WorldWideScience

Sample records for electron linac based

  1. High-brightness electron guns for linac-based light sources

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    Most proposed linac-based light sources, such as single-pass free-electron lasers and energy-recovery-linacs, require very high-brightness electron beams in order to achieve their design performance. These beam requirements must be achieved not on an occasional basis, but rather must be met by every bunch produced by the source over extended periods of time. It is widely assumed that the beam source will be a photocathode electron gun; the selection of accelerator technique (e.g., dc or rf) for the gun is more dependent on the application.The current state of the art of electron beam production is adequate but not ideal for the first generation of linac-based light sources, such as the Linac Coherent Light Source (LCLS) x-ray free-electron laser (X-FEL). For the next generation of linac-based light sources, an order of magnitude reduction in the transverse electron beam emittance is required to significantly reduce the cost of the facility. This is beyond the present state of the art, given the other beam properties that must be maintained. The requirements for current and future linac-based light source beam sources are presented here, along with a review of the present state of the art. A discussion of potential paths towards meeting future needs is presented at the conclusion.

  2. Electron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G A; Schriber, S O [ed.

    1976-11-01

    A study was made of the present status of the thousand or so electron linacs in the world, and future trends in the field. These machines were classified according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for x-ray and electron therapy, and those which may in the future be used for negative pion therapy. Industrial machines discussed include linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a c-w, 1 GeV, 100..mu..A electron linac is raised, and various options using recirculation and stretchers are examined. In this connection, the status of rf superconductivity is summarized. A review is given of linacs for injectors into synchrotrons and e/sup +-/ storage rings, and recent work done to upgrade the only multi-GeV linac, namely SLAC, is described.

  3. Electron linacs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1976-01-01

    To study the present status of the thousand or so electron linacs in the world, and future trends in the field, we have classified these machines according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for X-ray and electron therapy, and those which may in the future be used for negative pion therapy. The section on industrial machines includes linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a C.W., 1 GeV, 100 μA electron linac is raised and various options using recirculation and stretchers are examined. In this connection, the status of RF superconductivity is summarized. Following, there is a review of linacs for injectors into synchrotrons and e +- storage rings. The paper ends with a description of recent work done to upgrade the only multi-GeV linac, namely SLAC. (author)

  4. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  5. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  6. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  7. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  8. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  9. Electron linac design for pion radiotherapy

    International Nuclear Information System (INIS)

    Loew, G.A.; Brown, K.L.; Miller, R.H.; Walz, D.R.

    1977-03-01

    The electron linac provides a straightforward, state-of-the-art method of producing the primary beam required for a hospital-based multiport pion radiotherapy facility for cancer treatment. The accelerator and associated beam transport system described are capable of generating an electron beam of about 250 kW and delivering it alternately to one of several pion generators and treatment areas. Each pion generator, a prototype of which now exists at the Stanford W. W. Hansen Laboratory, would contain a target for the electron beam and sixty separate superconducting magnet channels which focus the pions in the patient. The considerations which enter the design of a practical linac are presented together with a possible layout of a flexible beam transport system

  10. A novel electron gun for inline MRI-linac configurations

    International Nuclear Information System (INIS)

    Constantin, Dragoş E.; Fahrig, Rebecca; Holloway, Lois; Keall, Paul J.

    2014-01-01

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T

  11. 7-MeV electron LINAC based pulse radiolysis facility at RPCD, BARC

    International Nuclear Information System (INIS)

    Naik, C.B.; Nadkarni, S.A.; Toley, M.A.; Shinde, S.J.; Naik, P.D.

    2017-01-01

    7-MeV electron LINAC based pulse radiolysis facility is operational in Chemistry Group of BARC since 1986. The Accelerator is housed in B-132 room in basement of Modular Labs. BARC Accelerator was procured from Radiation Dynamics Inc. UK and its detection system was indigenously developed

  12. High field electron linacs

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-12-01

    High field electron linacs are considered as potential candidates to provide very high energies beyond LEP. Since almost twenty years not much improvement has been made on linac technologies as they have been mostly kept at low and medium energies to be used as injectors for storage rings. Today, both their efficiency and their performances are being reconsidered, and for instance the pulse compression sheme developed at SLAC and introduced to upgrade the energy of that linac is a first step towards a new generation of linear accelerators. However this is not enough in terms of power consumption and more development is needed to improve both the efficiency of accelerating structures and the performances of RF power sources

  13. Generation and application of slow positrons based on a electron LINAC

    International Nuclear Information System (INIS)

    Kurihara, Toshikazu

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses 58 Co, 64 Cu, 11 C, 13 N, 15 O and 18 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihilation excitation and positron reemission microscope are developed. (S.Y.)

  14. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  15. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  16. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  17. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-01

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting

  18. Induction-linac based free-electron laser amplifiers for plasma heating

    International Nuclear Information System (INIS)

    Jong, R.A.

    1988-01-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab

  19. Research on backward traveling wave electron linac

    International Nuclear Information System (INIS)

    Chen Huaibi; Zheng Shuxin; Ding Xiaodong; Lin Yuzheng

    1999-01-01

    Future electron linacs require high gradient acceleration. The studies on the high shunt impedance backward traveling wave electron linac accelerating structure (BTW) are presented. At first, the characteristics of BTW are researched. The option of mode and optimal design methods of accelerating cavity for BTW are studied. A physical design method for BTW accelerators, including longitudinal and transversal particle dynamics, is given. Based on above studies, a 9 MeV BTW accelerating tube at 3π/4 mode with frequency 2856 MHz for inspecting large container as radiation source at customs is designed, and a comparison with disk-loaded waveguide accelerating tube is made. The result of research leads to the conclusion that backward traveling wave accelerating structure is preferable. Because BTW has higher effective shunt impedance, shorter filling time and more stable operation

  20. EG and G electron linac modifications

    International Nuclear Information System (INIS)

    Norris, N.J.; Detch, J.L.; Kocimski, S.M.; Sawyer, C.R.; Hudson, C.L.

    1986-01-01

    A three-year modification of the EG and G electron linac has been performed to replace obsolete equipment and bring all subsystems up to the current state of the art. Components and subsystems were designed, constructed, and tested off-line to minimize interruption of experiments. The configuration of the modified linac is shown schematically, and performance characteristics are give. Each subsystem is described, including: the electron gun; solenoid focusing system; subharmonic bunchers; accelerating system; RF system; klystron modulators and power supplies; control system; beam handling system; vacuum system; and beam current monitors. 7 refs., 4 figs., 2 tabs

  1. The concept of parallel input/output processing for an electron linac

    International Nuclear Information System (INIS)

    Emoto, Takashi

    1993-01-01

    The instrumentation of and the control system for the PNC 10 MeV CW electron linac are described. A new concept of parallel input/output processing for the linac has been introduced. It is based on a substantial number of input/output processors(IOP) using beam control and diagnostics. The flexibility and simplicity of hardware/software are significant advantages with this scheme. (author)

  2. A Compact 5 MeV S-Band Electron Linac Based X-Ray Source for Industrial Radiography

    CERN Document Server

    Auditore, Lucrezia; De Pasquale, Domenico; Emanuele, Umberto; Italiano, Antonio; Trifirò, Antonio; Trimarchi, Marina

    2005-01-01

    A compact and reliable X-ray source, based on a 5 MeV, 1 kW, S-band electron linac, has been set up at the Dipartimento di Fisica, Universit\\'a di Messina. This source, coupled with a GOS scintillator screen and a CCD camera, represents an innovative transportable system for industrial radiography and X-ray tomography. Optimization of the parameters influencing the e-gamma conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 code. The converter choice is the result of the study of the e-gamma conversion performances for different materials and materials thicknesses. Also the converter position with respect to the linac exit window was studied. The chosen converter consists in a Ta-Cu target inserted close to the linac window. The Cu layer acts as a filter both on the electrons from the source and on the low energy X-rays. The X-ray beam angular profile was studied by means of GafChromic films with and without collimation. In the final source project, a collimation system pr...

  3. ETL linac facility and free-electron lasers

    International Nuclear Information System (INIS)

    Yamazaki, T.; Noguchi, T.; Mikado, T.; Sugiyama, S.; Yamada, K.; Chiwaki, M.; Ohgaki, H.; Suzuki, R.; Sei, N.

    1993-01-01

    An outline is presented of the recent development on the ETL (Electro-technical Laboratory) electron-linac facility and storage-ring FELs (free-electron lasers). Some modifications including the injection system have been made to the linac. Four storage rings are working very well. The TERAS FEL system has been shut down after the successful oscillation around 590 nm. The new NIJI-IV FEL system has been proven to work well, and the current tunable wavelength range is over 100 nm (488-595 nm). Preparatory experiments on the FEL at shorter wavelength are underway. (author)

  4. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  5. Optimization of Beam Transmission of PAL-PNF Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kim, S. K.; Kim, E. A. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2012-05-15

    The PNF (Pohang Neutron Facility) electron Linac is providing converted neutrons and photons from electron beams to users for nuclear physics experiments and high energy gamma-ray exposures. This linac is capable of producing 100 MeV electron beams with a beam current of pulsed 100 mA. The pulse length is 2 {mu}s and the pulse repetition rate is typically 30 Hz. This linac consists of two SLAC-type S-band accelerating columns and the thermionic RF gun. They are powered by one klystron and the matching pulse modulator. The electron beams emitted from the RF gun are bunched as they pass through the alpha magnet and are injected into the accelerating column thereafter. In this paper, we discuss procedures and results of the beam transmission optimization with technical details of the accelerator system. We also briefly discuss the future upgrade plan to obtain short-pulse or electron beams for neutron TOF experiments by adopting a triode type thermionic DC electron gun

  6. Making electron beams for the SLC linac

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; James, M.B.; Miller, R.H.; Sheppard, J.C.; Sodja, J.; Truher, J.B.; Minten, A.

    1984-01-01

    A source of high-intensity, single-bunch electron beams has been developed at SLAC for the SLC. The properties of these beams have been studied extensively utilizing the first 100-m of the SLAC linac and the computer-based control system being developed for the SLC. The source is described and the properties of the beams are summarized. 9 references, 2 figures, 1 table

  7. Feedback system analysis for beam breakup in a multipass multisection electron linac

    International Nuclear Information System (INIS)

    Mosnier, A.; Aune, B.

    1986-06-01

    A recirculating electron accelerator based upon superconducting cavities technology is envisaged in different laboratories to produce a high duty cycle beam with energy in the GeV region. Beam break up is a severe limitation in this kind of accelerator due to the positive feedback of the returning beams. We present here an analysis based upon feedback system theory which takes into account the different cavities of the linac, the optics of the linac and of the recirculating path. An example is given for the Saclay proposal of a 2 GeV accelerator consisting of 4 passes in a 500 MeV, 100 m-long superconducting linac

  8. Gain physics of rf-linac-driven xuv free-electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; McVey, B.D.; Newnam, B.E.

    1986-01-01

    In an rf-linac-driven xuv free-electron laser oscillator, the gain depends on the details of the shape of the electron beam's phase-space distribution, particularly the distribution of electrons in the transverse (to the direction of propagation) position and velocity coordinates. This strong dependence occurs because the gain in this device is inhomogeneously broadened. Our previous theoretical studies have assumed that the transverse phase space distribution is a product of uncorrelated Gaussian functions. In the present work, we shall present the results of a theoretical study of the gain for non-Gaussian phase-space distributions. Such distributions arise either from a better representation of the electron beam from an rf-linac or from an emittance filter applied to the beam after the linac

  9. Electron energy device for LINAC based Pulse Radiolysis Facility of RPCD

    International Nuclear Information System (INIS)

    Toley, M.A.; Shinde, S.J.; Chaudhari, B.B.; Sarkar, S.K.

    2015-07-01

    The pulse radiolysis facility is the experimental centerpiece of the radiation chemistry activities of the Radiation and Photochemistry Division (RPCD) of Bhabha Atomic Research Centre. This facility was created in 1986 which is based on a 7 MeV Linear Electron Accelerator (LINAC) procured from M/s Radiation Dynamics Ltd., UK. The electron energy is one of the principal parameters that influence the dose distribution within the sample irradiated with a beam of energetic electrons. An easy-to-use and robust device has been developed that can reliably detect day-today small variations in the beam energy. It consists of two identical aluminum plates except for their thickness, which are electrically insulated from each other. The thickness of each plate is carefully selected depending on the electron beam energy. The charge (or current) collected by each plate, under irradiation is measured. The ratio of the charge (or current) signal from the front plate to the sum of the signals from the front and rear plates is very sensitive to the beam energy. The high sensitivity and robustness make this device quite suitable for Electron energy measurement for Pulse radiolysis Facility at RPCD. (author)

  10. Acceleration of high charge density electron beams in the SLAC linac

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures

  11. IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M., E-mail: Massimo.Ferrario@lnf.infn.it [INFN-LNF (Italy); Alesini, D. [INFN-LNF (Italy); Alessandroni, M. [RMP Srl (Italy); Anania, M.P. [INFN-LNF (Italy); Andreas, S. [DESY, Hamburg (Germany); Angelone, M. [ENEA, Frascati (Italy); Arcovito, A. [Univ. Cattolica del Sacro Cuore - Roma (Italy); Arnesano, F. [Univ. di Bari (Italy); Artioli, M. [ENEA, Frascati (Italy); Avaldi, L. [CNR, Area Ric. di Roma 1 (Italy); Babusci, D. [INFN-LNF (Italy); Bacci, A. [INFN and Univ. di Milano (Italy); Balerna, A.; Bartalucci, S.; Bedogni, R.; Bellaveglia, M. [INFN-LNF (Italy); Bencivenga, F. [Sincrotrone Trieste (Italy); Benfatto, M. [INFN-LNF (Italy); Biedron, S. [Colorado Univ. (United States); Bocci, V. [INFN and Univ. di Roma, La Sapienza (Italy); and others

    2014-03-11

    This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity “particles factory”, based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.

  12. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  13. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  14. A high current electron gun for the IEAv linac

    International Nuclear Information System (INIS)

    Muraro, A. Jr.; Stopa, C.R.S.; Romao, B.M.V.; Jorge, A.M.; Takahashi, J.

    2001-01-01

    This work presents the design, construction and characterization of a new electron gun for the linear electron accelerator (linac) which is under construction at the Instituto de Estudos Avancados (IEAv)

  15. On the e-linac-based neutron yield

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2010-01-01

    We treat neutron generating in high atomic number materials due to the photonuclear reactions induced by the Bremsstrahlung of an electron beam produced by linear electron accelerator (e-linac). The dependence of neutron yield on the electron energy and the irradiated sample size is considered for various sample materials. The calculations are performed without resort to the so-called 'numerical Monte Carlo simulation'. The acquired neutron yields are well correlated with the data asserted in investigations performed at a number of the e-linac-driven neutron sources

  16. Present status and future directions of the JAERI superconducting RF linac-based FEL

    International Nuclear Information System (INIS)

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  17. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  18. Control system for 10 MeV irradiation electron linac

    International Nuclear Information System (INIS)

    Zeng Ziqiang; Zhang Lifeng; Lu Weixing; Gao Zhenjiang; Zhang Yan; Han Guangwen; Wang Shuxian

    2005-01-01

    Control system of the 10 MeV electron linac using Distributed Control System (DCS) was studied. The hardware of control system consists of four SIEMENS PLCs and monitor computer, the software bases on STEP 7, Labwindows/CVI and SQL Server. The bus between the monitor computer and the main PLC is 100 M industrial networks, between PLCs is MPI bus, between PLC and remote partner is PROFIBUS, between PLC and terminals is RS485/422. The software of control system can provide a friendly human machine interface to operate the machine, protect the human and equipment from risk, and storage the status of the accelerator real time to the database. The monitor and maintenance of the linac can been carried out not only on local computer or local network, but also in internet. (author)

  19. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  20. Characteristics of short pulse grid pulser for an electron LINAC

    International Nuclear Information System (INIS)

    Wang Guicheng; Fang Zhigao; Hong Jun

    1996-01-01

    An equivalent circuit is used to obtain the output waveform of a short pulse grid pulser for an electron LINAC, and the amplitude of the output pulse is studied as a function of number of switching transistors for some kinds of transistor. Two pulsers were fabricated to fulfill the requirements of the 200 MeV LINAC at NSRL

  1. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    Science.gov (United States)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  2. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    International Nuclear Information System (INIS)

    Lim, Heuijin; Jeong, Dong Hyeok; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-01-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun

  3. Optical modeling of induction-linac driven free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.; Fawley, W.M.

    1986-01-01

    The free-electron laser (FEL) simulation code FRED, developed at Lawrence Livermore National Laboratory (LLNL) primarily to model single-pass FEL amplifiers driven by induction linear accelerators, is described. The main emphasis is on the modeling of optical propagation in the laser and on the differences between the requirements for modeling rf-linac-driven vs. induction-linac-driven FELs. Examples of optical guiding and mode cleanup are presented for a 50 μm FEL

  4. Secondary electrons monitor for continuous electron energy measurements in UHF linac

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Bulka, Sylwester; Mirkowski, Jacek; Roman, Karol

    2001-01-01

    Continuous energy measurements have now became obligatory in accelerator facilities devoted to radiation sterilization process. This is one of several accelerator parameters like dose rate, beam current, bean scan parameters, conveyer speed which must be recorded as it is a required condition of accelerator validation procedure. Electron energy measurements are rather simple in direct DC accelerator, where the applied DC voltage is directly related to electron energy. High frequency linacs are not offering such opportunity in electron energy measurements. The analyzing electromagnet is applied in some accelerators but that method can be used only in off line mode before or after irradiation process. The typical solution is to apply the non direct method related to control and measurements certain accelerator parameters like beam current and microwave energy pulse power. The continuous evaluation of electron energy can be performed on the base of calculation and result comparison with calibration curve

  5. OTR profile measurement of a LINAC electron beam with portable ultra high-speed camera

    International Nuclear Information System (INIS)

    Mogi, T.; Nisiyama, S.; Tomioka, S.; Enoto, T.

    2004-01-01

    We have studied on and developed a portable ultra high-speed camera, and so applied to measurement of a LINAC electron beam. We measured spatial OTR profiles of a LINAC electron beam using this camera with temporal resolution 80ns. (author)

  6. Construction of 100 MeV electron linac in Kyoto University

    International Nuclear Information System (INIS)

    Shirai, Toshiyuki; Sugimura, Takeshi; Kando, Masaki

    1995-01-01

    An electron linear accelerator and a compact storage ring have been constructed at Kyoto University. The beam energy of the storage ring is 300 MeV and will be utilized as a synchrotron radiation source. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the pulse width of 1 μsec. The construction of the linac had been finished and the test is under going. The electron beam of 300 mA is extracted from the electron gun and the peak RF power of 20 MW is successfully fed to the accelerating structures at the pulse width of 2 μsec. (author)

  7. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  8. Performance of the advanced photon source (APS) linac beam position monitors (BPMs) with logarithmic amplifier electronics

    International Nuclear Information System (INIS)

    Fuja, R.E.; White, M.

    1995-01-01

    This paper discusses the performance of the logarithmic amplifier electronics system used with stripline BPMs to measure electron and positron beam positions at the APS linac. The 2856-MHz, S-band linac accelerates 30-nsec pulses of 1.7 A of electrons to 200 MeV, and focuses them onto a positron conversion target. The resulting 8 mA of positrons are further accelerated to 450 MeV by the positron linac. Beam position resolutions of 50 μm are easily obtainable in both the electron and positron linacs. The resolution of the 12-bit A/D converters limits the ultimate beam positron resolution to between 20 and 30 μm at this time

  9. Control system by the technological electron Linac KUT-20

    CERN Document Server

    Akchurin, Y I; Gurin, V A; Demidov, N V

    2001-01-01

    The high-power technological electron linac KUT-20 was developed at the Science Research Complex 'Accelerator' of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun,a klystron type buncher and an accelerating cavity.With a RF supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1A,the beam energy will be up to 20 MeV.An average beam power is planned to be 20 kW.All systems of the accelerator are controlled by a computerised control system. The program and technical complex consist of PC equipped with fast ADC control console, synchronization unit, microprocessor-operated complexes.

  10. Measurements of nuclear data and possibility to construct the nuclear data production facility based on electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, In Soo; Cho, Moo Hyun; Kim, Gui Nyun; Lee, Young Seok; Kang, Heung Sik [Pohang University of Science and Technology, Pohang(Korea)

    2001-04-01

    In order to construct an infrastructure to produce nuclear data, we studied three main items; (1) Study on the possibility to construct a facility for nuclear data production, (2) Production of nuclear data for nuclear power plant, and (3) Pulsed neutron source based on a 100-MeV electron linac at Pohang Accelerator Laboratory (PAL). We confirmed the possibility to build a nuclear data production facility utilizing a 100-MeV electron linac at PAL and manpower who wanted to participate the nuclear data production experiments. In order to measure the nuclear data for nuclear power plant, we used several nuclear data production facilities in abroad. We measured total cross sections and neutron caprure cross sections for {sup nat}Dy and {sup nat}Hf using the pulsed neutron facility in the Research Reactor Institute, Kyoto University (KURRI). The neutron capture cross sections for {sup 161,162,163,164}Dy were measured at KURRI in the neutron energy region between 0.001 eV and several tens keV, and at the fast neutron facility in Tokyo Institute of Technology in the neutron energy region between 10 keV and 100 keV. We also measured the neutron capture cross sections and gamma multiplicity of {sup 232}Th at the IBR30 in Dubna, Russia. We have construct a pulsed neutron source using a 100-MeV electron linac at PAL. We measured neutron time-of-flight (TOF) spectra in order to check the characteristics of the pulsed neutron source. We also measured a neutron total cross sections of W and Cu. The pulsed neutron facility can be utilized in the education facility for nuclear data production and the test facility for the R and D purpose of the nuclear data production facility. 29 refs., 57 figs., 22 tabs. (Author)

  11. Design of triode electron gun for electron LINAC

    International Nuclear Information System (INIS)

    Prasad, M.; Pande, S.A.; Hannurkar, P.R.

    2003-01-01

    A 10 MeV, 10 kW, electron linear accelerator is being developed at Centre for Advanced Technology, CAT for irradiation of agricultural products such as onions and potatoes. This facility required electron beam of variable energy and power. The linac structure consists of a thermionic triode gun, TW buncher and accelerator waveguide, focusing and centering coils, beam scanning system etc. The accelerator structure is disk loaded waveguide operating in TW 27π/3 mode at 2856 MHz. The triode gun is designed for operation at 50 kV. The gun is optimized for minimum grid voltage and minimum transverse beam dimensions. In this paper, the results of our optimization studies using computer code EGUN are presented. (author)

  12. AN INTERNET RACK MONITOR-CONTROLLER FOR APS LINAC RF ELECTRONICS UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hengjie; Smith, Terry; Nassiri, Alireza; Sun, Yine; Doolittle, Lawrence; Ratti, Alex

    2016-06-01

    To support the research and development in APS LINAC area, the existing LINAC rf control performance needs to be much improved, and thus an upgrade of the legacy LINAC rf electronics becomes necessary. The proposed upgrade plan centers on the concept of using a modern, network-attached, rackmount digital electronics platform –Internet Rack Monitor-Controller (or IRMC) to achieve the goal of modernizing the rf electronics at a lower cost. The system model of the envisioned IRMC is basically a 3-tier stack with a high-performance DSP in the mid-layer to perform the core tasks of real-time rf data processing and controls. The Digital Front-End (DFE) attachment layer at bottom bridges the applicationspecific rf front-ends to the DSP. A network communication gateway, together with an embedded event receiver (EVR) in the top layer merges the Internet Rack MonitorController node into the networks of the accelerator controls infrastructure. Although the concept is very much in trend with today’s Internet-of-Things (IoT), this implementation has actually been used in the accelerators for over two decades.

  13. Development of a stripline-type position monitor for the KEK electron/positron linac

    International Nuclear Information System (INIS)

    Suwada, T.; Urano, T.; Lazos, A.; Kobayashi, H.

    1994-01-01

    A stripline-type beam-position monitor (BPM) is under development at the KEK electron/positron linac. This monitor will be installed in order to easily handle the orbit of a high-current electron beam (∼10 nC/pulse) generating a positron beam in the B-factory. The prototype BPM was tested at a test bench and then in the linac using a single-bunch electron beam. In this report some basic characteristics and the experimental results of the BPM are presented

  14. Conceptual design of a linac-stretcher ring to obtain a 2-gev continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, >100 /mu/A 2-Gev electron beam, a linac-stretcher ring system was designed. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-Gev SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an rf system whose purpose is to control the beam orbit and rate of extraction from the ring. With an rf system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring. 4 refs

  15. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  16. Laser system for a subpicosecond electron linac

    International Nuclear Information System (INIS)

    Crowell, R. A.

    1998-01-01

    At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions

  17. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    Science.gov (United States)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  18. The electron gun for the Daresbury SRS linac

    International Nuclear Information System (INIS)

    Dykes, D.M.

    1996-01-01

    The electron gun for the Daresbury SRS linac injector has been modified to use the cathode-grid assembly from the Eimac planar triode 8755. The gun now has improved beam characteristics, is more reliable and the cathode assembly is quicker and easier to change. This paper describes the assembly of the electron gun, and then the re-conditioning of the cathode highlighting the vacuum environment. The action of the grid modulation system on the electron beam, which pre-bunches the electron beam, is described, and typical gun characteristics are shown. Proposed developments to the gun system are discussed. (author)

  19. Calibration of Super-Kamiokande using an electron LINAC The Super-Kamiokande Collaboration

    CERN Document Server

    Nakahata, M; Hayakawa, T

    1999-01-01

    In order to calibrate the Super-Kamiokande experiment for solar neutrino measurements, a linear accelerator (LINAC) for electrons was installed at the detector. LINAC data were taken at various positions in the detector volume, tracking the detector response in the variables relevant to solar neutrino analysis. In particular, the absolute energy scale is now known with less than 1% uncertainty.

  20. WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Gierman, S; Schmerge, J [SLAC National Accelerator Laboratory, Palo Alto, CA (United States); Holloway, L [Ingham Institute, Sydney, NSW (Australia); Fahrig, R [Stanford University, Stanford, CA (United States)

    2015-06-15

    Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modelling (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise

  1. Conceptual design of a linac-stretcher ring to obtain a 2-GeV continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, > 100 μA 2-GeV electron beam, we have designed a linac-stretcher ring system. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-GeV SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an RF system whose purpose is to control the beam orbit and rate of extraction from the ring. With an RF system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring

  2. Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...

    Indian Academy of Sciences (India)

    2016-10-11

    Oct 11, 2016 ... We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear ... linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three- ... structures are preferred for relatively higher energy ... klystron in a TW linac, which results in cost reduction.

  3. Microwave matching and tuning on the 20-MeV medical electron linac with feedback of rf power

    International Nuclear Information System (INIS)

    Yuan-ling, Wang

    1983-01-01

    This article describes the 20 Mev medical electron linac at Jiangsu Tumour Hospital. In the linac, feedback of rf power is used. In the linac with feedback (or with the resonator) the reflection affects the energy gain of the electron and the performance of the accelerator. By means of the theory of the traveling wave resonator, the field multiplication factor and the reflection coefficients inside and outside the feedback ring are calculated. The bands of the linacs without and with feedback are measured. In order to achieve a desirable band in front of the load (i.e. outside the feedback ring) a matching iris is added. After the linac with feedback has been matched, the band is given

  4. Control system in the technological electron linacs

    International Nuclear Information System (INIS)

    Boriskin, V.N.; Akchurin, Yu.I.; Bahmetev, N.N.; Gurin, V.A.

