Collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IIEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion

  16. A scanning electron microscopic study of 34 cases of acute granulocytic, myelomonocytic, monoblastic and histiocytic leukemia.

    Science.gov (United States)

    Polliack, A; McKenzie, S; Gee, T; Lampen, N; de Harven, E; Clarkson, B D

    1975-09-01

    This report describes the surface architecture of leukemic cells, as seen by scanning electron microscopy in 34 patients with acute nonlymphoblastic leukemia. Six patients with myeloblastic, 4 with promyelocytic, 10 with myelomonocytic, 8 with monocytic, 4 with histiocytic and 2 with undifferentiated leukemia were studied. Under the scanning electron microscope most leukemia histiocytes and monocytes appeared similar and were characterized by the presence of large, well developed broad-based ruffled membranes or prominent raised ridge-like profiles, resembling ithis respect normal monocytes. Most cells from patients with acute promyelocytic or myeloblastic leukemia exhibited narrower ridge-like profiles whereas some showed ruffles or microvilli. Patients with myelomonocytic leukemia showed mixed populations of cells with ridge-like profiles and ruffled membranes whereas cells from two patients with undifferentiated leukemia had smooth surfaces, similar to those encountered in cells from patients with acute lymphoblastic leukemia. It appears that nonlymphoblastic and lymphoblastic leukemia cells (particularly histiocytes and monocytes) can frequently be distinquished on the basis of their surface architecture. The surface features of leukemic histiocytes and monocytes are similar, suggesting that they may belong to the same cell series. The monocytes seem to have characteristic surface features recognizable with the scanning electron microscope and differ from most cells from patients with acute granulocytic leukemia. Although overlap of surface features and misidentification can occur, scanning electron microscopy is a useful adjunct to other modes of microscopy in the study and diagnosis of acute leukemia.

  17. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, L., E-mail: luca.piazza@epfl.ch [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 455 Bolero Drive, Danville, CA 94526 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Barwick, B. [Department of Physics, Trinity College, 300 Summit St., Hartford, CT 06106 (United States); Carbone, Fabrizio [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2013-09-23

    Highlights: • We present the implementation of a femtosecond-resolved ultrafast TEM. • This is the first ultrafast TEM based on a thermionic gun geometry. • An additional condenser lens has been used to maximize the electron count. • We achieved a time resolution of about 300 fs and an energy resolution of 1 eV. - Abstract: In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved.

  18. Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms

    International Nuclear Information System (INIS)

    Zemlin, F.; Weiss, K.; Schiske, P.; Kunath, W.; Herrmann, K.-H.

    1978-01-01

    Alignment by means of current commutating and defocusing of the objective does not yield the desired rotational symmetry of the imaging pencils. This was found while aligning a transmission electron microscope with a single field condenser objective. A series of optical diffractograms of micrographs taken under the same tilted illumination yet under various azimuths have been arranged in a tableau, wherein strong asymmetry is exhibited. Quantitative evaluation yields the most important asymmetric aberration to be the axial coma, which becomes critical when a resolution better than 5 A 0 is obtained. The tableau also allows an assessment of the three-fold astigmatism. A procedure has been developed which aligns the microscope onto the coma-free and dispersion-free pencil axis and does not rely on current communication. The procedure demands equal appearance of astigmatic carbon film images produced under the same tilt yet diametrical azimuth. (Auth.)

  19. Analytical electron microscope study of the omega phase transformation in a zirconium--niobium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, N.J.

    1979-06-01

    An in-situ study of the as-quenched omega phase transformation in Zr--15% Nb was conducted between the temperatures of 77 and 300/sup 0/K using analytical electron microscopy. The domain size of the omega regions observed in this investigation was on the order of 30 A, consistent with previous observations in this system. No alignment of omega domains along <222> directions of the bcc lattice was observed and in-situ thermal cycling experiments failed to produce a long period structure of alternating ..beta.. and ..omega.. phase regions as predicted by one theory of this transformation. Several techniques of microstructural analysis were developed, refined, and standardized. Grouped under the general classification of Analytical Electron Microscopy (AEM) they provide the experimentalist with a unique tool for the microcharacterization of solids, allowing semiquantitative to quantitative analysis of the morphology, crystallography, elemental composition, and electronic structure of regions as small as 20 A in diameter. These techniques have complications, and it was necessary to study the AEM system used in this work so that instrumental artifacts which invalidate the information produced in the microscope environment might be eliminated. Once these factors had been corrected, it was possible to obtain a wealth of information about the microvolume of material under investigation. The microanalytical techniques employed during this research include: energy dispersive x-ray spectroscopy (EDS) using both conventional and scanning transmission electron microscopy (CTEM, STEM), transmission scanning electron diffraction (TSED), the stationary diffraction pattern technique, and electron energy loss spectroscopy (ELS) using a dedicated scanning transmission electron microscope (DSTEM).

  20. Analytical electron microscope study of the omega phase transformation in a zirconium--niobium alloy

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-06-01

    An in-situ study of the as-quenched omega phase transformation in Zr--15% Nb was conducted between the temperatures of 77 and 300 0 K using analytical electron microscopy. The domain size of the omega regions observed in this investigation was on the order of 30 A, consistent with previous observations in this system. No alignment of omega domains along directions of the bcc lattice was observed and in-situ thermal cycling experiments failed to produce a long period structure of alternating β and ω phase regions as predicted by one theory of this transformation. Several techniques of microstructural analysis were developed, refined, and standardized. Grouped under the general classification of Analytical Electron Microscopy (AEM) they provide the experimentalist with a unique tool for the microcharacterization of solids, allowing semiquantitative to quantitative analysis of the morphology, crystallography, elemental composition, and electronic structure of regions as small as 20 A in diameter. These techniques have complications, and it was necessary to study the AEM system used in this work so that instrumental artifacts which invalidate the information produced in the microscope environment might be eliminated. Once these factors had been corrected, it was possible to obtain a wealth of information about the microvolume of material under investigation. The microanalytical techniques employed during this research include: energy dispersive x-ray spectroscopy (EDS) using both conventional and scanning transmission electron microscopy (CTEM, STEM), transmission scanning electron diffraction (TSED), the stationary diffraction pattern technique, and electron energy loss spectroscopy (ELS) using a dedicated scanning transmission electron microscope

  1. The interperiosteo-dural concept applied to the perisellar compartment: a microanatomical and electron microscopic study.

    Science.gov (United States)

    François, Patrick; Travers, Nadine; Lescanne, Emmanuel; Arbeille, Brigitte; Jan, Michel; Velut, Stéphane

    2010-11-01

    The dura mater has 2 dural layers: the endosteal layer (outer layer), which is firmly attached to the bone, and the meningeal layer (inner layer), which directly covers the brain. These 2 dural layers join together in the middle temporal fossa or the convexity and separate into the orbital, lateral sellar compartment (LSC), or spinal epidural space to form the extradural neural axis compartment (EDNAC). The aim of this work was to anatomically verify the concept of the EDNAC by using electron microscopy. The authors studied the cadaveric heads obtained from 13 adults. Ten of the specimens (or 20 perisellar areas) were injected with colored latex and fixed in formalin. They carefully removed each brain to allow a superior approach to the perisellar area. The 3 other specimens were studied by microscopic and ultrastructural methods to describe the EDNAC in the perisellar area. Special attention was paid to the dural layers surrounding the perisellar area. The authors studied the anatomy of the meningeal architecture of the LSC, the petroclival venous confluence, the orbit, and the trigeminal cave. After dissection, the authors took photographs of the dural layers with the aid of optical magnification. The 3 remaining heads, obtained from fresh cadavers, were prepared for electron microscopic study. The EDNAC is limited by the endosteal layer and the meningeal layer and contains fat and/or venous blood. The endosteal layer and meningeal layer were not identical on electron microscopy; this finding can be readily related to the histology of the meninges. In this study, the authors demonstrated the existence of the EDNAC concept in the perisellar area by using dissected cadaveric heads and verified the reality of the concept of the meningeal layer with electron microscopy. These findings clearly demonstrated the existence of the EDNAC, a notion that has generally been accepted but never demonstrated microscopically.

  2. In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark H Rummeli

    2018-05-01

    Full Text Available The excitement of graphene (as well as 2D materials in general has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM. This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.

  3. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Hösli, E; Belhage, B

    1991-01-01

    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...

  4. Atomistic observations and analyses of lattice defects in transmission electron microscopes

    CERN Document Server

    Abe, H

    2003-01-01

    The transmission electron microscope (TEM) -accelerators was developed. TEM-Accelerator made possible to observe in situ experiments of ion irradiation and implantation. The main results are the experimental proof of new lattice defects by irradiation, the formation process and synthesized conditions of carbon onion by ion implantation, the microstructure and phase transformation conditions of graphite by ion irradiated phase transformation, the irradiation damage formation process by simultaneous irradiation of electron and ion and behavior of fullerene whisker under irradiation. The microstructural evolution of defect clusters in copper irradiated with 240-keV Cu sup + ions and a high resolution electron micrograph of carbon onions synthesized by ion implantation are explained as the examples of recent researches. (S.Y.)

  5. An aberration corrected photoemission electron microscope at the advanced light source

    International Nuclear Information System (INIS)

    Feng, J.; MacDowell, A.A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N.; Marcus, M.; Munson, D.; Padmore, H.; Petermann, K.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2003-01-01

    Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further

  6. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  7. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  8. Controlling electron transfer processes on insulating surfaces with the non-contact atomic force microscope.

    Science.gov (United States)

    Trevethan, Thomas; Shluger, Alexander

    2009-07-01

    We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.

  9. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Hachtel, J A; Haglund, R F; Pantelides, S T; Marvinney, C; Mayo, D; Mouti, A; Lupini, A R; Chisholm, M F; Mu, R; Pennycook, S J

    2016-01-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. (paper)

  10. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  11. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Portable spectroscopic scanning electron microscope on ISS: in situ nanostructural/chemical analysis for critical vehicle systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We will construct a novel field-portable miniature analytical electron microscope (EM+EDS) called Mochii "S" for in situ sensing in harsh/remote environments such as...

  13. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations.

    Science.gov (United States)

    Bimurzaev, S B; Aldiyarov, N U; Yakushev, E M

    2017-10-01

    The paper describes the principle of operation of a relatively simple aberration corrector for the transmission electron microscope objective lens. The electron-optical system of the aberration corrector consists of the two main elements: an electrostatic mirror with rotational symmetry and a magnetic deflector formed by the round-shaped magnetic poles. The corrector operation is demonstrated by calculations on the example of correction of basic aberrations of the well-known objective lens with a bell-shaped distribution of the axial magnetic field. Two of the simplest versions of the corrector are considered: a corrector with a two-electrode electrostatic mirror and a corrector with a three-electrode electrostatic mirror. It is shown that using the two-electrode mirror one can eliminate either spherical or chromatic aberration of the objective lens, without changing the value of its linear magnification. Using a three-electrode mirror, it is possible to eliminate spherical and chromatic aberrations of the objective lens simultaneously, which is especially important in designing electron microscopes with extremely high resolution. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Follicle and oocyte growth in early postnatal calves: cytochemical, autoradiographical and electron microscopical studies

    International Nuclear Information System (INIS)

    Mhawi, A.J.; Kaňka, J.; Motlík, J.

    1991-01-01

    The initiation of oocyte and follicle growth was studied in 1- and 3-d-old calf ovaries using cytochemical, autoradiographical and electron microscopical approaches. Attention was only paid to unilaminar ovarian follicles that were classified into 3 categories: unilaminar flattened (UF), unilaminar flatto-cuboidal (UFC) and unilaminar cuboidal (UC) ovarian follicles when the oocyte was surrounded by 1 layer of flattened, a mixture of flattened and cuboidal and entirely cuboidal follicle cells, respectively. Our findings suggested that oocytes within each of these follicle categories were in different developmental stages. Furthermore, electron microscopic observations revealed that early after birth, oocyte nuclei characteristic of diplotene configuration (aggregation of the nuclear chromatin into moderately electron-dense small patches and fibrillo-granular texture of the nucleolus) were encountered in 41% of the UF follicles. The rest of the UF as well as all of the UFC and UC follicles were found to contain dictyate oocytes in which the chromatin was highly decondensed and the nucleolus differentiated into fibrillar, fibrillo-granular and granular components. The present results also indicated that the complete transition of the surrounding follicle cells from flattened to cuboidal shape and the morphological changes of the oocyte endoplasmic reticulum and mitochondria were 2 complementary events essential for initiation of oocyte growth

  15. Electron Microscopic Changes of Rabbit Retina after Chromovitrectomy Using Combined Dyes (Experimental Study

    Directory of Open Access Journals (Sweden)

    B. M. Aznabaev

    2018-01-01

    Full Text Available Purpose: to evaluate on experimental model electron-microscopic changes of rabbit retina after staining of the posterior eye segmentwith combined dyes based on Trypan blue and Brilliant blue G for the assessment of their safety. Methods. The study was performed onChinchilla breed rabbits. Combined dyes based on Trypan blue and Brilliant blue were used: MembraneBlue-Dual (DORC, Netherlandsand “Staining solution for ophthalmic surgery” (JCS “Optimedservis”, Russia. Standard three-port vitrectomy technique was used. After vitreous removal dyes were injected in vitreous cavity and exposed for 10 seconds and then removed. The vitreous cavity was filled by a balanced salt solution. An electron-microscopic evaluation was performed on 5, 14 and 30 days after surgery. Eyes were enucleated in 20 minutes after animal was killed by air embolization. Intact eyes were used as a control, all samples were prepared in same сonditions. The damage of the retina architectonics and the presence of intracellular inclusions were evaluated. Results. The staged character of pathomorphological changes was revealed. On the 5th day moderate edema and hydropic dystrophy of neurons were registered. On the 14th day, there was no negative dynamics. On day 30, the signs of edema and dystrophy of neurons practically disappeared, which may indicate a fundamental reversibility of the registered changes. Conclusion. Investigated dyes for staining intraocular structures based on Trypan blue and Brilliant blue did not cause significant histomorphological changes and toxic effects on retinal cell structures. Detected electron microscopic changes were insignificant, had reversible character and could be mostly caused by a surgical injury.

  16. Surface characterization of activated chalcopyrite particles via the FLSmidth ROL process. Part 1: Electron microscope investigations

    DEFF Research Database (Denmark)

    Karcz, Adam Paul; Damø, Anne Juul; Illerup, Jytte Boll

    Because of its unique semiconductor properties, the world’s most abundant copper mineral (chalcopyrite) is refractory with respect to atmospheric leaching using traditional ferric sulfate lixiviants. A novel approach to address this issue – conducted at FLSmidth – utilizes a mechanochemical Rapid...... of copper(II) to dope the semiconductor lattice and thereby "activate" the chalcopyrite, thereby reducing leach times below 2 hours (>98% recovery). Because the activation plays a major role in accelerating the leaching step, it is critical to understand the nature of this intermediate and its part...... in the ROL process. The current work presents results from electron microscope investigations of surface-activated particles....

  17. Manipulation of nanoparticles of different shapes inside a scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Boris Polyakov

    2014-02-01

    Full Text Available In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed.

  18. Serotonergic synaptic input to facial motoneurons: localization by electron-microscopic autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanian, G K; McCall, R B [Yale Univ., New Haven, CT (USA). School of Medicine

    1980-12-01

    Serotonergic nerve terminals in the facial motor nucleus were labelled with (/sup 3/H)5-hydroxytryptamine. When serotonergic nerve terminals were destroyed (by the selective neurotoxin 5,7-dihydroxytryptamine) the labelling was lost. By electron-microscopic autoradiography, labelled serotonergic terminals were found to make axo-dendritic or axo-somatic junctions with facial motor neurons. No axo-axonic junctions were observed. These morphological findings are consistent with physiological studies which indicate that 5-hydroxytryptamine facilitates the excitation of facial motoneurons through a direct postsynaptic action.

  19. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    Science.gov (United States)

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  20. Unveiling the Mysteries of Mars with a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM)

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Doloboff, I. J.; Jerman, G.

    2017-01-01

    Development of a miniaturized scanning electron microscope that will utilize the martian atmosphere to dissipate charge during analysis continues. This instrument is expected to be used on a future rover or lander to answer fundamental Mars science questions. To identify the most important questions, a survey was taken at the 47th Lunar and Planetary Science Conference (LPSC). From the gathered information initial topics were identified for a SEM on the martian surface. These priorities are identified and discussed below. Additionally, a concept of operations is provided with the goal of maximizing the science obtained with the minimum amount of communication with the instrument.

  1. Scanning-electron-microscope study of normal-impingement erosion of ductile metals

    Science.gov (United States)

    Brainard, W. A.; Salik, J.

    1980-01-01

    Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Macroscopic 3.2 mm diameter steel balls and microscopic, brittle erodant particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodant particles, at lower speeds the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.

  2. The reactions of loaded carbon nanotubes, studied by novel electron microscope techniques

    International Nuclear Information System (INIS)

    Rawcliffe, A.