    1999-01-01

    The special system has been developed for linac control.It controls the electron beam current,the energy and the position,protects the accelerating and scanning systems from the damage caused by the beam;blocks the modulator and the klystron amplifier in the case of intolerable operating modes;regulates the phase and power of the HF signals in the injecting system and also regulates the source power currents in the magnetic system

  5. Post acceleration of a pseudospark-produced electron beam by an induction linac

    International Nuclear Information System (INIS)

    Ding, B.N.; Myers, T.J.; Rhee, M.J.

    1992-01-01

    Recently, a high-brightness electron beam produced by a simple pseudospark device has been reported. Typically, the electron beam has a peak current of up to 1 kA, FWHM pulse duration of 30 ns, and an effective emittance of 4[ 2 > r2 > - 2] 1/2 = 100 mm-mrad. The normalized brightness of the beam is estimated to be on the order of 10 11 A/(m 2 -rad 2 ). This high-brightness beam may be immediately useful for high current accelerators and free-electron lasers if the beam energy can be boosted up. In this paper, the authors present preliminary results of the post acceleration of the electron beam by using an induction linac. The pseudospark device is modified by adding a trigger electrode in the hollow cavity of the cathode so that the generation of the electron beam is synchronized with the induction linac. A simple induction linac system of 25 kV, 1 kA, 50 ns pulse is being constructed. The electron beam, which is born in a low pressure gas, will be accelerated in the same background gas. This gas provides a sufficient ion channel for necessary focusing of this high-current density beam. Preliminary results on the beam current, energy spectrum, and emittance measurements of the post-accelerated beam will be presented

  6. Microwave source development for 9 MeV RF electron LINAC for cargo scanning

    International Nuclear Information System (INIS)

    Yadav, V.; Chandan, Shiv; Tillu, A.R.; Bhattacharjee, D.; Chavan, R.B.; Dixit, K.P.; Mittal, K.C.; Gantayet, L.M.

    2011-01-01

    For cargo scanning, high energy X-rays are required. These X-rays can be generated from accelerated electrons. A 9 MeV Cargo scanning RF LINAC has been developed at ECIL, Hyderabad. The Microwave power source required for RF Linac is a klystron-based system generating 5.5 MW peak, 10 kW average, at 2.856 GHz. Various components required for microwave source were identified, procured, tested and integrated into the source. Microwave source was tested on water load, then it was connected to LINAC and RF conditioning and e-beam trials were successfully done. For operating the microwave source, a PC based remote handling system was also designed and developed for operating various power supplies and instruments of the microwave source, including the Klystron modulator, Signal generator and other devices. The accelerator operates in pulse mode, requiring synchronous operation of the Klystron modulator, RF driver amplifier and E-gun modulator. For this purpose, a synchronous trigger generator was designed and developed. This paper describes the development and testing of microwave source and its remote operating system. The results of beam trials are also discussed in this paper. (author)

  7. Magnetron based high energy S-band linac system

    International Nuclear Information System (INIS)

    Tiwari, T.; Krishnan, R.; Phatangare, Manoj

    2012-01-01

    This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system

  8. Development of an electron gun for high power CW electron linac

    International Nuclear Information System (INIS)

    Yamazaki, Yoshio; Nomura, Masahiro

    1994-01-01

    An electron gun launching high average current beam has been designed for the high power CW electron linac at PNC. A peak electron beam current of 400mA with beam energy 200keV is required from the buncher design. However its average current is very high(duty factor 20%), a mesh grid is not able to be used for current control because of heating up or melting of grid. Furthermore, the beam current have to be variable up to 400mA to match with downstream modules, especially the accelerating guides including recirculating system. We employed the electron gun with two aperture grids to control beam current. The dimension of the electrodes, electron trajectory, the size of beam radius, and gun emittance was simulated by EGUN. (author)

  9. LINAC DESIGN FOR AN ARRAY OF SOFT X-RAY FREE ELECTRON LASERS

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Kur, E.; Penn, G.; Qiang, Ji; Venturini, M.; Wells, R. P.

    2008-01-01

    The design of the linac delivering electron bunches into ten independent soft x-ray free electron lasers (FELs) producing light at 1 nm and longer wavelengths is presented. The bunch repetition rate in the linac is 1 MHz and 100 kHz in each of ten FEL beam lines. Various issues regarding machine layout and lattice, bunch compression, collimation, and the beam switch yard are discussed. Particular attention is given to collective effects. A demanding goal is to preserve both a low beam slice emittance and low slice energy spread during acceleration, bunch compression and distribution of the electron bunches into the array of FEL beamlines. Detailed studies of the effect of the electron beam microbunching caused by longitudinal space-charge forces and coherent synchrotron radiation (CSR) have been carried out and their results are presented

  10. Linacs for medical isotope production

    International Nuclear Information System (INIS)

    Pramudita, A.

    2012-01-01

    This paper reviews efforts on using high energy (25-30 MeV) and high power (10-20 kW) electron linacs and lower energy (7 MeV) proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography) radioisotopes are produced through photonuclear reactions such as 19 F(γ,n) 18 F, which also allow production of other PET radionuclides 11 C, 13 N, and 15 O. Other mostly used medical radionuclides 99m Tc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18 F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons. (author)

  11. Applications of electron linacs to ADS: one potential path forward

    International Nuclear Information System (INIS)

    Wells, D.P.; Harmon, J.F.

    2011-01-01

    The application of electron linac accelerators to ADS systems offers a number of advantages for ADS applications. We propose a path forward with electron linac-driven ADS that takes advantage of those important ADS applications that are most easily achieved at relatively low cost, and then building on those successes to enable the more difficult applications with larger impact. We argue that the applications that are most easily achieved are medical isotope production, materials irradiation and environmental applications. The accelerator and target demands for each of these applications are essentially the same as for the ADS needs in energy production and the transmutation of waste. The successful demonstration of these important and highly-visible applications will, in turn, lead to greater visibility and funding to further major advances of ADS systems in energy production, nuclear waste transmutation, and applications to the thorium fuel cycle. (author)

  12. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    Science.gov (United States)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  13. Improvement of the 400 kV linac electron source of AmPS

    International Nuclear Information System (INIS)

    Kroes, F.B.; Beuzekom, M.G. van; Dobbe, N.J.; Es, J.T. van; Jansweijer, P.P.M.; Kruijer, A.H.; Luigjes, G.; Sluijk, T.G.B.

    1992-01-01

    An existing linac (MEA) injects electrons into the Amsterdam Pulse Stretcher (AmPS) ring. The linac's peak current increases from 20 to 80 mA. This requires the modification of the 400 kV low emittance gun. The fourfold increase of the peak current is obtained by doubling both the gun perveance (new gun part) and the pulsed extractor voltage. To obtain optimum beam quality over this increased current range, the hot deck electronics has been exchanged by a fast high voltage FET switching supply. A built-in microprocessor, coupled to the local computer by optical fibers, is used to monitor and control the gun parameters. The 5 kV gun extractor voltage pulse shape can be monitored by means of an analog fibre transducer with build in calibration. Finally, in order to improve the energy stability of the accelerated electrons, a serial electron-tube stabilizer was added to the 400 kV DC power supply. (K.A.) 4 refs.; 6 figs

  14. Upgrade of the ISIR L-band linac at Osaka University and stabilization of the electron beam

    International Nuclear Information System (INIS)

    Kato, R.; Kashiwagi, S.; Yamamoto, T.; Suemine, S.; Isoyama, G.

    2004-01-01

    The L-band electron linac at the Institute of Scientific and Industrial Research, Osaka University has been extensively remodeled to realize high operational stability and reproducibility for advanced studies in beam science and technology. Almost all the peripheral components are replaced with new ones. The modification of the linac has been completed and commissioning is now in progress. In this paper, we will report performance and characteristics of the linac after modification. (author)

  15. An automatic frequency control system of 2-MeV electronic LINAC

    International Nuclear Information System (INIS)

    Hu Xue; Zhang Junqiang; Zhong Shaopeng; Zhao Minghua

    2013-01-01

    Background: In electronic LINAC, the magnetron is often used as power source. The output frequency of magnetron always changes with the environment and the frequency difference between the output of magnetron and the frequency of accelerator, which will result in the bad performance of LINAC systems. Purpose: To ensure the performance of the work of entire LINAC system effectively, an automatic frequency control system is necessary. Methods: A phase locked frequency discriminator is designed to discriminate the frequency of accelerator guide and magnetron, and analogue circuit is used to process the output signals of frequency discriminator unit. Results: Working with the automatic frequency control (AFC) system, the output frequency of magnetron can be controlled in the range of (2998 MHz, 2998 MHz + 70 kHz) and (2998 MHz, 2998 MHz - 30 kHz). Conclusions: Under the measurement and debug, the functionality of frequency discriminator unit and signal processor circuit is tested effectively. (authors)

  16. Linacs for medical and industrial applications

    International Nuclear Information System (INIS)

    Hamm, R.W.

    1986-01-01

    Linear accelerators for medical and industrial applications have become an important commercial business. Microwave electron linacs for cancer radiation therapy and high-energy industrial radiography form the bulk of this market, but these, as well as induction linacs, are now being offered for radiation processing applications such as sterilization of disposable medical products, food preservation and material modifications. The radio frequency quadrupole (RFQ) linac has now made the ion linac also practical for commercial applications in medicine and industry, including radiation therapy, isotope production, neutron production, materials modification, and energy transfer processes. Ion linacs for several of these applications will soon be commercially available. The market for both ion and electron linacs is expected to significantly grow in several exciting and important areas

  17. A 2--4 nm Linac Coherent Light Source (LCLS) using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-05-01

    We describe the use of the SLAC linac to drive a unique, powerful. short wavelength Linac Coherent Light Source (LCLS). Operating as an FEL, lasing would be achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified spontaneous emission (SASE). The main components are a high-brightness rf photocathode electron gun; pulse compressors; about 1/5 of the SLAC linac; and a long undulator with a FODO quadrupole focussing system. Using electrons below 8 GeV, the system would operate at wavelengths down to about 3 nm, producing ≥10 GW peak power in sub-ps pulses. At a 120 Hz rate the average power is ∼ 1 W

  18. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  19. High power pulsed/microwave technologies for electron accelerators vis a vis 10MeV, 10kW electron LINAC for food irradiation at CAT

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Mulchandani, J.; Mohania, P.; Baxy, D.; Wanmode, Y.; Hannurkar, P.R.

    2005-01-01

    Use of electron accelerators for irradiation of food items is gathering momentum in India. The various technologies for powering the electron LINAC were needed to be developed in the country due to embargo situations as well as reservations of the developers worldwide to share the information related to this development. Centre for Advanced Technology, CAT, Indore, is engaged in the development of particle accelerators for medical industrial and scientific applications. Amongst other electron accelerators developed in CAT, a 10MeV, 10kW LINAC for irradiation of food items has been commissioned and tested for full rated 10kW beam power. The high power pulsed microwave driver for the LINAC was designed, developed and commissioned with full indigenous efforts, and is right now operational at CAT. It consists of a 6MW, 25kW S-band pulsed klystron, 15MW peak power pulse modulator system for the klystron, microwave driver amplifier chain, stabilized generator, protection and control electronics, waveguide system to handle the high peak and average power, gun modulator electronics, grid electronics etc. The present paper highlights various technologies like the pulsed power systems and components, microwave circuits and systems etc. Also the performance results of the high power microwave driver for the 10MeV LINAC at CAT are discussed. Future strategies for developing the state of art technologies are highlighted. (author)

  20. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    Energy Technology Data Exchange (ETDEWEB)

    Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.

  1. Design and simulation of an optimized e-linac based neutron source for BNCT research

    International Nuclear Information System (INIS)

    Durisi, E.; Alikaniotis, K.; Borla, O.; Bragato, F.; Costa, M.; Giannini, G.; Monti, V.; Visca, L.; Vivaldo, G.; Zanini, A.

    2015-01-01

    The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10"7 cm"−"2 s"−"1. This paper investigates possible Linac’s modifications and a new photo-converter design to rise the neutron flux above 5 10"7 cm"−"2 s"−"1, also reducing the gamma contamination. - Highlights: • Proposal of a mixed thermal and epithermal (named hyperthermal) neutron source based on medical high energy electron Linac. • Photo-neutron production via Giant Dipole Resonance on high Z materials. • MCNP4B-GN simulations to design the photo-converter geometry maximizing the hyperthermal neutron flux and minimizing the fast neutron and gamma contaminations. Hyperthermal neutron field suitable for BNCT preclinical research.

  2. Development of a novel optimization tool for electron linacs inspired by artificial intelligence techniques in video games

    International Nuclear Information System (INIS)

    Meier, E.; Biedron, S.G.; LeBlanc, G.; Morgan, M.J.

    2011-01-01

    This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI-Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.

  3. Development of a novel optimization tool for electron linacs inspired by artificial intelligence techniques in video games

    Science.gov (United States)

    Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.

    2011-03-01

    This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI@Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.

  4. Development of a novel optimization tool for electron linacs inspired by artificial intelligence techniques in video games

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E., E-mail: evelyne.meier@synchrotron.org.a [School of Physics, Monash University, Wellington Rd, Clayton VIC 3800 (Australia) and Australian Synchrotron, 800 Blackburn Rd, Clayton VIC 3168 (Australia) and FERMI-Elettra, Sincrotrone Trieste, S.S. 14 km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); Biedron, S.G., E-mail: biedron@anl.go [Department of Defense Project Office, Argonne National Laboratory, IL 60439 (United States); FERMI-Elettra, Sincrotrone Trieste, S.S. 14 km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); LeBlanc, G., E-mail: greg.leblanc@synchrotron.org.a [Australian Synchrotron, 800 Blackburn Rd, Clayton VIC 3168 (Australia); Morgan, M.J., E-mail: Michael.J.Morgan@monash.ed [School of Physics, Monash University, Wellington Rd, Clayton VIC 3800 (Australia)

    2011-03-11

    This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI-Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.

  5. Radiation processing with the Messina electron linac

    International Nuclear Information System (INIS)

    Auditore, L.; Barna, R.C.; De Pasquale, D.; Emanuele, U.; Loria, D.; Morgana, E.; Trifiro, A.; Trimarchi, M.

    2008-01-01

    In the last decades radiation processing has been more and more applied in several fields of industrial treatments and scientific research as a safe, reliable and economic technique. In order to improve existing industrial techniques and to develop new applications of this technology, at the Physics Department of Messina University a high power 5 MeV electron linac has been studied and set-up. The main features of the accelerating structure will be described together with the distinctive features of the delivered beam and several results obtained by electron beam irradiations, such as improvement of the characteristics of polymers and polymer composite materials, synthesis of new hydrogels for pharmaceutical and biomedical applications, reclaim of culture ground, sterilization of medical devices, development of new dosimeters for very high doses and dose rates required for monitoring of industrial irradiations

  6. Klystron-modulator system availability of PLS 2 GeV electron linac

    International Nuclear Information System (INIS)

    Cho, M.H.; Park, S.S.; Oh, J.S.; Namkung, W.

    1996-01-01

    PLS Linac has been injecting 2 GeV electron beams to the Pohang Light Source (PLS) storage ring since September 1994. PLS 2 GeV linac employs 11 sets of high power klystron-modulator (K and M) system for the main RF source for the beam acceleration. The klystron has rated output peak power of 80 MW at 4 microsec pulse width and at 60 pps. The matching modulator has 200 MW peak output power. The total accumulated high voltage run time of the oldest unit has reached beyond 23,000 hour and the sum of all the high voltage run time is approximately 230,000 hour as of May 1996. In this paper, we review overall system performance of the high-power K and M system. A special attention is paid on the analysis of all failures and troubles of the K and M system which affected the linac high power RF operations as well as beam injection operations for the period of 1994 to May 1996. (author)

  7. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  8. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  9. Application of ''elektronika 10-10'' electron linac for food irradiation

    International Nuclear Information System (INIS)

    Migdal, W.; Maciszewski, W.; Gryzlow, A.

    1995-01-01

    The industrial electron linac ''Elektronica 10-10'' has been installed in Experimental Plant for Food Irradiation (INCT) in 1990. The accelerator is a prototype unit, prior the use for food treatment a period of optimization was involved in its experimental operation during 1993. The accelerator is capable to produce scanned beam of electrons with the energy 10 MeV and beam power of 10 kW. Radiation dose at minimal conveyer speed of 0.25 m/min reaches 50 kGy. The role of the plant is to promote food irradiation in Poland. (Author)

  10. Radiotechnical Institute activity in the linac field

    International Nuclear Information System (INIS)

    Murin, B.P.

    1976-01-01

    For many years, the Radiotechnical Institute has been involved in a number of projects aimed at constructing linear accelerators for protons or electrons. This report summarizes the experience gained and covers 1) some problems of developing linacs to serve as meson or neutron generators, 2) results of study of a linac with asymmetric alternating phase focusing, and 3) electron linac projects. (author)

  11. Electron Signal Detection for the Beam-Finder Wire of the Linac Coherent Light Source Undulator

    International Nuclear Information System (INIS)

    Wu, Juhao; Emma, P.; Field, R.C.; SLAC

    2006-01-01

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. The tight tolerances for positioning the electron beam close to the undulator axis calls for the introduction of Beam Finder Wire (BFW) device. A BFW device close to the upstream end of the undulator segment and a quadrupole close to the down stream end of the undulator segment will allow a beam-based undulator segment alignment. Based on the scattering of the electrons on the BFW, we can detect the electron signal in the main dump bends after the undulator to find the beam position. We propose to use a threshold Cherenkov counter for this purpose. According to the signal strength at such a Cherenkov counter, we then suggest choice of material and size for such a BFW device in the undulator

  12. Production and application of pulsed slow-positron beam using an electron LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Tetsuo; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Kobayashi, Yoshinori

    1997-03-01

    Slow-positron beam is quite useful for non-destructive material research. At the Electrotechnical Laboratory (ETL), an intense slow positron beam line by exploiting an electron linac has been constructed in order to carry out various experiments on material analysis. The beam line can generates pulsed positron beams of variable energy and of variable pulse period. Many experiments have been carried out so far with the beam line. In this paper, various capability of the intense pulsed positron beam is presented, based on the experience at the ETL, and the prospect for the future is discussed. (author)

  13. Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications

    International Nuclear Information System (INIS)

    Kulkarni, Nita S.; Dhingra, Rinky; Kumar, Vinit

    2016-01-01

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2π/3 mode constant impedance travelling wave structure, which comprises travelling wave buncher cells, followed by regular accelerating cells. The structure is designed to accelerate 50 keV electron beam from the electron gun to 10 MeV. This paper describes the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Results of design simulations have been compared with those obtained using approximate analytical formulae. The beam dynamics simulation with space charge is performed and the required magnetic field profile for keeping the beam focussed in the linac has been evaluated and discussed. An important feature of a travelling wave linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three dimensional transient simulations of the accelerating structure along with the input and output couplers have been performed using the software CST-MWS to explicitly demonstrate this feature. (author)

  14. Workshop: Linac90

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyck, Olin

    1990-12-15

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight.

  15. Workshop: Linac90

    International Nuclear Information System (INIS)

    Van Dyck, Olin

    1990-01-01

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight

  16. BNCT with linac, feasibility study

    International Nuclear Information System (INIS)

    Alfuraih, A.; Ma, A.; Spyrou, N.M.; Awotwi-Pratt, Joseph

    2006-01-01

    High energy photon beams from Medical Linear Accelerators (linacs) which are used in radiotherapy produce undesirable neutrons, beside the clinically useful electron and photon beams. Neutrons are produced from the photonuclear reaction (γ,n) of high energy photons with high Z-materials which compose the accelerator head. In this paper the possible use of these undesirable neutrons for BNCT is investigated, making use of high energy linacs already installed in hospitals, primarily for high energy electron and photon therapy and applying them in the context of BNCT. The photoneutron components emitted by the accelerator is the source for Monte Carlo simulations of the interactions that take place within the head of a voxel-based phantom. The neutron flux across the phantom head is calculated using different moderator arrangements and different techniques in the aim of increasing the thermal neutron flux at the targeted site. Also, we shall test different configurations of the linac head to maximize the exposure of high-Z materials to the photon beam, including the removal of the flattening filter, so as to boost the photoneutron production in the linac head. Experimental work will be conducted in hospitals to validate the Monte Carlo simulations. To make use of linacs for BNCT will be advantageous in the sense that the setting in a hospital department is much more acceptable by the public than a reactor installation. This will mean less complications regarding patient positioning and movement with respect to the beams, additional patient transportation and management will be more cost effective. (author)

  17. Progress of electron gun systems for the e-/e+ linac at KEK

    International Nuclear Information System (INIS)

    Ohsawa, S.; Ogawa, Y.; Otake, Y.; Yokota, M.; Fukuda, S.; Saito, Y.; Enomoto, A.; Azuma, O.; Iwata, H.; Asami, A.

    1989-01-01

    Several improvements have been made in the electron gun systems of the 2.5 GeV PF linac and the Positron Generator. In the electron gun system of the PF linac, the vacuum system and the focusing system have been modified, and the anode current was increased. In the case of a short pulse beam with a width of 2 ns, the anode current has been more than 200 mA for about a year with a constant pulse voltage output of a grid pulser. Injection time of the electron beam into the Accumulation Ring of TRISTAN has been normally less than 10 s. Meanwhile in the electron gun system of the Positron Generator, improvements have been made mainly in the following two points; (1) a raise of injection voltage of the gun from 115 kV to 150 kV, which was made possible by using a newly designed insulator, and (2) an increase of pulse voltage output of a grid pulser by use of new transistors with a high slew rate. As a result of these improvements, a maximum anode peak current of 12 A with a pulse width of 4 ns can be obtained, which satisfies the design parameters of the gun system. 7 refs., 8 figs

  18. Chemical dosimetry of linac electron pulse with nitrous oxide

    International Nuclear Information System (INIS)

    Nanba, Hideki; Shinsaka, Kyoji; Hatano, Yoshihiko; Yagi, Masuo; Shiokawa, Takanobu.

    1975-01-01

    Absorption dose, dose rate and the reproducibility of intensity in each pulse of the electron beam pulses from a Linac (42 MeV, 3μsec) have been determined by applying nitrous oxide chemical dosimetry, in order to obtain the fundamental data required for radiation chemistry researches with the Linac. Nitrous oxide is used as a chemical dosimeter because it is known that it decomposed through radiation ensures easy detection and the determination of quantity of the decomposed product, nitrogen, which is stable, and presents linear relationship between absorption dose and produced quantity over the wide dose-rate range. Irradiation cells used for the experiment were cylindrical ones made of hard molybdenum glass. Irradiated samples were fractionated with liquid nitrogen, and separated and determined with a gas chromatograph. Details on the experimental results and their examination are described at the end. They include absorption dose of 1x10 16 eV/g per pulse, dose rate of 3x10 21 eV/g, sec and intensity reproducibility of +- 20%. (Wakatsuki, Y.)

  19. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  20. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  1. Linac design for the LCLS project at SLAC

    International Nuclear Information System (INIS)

    Bharadwaj, V.K.; Bane, K.; Clendenin, J.

    1997-05-01

    The Linac Coherent Light Source (LCLS) at SLAC is being designed to produce intense, coherent 0.15-nm x-rays. These x-rays will be produced by a single pass of a 15 GeV bunched electron beam through a long undulator. Nominally, the bunches have a charge of 1 nC, normalized transverse emittances of less than 1.5π mm-mr and an rms bunch length of 20 μm. The electron beam will be produced using the last third of the SLAC 3-km linac in a manner compatible with simultaneous operation of the remainder of the linac for PEP-II. The linac design necessary to produce an electron beam with the required brightness for LCLS is discussed, and the specific linac modifications are described

  2. Investigation of the mechanical performance of Siemens linacs components during arc: gantry, MLC, and electronic portal imaging device.

    Science.gov (United States)

    Rowshanfarzad, Pejman; Häring, Peter; Riis, Hans L; Zimmermann, Sune J; Ebert, Martin A

    2015-01-01

    In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines.

  3. Study of characteristics of linac with TWRR

    International Nuclear Information System (INIS)

    Wang, Y.L.; Toyama, S.; Emoto, T.; Nomura, M.; Takahashi, N.; Oshita, H.; Hirano, K.; Sato, I.

    1994-01-01

    High power electron linac which is developed by PNC is an electron linac with the TWRR (Traveling Wave Resonant Ring). Some phenomena occurred on our high power test are mentioned. Some important characteristics such as stability and phase characteristic are discussed. (author)

  4. Linac based radiosurgery and stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2008-01-01

    The following topics were discussed: Definition of stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT); Stereo market; Indications for SRS/SRT; History of linac-based SRS/SRT; Variety of systems; QA for SRS; Localization; and Imaging. (P.A.)

  5. Status of the Novosibirsk energy recovery linac

    International Nuclear Information System (INIS)

    Bolotin, V.P.; Vinokurov, N.A.; Gavrilov, N.G.; Kayran, D.A.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Serednyakov, S.S.; Skrinsky, A.N.; Shevchenko, O.A.; Scheglov, M.A.; Tcheskidov, V.G.

    2006-01-01

    The Novosibirsk terahertz free electron laser is based on the energy recovery linac (ERL) with room-temperature radiofrequency system. Some features of the ERL are discussed. The results of emittance measurements and electron optics tests are presented. The second stage of the ERL, which has four orbits, is described briefly

  6. Notes on the design of experiments and beam diagnostics with synchrotron light detected by a gated photomultiplier for the Fermilab superconducting electron linac and for the Integrable Optics Test Accelerator (IOTA)

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanov, Aleksandr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ruan, Jinhao [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Santucci, James [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, Randy [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-11-08

    We outline the design of beam experiments for the electron linac at the Fermilab Accelerator Science and Technology (FAST) facility and for the Integrable Optics Test Accelerator (IOTA), based on synchrotron light emitted by the electrons in bend dipoles, detected with gated microchannel-plate photomultipliers (MCP-PMTs). The system can be used both for beam diagnostics (e.g., beam intensity with full dynamic range, turn-by-turn beam vibrations, etc.) and for scientific experiments, such as the direct observation of the time structure of the radiation emitted by single electrons in a storage ring. The similarity between photon pulses and spectrum at the downstream end of the electron linac and in the IOTA ring allows one to test the apparatus during commissioning of the linac.

  7. A magnetized Einzel lens electron dump for the Linac4 H− ion source

    CERN Document Server

    Midttun, O; Kronberger, M; Lettry, J; Pereira, H; Scrivens, R

    2013-01-01

    Linac4 is a 160 MeV linear accelerator which will inject negative hydrogen ions (H−) into CERN’s Proton Synchrotron Booster, a required upgrade to improve the beam brightness in the LHC injector chain. A volume production RF ion source, based on the design of the DESY RF source was implemented, but showed considerable electron dump ablation during operation at 45 keV beam energy. To reduce the electron beam power density in the dump, a magnetized Einzel lens is designed that reduces the beam energy to 10 keV before permanentmagnets dump the electrons on a tungsten surface. Presented in this paper are simulations of the design using IBSimu, the tunable range of parameters depending on the extracted H− and electron current, as well as details of the implementation, the choice of pulsed power converters and the electrode alignment system. In addition, simulations of proton extraction from this source will be shown.

  8. SLAC Linac Preparations for FACET

    International Nuclear Information System (INIS)

    Erickson, Roger

    2011-01-01

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  9. 6 MeV RF Linac for cargo scanning and industrial radiography

    International Nuclear Information System (INIS)

    2017-01-01

    RF Linac-based X-ray sources are very widely used for cargo-scanning and industrial X-ray radiography applications. A 6 MeV on-axis coupled-cavity S-band RF linac has been designed, developed and tested successfully at Electron Beam Centre, Navi Mumbai. This facility falls under the purview of BARC Safety Council, which has conducted safety reviews and awarded regulatory clearances for the operation of the linac system. This paper outlines the salient features of the 6 MeV linac, its safety aspects and test results. A brief history of regulatory aspects is also presented

  10. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Balša Terzić

    2014-10-01

    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  11. Review of superconducting linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs

  12. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  13. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  14. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  15. Investigation of using shrinking method in construction of Institute for Research in Fundamental Sciences Electron Linear Accelerator TW-tube (IPM TW-Linac tube)

    Science.gov (United States)

    Ghasemi, F.; Abbasi Davani, F.