    1999-01-01

    A novel electron microscope technique, controlled environment transmission electron microscopy (CETEM), has been used to investigate the reaction of materials loaded within the internal cavities of carbon nanotubes. CETEM allows the introduction of up to 20 mbar of gas around an electron microscope sample, while maintaining a high resolution imaging capability. The microscope is stable, flexible and reliable under these conditions and high resolution images of encapsulated transmission metal oxide reduction have been recorded at 460 deg. C. Recently discovered carbon nanotubes have in theory many applications, many of which will require controlled reliable loading of the internal cavity. However, at present, there is little experimental evidence to confirm theoretical descriptions of the fundamental mechanisms which govern both the extent of loading and the state in which it is found. Similarly, reaction within the cavity and the effect of encapsulation on the nano-scale particle distribution must also be understood, and CETEM proves to be an ideal technique for the study of these processes. Nanotubes have been loaded from aqueous solution with (NH 4 ) 2 IrCI 6 and with molten MoO 3 or K 2 WO 4 /WO 3 . Bulk samples of the first salt are known to decompose spontaneously in air at 200 deg. C, and the bulk oxides are partially reduced at temperature under hydrogen to give potentially useful conducting phases. Comparing the reaction of these materials it is thus possible to: investigate the effect of loading on their reaction; compare the reaction of these materials in- and out-side the tube cavity; and assess the result of violent loading processes on the tubes themselves. Fortuitously, a spontaneous decomposition, a solid-gas reduction and a phase rearrangement were all recorded, allowing mechanistic implications of encapsulation to be considered for each of these reactions. Perhaps surprisingly, the results can be largely interpreted using the reported bulk

  3. In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten

    International Nuclear Information System (INIS)

    Miyamoto, M; Watanabe, T; Nagashima, H; Nishijima, D; Doerner, R P; Krasheninnikov, S I; Sagara, A; Yoshida, N

    2014-01-01

    To investigate the formation processes of tungsten nano-structures, so called fuzz, in situ transmission electron microscope observations during helium ion irradiation and high temperature annealing have been performed. The irradiation with 3 keV He + from room temperature to 1273 K is found to cause high-density helium bubbles in tungsten with no significant change in the surface structure. At higher temperatures, surface morphology changes were observed even without helium irradiation due probably to surface diffusion of tungsten atoms driven by surface tension. It is clearly shown that this morphology change is enhanced with helium irradiation, i.e. the formation of helium bubbles. (paper)

  4. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Engelsen, Daniel den; Harris, Paul G.; Ireland, Terry G., E-mail: terry.ireland@brunel.ac.uk; Fern, George R.; Silver, Jack

    2015-10-15

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. - Highlights: • Contrast enhancement are observed in secondary electron and cathodoluminescent images of phosphor particles sitting on top of others. • Backscattered electrons largely explain the observed contrast enhancement. • After glow effects in CL-micrographs of phosphors enable the determination of decay times. • Phosphor saturation can be used to determine the decay time of individual spectral transitions.

  5. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    Science.gov (United States)

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template

    Directory of Open Access Journals (Sweden)

    Weiqun Li

    2014-08-01

    Full Text Available Biomaterials in nature exhibit delicate structures that are greatly beyond the capability of the current manufacturing techniques. Duplicating these structures and applying them in engineering may help enhance the performance of traditional functional materials and structures. Inspired by gecko’s hierarchical micro- and nano-fibrillar structures for adhesion, in this work we fabricated micro-pillars and tubes by adopting the tubular dentine of black carp fish teeth as molding template. The adhesion performances of the fabricated micro-pillars and tubes were characterized and compared. It was found that the pull-off force of a single pillar was about twice of that of the tube with comparable size. Such unexpected discrepancy in adhesion was analyzed based on the contact mechanics theories.

  7. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Simulations and measurements in scanning electron microscopes at low electron energy

    Czech Academy of Sciences Publication Activity Database

    Walker, C.; Frank, Luděk; Müllerová, Ilona

    2016-01-01

    Roč. 38, č. 6 (2016), s. 802-818 ISSN 0161-0457 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : Monte Carlo modeling * scanned probe * computer simulation * electron-solid interactions * surface analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.345, year: 2016

  9. Damage structure of gallium arsenide irradiated in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Loretto, D.; Loretto, M.H.

    1989-01-01

    Semi-insulating undoped gallium arsenide has been irradiated in a high-voltage electron microscope between room temperature and about 500 0 C for doses of up to 5 x 10 22 electrons cm -2 at 1 MeV. Room-temperature irradiation produces small (less than 5 nm) damage clusters. As the temperature of the irradiation is increased, the size of these clusters increases, until at about 300 0 C a high density of dislocation loops can be resolved. The dislocation loops, 20 nm or less in diameter, which are produced at about 500 0 C have been analysed in a bright field using a two-beam inside-outside method which minimises the tilt necessary between micrographs. It is concluded that the loops are an interstitial perfect-edge type with a Burgers vector of (a/2) . (author)

  10. Sensitivity Analysis of X-ray Spectra from Scanning Electron Microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samples (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).

  11. Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning electron microscope

    Science.gov (United States)

    Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo

    2018-01-01

    In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.

  12. The Wavelength-Dispersive Spectrometer and Its Proposed Use in the Analytical Electron Microscope

    Science.gov (United States)

    Goldstein, Joseph I.; Lyman, Charles E.; Williams, David B.

    1989-01-01

    The Analytical Electron Microscope (AEM) equipped with a wavelength-dispersive spectrometer (WDS) should have the ability to resolve peaks which normally overlap in the spectra from an energy-dispersive spectrometer (EDS). With a WDS it should also be possible to measure lower concentrations of elements in thin foils due to the increased peak-to-background ratio compared with EDS. The WDS will measure X-ray from the light elements (4 less than Z less than 1O) more effectively. This paper addresses the possibility of interfacing a compact WDS with a focussing circle of approximately 4 cm to a modem AEM with a high-brightness (field emission) source of electrons.

  13. Dynamics of Supported Metal Nanoparticles Observed in a CS Corrected Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Dunin-Borkowski, Rafal E.; Wagner, Jakob Birkedal

    resulting in the formation of larger particles and a loss of catalytic performance. Several models of sintering in different systems have been put forward [1,2]. However, most investigations have been post mortem studies, revealing only the final state of the catalyst. Transmission electron microscopy (TEM....... The combined capabilities of ETEM and image CS correction provide unique possibilities to study this relationship. However, in order to fully quantify image contrast from such experiments, a deeper understanding of the scattering of fast electrons in the presence of gas molecules in the pole piece gap...... of the microscope is needed. As industrial catalysts are usually complex high surface area materials, they are often not suited for fundamental studies. For this purpose, model systems consisting of gold nanoparticles on sheets of low surface area boron nitride and graphite supports were produced. Sheets...

  14. In situ investigation of bismuth nanoparticles formation by transmission electron microscope.

    Science.gov (United States)

    Liu, Liming; Wang, Honghang; Yi, Zichuan; Deng, Quanrong; Lin, Zhidong; Zhang, Xiaowen

    2018-02-01

    Bismuth (Bi) nanoparticles are prepared by using NaBi(MoO 4 ) 2 nanosheets in the beam of electrons emitted by transmission electron microscope. The formation and growth of Bi nanoparticles are investigated in situ. The sizes of Bi nanoparticles are confined within the range of 6-10nm by controlling irradiation time. It is also observed that once the diameter of nanoparticles is larger than 10nm, the Bi particles are stable as a result of the immobility of large nanoparticles. In addition, some nanoparticles on the edges form nanorods, which are explained as the result of a coalescence process, if the irradiation period is longer than 10min. The in situ research on Bi nanoparticles facilitates in-depth investigations of the physicochemical behavior and provides more potential applications in various fields such as sensors, catalysts and optical devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In-Situ Microprobe Observations of Dispersed Oil with Low-Temperature Low-Vacuum Scanning Electron Microscope

    International Nuclear Information System (INIS)

    Mohsen, H.T.

    2010-01-01

    A low cost cryostat stage from high heat capacity material is designed and constructed, in attempt to apply size distribution techniques for examination of oil dispersions. Different materials were tested according to their heat capacity to keep the liquid under investigation in frozen state as long as possible during the introduction of the cryostat stage to the low-vacuum scanning electron microscope. Different concentrations of non ionic surfactant were added to artificially contaminated with 10000 ppm Balayeam base oil in 3.5 % saline water, where oil and dispersing liquid have been added and shacked well to be investigated under the microscope as fine frozen droplets. The efficiency of dispersion was examined using low temperature low-vacuum scanning electron microscope. The shape and size distributions of freeze oil droplets were studied by digital imaging processing technique in conjunction with scanning electron microscope counting method. Also elemental concentration of oil droplets was analyzed.

  16. Optimization of an analytical electron microscope for x-ray microanalysis: instrumental problems

    International Nuclear Information System (INIS)

    Bentley, J.; Zaluzec, N.J.; Kenik, E.A.; Carpenter, R.W.

    1979-01-01

    The addition of an energy dispersive x-ray spectrometer to a modern transmission or scanning transmission electron microscope can provide a powerful tool in the characterization of the materials. Unfortunately this seemingly simple modification can lead to a host of instrumental problems with respect to the accuracy, validity, and quality of the recorded information. This tutorial reviews the complications which can arise in performing x-ray microanalysis in current analytical electron microscopes. The first topic treated in depth is fluorescence by uncollimated radiation. The source, distinguishing characteristics, effects on quantitative analysis and schemes for elimination or minimization as applicable to TEM/STEMs, D-STEMs and HVEMs are discussed. The local specimen environment is considered in the second major section where again detrimental effects on quantitative analysis and remedial procedures, particularly the use of low-background specimen holers, are highlighted. Finally, the detrimental aspects of specimen contamination, insofar as they affect x-ray microanalysis, are discussed. It is concluded that if the described preventive measures are implemented, reliable quantitative analysis is possible

  17. Mesotherapy for facial skin rejuvenation: a clinical, histologic, and electron microscopic evaluation.

    Science.gov (United States)

    Amin, Snehal P; Phelps, Robert G; Goldberg, David J

    2006-12-01

    Mesotherapy, as broadly defined, represents a variety of minimally invasive techniques in which medications are directly injected into the skin and underlying tissue in order to improve musculoskeletal, neurologic, and cosmetic conditions. There are few clinical studies evaluating the efficacy and safety of mesotherapy in any form. This study evaluates the histologic and clinical changes associated with one of the simplest formulations of mesotheraphy commonly used for skin rejuvenation. Ten subjects underwent four sessions of mesotherapy involving multiple injections of a multivitamin and hyaluronic acid solution. Treatment was conducted at 4 monthly intervals. All subjects had pre- and post-treatment photographs and skin biopsies. Skin biopsies were evaluated with routine histology, mucin and elastin stains, and electron microscopy. Patient surveys were also evaluated. Evaluation of photographs at 0, 3, and 6 months revealed no significant clinical differences. Light microscopic examination of pre- and posttreatment specimens showed no significant changes. Electron microscopic analysis of collagen fibers measurements did show smaller diameter fibres posttreatment. No significant clinical or histologic changes were observed after multivitamin mesotherapy for skin rejuvenation. Multivitamin and hyaluronic acid solution facial mesotherapy does not appear to provide any significant benefit.

  18. Instrumental Developments for In-situ Breakdown Experiments inside a Scanning Electron Microscope

    CERN Document Server

    Muranaka, T; Leifer, K; Ziemann, V

    2011-01-01

    Electrical discharges in accelerating structures are one of the key issues limiting the performance of future high energy accelerators such as the Compact Linear Collider (CLIC). Fundamental understanding of breakdown phenomena is an indispensable part of the CLIC feasibility study. The present work concerns the experimental study of breakdown using Scanning Electron Microscopes (SEMs). A SEM gives us the opportunity to achieve high electrical gradients of 1\\,kV/$\\mu$m which corresponds to 1\\,GV/m by exciting a probe needle with a high voltage power supply and controlling the positioning of the needle with a linear piezo motor. The gap between the needle tip and the surface is controlled with sub-micron precision. A second electron microscope equipped with a Focused Ion Beam (FIB) is used to create surface corrugations and to sharpen the probe needle to a tip radius of about 50\\,nm. Moreover it is used to prepare cross sections of a voltage breakdown area in order to study the geometrical surface damages as w...

  19. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.

    Science.gov (United States)

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara

    2011-12-01

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Electron magnetic chiral dichroism in CrO2 thin films using monochromatic probe illumination in a transmission electron microscope

    International Nuclear Information System (INIS)

    Loukya, B.; Zhang, X.; Gupta, A.; Datta, R.

    2012-01-01

    Electron magnetic chiral dichroism (EMCD) has been studied in CrO 2 thin films (with (100) and (110) growth orientations on TiO 2 substrates) using a gun monochromator in an aberration corrected transmission electron microscope operating at 300 kV. Excellent signal-to-noise ratio is obtained at spatial resolution ∼10 nm using a monochromatic probe as compared to conventional parallel illumination, large area convergent beam electron diffraction and scanning transmission electron microscopy techniques of EMCD. Relatively rapid exposure using mono probe illumination enables collection of EMCD spectra in total of 8–9 min in energy filtered imaging mode for a given Cr L 2,3 energy scan (energy range ∼35 eV). We compared the EMCD signal obtained by extracting the Cr L 2,3 spectra under three beam diffraction geometry of two different reciprocal vectors (namely g=110 and 200) and found that the g=200 vector enables acquisition of excellent EMCD signal from relatively thicker specimen area due to the associated larger extinction distance. Orbital to spin moment ratio has been calculated using EMCD sum rules for 3d elements and dichroic spectral features associated with CrO 2 are compared and discussed with XMCD theoretical spectra. - Highlights: ► Electron magnetic circular dichroism (EMCD) of CrO 2 thin film with two different orientations. ► Improved EMCD signal with Gun monochromator illumination. ► Improved EMCD signal with higher g vector.

  1. On the threshold conditions for electron beam damage of asbestos amosite fibers in the transmission electron microscope (TEM).

    Science.gov (United States)

    Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles

    2016-12-01

    Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .

  2. Dynamic investigation of electron trapping and charge decay in electron-irradiated Al sub 2 O sub 3 in a scanning electron microscope: Methodology and mechanisms

    CERN Document Server

    Fakhfakh, S; Belhaj, M; Fakhfakh, Z; Kallel, A; Rau, E I

    2002-01-01

    The charging and discharging of polycrystalline Al sub 2 O sub 3 submitted to electron-irradiation in a scanning electron microscope (SEM) are investigated by means of the displacement current method. To circumvent experimental shortcomings inherent to the use of the basic sample holder, a redesign of the latter is proposed and tests are carried out to verify its operation. The effects of the primary beam accelerating voltage on charging, flashover and discharging phenomena during and after electron-irradiation are studied. The experimental results are then analyzed. In particular, the divergence between the experimental data and those predicted by the total electron emission yield approach (TEEYA) is discussed. A partial discharge was observed immediately after the end of the electron-irradiation exposure. The experimental data suggests, that the discharge is due to the evacuation to the ground, along the insulator surface, of released electrons from shallow traps at (or in the close vicinity of) the insulat...

  3. Three-dimensional nanofabrication by electron-beam-induced deposition using 200-keV electrons in scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Liu, Z.Q.; Mitsuishi, K.; Furuya, K.

    2005-01-01

    Attempts were made to fabricate three-dimensional nanostructures on and out of a substrate by electron-beam-induced deposition in a 200-kV scanning transmission electron microscope. Structures with parallel wires over the substrate surface were difficult to fabricate due to the direct deposition of wires on both top and bottom surfaces of the substrate. Within the penetration depth of the incident electron beam, nanotweezers were fabricated by moving the electron beam beyond different substrate layers. Combining the deposition of self-supporting wires and self-standing tips, complicated three-dimensional doll-like, flag-like, and gate-like nanostructures that extend out of the substrate were successfully fabricated with one-step or multi-step scans of the electron beam. Effects of coarsening, nucleation, and distortion during electron-beam-induced deposition are discussed. (orig.)

  4. Progress toward an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar; N'diaye, Alpha T; Schmid, Andreas K; Persson, Henrik H J; Davis, Ronald W

    2012-11-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel imaging technique aimed at high resolution imaging of macromolecules, nanoparticles, and surfaces. MAD-LEEM combines three innovative electron-optical concepts in a single tool: a monochromator, a mirror aberration corrector, and dual electron beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector is needed to achieve subnanometer resolution at landing energies of a few hundred electronvolts. The dual flood illumination approach eliminates charging effects generated when a conventional, single-beam LEEM is used to image insulating specimens. The low landing energy of electrons in the range of 0 to a few hundred electronvolts is also critical for avoiding radiation damage, as high energy electrons with kilo-electron-volt kinetic energies cause irreversible damage to many specimens, in particular biological molecules. The performance of the key electron-optical components of MAD-LEEM, the aberration corrector combined with the objective lens and a magnetic beam separator, was simulated. Initial results indicate that an electrostatic electron mirror has negative spherical and chromatic aberration coefficients that can be tuned over a large parameter range. The negative aberrations generated by the electron mirror can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies and provide a path to achieving subnanometer spatial resolution. First experimental results on characterizing DNA molecules immobilized on Au substrates in a LEEM are presented. Images obtained in a spin-polarized LEEM demonstrate that high contrast is achievable at low electron energies in the range of 1-10 eV and show that small changes in landing energy have a strong impact on the achievable contrast. The MAD-LEEM approach

  5. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan; Fenton, J. C.; Chiatti, O. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Warburton, P. A. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-07-15

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.