    2015-06-01

    Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.

  16. Electro neutrons around a 12 MV Linac

    International Nuclear Information System (INIS)

    Vega C, H. R.; Perez L, L. H.

    2012-10-01

    Neutron contamination around Linacs for radiotherapy is a source of undesirable doses for the patient. The main source of these neutrons is the photonuclear reactions occurring in the Linac head and the patient body. Electrons also produce neutrons through (e, en) reactions. This reaction is known as electro disintegration and is carried out by the electron scattering that produce a virtual photon that is absorbed by the scattering nucleus producing the reaction e + A → (A-1) + n + e'. In this work the electron-neutron spectrum to 100 cm from the isocenter of a 12 MV Linac has been measured using a passive Bonner spheres spectrometer in a novel procedure named Planetary mode. (Author)

  17. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  18. CAS on Free-Electron Lasers and Energy Recovery Linacs in Hamburg

    CERN Multimedia

    CERN Accelerator School

    2016-01-01

    The CERN Accelerator School (CAS) and DESY held a jointly-organised specialised course on Free-Electron Lasers and Energy Recovery Linacs (FELs and ERLs) in Hamburg, Germany, from 31 May to 10 June 2016.      The course was held in the Hotel Scandic Emporio in Hamburg and was attended by 68 participants of 13 nationalities, coming from countries as far away as China, Iran and Japan. The intensive programme comprised 44 lectures and one seminar. Following introductory lectures on electromagnetism, relativity and synchrotron radiation issues, the basic requirements of linacs and ERLs were discussed. Detailed lectures on the theory of FEL science followed. Undulators and the process of lasing and seeding were covered in some detail along with lectures on various beam dynamics and beam control issues. Case studies, for which seven hours were allocated, completed the academic programme. For these, the students were divided into small groups and tasked with completing the basic desig...

  19. Investigation of the mechanical performance of Siemens linacs components during arc: gantry, MLC, and electronic portal imaging device

    Directory of Open Access Journals (Sweden)

    Rowshanfarzad P

    2015-11-01

    Full Text Available Pejman Rowshanfarzad,1 Peter Häring,2 Hans L Riis,3 Sune J Zimmermann,3 Martin A Ebert1,4 1School of Physics, The University of Western Australia, Crawley, WA, Australia; 2German Cancer Research Center (DKFZ, Medical Physics in Radiation Oncology, Heidelberg, Germany; 3Radiofysisk Laboratorium, Odense University Hospital, Odense C, Denmark; 4Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia Background: In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. Methods: The EPID sag, gantry sag, changes in source-to-detector distance (SDD, EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. Results: The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. Conclusion: The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines. Keywords: linac, Siemens, arc, sag, EPID, gantry

  20. Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system

    Science.gov (United States)

    Shin, Seung-wook; Lee, Seung-Hyun; Lee, Jong-Chul; Kim, Huisu; Ha, Donghyup; Ghergherehchi, Mitra; Chai, Jongseo; Lee, Byung-no; Chae, Moonsik

    2017-12-01

    A compact 6 MeV electron linac is being developed at Sungkyunkwan University, in collaboration with the Korea atomic energy research institute (KAERI). The linac will be used as an X-ray source for a dual-head gantry radiotherapy system. X-band technology has been employed to satisfy the size requirement of the dual-head gantry radiotherapy machine. Among the several options available, we selected a pi/2-mode, standing-wave, side-coupled cavity. This choice of radiofrequency (RF) cavity design is intended to enhance the shunt impedance of each cavity in the linac. An optimum structure of the RF cavity with a high-performance design was determined by applying a genetic algorithm during the optimization procedure. This paper describes the detailed design process for a single normal RF cavity and the entire structure, including the RF power coupler and coupling cavity, as well as the beam dynamics results.

  1. Review of superconducting ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for the acceleration of ions with velocity β=1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions

  2. Fermilab 200 MeV linac control system hardware

    Energy Technology Data Exchange (ETDEWEB)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac.

  3. Fermilab 200 MeV linac control system hardware

    International Nuclear Information System (INIS)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac

  4. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  5. Self-modulation of an intense electron beam in an injector of a linac with a feedback

    International Nuclear Information System (INIS)

    Ajzatskij, N.I.

    1989-01-01

    This paper reports the results of the analysis of the time structure of the beam versus the RF power supplied to the injector of the linac with a feedback. Using a nonstationary model of acceleration, we have performed a mathematical simulation of the dynamics of prebunched electron beam acceleration. The results of the mathematical simulation demonstrate that in the self-modulation acceleration regime of a linac with feedbacks there exists a possibility of adjusting the current pulse length, the pulse-to-pulse time being nearly the same. 4 refs., 2 figs

  6. Beam-based alignment technique for the SLC [Stanford Linear Collider] linac

    International Nuclear Information System (INIS)

    Adolphsen, C.E.; Lavine, T.L.; Atwood, W.B.

    1989-03-01

    Misalignment of quadrupole magnets and beam position monitors (BPMs) in the linac of the SLAC Linear Collider (SLC) cause the electron and positron beams to be steered off-center in the disk-loaded waveguide accelerator structures. Off-center beams produce wakefields which limit the SLC performance at high beam intensities by causing emittance growth. Here, we present a general method for simultaneously determining quadrupole magnet and BPM offsets using beam trajectory measurements. Results from the application of the method to the SLC linac are described. The alignment precision achieved is approximately 100 μm, which is significantly better than that obtained using optical surveying techniques. 2 refs., 4 figs

  7. Multi-channel electronics for secondary emission grid profile monitor of TTF linac

    International Nuclear Information System (INIS)

    Reingardt-Nikoulin, P.; Gaidash, V.; Mirzojan, A.; Kocharyan, V.; Noelle, D.

    2004-01-01

    According to the TTF beam experimental program, a measurement f the time dependence of the energy spread within the bunch train should be done by means of a standard device for profile measurements, that is Secondary Emission Grid (SEMG). SEMG on the high-energy TTF beam is placed in the focal plane of the magnet spectrometer. It should measure the total energy spread in the range from 0.1% up to a few percents for any single or any group of electron bunches in the bunch train of TTF Linac. SEMG profile measurements with new high sensitive electronics are described. Beam results of SEMG Monitor test are given for two modifications of an electronic preamplifier

  8. A fifth harmonic rf bunch monitor for the ANL-APS electron linac

    International Nuclear Information System (INIS)

    Nassiri, A.; Grelick, A.

    1993-01-01

    The function of a fifth harmonic (14.28 GHz) bunch monitor is to provide a signal which is proportional to the electron beam bunch size. The monitoring of the rf power signal at 14.28 GHz enables the operator to optimize the rf bunching of the beam at the end of the first accelerating section where the full bunching has been formed and remains mainly constant in size throughout the rest of the electron linac. A modified version of the SLAC original bunch monitor has been fabricated and its rf properties measured. This paper describes the design and the initial measurement results

  9. A fifth harmonic RF bunch monitor for the ANL-APS electron linac

    International Nuclear Information System (INIS)

    Nassiri, A.; Grelick, A.

    1993-01-01

    The function of a fifth harmonic (14.28 GHz) bunch monitor is to provide a signal which is proportional to the electron beam bunch size. The monitoring of the rf power signal at 14.28 GHz enables the operator to optimize the rf bunching of the beam at the end of the first accelerating section where the full bunching has been formed and remains mainly constant in size throughout the rest of the electron linac. A modified version of the SLAC original bunch monitor has been fabricated and its rf properties measured. This paper describes the design and the initial measurements results

  10. Study on dynamics of beams of high luminosity in electron linacs

    International Nuclear Information System (INIS)

    Polyakov, V.A.; Shchedrin, I.S.

    1981-01-01

    To increase the electron beam luminosity in electron linacs (ELA), designed for electron microscopy, a numerical analysis of the electron dynamics in the ELA is carried out. Insufficiency of the available data on longitudinal beam motion in the 10 -4 -10 -5 relative energy spread on radial motion, as well as inadequacy of the data on aberrations of the second order introduced by the accelerating structure are shown. The necessary accountancy of the longitudinal Coulomb field is also shown. For the 1-10 MeV electron energies, 10 9 and 5x10 9 cm -3 bunch density, 5 deg-0.5 deg phase extension the beam current varies within the 0.2-10 mA. The bunch moves in the drift space of the 2.5 m length. The energy spread is 8x10 -8 (1 MeV) to 10 -4 (10 MeV) at the 2 mA beam current [ru

  11. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  12. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    International Nuclear Information System (INIS)

    Reece, Charles E.

    2016-01-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  13. Physics design of a 10 MeV, 6 kW travelling wave electron linac

    Indian Academy of Sciences (India)

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2 π / 3 mode constant impedance travelling wave structure, which ...

  14. H- Ion Sources For CERN’s Linac4

    CERN Document Server

    Lettry, J; Coutron, Y; Chaudeta, E; Dallocchio, A; Gil Flores, J; Hansen, J; Mahner, E; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; O’Neil, M; Paoluzzi, M; Pasquino, C; Pereira, H; Sanchez Arias, J; Schmitzer, C; Scrivens, R; Steyaert, D

    2013-01-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitabl...

  15. H- ion sources for CERN's Linac4

    Science.gov (United States)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on

  16. Improvements on monitor system in the KEK 2.5-GeV linac

    International Nuclear Information System (INIS)

    Shidara, T.; Oogoe, T.; Ogawa, Y.

    1989-01-01

    Improvements to the monitor system of the KEK 2.5-GeV linac have been undertaken. Energy analyzing stations were added to both the positron generator linac and the 2.5-GeV electron linac in order to realize easier checking of beam energy. Wall current monitors and profile monitors were added in the beam transport line between the positron generator linac and the 2.5-GeV electron linac in order to realize easier positron-beam transfer. As a result of the installation of an automatic beam-current-surveillance system and with other existing surveillance systems, more reliable and easier operation of the linac is expected. (author)

  17. CAS - CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs

    CERN Document Server

    2018-01-01

    These proceedings collate lectures given at the course on Free Electron Lasers and Energy Recovery Linacs (FELsand ERLs), organised by the CERN Accelerator School (CAS). The course was held at the Hotel Scandic HamburgEmporio, Hamburg, Germany from 31 May to 10 June 2016, in collaboration with DESY. Following introductorylectures on radiation issues, the basic requirements on linear accelerators and ERLs are discussed. Undulators andthe process of seeding and lasing are then treated in some detail, followed by lectures on various beam dynamicsand controls issues.

  18. Development of an electron gun for high power CW electron linac (1). Beam experiment for basic performance of electron gun

    International Nuclear Information System (INIS)

    Yamazaki, Yoshio; Nomura, Masahiro; Komata, Tomoki

    1999-05-01

    Presently, the Beam Group of Oarai Engineering Center in Japan Nuclear Cycle Development Institute (JNC) completed the high power CW electron linac. Then we started full-scale beam experiments after the government permission for a radiation equipment had given last January. Measurements of basic performance for the mesh-grid type electron gun have been done to launch stable beam at 300 mA peak current downstream of the accelerator. These experiments disclosed to increase beam loss in the electron gun in some cases of voltage supplied the mesh-grid in spite of same beam current from gun. Consequently, we could find the best condition for mesh-grid voltage and heater current to supply stable beam at 300 mA peak current for accelerator study. (author)

  19. The source development lab linac at BNL

    International Nuclear Information System (INIS)

    Graves, W.S.; Johnson, E.D.

    1996-12-01

    A 210 MeV SLAC-type electron linac is currently under construction at BNL as part of the Source Development Laboratory. A 1.6 cell RF photoinjector is employed as the high brightness electron source which is excited by a frequency tripled Titanium:Sapphire laser. This linac will be used for several source development projects including a short bunch storage ring, and a series of FEL experiments based on the 10 m long NISUS undulator. The FEL will be operated as either a SASE or seeded beam device using the Ti:Sapp laser. For the seeded beam experiments; direct amplification, harmonic generation, and chirped pulse amplification modes will be studied, spanning an output wavelength range from 900 nm down to 100 nm. This paper presents the project's design parameters and results of recent modeling using the PARMELA and MAD simulation codes

  20. Improvement of the 400 kV linac electron source of AmPS

    International Nuclear Information System (INIS)

    Kroes, F.B.; Beuzekom, M.G. van; Dobbe, N.J.; Es, J.T. van; Jansweijer, P.P.M.; Kruijer, A.H.; Luigjes, G.; Sluijk, T.G.B.

    1992-01-01

    The installation of the 900 MeV Amsterdam Pulse Stretcher is nearly completed and its commissioning will start Spring 1992. The existing linac MEA will inject electrons in the AmPS ring. The linacs peak current will be increased from 20 to 80 mA. This requires modification of the 400 kV low emittance gun which now will deliver a peak current of maximum 400 mA instead of 100 mA at a pulse width of 2.1 μsec. The fourfold increase of the peakcurrent is obtained by doubling both the gun perveance (new gun part) and the pulsed extractor voltage. After chopping and pre-bunching more than 80 mA will be available for acceleration in MEA. To obtain optimum beam quality over this increased current range the hot deck electronics, operating at -400 kV, has been exchanged by a state of the art fast high voltage FET switching supply. The increased space charge forces in the beam require stronger electro-static focusing in the first electrostatic gap to define the beam diameter at the gun exit. This is accomplished with a 25 kV controlled power supply. A build in microprocessor, coupled to the local computer by optical fibers, is used to monitor and control the gun parameters. The 5kV gun extractor voltage pulse shape can be monitored by means of an analog fibre transducer with build in calibration. Finally, in order to improve the energy stability of the accelerated electrons a serial electron-tube stabilizer was added to the 400 kV DC power supply. A supply stability of 2. 10 -5 has been achieved. (author). 4 refs.; 6 figs

  1. Linac Coherent Light Source (LCLS) Design Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, Massimo

    1998-12-04

    The Stanford Linear Accelerator Center, in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. Starting in FY 1998, the first two-thirds of the SLAC linac will be used for injection into the B factory. This leaves the last one-third free for acceleration to 15 GeV. The LCLS takes advantage of this opportunity, opening the way for the next generation of synchrotron light sources with largely proven technology and cost effective methods. This proposal is consistent with the recommendations of the Report of the Basic Energy Sciences Advisory Committee (Synchrotron Radiation Light Source Working Group, October 18-19, 1997). The report recognizes that ''fourth-generation x-ray sources...will in all likelihood be based on the free electron laser concepts. If successful, this technology could yield improvements in brightness by many orders of magnitude.'' This Design Study, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac. Although this design is based on a consistent and feasible set of parameters, some components require more research and development to guarantee the performance. Given appropriate funding, this R and D phase can be completed in 2 years.

  2. Operating experience with the ALS linac

    International Nuclear Information System (INIS)

    Selph, F.; Massoletti, D.

    1991-05-01

    The linac injector for the Advanced Light Source (ALS) at LBL was recently put into operation. Energy is 50 MeV, frequency 3 GHz. The electron gun delivers up to 6nC in a 3.0-ns bunch at 120 kV. A train of bunches is injected into a 1-Hz booster and accelerated to 1.5 GHz for storage ring injection. A magnetic analysis system is used for optimizing the linac. Measured beam properties from the gun and after acceleration in the linac are described. 9 refs., 3 figs

  3. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Science.gov (United States)

    Chen, Qushan; Hu, Tongning; Qin, Bin; Xiong, Yongqian; Fan, Kuanjun; Pei, Yuanji

    2018-04-01

    Huazhong University of Science and Technology (HUST) has built a compact linac-based terahertz free electron laser (THz-FEL) prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  4. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Directory of Open Access Journals (Sweden)

    Qushan Chen

    2018-04-01

    Full Text Available Huazhong University of Science and Technology (HUST has built a compact linac-based terahertz free electron laser (THz-FEL prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  5. TOP LINAC design; Progetto del TOP LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita`, ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given.

  6. Design and analysis of X-band femtosecond linac

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M; Kozawa, T; Takeshita, A; Kobayashi, T; Ueda, T; Miya, K [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1997-03-01

    Femtosecond quantum phenomena research project is proposed at Nuclear Engineering Research Laboratory, University of Tokyo. The research facility consists of an X-band (11.424GHz) femtosecond electron linac, a femtosecond wavelength tunable laser, two S-band (2.856GHz) picosecond electron linacs and measuring equipments. Especially, we aim to generate a 100 fs (FWHM) electron single bunch with more than 1 nC at the X-band femtosecond linac. Ultrafast processes in radiation physics, chemistry, material science and microscopic electromagnetic phenomena are going to be analyzed there. Here the design and analysis of an X-band femtosecond linac is presented. The simulation of electron dynamics is carried out including magnetic pulse compression by using PARMELA and SUPERFISH. It is found by the simulation that the 600 ps (tail-to-tail) electron emission from a 200 kV thermionic gun can be bunched and compressed to 110 fs (FWHM) with the charge of 0.8 nC which gives 7.3 kA. We plan to use one high power X-band klystron which can supply 60 MW with more than 200 ns pulse duration. The flatness of plateau of the pulse should be 0.2% for stable ultrashort bunch generation. (author)

  7. Diagnostic expert system in the PF LINAC

    International Nuclear Information System (INIS)

    Abe, Isamu; Nakahara, Kazuo; Kitamura, Masaharu.

    1992-01-01

    A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator's mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. (author)

  8. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    Directory of Open Access Journals (Sweden)

    Charles E. Reece

    2016-12-01

    Full Text Available CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  9. Proton linac for hospital-based fast neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab

  10. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  11. Microphonic measurements on superconducting linac structures

    International Nuclear Information System (INIS)

    Marzali, A.; Schwettman, H.A.

    1992-01-01

    Microphonics in multi-cell linac structures lead to energy and pointing modulation of the electron beam despite RF stabilization. Evaluation of the microphonic behaviour of a 500 MHz two cell structure is planned in collaboration with Lawrence Berkeley Laboratory and Brookhaven National Laboratory. In this paper we describe a method of evaluation based on accelerometer measurements. (Author) fig., 2 tabs., 5 refs

  12. Energy-Recovery Linacs for Commercial Radioisotope Production

    International Nuclear Information System (INIS)

    Johnson, Rolland Paul

    2016-01-01

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  13. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  14. Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field.

    Science.gov (United States)

    Hackett, Sara L; van Asselen, Bram; Wolthaus, Jochem W H; Bluemink, J J; Ishakoglu, Kübra; Kok, Jan G M; Lagendijk, Jan J W; Raaymakers, Bas W

    2018-03-29

    The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7MV linac and a 1.5T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge. © 2018 Institute of Physics and Engineering in Medicine.

  15. Present status of the ETL electron linac and associated experimental facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.

    1983-01-01

    The 500-MeV electron linac ''TELL'' is operated since Dec. 1980. The main features of TELL are high efficiency, high current - high power acceleration and economical beam sharing to four experimental rooms at the same time. The available beam current is 240 mA (--180 μA ) at 300 MeV at present. A pion channel ( QQDQ ) with solid angle larger than 0.15 sr is under construction. Research on establishing spectro-dosimetric standards of high energy - high intensity electrons, X-rays and pions are in progress. The 600-MeV storage ring ''TERAS'' is operated since Oct. 1981. The circumference is 31.45 m and lambdasub(p) is 22 A. The maximum stored current is 150 mA and 1/e lifetime is 1.5 hours at present. Studies on photometry and soft X ray standards, electronic materials and lithography technology are in progress using synchrotron radiation. (author)

  16. TU-H-BRA-03: Performance of a Clinical Gridded Electron Gun in Magnetic Fields: Implications for MRI-Linac Therapy

    International Nuclear Information System (INIS)

    Whelan, B; Keall, P; Bazalova-Carter, M; Oborn, B; Constantin, D; Holloway, L; Fahrig, R

    2016-01-01

    Purpose: Recent advances towards MRI Linac radiotherapy have motivated a wide range of studies characterizing electromagnetic interactions between the two devices. One of the most sensitive components is the linac electron gun. To data, only non gridded (diode) guns have been investigated however, most linac vendors utilize gridded (triode) guns, which enable efficient and robust beam gating. The purpose of this study was to develop a realistic model of a gridded gun used clinically, and to characterize its performance in magnetic fields. Methods: The gridded electron gun used on Varian high energy machines was measured using 3D laser scanning quoted as accurate to 0.1mm. Based on the scane, a detailed CAD mode was developed. From this, key geometry was extracted and a FEM model was developed (Opera/SCALA). Next, the high voltage (HV), grid voltage, and emission current were read from six dose matched TrueBeam linacs for the 6X, 10X and 15X photon modes (0 B-field). The mean values were used to represent each mode, which was simulated I constant magnetic fields from 0–200G in-line, and 0–35G perpendicular. Results: Experimentally measured HV, grid voltage, and emission current from 6X, 10X and 15X modes were respectively: 15±.03kV, 10±.08kV, 11±.03kV; 93±7V, 41±3V, and 70±6V; 327±27mA, 129±10mA, and 214±19mA. The error in simulated emission current of each mode was 3%,6%, and 3%. For in-line fields, 50% beam loss occurred at 114, 96, and 97G; for perpendicular; at 12, 13 and 14G. Sensitivity for a given geometry is primarily determined by HV setting. Conclusion: Future MRI-Linac systems will almost certainly use gridded guns. We present the first model of a clinical gridded gun, and match the experimental emission current to within 6% across three different operating modes. This clinical gun shows increased sensitivity to magnetic fields than previous work,and different modes show different sensitivity.

  17. TU-H-BRA-03: Performance of a Clinical Gridded Electron Gun in Magnetic Fields: Implications for MRI-Linac Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Bazalova-Carter, M [University of Victoria, VCH040, Victoria, BC (Australia); Oborn, B [Illawarra Hospital, Wollongong, NSW (Australia); Constantin, D [Varian Medical Systems, Palo Alto, California (United States); Holloway, L [Liverpool Hospital and Ingham Institute, Liverpool, NSW (United Kingdom); Fahrig, R [Siemens Healthcare GmbH, Forchheim (Germany)

    2016-06-15

    Purpose: Recent advances towards MRI Linac radiotherapy have motivated a wide range of studies characterizing electromagnetic interactions between the two devices. One of the most sensitive components is the linac electron gun. To data, only non gridded (diode) guns have been investigated however, most linac vendors utilize gridded (triode) guns, which enable efficient and robust beam gating. The purpose of this study was to develop a realistic model of a gridded gun used clinically, and to characterize its performance in magnetic fields. Methods: The gridded electron gun used on Varian high energy machines was measured using 3D laser scanning quoted as accurate to 0.1mm. Based on the scane, a detailed CAD mode was developed. From this, key geometry was extracted and a FEM model was developed (Opera/SCALA). Next, the high voltage (HV), grid voltage, and emission current were read from six dose matched TrueBeam linacs for the 6X, 10X and 15X photon modes (0 B-field). The mean values were used to represent each mode, which was simulated I constant magnetic fields from 0–200G in-line, and 0–35G perpendicular. Results: Experimentally measured HV, grid voltage, and emission current from 6X, 10X and 15X modes were respectively: 15±.03kV, 10±.08kV, 11±.03kV; 93±7V, 41±3V, and 70±6V; 327±27mA, 129±10mA, and 214±19mA. The error in simulated emission current of each mode was 3%,6%, and 3%. For in-line fields, 50% beam loss occurred at 114, 96, and 97G; for perpendicular; at 12, 13 and 14G. Sensitivity for a given geometry is primarily determined by HV setting. Conclusion: Future MRI-Linac systems will almost certainly use gridded guns. We present the first model of a clinical gridded gun, and match the experimental emission current to within 6% across three different operating modes. This clinical gun shows increased sensitivity to magnetic fields than previous work,and different modes show different sensitivity.

  18. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  19. Evaluation of radiosurgery techniques–Cone-based linac radiosurgery vs tomotherapy-based radiosurgery

    International Nuclear Information System (INIS)

    Yip, Ho Yin; Mui, Wing Lun A.; Lee, Joseph W.Y.; Fung, Winky Wing Ki; Chan, Jocelyn M.T.; Chiu, G.; Law, Maria Y.Y.

    2013-01-01

    Performances of radiosurgery of intracranial lesions between cone-based Linac system and Tomotherapy-based system were compared in terms of dosimetry and time. Twelve patients with single intracranial lesion treated with cone-based Linac radiosurgery system from 2005 to 2009 were replanned for Tomotherapy-based radiosurgery treatment. The conformity index, homogeneity index (HI), and gradient score index (GSI) of each case was calculated. The Wilcoxon matched-pair test was used to compare the 3 indices between both systems. The cases with regular target (n = 6) and those with irregular target (n = 6) were further analyzed separately. The estimated treatment time between both systems was also compared. Significant differences were found in HI (p = 0.05) and in GSI (p = 0.03) for the whole group. Cone-based radiosurgery was better in GSI whereas Tomotherapy-based radiosurgery was better in HI. Cone-based radiosurgery was better in conformity index (p = 0.03) and GSI (p = 0.03) for regular targets, whereas Tomotherapy-based radiosurgery system performed significantly better in HI (p = 0.03) for irregular targets. The estimated total treatment time for Tomotherapy-based radiosurgery ranged from 24 minutes to 35 minutes, including 15 minutes of pretreatment megavoltage computed tomography (MVCT) and image registration, whereas that for cone-based radiosurgery ranged from 15 minutes for 1 isocenter to 75 minutes for 5 isocenters. As a rule of thumb, Tomotherapy-based radiosurgery system should be the first-line treatment for irregular lesions because of better dose homogeneity and shorter treatment time. Cone-based Linac radiosurgery system should be the treatment of choice for regular targets because of the better dose conformity, rapid dose fall-off, and reasonable treatment time

  20. Evaluation of radiosurgery techniques–Cone-based linac radiosurgery vs tomotherapy-based radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Ho Yin, E-mail: hoyinyip@yahoo.com.hk [Department of Radiotherapy, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong (China); Mui, Wing Lun A.; Lee, Joseph W.Y.; Fung, Winky Wing Ki; Chan, Jocelyn M.T.; Chiu, G. [Department of Radiotherapy, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong (China); Law, Maria Y.Y. [Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong (China)

    2013-07-01

    Performances of radiosurgery of intracranial lesions between cone-based Linac system and Tomotherapy-based system were compared in terms of dosimetry and time. Twelve patients with single intracranial lesion treated with cone-based Linac radiosurgery system from 2005 to 2009 were replanned for Tomotherapy-based radiosurgery treatment. The conformity index, homogeneity index (HI), and gradient score index (GSI) of each case was calculated. The Wilcoxon matched-pair test was used to compare the 3 indices between both systems. The cases with regular target (n = 6) and those with irregular target (n = 6) were further analyzed separately. The estimated treatment time between both systems was also compared. Significant differences were found in HI (p = 0.05) and in GSI (p = 0.03) for the whole group. Cone-based radiosurgery was better in GSI whereas Tomotherapy-based radiosurgery was better in HI. Cone-based radiosurgery was better in conformity index (p = 0.03) and GSI (p = 0.03) for regular targets, whereas Tomotherapy-based radiosurgery system performed significantly better in HI (p = 0.03) for irregular targets. The estimated total treatment time for Tomotherapy-based radiosurgery ranged from 24 minutes to 35 minutes, including 15 minutes of pretreatment megavoltage computed tomography (MVCT) and image registration, whereas that for cone-based radiosurgery ranged from 15 minutes for 1 isocenter to 75 minutes for 5 isocenters. As a rule of thumb, Tomotherapy-based radiosurgery system should be the first-line treatment for irregular lesions because of better dose homogeneity and shorter treatment time. Cone-based Linac radiosurgery system should be the treatment of choice for regular targets because of the better dose conformity, rapid dose fall-off, and reasonable treatment time.