  7. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  8. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.

    Science.gov (United States)

    den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack

    2015-10-01

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Modification of a scanning electron microscope to produce Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Kapp, Oscar H.; Sun, Yin-e; Kim, Kwang-Je; Crewe, Albert V.

    2004-01-01

    We have modified a scanning electron microscope (SEM) in an attempt to produce a miniature free electron laser that can produce radiation in the far infrared region, which is difficult to obtain otherwise. This device is similar to the instrument studied by the Dartmouth group and functions on the basic principles first described by Smith and Purcell. The electron beam of the SEM is passed over a metal grating and should be capable of producing photons either in the spontaneous emission regime or in the superradiance regime if the electron beam is sufficiently bright. The instrument is capable of being continuously tuned by virtue of the period of the metal grating and the choice of accelerating voltage. The emitted Smith-Purcell photons exit the instrument via a polyethylene window and are detected by an infrared bolometer. Although we have obtained power levels exceeding nanowatts in the spontaneous emission regime, we have thus far not been able to detect a clear example of superradiance

  10. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    Science.gov (United States)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  11. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Q., E-mail: qwan2@sheffield.ac.uk [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Masters, R.C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Lidzey, D. [Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Abrams, K.J. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Dapor, M. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), via Sommarive 18, I-38123 Trento (Italy); Plenderleith, R.A. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Rimmer, S. [Department of Chemistry, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Claeyssens, F.; Rodenburg, C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-12-15

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  12. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    International Nuclear Information System (INIS)

    Wan, Q.; Masters, R.C.; Lidzey, D.; Abrams, K.J.; Dapor, M.; Plenderleith, R.A.; Rimmer, S.; Claeyssens, F.; Rodenburg, C.

    2016-01-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  13. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope.

    Science.gov (United States)

    Hata, S; Miyazaki, S; Gondo, T; Kawamoto, K; Horii, N; Sato, K; Furukawa, H; Kudo, H; Miyazaki, H; Murayama, M

    2017-04-01

    This paper reports the preliminary results of a new in-situ three-dimensional (3D) imaging system for observing plastic deformation behavior in a transmission electron microscope (TEM) as a directly relevant development of the recently reported straining-and-tomography holder [Sato K et al. (2015) Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Microsc. 64: 369-375]. We designed an integrated system using the holder and newly developed straining and image-acquisition software and then developed an experimental procedure for in-situ straining and time-resolved electron tomography (ET) data acquisition. The software for image acquisition and 3D visualization was developed based on the commercially available ET software TEMographyTM. We achieved time-resolved 3D visualization of nanometer-scale plastic deformation behavior in a Pb-Sn alloy sample, thus demonstrating the capability of this system for potential applications in materials science. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Scanning tunnel microscopic image of tungsten (100) and (110) real surfaces and nature of conduction electron reflection

    International Nuclear Information System (INIS)

    Pryadkin, S.L.; Tsoj, V.S.

    1988-01-01

    The electrically polished (100) and (110) surfaces of tungsten are studied with the aid of a scanning tunnel microscope at atmospheric pressure. The (110) surface consists of a large number of atomically plane terraces whereas the (100) surface is faceted. The scanning tunnel microscope data can explain such results of experiments on transverse electron focussing as the strong dependence of the probability for specular reflection of conduction electrons scattered by the (100) surface on the electron de Broglie wavelength and the absence of a dependence of the probability for specular reflection on the wavelength for the (110) surface

  15. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...

  16. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    International Nuclear Information System (INIS)

    Nishiyama, Hidetoshi; Koizumi, Mitsuru; Ogawa, Koji; Kitamura, Shinich; Konyuba, Yuji; Watanabe, Yoshiyuki; Ohbayashi, Norihiko; Fukuda, Mitsunori; Suga, Mitsuo; Sato, Chikara

    2014-01-01

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control

  17. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Hidetoshi, E-mail: hinishiy@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Koizumi, Mitsuru, E-mail: koizumi@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Ogawa, Koji, E-mail: kogawa@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Kitamura, Shinich, E-mail: kitamura@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Konyuba, Yuji, E-mail: ykonyuub@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Watanabe, Yoshiyuki, E-mail: watanabeyoshiy@pref.yamagata.jp [Yamagata Research Institute of Technology, 2-2-1, Matsuei, Yamagata 990-2473 (Japan); Ohbayashi, Norihiko, E-mail: n.ohbayashi@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Fukuda, Mitsunori, E-mail: nori@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Suga, Mitsuo, E-mail: msuga@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-4, Umezono, Tsukuba 305-8568 (Japan)

    2014-12-15

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control.

  18. Effects of electrohydraulic extracorporeal shock wave lithotripsy on submandibular gland in the rat: electron microscopic evaluation.

    Science.gov (United States)

    Bayar, Nuray; Kaymaz, F Figen; Apan, Alpaslan; Yilmaz, Erdal; Cakar, A Nur

    2002-05-15

    Extracorporeal shockwave lithotripsy (ESWL) has been applied in sialolithiasis as a new treatment modality. The aim of this experimental study is to investigate the local effects of electrohydraulic ESWL applied to the right submandibular gland of the rats. This prospective study was conveyed in four groups; groups I, II, III and IV; each group consisting of 20, 20, 18 and 9 rats, respectively, with a randomized distribution. Groups I, II, III and IV received 250, 500, 1000 and 2000 shock waves at 14-16 kV (average 15.1 kV), respectively, to the right submandibular glands on the 0th day. In groups I, II, III, right submandibular glands of the rats were removed on the 0th, 1st, 7th and 15th days; in group IV, this procedure could be managed only on the 0th and 7th days. Light and electron microscopic evaluation were assessed. Using the light microscopic changes, severity of damage score of the glands (SDS) was found. Statistical analysis was done using SDSs. Light and electron microscopic observations have shown that the damage produced by the shock waves were confined to focal areas in the acinar cells (AC), granulated convoluted tubule (GCT) cells and blood vessels at all doses applied. Vacuolization in the cytoplasms of the AC and GCT cells, disintegration of membranes, alteration in the cytoplasmic organization, swelling of the mitochondria and loss of the features were observed on electron microscopy. Increase in the secretion rate; stasis and dilatation in the blood vessels; blebbing and loss of features in the cytoplasm of the endothelial cells were observed. According to the result of the statistical analysis using SDSs; at 250 shock wave dose, a statistically significant difference between the SDSs of the days (0th, 1st, 7th and 15th) was found (Pwaves (Pwaves was found to have the lower value than the SDS at the 2000 shock wave. It was observed that produced damage was less prominent by small doses (250, 500 doses) initially (0th day). Electrohydraulic

  19. Monitoring emerging diseases of fish and shellfish using electronic sources.

    Science.gov (United States)

    Thrush, M A; Dunn, P L; Peeler, E J

    2012-10-01

    New and emerging fish and shellfish diseases represent an important constraint to the growth and sustainability of many aquaculture sectors and have also caused substantial economic and environmental impacts in wild stocks. This paper details the results of 8 years of a monitoring programme for emerging aquatic animal diseases reported around the world. The objectives were to track global occurrences and, more specifically, to identify and provide advanced warning of disease threats that may affect wild and farmed fish stocks in the UK. A range of electronic information sources, including Internet newsletters, alerting services and news agency releases, was systematically searched for reports of new diseases, new presentations of known pathogens and known diseases occurring in new geographic locations or new host species. A database was established to log the details of key findings, and 250 emerging disease events in 52 countries were recorded during the period of study. These included 14 new diseases and a further 16 known diseases in new species. Viruses and parasites accounted for the majority of reports (55% and 24%, respectively), and known diseases occurring in new locations were the most important emerging disease category (in which viruses were dominant). Emerging diseases were reported disproportionally in salmonid species (33%), in farmed populations (62%) and in Europe and North America (80%). The lack of reports from some regions with significant aquaculture or fishery production may indicate that emerging diseases are not being recognized in these areas owing to insufficient surveillance or testing or that these events are being under-reported. The results are discussed in relation to processes underpinning disease emergence in the aquatic environment. © 2011 Crown Copyright. Reproduced with the permission of the Controller of Her Majesty’s Stationery Office and Centre for Environment Fisheries & Aquaculture Science.

  20. Structural and functional changes in the intenstine of irradiated and hypothermic irradiated rats : a scanning and transmission electron microscopic study

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Chaudhuri, Swapna; Roy, Bijon

    1982-01-01

    Severe destructive changes in the intestine of rats following whole body exposure to gamma rays (832 rads) were observed by light microscope, scanning and transmission electron microscope studies. Hypothermia (15deg C rectal temperature) induced prior to irradiation protected the intestinal mucosa from destruction. A simultaneous study showed that glucose absorption decreased significantly in irradiated rats, whereas it was increased in hypothermic irradiated animals. (author)

  1. The impact of irradiation induced specimen charging on microanalysis in a scanning electron microscope

    International Nuclear Information System (INIS)

    Stevens-Kalceff, M.A.

    2003-01-01

    Full text: It is necessary to assess and characterize the perturbing influences of experimental probes on the specimens under investigation. The significant influence of electron beam irradiation on poorly conducting materials has been assessed by a combination of specialized analytical scanning electron and scanning probe microscopy techniques including Cathodoluminescence Microanalysis and Kelvin Probe Microscopy. These techniques enable the defect structure and the residual charging of materials to be characterized at high spatial resolution. Cathodoluminescence is the non-incandescent emission of light resulting from the electron irradiation. CL microscopy and spectroscopy in a Scanning Electron Microscope (SEM) enables high spatial resolution and high sensitivity detection of defects in poorly conducting materials. Local variations in the distribution of defects can be non-destructively characterized with high spatial (lateral and depth) resolution by adjusting electron beam parameters to select the specimen micro-volume of interest. Kelvin Probe Microscopy (KPM) is a Scanning Probe Microscopy technique in which long-range Coulomb forces between a conductive atomic force probe and the specimen enable the surface potential to be characterized with high spatial resolution. A combination of Kelvin Probe Microscopy (KPM) and Cathodoluminescence (CL) microanalysis has been used to characterize ultra pure silicon dioxide exposed to electron irradiation in a Scanning Electron Microscope. Silicon dioxide is an excellent model specimen with which to investigate charging induced effects. It is a very poor electrical conductor, homogeneous and electron irradiation produces easily identifiable surface modification which enables irradiated regions to be easily and unambiguously located. A conductive grounded coating is typically applied to poorly conducting specimens prior to investigation in an SEM to prevent deflection of the electron beam and surface charging, however

  2. [Ultrastructural organization of cytoplasmatic membrane of Anaerobacter polyendosporus studied by electron microscopic cryofractography].

    Science.gov (United States)

    Duda, V I; Suzina, N E; Dmitriev, V V

    2001-01-01

    Anaerobacter polyendosporus cells do not have typical mesosomes. However, the analysis of this anaerobic multispore bacterium by electron microscopic cryofractography showed that its cytoplasmic membrane contains specific intramembrane structures in the form of flat lamellar inverted lipid membranes tenths of nanometers to several microns in size. It was found that these structures are located in the hydrophobic interior between the outer and inner leaflets of the cytoplasmic membrane and do not contain intramembrane particles that are commonly present on freeze-fracture replicas. The flat inverted lipid membranes were revealed in bacterial cells cultivated under normal growth conditions, indicating the existence of a complex-type compartmentalization in biological membranes, which manifests itself in the formation of intramembrane compartments having the appearance of vesicles and inverted lipid membranes.

  3. Introduction of spectroscopic photoemission and low energy electron microscope in SPring-8

    International Nuclear Information System (INIS)

    Guo, FangZhun; Kobayashi, Keisuke; Kinoshita, Toyohiko

    2005-01-01

    An upright configuration SPELEEM (Spectroscopic PhotoEmission and Low Energy Electron Microscope) has been introduced in SPring-8 in the framework of the nanotechnology support project of Ministry of Education, Culture, Sport, Science and Technology (MEXT), Japan. SPELEEM combines microscopy, spectroscopy and diffraction in one system, which allows a comprehensive characterization of the specimen. The combination of SPELEEM and polarized (circularly or linearly) soft X-rays in SPring-8 is expected to realize the highest performance. The characteristics of SPELEEM and typical results, for example nano-XANES (X-ray absorption near edge structure) of Fe oxide on Fe(100) surface, nano-XPS (X-ray photoemission spectroscopy) of indium (In) on Si(111) and antiferro-magnetic domain structure images of NiO(001) single crystal, are reported. (author)

  4. X-ray spectrum determination of elements with low atomic number with use of electron microscope

    International Nuclear Information System (INIS)

    Smirnov, V.N.

    1982-01-01

    Separate assemblies of a commercial analytical electron microscope-microanalyzer EMMA-2 have been modified to study objects, containing elements with the atomic number Z=5-9, in particular: 1) the range of changing the accelerating voltages is expanded to be in the range of 25 down to 10 kV with 5 kV interval. 2) image intensifier using microchannel plate MKP-40-19 is applied; 3) for elements of carbon, oxygen, boron, nitrogen type a unit with flow-type proportional counter is used. The sensitivity of carbon- and oxygen determination in carbides and oxides is 0.15-0.3% at the measurement time of 100 s. Results of microanalysis of the particles of B 2 O 3 , Al 2 O 3 , SiO 2 , Fe 2 O 3 , Fe 3 C, WC for the contents of oxygen and carbon are presented

  5. Accumulation of fission fragment 147Pm in subcellular level studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Yuanchang

    1990-11-01

    The subcellular localization of fission fragment 147 Pm in tissue cells by electron microscopic autoradiography was investigated. The early harm of internal contaminated accumulation of 147 Pm appeared in blood cells and endothelium cells, obviously in erythrocytes. Then 147 Pm was selectively deposited in ultrastructure of liver cells. Autoradiographic study demonstrated that dense tracks appeared in mitochondria and lysosome of podal cells within renal corpuscle. In nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule, there are numerous radioactive 149 Pm accumulated. With the prolongation of observing time, 149 Pm was selectively and steadily deposited in subcellular level of organic component bone. The radionuclides could be accumulated in nucleus of osteoclasts and osteoblasts. In organelles, the radionuclides was mainly accumulated in rough endoplasmic reticulum and mitochondria. Autoradiographic tracks of 149 Pm was obviously found to be localized in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum

  6. Scanning electron microscope investigations of nuclear pore filters in polyester foils

    International Nuclear Information System (INIS)

    Hopfe, J.

    1980-01-01

    In order to understand and characterize the action of nuclear pore filters it is necessary to know their surface, as well as their bulk, structure. In the present work, investigations of the surface structure (pore size, pore density, pore distribution) and of the pore geometry, especially in the bulk of the filters, are carried out by scanning electron microscopic (SEM) studies. The preparation technique needed is liquid-nitrogen freeze-fracturing followed by a conductive-coating step. Nuclear pore filters studied in this paper were produced by a track etching technique. Laboratory specimens were obtained by bombarding 10 μm thick polyester foils with Xe-ions and a subsequent etching with 20% NaOH. The SEM results are shown and discussed. (author)

  7. Scanning Electron Microscopic Studies of Microwave Sintered Al-SiC Nanocomposites and Their Properties

    Directory of Open Access Journals (Sweden)

    M. A. Himyan

    2018-01-01

    Full Text Available Al-metal matrix composites (AMMCs reinforced with diverse volume fraction of SiC nanoparticles were synthesized using microwave sintering process. The effects of the reinforcing SiC particles on physical, microstructure, mechanical, and electrical properties were studied. The phase, microstructural, and surface analyses of the composites were systematically conducted using X-ray diffraction (XRD, scanning electron microscope (SEM, and surface profilometer techniques, respectively. The microstructural examination revealed the homogeneous distribution of SiC particles in the Al matrix. Microhardness and compressive strength of nanocomposites were found to be increasing with the increasing volume fraction of SiC particles. Electrical conductivity of the nanocomposites decreases with increasing the SiC content.

  8. Scanning electron microscopic observations of fibrous structure of cemento-dentinal junction in healthy teeth.

    Science.gov (United States)

    Pratebha, B; Jaikumar, N D; Sudhakar, R

    2014-01-01

    The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.

  9. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Jensen, Anker Degn; Hansen, Thomas Willum

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder...... gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature...... was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature...

  10. Examination of mycological samples by means of the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1973-04-01

    Full Text Available Three species of Siphomycetes: Rhizopus arhizus, Rhizopus equinus and Rhizopus nigricans, as well as a Septomycete: Emericella nidulans, have been examined by means of a scanning electron microscope. Among the difjerent Rhizopus, this technique showed differences in the appearance of the sporangia. In Emericella nidulans, scanning microscopy enábled one to ascertain that the "Hull cells" were completely hollow and also demonstrated the ornemented aspect of the ascospores.Três espécies de Sifomicetas: Rhizopus arhizus, Rhizopus equinus, Rhizopus nigricans e um Septomiceta: Emericella nidulans foram examinados em microscopia de exploração. Esta técnica mostrou detalhes não evidenciáveis ao poder de resolução do microscópio óptico, demonstrando ser útil para o diagnóstico em micologia.

  11. A novel and compact nanoindentation device for in situ nanoindentation tests inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-03-01

    Full Text Available In situ nanomechanical tests provide a unique insight into mechanical behaviors of materials, such as fracture onset and crack propagation, shear band formation and so on. This paper presents a novel in situ nanoindentation device with dimensions of 103mm×74mm×60mm. Integrating the stepper motor, the piezoelectric actuator and the flexure hinge, the device can realize coarse adjustment of the specimen and precision loading and unloading of the indenter automatically. A novel indenter holder was designed to guarantee that the indenter penetrates into and withdraws from the specimen surface vertically. Closed-loop control of the indentation process was established to solve the problem of nonlinearity of the piezoelectric actuator and to enrich the loading modes. The in situ indentation test of Indium Phosphide (InP inside the scanning electron microscope (SEM was carried out and the experimental result indicates the feasibility of the developed device.

  12. Electron microscope autoradiographic studies of the erythroblasts of a case of congenital dyserythropoietic anaemia, type II

    Energy Technology Data Exchange (ETDEWEB)

    Wickramasinghe, S N [Saint Mary' s Hospital Medical School, London (UK); Parry, T E [Department of Haematology, Llandough Hospital, Penarth, Glamorgan, Wales; Hughes, M [Division of Experimental Pathology, The Mathilda and Terence Kennedy Institute of Rheumatology, Bute Gardens, London, England

    1978-01-01

    The bone marrow cells of a patient with congenital dyserythropoietic anaemia, type II, were incubated with /sup 3/H-thymidine /sup 3/H-uridine or /sup 3/H-leucine for 1 h and studied using the technique of electron microscope autoradiography. Several of the erythroblasts which either displayed the characteristic subsurface double membranes or showed various non-specific abnormalities of the nuclear membrane were found to be actively engaged in DNA, RNA and protein synthesis. Both members of some pairs of erythroblasts which were joined together by a spindle bridge were found to be engaged in DNA synthesis, indicating that some spindle bridges persist for a period longer than the duration of the G/sub 1/ phase. A small proportion of mononucleate and binucleate late (non-dividing) erythroblasts showed a marked depression or arrest of protein synthesis and some or all of such cells were presumably destined to be phagocytosed by the bone marrow macrophages.

  13. Fundamentals of overlay measurement and inspection using scanning electron-microscope

    Science.gov (United States)

    Kato, T.; Okagawa, Y.; Inoue, O.; Arai, K.; Yamaguchi, S.

    2013-04-01

    Scanning electron-microscope (SEM) has been successfully applied to CD measurement as promising tools for qualifying and controlling quality of semiconductor devices in in-line manufacturing process since 1985. Furthermore SEM is proposed to be applied to in-die overlay monitor in the local area which is too small to be measured by optical overlay measurement tools any more, when the overlay control limit is going to be stringent and have un-ignorable dependence on device pattern layout, in-die location, and singular locations in wafer edge, etc. In this paper, we proposed new overlay measurement and inspection system to make an effective use of in-line SEM image, in consideration of trade-off between measurement uncertainty and measurement pattern density in each SEM conditions. In parallel, we make it clear that the best hybrid overlay metrology is in considering each tool's technology portfolio.

  14. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope

    Science.gov (United States)

    Germani, M. S.; Bradley, J. P.; Brownlee, D. E.

    1990-01-01

    A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.

  15. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  16. Fatigue tests and characterization of resulting microstructure by transmission electron microscope on zircaloy 4

    International Nuclear Information System (INIS)

    Di Toma, S.; Bertolino, G.; Tolley, A.

    2012-01-01

    This work reports the results of load controlled tension-tension fatigue tests on Zircaloy 4 (Zy-4). The resulting microstructure, particularly the kind and density of dislocations was characterized using a Transmission Electron Microscope (TEM). Specimens were cut from a rolled plate, with tensile axis parallel and perpendicular to the rolling direction. The results show a significant anisotropy of the mechanical properties due to the strong texture developed during rolling. Mainly type dislocations were observed, only in a longitudinal tensile axis specimen, dislocations were observed with a much lower density. The Schmid factors corresponding to the different glide systems were determined for specific grains in both tensile directions (author)

  17. Theoretical analysis of moiré fringe multiplication under a scanning electron microscope

    International Nuclear Information System (INIS)

    Li, Yanjie; Xie, Huimin; Chen, Pengwan; Zhang, Qingming

    2011-01-01

    In this study, theoretical analysis and experimental verification of fringe multiplication under a scanning electron microscope (SEM) are presented. Fringe multiplication can be realized by enhancing the magnification or the number of scanning lines under the SEM. A universal expression of the pitch of moiré fringes is deduced. To apply this method to deformation measurement, the calculation formulas of strain and displacement are derived. Compared to natural moiré, the displacement sensitivity is increased by fringe multiplication while the strain sensitivity may be retained or enhanced depending on the number of scanning lines used. The moiré patterns are formed by the interference of a 2000 lines mm −1 grating with the scanning lines of SEM, and the measured parameters of moiré fringes from experimental results agree well with theoretical analysis

  18. High Resolution Transmission Electron Microscope Observation of Zero-Strain Deformation Twinning Mechanisms in Ag

    Science.gov (United States)

    Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.

    2011-04-01

    We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.

  19. In Situ Characterization of Inconel 718 Post-Dynamic Recrystallization within a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Meriem Zouari

    2017-11-01

    Full Text Available Microstructure evolution within the post-dynamic regime following hot deformation was investigated in Inconel 718 samples with different dynamically recrystallized volume fractions and under conditions such that no δ-phase particles were present. In situ annealing treatments carried out to mimic post-dynamic conditions inside the Scanning Electron Microscope (SEM chamber suggest the occurrence of both metadynamic and static recrystallization mechanisms. Static recrystallization was observed in addition to metadynamic recrystallization, only when the initial dynamically recrystallized volume fraction was very small. The initial volume fraction of dynamically recrystallized grains appears to be decisive for subsequent microstructural evolution mechanisms and kinetics. In addition, the formation of annealing twins is observed along with the growth of recrystallized grains, but then the twin density decreases as the material enters the capillarity-driven grain growth regime.

  20. Intravascular detection of Giardia trophozoites in naturally infected mice. An electron microscopic study.

    Science.gov (United States)

    el-Shewy, K A; Eid, R A

    2003-06-01

    During routine transmission electron microscopic (TEM) examination of mice naturally infected with Giardia muris, an intense infection with Giardia trophozoites was demonstrated within intestinal and renal tissues. Examination of randomly taken sections from these heavily infected tissues revealed marked deep affection with mixed pathology. Duodenal sections were found loaded with Giardia trophozoites in intimate contact with necrotic gut cells. Some of these trophozoites were detected within central lacteal of damaged villi and nearby blood vessels. Interestingly, and for the first time to be demonstrated, morphologically identical G. muris trophozoite was detected in a renal blood vessel. An intense cellular immune reaction was obviously demonstrated with remarkable interaction between giant macrophages and the trophozoites particulates. Involvement of deep tissues by Giardia trophozoites and their presence within vascular channels could open up questions about the possible invasive and disseminative behavior of G. muris, particularly in heavily and naturally infected hosts.

  1. Scanning Electron Microscopic Studies of the Pecten Oculi in the Quail (Coturnix coturnix japonica

    Directory of Open Access Journals (Sweden)

    Aris F. Pourlis

    2013-01-01

    Full Text Available The main purpose of this study is to extend the microscopic investigations of the pecten oculi in the quail in order to add some information on the unresolved functional anatomy of this unique avian organ. The pecten oculi of the quail was studied by scanning electron microscopy. Eighteen- to-twenty two highly vascularised accordion-like folds were joined apically by a heavily pigmented bridge of tissue, which holds the pecten in a fanlike shape, widest at the base. The structure of the double layered limiting membrane was recorded. The presence of hyalocytes with macrophage-like appearance was illustrated. It is assumed that the pecten oculi of the quail resembles that of the chicken. Illustrated morphological features of this species may add information on the active physiological role of the pecten. But still, the functional significance of this organ is a matter of controversies.

  2. Three-dimensional architecture of hair-cell linkages as revealedby electron-microscopic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Manfred; Koster, Bram; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng; Hudspeth, A. James

    2006-07-28

    The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of ankle or basal links, kinociliary links, and tip links. We observed clear differences in the dimensions and appearances of the three links. We found two distinct populations of tip links suggestive of the involvement of two proteins or splice variants. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface.

  3. Flow visualization and velocity measurement in a small-scale open channel using an electron microscope

    International Nuclear Information System (INIS)

    Yasuda, K; Sogo, M; Iwamoto, Y

    2013-01-01

    The present note describes a method for use in conjunction with a scanning electron microscope (SEM) that has been developed to visualize a liquid flow under a high-level vacuum and to measure a velocity field in a small-scale flow through an open channel. In general, liquid cannot be observed via a SEM, because liquid evaporates under the high-vacuum environment of the SEM. As such, ionic liquid and room temperature molten salt having a vapor pressure of nearly zero is used in the present study. We use ionic liquid containing Au-coated tracer particles to visualize a small-scale flow under a SEM. Furthermore, the velocity distribution in the open channel is obtained by particle tracking velocimetry measurement and a parabolic profile is confirmed. (technical design note)

  4. Irradiation damage of II-VI compounds in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Yoshiie, T.; Iwanaga, H.; Shibata, N.; Suzuki, K.; Ichihara, M.; Takeuchi, S.

    1983-01-01

    Dislocation loops produced by electron irradiation in a 1 MV electron microscope have been studied above room temperature for five II-VI compounds: CdS and ZnO, with the wurtzite structure, and CdTe, ZnSe and ZnS, with the zincblende structure. For all the crystals the density of loops decreased as the irradiation temperature increased, until no loops were produced above a certain temperature which varied from crystal to crystal. However, the loop density did not depend on the electron flux intensity, suggesting the heterogeneous nucleation at some impurity complex of equilibrium concentration. Diffraction contrast analyses showed that the loops are of interstitial type in each crystal, with Burgers vectors as follows: 1/2[0001] and 1/3 for wurtzite crystals, the density ratio of the former type to the latter being increased with increasing temperature; mostly 1/3 and a few 1/2 for zincblende crystals, the latter type being presumably formed as a result of unfaulting in the former. An effect of crystal polarity on the shape of the loops in zincblende crystals has been observed. (author)

  5. A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Ward, C.R. [R.A. Creelman and Associates, Epping, NSW (Australia)

    1996-07-01

    Quantitative mineralogical analysis has been carried out in a series of nine coal samples from Australia, South Africa and China using a newly-developed automated image analysis system coupled to a scanning electron microscopy. The image analysis system (QEM{asterisk}SEM) gathers X-ray spectra and backscattered electron data from a number of points on a conventional grain-mount polished section under the SEM, and interprets the data from each point in mineralogical terms. The cumulative data in each case was integrated to provide a volumetric modal analysis of the species present in the coal samples, expressed as percentages of the respective coals` mineral matter. Comparison was made of the QEM{asterisk}SEM results to data obtained from the same samples using other methods of quantitative mineralogical analysis, namely X-ray diffraction of the low-temperature oxygen-plasma ash and normative calculation from the (high-temperature) ash analysis and carbonate CO{sub 2} data. Good agreement was obtained from all three methods for quartz in the coals, and also for most of the iron-bearing minerals. The correlation between results from the different methods was less strong, however, for individual clay minerals, or for minerals such as calcite, dolomite and phosphate species that made up only relatively small proportions of the mineral matter. The image analysis approach, using the electron microscope for mineralogical studies, has significant potential as a supplement to optical microscopy in quantitative coal characterisation. 36 refs., 3 figs., 4 tabs.

  6. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    Energy Technology Data Exchange (ETDEWEB)

    Rajabifar, Bahram; Maschmann, Matthew R., E-mail: MaschmannM@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Kim, Sanha; Hart, A. John [Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Slinker, Keith [Materials and Manufacturing Directorate, AFRL/RX, Air Force Research Lab, Ohio 45433 (United States); Universal Technology Corporation, Beavercreek, Ohio 45424 (United States); Ehlert, Gregory J. [Materials and Manufacturing Directorate, AFRL/RX, Air Force Research Lab, Ohio 45433 (United States)

    2015-10-05

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0–100 microns are generated, corresponding to a material removal rate of up to 20.1 μm{sup 3}/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  7. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    Science.gov (United States)

    Rajabifar, Bahram; Kim, Sanha; Slinker, Keith; Ehlert, Gregory J.; Hart, A. John; Maschmann, Matthew R.

    2015-10-01

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0-100 microns are generated, corresponding to a material removal rate of up to 20.1 μm3/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  8. Myofibroblasts in interstitial lung diseases show diverse electron microscopic and invasive features.

    Science.gov (United States)

    Karvonen, Henna M; Lehtonen, Siri T; Sormunen, Raija T; Harju, Terttu H; Lappi-Blanco, Elisa; Bloigu, Risto S; Kaarteenaho, Riitta L

    2012-09-01

    The characteristic features of myofibroblasts in various lung disorders are poorly understood. We have evaluated the ultrastructure and invasive capacities of myofibroblasts cultured from small volumes of diagnostic bronchoalveolar lavage (BAL) fluid samples from patients with different types of lung diseases. Cells were cultured from samples of BAL fluid collected from 51 patients that had undergone bronchoscopy and BAL for diagnostic purposes. The cells were visualized by transmission electron microscopy and immunoelectron microscopy to achieve ultrastructural localization of alpha-smooth muscle actin (α-SMA) and fibronectin. The levels of α-SMA protein and mRNA and fibronectin mRNA were measured by western blot and quantitative real-time reverse transcriptase polymerase chain reaction. The invasive capacities of the cells were evaluated. The cultured cells were either fibroblasts or myofibroblasts. The structure of the fibronexus, and the amounts of intracellular actin, extracellular fibronectin and cell junctions of myofibroblasts varied in different diseases. In electron and immunoelectron microscopy, cells cultured from interstitial lung diseases (ILDs) expressed more actin filaments and α-SMA than normal lung. The invasive capacity of the cells obtained from patients with idiopathic pulmonary fibrosis was higher than that from patients with other type of ILDs. Cells expressing more actin filaments had a higher invasion capacity. It is concluded that electron and immunoelectron microscopic studies of myofibroblasts can reveal differential features in various diseases. An analysis of myofibroblasts cultured from diagnostic BAL fluid samples may represent a new kind of tool for diagnostics and research into lung diseases.

  9. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  10. A simple method for environmental cell depressurization for use with an electron microscope.

    Science.gov (United States)

    Ogawa, Naoki; Mizokawa, Ryo; Saito, Minoru; Ishikawa, Akira

    2017-12-01

    With the aid of the environmental cell (EC) in electron microscopy, hydrated specimens have been observed at high resolutions that optical microscopy cannot attain. Due to the ultra-high vacuum conditions of the inner column of the electron microscope, the EC requires sealing films that are sufficiently thin to allow electron transmission and that are sufficiently tough to withstand the pressure difference between the inside and outside of the EC. However, most hydrated specimens can be observed at low vacuum because the saturated vapor pressure of water is known to be 0.02 atm at room temperature. These concepts have been used in the differential pumping system, but it is complicated and relatively expensive. In this work, we propose a simple method for depressurization of the EC using a 'balloon structure' and demonstrate the theoretical benefits and practical improvement for specimen observations in low-vacuum conditions. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. In situ manipulation and characterizations using nanomanipulators inside a field emission-scanning electron microscope

    International Nuclear Information System (INIS)

    Kim, Keun Soo; Lim, Seong Chu; Lee, Im Bok; An, Key Heyok; Bae, Dong Jae; Choi, Shinje; Yoo, Jae-Eun; Lee, Young Hee

    2003-01-01

    We have used two piezoelectric nanomanipulators to manage the multiwalled carbon nanotubes (MWCNTs) within the field emission-scanning electron microscope (FE-SEM). For an easy access of a tungsten tip to MWCNTs, we prepared the tungsten tip in sharp and long tip geometry using different electrochemical etching parameters. In addition, the sample stage was tilted by 45 deg. from the normal direction of the surface to allow a better incident angle to the approaching tungsten tip. For manipulations, a nanotube or the bundles were attached at the tungsten tip using an electron beam-induced deposition (EBID). Using two manipulators, we have then fabricated a CNT-based transistor, a cross-junction of MWCNTs, and a CNT-attached atomic force microscopy tip. After these fabrications, the field emission properties of the MWCNT and junction properties of the MWCNT and the tungsten tip have been investigated. We found that the EBID approach was very useful to weld the nanostructured materials on the tungsten tip by simply irradiating the electron beam, although this sometimes increased the contact resistance by depositing hydrocarbon materials

  12. On the optical stability of high-resolution transmission electron microscopes

    International Nuclear Information System (INIS)

    Barthel, J.; Thust, A.