  1. Production of slow positron beam with small diameter using electron linac in Osaka University

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Yoshihide; Sawada, Junichi; Yamada, Masaki; Maekawa, Masaki; Okuda, Shuichi; Yoshida, Yoichi; Isoyama, Goro; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Yamamoto, Takayoshi

    1997-03-01

    A slow positron facility using an electron linac was designed and constructed. The specifications were mainly decided by numerical calculations. The slow positrons are transported along magnetic field line. The cross sectional size of slow positron beam is 1-2cm and the maximum conversion rate from electron to positron is about 1.5 x 10{sup -6}. This value is about 1/4 of ideal case in our system. Extraction of slow positron beam from magnetic field region was made and preliminary brightness enhancement experiment was also performed. (author)

  2. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  3. A five-picosecond electron pulse from ANL (Argonne National Laboratory) L-Band Linac

    International Nuclear Information System (INIS)

    Cox, G.L.; Jonah, C.D.; Ficht, D.T.; Mavrogenes, G.S.; Sauer, M.C. Jr.

    1989-01-01

    The pulse-compression system of the Argonne National Laboratory Chemistry Division L-Band Linac, presented at the 1986 Linear Accelerator Conference at Stanford, California, has been completed. A five-picosecond-wide electron pulse containing 6 x 10 -9 coulomb charge has been achieved. Acceleration parameters and the pulse-width measurement technique are discussed, and future plans for the utilization of this pulse in radiation chemistry studies are presented. 5 refs., 4 figs

  4. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  5. Analysis of thermionic DC electron gun for 125 MeV linac

    International Nuclear Information System (INIS)

    Kanno, K.; Sato, Isamu; Sato, K.

    2000-01-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  6. Analysis of thermionic DC electron gun for 125 MeV linac

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, K. [Graduate School of Science and Technology, Nihon Univ., Funabashi, Chiba (Japan); Sato, Isamu; Sato, K. [Nihon Univ., Funabashi, Chiba (Japan). Atomic Energy Research Inst] [and others

    2000-07-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  7. Suitability of high-current standing-wave linac technology for ultra-relativistic electron beam propagation experiments

    International Nuclear Information System (INIS)

    Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.

    1981-01-01

    Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division

  8. Characterization of 10 MeV electron linac for radiation processing

    International Nuclear Information System (INIS)

    Petwal, V.C.; Rao, J.N.; Kaul, A.; Bapna, S.C.; Mulchandani, J.K.; Wanmode, Y.; Pandiyar, M.; Srivastava, P.; Jain, Akhilesh; Hanurkar, P.R.

    2006-01-01

    A radiation processing facility based on a 10 MeV LINAC is being set-up at RRCAT. In the course of commissioning various experiments have been carried-out to characterize the radiation field generated by the accelerator and subsequently to derive the operating parameters of the facility for radiation processing of various items. Results of the experiments are presented in the paper. (author)

  9. An EPID-based method for comprehensive verification of gantry, EPID and the MLC carriage positional accuracy in Varian linacs during arc treatments

    International Nuclear Information System (INIS)

    Rowshanfarzad, Pejman; McGarry, Conor K; Barnes, Michael P; Sabet, Mahsheed; Ebert, Martin A

    2014-01-01

    In modern radiotherapy, it is crucial to monitor the performance of all linac components including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method has been introduced in conjunction with an algorithm to investigate the stability of these systems during arc treatments with the aim of ensuring the accuracy of linac mechanical performance. The Varian EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in MLC carriages as a result of linac rotation were separately investigated by acquisition of EPID images of a simple phantom comprised of 5 ball-bearings during arc delivery. A fast and robust software package was developed for automated analysis of image data. Twelve Varian linacs of different models were investigated. The average EPID sag was within 1 mm for all tested linacs. All machines showed less than 1 mm gantry sag. Changes in SDD values were within 1.7 mm except for three linacs of one centre which were within 9 mm. Values of EPID skewness and tilt were negligible in all tested linacs. The maximum sag in MLC leaf bank assemblies was around 1 mm. The EPID sag showed a considerable improvement in TrueBeam linacs. The methodology and software developed in this study provide a simple tool for effective investigation of the behaviour of linac components with gantry rotation. It is reproducible and accurate and can be easily performed as a routine test in clinics

  10. Design of the electron gun for the INS-ES linac

    International Nuclear Information System (INIS)

    Hashimoto, Yoshinori; Takeda, Yasuhiro; Yoshida, Katsuhide

    1993-01-01

    We are preparing a new electron gun for the INS-ES linac. Two cathode-wehnelt assemblies using dispenser cathode Y-646E (EIMAC) have been designed with the computer simulation program EGUN by W.B. Herrmannsfeldt. The acceleration voltage and the peak beam current is 100 kV and 1.0 A, respectively, with a pulse width of 1.5 μsec. The different point of the guns is the angle of wehnelt to the beam axis; one is 67.5deg and the other is 90deg. Both guns have almost the same beam characteristics: The beam radius is 1.95 mm and the maximum beam spread is 2.8 mrad at 186 mm from the cathode. (author)

  11. Cloud-based design of high average power traveling wave linacs

    Science.gov (United States)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  12. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  13. Detuning effect in a traveling wave type linac

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1981-10-01

    Detailed measurement of acceleration characteristics has been performed on a 15 MeV electron linac as the injector of the electron synchrotron at Institute for Nuclear Study, University of Tokyo. Remarkable feature of the results is that the energy gain as well as the energy spread of the output beam, are optimized when the linac is operated with the microwave whose frequency is higher than the resonant frequency of the accelerator waveguide. The difference of this operating frequency from the resonant frequency grows up as the beam intensity is increased, and amounts to 250 KHz when the beam intensity is 350 mA. In order to clarify the mechanism of the phenomena, the interaction of electron beam with the microwave in the accelerator structure of traveling wave type, is examined on the linac and also on a test accelerator structure. For the analysis of the experimental results, the normal mode method which has been used for standing wave cavities, is developed so as to be applied to the accelerator structure of traveling wave type. The results of analysis show that the observed phenomena at INS linac are caused by the resonant frequency shift, detuning, due to the reactive beam loading and this detuning effects are compensated by use of the microwave of higher frequency. Thus the detuning effects are significant even in the traveling wave type linac composed of buncher and regular sections as well as in the standing wave type accelerator structure. (author)

  14. Linac4 crosses the 100 MeV threshold

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  15. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  16. ARIEL e-LINAC: Commissioning and Development

    Science.gov (United States)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  17. ARIEL e-LINAC: Commissioning and Development

    International Nuclear Information System (INIS)

    Laxdal, R.E.; Zvyagintsev, V.

    2016-01-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented. (paper)

  18. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    Science.gov (United States)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  19. Induction linac driven relativistic klystron and cyclotron autoresonance maser experiments

    International Nuclear Information System (INIS)

    Goodman, D.L.; Birx, D.L.; Danly, B.G.

    1991-01-01

    In this paper design and experimental results are presented from two high power microwave generation experiments utilizing a high repetition rate induction linac generated electron beam. A relativistic klystron has generated more than 100 MW microwave pulses in X-band for 50 ns without pulse shortening or breakdown. design studies for the first cyclotron autoresonance maser (CARM) amplifier using an induction linac electron beam are also presented

  20. Present status of cryogenic system for e-linac at VECC

    International Nuclear Information System (INIS)

    Ahammed, Manir; Mondal, Manas; Pal, Sandip; Duttagupta, Anjan; Bandyopadhyay, Arup; Naik, Vaishali; Chakrabarti, Alok; Laxdal, Robert E.; Koveshnikov, Alexy

    2015-01-01

    VECC is constructing a 50 MeV, 100 kW, superconducting electron linear accelerator (e-Linac) for the upcoming ANURIB (Advanced National facility for Unstable and Rare Isotope Beams) project at the new campus. Presently a 10 MeV injector for the e-Linac is being developed in collaboration with TRIUMF laboratory in Canada.The Injector comprises a 300 kV electron gun, low energy beam transport (LEBT) line and an injector cryo-module (ICM) that houses one 9-cell beta=1, 1.3 GHz niobium elliptical cavity operated at 2K. Alternatively, a capture cryo-module (CCM) having two single cell beta=1, 1.3 GHz niobium cavities that will allow the electron gun to be operated at 100 kV is also being developed. The e-Linac has been jointly designed by VECC and TRIUMF. The ICM is being built by TRIUMF whereas front-end of the injector is being built indigenously at VECC. In this report the details and present status of the cryogenic system for the e-Linac will be presented

  1. Development of virtual touch panel system for operation at KEK-Electron Linac

    International Nuclear Information System (INIS)

    Kudou, T.; Kusano, S.; Furukawa, K.; Kamikubota, N.; Satoh, M.

    2004-01-01

    At the KEK Electron Linac, various operator interfaces are employed to keep its stable operation. Among these, the touch-panel system has been used to manipulate each equipment. However, maintenance of the touch-panel system became difficult for various reasons. A new operator interface on X Window was developed as a virtual touch-panel system with an improved operator interface. All the functions which are used in the old system were already ported. It is designed so that a new function can be added flexibly. The architecture of those old and new touch panel systems is described. (author)

  2. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    Directory of Open Access Journals (Sweden)

    Yulu Huang

    2016-08-01

    Full Text Available An ultrafast kicker system is being developed for the energy recovery linac (ERL based electron circulator cooler ring (CCR in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC. In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10−1/30 (150  mA-50  mA of the cooling beam current (up to 1.5 A. Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetition rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. Off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.

  3. Device controllers using an industrial personal computer of the PF 2.5-GeV Electron Linac at KEK

    International Nuclear Information System (INIS)

    Otake, Yuji; Yokota, Mitsuhiro; Kakihara, Kazuhisa; Ogawa, Yujiro; Ohsawa, Satoshi; Shidara, Tetsuo; Nakahara, Kazuo

    1992-01-01

    Device controllers for electron guns and slits using an industrial personal computer have been designed and installed in the Photon Factory 2.5-GeV Electron Linac at KEK. The design concept of the controllers is to realize a reliable system and good productivity of hardware and software by using an industrial personal computer and a programmable sequence controller. The device controllers have been working reliably for several years. (author)

  4. Wakefields in SLAC linac collimators

    Directory of Open Access Journals (Sweden)

    A. Novokhatski

    2014-12-01

    Full Text Available When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  5. The 600 MeV Saclay electron linac: 40000 hour operation

    International Nuclear Information System (INIS)

    Netter, F.

    1977-01-01

    After 40000 hours of operation, the 600 MeV Saclay's electron linac (ALS) does appear as an efficient and versatile tool, for high resolution work (20 μA in ΔE = 40 keV at E = 200MeV), for high power pion production (300 μA in 20 μs pulses at 1000 Hz and 400 MeV or 240 μA in 4 μs pulses at 3000 Hz and 390 MeV), for highly reliable positron beams acceleration, a.s.o. Main improvements made in the recent years are described in particular the automatic beam switching between any two ways among the beam handling system; and the computer newly installed in the control room with a powerful visual display allowing an easy and flexible dialogue of the operators with the computer [fr

  6. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  7. SU-F-T-656: Monte Carlo Study On Air Activation Around a Medical Electron Linac

    International Nuclear Information System (INIS)

    Horst, F; Fehrenbacher, G; Zink, K

    2016-01-01

    Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeled and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.

  8. SU-F-T-656: Monte Carlo Study On Air Activation Around a Medical Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Horst, F [Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen (Germany); GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Fehrenbacher, G [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Zink, K [Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen (Germany); University Hospital Giessen-Marburg, Marburg (Germany)

    2016-06-15

    Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeled and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.

  9. Installation of the Gbar LINAC

    CERN Multimedia

    Maximilien, Brice

    2017-01-01

    Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form anti hydrogen with the antiprotons coming from the ELENA decelerator.

  10. Photon and photoneutron spectra produced in radiotherapy Linacs

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.; Benites R, J. L.; Lallena, A. M.

    2011-10-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 -6 and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  11. Photon and photoneutron spectra produced in radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  12. Low-charge-state linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  13. Multiobjective genetic algorithm optimization of the beam dynamics in linac drivers for free electron lasers

    Directory of Open Access Journals (Sweden)

    R. Bartolini

    2012-03-01

    Full Text Available Linac driven free electron lasers (FELs operating in the x-ray region require a high brightness electron beam in order to reach saturation within a reasonable distance in the undulator train or to enable sophisticated seeding schemes using external lasers. The beam dynamics optimization is usually a time consuming process in which many parameters of the accelerator and the compression system have to be controlled simultaneously. The requirements on the electron beam quality may also vary significantly with the particular application. For example, the beam dynamics optimization strategy for self-amplified spontaneous emission operation and seeded operation are rather different: seeded operation requires a more careful control of the beam uniformity over a relatively large portion of the longitudinal current distribution of the electron bunch and is therefore more challenging from an accelerator physics point of view. Multiobjective genetic algorithms are particularly well suited when the optimization of many parameters is targeting several objectives simultaneously, often with conflicting requirements. In this paper we propose a novel optimization strategy based on a combination of multiobjective optimization with a fast computation of the FEL performance. The application to the proposed UK’s New Light Source is reported and the benefits of this method are highlighted.

  14. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  15. TOP LINAC design

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita', ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given

  16. History of the JAERI linac facility for 33 years

    International Nuclear Information System (INIS)

    Ohkubo, Makio; Mizumoto, Motoharu; Nakajima, Yutaka; Mashiko, Katsuo

    1994-01-01

    The JAERI electron linear accelerator will be shutdown and disassembled at the end of 1993. At the JAERI, a prototype 20 MeV linac was constructed at 1960, and was used for the neutron time-of-flight experiments and for the isotope productions. An upgraded 120 MeV linac was constructed at 1972, and was used for many fields of research works until 1993. History of the JAERI Linac and the results of the works made using these facilities are reviewed, and also R/D on the accelerator engineering are described briefly. (author)

  17. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  18. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    International Nuclear Information System (INIS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN 2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014

  19. Important aspects of linac beams for food irradiation

    International Nuclear Information System (INIS)

    McKeown, J.; Jones, R.T.

    1987-01-01

    Linac based irradiators will require careful design before they can be routinely adopted for the radiation processing of food. The transverse emittance and energy spread from simple injectors provide a significant challenge to the design of a beam delivery system which must handle high power especially in photon mode. Any nonuniform current distribution at the plane of the product is further complicated by large dose variations near the air/product interface, even with simple geometries. The paper describes the use of methods developed at AECL to control and monitor linac behaviour as well as electron interactions at the product surface. It also reports on activation cross-section measurements and particularly on neutron yields from composite targets, designed to monitor the energy of accelerators used in food applications. (orig.)

  20. SU-E-J-239: IMRT Planning of Prostate Cancer for a MRI-Linac Based On MRI Only

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X; Prior, P; Paulson, E; Lawton, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-01

    Purpose: : To investigate dosimetric differences between MRI- and CT-based IMRT planning for prostate cancer, the impact of a magnetic field in a MRI-Linac, and to explore the feasibility of IMRT planning based on MRI alone. Methods: IMRT plans were generated based on CT and MRI images acquired on two representative prostate-cancer patients using clinical dose volume constraints. A research planning system (Monaco, Elekta), which employs a Monte Carlo dose engine and includes a perpendicular magnetic field of 1.5T from an MRI-Linac, was used. Bulk electron density assignments based on organ-specific values from ICRU 46 were used to convert MRI (T2) to pseudo CT. With the same beam configuration as in the original CT plan, 5 additional plans were generated based on CT or MRI, with or without optimization (i.e., just recalculation) and with or without the magnetic field. The plan quality in terms of commonly used dose volume (DV) parameters for all plans was compared. The statistical uncertainty on dose was < 1%. Results: For plans with the same contour set but without re-optimization, the DV parameters were different from those for the original CT plan, mostly less than 5% with a few exceptions. These differences were reduced to mostly less than 3% when the plans were re-optimized. For plans with contours from MRI, the differences in the DV parameters varied depending on the difference in the contours as compared to CT. For the optimized plans with contours from MR, the differences for PTV were less than 3%. Conclusion: The prostate IMRT plans based on MRI-only for a MR-Linac were practically similar as compared to the CT plan under the same beam and optimization configuration if the difference on the structure delineation is excluded, indicating the feasibility of using MRI-only for prostate IMRT.

  1. Evaluation of the effects of different filters and helium bag on the reduction of electron contamination in photon beam of Neptune linac

    International Nuclear Information System (INIS)

    Bahreyni Toosi, M. T.; Saberi, H.; Momen Nejad, M.

    2005-01-01

    Skin sparing is one of the most desirable characteristics of high energy photon beams. However, the photons emerging from the target of linacs are contaminated by secondary electrons as a result of their interactions with air, collimators, flattening filter and any other objects in their path. This phenomenon tends to increase the skin dose received by the patients. A practical and simple way to reduce the contribution of electron contamination is to place a sheet of medium to high Z material just after the secondary collimator. In this study, filters having different thickness and atomic number were applied and their effectiveness on the reduction of skin dose was evaluated. Materials and Methods: The filters of different thickness and atomic number were applied. The percent depth dose values were determined by the direct measurements made in a Scanditronix water phantom using a PTW 31006 Pin Point chamber having a sensitive volume of 0.015 cm 3 . A Perspex filter holder was made to be installed on the accessory slot. A plastic bag containing helium was also made using thin plastic sheet to study the effect of the helium bag when it replaces the air column between the head of the linac and the phantom. All of the measurements were carried out for the three field sizes of 10*10, 20*20 and 25*25 cm 2 . The setups were adjusted for SSD 100 cm. The ratio of the surface dose to maximum dose (Ds) was used as the criterion to determine the optimum filter. Results: The dosimetry results obtained in the water phantom indicated that a 0.4 mm thick Pb filter is the most effective one. This filter reduces the Ds for the field sizes of 10*10, 20*20 and 25*25 cm 2 by 5.7, 7.9 and 9.6%, respectively. Also the simultaneous use of the optimum filter and He bag is more effective than the filter alone. It reduces the Ds by 6.3, 10.1 and 12.3% for the field sizes of 10*10,20*20 and 25*25 cm 2 , respectively. Discussion and Conclusion: Based on the results of this work it is evident

  2. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  3. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  4. Fast Beam-ion Instabilities in CLIC Main Linac Vacuum Specifications

    CERN Document Server

    Oeftiger, Adrian

    2011-01-01

    Specifications for the vacuum pressure in the CLIC electron Main Linac are determined by the onset of the fast beam-ion instability (FBII). When the electron beam is accelerated in the Main Linac, it ionizes the residual gas in the chamber through scattering ionization. If the density of ions around the beam exceeds a certain threshold, a resonant motion between the electron beam and the ions can be excited. A two-stream instability appears and as a result the beam acquires a coherent motion, which can quickly lead to beam quality degradation or even complete loss. Thus, the vacuum pressure must be kept below this threshold to prevent the excitation of FBII. The CLIC Main Linac poses an additional challenge with respect to previous FBII situations, because the gas ionization does not solely occur via scattering. The submicrometric beam sizes lead to extremely high electric fields around the beam and therefore result in field ionization beyond a certain threshold. The residual gas in the corresponding volume a...

  5. SU-E-T-506: Dosimetric Verification of Photon MLC Delivered Electron Fields for Implementing MERT On An Artiste Linac

    International Nuclear Information System (INIS)

    Jin, L; Eldib, A; Li, J; Wang, L; Ma, C; Fan, J

    2014-01-01

    Purpose: To verify the dose accuracy of photon MLC delivered electron fields for implementing energy-intensity modulated electron radiotherapy (MERT) on an Artiste linac. Methods: It was proposed to deliver MERT on an Artiste linac at a short SSD (60 cm) to reduce beam penumbra caused by electron scatters. An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning code was used for treatment planning. Our previous study showed that the measured dose distribution of a breast plan showed good agreement with the calculations in low-medium dose regions while the differences in high dose regions were outstanding. A continuous work found that the discrepancy is mainly caused by improper modeling in MC for the single focused MLC in the Artiste which was simplified as double focused in the previous MC simulations. With this remodeled MLC in the calculations, an energy-intensity modulated electron plan using 6, 9, 12 and 15 MeV was generated for a breast treatment on a breast phantom at a 60 cm SSD and recalculated regarding a solid water phantom. For a test study, four of MLC segments (each with a different energy) generated in the plan were delivered to the phantom and a film measurement was performed at the depth of 2 cm. The measured 2D dose distribution was then compared with calculations. Results: For composite doses of the four segments, measured 2D dose distributions overall agree well with the calculations (3mm/3%) in most area. The separate measurement for a single MLC segment for each of energies also showed the consistence with the calculations. Conclusion: After remodeling MLC in the MC calculations, the measured dose distribution for a subset of MLC segments from a MERT plan showed good agreement. Further detailed verification for the full plan will be the work in the next step

  6. Optimization calculations for slow neutron production with the 136 MeV Harwell electron linac

    International Nuclear Information System (INIS)

    Needham, J.; Sinclair, R.N.

    1978-10-01

    The new 136 MeV Harwell electron linac is to be used to produce pulsed beams of slow neutrons for condensed matter research. Design details and performance of the two types of moderator which will be available have been optimised using a Monte Carlo neutronics code (TIMOC). The choice of reflector, the necessary decoupling energy to prevent pulse broadening and the influence of γ shields and moderator shape have been investigated. The predicted yield of leakage neutrons of energy 1 eV is compared to published values for comparable facilities. (author)

  7. Performance of the second Deep Inelastic Neutron Scatering spectrometer at the Bariloche electron LINAC

    International Nuclear Information System (INIS)

    Palomino, L A Rodríguez; Blostein, J J; Dawidowski, J

    2013-01-01

    We report on the new Deep Inelastic Neutron Scattering detector bank recently implemented at the Bariloche electron LINAC. We show the characterization and calibration process carried out, which comprises the determinarion of the detector bank efficiency, and the evaluation of the performance of the filter difference technique. As part of the benchmarking process, polyethylene spectra were measured and analyzed, and the scattering cross sections for carbon and hydrogen were determined in the process. With the addition of this new detector bank to the existing one, we evaluate the combined capacity of the two banks

  8. Dark current and radiation shielding studies for the ILC main linac

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, Nikolai V. [Fermilab; Rakhno, I. L. [Fermilab; Solyak, N. A. [Fermilab; Sukhanov, A. [Fermilab; Tropin, I. S. [Fermilab

    2016-12-05

    Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel. A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.

  9. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D. [TRIUMF, Vancouver, BC, V6T 2A3 (Canada)

    2014-01-29

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN{sub 2} storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  10. Free electron laser facilities employing a 150-MeV linac injector for Saga synchrotron light source

    International Nuclear Information System (INIS)

    Tomimasu, T.; Yasumoto, M.; Ochiai, Y.; Ishibashi, M.; Murayama, T.

    1999-01-01

    Free electron laser (FEL) facilities as the FELI FEL Facility are proposed, for which a 150-MeV linac type injector for a Saga synchrotron light source (SLS) is employed in FEL mode. The linac has two operating modes; short macropulse mode a 1 μs at 150 MeV for injection to a 1 - 1.3-GeV third generation type storage ring and long macropulse mode of 12 μs at 100 MeV for four FEL Facilities. The macropulse beam consists of a train of several ps, 0.6 nC microbunches (peak current 100 A) repeating at 89.25 MHz. We are aiming to supply high power level photon beams covering an attractive wavelength range from 0.05 nm (25 keV) to 200 μm (0.006 eV) for scientific researches, bio-medical and industrial applications, using the Saga third generation type SLS with a superconducting wiggler and the proposed four FEL Facilities. (author)

  11. An inexpensive PC-based ion linac control system

    International Nuclear Information System (INIS)

    Hamm, M.E.; Potter, J.M.

    1991-01-01

    A turn-key PC-based control system has been developed for the AccSys line of compact ion linear accelerators and rf power amplifiers. The control interface is based on the DZERO Rack Monitor Module, developed at Fermi National Accelerator Laboratory, communicating with a Ballard Technology MIL-STD-1553B controller board in a 286 or 386 personal computer. This cost effective and easy to operate control system features real-time control and monitoring of the linac/rf amplifier and can be customized for automatic start-up and unattended operation

  12. IRLED-based patient localization for linac radiosurgery

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Bova, Francis J.; Friedman, William A.; Buatti, John M.; Moore, Russell D.; Mendenhall, William M.

    1998-01-01

    Purpose: Currently, precise stereotactic radiosurgery delivery is possible with the Gamma Knife or floor-stand linear accelerator (linac) systems. Couch-mounted linac radiosurgery systems, while less expensive and more flexible than other radiosurgery delivery systems, have not demonstrated a comparable level of precision. This article reports on the development and testing of an optically guided positioning system designed to improve the precision of patient localization in couch-mounted linac radiosurgery systems. Methods and Materials: The optically guided positioning system relies on detection of infrared light-emitting diodes (IRLEDs) attached to a standard target positioner. The IRLEDs are monitored by a commercially available camera system that is interfaced to a personal computer. An IRLED reference is established at the center of stereotactic space, and the computer reports the current position of the IRLEDs relative to this reference position. Using this readout from the computer, the correct stereotactic coordinate can be set directly. Results: Bench testing was performed to compare the accuracy of the optically guided system with that of a floor-stand system, that can be considered an absolute reference. This testing showed that coordinate localization using the IRLED system to track translations agreed with the absolute to within 0.1 ± 0.1 mm. As rotations for noncoplanar couch angles were included, the inaccuracy was increased to 0.2 ± 0.1 mm. Conclusions: IRLED technology improves the accuracy of patient localization relative to the linac isocenter in comparison with conventional couch-mounted systems. Further, the patient's position can be monitored in real time as the couch is rotated for all treatment angles. Thus, any errors introduced by couch inaccuracies can be detected and corrected

  13. Rf breakdown studies in room temperature electron linac structures

    International Nuclear Information System (INIS)

    Loew, G.A.; Wang, J.W.

    1988-05-01

    This paper is an overall review of studies carried out by the authors and some of their colleagues on RF breakdown, Field Emission and RF processing in room temperature electron linac structure. The motivation behind this work is twofold: in a fundamental way, to contribute to the understanding of the RF breakdown phenomenon, and as an application, to determine the maximum electric field gradient that can be obtained and used safely in future e/sup +-/ linear colliders. Indeed, the next generation of these machines will have to reach into the TeV (10 12 eV) energy range, and the accelerating gradient will be to be of the crucial parameters affecting their design, construction and cost. For a specified total energy, the gradient sets the accelerator length, and once the RF structure, frequency and pulse repetition rate are selected, it also determines the peak and average power consumption. These three quantities are at the heart of the ultimate realizability and cost of these accelerators. 24 refs., 19 figs., 4 tabs

  14. Linac4: injecting new life into the LHC

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    Construction work is nearing completion on the ion source for Linac4, the new linear accelerator that forms part of the LHC injector upgrade programme. Here we find out more about this essential component of the accelerator chain, designed and built at CERN.     The image shows the Linac4 H- source. The red light is the alpha line of the visible hydrogen emission spectrum. The ion source is a key component of Linac4, the linear accelerator that from 2018 will supply H- ions (hydrogen atoms with an extra electron) at 160 MeV for injection into the accelerator complex. As the only ion source at CERN, Linac4 must be highly reliable, which requires a full understanding of the production mechanisms, the simulation of physical processes and the validation of those processes through experimentation. “This source is the result of much fruitful collaboration,” says Jacques Lettry of the BE department. “Its design was inspired by the many sources of th...