    2013-01-01

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state. - Highlights: • We investigate the temporal stability of optical aberrations in HRTEM. • We develop a statistical framework for the estimation of optical lifetimes. • We introduce plots showing the success probability for aberration-free work. • Optical lifetimes in sub-Ångström electron microscopy are surprisingly low. • The success of aberration correction depends strongly on the optical stability

  13. Uptake and processing of [3H]retinoids in rat liver studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Hendriks, H.F.; Elhanany, E.; Brouwer, A.; de Leeuw, A.M.; Knook, D.L.

    1988-01-01

    The role of rat liver cell organelles in retinoid uptake and processing was studied by electron microscopic autoradiography. [ 3 H]Retinoids were administered either orally, to make an inventory of the cell organelles involved, or intravenously as chylomicron remnant constituents to study retinoid processing by the liver with time. No qualitative differences were observed between the two routes of administration. Time-related changes in the distribution of grains were studied using chylomicron remnant [ 3 H]retinoids. The percentages of grains observed over cells and the space of Disse at 5 and 30 min after administration were, respectively: parenchymal cells, 72.6 and 70.4%; fat-storing cells, 5.0 and 18.1%, and the space of Disse, 14.4 and 8.9%. Low numbers of grains were observed over endothelial and Kupffer cells. The percentages of grains observed over parenchymal cell organelles were, respectively: sinusoidal area, 59.6 and 34.4%; smooth endoplasmic reticulum associated with glycogen, 13.8 and 13.4%; mitochondria, 5.4 and 13.6%; rough endoplasmic reticulum, 4.2 and 7.3%, and rough endoplasmic reticulum associated with mitochondria, 3.7 and 6.5%. It is concluded that chylomicron remnant [ 3 H]retinoids in combination with electron microscopic autoradiography provide a good system to study the liver processing of retinoids in vivo. These results, obtained in the intact liver under physiological conditions, further substantiate that retinoids are processed through parenchymal cells before storage occurs in fat-storing cell lipid droplets, that retinoid uptake is not mediated through lysosomes and that the endoplasmic reticulum is a major organelle in retinoid processing

  14. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    International Nuclear Information System (INIS)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W.; Agard, David A.

    2011-01-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096 2 x512 voxels from an input tilt series containing 122 projection images of 4096 2 pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024 2 x256 voxels from 122 1024 2 pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: → A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). → This system allows for rapid constrained, iterative reconstruction of very large volumes. → This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  15. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W. [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States); Agard, David A., E-mail: agard@msg.ucsf.edu [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States)

    2011-07-15

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096{sup 2}x512 voxels from an input tilt series containing 122 projection images of 4096{sup 2} pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024{sup 2}x256 voxels from 122 1024{sup 2} pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: {yields} A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). {yields} This system allows for rapid constrained, iterative reconstruction of very large volumes. {yields} This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  16. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  17. The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies.

    Science.gov (United States)

    Jennes, L

    1987-01-01

    The distribution of gonadotropin-releasing hormone (GnRH)-containing neurons and fibers in the olfactory bulb was studied with light and electron microscopic immunohistochemistry in combination with retrograde transport of "True Blue" and horseradish peroxidase and lesion experiments. GnRH-positive neurons are found in the septal roots of the nervus terminalis, in the ganglion terminale, intrafascicularly throughout the nervus terminalis, in a dorso-ventral band in the caudal olfactory bulb, in various layers of the main and accessory olfactory bulb, and in the basal aspects of the nasal epithelium. Electron microscopic studies show that the nerve fibers in the nervus terminalis are not myelinated and are not surrounded by Schwann cell sheaths. In the ganglion terminale, "smooth" GnRH neurons are seen in juxtaposition to immunonegative neurons. Occasionally, axosomatic specializations are found in the ganglion terminale, but such synaptic contacts are not seen intrafascicularly in the nervus terminalis. Retrograde transport studies indicate that certain GnRH neurons in the septal roots of the nervus terminalis were linked to the amygdala. In addition, a subpopulation of nervus terminalis-related GnRH neurons has access to fenestrated capillaries whereas other GnRH neurons terminate at the nasal epithelium. Lesions of the nervus terminalis caudal to the ganglion terminale result in sprouting of GnRH fibers at both sites of the knife cut. The results suggest that GnRH in the olfactory system of the mouse can influence a variety of target sites either via the blood stream, via the external cerebrospinal fluid or via synaptic/asynaptic contacts with, for example, the receptor cells in the nasal mucosa.

  18. Attempt to assess the infiltration of enamel made with experimental preparation using a scanning electron microscope.

    Science.gov (United States)

    Skucha-Nowak, Małgorzata

    2015-01-01

    The resin infiltration technique, a minimally invasive method, involves the saturation, strengthening, and stabilization of demineralized enamel by a mixture of polymer resins without the need to use rotary tools or the risk of losing healthy tooth structures. To design and synthesize an experimental infiltrant with potential bacteriostatic properties.To compare the depth of infiltration of the designed experimental preparation with the infiltrant available in the market using a scanning electron microscope. Composition of the experimental infiltrant was established after analysis of 1H NMR spectra of the commercially available compounds that can penetrate pores of demineralized enamel. As the infiltrant should have bacteriostatic features by definition, an addition of 1% of monomer containing metronidazole was made. Thirty extracted human teeth were soaked in an acidic solution, which was to provide appropriate conditions for demineralization of enamel. Afterward, each tooth was divided along the coronal-root axis into two zones. One zone had experimental preparation applied to it (the test group), while the other had commercially available Icon (the control group). The teeth were dissected along the long axis and described above underwent initial observation with use of a Hitachi S-4200 scanning electron microscope. It was found that all samples contained only oxygen and carbon, regardless of the concentration of additions introduced into them. The occurrence of carbon is partially because it is a component of the preparation in question and partially because of sputtering of the sample with it. Hydrogen is also a component of the preparation, as a result of its phase composition; however, it cannot be detected by the EDS method. SEM, in combination with X-ray microanalysis, does not allow one to explicitly assess the depth of penetration of infiltration preparations into enamel.In order to assess the depth of penetration of infiltration preparations with use of

  19. Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Liu, Yaqi; Xu, Jun; Yu, Dapeng; Wan, Weishi; Zhu, Yimei; Xiang, Dao; Zhang, Jie

    2018-03-01

    An accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ˜3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10-19 s m, about 2 orders of magnitude higher than that achieved with state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.

  20. Towards atomically precise manipulation of 2D nanostructures in the electron microscope

    Science.gov (United States)

    Susi, Toma; Kepaptsoglou, Demie; Lin, Yung-Chang; Ramasse, Quentin M.; Meyer, Jannik C.; Suenaga, Kazu; Kotakoski, Jani

    2017-12-01

    Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomic-resolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångström-sized electron beam. To truly enable control, however, it is vital to understand the relevant atomic-scale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward.

  1. Investigation on the traceability of three dimensional scanning electron microscope measurements based on the stereo-pair technique

    DEFF Research Database (Denmark)

    Bariani, Paolo; De Chiffre, Leonardo; Hansen, Hans Nørgaard

    2005-01-01

    An investigation was carried out concerning the traceability of dimensional measurements performed with the scanning electron microscope (SEM) using reconstruction of surface topography through stereo-photogrammetry. A theoretical description of the effects that the main instrumental variables...... with the scanning electron microscope (SEM) using reconstruction of surface topography through stereo-photogrammetry. A theoretical description of the effects that the main instrumental variables and measurement parameters have on the reconstruction accuracy of any point on the surface of the object being imaged......-dimensional topography of the type C roughness standards showed good agreement with the nominal profile wavelength values. An investigation was carried out concerning the traceability of dimensional measurements performed with the scanning electron microscope (SEM) using reconstruction of surface topography through...

  2. Electron holography study of magnetization behavior in the writer pole of a perpendicular magnetic recording head by a 1 MV transmission electron microscope.

    Science.gov (United States)

    Hirata, Kei; Ishida, Yoichi; Akashi, Tetsuya; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    The magnetic domain structure of the writer poles of perpendicular magnetic recording heads was studied using electron holography. Although the domain structure of a 100-nm-thick writer pole could be observed with a 300 kV transmission electron microscope, that of the 250-nm-thick writer pole could not be analyzed due to the limited transmission capability of the instrument. On the other hand, the detailed domain structure of the 250-nm-thick writer pole was successfully analyzed by a 1 MV electron microscope using its high transmission capability. The thickness and material dependency of the domain structure of a writer pole were discussed.

  3. An ion-sputtering gun to clean crystal surfaces in-situ in an ultra-high-vacuum electron microscope

    International Nuclear Information System (INIS)

    Morita, Etsuo; Takayanagi, Kunio; Kobayashi, Kunio; Yagi, Katsumichi; Honjo, Goro

    1980-01-01

    The design and performance of an ion-sputtering gun for cleaning crystal surfaces in-situ in an ultra-high-vacuum electron microscope are reported. The electron microscopic aspects of ion-bombardment damage to ionic magnesium oxide, covalent germanium and silicon, and metallic gold and copper crystals, and the effects of annealing after and during sputtering are described. The growth of various kinds of films deposited in-situ on crystals cleaned by ion-sputtering are described and discussed. (author)

  4. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States); Anderson, Thomas J. [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Gout, Delphine [Oak Ridge National Lab, Neutron Scattering Science Division, Oak Ridge, TN (United States); Ubic, Rick [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States)

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  5. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    International Nuclear Information System (INIS)

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-01-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  6. Development of new techniques for scanning electron microscope observation using ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Satoshi; Sugimura, Masaharu; Kageyama, Hitoshi [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); JST, CREST, Kawaguchi, Saitama 332-0012 (Japan); Torimoto, Tsukasa [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); JST, CREST, Kawaguchi, Saitama 332-0012 (Japan); Kuwabata, Susumu [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); JST, CREST, Kawaguchi, Saitama 332-0012 (Japan)], E-mail: kuwabata@chem.eng.osaka-u.ac.jp

    2008-09-01

    Based on our previous discovery that ionic liquid (IL) can be observed by a scanning electron microscope (SEM) without charging the liquid, we have developed several novel techniques for SEM observation. Coating of insulating sample with IL is useful for providing electronic conductivity to the samples like metal or carbon coating by vacuum vapor deposition. In this case, dilution of the IL with appropriate volatile solvent like alcohol is effective for coating thin layer of IL on the sample. As a biological sample, seaweed including IL was attempted to be observed by SEM. A seaweed leaf swollen by water was put in an IL bath and the bath was put in an outgassed desiccator to replace water in the seaweed leaf with IL. The resulting sample gave a SEM image of the swollen seaweed whose thickness was several times larger than dried one. Furthermore, the introduction of the IL in vacuum chamber allowed us to develop the in situ electrochemical SEM observation system. Using this system, we observed changes in polypyrrole film thickness caused by the redox reaction of the film and the electrochemical deposition of silver and its oxidative dissolution. It was also found that the energy dispersive X-ray fluorescence (EDX) analysis was available even for the electrode polarized in IL.

  7. Development of new techniques for scanning electron microscope observation using ionic liquid

    International Nuclear Information System (INIS)

    Arimoto, Satoshi; Sugimura, Masaharu; Kageyama, Hitoshi; Torimoto, Tsukasa; Kuwabata, Susumu

    2008-01-01

    Based on our previous discovery that ionic liquid (IL) can be observed by a scanning electron microscope (SEM) without charging the liquid, we have developed several novel techniques for SEM observation. Coating of insulating sample with IL is useful for providing electronic conductivity to the samples like metal or carbon coating by vacuum vapor deposition. In this case, dilution of the IL with appropriate volatile solvent like alcohol is effective for coating thin layer of IL on the sample. As a biological sample, seaweed including IL was attempted to be observed by SEM. A seaweed leaf swollen by water was put in an IL bath and the bath was put in an outgassed desiccator to replace water in the seaweed leaf with IL. The resulting sample gave a SEM image of the swollen seaweed whose thickness was several times larger than dried one. Furthermore, the introduction of the IL in vacuum chamber allowed us to develop the in situ electrochemical SEM observation system. Using this system, we observed changes in polypyrrole film thickness caused by the redox reaction of the film and the electrochemical deposition of silver and its oxidative dissolution. It was also found that the energy dispersive X-ray fluorescence (EDX) analysis was available even for the electrode polarized in IL

  8. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope

    International Nuclear Information System (INIS)

    Nickel, F.; Gottlob, D.M.; Krug, I.P.; Doganay, H.; Cramm, S.; Kaiser, A.M.; Lin, G.; Makarov, D.; Schmidt, O.G.

    2013-01-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern. - Highlights: • A new time-resolving operation mode in photoemission electron microscopy is shown. • Our setup works within an energy-filtered, aberration-corrected PEEM. • A new gating system for bunch selection using synchrotron radiation is developed. • An alternative magnetic excitation system is developed. • First tr-imaging using an energy-filtered, aberration-corrected PEEM is shown

  9. Quantitative characterization of the composition, thickness and orientation of thin films in the analytical electron microscope

    International Nuclear Information System (INIS)

    Williams, D.B.; Watanabe, M.; Papworth, A.J.; Li, J.C.

    2003-01-01

    Compositional variations in thin films can introduce lattice-parameter changes and thus create stresses, in addition to the more usual stresses introduced by substrate-film mismatch, differential thermal expansion, etc. Analytical electron microscopy comprising X-ray energy-dispersive spectrometry within a probe-forming field-emission gun scanning transmission electron microscope (STEM) is one of the most powerful methods of composition measurement on the nanometer scale, essential for thin-film analysis. Recently, with the development of improved X-ray collection efficiencies and quantitative computation methods it has proved possible to map out composition variations in thin films with a spatial resolution approaching 1-2 nm. Because the absorption of X-rays is dependent on the film thickness, concurrent composition and film thickness determination is another advantage of X-ray microanalysis, thus correlating thickness and composition variations, either of which may contribute to stresses in the film. Specific phenomena such as segregation to interfaces and boundaries in the film are ideally suited to analysis by X-ray mapping. This approach also permits multiple boundaries to be examined, giving some statistical certainty to the analysis particularly in nano-crystalline materials with grain sizes greater than the film thickness. Boundary segregation is strongly affected by crystallographic misorientation and it is now possible to map out the orientation between many different grains in the (S)TEM

  10. The primary cilium of telocytes in the vasculature: electron microscope imaging.

    Science.gov (United States)

    Cantarero, I; Luesma, M J; Junquera, C

    2011-12-01

    Blood vessels are highly organized and complex structure, which are far more than simple tubes conducting the blood to almost any tissue of the body. The fine structure of the wall of blood vessels has been studied previously using the electron microscope, but the presence the telocytes associated with vasculature, a specific new cellular entity, has not been studied in depth. Interestingly, telocytes have been recently found in the epicardium, myocardium, endocardium, human term placenta, duodenal lamina propria and pleura. We show the presence of telocytes located on the extracellular matrix of blood vessels (arterioles, venules and capillaries) by immunohistochemistry and transmission electron microscopy. Also, we demonstrated the first evidence of a primary cilium in telocytes. Several functions have been proposed for these cells. Here, the telocyte-blood vessels cell proximity, the relationship between telocytes, exosomes and nervous trunks may have a special significance. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  11. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  12. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Panfilov, Peter, E-mail: peter.panfilov@urfu.ru [Ural Federal University, Ekaterinburg (Russian Federation); Kabanova, Anna [Ural Federal University, Ekaterinburg (Russian Federation); Guo, Jinming; Zhang, Zaoli [Erich Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria)

    2017-02-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30{sup °}) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  13. Cell wall and DNA cosegregation in Bacillus subtilis studied by electron microscope autoradiography

    International Nuclear Information System (INIS)

    Schlaeppi, J.M.; Schaefer, O.; Karamata, D.

    1985-01-01

    Cells of a Bacillus subtilis mutant deficient in both major autolytic enzyme activities were continuously labeled in either cell wall or DNA or both cell wall and DNA. After appropriate periods of chase in minimal as well as in rich medium, thin sections of cells were autoradiographed and examined by electron microscopy. The resolution of the method was adequate to distinguish labeled DNA units from cell wall units. The latter, which could be easily identified, were shown to segregate symmetrically, suggesting a zonal mode of new wall insertion. DNA units could also be clearly recognized despite a limited fragmentation; they segregated asymmetrically with respect to the nearest septum. Analysis of cells simultaneously labeled in cell wall and DNA provided clear visual evidence of their regular but asymmetrical cosegregation, confirming a previous report obtained by light microscope autoradiography. In addition to labeled wall units, electron microscopy of thin sections of aligned cells has revealed fibrillar networks of wall material which are frequently associated with the cell surface. Most likely, these structures correspond to wall sloughed off by the turnover mechanism but not yet degraded to filterable or acid-soluble components

  14. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study.

    Science.gov (United States)

    Bradford, W. D.; Croker, B. P.; Tisher, C. C.