  15. Electronics and Algorithms for HOM Based Beam Diagnostics

    Science.gov (United States)

    Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee

    2006-11-01

    The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.

  16. Alternate Tunings for the Linac Coherent Light Source Photoinjector

    CERN Document Server

    Limborg-Deprey, Cecile

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10 ps long electron bunches of 1nC with a normalized transverse emittance of less than 1 mm.mrad for 80% of the slices constituting the core of the bunch at 135 MeV. Tolerances and regulation requirements are tight for this tuning. The main contribution to emittance is the "cathode emittance which counts for 0.72 mm.mrad for the nominal tuning. As the "cathode emittance" scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2nC, we believe we can achieve an emittance closer to 0.4 mm.mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the nominal one. In this paper, we also discuss how emittance could be further reduced by using the appropriate laser pulse shaping.

  17. Preinjector for Linac 1, Faraday cage

    CERN Multimedia

    1974-01-01

    The 50 MeV Linac 1 started up in 1958 as injector to the 26 GeV PS, with a 520 kV Cockcroft-Walton generator as its preinjector, housed in a vast Faraday cage, visible here. When the Cockcroft-Walton broke down in 1973, it was replaced by a much smaller SAMES generator, of the kind used for electrostatic separators. From 1980 on, Linac 2 took over as injector for the 800 MeV Booster, and Linac 1 continued as injector for LEAR. In 1984, the electrostatic preinjector (i.e. the Faraday cage with its contents, SAMES generator and all) was replaced by a 520 keV RFQ. At the lower left corner we see the HV connectors to the SAMES generator, at the right edge part of the opened electronics-platform. Jean-Luc Vallet sees to it that all parts are properly grounded. See also 7403073X, 7403074X, 7403081X, 7403083X.

  18. Design optimization and transverse coherence analysis for an x-ray free electron laser driven by SLAC LINAC

    International Nuclear Information System (INIS)

    Xie, M.

    1995-01-01

    I present a design study for an X-ray Free Electron Laser driven by the SLAC linac, the Linac Coherent Light Source (LCLS). The study assumes the LCLS is based on Self-Amplified Spontaneous Emission (SASE). Following a brief review of the fundamentals of SASE, I will provide without derivation a collection of formulas relating SASE performance to the system parameters. These formulas allow quick evaluation of FEL designs and provide powerful tools for optimization in multi-dimensional parameter space. Optimization is carried out for the LCLS over all independent system parameters modeled, subjected to a number of practical constraints. In addition to the optimizations concerning gain and power, another important consideration for a single pass FEL starting from noise is the transverse coherence property of the amplified radiation, especially at short wavelength. A widely used emittance criteria for FELs requires that the emittance is smaller than the radiation wavelength divided by 4π. For the LCLS the criteria is violated by a factor of 5, at a normalized emittance of 1.5 mm-mrad, wavelength of 1.5 angstrom, and beam energy of 15 GeV. Thus it is important to check quantitatively the emittance effect on the transverse coherence. I will examine the emittance effect on transverse coherence by analyzing different transverse modes and show that full transverse coherence can be obtained even at the LCLS parameter regime

  19. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  20. Preinjector for Linac 1, ion source

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. Inside the drum-shaped container shown in 7403081X, is the ion source with its associated electronics. It sits at the HV end of the accelerating column seen also in 7403081.

  1. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-01-01

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Cyclotrons, Linacs and Their Applications'. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.)

  2. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-03-04

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being `Cyclotrons, Linacs and Their Applications`. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.).

  3. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  4. SU-E-T-20: Removal of Electron Contamination in Longitudinal Field MRI-Linac Systems: A Monte Carlo Study.

    Science.gov (United States)

    Oborn, B M; Metcalfe, P; Butson, M; Crozier, S; Keall, P

    2012-06-01

    The prototype inline MRI-linac system has some advantages over perpendicular models including avoiding the electron return effect. One of the disadvantages of the inline approach is the increased skin dose, estimated to be 400-1000% of the dmax dose. The purpose of this work was to design a feasible method to reduce this skin dose to acceptable levels. Magnetic modeling of proposed MRI-linac designs have been simulated with the inclusion of an optimized permanent magnet system to purge/deflect the electron contamination. The region of air above the phantom was also replaced with a helium bag (region of helium gas) and a beam scrapper below the deflector was added to collect deflected off-axis contamination. Monte Carlo simulations were then performed including the accurate 3D magnetic field maps. Surface dosimetry was recorded to verify the changes to the skin doses. Magnetic modelling showed that an optimized NdFeB permanent magnet system located outside the MRI coils (below the MLC's) can provide a strong enough region to purge/deflect a significant portion of the electron contamination from the x-ray beam. The impact on the MRI uniformity is around 100 ppm and hence is correctable via active/passive shimming of the MRI. The helium region also significantly limits the production of contamination traveling towards the phantom surface. Entry doses near CAX are predicted to be similar to the 0 T case. Magnetic and Monte Carlo modeling were performed to estimate the effect that a permanent magnet purging system, beam scrapper, and helium bag would have on lowering the skin doses in an inline MRI-Linac system. MRI non-uniformities introduced by the deflector could be corrected, contamination is mostly purged or blocked, and the helium bag minimizes air-generated contamination. As a result skin doses are comparable to having zero magnetic field. © 2012 American Association of Physicists in Medicine.

  5. NPL superconducting Linac control system

    International Nuclear Information System (INIS)

    Swanson, H.E.; Howe, M.A.; Jackson, L.W.; LaCroix, J.M.; Readdy, H.P.; Storm, D.W.; Van Houten, L.P.

    1985-01-01

    The control system for the NPL Linac is based on a Microvax II host computer connected in a star network with 9 satellite computers. These satellites use single board varsions of DEC's PDP 11 processor. The operator's console uses high performance graphics and touch screen technology to display the current linac status and as the means for interactively controlling the operation of the accelerator

  6. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    Science.gov (United States)

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated

  7. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    Directory of Open Access Journals (Sweden)

    Y. M. Saveliev

    2016-09-01

    Full Text Available The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  8. Commissioning the Linac Coherent Light Source injector

    Directory of Open Access Journals (Sweden)

    R. Akre

    2008-03-01

    Full Text Available The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  9. LINAC5 - A Quasi-Alvarez Linac for BioLEIR

    International Nuclear Information System (INIS)

    Garland, J M; Lallement, J-B; Lombardi, A

    2017-01-01

    LINAC5 is a new linac proposed for the acceleration of light ions with Q/A = 1/3 to 1/4 for medical applications within the BioLEIR (Low Energy Ion Ring) design study at CERN. We propose a novel quasi-Alvarez drift-tube linac (DTL) accelerating structure design for LINAC5, which can reduce the length of a more conventional DTL structure, yet allows better beam focussing control and flexibility than the inter-digital H (IH) structures typically used for modern ion acceleration. We present the main sections of the linac with total length ∼12 m, including a 202 MHz radio frequency quadrupole (RFQ) a matching medium energy beam transport (MEBT) and a 405 MHz quasi-Alvarez accelerating section with an output energy of 4.2 MeV/u. Permanent magnet quadrupoles are proposed for use in the quasi-Alvarez structure to improve the compactness of the design and increase the efficiency. Lattice design considerations, multi-particle beam dynamics simulations and RFQ and radio frequency (RF) cavity designs are presented. (paper)

  10. Accuracy evaluation of distance inverse square law in determining virtual electron source location in Siemens Primus linac.

    Science.gov (United States)

    Douk, Hamid Shafaei; Aghamiri, Mahmoud Reza; Ghorbani, Mahdi; Farhood, Bagher; Bakhshandeh, Mohsen; Hemmati, Hamid Reza

    2018-01-01

    The aim of this study is to evaluate the accuracy of the inverse square law (ISL) method for determining location of virtual electron source ( S Vir ) in Siemens Primus linac. So far, different experimental methods have presented for determining virtual and effective electron source location such as Full Width at Half Maximum (FWHM), Multiple Coulomb Scattering (MCS), and Multi Pinhole Camera (MPC) and Inverse Square Law (ISL) methods. Among these methods, Inverse Square Law is the most common used method. Firstly, Siemens Primus linac was simulated using MCNPX Monte Carlo code. Then, by using dose profiles obtained from the Monte Carlo simulations, the location of S Vir was calculated for 5, 7, 8, 10, 12 and 14 MeV electron energies and 10 cm × 10 cm, 15 cm × 15 cm, 20 cm × 20 cm and 25 cm × 25 cm field sizes. Additionally, the location of S Vir was obtained by the ISL method for the mentioned electron energies and field sizes. Finally, the values obtained by the ISL method were compared to the values resulted from Monte Carlo simulation. The findings indicate that the calculated S Vir values depend on beam energy and field size. For a specific energy, with increase of field size, the distance of S Vir increases for most cases. Furthermore, for a special applicator, with increase of electron energy, the distance of S Vir increases for most cases. The variation of S Vir values versus change of field size in a certain energy is more than the variation of S Vir values versus change of electron energy in a certain field size. According to the results, it is concluded that the ISL method can be considered as a good method for calculation of S Vir location in higher electron energies (14 MeV).

  11. Developmental efforts of RF collinear load for 10 MeV, 6 kW travelling wave Linac

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Kumar, Harish; Soni, R.K.; Dwivedi, Jishnu; Thakurta, A.C.; Wanmode, Y.D.; Pareek, Prashant; Senthil Kumar, S; Shinde, R.S.

    2015-01-01

    RRCAT is developing a 10 MeV, 6 kW Travelling Wave Electron Linac for radiation processing applications. The remnant RF power from the Linac structure is taken out by output RF coupler and absorbed by the waveguide load. RF collinear load is an improved technique for absorption of the remnant RF power. It replaces the output RF coupler, RF window and waveguide load leading to reduction in size of magnetic elements and less transverse beam instabilities. In addition, it uses the remnant RF power to increase the electron beam energy. The collinear load consists of a number of copper cavities coated with microwave absorbing material at inner surfaces and brazed to the Linac structure at the end. Development of the collinear load has been started at RRCAT and a prototype low power collinear load using Kanthal (FeCrAl alloy) coating has been developed. Further works are going on the development of high power collinear load using FeSiAl alloy. The paper describes the development of the Kanthal based prototype low power collinear load as well as the works for the development of FeSiAl alloy based high power collinear load. (author)

  12. Spatial and temporal beam profile monitor with nanosecond resolution for CERN's Linac4 and Superconducting Proton Linac

    CERN Document Server

    Hori, M

    2008-01-01

    The Linac4, now being developed at CERN, will provide 160-MeV H- beams of high intensity . Before this beam can be injected into the CERN Proton Synchrotron Booster or future Superconducting Proton Linac for further acceleration, some sequences of 500-ps-long micro-bunches must be removed from it, using a beam chopper. These bunches, if left in the beam, would fall outside the longitudinal acceptance of the accelerators and make them radioactive. We developed a monitor to measure the time structure and spatial profile of this chopped beam, with respective resolutions and . Its large active area and dynamic range also allows investigations of beam halos. The ion beam first struck a carbon foil, and secondary electrons emerging from the foil were accelerated by a series of parallel grid electrodes. These electrons struck a phosphor screen, and the resulting image of the scintillation light was guided to a thermoelectrically cooled, charge-coupled device camera. The time resolution was attained by applying high-...

  13. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Broere, J; Garoby, R; Rohlev, A; Serrano, J

    2004-01-01

    A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). Design principle and the experimental results are described.

  14. Upgrade of the controls for the Brookhaven linac

    International Nuclear Information System (INIS)

    Buxton, W.E.

    1995-01-01

    The control of the magnets, rf system, and other components at the Brookhaven Linac uses a system that was developed at Brookhaven in the late 1960's. This system will be retired in the summer of 1995. The Linac controls are being upgraded using modem VME-based hardware compatible with RHIC generation controls, and an existing serial field bus. The timing for the Linac will also be upgraded and will use components developed for RHIC. The controls in general, the timing for the Linac, and the modules developed will be described

  15. Superconducting linac booster for NSC Pelletron

    International Nuclear Information System (INIS)

    Roy, A.; Prakash, P.N.; Ajithkumar, B.P.; Ghosh, S.; Changrani, T.; Mehta, R.; Sarkar, A.; Muralidhar, S.; Dutt, R.N.; Kumar, M.; Shepard, K.W.; and others.

    1996-01-01

    The progress made in the heavy ion superconducting linac booster project for the Nuclear Science Centre Pelletron accelerator is overviewed. Prototypes of the accelerating structure have been fabricated at Argonne National Laboratory and undergone several diagnostic tests. In the first phase heavy ions up to mass 80 will be accelerated to energies above the Coulomb barrier and in the second phase the mass limit would be increased to 120. The subsystems of the project are the basic accelerating structures, the RF instrumentation and control, the cryogenic system and the beam optics. Preliminary designs for the buncher and linac cryostats have been made. Several prototypes of RF electronics and control modules have been fabricated and tested. (R.P.)

  16. HOM Consideration of 704 MHz and 2.1 GHz Cavities for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [RIKEN BNL; Belomestnykh, Sergey [SUNY, Stony Brook; Ben-Zvi, Ilan [RIKEN BNL; Blaskiewicz, Michael [RIKEN BNL; Brennan, Joseph [RIKEN BNL; Brutus, Jean Clifford [RIKEN BNL; Fedotov, Alexei [RIKEN BNL; Hahn, Harald [RIKEN BNL; McIntyre, Gary [RIKEN BNL; Pai, Chien [RIKEN BNL; Smith, Kevin [RIKEN BNL; Tuozzolo, Joseph [RIKEN BNL; Veshcherevich, Vadim [Cornell U., CLASSE; Wu, Qiong [RIKEN BNL; Xin, Tianmu [RIKEN BNL; Xu, Wencan [RIKEN BNL; Zaltsman, Alex [RIKEN BNL

    2016-06-01

    To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. The Linac of LEReC is designed to deliver 2 MV to 5 MV electron beam, with rms dp/p less than 5·10⁻⁴. The HOM in this Linac is carefully studied to ensure this specification.

  17. Release the beams! - Linac4 ready to hit the 50 MeV mark

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    The Linac4 accelerator is now prepared to reach 50 MeV. This milestone energy - expected in the coming weeks - will allow the machine to act as a replacement for the ageing Linac2, four years before it takes over at the head of the accelerator chain in 2020.    Inside the Linac4 tunnel, the final DTL cavities will guide beams to 50 MeV.  (Image: Stephan Russenschuck.) The Linac4 accelerator will bring H- ion beams (hydrogen atoms with an extra electron) up to 160 MeV for injection into the PS Booster. As a key part of the LHC injector upgrade programme, Linac4 will allow the PS Booster to double its beam brightness, which will contribute to increasing the LHC’s luminosity. Linac4 will soon bring beams up to 50 MeV - the current energy delivered by the Linac2 accelerator. This milestone follows on from another recent accomplishment: the installation and commissioning of the final Drift Tube Linac (DTL) tank. Using an innovati...

  18. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Rohlev, A; Garoby, R

    2003-01-01

    A new VME based system has been developed and built at CERN for the servo loops regulating the field in the linac accelerating structure. It makes use of high speed digital In-phase/Quadrature (IQ) detection, digital processing, and digital IQ modulation. The digital processing and IQ modulation is done in a single PLD. The system incorporates continually variable set points, iterative learning, feed forward as well as extensive diagnostics and other features well suited for digital implementations. Built on a single VME card, it will be first used in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3) and later for upgrading the present proton linac (linac 2). This system serves also as a prototype for the future Superconducting Proton Linac (SPL). The design principle and the experimental results are described.

  19. Full power to the first Linac4 module

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    Since last week the first of a total of 23 accelerating structures for Linac4 has been undergoing high-power tests. Although still a prototype, this structure is destined to be the first of the 12 PIMS cavities to be installed in the Linac4 tunnel and it has been completely designed, developed and constructed at CERN.   The PIMS prototype. The new Linac4 has 4 different types of accelerating structures. The PI-Mode Structures (PIMS) are the last stage and are designed to accelerate protons up to 160 MeV. “PIMS have never before been used to accelerate protons”, explains Frank Gerigk, the project engineer responsible for the Linac4 accelerating structures. “In LEP, they were used to accelerate electrons, and now we have modified them and improved several design features to make them suitable for protons”. The first prototype was entirely manufactured in the CERN workshop. Due to the size of the pieces it was difficult to achieve and preserve the required to...

  20. Feedback scheme for kink instability in ERL based electron ion collider

    International Nuclear Information System (INIS)

    Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.

    2011-01-01

    Kink instability presents one of the limiting factors from achieving higher luminosity in ERL based electron ion collider (EIC). However, we can take advantage of the flexibility of the linac and design a feedback system to cure the instability. This scheme raises the threshold of kink instability dramatically and provides opportunity for higher luminosity. We studied the effectiveness of this system and its dependence on the amplitude and phase of the feedback. In this paper we present results of theses studies of this scheme and describe its theoretical and practical limitations. The main advantage of an energy recovery linac (ERL) based electron ion collider (EIC) over a ring-ring type counterpart is the higher achievable luminosity. In ERL-based version, one electron beam collides with the opposing ion beam only once so that the beam-beam parameter can largely exceed the usual limitation in an electron collider ring, while the beam-beam parameter for the ion beam remains small values. The resulting luminosity may be enhanced by one order of magnitude. The beam dynamics related challenges also arise as the luminosity boost in ERL based EIC due to the significant beam-beam effect on the electron beam. The effects on the electron beam include the additional large beam-beam tune shift and nonlinear emittance growth, which are discussed. The ion beam may develop a head-tail type instability, referred as 'kink instability', through the interaction with the electron beam. In this paper, we discuss the feasibility of an active feedback system to mitigate the kink instability, by taking advantage of the flexibility of ERL. Throughout the paper, we will discuss the collision between proton and electron beam. Any other ion species can be scaled by its charge Z and ion mass A.

  1. Linac upgrade plan for the KEK B-Factory

    International Nuclear Information System (INIS)

    Enomoto, Atsushi; Anami, Shozo; Kamitani, Takuya; Hanaki, Hirofumi; Shidara, Tetsuo; Sato, Isamu

    1993-01-01

    In the KEK B-Factory plan, e+/e- collider rings with 3.5- GeV positions and 8-GeV electrons are being considered, and full-energy injection from the existing linac is required. The acceleration energy of the linac must be upgraded from 2.5 to 8 GeV. The most effective way has been searched from several points of view, such as the beam quality, ease of beam handling, and construction. This article describes the basic plan of the energy upgrade and recent progress regarding this project

  2. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  3. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  4. Free electron laser experiments using a long pulse induction linac

    International Nuclear Information System (INIS)

    Pasour, J.A.; Lucey, R.

    1983-01-01

    The NRL Long Pulse Induction Linac is being employed in a Free Electron Laser (FEL) experiment. The authors present results of beam transport and focusing experiments as well as measurements of the output radiation generated by various magnetic wigglers. The electron gun of the accelerator presently has a 17-cmdiam. cold cathode which is located in a nearly zero magnetic field (B /SUB z/ less than or equal to 5 G). The gun voltage is flat to within approx. = + or - 5% for 1.5 μsec with this graphite brush cathode. The beam is focused by a series of solenoidal coils as it propagates through the 4-m-long accelerator. 2 A solenoidal field which can be varied from 1-10 kG confines the beam in the FEL interaction region. Previous experiments were limited by poor beam transport, focusing, and matching into the relatively large solenoidal field in the FEL region. By smoothing the axial magnetic field profile in the accelerator and making a more adiabatic transition from the low field in the accelerator to the high field in the FEL, beam transport into the wiggler has been substantially improved. Currently, a 700 kV beam with I > 500 A and r /SUB b/ < 0.75 cm is transported through the FEL region. Beam transport is in qualitative agreement with envelope code calculations

  5. SU-E-T-11: A Cloud Based CT and LINAC QA Data Management System

    International Nuclear Information System (INIS)

    Wiersma, R; Grelewicz, Z; Belcher, A; Liu, X

    2015-01-01

    Purpose: The current status quo of QA data management consists of a mixture of paper-based forms and spreadsheets for recording the results of daily, monthly, and yearly QA tests for both CT scanners and LINACs. Unfortunately, such systems suffer from a host of problems as, (1) records can be easily lost or destroyed, (2) data is difficult to access — one must physically hunt down records, (3) poor or no means of historical data analysis, and (4) no remote monitoring of machine performance off-site. To address these issues, a cloud based QA data management system was developed and implemented. Methods: A responsive tablet interface that optimizes clinic workflow with an easy-to-navigate interface accessible from any web browser was implemented in HTML/javascript/CSS to allow user mobility when entering QA data. Automated image QA was performed using a phantom QA kit developed in Python that is applicable to any phantom and is currently being used with the Gammex ACR, Las Vegas, Leeds, and Catphan phantoms for performing automated CT, MV, kV, and CBCT QAs, respectively. A Python based resource management system was used to distribute and manage intensive CPU tasks such as QA phantom image analysis or LaTeX-to-PDF QA report generation to independent process threads or different servers such that website performance is not affected. Results: To date the cloud QA system has performed approximately 185 QA procedures. Approximately 200 QA parameters are being actively tracked by the system on a monthly basis. Electronic access to historical QA parameter information was successful in proactively identifying a Linac CBCT scanner’s performance degradation. Conclusion: A fully comprehensive cloud based QA data management system was successfully implemented for the first time. Potential machine performance issues were proactively identified that would have been otherwise missed by a paper or spreadsheet based QA system

  6. SU-E-T-11: A Cloud Based CT and LINAC QA Data Management System

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, R; Grelewicz, Z; Belcher, A; Liu, X [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: The current status quo of QA data management consists of a mixture of paper-based forms and spreadsheets for recording the results of daily, monthly, and yearly QA tests for both CT scanners and LINACs. Unfortunately, such systems suffer from a host of problems as, (1) records can be easily lost or destroyed, (2) data is difficult to access — one must physically hunt down records, (3) poor or no means of historical data analysis, and (4) no remote monitoring of machine performance off-site. To address these issues, a cloud based QA data management system was developed and implemented. Methods: A responsive tablet interface that optimizes clinic workflow with an easy-to-navigate interface accessible from any web browser was implemented in HTML/javascript/CSS to allow user mobility when entering QA data. Automated image QA was performed using a phantom QA kit developed in Python that is applicable to any phantom and is currently being used with the Gammex ACR, Las Vegas, Leeds, and Catphan phantoms for performing automated CT, MV, kV, and CBCT QAs, respectively. A Python based resource management system was used to distribute and manage intensive CPU tasks such as QA phantom image analysis or LaTeX-to-PDF QA report generation to independent process threads or different servers such that website performance is not affected. Results: To date the cloud QA system has performed approximately 185 QA procedures. Approximately 200 QA parameters are being actively tracked by the system on a monthly basis. Electronic access to historical QA parameter information was successful in proactively identifying a Linac CBCT scanner’s performance degradation. Conclusion: A fully comprehensive cloud based QA data management system was successfully implemented for the first time. Potential machine performance issues were proactively identified that would have been otherwise missed by a paper or spreadsheet based QA system.

  7. An Optimized Low-Charge Configuration of the LINAC Coherent Light Source

    CERN Document Server

    Emma, Paul; Huang, Zhirong; Limborg-Deprey, Cecile; Reiche, Sven; Wu, Juhao; Zolotorev, Max S

    2005-01-01

    The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The nominal parameter set is founded on a 1-nC bunch charge and normalized emittance of about 1 micron. The most challenging issues, such as emittance generation, wakefields, and coherent synchrotron radiation (CSR), are associated with the high bunch charge. In the LCLS in particular, with its strong linac wakefields, the bunch compression process produces sharp temporal horns at the head and tail of the bunch with degraded local emittance, effectively wasting much of the charge. The sharp horns intensify CSR in the bends and further drive a strong resistive-wall wakefield in the long FEL undulator. Although these issues are not insurmountable, they suggest a lower bunch charge may be more suitable. This study uses a 0.2-nC bunch charge and 0.85-micron emittance with only 30 A of peak current in the injector, producing the same FEL saturation length. The resulting performance is more stable, has negl...

  8. Photonuclear and Radiation Effects Testing with a Refurbished 20 MeV Medical Electron Linac

    CERN Document Server

    Webb, Timothy; Beezhold, Wendland; De Veaux, Linda C; Harmon, Frank; Petrisko, Jill E; Spaulding, Randy

    2005-01-01

    An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.

  9. Experience with a radio frequency gun on the SSRL Injector Linac

    International Nuclear Information System (INIS)

    Weaver, J.N.; Genin, R.D.; Golceff, P.; Morales, H.; Sebek, J.

    1993-04-01

    A-SSRL/Varian-Associates-built, one-and-a-half cavity microwave, thermionic-cathode gun has operated on the SSRL Injector Linac reliably without changing the cathode for over 10,000 hours, with no significant decrease in emission. Thus, for a pulsed electron beam, with a maximum of 0.5 A peak at 2 to 3 MeV from a 3.5 MW peak rf pulse of 2 μs pulse width at 10 pps, the apparent but small amount of back bombardment of the cathode has been tolerable. Use of a bunch-compression alpha magnet and a stripline chopper after the gun produces the required S-band 3 to 5 microbunches of electrons for injection into a standard 10-m-long linac and on into a booster synchrotron, which in turn is used to fill SPEAR. Component limitations and operating characteristics of the gun and the linac's rf system are discussed

  10. Performance of the 100 MeV injector linac for the electron storage ring at Kyoto University

    International Nuclear Information System (INIS)

    Shirai, T.; Sugimura, T.; Iwashita, Y.; Kakigi, S.; Fujita, H.; Tonguu, H.; Noda, A.; Inoue, M.

    1996-01-01

    An electron linear accelerator has been constructed as an injector of a 300 MeV electron storage ring (Kaken Storage Ring, KSR) at Institute for Chemical Research, Kyoto University. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the 1 μsec long pulse mode. The transverse and longitudinal emittance are measured to evaluate the beam quality for the beam injection into the KSR. They are observed by the profile monitors combined with quadrupole magnets or an RF accelerator. The results are that the normalized transverse emittance is 120 π.mm.mrad. The longitudinal emittance is 15 π.deg.MeV and the energy spread is ±2.2 %. (author)

  11. Operation of the high-brightness linac for the advanced free-electron laser initiative at Los Alamos

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Austin, R.H.; Chan, K.C.D.; Gierman, S.M.; Kinross-Wright, J.M.; Kong, S.H.; Nguyen, D.C.; Russell, S.J.; Timmer, C.A.

    1993-01-01

    Free-electron lasers and high-energy physics accelerators have increased the demand for very high-brightness beam sources. This paper describes the design of an accelerator which has produced beams of 2.1 π mm-mrad at 1 nC and emittances of 3.7 and 6.5 π mm-mrad for 2 and 3 nC, respectively. The accelerator has been operated between 10 and 18 MeV. The beam emittance growth in the accelerator is minimized by using a photoinjector electron source integrated into the design of the linac, a focusing solenoid to correct the emittance growth caused by space charge, and a special design of the coupling slots between accelerator cavities to minimize quadrupole effects. The FEL has recently operated at 5 microns

  12. Operation of the high brightness linac for the advanced free-electron laser initiative at Los Alamos

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Austin, R.H.; Chan, K.C.D.; Gierman, S.M.; Kinross-Wright, J.M.; Kong, S.H.; Nguyen, D.C.; Russell, S.J.; Timmer, C.A.

    1993-01-01

    Free-electron lasers and high energy physics accelerators have increased the demand for very high-brightness beam sources. This paper describes the design of an accelerator which has produce beams of less than 2.1 π mm-mrad at 1 nC and emittances of 3.7 and 6.5 π mm-mrad for 2 and 3 nC, respectively. The accelerator has been operated between 10 and 18 MeV.The beam emittance growth in the accelerator is minimized by using a photoinjector electron source integrated into the design of the linac, a focusing solenoid to correct the emittance growth caused by space charge, and a special design of the coupling slots between accelerator cavities to minimize quadrupole effects

  13. Linac Coherent Light Source (LCLS) design study report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 {angstrom}. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues.

  14. Linac Coherent Light Source (LCLS) design study report

    International Nuclear Information System (INIS)

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 angstrom. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues

  15. 200 MeV RF linac for synchrotron injection

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Lyons, S.; Manca, J.; Miller, R.; Treas, P.; Zante, T.; Miller, R.

    1992-01-01

    Construction has been completed on an electron linear accelerator for the Brookhaven National Laboratory. This accelerator will be used for the injection of a 200 MeV electron beam into a synchrotron for lithography experiments. This paper describes the conceptual design of the linac, its e-gun pulser, and its control and timing systems. 3 figs., ref

  16. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Science.gov (United States)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  17. Design and construction of an injector for an electron/positron Linac optimized for positron yield and minimal particle loss

    International Nuclear Information System (INIS)

    Liebig, Clemens

    2014-11-01

    The Linac II is the first part of the accelerator chain supplying PETRA III. Since the start of PETRA III operation, highest reliability is demanded and several updates are required. Part of these is the new injection system. Beam loss at high energies and the associated activation have to be avoided. At energies above 80 MeV particle loss of 20% occurred. Additionally, an alternative to the old gun, operating in an oil bath and for which cathode preparation is not available, is required. The new system will be commissioned while the old bombarder gun injector is kept for redundancy. In order to obtain the space for joining the beam lines of both electron sources, one accelerator section must be removed. Electron pulses of 6 A beam current and 2 to 30 ns length are provided by the new injection system. The gun uses a thermionic cathode, 100 kV voltage for acceleration and is built as a triode. Longitudinal focusing is performed by a prebuncher and a hybrid buncher structure, both operating at 3 GHz. The buncher is a traveling wave structure to which a short cell has been added, operated in π mode with a standing wave. That way, better electron capture is achieved. A magnetic chicane serves for energy filtering. The design of the injection system, as well as the old injector, have been optimized in simulations and transmission in the linac has been compared. Possible reasons for beam loss are beam loading and misaligned components. For the bombarder gun particle tracking, a loss of 1% at high energies was observed due to beam loading. The additional beam optics and steering options in the beam line allow for compensation of the misalignment of preceding and succeeding components. The complete new injection system has been operated in a test stand and has undergone extensive tests. After successive enhancement of technically critical components, reliable operation was possible. Investigations of the electron capture and bunching procedure have been carried out by

  18. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    Science.gov (United States)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  19. CEBAF Cryomodule Commissioning in the South Linac

    International Nuclear Information System (INIS)

    M. Drury; H. Lankford; T. Lee; J. Marshall; J. Preble; Q. Saulter; W. Schneider; Michael Spata; Mark Wiseman

    1993-01-01

    When complete, the Continuous Electron Beam Accelerator Facility will house a 4 GeV recirculating linear accelerator containing 42 1/4 cryomodules arrayed in two antiparallel linacs and an injector. Currently, 38 1/4 cryomodules have been installed. Each cryomodule contains eight superconducting niobium 5-cell rf cavities that operate at 1.497 GHz[1]. A cryomodule must provide an energy gain of 20 MeV to the 200 mu-A beam[2]. The resultant dynamic heat load must be less than 45 W. The cavity parameters that are measured during the commissioning process include the external Q's (Q(sub ext)) of the cavity ports, the unloaded Q (Q(sub 0)) of the cavity as a function of accelerating gradient, and the maximum operating gradient of the cavity[3]. Finally, the mechanical tuners are cycled and characterized. A portable test stand allows local control of the rf system and provides automated data acquisition. During the period from April 1993 through September 1993, 16 of the 20 cryomodules installed in the South Linac were commissioned. All cryomodules tested in the South Linac meet or exceed the CEBAF specifications. This paper describes the results of the commissioning of the first 10 cryomodules in the South Linac

  20. The ERL-based Design of Electron-Hadron Collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, Vadim [et al.

    2016-06-01

    Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design ($L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.

  1. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  2. Differential current measurement in the BNL energy recovery linac test facility

    International Nuclear Information System (INIS)

    Cameron, Peter

    2006-01-01

    An energy recovery linac (ERL) test facility is presently under construction at BNL [V.N. Litvinenko, et al., High current energy recovery linac at BNL, PAC, 2005; I. Ben-Zvi, et al., Extremely high current, high brightness energy recovery linac, PAC, 2005]. The goal of this test facility is to demonstrate CW operation with an average beam current greater than 100mA, and with greater than 99.95% efficiency of current recovery. This facility will serve as a test bed for the novel high current CW photo-cathode [A. Burrill, et al., Multi-alkali photocathode development at BNL, PAC, 2005; A. Murray, et al., State-of-the-art electron guns and injector designs for energy recovery linacs, PAC, 2005], the superconducting RF cavity with HOM dampers [R. Calaga, et al., High current superconducting cavities at RHIC, EPAC, 2004; R. Calaga, et al., in: Proceedings of the 11th workshop on RF superconductivity, Lubeck, Germany, 2003], and the lattice [D. Kayran, V. Litvinenko, Novel method of emittance preservation in ERL merging system in presence of strong space charge forces, PAC, 2005; D. Kayran, et al., Optics for high brightness and high current ERL project at BNL, PAC, 2005] and feedback systems needed to insure the specified beam parameters. It is an important stepping stone for electron cooling in RHIC [I. Ben-Zvi, et al., Electron cooling of RHIC, PAC, 2005], and essential to meet the luminosity specifications of RHICII [T. Hallman, et al., RHICII/eRHIC white paper, available at http://www.bnl.gov/henp/docs/NSAC_RHICII-eRHIC_2-15-03.pdf]. The expertise and experience gained in this effort might also extend forward into a 10-20GeV ERL for the electron-ion collider eRHIC [http://www.agsrhichome.bnl.gov/eRHIC/, Appendix A, The linac-ring option, 2005]. We report here on the use of a technique of differential current measurement to monitor the efficiency of current recovery in the test facility, and investigate the possibility of using such a monitor in the machine

  3. Detuning effect in a traveling wave type linac

    International Nuclear Information System (INIS)

    Arai, S.; Kobayashi, K.; Tojyo, E.; Yoshida, K.

    1979-01-01

    A 15-MeV traveling wave type electron linac is used as the injector for the 1.3-GeV electron synchrotron at the Institute for Nuclear Study, University of Tokyo. The resonant frequency of this accelerator waveguide is 2758.00 MHz at 30 0 C. The performance of the linac,however, is improved when it is operated with a frequency which is higher than the design value by 200 to 400 KHz. It is shown that the detuning due to the beam loading is serious in such an accelerator waveguide in which the buncher and regular sections are combined, and the detuning effect can approximately be compensated by changing the operating frequency. The detuning effect in the traveling wave-type accelerator waveguide was studied both from experimental and theoretical aspects by using a short test waveguide

  4. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  5. X-band Linac for a 6 MeV dual-head radiation therapy gantry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hyun; Shin, Seung-Wook; Lee, Jongchul; Kim, Hui-Su [WCU Department of Energy Science, Suwon 440-746 (Korea, Republic of); Lee, Byeong-No; Lee, Byung-Chul [Radiation Instrumentation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212 (Korea, Republic of); Park, Hyung-dal; Song, Ki-back [Radiation Technology eXcellence (RTX), Daejeon 305-500 (Korea, Republic of); Song, Ho-seung; Mun, Sangchul; Ha, Donghyup [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Chai, Jong-Seo, E-mail: jschai@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-04-21

    We developed a design for a 6 MeV X-band linear accelerator for radiation therapy in a dual-head gantry layout. The dual-head gantry has two linacs that can be operated independently. Each X-band linac accelerates electron bunches using high-power RF and generates X-rays for radiation therapy. It requires a versatile RF system and pulse sequence to accomplish various radiation therapy procedures. The RF system consists of 9.3 GHz, 2 MW X-band magnetron and associated RF transmission components. A test linac was assembled and operated to characterize its RF performance without beam. This paper presents these results along with a description of the gantry linacs and their operational requirements.

  6. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik, E-mail: hskang@postech.ac.kr [Pohang Accelerator Laboratory, San31, Hyoja-dong, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2014-02-14

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 10{sup 11} n/cm{sup 2}/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  7. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  8. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); DasGupta, K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Beam Technology Development Group, BARC, Mumbai 400085 (India)

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  9. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  10. Technology for Fissionable Materials Detection by Use of 100 MeV Variable Linac

    CERN Document Server

    Karasyov, Sergey P; Dovbnja, Anatoliy N; Eran, L; Kiryukhin, Nikolay M; Melnik, Yu M; Ran'iuk, Yu; Shlyakhov, Il'ya N; Trubnikov, Sergiy V

    2005-01-01

    A new concept for a two-step facility to increase the accuracy/reliability of detecting heavily shielded fissionable materials (FM) in marine containers is presented. The facility will detect FM in two steps. An existing dual-view; dual-energy X-ray scanner, which is based on 7 MeV electron accelerator, will select the suspicious places inside container. The linac with variable energy (up to 100 MeV) will be used for the second step. The technology will detect fissionable nuclei by gamma induced fission reactions and delayed neutron registration. A little-known Ukrainian experimental data obtained in Chernobil' clean-up program will be presented to ground proposed concept. The theoretical calculations of neutron fluxes scale these results to marine container size. Modified GEANT code for electron/gamma penetration and authors' own software for neutron yield/penetration are used for these calculations. Available facilities (X-ray scanners; linac; detectors), which will be used for concept proof, are described....

  11. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2005-01-01

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R and D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC

  12. Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility

    CERN Document Server

    Dubrovskiy, A; Bathe, BN; Srivastava, S

    2013-01-01

    A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.

  13. The superconducting linac booster at the ANU

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1995-02-01

    This report outlines the progress of the installation of the superconducting Linac booster at the Australian National University. The Linac is based upon four modules, three of which contain three split-loop resonators. The fourth cryostat was intended to be a superbuncher and so houses only one resonator. The first stage of Linac operation will employ only three modules with 2 MV/m from each resonator. It is expected that the implementation of all nine modules, in subsequent stages, would boost beams by 18 MV/q. The project has fostered productive international collaboration between UK and Australian scientists. 1 tab., 6 figs

  14. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  15. Class structure of the Injector Linac control system of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Itoh, Y.; Tamezane, K.; Sakaki, Y.; Kodera, M.; Yokomizo, H.

    1994-01-01

    The first section of the Injector Linac for SPring-8 has been constructed and the initial beam meets the specification. This section, from the electron gun to the buncher and monitors, is also used as a test stand for the control software. The concept of Object-Oriented programming was adopted because of the special requirements for the accelerator control. We present an overview of the linac control system and the software architecture. ((orig.))

  16. Transverse and longitudinal emittance measurements in the ELSA linac

    International Nuclear Information System (INIS)

    Loulergue, A.; Dowell, D.H.; Joly, S.; De Brion, J.P.; Haouat, G.; Schumann, F.

    1997-01-01

    The ELSA RF linac photoinjector has been designed to deliver high-brightness electron beams. The present paper deals with the transverse and longitudinal emittance measurements, at different locations along the ELSA beam line, and the analysis of their variations as a function of the photoinjector parameters : magnetic field generated by the anode focusing lens, bunch charge and pulse duration. While transverse emittance has been already studied in other similar installations, there has been little study of the electron beam longitudinal dynamics. Experimental results are presented and compared to simulation-code expectations. For 2.0 nC, 85 A electron bunches, a normalized rms emittance of 2 π mm mrad and a brightness of 4.5 x 10 13 A/(π m rad) 2 at the linac exit have been measured as well as less than 10 keV rms energy spread (or less than 0.1% at 16.5 MeV). (orig.)

  17. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Science.gov (United States)

    Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.

    2018-02-01

    Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  18. Technical Note: Experimental results from a prototype high-field inline MRI-linac

    Energy Technology Data Exchange (ETDEWEB)

    Liney, G. P., E-mail: gary.liney@sswahs.nsw.gov.au [Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool NSW 2170 (Australia); Dong, B.; Zhang, K. [Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool NSW 2170 (Australia); and others

    2016-09-15

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. Methods: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enabling shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). Results: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. Conclusions: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical

  19. Physics design of APT linac with normal conducting rf cavities

    International Nuclear Information System (INIS)

    Nath, S.; Billen, J.H.; Stovall, J.E.; Takeda, Harunori; Young, L.M.

    1996-01-01

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results

  20. Update on the VECC-TRIUMF collaboration for superconducting e-Linac development

    International Nuclear Information System (INIS)

    Naik, V.; Dechoudhury, S.; Mondal, M.

    2013-01-01

    A 50 MeV 100 kW cw superconducting electron linac (e-Linac) will be used as photo-fission driver for the ANURIB facility at Variable Energy Cyclotron Centre. In the first phase a 10 MeV Injector is being developed in collaboration with TRIUMF Canada, who will also be using an e-Linac driver for their ARIEL (Advanced Rare IsotopE Laboratory) upgrade. The VECC e-Linac will be installed at the upcoming Rajarhat campus. For the initial R and D on the Injector an e-Linac test area is being set-up in one of the experimental caves of the K130 cyclotron at the Salt Lake campus. The Injector will be tested using a 100 kV gun. A Capture Cryo Module (CCM) consisting of two beta=1, 1.3 GHz, single-cell niobium cavities is being designed and built indigenously. The CCM will be used for pre-acceleration of the beam from the gun to around 400 keV before injection in to the ICM. The ICM will be built and tested at TRIUMF and a test area has been set-up at TRIUMF for the purpose. Detailed status report on various components of the e-Linac will be presented. (author)

  1. Piezoelectric actuator based phase locking system to improve the dynamics of the control scheme for a heavy ion superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, B.K., E-mail: bhuban@iuac.res.in [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India); Ahuja, R.; Kumar, Rajesh; Suman, S.K.; Mathuria, D.S.; Rai, A.; Patra, P.; Pandey, A.; Karmakar, J.; Chowdhury, G.K.; Dutt, R.N. [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India); Joshi, G. [Electronics Division, Bhabha Atomic Research Centre, Mumbai – 400 085 (India); Ghosh, S.; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India)

    2015-03-21

    The superconducting heavy ion linear accelerator at Inter-University Accelerator Centre Delhi has been in operation since 2007. Initially, the superconducting niobium Quarter Wave Resonators (QWRs) in the linac were phase locked using a combination of electronic and mechanical controls which operated in fast (~10 μsec) and slow (~sec) time scales respectively. In this scheme, fast control was achieved through dynamic phase control whereas slow control of the frequency was done through the niobium tuner bellows installed at the drift tube end of the resonator and flexed using helium gas to change the resonance frequency. In order to improve the dynamics of this control system, an alternate scheme using piezoelectric actuator, instead of helium gas, to flex the same niobium bellows, has been implemented in the QWRs of the second and third accelerating modules of the linac. The piezoelectric actuator is used in closed loop along with the fast dynamic phase control scheme. The feedback loop of the piezoelectric control includes a dual control scheme - an integral control loop to arrest the slow drift, and the positive position feedback (PPF) based control loop to damp the microphonics. This control scheme has been found to arrest slow drifts in the resonator frequency more tightly along with damping of low frequency microphonics (~few tens of Hz) picked up by the resonator from its surrounding environment. This has substantially eased the load from the fast electronic control, resulting in the reduction of the radio frequency (RF) power requirement during operation. In addition, it has improved the stability of phase and amplitude of the QWRs. The details of the new scheme along with results obtained during the online run of the linac for beam acceleration are presented.

  2. Simplified RF power system for Wideroe-type linacs

    International Nuclear Information System (INIS)

    Fugitt, J.; Howard, D.; Crosby, F.; Johnson, R.; Nolan, M.; Yuen, G.

    1981-03-01

    The RF system for the SuperHILAC injector linac was designed and constructed for minimum system complexity, wide dynamic range, and ease of maintenance. The final amplifier is close coupled to the linac and operates in an efficient semilinear mode, eliminating troublesome transmission lines, modulators, and high level regulators. The system has been operated at over 250 kW, 23 MHz with good regulation. The low level RF electronics are contained in a single chassis adjacent to the RF control computer, which monitors all important operating parameters. A unique 360 0 phase and amplitude modular is used for precise control and regulation of the accelerating voltage

  3. Study on interference between far-IR to mm-wave CSR from consecutive electron bunches at BFEL RF-Linac

    CERN Document Server

    Biao, Z J; Xie Jia Li; Zhang Guo Qing

    2001-01-01

    Coherent bending magnet or undulator radiation due to a train of electron bunches is treated as radiation from a multi-slit diffraction array. Based on this model, we numerically analyse the interference among coherent synchrotron radiation emitted from consecutive bunches in a train of bunches, which are accelerated by a 30-MeV RF-linac at BFEL. Some interesting results are as follows: (1) Rapidly oscillating radiation enhancement due to interbunch interference is overlapped on the single bunch spectrum. (2) It consists of a series of spectrum lines corresponding to harmonics of the RF fundamental. (3) Main maximum positions are determined by the 'diffraction condition'. (4) Total intensity is about the square of the number of bunches participating in interference as single bunch intensity. Experimental design to measure interbunch interference at BFEL with the sub-mm and mm-wave Michelson interferometer is presented.

  4. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  5. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    International Nuclear Information System (INIS)

    Wang, Guimei

    2011-01-01

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q ext with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam energy

  6. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  7. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  8. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  9. Photocathode driven linac at UCLA for FEL and plasma wakefield acceleration experiments

    International Nuclear Information System (INIS)

    Hartman, S.; Aghamir, F.; Barletta, W.; Cline, D.; Dodd, J.; Katsouleas, T.; Kolonko, J.; Park, S.; Pellegrini, C.; Rosenzweig, J.; Smolin, J.; Terrien, J.; Davis, J.; Hairapetian, G.; Joshi, C.; Luhmann, N. Jr.; McDermott, D.

    1991-01-01

    The UCLA compact 20-MeV/c electron linear accelerator is designed to produce a single electron bunch with a peak current of 200 A, an rms energy spread of 0.2% or less, and a short 1.2 picosecond rms pulse duration. The linac is also designed to minimize emittance growth down the beamline so as to obtain emittances of the order of 8πmm-mrad in the experimental region. The linac will feed two beamlines, the first will run straight into the undulator for FEL experiments while the second will be used for diagnostics, longitudinal bunch compression, and other electron beam experiments. Here the authors describe the considerations put into the design of the accelerating structures and the transport to the experimental areas

  10. 25 years of Pelletron Linac facility

    International Nuclear Information System (INIS)

    Shrivastava, A.; Palit, R.

    2014-01-01

    The DAE-BRNS International Symposium on Nuclear Physics was held in BARC during 2nd to 6th December 2013. A summary of the highlights of this symposium has recently appeared in Physics News. As a part of the symposium, a special session was held to commemorate 25 years of operation of the Mumbai Pelletron Linac Facility (PLF). PLF, being operated jointly by Bhabha Atomic Research Centre and Tata Institute of Fundamental Research, has been a major centre for heavy-ion accelerator based research in India. The Pelletron accelerator was formally inaugurated on 30th December 1988, and marked an important milestone in nuclear physics research in India. The facility was augmented with the indigenously developed superconducting LINAC booster to enhance the energy of the accelerated beams. The LINAC booster was commissioned in a phased manner and the entire facility was dedicated to the users on the 28th November 2007. The LINAC booster consists of seven liquid helium cryostat modules, each housing four lead coated (2 μm) copper quarter wave resonators (QWR). The cavities are designed to operate at 150 MHz with an optimum acceptance at a velocity corresponding to β=0.1. The performance of the QWRs is found to be excellent with an average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Beam transmission from the entry to the exit of the LINAC was found to be 80% and the beam timing (FWHM) of 600 ps was measured at the target position. Development of the superconducting LINAC is a major milestone in the accelerator technology in our country. Most of the critical components of the LINAC booster, the first superconducting heavy-ion accelerator in India, have been designed, developed and fabricated indigenously

  11. Electromagnetic design and beam dynamics studies for a 10 MeV, 10 kW electron linac

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2013-01-01

    Bi-periodic on-axis coupled standing wave linac is seen as an attractive choice for low energy (∼10 MeV) electron accelerators for industrial applications. In this paper, we present the physics design of an S-band bi-periodic on-axis coupled standing wave structure operating in π/2 mode. The structure operates at 2856 MHz and can accelerate electrons to 10 MeV. The 2D optimization of structure cells carried out using SUPERFISH is reported. Magnetic coupling is achieved through bean shaped coupling slots. Analytical calculations have been carried out to fix the dimensions of coupling slots. The paper discusses the complete 3D design of accelerating structure with coupling slots carried out using CST-MWS. The approach used to achieve confluence is outlined. Finally, the beam dynamics studies carried out using PARMELA are also discussed. (author)

  12. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  13. Microprocessor-based control for independently-phased RF linac cavities

    International Nuclear Information System (INIS)

    Dawson, J.W.

    1979-01-01

    A microprocessor based system has been built to control the RF amplifiers associated with independently phased linac cavities. The system has an 8080A at each amplifier station, together with associated ROM, RAM, I/O, etc. At a central NOVA 3 computer an additional 8080A system is incorporated in the interface to the NOVA I/O bus. The NOVA interface is connected by a bus of eighteen twisted pairs to each amplifier station, providing bilateral transmission between each station and the NOVA. The system architecture, bus protocol, and operating characteristics are described

  14. High power CW linac in PNC

    International Nuclear Information System (INIS)

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  15. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fazio, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frisch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guehr, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hettel, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hoffmann, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kirchmann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Limborg, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lindenberg, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Raubenheimer, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Reis, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ross, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tian, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Xiang, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  16. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    A. Lunin

    2018-02-01

    Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  17. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  18. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Science.gov (United States)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  19. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    International Nuclear Information System (INIS)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y; Crivelli, P; Gendotti, U; Rubbia, A

    2010-01-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·10 11 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  20. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y [Irfu, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Crivelli, P; Gendotti, U; Rubbia, A, E-mail: tomoko.muranaka@cea.f [Institut fuer TelichenPhysik, ETHZ, CH-8093 Zuerich (Switzerland)

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5{center_dot}10{sup 11} per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  1. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    Science.gov (United States)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  2. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Ma, B; Kuang, Y [University of Nevada, Las Vegas, Las Vegas, NV (United States); Diao, X [Shenzhen University, Shenzhen, Guangdong (China)

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant

  3. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    International Nuclear Information System (INIS)

    Li, X; Ma, B; Kuang, Y; Diao, X

    2014-01-01

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant

  4. Design of injector section for SPring-8 linac

    International Nuclear Information System (INIS)

    Yoshikawa, Hiroshi; Nakamura, Naoki; Mizuno, Akihiko; Suzuki, Shinsuke; Hori, Toshihiko; Yanagida, Kenichi; Mashiko, Katsuo; Yokomizo, Hideaki

    1993-07-01

    In the SPring-8, we are planning to use positrons in order to increase the beam life time in the storage-ring. For the injector linac, though high current beam production to yield positrons is alternative with accurate low current beam production for commissioning, we designed the injector section to achieve both of the high current mode and the low current mode. In this paper, overview of some simulation codes for the design of electron accelerators are described and the calculation results by TRACE for the injector section of the linac are shown. That is useful not only for the design of machines but for the selection of sensitive parameters to establish the good beam quality. Now the injector section, which is settled at Tokai Establishment, is arranged for the case of the performance check of the electron gun. And we present that the layout of this section is needed to be rearranged for the high current mode operation. (author)

  5. Construction of SPring-8 LINAC

    International Nuclear Information System (INIS)

    Yokomizo, Hideaki; Yoshikawa, Hiroshi; Suzuki, Shinsuke; Yanagida, Ken-ichi; Mizuno, Akihiko; Hori, Toshihiko; Tamezane, Kenji; Kodera, Masahiko; Sakaki, Hironao; Mashiko, Katsuo

    1993-01-01

    Construction of the linac building has been started in February 1993. The components of the linac are under manufacturing. The preinjector of linac was already constructed and temporarily installed in Tokai Establishment in order to test the beam quality. (author)

  6. Design Study of Control System for Radiation Therapy System Based on 6 MeV X-band LINAC

    International Nuclear Information System (INIS)

    Kim, Sehee; Kim, Jaehyun; Chae, Moonsik; Lee, Byeongno; Oh, Kyeongmin; Lee, Soomin; Ju, Jinsik; Park, Sangjoon; Kim, Hansoo; Jeong, Kyeongmin

    2017-01-01

    Linear accelerator(LINAC) is used in various fields such as industrial, defense, medical, etc because it is easy to control radiation energy or flow rate. KAERI developed a robot-based radiation therapy system that can efficiently irradiate radiation in a short period of time. Unlike the old type which uses a single robot arm, two robot arms are used and the smart bed is linked to track the respiration. This paper discusses the development of system of integrated X-band LINAC modules installed in smart robot therapy machines. In this study, total control program for integrating and controlling the medical LINAC modules was developed and verified. Future research will continue to reduce delays between transmissions and receptions and minimize interference between the modules.

  7. LFSC - Linac Feedback Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (<Linac Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  8. New linac technology - for SSC, and beyond

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1983-01-01

    With recent agreement on the high priority of seeking funding for a Superconducting Super Collider (SSC), it is appropriate to consider the injector linac requirements for such a machine. In so doing, the status of established technique and advantages of near-term R and D with relatively clear payoff are established, giving a base line for some speculation about linac possibilities even further in the future

  9. CERN’s Linac4 H− sources: Status and operational results

    International Nuclear Information System (INIS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D.; Gil-Flores, J.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Machado, C.; Mastrostefano, C.

    2015-01-01

    Two volume sources equipped with DESY and CERN plasma generators and a low voltage electron dump were operated at 45 kV in the Linac4 tunnel and on a dedicated test stand. These volume sources delivered approximately 20 mA and ensured the commissioning of the Radio Frequency Quadrupole accelerator and of the first section of the Drift Tube Linac. CERN’s prototype of a cesiated surface source equipped with this electron dump was operated continuously from November 2013 to April 2014 on the ion source test stand and is being commissioned in the Linac4 tunnel. Before cesiation, the prototype conditioned in volume mode provided up to 30 mA H − beam. Short cesiations, of the order of 10 mg effectively reduced the intensity of co-extracted electrons down to 2 - 8 times the H − current; this cesiated surface operation mode delivered up to 60 mA H − beam. An H − beam of the order of 40 mA was sustained up to four weeks operation with 500 μs pulses at 1.2s spacing. A new extraction was designed to match these beam properties. A copy of BNL’s magnetron produced at CERN was tested at BNL and delivered at 40 kV H − beam exceeding Linac4’s nominal intensity of 80 mA. In this contribution, the performances, dynamic response to cesiation, stability and availability of these prototypes are described. The needed optimization of the emittance of H − beam above 40 mA is presented, which requires an evolution of the front end that encompasses implementation of a large ceramic insulator

  10. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  11. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  12. High Voltage Installation of PS Linac 1 Preinjector

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The high-voltage installation of the linac 1 preinjector in its house-sized Faraday cage. Originally driven by a 520 kV Cockcroft-Walton generator, at the time of this picture the HV came from a 520 kV SAMES generator. The column in the front carries a capacitor. The cubicle in the right background is the electronics platform (see 7403120). The round structure at left houses the ion source, from where the protons (and sometimes other ions), electrostatically accelerated to 520 keV, enter the Alvarez structure of linac 1, to be accelerated to 50 MeV. Jean-Luc Vallet is busy with servicing the installation. See also 7403064X, 7403066X.