    1979-01-01

    The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676

  15. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: hosokawa@bio-net.co.jp [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)

    2016-08-15

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  16. IN-SITU EXPERIMENTS OF VACUUM DISCHARGE USING SCANNING ELECTRON MICROSCOPES

    CERN Document Server

    Muranaka, T; Leifer, K; Ziemann, V

    2011-01-01

    The fundamental understanding of vacuum discharge mechanisms and induced surface damage is indispensable for the CLIC feasibility study. We have been conducting dc sparc experiments inside a Scanning Electron Microscope (SEM) at Uppsala university in order to investigate localized breakdown phenomena. By using a SEM, we achieve the resolution of the electron probe in the few-nm range, which is of great advantage as the surface roughness of the polished accelerating structures is in the same scale. The high accelerating field of 1 GV/m is realized by biasing an electrode with 1 kV set above the sample with a gap of sub μm. Furthermore, a second SEM equipped with a Focused Ion Beam (FIB) is used to modify the topography of sample surfaces thus the geometrical dependence of field emissions and vacuum discharges can be studied. The FIB can be used for the surface damage analysis as well. We have demonstrated subsurface damage observations by using FIB to sputter a rectangular recess into the sample in the breakd...

  17. Many-beam effects in electron microscope images of lattice defects

    International Nuclear Information System (INIS)

    Izui, Kazuhiko; Nishida, Takahiko; Furuno, Shigemi; Otsu, Hitoshi

    1974-01-01

    Multi-beam effects in electron microscopic images were investigated. A computation program was developed on the basis of a matrix theory of the multi-beam effects. The matrix theory for a perfect crystal and an imperfect crystal is described, and expression for absorption coefficient is presented. The amplitude of electron wave penetrating through lattice defects is expressed by using scattering matrices which correspond to crystal slices. Calculation of extinction distance was performed, and compared with experimental results. In case of systematic reflection, the difference between two beams and from four to eight beams approximation was small, while a large effect was seen in case of accidental reflection. The intensity profile of bend contour was calculated for silicon and copper-aluminum alloy. Distance between submaxima becomes short with increase of thickness. The change in stacking fault fringes with diffraction condition was investigated. Samples were copper-aluminum alloy. Systematic behavior of the fringes was obtained, and the calculated results reproduced experimental ones. (Kato, T.)

  18. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    International Nuclear Information System (INIS)

    Panfilov, Peter; Kabanova, Anna; Guo, Jinming; Zhang, Zaoli

    2017-01-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30 ° ) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  19. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1997-01-01

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm -3 ) and sp 3 /sp 2 +sp 2 bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense 'amorphous' carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp 3 /sp 2 +sp 3 bonding fractions

  20. Microscopic examination of skin in native and nonnative fish from Lake Tahoe exposed to ultraviolet radiation and fluoranthene

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, Amanda K., E-mail: agevertz@geiconsultants.com [Miami University, Department of Zoology, 212 Pearson Hall, Oxford 45056, Ohio (United States); GEI Consultants, Inc. , 4601 DTC Blvd, Suite 900, Denver 80237, Colorado (United States); Oris, James T., E-mail: orisjt@miamioh.edu [Miami University, Department of Zoology, 212 Pearson Hall, Oxford 45056, Ohio (United States)

    2014-02-15

    Highlights: •PAH cause photo-induced toxicity in aquatic organisms in the natural environment. •Montane lakes like Lake Tahoe receive PAH exposure from recreational watercraft. •These lakes are susceptible to invasion and establishment of non-native species. •Non-natives were less tolerant to photo-toxicity compared to native species. •Sensitivity differences were related to levels of oxidative damage in epidermis. -- Abstract: The presence of nonnative species in Lake Tahoe (CA/NV), USA has been an ongoing concern for many decades, and the management of these species calls for an understanding of their ability to cope with the Lake's stressors and for an understanding of their potential to out-compete and reduce the populations of native species. Decreasing levels of ultraviolet radiation (UVR) due to eutrophication and increasing levels of phototoxic polycyclic aromatic hydrocarbons (PAHs) due to recreational activities may combine to affect the relative ability of native versus nonnative fish species to survive in the lake. Following a series of toxicity tests which exposed larvae of the native Lahontan redside minnow (Richardsonius egregius) and the nonnative warm-water bluegill sunfish (Lepomis macrochirus) to UVR and FLU, the occurrence of skin damage and/or physiologic defense mechanisms were studied using multiple microscopic techniques. The native minnow appeared to exhibit fewer instances of skin damage and increased instances of cellular coping mechanisms. This study supports the results of previous work conducted by the authors, who determined that the native redside minnow is the more tolerant of the two species, and that setting and adhering to a water quality standard for UVR transparency may aid in preventing the spread of the less tolerant nonnative bluegill and similar warm-water species.

  1. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  2. Electron microscope study of irradiated beryllium oxide; Etude au microscope electronique de l'oxyde de beryllium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bisson, A A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. {alpha}) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10{sup 19}, 9 x 10{sup 19} and 2 x 10{sup 20} n{sub f} cm{sup -2} at a temperature below 100 deg. C. For the irradiation at 6 x 10{sup 19} n{sub f} cm{sup -2}, the defects are merely visible, but at 2 x l0{sup 20} n{sub f} cm{sup -2} the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [French] L'oxyde de beryllium est d'abord etudie, par une methode fractographique, avant et apres irradiation, en

  3. Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope

    International Nuclear Information System (INIS)

    Trimby, Patrick W.; Cao, Yang; Chen, Zibin; Han, Shuang; Hemker, Kevin J.; Lian, Jianshe; Liao, Xiaozhou; Rottmann, Paul; Samudrala, Saritha; Sun, Jingli; Wang, Jing Tao; Wheeler, John; Cairney, Julie M.

    2014-01-01

    Graphical abstract: -- Abstract: The recent development of transmission Kikuchi diffraction (TKD) in a scanning electron microscope enables fast, automated orientation mapping of electron transparent samples using standard electron backscatter diffraction (EBSD) hardware. TKD in a scanning electron microscope has significantly better spatial resolution than conventional EBSD, enabling routine characterization of nanocrystalline materials and allowing effective measurement of samples that have undergone severe plastic deformation. Combining TKD with energy dispersive X-ray spectroscopy (EDS) provides complementary chemical information, while a standard forescatter detector system below the EBSD detector can be used to generate dark field and oriented dark field images. Here we illustrate the application of this exciting new approach to a range of deformed, ultrafine grained and nanocrystalline samples, including duplex stainless steel, nanocrystalline copper and highly deformed titanium and nickel–cobalt. The results show that TKD combined with EDS is a highly effective and widely accessible tool for measuring key microstructural parameters at resolutions that are inaccessible using conventional EBSD

  4. Investigations and characterization of the microstructure of special ceramic materials using the high-resolution electron microscope

    International Nuclear Information System (INIS)

    Kirn, M.

    1979-01-01

    The possibilities to characterize phases and microstructures by direct lattice imaging are indicated in the following work. Ceramic materials are particularly suitable for this as these exhibit a high mechanical stability in the investigation in the transmission electron microscope. First of all the fundamentals of the high-resolution electron microscopy are introduced and the various resulting possibilities to characterize microstructures are presented. A report then follows on experimental observations on undisturbed crystals of special ceramics on a Si 3 N 4 basis. Furthermore, it is shown that the high-resolution electron microscope provides valuable contributions to the determination of structure, in particular of twin variants. Finally, revealing information on the structure of the interfaces was obtained with the help of high-resolution electron microscopy. (orig./IHOE) [de

  5. Formation of a Parasitophorous Vacuole in a Nonadequate Experimental Host: Electron Microscopical and X-Ray Microanalytical Study

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk

    2005-01-01

    Roč. 50, č. 1 (2005), 05-12 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : electron microscopical * x-ray Subject RIV: EE - Microbiology, Virology Impact factor: 0.918, year: 2005

  6. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    Science.gov (United States)

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Reconstruction of an Non-Monochromatically Illuminated Object Imaged through an Electron Microscope with a Fluctuating Electromagnetic Field

    NARCIS (Netherlands)

    Hoenders, B.J.

    1975-01-01

    It is shown that a weak phase object imaged by an electron microscope within the presence of instabilities of the lense currents and the acceleration voltage, fluctuating electromagnetic field, can be reconstructed from the intensity distribution in the image plane. Perfectly incoherent illumination

  8. An electron-microscopical analysis of capture and initial stages of penetration of nematodes by Arthrobotrys oligospora

    NARCIS (Netherlands)

    Veenhuis, Marten; Nordbring-Hertz, Birgit; Harder, Wim

    1985-01-01

    A detailed analysis was made of the capture and subsequent penetration of nematodes by the nematophagous fungus Arthrobotrys oligospora using different electron-microscopical techniques. Capture of nematodes by this fungus occurred on complex hyphal structures (traps) and was effectuated by an

  9. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope

    Czech Academy of Sciences Publication Activity Database

    Vlašínová, H.; Neděla, Vilém; Dordevic, B.; Havel, J.

    2017-01-01

    Roč. 254, č. 4 (2017), s. 1487-1497 ISSN 0033-183X R&D Projects: GA ČR(CZ) GA14-22777S Institutional support: RVO:68081731 Keywords : somatic embryogenesis * pinus uncinata subsp uliginosa * abnormalities * environmental scanning electron microscope Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Plant sciences, botany Impact factor: 2.870, year: 2016

  10. Accelerator-based Single-shot Ultrafast Transmission Electron Microscope with Picosecond Temporal Resolution and Nanometer Spatial Resolution

    OpenAIRE

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-01-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs, and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. W...

  11. Surgical implantation techniques for electronic tags in fish

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Glenn N.; Cooke, Steven J.; Brown, Richard S.; Deters, Katherine A.

    2011-01-01

    Intracoelomic implantation of transmitters into fish requires making a surgical incision, incision closure, and other surgery related techniques; however, the tools and techniques used in the surgical process vary widely. We review the available literature and focus on tools and techniques used for conducting surgery on juvenile salmonids because of the large amount of research that is conducted on them. The use of sterilized surgical instruments properly selected for a given size of fish will minimize tissue damage and infection rates, and speed the wound healing of fish implanted with transmitters. For the implantation of transmitters into small fish, the optimal surgical methods include making an incision on the ventral midline along the linea alba (for studies under 1 month), protecting the viscera (by lifting the skin with forceps while creating the incision), and using absorbable monofilament suture with a small-swaged-on swaged-on tapered or reverse-cutting needle. Standardizing the implantation techniques to be used in a study involving particular species and age classes of fish will improve survival and transmitter retention while allowing for comparisons to be made among studies and across multiple years. This review should be useful for researchers working on juvenile salmonids and other sizes and species of fish.

  12. A simple cryo-holder facilitates specimen observation under a conventional scanning electron microscope.

    Science.gov (United States)

    Tang, Chih-Yuan; Huang, Rong-Nan; Kuo-Huang, Ling-Long; Kuo, Tai-Chih; Yang, Ya-Yun; Lin, Ching-Yeh; Jane, Wann-Neng; Chen, Shiang-Jiuun

    2012-02-01

    A pre-cryogenic holder (cryo-holder) facilitating cryo-specimen observation under a conventional scanning electron microscope (SEM) is described. This cryo-holder includes a specimen-holding unit (the stub) and a cryogenic energy-storing unit (a composite of three cylinders assembled with a screw). After cooling, the cryo-holder can continue supplying cryogenic energy to extend the observation time for the specimen in a conventional SEM. Moreover, the cryogenic energy-storing unit could retain appropriate liquid nitrogen that can evaporate to prevent frost deposition on the surface of the specimen. This device is proved feasible for various tissues and cells, and can be applied to the fields of both biology and material science. We have employed this novel cryo-holder for observation of yeast cells, trichome, and epidermal cells in the leaf of Arabidopsis thaliana, compound eyes of insects, red blood cells, filiform papillae on the surface of rat tongue, agar medium, water molecules, penicillium, etc. All results suggested that the newly designed cryo-holder is applicable for cryo-specimen observation under a conventional SEM without cooling system. Most importantly, the design of this cryo-holder is simple and easy to operate and could adapt a conventional SEM to a plain type cryo-SEM affordable for most laboratories. Copyright © 2011 Wiley Periodicals, Inc.

  13. Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images

    International Nuclear Information System (INIS)

    Wang, Cheng; Chan, Qing N.; Zhang, Renlin; Kook, Sanghoon; Hawkes, Evatt R.; Yeoh, Guan H.; Medwell, Paul R.

    2016-01-01

    The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.

  14. Macroanatomic, light, and electron microscopic examination of pecten oculi in the seagull (Larus canus).

    Science.gov (United States)

    Ince, Nazan Gezer; Onuk, Burcu; Kabak, Yonca Betil; Alan, Aydin; Kabak, Murat

    2017-07-01

    The present study was conducted to determine macroanatomic characteristic as well as light and electron microscopic examination (SEM) of pecten oculi and totally 20 bulbus oculi belonging to 10 seagulls (Larus canus) were used. Pecten oculi formations consisted of 18 to 21 pleats and their shape looked like a snail. Apical length of the pleats forming pecten oculi were averagely measured as 5.77 ± 0.56 mm, retina-dependent base length was 9.01 ± 1.35 mm and height was measured as 6.4 ± 0.62 mm. In pecten oculi formations which extend up to 1/3 of the bulbus oculi, two different vascular formations were determined according to thickness of the vessel diameter. Among these, vessels with larger diameters which are less than the others in count were classified as afferent and efferent vessels, smaller vessels which are greater in size were classified as capillaries. Furthermore, the granules which were observed intensely in apical side of the pleats of pecten oculi were observed to distribute randomly along the plica. © 2017 Wiley Periodicals, Inc.

  15. Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature

    International Nuclear Information System (INIS)

    Ishida, Tadashi; Nakajima, Yuuki; Fujita, Hiroyuki; Endo, Junji; Collard, Dominique

    2009-01-01

    Gold diffusion into silicon at room temperature was observed in real time with atomic resolution. Gold nanoclusters were formed on a silicon surface by an electrical discharge between a silicon tip and a gold coated tip inside an ultrahigh-vacuum transmission electron microscope (TEM) specimen chamber. At the moment of the gold nanocluster deposition, the gold nanoclusters had a crystalline structure. The crystalline structure gradually disappeared due to the interdiffusion between silicon and gold as observed after the deposition of gold nanoclusters. The shape of the nanocluster gradually changed due to the gold diffusion into the damaged silicon. The diffusion front between silicon and gold moved toward the silicon side. From the observations of the diffusion front, the gold diffusivity at room temperature was extracted. The extracted activation energy, 0.21 eV, matched the activation energy in bulk diffusion between damaged silicon and gold. This information is useful for optimizing the hybridization between solid-state and biological nanodevices in which gold is used as an adhesive layer between the two devices.

  16. Electron microscopic radioautographic studies on macromolecular synthesis in mitochondria of animal cells in aging

    International Nuclear Information System (INIS)

    Nagata, Tetsuji

    2010-01-01

    Study aging changes of intramitochondrial DNA, RNA, protein synthesis of mouse organs during the development and aging, 30 groups of developing and aging mice (3 individuals each), from fetal day 19 to postnatal newborn at day 1, 3, 9, 14 and adult at month 1, 2, 6, 12 to 24, were injected with either 3 H-thymidine, 3 H-uriidine, or 3 H-leucine, sacrificed 1 h later and liver, adrenal, lung and testis tissues observed by electron microscopic radioautography. Accordingly, numbers of mitochondria per cell profile area, numbers of labeled mitochondria and the mitochondrial labeling index labeled with 3 H-labeled precursors showing DNA, RNA, protein synthesis in these cells (hepatocytes, 3 zones of the adrenal cortices - zona glomerulosa, fasciculata and reticularis -, adrenal medullary cells, pulmonary cells and testis cells) were counted per cells and compared among the respective developing and aging groups. The numbers of mitochondria in these cells increased from fetal day 19 to postnatal month 1 and 2. However, the numbers of labeled mitochondria and the labeling indices of intramitochondrial DNA, RNA, protein syntheses incorporating the 3 H-labeled precursors in the described tissue cells increased from fetal day 19 to postnatal month 1 and decreased to month 24. These data support that the activity of intramitochnodrial DNA, RNA, protein syntheses in cells of these tissues increased and decreased by development and aging in mice. The intramitochondrial DNA, RNA and protein syntheses in some other organs were also reviewed and discussed. (author)

  17. Development of remote controlled type field-emission type scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Ryo; Nishino, Yasuharu; Mita, Naoaki; Nakata, Masahito; Harada, Katsuya; Nozawa, Yukio; Amano, Hidetoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-10-01

    The extending burn-up of Light Water Reactor Fuels has been promoted to reduce costs of the power generation and amount of waste mass. Information about the fuel behavior under high burn-up operation is needed to assess safety of the high burn-up fuels. Microstructures formed in high burn-up fuel pellets and Zircaloy tubes influence on their integrity. The fundamental information about morphology, sizes, and element compositions in those microstructures is necessary to estimate the formation mechanism and change in the properties of the fuels. The Field Emission type Scanning Electron Microscope (FE-SEM), which is effective for observation of very small area, i.e., nano-size structures, has been hence installed at the Reactor Fuel Examination Facility (RFEF) in JAERI. FE-SEM is designed for the remote handling type to use high radioactive materials and has equipments to keep the safety for operators. The Energy Dispersive Spectrometer (EDS) with a radiation-shielding collimator has been also equipped on FE-SEM to determine element compositions in the structures. Characterization tests were carried out using Zircaloy cladding tubes with oxide films and hydrides of confirm machine performance. In the results of the tests, high-resolution images with a magnification of 30,000 were obtained. Those results show that the apparatus maintains the original high performance with standard type. (author)

  18. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  19. Common Bias Readout for TES Array on Scanning Transmission Electron Microscope

    Science.gov (United States)

    Yamamoto, R.; Sakai, K.; Maehisa, K.; Nagayoshi, K.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Hidaka, M.; Nagasawa, S.; Maehata, K.; Hara, T.