  13. Linac4 Technical Design Report

    CERN Document Server

    Arnaudon, L; Baylac, M; Bellodi, G; Body, Y; Borburgh, J; Bourquin, P; Broere, J; Brunner, O; Bruno, L; Carli, C; Caspers, Friedhelm; Cousineau, S M; Cuvet, Y; De Almeida Martins, C; Dobers, T; Fowler, T; Garoby, R; Gerigk, F; Goddard, B; Hanke, K; Hori, M; Jones, M; Kahle, K; Kalbreier, Willi; Kroyer, T; Küchler, D; Lombardi, A M; López-Hernandez, L A; Magistris, M; Martini, M; Maury, S; Page, E; Paoluzzi, M; Pasini, M; Raich, U; Rossi, C; Royer, J P; Sargsyan, E; Serrano, J; Scrivens, R; Silari, M; Timmins, M; Venturini-Delsolaro, W; Vretenar, M; Wegner, R; Weterings, W; Zickler, T

    2006-01-01

    Linac4 is an H- linear accelerator, intended to replace Linac2 as injector to the PS Booster (PSB). By delivering to the PSB a beam at 160 MeV energy, Linac4 will provide the conditions to double the brightness and intensity of the beam from the PSB, thus removing the first bottleneck towards higher brightness for the LHC and simplifying operation. Moreover, this new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios and could open the way to future extensions of the CERN accelerator complex towards higher performance. This Technical Design Report presents a detailed technical overview of the Linac4 design as it stands at end 2006.

  14. A comprehensive study of the mechanical performance of gantry, EPID and the MLC assembly in Elekta linacs during gantry rotation

    DEFF Research Database (Denmark)

    Rowshanfarzad, P; Lynggaard Riis, Hans; Zimmermann, S J

    2015-01-01

    OBJECTIVE: In radiotherapy treatments, it is crucial to monitor the performance of linear accelerator (linac) components, including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested...... collimator leaf bank assemblies was around 1 mm. A meaningful correlation was found between the age of the linacs and their mechanical performance. Conclusions and Advances in knowledge: The method and software developed in this study provide a simple tool for effective investigation of the behaviour...

  15. The Development of the Linac Coherent Light Source RF Gun

    International Nuclear Information System (INIS)

    Dowell, D

    2008-01-01

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of

  16. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    International Nuclear Information System (INIS)

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y

    2014-01-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD 10 of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R 80 matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs

  17. Inner structure of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows the inner structure of Linac 2, with drift-tubes hanging on stems under a rigid support structure, soon to be mounted inside tank 1 (750 keV to 10 MeV, the lowest-energy one of 3). Frank Malthouse is standing in the background.

  18. A hospital-based proton linac for neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1988-10-01

    Fermilab's Alvarez proton linac has been used routinely for neutron therapy since 1976. The Neutron Therapy Facility (NTF) operates in a mode parasitic to the laboratory's high energy physics program, which uses the linac as an injector for a synchrotron. Parasitic operation is possible because the linac delivers /approximately/1.2 /times/ 10 13 protons per pulse at a 15 Hz rate, while the high energy physics program requires beam at a rate not greater than 0.5 Hz. Protons not needed for physics experiments strike a beryllium target to produce neutrons for neutron therapy. Encouraging clinical results from NTF have led to a study of the issues involved in providing hospitals with a neutron beam of the type available at Fermilab. This paper describes the issues addressed by that study. 12 refs., 1 fig., 1 tab

  19. Beam transport study of kA-class on the induction linac

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Iwao; Zheng, Xiaodong; Maebara, Sunao; Shiho, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kishiro, Jun-ichi; Takayama, Ken [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-02-01

    Beam transport of kA-class for GW-class Free Electron Laser (FEL) was carried out through the two induction linacs (JLA). The first 1 MV induction linac was used as an electron beam generator, in which a carbon-cloth impregnated cold cathode was equipped and 1 MV, 160ns pulsed high voltage was immersed. About 1 kA high current electron beam was successfully generated and accelerated more 1 MeV by employing the following second induction linac. For kA-class high current beam generation and transportation, the most serious problem arises from the so strong space charge effect that the investigations to cure this effect both in the beam generation and the transportation are required. High rate beam loss comes from the strong space charge effect because the effect causes the unexpected beam blow up during the transportation. In the electron generator, the generated beam emittance was minimized with the program EGUN by choosing the geometry and shape of the cathode and anode electrode. In the beam transportation, a simulation program which included the space charge effect was developed. The simulation program was used to minimize and optimize the beam envelope oscillation through the beam transport line, and designed the configuration of the solenoid magnet channel. Experimentally, the electron beam of 450 A was extracted. The beam transport efficiency (beam current at outlet of accelerator/at inlet) reached to 90%, under the magnetic field of 1 kG. It was succeeded that the electron beam of 2 MeV - 400 A was transported with the mean beam diameter of 50 mm. (author)

  20. Design and development of R.F. LINAC accelerator components

    International Nuclear Information System (INIS)

    Abhay Kumar; Guha, S.; Balasubramaniam, R.; Jawale, S.B.

    2003-01-01

    Full text: Radio frequency linear accelerator, a high power electron LINAC technology, is being developed at BARC. These accelerators are considered to be the most compact and effective for a given power capacity. Important application areas of this LINAC include medical sterilization, food preservation, pollution control, semiconductor industries, radiation therapy and material science. Center for Design and Manufacture (CDM), BARC has been entrusted with the design, development and manufacturing of various mechanical components of the accelerator. Most critical and precision components out of them are Diagnostic chamber, Faraday cup, Drift tube and R.F. cavities. This paper deals with the design aspects in respect of Ultra high vacuum compatibility and the mechanism of operation. Also this paper discusses the state-of-art technology for machining of intricate contour using specially designed poly crystalline diamond tool and the inspection methodology developed to minimize the measurement errors on the machined contour. Silver brazing technique employed to join the LINAC cavities is also described in detail

  1. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    Science.gov (United States)

    St. Aubin, J.; Steciw, S.; Fallone, B. G.

    2010-08-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  2. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    International Nuclear Information System (INIS)

    St Aubin, J; Fallone, B G; Steciw, S

    2010-01-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  3. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E.C.; Kewisch, J.; Litvinenko, V.N.; Xu, W.

    2010-01-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R and D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R and D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  4. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Science.gov (United States)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E. C.; Kewisch, J.; Litvinenko, V. N.; Xu, Wencan

    2010-12-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R&D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  5. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2010-12-01

    Full Text Available Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC are based on energy recovery linacs (ERLs with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC temperatures in a prototype research and development (R&D five-cell niobium superconducting rf (SRF cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  6. Beam position monitoring in the AGS Linac to Booster transfer line

    International Nuclear Information System (INIS)

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper provides a system overview and report results from the commissioning experience

  7. Multi-cell disk-and-ring tapered structure for compact RF linacs

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V.; Boucher, S.; Kutsaev, S. [RadiaBeam Systems LLC, 1713 Stewart Street, Santa Monica, CA 90404, US (United States); Hartzell, J. [RadiaBeam Technologies, LLC, 1717 Stewart Street, Santa Monica, CA 90404, US (United States); Savin, E. [RadiaBeam Technologies, LLC, 1717 Stewart Street, Santa Monica, CA 90404, US (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-09-11

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  8. Multi-cell disk-and-ring tapered structure for compact RF linacs

    International Nuclear Information System (INIS)

    Smirnov, A.V.; Boucher, S.; Kutsaev, S.; Hartzell, J.; Savin, E.

    2016-01-01

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  9. Modeling radiation loads in the ILC main linac and a novel approach to treat dark current

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, Nilolai V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rakhno, Igor L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Tropin, Igor S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-09-11

    Electromagnetic and hadron showers generated by electrons of dark current (DC) can represent a significant radiation threat to the ILC linac equipment and personnel. In this study, a commissioning scenario is analysed which is considered as the worst-case scenario for the main linac regarding the DC contribution to the radiation environment in the tunnel. A normal operation scenario is analysed as well. An emphasis is made on radiation load to sensitive electronic equipment—cryogenic thermometers inside the cryomodules. Prompt and residual dose rates in the ILC main linac tunnels were also calculated in these new high-statistics runs. A novel approach was developed—as a part of general purpose Monte Carlo code MARS15—to model generation, acceleration and transport of DC electrons in electromagnetic fields inside SRF cavities. Comparisons were made with a standard approach when a set of pre-calculated DC electron trajectories is used, with a proper normalization, as a source for Monte Carlo modelling. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the peak absorbed dose in the cryogenic thermometers in the main tunnel for 20 years of operation is about 0.8 MGy. The calculated contact residual dose on cryomodules and tunnel walls in the main tunnel for typical irradiation and cooling conditions is 0.1 and 0.01 mSv/hr, respectively.

  10. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  11. Testing begins on Linac4

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On 3 August 2012, the Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152. The site will be the module’s home for almost a year, as the linear accelerator enters the assembly and testing stage.   Final module assembly is carried out before installation in Building 152.  Over the next Long Shutdown (LS2), Linac4 will replace the current Linac2 linear accelerator as the first link in CERN’s accelerator chain. It will deliver particles at 160 MeV to the PS Booster, more than triple the energy currently delivered by Linac2. But before the accelerator team can pop the champagne, the various elements of Linac4 will be tested and re-tested in facilities across CERN. “The first Linac4 tests are currently underway, starting with the CERN-built RFQ,” says Carlo Rossi, a physicist in the RF Group of the Beams (BE) Department and the RFQ project coordinator. “It’s an extremely impre...

  12. Discussion of superconducting and room-temperature high-intensity ion linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1996-01-01

    The point of view taken in this discussion is that the basic technology base exists in all essential respects for both superconducting or room-temperature rf linac accelerators and associated power and control systems, and thus a project can make a choice between these technologies on overall system considerations. These include performance, cost, availability, flexibility, and upgradability. Large high-intensity neutron source proposals involving light-ion rf linacs in three categories are reviewed in this context. The categories arc cw linacs to high (∼1 GeV) and low (∼40 MeV) output energy, and pulsed linacs to energy ∼1 GeV

  13. Safety aspects of pulsed YAYOI and Japan Linac Booster

    International Nuclear Information System (INIS)

    An, S.; Oka, Y.; Wakabayashi, J.

    1976-01-01

    The paper consists of two parts. The first part is concerned with safety aspects of pulsed YAYOI. Reactivity pulsed operation of YAYOI is performed with reactivity oscillating devices. Inherent safety characteristics due to dilation of metal fuel, a small amount of f.p. build up, reactor operation preserving fuel integrity and experience on transient experiments are the principal basis for safety assurance. Conditions for pulsed operation, namely, maximum allowable temperature, maximum number of repetition of pulsed operation and so on are derived from the consideration on the integrity of fuel. Instrumentation and control systems are reinforced by displacement meter in the core, interlock system, special timer for pulsed operation, additional scram conditions and reactivity meter. Accident analysis and safety evaluation indicate the conservative safety features of the facility. Concerning pulsed operation of YAYOI combined with Linac, special attention must be given to the design of Linac target placed in the core. In the second part are described the principal guide-lines and basic ideas for safety design of Japan Linac Booster (JLB). JLB is a U-Mo fueled and sodium cooled fast reactor with rotating reflector and Linac target in the core. The pulsed neutrons are injected into the core coincidentally with repetitive peaks of reactivity. Design of rotating reflector and Linac target system are the new and important safety problems not yet encountered in the usual sodium fast reactor design. The axis of the rotating reflector is horizontal, which avoids the collision of reflector block with core in the case of failure of rotating reflector. The separate cooling channels for target and the Linac electron beam control system are provided. Reactor shut down and power control systems must be carefully designed. Core meltdown and disassembly accident is considered as a hypothetical accident which is a basis for containment system design. (auth.)

  14. BARC-TIFR Pelletron Linac facility

    International Nuclear Information System (INIS)

    Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    The Pelletron Accelerator, set up as a collaborative project between the Bhabha Atomic Research Centre and the Tata Institute of Fundamental Research, has been serving as the workhorse for the heavy ion accelerator based research in India since its commissioning in December 30, 1988. The facility was augmented with an indigenously developed superconducting Linac booster to enhance the energy of the Pelletron accelerated beams and was fully commissioned on November 28, 2007. The augmented facility is renamed as Pelletron Linac facility (PLF). While the PLF is predominantly utilized by the experimental users from BARC and TIFR, the users include researchers from other research institutions and universities within India and abroad

  15. Fluorescent screens and image processing for the APS linac test stand

    International Nuclear Information System (INIS)

    Berg, W.; Ko, K.

    1992-01-01

    A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image

  16. Light ion linacs for medical applications

    International Nuclear Information System (INIS)

    Bradbury, J.N.; Knapp, E.A.; Nagle, D.E.

    1975-01-01

    Recent advances in linear accelerator technology point to the feasibility of designing and developing practical medical linacs for producing protons, neutrons, or π mesons for the radiation therapy of cancer. Additional uses of such linacs could include radioisotope production and charged particle radiography. For widespread utilization medical linacs must exhibit reasonable cost, compactness, reliability, and simplicity of operation. Possible extensions of current accelerator technology which might provide these characteristics are discussed in connection with linac design, fabrication techniques, materials, power sources, injectors, and particle collection and delivery systems. Parameters for a medical proton linac for producing pions are listed. (U.S.)

  17. Observations of accelerated high current low emittance beams in the SLC Linac

    International Nuclear Information System (INIS)

    Seeman, J.T.; Ross, M.C.; Sheppard, J.C.; Stiening, R.F.

    1985-05-01

    The Linac of the SLAC Linear Collider (SLC) is required to accelerate several intense single electron and positron bunches to high energy while not enlarging their small transverse emittances. The improvements needed by the SLAC Linac to meet these goals have very stringent design criteria. As partial systems have become available, beam tests have been performed to confirm the designs. The results of those beam tests are discussed. Future plans of the improvement program are described. 13 refs., 9 figs

  18. Design and performance of the 40 MeV linac and beam transport system for the 1 GeV synchrotron radiation source at SORTEC

    International Nuclear Information System (INIS)

    Shiota, M.; Hiraki, A.; Mizota, M.; Iida, T.; Haraguchi, M.; Kuno, K.; Nakamura, S.; Ohno, M.; Tomimasu, T.

    1990-01-01

    A 1 Gev synchrotron radiation source (SOR) system has been installed and is now being adjusted at SORTEC corporation. This paper reports the configuration and the beam test results of the 40 MeV electron linac (pre-injector) and the beam transport line to the electron synchrotron used in this system. The output beam from the linac must be low emittance, small energy spread, and stable in energy. The beam transport line must also efficiently lead the beam from the linac to the electron synchrotron. This linac produced the beam current of 130 mA, with an energy spread of 1.3 % (FWHM), and an emittance of 0.7 πmm·mrad. The beam characteristics were verified by various beam monitors on the beam transport line. (author)

  19. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K., E-mail: khalil.amgarou@uab.e [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France); Lacoste, V.; Martin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France)

    2011-02-11

    The production of unwanted neutrons by electron linear accelerators (LINACs) has attracted a special attention since the early 50s. The renewed interest in this topic during the last years is due mainly to the increased use of such machines in radiotherapy. Specially, in most of developing countries where many old teletherapy irradiators, based on {sup 60}Co and {sup 137}Cs radioactive sources, are being replaced with new LINAC units. The main objective of this work is to report the results of an experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Measurements were carried out, considering four irradiation configurations, by means of our recently developed passive Bonner sphere spectrometer (BSS) using pure gold activation foils as central detectors. This system offers the possibility to measure neutrons over a wide energy range (from thermal up to a few MeV) at pulsed, intense and complex mixed n-{gamma} fields. A two-step unfolding method that combines the NUBAY and MAXED codes was applied to derive the final neutron spectra as well as their associated integral quantities (in terms of total neutron fluence and ambient dose equivalent rates) and fluence-averaged energies.

  20. Laser based stripping system for measurement of the transverse emittance of H-beams at the CERN Linac4

    CERN Document Server

    Hofmann, T; Raich, U; Roncarolo, F; Cheymol, B

    2013-01-01

    The new LINAC4 at CERN will accelerate H- particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H- ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H- beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material ...

  1. Current status of femtosecond triplet Linacs 2000

    International Nuclear Information System (INIS)

    Uesaka, M.; Watanabe, T.; Kobayashi, T.

    2000-01-01

    Femtosecond Ultrafast Quantum Phenomenon Research Facility has been commissioned in 2000. It consists the femtosecond linac-laser synchronization system, the 12 TW 50 fs laser system and the analyzing system. Laser photocathode RF gun produced l kA = 7 nC / 7 ps for 250 μJ 267 nm laser irradiation, synchronization of 300 fs (rms) for minutes and l.9 ps (rms) for hours was established. Efforts to avoid such long-term drift are under way. This system is applied to subpico- and picosecond pulseradiolysis for radiation chemistry of water and supercritical water. Laser plasma linac works are under way to generate 20 MeV 10 fs electron bunch and ps ion beam using the 12 TW 50 fs laser. Further, the time-resolved X-ray diffraction is close to dynamic visualization of atomic motions. (author)

  2. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  3. LINAC based stereotactic radiotherapy of uveal melanoma: 4 years clinical experience

    International Nuclear Information System (INIS)

    Dieckmann, Karin; Georg, Dietmar; Zehetmayer, Martin; Bogner, Joachim; Georgopoulos, Michael; Poetter, Richard

    2003-01-01

    Purpose: To study local tumor control and radiogenic side effects after fractionated LINAC based stereotactic radiotherapy for selected uveal melanoma. Patients and methods: Between June 1997 and March 2001, 90 patients suffering from uveal melanoma were treated at a LINAC with 6 MV. The head was immobilized with a modified stereotactic frame system (BrainLAB). For stabilization of the eye position a light source was integrated into the mask system in front of the healthy or the diseased eye. A mini-video camera was used for on-line eye movement control. Tumors included in the study were either located unfavorably with respect to macula and optical disc ( 7 mm. Median tumor volume was 305±234 mm 3 (range 70-1430 mm 3 ), and mean tumor height was 5.4±2.3 mm (range 2.7-15.9 mm). Total doses of 70 (single dose 14 Gy at 80% isodose) or 60 Gy (single dose 12 Gy at 80% isodose) were applied in five fractions within 10 days. The first fractionation results in total dose (TD) (2 Gy) of 175 Gy for tumor and 238 Gy for normal tissue, corresponding values for the second fractionation schedule are 135 and 180 Gy, respectively. Results: After a median follow-up of 20 months (range 1-48 months) local control was achieved in 98% (n=88). The mean relative tumor reductions were 24, 27, and 37% after 12, 24 and 36 months. Three patients (3.3%) developed metastases. Secondary enucleation was performed in seven patients (7.7%). Long term side effects were retinopathy (25.5%), cataract (18.9%), optic neuropathy (20%), and secondary neovascular glaucoma (8.8%). Conclusion: Fractionated LINAC based stereotactic photon beam therapy in conjunction with a dedicated eye movement control system is a highly effective method to treat unfavorably located uveal melanoma. Total doses of 60 Gy (single dose 12 Gy) are considered to be sufficient to achieve good local tumor control

  4. Progress in design of the SNS linac

    International Nuclear Information System (INIS)

    Hardekopf, R.

    2001-01-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 in order to achieve higher initial performance and to incorporate desirable upgrade features. The linac is now designed to produce 2-MW beam power using a combination of radio-frequency quadrupole (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-RF (SRF) linac. Designs of each of these elements support he high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design and the progress made in the R and D program. (author)

  5. Beam transport of PF 2.5-GeV electron linac. 2

    International Nuclear Information System (INIS)

    Shiraga, T.; Tamiya, K.; Asami, A.; Suwada, T.; Furukawa, K.; Kamitani, T.; Kobayashi, H.

    1994-01-01

    It was continued to study how to correct the beam transport system of the above linac when a klystron became off. It was shown that the correction could be successfully applied by adjusting the focussing strength of Q-magnets simply in proportion to the beam energy difference produced by the switched off klystron. (author)

  6. Tutorial on beam-based feedback systems for linacs

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Ross, M.; Sass, R.; Shoaee, H.

    1994-08-01

    A generalized fast feedback system stabilizes beams in the SLC. It performs measurements and modifies actuator settings to control beam states such as position, angle, energy and intensity on a pulse to pulse basis. An adaptive cascade feature allows communication between a series of linac loops, avoiding overcorrection problems. The system is based on the state space formalism of digital control theory. Due to the database-driven design, new loops are added without requiring software modifications. Recent enhancements support the monitoring and control of nonlinear states such as beam phase using excitation techniques. In over three years of operation, the feedback system has grown from its original eight loops to more than fifty loops, and it has been invaluable in stabilizing the machine

  7. 25th anniversary for Linac-2

    CERN Multimedia

    2003-01-01

    On Friday, 3 October 2003, the Linac team celebrated a quarter century of successful operation of one of its linear accelerators: Linac-2, the proton workhorse of the CERN accelerator complex. Linac-2, CERN's linear proton accelerator, has now been running for 25 years - ample reason for a small celebration. About 30 members of the original team (10 of the initially more than 50 are still working at CERN), and other CERN personnel met on 3 October 2003. Linac-2 is the first link in the accelerator chain Linac-2 - PS Booster - PS - SPS and eventually LHC. Beams from Linac-2 are used after further acceleration in the CERN complex for SPS fixed target physics; for antiproton production for the Antiproton Decelerator (AD); for test beams in the East Experimental Hall and in the PS; for nuclear physics at ISOLDE; for LHC test beams and in the past for both ISR physics and Antiproton production (AA/AC) and test beams in LEAR. Linac-2 was built to obtain higher intensities and better stability than with ...

  8. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O' Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V. [Cornell Laboratory for Accelerator-based Science and Education (CLASSE), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853 (United States)

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  9. Induction linacs and pulsed power

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1995-01-01

    Progress in electronic power conversion technology is making possible a new class of induction linacs that can operate at extremely high repetition rates. Advances in insulator technology, pulse forming line design and switching may also lead to a new type of high current accelerator with accelerating gradients at least an order of magnitude greater than those attainable today. The evolution of the induction accelerator pulsed power system will be discussed along with some details of these emerging technologies which are at the frontiers of accelerator technology

  10. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  11. Development of new S-band SLED for PAL-XFEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik [Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 (Korea, Republic of); Lee, Heung-Soo, E-mail: lhs@postech.ac.kr [Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 (Korea, Republic of); Noh, Sungju; Oh, Kyoungmin [VitzroTech, Ansan, Gyeonggi 15603 (Korea, Republic of)

    2017-01-21

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  12. Development of new S-band SLED for PAL-XFEL Linac

    Science.gov (United States)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin

    2017-01-01

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  13. Injector linac of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Hori, T.; Suzuki, S.; Yanagida, K.; Itoh, Y.; Mizuno, A.; Taniuchi, T.; Sakaki, H.; Kuba, A.; Fukushima, S.; Kobayashi, T.; Asaka, T.; Yokomizo, H.

    1996-01-01

    The linac that is SPring-8 injector was completed and started operation from August 1. A beam was able to be transported to the final beam dumping at a tail end on August 8. From now on this linac carries out beam adjustment and be scheduled to do a beam injection to a synchrotron in October. The construction and fundamental performance of the linac are described. (author)

  14. Monte Carlo computation of Bremsstrahlung intensity and energy spectrum from a 15 MV linear electron accelerator tungsten target to optimise LINAC head shielding

    International Nuclear Information System (INIS)

    Biju, K.; Sharma, Amiya; Yadav, R.K.; Kannan, R.; Bhatt, B.C.

    2003-01-01

    The knowledge of exact photon intensity and energy distributions from the target of an electron target is necessary while designing the shielding for the accelerator head from radiation safety point of view. The computations were carried out for the intensity and energy distribution of photon spectrum from a 0.4 cm thick tungsten target in different angular directions for 15 MeV electrons using a validated Monte Carlo code MCNP4A. Similar results were computed for 30 MeV electrons and found agreeing with the data available in literature. These graphs and the TVT values in lead help to suggest an optimum shielding thickness for 15 MV Linac head. (author)

  15. FEM design and simulation of a short, 10 MV, S-band Linac with Monte Carlo dose simulations

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Steciw, S.; Fallone, B. G.

    2015-01-01

    Purpose: Current commercial 10 MV Linac waveguides are 1.5 m. The authors’ current 6 MV linear accelerator–magnetic resonance imager (Linac–MR) system fits in typical radiotherapy vaults. To allow 10 MV treatments with the Linac–MR and still fit within typical vaults, the authors design a 10 MV Linac with an accelerator waveguide of the same length (27.5 cm) as current 6 MV Linacs. Methods: The first design stage is to design a cavity such that a specific experimental measurement for breakdown is applicable to the cavity. This is accomplished through the use of finite element method (FEM) simulations to match published shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength from an electric breakdown study. A full waveguide is then designed and tuned in FEM simulations based on this cavity design. Electron trajectories are computed through the resulting radio frequency fields, and the waveguide geometry is modified by shifting the first coupling cavity in order to optimize the electron beam properties until the energy spread and mean energy closely match values published for an emulated 10 MV Linac. Finally, Monte Carlo dose simulations are used to compare the resulting photon beam depth dose profile and penumbra with that produced by the emulated 10 MV Linac. Results: The shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength are all matched to within 0.1%. A first coupling cavity shift of 1.45 mm produces an energy spectrum width of 0.347 MeV, very close to the published value for the emulated 10 MV of 0.315 MeV, and a mean energy of 10.53 MeV, nearly identical to the published 10.5 MeV for the emulated 10 MV Linac. The depth dose profile produced by their new Linac is within 1% of that produced by the emulated 10 MV spectrum for all depths greater than 1.5 cm. The penumbra produced is 11% narrower, as measured from 80% to 20% of the central axis dose. Conclusions: The authors have successfully

  16. Conceptual Design of the Linac4 Main Dump

    CERN Document Server

    Leitao, I V; Maglioni, C

    2012-01-01

    Linac4 is the new CERN linear accelerator intended to replace the ageing Linac2 as the injector to the Proton Synchrotron Booster (PSB) for increasing the luminosity of the Large Hadron Collider (LHC). By delivering a 160MeV H- beam, Linac4 will provide the necessary conditions to double the brightness and intensity of the beam extracted from the PSB. This paper describes the conceptual design of the Linac4 Main Dump, where two different concepts relying respectively on water and air cooling were compared and evaluated. Based on the application of analytical models for the energy deposited by the beam, heat conduction and cooling concepts, a parametric study was performed. This approach allowed the identification of the “optimal” configuration for these two conceptual geometries and their relative comparison. Besides giving the theoretical guidelines for the design of the new dump, this work also contributes to the development of analytical tools to allow a better understanding of the influence of the se...

  17. Single-fraction vs. fractionated linac-based stereotactic radiosurgery for vestibular schwannoma: a single-institution study

    NARCIS (Netherlands)

    Meijer, O. W. M.; Vandertop, W. P.; Baayen, J. C.; Slotman, B. J.

    2003-01-01

    PURPOSE: In this single-institution trial, we investigated whether fractionated stereotactic radiation therapy is superior to single-fraction linac-based radiosurgery with respect to treatment-related toxicity and local control in patients with vestibular schwannoma. METHODS AND MATERIALS: All 129

  18. MBE-4: an induction linac experiment for heavy ion fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brodzik, D.A.