    2016-07-01

    A transition edge sensor (TES) microcalorimeter array as an X-ray sensor for a scanning transmission electron microscope system is being developed. The technical challenge of this system is a high count rate of ˜ 5000 counts/second/array. We adopted a 64 pixel array with a parallel readout. Common SQUID bias, and common TES bias are planned to reduce the number of wires and the resources of a room temperature circuit. The reduction rate of wires is 44 % when a 64 pixel array is read out by a common bias of 8 channels. The possible degradation of the energy resolution has been investigated by simulations and experiments. The bias fluctuation effects of a series connection are less than those of a parallel connection. Simple calculations expect that the fluctuations of the common SQUID bias and common TES bias in a series connection are 10^{-7} and 10^{-3}, respectively. We constructed 8 SQUIDs which are connected to 8 TES outputs and a room temperature circuit for common bias readout and evaluated experimentally. Our simulation of crosstalk indicates that at an X-ray event rate of 500 cps/pixel, crosstalk will broaden a monochromatic line by about 0.01 %, or about 1.5 eV at 15 keV. Thus, our design goal of 10 eV energy resolution across the 0.5-15 keV band should be achievable.

  20. Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Chan, Qing N., E-mail: qing.chan@unsw.edu.au; Zhang, Renlin; Kook, Sanghoon; Hawkes, Evatt R.; Yeoh, Guan H. [UNSW, School of Mechanical and Manufacturing Engineering (Australia); Medwell, Paul R. [The University of Adelaide, Centre for Energy Technology (Australia)

    2016-05-15

    The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.

  1. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    Science.gov (United States)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  2. Electron microscopic radioautographic studies on macromolecular synthesis in mitochondria of animal cells in aging

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuji, E-mail: nagata@kowagakuen.ac.j [Shinshu Univ. School of Medicine, Matsumoto (Japan). Dept. of Anatomy and Cell Biology

    2010-07-01

    Study aging changes of intramitochondrial DNA, RNA, protein synthesis of mouse organs during the development and aging, 30 groups of developing and aging mice (3 individuals each), from fetal day 19 to postnatal newborn at day 1, 3, 9, 14 and adult at month 1, 2, 6, 12 to 24, were injected with either {sup 3}H-thymidine, {sup 3}H-uriidine, or {sup 3}H-leucine, sacrificed 1 h later and liver, adrenal, lung and testis tissues observed by electron microscopic radioautography. Accordingly, numbers of mitochondria per cell profile area, numbers of labeled mitochondria and the mitochondrial labeling index labeled with {sup 3}H-labeled precursors showing DNA, RNA, protein synthesis in these cells (hepatocytes, 3 zones of the adrenal cortices - zona glomerulosa, fasciculata and reticularis -, adrenal medullary cells, pulmonary cells and testis cells) were counted per cells and compared among the respective developing and aging groups. The numbers of mitochondria in these cells increased from fetal day 19 to postnatal month 1 and 2. However, the numbers of labeled mitochondria and the labeling indices of intramitochondrial DNA, RNA, protein syntheses incorporating the {sup 3}H-labeled precursors in the described tissue cells increased from fetal day 19 to postnatal month 1 and decreased to month 24. These data support that the activity of intramitochnodrial DNA, RNA, protein syntheses in cells of these tissues increased and decreased by development and aging in mice. The intramitochondrial DNA, RNA and protein syntheses in some other organs were also reviewed and discussed. (author)

  3. A unit density method of grain analysis used to identify GABEergic neurons for electron microscopic autoradiographs

    International Nuclear Information System (INIS)

    Burry, R.W.

    1982-01-01

    The distribution of electron microscopic autoradiographic grains over neurons in cerebellar cultures incubated with [ 3 H]gamma-aminobutyric acid ([ 3 H]GABA) was examined. With the unit density method of grain analysis, the number of grains over each structure was tested against the total grain density for the entire section. If an individual structure has a grain density higher than the expected grain density, it is considered one of the group of heavily labeled structures. The expected grain density for each structure is calculated based on the area for that structure, the total grain density and the Poisson distribution. A different expected grain density can be calculated for any P value required. The method provides an adequate population of structures for morphological analysis but excludes weakly labeled structures and thus may underestimate the number of labeled structures. The unit density method of grain analysis showed, as expected, a group of cell bodies and synapses that was labeled heavily. Cultures incubated with other [ 3 H]amino acids did not have any heavily labeled synaptic elements. In addition, serial section analysis of sections showed that synapses heavily labeled with [ 3 H]GABA are seen in adjacent sections. The advantage of the unit density method of grain analysis is that it can be used to separate two groups of metabolically different neurons even when no morphological differences are present. (Auth.)

  4. Interactive Micromanipulation of Picking and Placement of Nonconductive Microsphere in Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2017-08-01

    Full Text Available In this paper, classified theoretical models, consisting of contact with and placement of microsphere and picking operations, are simplified and established to depict the interactive behaviors of external and internal forces in pushing manipulations, respectively. Sliding and/or rolling cases, resulting in the acceleration of micromanipulations, are discussed in detail. Effective contact detection is achieved by combining alterations of light-shadow and relative movement displacement between the tip-sphere. Picking operations are investigated by typical interactive positions and different end tilt angles. Placements are realized by adjusting the proper end tilt angles. These were separately conducted to explore the interactive operations of nonconductive glass microspheres in a scanning electron microscope. The experimental results demonstrate that the proposed contact detection method can efficiently protect the end-tip from damage, regardless of operator skills in initial positioning operations. E-beam irradiation onto different interactive positions with end tilt angles can be utilized to pick up microspheres without bending the end-tip. In addition, the results of releasing deviations away from the pre-setting point were utilized to verify the effectiveness of the placement tilt angles.

  5. Electron microscopic studies on ameloblast using /sup 45/Ca as tracer

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K [Gifu Univ. (Japan). Faculty of Medicine

    1974-02-01

    In order to study the functional role of ameloblast on inorganic substance, electron microscopic autoradiography was prepared from dental germ of incisor and molar teeth of young rats using /sup 45/Ca as the tracer and following results were obtained. At 15 minutes after /sup 45/Ca administration, /sup 45/Ca appeared in cells of each stage of development, reaching the peak after 30 minutes and gradually shifting from the inside of cells to matrix. /sup 45/Ca was localized in the cells in the nuclear substance, rough surfaced endoplasmic reticulum, Golgi area and mitochondria. Especially in the mitochondria, silver grains are accumulated in high concentration, suggesting a major role in the storage and accumulation of Ca. /sup 45/Ca passed through the mature ameloblasts rapidly. After 15 minutes, silver grains were noted in the matrix formation. After 2 hours, scarcely any silver grains were noted in the cells, most of them being shifted to calcifing area from the matrix formation. As the pathway of transport of /sup 45/Ca, intracellular passage is mainly adopted in the stage of matrix formation, without transport through the intercellular space. Even if a considerable separation occurred between each cell in the mature stage, no silver grains were noted in this area. These results would indicate an important role of ameloblast in the transport and storage of inorganic substances through the movement of Ca.

  6. Scanning electron microscope studies of adsorption and crystal growth on tungsten

    International Nuclear Information System (INIS)

    Akhter, P.

    1980-03-01

    An ultra high vacuum scanning electron microscope (UHV-SEM), equipped with additional surface science techniques (AES, RHEED, work function), has been used to study the adsorption and growth of Cs and Ag on polycrystalline and (110) single crystal of W. These are used to study the layer plus island, or Stranski-Krastanov growth mode. The technique and apparatus are described. In the temperature range of 15 0 C, a whole variety of growth phenomena in the system Ag/W(110) has been seen by SEM. Two intermediate layers are followed by island growth, except at T > approximately equal to 500 0 C where island growth starts at a lower coverage. At T 0 C, layer-like growth is deduced from both AES and SEM measurements. The forms, crystallographic orientations and nucleation densities of islands have been explored in detail using a combination of SEM, AES and EBSP techniques. AES results at room temperature and at 500 0 C have been analysed and the results fit very well with SEM observations. A growth model for Ag/W(110) has been presented and atomistic nucleation theory has been extended, to understand the Stranski-Krastanov growth mode in general and the Ag/W(110) results in particular. (author)

  7. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    Science.gov (United States)

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  8. In situ tensile testing of individual Co nanowires inside a scanning electron microscope

    International Nuclear Information System (INIS)

    Zhang Dongfeng; Breguet, Jean-Marc; Clavel, Reymond; Phillippe, Laetitia; Utke, Ivo; Michler, Johann

    2009-01-01

    Uniaxial quasi-static tensile testing on individual nanocrystalline Co nanowires (NWs), synthesized by electrochemical deposition process (EDP) in porous templates, was performed inside a scanning electron microscope (SEM) using a microfabricated tensile stage consisting of a comb drive actuator and a clamped-clamped beam force sensor. A 'three-beam structure' was fabricated by focused ion beam induced deposition (FIBID) on the stage, from which the specimen elongation and the tensile force could be measured simultaneously from SEM images at high magnification. A novel strategy of modifying device topography, e.g. in the form of trenches and pillars, was proposed to facilitate in situ SEM pick-and-place nanomanipulation, which could achieve a high yield of about 80% and reduce the difficulties in specimen preparation for tensile testing at the nanoscale. The measured apparent Young's modulus (75.3 ± 14.6) GPa and tensile strength (1.6 ± 0.4) GPa are significantly lower than the bulk modulus and the theoretical strength of monocrystalline samples, respectively. This result is important for designing Co NW-based devices. The origins of these distinctions are discussed in terms of the stiffnesses of the soldering portions, specimen misalignment, microstructure of the NWs and the experimental measurement uncertainty.

  9. Topographic Features of Five K-file Brands in Iranian Market: A Scanning Electron Microscopic Study.

    Science.gov (United States)

    Shahravan, Arash; Gorjestani, Hedayat; Izadi, Arash; Mortazavi, Nazanin

    2018-01-01

    Endodontic files which are used to clean and shape the root canal space differ from each other regarding technical specifications. Recently, K-type files are repeatedly studied on their cutting efficiency. This study aims to evaluate the tip design and cutting efficiency of 5 brands of K-files, available in Iran dental market (naming Dentsply, Thomas, Mani, Perfect and Larmrose). In this descriptive study, topographic features of file tips were investigated by the scanning electron microscope (SEM). Those features included tip symmetry, tip design, tip angle, and the distance from the tip to the lowest flute. SEM images (×250 magnification) of files were prepared. Statistical tests (Fisher's exact test, Chi -square, ANOVA, and t test) were used and P brands. No significant differences were found with respect to distance from the file tip to the lowermost flute between different file brands of this study ( P =0.2, One way ANOVA). Dentsply and Mani files possessed the most symmetrical tips and greatest tip angles. With respect to tip length, all 5 brands were satisfactory. However, neither of 5 brands evaluated topographically were outstanding in every aspect.

  10. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  11. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    International Nuclear Information System (INIS)

    Mølgaard Mortensen, Peter; Willum Hansen, Thomas; Birkedal Wagner, Jakob; Degn Jensen, Anker

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. - Highlights: • Computational fluid dynamics used for mapping flow and temperature in ETEM setup. • Temperature gradient across TEM grid in furnace based heating holder very small in ETEM. • Conduction from TEM grid and gas in addition to radiation from TEM grid most important. • Pressure drop in ETEM limited to the pressure limiting apertures

  12. Muscle pathology in myotonic dystrophy: light and electron microscopic investigation in eighteen patients.

    Science.gov (United States)

    Nadaj-Pakleza, A; Lusakowska, A; Sułek-Piątkowska, A; Krysa, W; Rajkiewicz, M; Kwieciński, H; Kamińska, A

    2011-05-01

    Myotonic dystrophy (DM) is the most common muscular dystrophy in adults. Two known genetic subtypes include DM1 (myotonic dystrophy type 1) and DM2 (myotonic dystrophy type 2). Genetic testing is considered as the only reliable diagnostic criterion in myotonic dystrophies. Relatively little is known about DM1 and DM2 myopathology. Thus, the aim of our study was to characterise light and electron microscopic features of DM1 and DM2 in patients with genetically proven types of the disease. We studied 3 DM1 cases and 15 DM2 cases from which muscle biopsies were taken for diagnostic purposes during the period from 1973 to 2006, before genetic testing became available at our hospital. The DM1 group included 3 males (age at biopsy 15-19). The DM2 group included 15 patients (5 men and 10 women, age at biopsy 26-60). The preferential type 1 fibre atrophy was seen in all three DM1 cases in light microscopy, and substantial central nucleation was present in two biopsies. Electron microscopy revealed central nuclei in all three examined muscle biopsies. No other structural or degenerative changes were detected, probably due to the young age of our patients. Central nucleation, prevalence of type 2 muscle fibres, and the presence of pyknotic nuclear clumps were observed in DM2 patients in light microscopy. Among the ultrastructural abnormalities observed in our DM2 group, the presence of internal nuclei, severely atrophied muscle fibres, and lipofuscin accumulation were consistent findings. In addition, a variety of ultrastructural abnormalities were identified by us in DM2. It appears that no single ultrastructural abnormality is characteristic for the DM2 muscle pathology. It seems, however, that certain constellations of morphological changes might be indicative of certain types of myotonic dystrophy.

  13. Compositional redistribution in alloy films under high-voltage electron microscope irradiation

    Science.gov (United States)

    Lam, Nghi Q.; Leaf, O. K.; Minkoff, M.

    1983-10-01

    The problem of nonequilibrium segregation in alloy films under high-voltage electron microscope (HVEM) irradiation at elevated temperatures is re-examined in the present work, taking into account the damage-rate gradients caused by radial variation in the electron flux. Axial and radial compositional redistributions in model solid solutions, representative of concentrated Ni-Cu, Ni-Al and Ni-Si alloys, were calculated as a function of time, temperature, and film thickness, using a kinetic theory of segregation in binary alloys. The numerical results were achieved by means of a new software package (DISPL2) for solving convection-diffusion-kinetics problems with general orthogonal geometries. It was found that HVEM irradiation-induced segregation in thin films consists of two stages. Initially, due to the proximity of the film surfaces as sinks for point defects, the usual axial segregation (to surfaces) occurs at relatively short irradiation times, and rapidly attains quasi-steady state. Then, radial segregation becomes more and more competitive, gradually affecting the kinetics of axial segregation. At a given temperature, the buildup time to steady state is much longer in the present situation than in the simple case of one-dimensional segregation with uniform defect production. Changes in the alloy composition occur in a much larger zone than the irradiated volume. As a result, the average alloy composition within the irradiated region can differ greatly from that of the unirradiated alloy. The present calculations may be useful in the interpretation of the kinetics of certain HVEM irradiation-induced processes in alloys.

  14. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  15. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  16. In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Boris, E-mail: boriss.polakovs@ut.ee [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, Riga (Latvia); Dorogin, Leonid M; Lohmus, Ants [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Romanov, Alexey E [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Ioffe Physical Technical Institute, RAS, Politehnicheskaja st. 26, St. Petersburg (Russian Federation); Lohmus, Rynno [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia)

    2012-01-15

    A novel method for measuring the kinetic friction force in situ was developed for zinc oxide nanowires on highly oriented pyrolytic graphite and oxidised silicon wafers. The experiments were performed inside a scanning electron microscope and used a nanomanipulation device as an actuator, which also had an atomic force microscope tip attached to it as a probe. A simple model based on the Timoshenko elastic beam theory was applied to interpret the elastic deformation of a sliding nanowire (NW) and to determine the distributed kinetic friction force.

  17. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope.

    Science.gov (United States)

    Polyakov, Boris; Dorogin, Leonid M; Vlassov, Sergei; Kink, Ilmar; Romanov, Alexey E; Lohmus, Rynno

    2012-11-01

    A novel method for in situ measurement of the static and kinetic friction is developed and demonstrated for zinc oxide nanowires (NWs) on oxidised silicon wafers. The experiments are performed inside a scanning electron microscope (SEM) equipped with a nanomanipulator with an atomic force microscope tip as a probe. NWs are pushed by the tip from one end until complete displacement is achieved, while NW bending is monitored by the SEM. The elastic bending profile of a NW during the manipulation process is used to calculate the static and kinetic friction forces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Compact cryogenic Kerr microscope for time-resolved studies of electron spin transport in microstructures

    NARCIS (Netherlands)

    Rizo, P. J.; Pugzlys, A.; Liu, J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.; van Loosdrecht, P. H. M.; Pugžlys, A.

    2008-01-01

    A compact cryogenic Kerr microscope for operation in the small volume of high-field magnets is described. It is suited for measurements both in Voigt and Faraday configurations. Coupled with a pulsed laser source, the microscope is used to measure the time-resolved Kerr rotation response of

  19. High-Performance X-ray Detection in a New Analytical Electron Microscope

    Science.gov (United States)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  20. Evaluation of Enterococcus faecalis adhesion, penetration, and method to prevent the penetration of Enterococcus faecalis into root cementum: Confocal laser scanning microscope and scanning electron microscope analysis.

    Science.gov (United States)

    Halkai, Rahul S; Hegde, Mithra N; Halkai, Kiran R

    2016-01-01

    To ascertain the role of Enterococcus faecalis in persistent infection and a possible method to prevent the penetration of E. faecalis into root cementum. One hundred and twenty human single-rooted extracted teeth divided into five groups. Group I (control): intact teeth, Group II: no apical treatment done, Group III divided into two subgroups. In Groups IIIa and IIIb, root apex treated with lactic acid of acidic and neutral pH, respectively. Group IV: apical root cementum exposed to lactic acid and roughened to mimic the apical resorption. Group V: apical treatment done same as Group IV and root-end filling done using mineral trioxide aggregate (MTA). Apical one-third of all samples immersed in E. faecalis broth for 8 weeks followed by bone morphogenetic protein and obturation and again immersed into broth for 8 weeks. Teeth split into two halves and observed under confocal laser scanning microscope and scanning electron microscope, organism identified by culture and polymerase chain reaction techniques. Adhesion and penetration was observed in Group IIIa and Group IV. Only adhesion in Group II and IIIB and no adhesion and penetration in Group I and V. Adhesion and penetration of E. faecalis into root cementum providing a long-term nidus for subsequent infection are the possible reason for persistent infection and root-end filling with MTA prevents the adhesion and penetration.

  1. Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope.

    Science.gov (United States)

    Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo

    2018-01-17

    Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.

  2. Miniature scanning electron microscope for investigation of the interior surface of a superconducting Nb radiofrequency accelerating cavity

    International Nuclear Information System (INIS)

    Mathewson, A.G.; Grillot, A.

    1982-01-01

    A miniature scanning electron microscope with an electron beam diameter approx.1 μm has been constructed for high resolution examination at room temperature of the interior surface of a superconducting Nb radiofrequency accelerating cavity. Various objects and surface structures were observed, some of which could be correlated with lossy regions or ''hot spots'' detected previously on the outside surface during cavity operation at < or =4.2 K by a chain of carbon resistors. No internal surface features were observed which could conclusively be correlated with field emitting electron sources

  3. [Thirty years of the electron microscope investigation in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences].

    Science.gov (United States)

    Shatrov, A B

    2003-01-01

    The history of the electron microscope investigations in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences and progress in scanning and transmission electron microscope investigations in this field of biology to the moment are briefly accounted.

  4. Scanning electron microscopical examination of the impact of laser patterning on microscopic inhomogeneities of Cu(In,Ga)(Se,S)2 absorbers produced by rapid thermal processing

    International Nuclear Information System (INIS)

    Künecke, U.; Hölzing, A.; Jost, S.; Lechner, R.; Vogt, H.; Heiß, A.; Palm, J.; Hock, R.; Wellmann, P.

    2013-01-01

    Laser scribing of the Mo back electrode is commonly applied to define the cell structure of Cu(In,Ga)(Se,S) 2 (CIGSSe) thin film solar cells. The patterning process was performed on laboratory samples using ns and ps pulse length laser processes. After structuring, CIGSSe absorbers were processed by rapid thermal processing (RTP) of stacked elemental layer precursors. Microscopic inhomogeneities were investigated on different sample positions. For samples structured with ns pulse, the absorber morphology in the laser line vicinity is different as compared to the morphology in the unstructured cell area. Scanning electron microscopy and energy-dispersive X-ray spectroscopy show significant changes in the absorber grain size and chemical composition. Close to the laser line, the typically observed Ga accumulation on the back contact is less pronounced and more Ga is incorporated closer to the surface leading to a smaller grain size. The observed changes are attributed to partial damaging of a diffusion barrier between glass and Mo induced by the ns laser process, which allows diffusion of sodium from the glass substrate into the absorber during RTP. The enhanced Ga incorporation closer to the surface is an indication for the influence of sodium on the local phase development during RTP. The damages of the diffusion barrier can be effectively prevented by the application of a ps laser scribing process. CIGSSe absorbers processed on samples structured with ps pulse length do not show the described microscopic inhomogeneities around the laser line. - Highlights: ► Scanning electron microscopy on Cu(In,Ga)(Se,S) 2 solar cell absorbers ► Laser patterning with ns laser pulse damages the sodium diffusion barrier. ► Improved laser patterning with ps laser pulse leaves diffusion barrier intact. ► Additional sodium changes phase development during absorber formation. ► Gallium content is increased at surface and decreased at backside of absorber

  5. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    Science.gov (United States)

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electron microscopic studies on odontoblasts using 45Ca as the tracer

    International Nuclear Information System (INIS)

    Okamoto, Eiji

    1980-01-01

    In order to study the relationship between odontoblasts and inorganic salts, odontoblasts of 10-day old rats' incisions and molars were used. The animals were sacrificed 15 minutes, 30 minutes, 1 hour or 2 hours after 45 Ca administration to obtain the specimen. The specimens were processed for electron microscopic autoradiography. 15 minutes after 45 Ca administration, silver grains indicated 45 Ca uptake was already noted within the cells. 45 Ca was localized in the mitochondria, Golgi area, rough surfaced endoplasmic reticulum and partially within the karyoplasm. After 30 minutes' administration, the number of silver grains were generally increased as compared with the findings obtained after 15 minutes' administration. The localization was similar with those after 15 minutes' administration but some were found in the ribosomes and smooth surfaced endoplasmic reticulum with numerous silver grains within small vesicles derived from the Golgi apparatus as well. A movement of 45 Ca from the protruding part to the stroma was also noted. 1 hour after the administration, the number of silver grains were generally decreased, with a more pronounced movement towards stroma from the protruding part. The marked movement of silver grains was obtained onto the collagen fibers in the stroma. In the mitochondria, however, considerable number of silver grains were still seen. In this section, on the other hand, numerous silver grains were seen in the intercellular space, in addition to the pathway of intracellular route, indicating the Ca shift from outside of the cells. After 2 hours' 45 Ca administration, the tendency towards the decrease of the silver grains became more remarkable, the movement of 45 Ca via the extracellular pathway described above was also frequently found. (author)

  7. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.

    Science.gov (United States)

    Zheng, Shawn Q; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B; Cheng, Yifan; Sedat, John W; Agard, David A

    2011-07-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096(2) × 512 voxels from an input tilt series containing 122 projection images of 4096(2) pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024(2) × 256 voxels from 122 1024(2) pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Electron microscopic studies of the matrix formation of hard tissue organized cell

    International Nuclear Information System (INIS)

    Chou, Ching-Eng

    1982-01-01

    In order to study the functions of odontoblast, especially on the matrix formation, odontoblasts of rats' incisor and molar teeth were used. The animals were sacrificed 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours and 24 hours after 3 H-proline administration to obtain the specimen. The specimens were processed for electron microscopic autoradiography. The following results were obtained. 1. 5 minutes after 3 H-proline administration: Silver grains indicated 3 H-proline uptake were already noted within the cells and localized in the rough surfaced endoplasmic reticulum and surrounding ribosomes, partially within the karyoplasm. 2. 15 minutes after 3 H-proline administration: The number of silver grains were generally increased as compared with the findings obtained in 5 minutes. The localization moved to the Golgi apparatus and their surroundings. 3. 30 minutes after 3 H-proline administration: Silver grains obtained in Tome's fibers area and some in predentin. In this area granules derived from Golgi body were found. 4. 1 hour after 3 H-proline administration: The number of silver grains were generally decreased and more pronounced movement toward predentin, the marked movement of silver grains were obtained onto the collagen fibers and surroundings. 5. 2 hours after 3 H-proline administration: Silver grains moved to the calcified area and there collagen fibers became more remarkable. 6. 24 hours after 3 H-proline administration: No silver grains were founded in the odontoblast side but deposited in the predentin calcified area with stable condition. Based on the results of these observations, odontoblasts were shown to perform the function of synthesis, storage, transportation and control of collagen formation in addition to the role of matrix formation. (author)

  9. Targetting the hemozoin synthesis pathway for antimalarial drug and detected by TEM (Transmission electron microscope)

    Science.gov (United States)

    Abbas, Jamilah; Artanti, Nina; Sundowo, Andini; Dewijanti, Indah Dwiatmi; Hanafi, Muhammad; Lisa, Syafrudin, Din

    2017-11-01

    Malaria is a major public health problem mainly due to the development of resistance by the most lethal causative parasite species, the alarming spread of drug resistance and limited number of effective drug available now. Therefore it is important to discover new antimalarial drug. Malaria is caused by a singlecelled parasite from the genus Plasmodium. Plasmodium falciparum parasite infect red blood cells, ingesting and degradation hemoglobin in the acidic food vacuola trough a sequential metabolic process involving multiple proteases. During these process, hemoglobin is utilized as the predominant source of nutrition. Proteolysis of hemoglobin yields amino acid for protein synthesis as well as toxic heme. Massive degradation of hemoglobin generates large amount of toxic heme. Malaria parasite has evolved a distinct mechanism for detoxification of heme through conversion into insoluble crystalline pigment, known as hemozoin (β hematoin). Hemozoin synthesis is an indispensable process for the parasite and is the target for action of several known antimalarial drug. TEM (Transmission Electron Microscope) technology for hemozoin formation in vitro assay was done in this research. Calophyllum aerophyllum Lauterb as medicinal plants was used as a source of antimalarial drug. Acetone extracts of C. lowii showed growth inhibition against parasite P. falciparum with IC50 = 5.2 µg/mL. Whereas from hexane, acetone and methanol fraction of C. aerophyllum showed growth inhibition with IC50 = 0.054, 0.055 and 0.0054 µg/mL respectively. New drug from Calophyllum might have potential compounds that have unique structures and mechanism of action which required to develop new drug for treatment of sensitive and drug resistant strain of malaria.

  10. A review of transmission electron microscopes with in situ ion irradiation

    Science.gov (United States)

    Hinks, J. A.

    2009-12-01

    Transmission electron microscopy (TEM) with in situ ion irradiation is unique amongst experimental techniques in allowing the direct observation of the internal microstructure of materials on the nanoscale whilst they are being subjected to bombardment with energetic particles. Invaluable insights into the underlying atomistic processes at work can be gained through direct investigation of radiation induced and enhanced effects such as: phase changes and segregation; mechanical and structural changes; atomic/layer mixing and chemical disorder; compositional changes; chemical reactions; grain growth and shrinkage; precipitation and dissolution; defect/bubble formation, growth, motion, coalescence, removal and destruction; ionisation; diffusion; and collision cascades. The experimental results obtained can be used to validate the predictions of computational models which in turn can elucidate the mechanisms behind the phenomena seen in the microscope. It is 50 years since the first TEM observations of in situ ion irradiation were made by D.W. Pashley, A.E.B. Presland and J.W. Menter at the Tube Investment Laboratories in Cambridge, United Kingdom and 40 years since the first interfacing of an ion beam system with a TEM by P.A. Thackery, R.S. Nelson and H.C. Sansom at the Atomic Energy Research Establishment at Harwell, United Kingdom. In that time the field has grown with references in the literature to around thirty examples of such facilities. This paper gives an overview of the importance of the technique, especially with regard to the current challenges faced in understanding radiation damage in nuclear environments; a description of some of the important construction elements and design considerations of TEMs with in situ ion irradiation; a brief history of the development of this type of instrument; a summary of the facilities built around the world over the last half century; and finally a focus on the instruments in operation today.

  11. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: k.grzelakowski@opticon-nanotechnology.com

    2016-05-15

    Since its introduction the importance of complementary k{sub ||}-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800 eV electron beam from an “in-lens” electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered k{sub ǁ}-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. - Highlights: • A novel concept of the electron sample illumination with “in-lens” e- gun is realized. • Quasi-simultaneous energy selective observation of the real- and k-space in EELS mode. • Observation of the energy filtered Auger electron diffraction at Cs atoms on Mo(110). • Energy-loss, Auger and secondary electron momentum microscopy is realized.

  12. Annular dark field electron microscope images with better than 2 A resolution at 100 kV

    International Nuclear Information System (INIS)

    Shin, D.H.; Kirkland, E.J.; Silcox, J.

    1989-01-01

    High-resolution scanning transmission electron microscope (STEM) images in the annular dark field (ADF) imaging mode approaching the theoretical point-to-point resolution limit are presented. The ADF images were obtained from a high T c superconducting YBa 2 Cu 3 O 7-x thin-film specimen at 100 kV. The 1.9 A resolution lattice image, which is the smallest lattice spacing in the specimen, corresponds to the minimum resolvable spatial frequency with 5% contrast in the contrast transfer function for annular dark field, and is smaller than the resolution limit given by the Rayleigh criterion. This demonstrates that STEM ADF imaging can have a resolution approximately 40% better than that of the bright field conventional transmission electron microscope (CTEM) imaging at Scherzer condition

  13. High-resolution electron microscope image analysis approach for superconductor YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Xu, J.; Lu, F.; Jia, C.; Hua, Z.

    1991-01-01

    In this paper, an HREM (High-resolution electron microscope) image analysis approach has been developed. The image filtering, segmentation and particles extraction based on gray-scale mathematical morphological operations, are performed on the original HREM image. The final image is a pseudocolor image, with the background removed, relatively uniform brightness, filtered slanting elongation, regular shape for every kind of particle, and particle boundaries that no longer touch each other so that the superconducting material structure can be shown clearly

  14. Influence of Electrical and Electromagnetic Stimulation on Nerve Regeneration in the Transected Mouse Sciatic Nerve : An Electron Microscopic Study

    OpenAIRE

    Ogata, Akiko; Matsumoto, Tomoko; Matsubara, Takako; Miki, Akinori

    2001-01-01

    Influence of electrical and electromagnetic stimulation on nerve regeneration was electron microscopically examined in the transected mouse sciatic nerve. Two days after the transection, several thin regenerating axons (daughter axons) were observed between the myelin sheath and basal lamina of Schwann cells in the proximal stump. Growth cones of the daughter axons contained several small round vesicles and mitochondria, and the shaft of them, neurofilaments, neurotubules and profiles of smoo...

  15. Radiosensitivity to gamma radiation of Escherichia coli in three different substracts and study of the alterations in the electronic microscope

    International Nuclear Information System (INIS)

    Cerri, M.E.N.F.

    1984-01-01

    The minimum inactivating dose of radiation (MID) for Escherichia coli IZ-1982 was determinated in three different substrates: cow milk, liquid extract of soybean and nutrient broth (DIFCO). Observations on electronic microscope of the bacterial cells were also made in the three substracts and submitted to different dose of gamma radiation. The Tukey's Test was used to stablish the significance of the difference in the size of the cells grow in the three substrates. (M.A.C.) [pt

  16. Freeze-fracture of infected plant leaves in ethanol for scanning electron microscopic study of fungal pathogens.

    Science.gov (United States)

    Moore, Jayma A; Payne, Scott A

    2012-01-01

    Fungi often are found within plant tissues where they cannot be visualized with the scanning electron microscope (SEM). We present a simple way to reveal cell interiors while avoiding many common causes of artifact. Freeze-fracture of leaf tissue using liquid nitrogen during the 100% ethanol step of the dehydration process just before critical point drying is useful in exposing intracellular fungi to the SEM.

  17. Low temperature scanning electron microscopic studies on the interaction of globodera rostochiensis woll. and trichoderma harzianum rifai

    International Nuclear Information System (INIS)

    Saifullah, A.; Khan, N.U.

    2014-01-01

    Low temperature scanning electron microscopic (LTSEM) studies revealed that Trichoderma harzianum infected mature potato cysts nematode eggs by penetrating directly the cyst wall or via natural opening of mouth. Mycelial penetration on cyst wall or egg surface has been seen. The penetration of cyst wall or egg surface was either chemical or mechanical (directly or with appresorium) or both. Freeze fractionation showed the presence of mycelia inside the eggs. (author)

  18. Scanning Electron Microscope Studies of Interactions between Agaricus bisporus (Lang) Sing Hyphae and Bacteria in Casing Soil

    OpenAIRE

    Masaphy, Segula; Levanon, D.; Tchelet, R.; Henis, Y.

    1987-01-01

    Relationships between the hyphae of Agaricus bisporus (Lang) Sing and bacteria from the mushroom bed casing layer were examined with a scanning electron microscope. Hyphae growing in the casing layer differed morphologically from compost-grown hyphae. Whereas the compost contained thin single hyphae surrounded by calcium oxalate crystals, the casing layer contained mainly wide hyphae or mycelial strands without crystals. The bacterial population in the hyphal environment consisted of several ...

  19. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    Science.gov (United States)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  20. Scanning electron microscopic (Sem studies on fourth instar larva and pupa of Anopheles (Cellia stephensi Liston (Anophelinae: Culicidae

    Directory of Open Access Journals (Sweden)

    Jagbir Singh Kirti

    2014-12-01

    Full Text Available Anopheles (Cellia stephensi Liston is a major vector species of malaria in Indian subcontinent. Taxonomists have worked on its various morphological aspects and immature stages to explore additional and new taxonomic attributes. Scanning electron microscopic (SEM studies have been conducted on the fourth instar larva and pupa of An. stephensi to find additional taxonomic features for the first time from Punjab state.