    1986-06-01

    The multiple-beam induction linac approach to a heavy ion fusion driver features continuous current amplification along the accelerator and a minimum of transverse beam manipulation from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. This driver approach exploits developments in electron induction linac technology that have occurred within the last 15 years at LBL, LLNL and NBS. MBE-4 is a four beam induction linac that models much of the accelerator physics of the electrostatically focused section of a considerably longer induction accelerator. Four parallel Cs + beams are electrostatically focussed and will be accelerated from 200 keV to approximately one MeV when the experiment is complete in the spring of 1987. The current in each of the four beams will increase from 10 to 40 mA due to both increase in beam speed and shortening of the bunch length. Results of experiments with the injector and first eight accelerating gaps are presented

  19. High-Performance Beam Simulator for the LANSCE Linac

    International Nuclear Information System (INIS)

    Pang, Xiaoying; Rybarcyk, Lawrence J.; Baily, Scott A.

    2012-01-01

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  20. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  1. Development of electron linear accelerators in SAMEER

    International Nuclear Information System (INIS)

    Krishnan, R.

    2015-01-01

    LINear Accelerator (LINAC) based Radiotherapy machine is a key tool for Cancer Treatment. The number of such linac machines available is far less than the actual requirement projected, to suffice the needs of the vast number of Cancer Patients in the country. Development of indigenous state-of-art cancer therapy machine was therefore a crucial achievement under the Jai Vigyan Project of Govt. of India. With the support of Department of Electronics and Information Technology (DeitY), Govt of India, SAMEER has successfully developed 6 MV Radiation Oncology machine at par international standards and is being used to treat cancer patients in the country. SAMEER is also currently developing the dual photon energy and multiple electron energy medical linac machine for radiotherapy and also critical accessories to make a complete oncology system required for advanced state of art treatment. In this paper the work in SAMEER on electron linear accelerators for the medical applications and the related technology and facilities available will be presented. (author)

  2. Neutrons leaked from a 45 MeV linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Kitaichi, Masatoshi; Sawamura, Sadashi; Yamada, Takuma; Sawamura, Teruko; Kaneko, Junnichi H. [Hokkaido Univ., Sapporo (Japan); Nojiri, Itiro [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2002-07-01

    Dose evaluation for skyshine from nuclear facilities is an issue in environmental evaluations. Therefore, benchmark data for skyshine and well-investigated codes for skyshine would be useful in the rational evaluations of nuclear facilities. The purpose of this study is to obtain benchmark data of skyshine and to investigate the effect of source spectra and angular distribution on the skyshine process. In this study spatial and time distributions of neutrons leaked from the Hokkaido University 45 MeV electron linac facility were measured and compared with calculations. Neutrons were emitted from the ( ,n) reaction produced by bremsstrahlung radiation in a lead target irradiated with electrons from the linac. The skyshine process of neutrons transported through the facility building to the outside was investigated. The source spectrum of the skyshine process was evaluated using a cylindrical multi-moderator spectrometer and unfolding code, the SAND-II, and the results were compared. Measurements were carried out to a distance of 330 m from the facility. The measured spatial dose distribution was found not to coincide with the calculations. The discrepancy is discussed based on an analysis of the spatial and time distributions, and the energy spectrum which suggests that the source spectrum and the angular distribution assumed in the calculation was not sufficiently similar to simulate the experimental situation. The time distribution introduced in this study appears to be useful in discussions of the skyshine process and its sources.

  3. Fast, daily linac verification for segmented IMRT using electronic portal imaging

    International Nuclear Information System (INIS)

    Vieira, Sandra C.; Bolt, Rene A.; Dirkx, Maarten L.P.; Visser, Andries G.; Heijmen, Ben J.M.

    2006-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) requires dedicated quality assurance (QA). Recently, we have published a method for fast (1-2 min) and accurate linac quality control for dynamic multileaf collimation, using a portal imaging device. This method is in routine use for daily leaf motion verification. The purpose of the present study was to develop an equivalent procedure for QA of IMRT with segmented (static) multileaf collimation (SMLC). Materials and methods: The QA procedure is based on measurements performed during 3- to 8-month periods at Elekta, Siemens and Varian accelerators. On each measurement day, images were acquired for a field consisting of five 3 x 22 cm 2 segments. These 10 monitor unit (MU) segments were delivered in SMLC mode, moving the leaves from left to right. Deviations of realized leaf gap widths from the prescribed width were analysed to study the leaf positioning accuracy. To assess hysteresis in leaf positioning, the sequential delivery of the SMLC segments was also inverted. A static 20 x 20 cm 2 field was delivered with exposures between 1 and 50 MU to study the beam output and beam profile at low exposures. Comparisons with an ionisation chamber were made to verify the EPID dose measurements at low MU. Dedicated software was developed to improve the signal-to-noise ratio and to correct for image distortion. Results and conclusions: The observed long-term leaf gap reproducibility (1 standard deviation) was 0.1 mm for the Varian, and 0.2 mm for the Siemens and the Elekta accelerators. In all cases the hysteresis was negligible. Down to the lowest MU, beam output measurements performed with the EPID agreed within 1 ± 1% (1SD) with ionisation chamber measurements. These findings led to a fast (3-4 min) procedure for accurate, daily linac quality control for SMLC

  4. Development of a coherent THz radiation source based on the ultra-short electron beam and its applications

    International Nuclear Information System (INIS)

    Kuroda, R.; Yasumoto, M.; Toyokawa, H.; Sei, N.; Koike, M.; Yamada, K.

    2011-01-01

    At the National Institute of Advanced Industrial Science and Technology (AIST), a coherent terahertz (THz) radiation source has been developed based on an ultra-short electron beam using an S-band compact electron linac. The designed THz pulse has a high peak power of more than 1 kW in the frequency range 0.1-2 THz. The entire system is located in one research room of about 10 m square. The linac consists of a laser photocathode rf gun (BNL type) with a Cs 2 Te photocathode load-lock system and two 1.5-m-long S-band accelerator tubes. The electron beam can be accelerated up to approximately 42 MeV. The electron bunch was compressed to less than 1 ps (rms) with a magnetic bunch compressor. The coherent synchrotron radiation (CSR) of the THz region was generated from the ultra-short electron bunch at the 90 o bending magnet, and it was extracted from a z-cut quartz window for THz applications. In this work, the THz scanning transmission imaging was successfully demonstrated for measuring the freshness of a vegetable leaf over a period of time.

  5. First H- beam accelerated at Linac4: 3MeV done, 157 MeV to go!

    CERN Multimedia

    Linac4 Project Team

    2013-01-01

    On 14 November, the first H- (one proton surrounded by two electrons) beam was accelerated to the energy of 3 MeV in the Linac4 - the new linear accelerator that will replace Linac2 as low-energy injector in the LHC accelerator chain.      A view of the Linac4 taken during the recent tests (top image) and the current measured by the instruments at the end of the acceleration line on 14 November (bottom image). Images: Linac4 collaboration. Using the recently installed Radio Frequency Quadrupole (RFQ) accelerator, 13 mA of current were accelerated to the energy of 3 MeV. After the successful commissioning of the Linac4 RFQ at the 3 MeV test stand completed during the first months of 2013, the whole equipment (composed of the RFQ itself, the following Medium Energy Beam Transport line and its diagnostic line) were moved to the Linac4 tunnel during summer and installed in their final position. In the meantime, a new ion source was assembled, installed and successfu...

  6. Improved performance of the control scheme for IUAC superconducting Linac

    International Nuclear Information System (INIS)

    Sahu, B.K.; Suman, S.K.; Kumar, R.

    2015-01-01

    Since many years energized ion beams from linac are being delivered routinely for scheduled experiments using all the three accelerating modules of linac along with super buncher and rebuncher. Major efforts are dedicated to improve the performance of the control scheme to minimise the down time of the linac during operation. Earlier, a number of developments were carried out to improve the dynamics of the control scheme. The most significant of them is the piezoelectric actuator based tuning mechanism which is implemented in all the operational resonators of second and third accelerating modules of superconducting linac. This has helped us to bridge the gap between the accelerating fields achieved during Q measurement at 6 W of helium power and during phase locking of the resonator during beam operation at a given RF power (∼120W). The piezoelectric actuator based tuner is also instrumental to reduce the unlocking rate of the resonators. Pulse width modulation (PWM) control based helium gas operated tuner is implemented in few resonators to improve phase locking performance. CAMAC based distributed control scheme is upgraded to VME based distributed control without changing the existing client interface to maintain uniformity between the Pelletron and linac control. Python code support has been implemented to protect the resonators against high forward power during unlocking. This is also integrated with the display status of the resonators for monitoring. A frequency to voltage converter is incorporated in control scheme to monitor the frequency error. This has helped us to develop a scheme for automatic phase locking of the cavities using piezoelectric actuator based tuner control. (author)

  7. TH-AB-BRA-12: Experimental Results From the First High-Field Inline MRI-Linac

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P [University of Sydney, Camperdown, New South Wales (Australia); Dong, B; Zhang, K; Liney, G [Ingham Institute for Applied Medical Research, Liverpool, New South Wales (Australia); Vial, P; Walker, A; Begg, J; Rai, R [Liverpool Hospital, Sydney, New South Wales (Australia); Holloway, L; Barton, M [Ingham Institute for Applied Medical Research, Liverpool, New South Wales (Australia); Liverpool Hospital, Sydney, New South Wales (Australia); Crozier, S [University of Queensland, Brisbane, Queensland (Australia)

    2016-06-15

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. Methods: A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. Results: (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. Conclusion: The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.

  8. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Brown, R.L.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems

  9. Spin motion of electrons in the SLC linac

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1990-01-01

    It is generally expected that the depolarizing effects of the linear accelerator RF fields will be small. Recently Bill Atwood raised the question whether this conclusion is still correct in view of the fact that the particles in the SLC spend a larger fraction of their time at phase angles ''off crest'' due to BNS damping; since radial fields are in quadrature with the accelerating field this might imply that depolarizing effects are larger. On the other hand, because of the smaller emittance of the SLC relative to the earlier linac radial excursions would be smaller. The anticipation is therefore that the depolarizing effect will again be negligible but it might be worthwhile to update the early calculations of SLAC TN-63-97 revised in this paper

  10. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  11. The Linac4 DTL Prototype: Low and High Power Measurements

    CERN Document Server

    De Michele, G; Marques-Balula, J; Ramberger, S

    2012-01-01

    The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

  12. Beam determination of quadrupole misalignments and beam position monitor biases in the SLC linac

    International Nuclear Information System (INIS)

    Lavine, T.L.; Seeman, J.T.; Atwood, W.B.; Himel, T.M.; Petersen, A.; Adolphsen, C.E.

    1988-09-01

    Misalignments of magnetic quadrupoles and biases in beam position monitors (BPMs) in the Stanford Linear Collider (SLC) linac can lead to a situation in which the beam is off-center in the disk-loaded waveguide accelerator structure. The off-center beam produces wakefields which can limit SLC performance by causing unacceptably large emittance growth. We present a general method for determining quadrupole misalignments and BPM biases in the SLC linac by using beam trajectory measurements. The method utilizes both electron and positron beams on opposite rf cycles in the same linac lattice to determine simultaneously magnetic quadrupole misalignments and BPM biases. The two-beam trajectory data may be acquired without interrupting SLC colliding beam operations. 2 refs., 5 figs

  13. Free-electron laser beam

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    2003-01-01

    The principle and history of free-electron laser (FEL), first evidenced in 1977, the relationship between FEL wavelength and output power, the high-power FEL driven by the superconducting linac, the X-ray FEL by the linac, and the medical use are described. FEL is the vacuum oscillator tube and essentially composed from the high-energy linac, undulator and light-resonator. It utilizes free electrons in the vacuum to generate the beam with wavelength ranging from microwave to gamma ray. The first high-power FEL developed in Japanese Atomic Energy Research Institute (JAERI) is based on the development of superconducting linac for oscillating the highest power beam. In the medical field, applications to excise brain tumors (in US) and to reconstruct experimentally blood vessels in the pig heart (in Gunma University) by lasing and laser coagulator are in progress with examinations to remove intra-vascular cholesterol mass by irradiation of 5.7μm FEL beam. Cancer cells are considered diagnosed by FEL beam of far-infrared-THz range. The FEL beam CT is expected to have a wide variety of application without the radiation exposure and its resolution is equal or superior to that of usual imaging techniques. (N.I.)

  14. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  15. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D. [CERN, 1211 Geneva 23 (Switzerland); Midttun, Ø. [University of Oslo, P.O. Box 1048, 0316 Oslo (Norway); CERN, 1211 Geneva 23 (Switzerland); Valerio-Lizarraga, C. A. [Departamento de Investigación en Fisica, Universidad de Sonora, Hermosillo (Mexico); CERN, 1211 Geneva 23 (Switzerland)

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  16. Study of the properties of an electron linac beam by means of the electromagnetic fields associated with the beam; Etude des proprietes du faisceau d'electrons d'un accelerateur lineaire au moyen des champs electromagnetiques associes a ce faisceau

    Energy Technology Data Exchange (ETDEWEB)

    Bergere, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    For measuring the diverse characteristic parameters of a Linac electron beam, the one method causing the least perturbation to the electron beam itself, consists in the detection of signals induced in certain types of detectors by the electromagnets fields associated with the beam. Some particular detectors are then described, for measuring the following characteristic parameters of a Linac electron beam; a) electron beam peak current, a) longitudinal dimension and density of an elementary electron bunch, c) phase position of the electrons on the travelling sine wave of the accelerating field, d) transverse position of the beam. These particular electrodes are then used to provide experimental data In order to check the theoretical computations giving the longitudinal and transversal motions Of the electrons during their acceleration. (author) [French] Parmi les methodes de mesure des diverses caracteristiques du faisceau d'electrons d'un accelerateur lineaire, celles qui perturbent le moins le faisceau sont les methodes dans lesquelles l'energie du signal de mesure provient de la perturbation par l'electrode de mesure des champs electromagnetiques associes au faisceau. On decrit les electrodes de ce type qui ont ete mises au point pour mesurer les caracteristiques suivantes du faisceau d'electrons: a) courant crete, b) extension en phase d'un paquet elementaire d'electrons, c) phase d'accrochage des electrons, d) position transversale moyenne des electrons. On decrit ensuite comment les signaux provenant de ces diverses electrodes peuvent etre utilises pour verifier experimentalement les previsions theoriques des mouvements longitudinaux et transversaux des electrons en cours d'acceleration. (auteur)

  17. Dynamics of positron beam from a convertor target while beam additional accelerating in a travelling wave electron linac

    International Nuclear Information System (INIS)

    Dzhilavyan, L.Z.; Karev, A.I.

    1981-01-01

    The results of experimental and theoretical investigations of the dynamics of a positron beam produced in a tantalum converter of the 6 mm thickness in the process of beam reacceleration in an electron linac (ELA) are presented. The mean finite positron currents and their dependences on the accelerating electric field are measured. The energy spectra of accelerated positrons are given. A good agreement between the calculated and experimental data is shown. As a result of investigations some peculiarities of positron production on the ELA intersection targets, which are defined by both the initial positron beam parameters from the converter and the dynamics of positron reacceleration in the ELA [ru

  18. Upgrading the Fermilab Linac local control system

    International Nuclear Information System (INIS)

    McCrory, E.S.; Goodwin, R.W.; Shea, M.F.

    1991-02-01

    A new control system for the Fermilab Linac is being designed, built and implemented. First, the nine-year-old linac control system is being replaced. Second, a control system for the new 805 MHz part of the linac is being built. The two systems are essentially identical, so that when the installations are complete, we will still have a single Linac Control System. 8 refs., 5 figs

  19. In vivo dosimetry in intraoperative electron radiotherapy. microMOSFETs, radiochromic films and a general-purpose linac

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Tarjuelo, Juan; Marco-Blancas, Noelia de; Santos-Serra, Agustin; Quiros-Higueras, Juan David [Consorcio Hospitalario Provincial de Castellon, Servicio de Radiofisica y Proteccion Radiologica, Castellon de la Plana (Spain); Bouche-Babiloni, Ana; Morillo-Macias, Virginia; Ferrer-Albiach, Carlos [Consorcio Hospitalario Provincial de Castellon, Servicio de Oncologia Radioterapica, Castellon de la Plana (Spain)

    2014-11-15

    In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field-effect transistors (MOSFETs) and radiochromic films with patients undergoing IOERT using a general-purpose linac. We used MOSFETs inserted into sterile bronchus catheters and radiochromic films that were cut, digitized, and sterilized by means of gas plasma. In all, 59 measurements were taken from 27 patients involving 15 primary tumors (seven breast and eight non-breast tumors) and 12 relapses. Data were subjected to an outliers' analysis and classified according to their compatibility with the relevant doses. Associations were sought regarding the type of detector, breast and non-breast irradiation, and the radiation oncologist's assessment of the difficulty of detector placement. At the same time, 19 measurements were carried out at the tumor bed with both detectors. MOSFET measurements (D = 93.5 %, s{sub D} = 6.5 %) were not significantly shifted from film measurements (D = 96.0 %, s{sub D} = 5.5 %; p = 0.109), and no associations were found (p = 0.526, p = 0.295, and p = 0.501, respectively). As regards measurements performed at the tumor bed with both detectors, MOSFET measurements (D = 95.0 %, s{sub D} = 5.4 %) were not significantly shifted from film measurements (D = 96.4 %, s{sub D} = 5.0 %; p = 0.363). In vivo dosimetry can produce satisfactory results at every studied location with a general-purpose linac. Detector choice should depend on user factors, not on the detector performance itself. Surgical team collaboration is crucial to success. (orig.) [German] Die In-vivo-Dosimetrie ist wuenschenswert fuer die Ueberpruefung, Registrierung und die eventuelle Korrektur der Behandlungen in der IOERT (''Intraoperative Electron Radiation Therapy''). Unser Ziel ist die Veroeffentlichung unserer Erfahrungen beim

  20. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  1. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  2. Effects of correlations between particle longitudinal positions and transverse plane on bunch length measurement: a case study on GBS electron LINAC at ELI-NP

    Science.gov (United States)

    Sabato, L.; Arpaia, P.; Cianchi, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Variola, A.

    2018-02-01

    In high-brightness LINear ACcelerators (LINACs), electron bunch length can be measured indirectly by a radio frequency deflector (RFD). In this paper, the accuracy loss arising from non-negligible correlations between particle longitudinal positions and the transverse plane (in particular the vertical one) at RFD entrance is analytically assessed. Theoretical predictions are compared with simulation results, obtained by means of ELEctron Generation ANd Tracking (ELEGANT) code, in the case study of the gamma beam system (GBS) at the extreme light infrastructure—nuclear physics (ELI-NP). In particular, the relative error affecting the bunch length measurement, for bunches characterized by both energy chirp and fixed correlation coefficients between longitudinal particle positions and the vertical plane, is reported. Moreover, the relative error versus the correlation coefficients is shown for fixed RFD phase 0 rad and π rad. The relationship between relative error and correlations factors can help the decision of using the bunch length measurement technique with one or two vertical spot size measurements in order to cancel the correlations contribution. In the case of the GBS electron LINAC, the misalignment of one of the quadrupoles before the RFD between  -2 mm and 2 mm leads to a relative error less than 5%. The misalignment of the first C-band accelerating section between  -2 mm and 2 mm could lead to a relative error up to 10%.

  3. Neutron H*(10) estimation and measurements around 18MV linac.

    Science.gov (United States)

    Cerón Ramírez, Pablo Víctor; Díaz Góngora, José Antonio Irán; Paredes Gutiérrez, Lydia Concepción; Rivera Montalvo, Teodoro; Vega Carrillo, Héctor René

    2016-11-01

    Thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the dose of neutron radiation in a treatment room with a linear electron accelerator of 18MV. Measurements were carried out through neutron ambient dose monitors which include pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti), which were placed inside a paraffin spheres. The measurements has allowed to use NCRP 151 equations, these expressions are useful to find relevant dosimetric quantities. In addition, photoneutrons produced by linac head were calculated through MCNPX code taking into account the geometry and composition of the linac head principal parts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The constructive and physical characteristics of the Linacs built at the Institute of atomic physics- Bucharest

    International Nuclear Information System (INIS)

    Martin, D.; Oproiu, C.; Radu, S.; Marghitu, S.; Cojocaru, G.; Indreias, I.; Margaritesc, A.

    1997-01-01

    Our research proved that by developing proper electron technologies it is expected to bring new and efficient applications in the near future with linacs of low output power (up to 1000 W) and high energy (up to 10 MeV). With the ALID-7 linac it could be possible to satisfy the required production of flocculants for municipal sludge dewatering in our country.(author)

  5. 1974 view into the cage of the 520 keV electrostatic preaccelerator of Linac 1

    CERN Multimedia

    1974-01-01

    The condenser of the high voltage circuit (column in the foreground) is being serviced by Jean Luc Vallet. Standing on the electronics platform (the big, open metallic structure on insulating pillars, for details see 7403120) is Bob Nettelton. The column at the right edge of the photo is part of the bouncer (see also 7403066X) which compensated the voltage drop during acceleration of a proton pulse. In the background is the source (open pill box structure) attached to the accelerating column, barely visible) behind. The "old" 50 MeV Linac 1, the original PS injector built in the 1950s, was (since 1976) replaced by a new 50 MeV linac (Linac 2) with a 750 keV "Cockcroft-Walton" pre-injector(see 7602012X), later replaced by a 750 keV Radio Frequency Quadrupole (RFQ) preaccelerator. Linac 1 co-existed until mid 1992 (from 1982 onwards it was mainly used to inject "test-particles" into the Low Energy Antiproton ring LEAR). In 1984 the electrostatic preaccelerator of linac 1 was replaced by a 520 keV RFQ ( 8303511X...

  6. Statistical simulations of machine errors for LINAC4

    CERN Document Server

    Baylac, M.; Froidefond, E.; Sargsyan, E.

    2006-01-01

    LINAC 4 is a normal conducting H- linac proposed at CERN to provide a higher proton flux to the CERN accelerator chain. It should replace the existing LINAC 2 as injector to the Proton Synchrotron Booster and can also operate in the future as the front end of the SPL, a 3.5 GeV Superconductingg Proton Linac. LINAC 4 consists of a Radio-Frequency Quadrupole, a chopper line, a Drift Tube Linac (DTL) and a Cell Coupled DTL all operating at 352 MHz and finally a Side Coupled Linac at 704 MHz. Beam dynamics was studied and optimized performing end-to-end simulations. This paper presents statistical simulations of machine errors which were performed in order to validate the proposed design.

  7. Commissioning plans for SSC linac

    International Nuclear Information System (INIS)

    Hurd, J.W.; Aprile, R.L.; Chang, C.R.; Crist, C.E.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Leifeste, G.T.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Swenson, D.A.; Tooker, J.; Yao, C.G.

    1992-01-01

    Presented are the general description of the SSC linac and the plans for commissioning. Sections of the linac are installed, tested, and beam commissioned in a serial approach. A specialized set of diagnostics is used to characterize the beam through each section. In addition to the standard diagnostic set, plans call for the use of a bunch shape monitor and x-ray spectrometer. Streak camera and digital imaging diagnostics will be developed. The commissioning plan is folded into the general linac project schedule to show the relation between delivery, staging, installation, conditioning, and actual commissioning with beam. These plans form the basis for coordination between the various organizations responsible for different elements of the linac including the technical components, infrastructure, and temporary staging and operation facilities. (Author) 2 figs., 17 refs

  8. Advanced Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.

    2005-02-14

    The research into advanced acceleration concepts for electron linear accelerators being pursued at SLAC is reviewed. This research includes experiments in laser acceleration, plasma wakefield acceleration, and mmwavelength RF driven accelerators.

  9. Beam-based analysis of day-night performance variations at the SLC linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Akre, R.; Assmann, R.; Bane, K.L.F.; Minty, M.G.; Phinney, N.; Spence, W.L.

    1998-07-01

    Diurnal temperature variations in the linac gallery of the Stanford Linear Collider (SLC) can affect the amplitude and phase of the rf used to accelerate the beam. The SLC employs many techniques for stabilization and compensation of these effects, but residual uncorrected changes still affect the quality of the delivered beam. This paper presents methods developed to monitor and investigate these errors through the beam response. Variations resulting from errors in the rf amplitude or phase can be distinguished by studying six different beam observables: betatron phase advance, oscillation amplitude growth, rms jitter along the linac, measurements of the beam phase with respect to the rf, changes in the required injection phase, and the global energy correction factor. By quantifying the beam response, an uncorrected variation of 14 degree (S-band) during 28 F temperature swings was found in the main rf drive line system between the front and end of the linac

  10. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T.; Woodley, M.D.

    1996-11-01

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  11. High gradient linac for proton therapy

    Directory of Open Access Journals (Sweden)

    S. Benedetti

    2017-04-01

    Full Text Available Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  12. Performance of a Novel Repositioning Head Frame for Gamma Knife Perfexion and Image-Guided Linac-Based Intracranial Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Ruschin, Mark; Nayebi, Nazanin; Carlsson, Per; Brown, Kevin

    2010-01-01

    Purpose: To evaluate the geometric positioning and immobilization performance of a vacuum bite-block repositioning head frame (RHF) system for Perfexion (PFX-SRT) and linac-based intracranial image-guided stereotactic radiotherapy (SRT). Methods and Materials: Patients with intracranial tumors received linac-based image-guided SRT using the RHF for setup and immobilization. Three hundred thirty-three fractions of radiation were delivered in 12 patients. The accuracy of the RHF was estimated for linac-based SRT with online cone-beam CT (CBCT) and for PFX-SRT with a repositioning check tool (RCT) and offline CBCT. The RCT's ability to act as a surrogate for anatomic position was estimated through comparison to CBCT image matching. Immobilization performance was evaluated daily with pre- and postdose delivery CBCT scans and RCT measurements. Results: The correlation coefficient between RCT- and CBCT-reported displacements was 0.59, 0.75, 0.79 (Right, Superior, and Anterior, respectively). For image-guided linac-based SRT, the mean three-dimensional (3D) setup error was 0.8 mm with interpatient (Σ) and interfraction (σ) variations of 0.1 and 0.4 mm, respectively. For PFX-SRT, the initial, uncorrected mean 3D positioning displacement in stereotactic coordinates was 2.0 mm, with Σ = 1.1 mm and σ = 0.8 mm. Considering only RCT setups o in pitch. The mean 3D intrafraction motion was 0.4 ± 0.3 mm. Conclusion: The RHF provides excellent immobilization for intracranial SRT and PFX-SRT. Some small systematic uncertainties in stereotactic positioning exist and must be considered when generating PFX-SRT treatment plans. The RCT provides reasonable surrogacy for internal anatomic displacement.

  13. Failure Modes Analysis for the MSU-RIA Driver Linac

    CERN Document Server

    Wu, Xiaoyu; Gorelov, Dmitry; Grimm, Terry L; Marti, Felix; York, Richard

    2005-01-01

    Previous end-to-end beam dynamics simulation studies* using experimentally-based input beams including alignment and rf errors and variation in charge-stripping foil thickness have indicated that the Rare Isotope Accelerator (RIA) driver linac proposed by MSU has adequate transverse and longitudinal acceptances to accelerate light and heavy ions to final energies of at least 400 MeV/u with beam powers of 100 to 400 kW. During linac operation, equipment loss due to, for example, cavity contamination, availability of cryogens, or failure of rf or power supply systems, will lead to at least a temporary loss of some of the cavities and focusing elements. To achieve high facility availability, each segment of the linac should be capable of adequate performance even with failed elements. Beam dynamics studies were performed to evaluate the linac performance under various scenarios of failed cavities and focusing elements with proper correction schemes, in order to prove the flexibility and robustness of the driver ...

  14. Beam-dynamics driven design of the LHeC energy-recovery linac

    Directory of Open Access Journals (Sweden)

    Dario Pellegrini

    2015-12-01

    Full Text Available The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ∼150  mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  15. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  16. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  17. Beam characterisation of the 1.5 T MRI-linac

    Science.gov (United States)

    Woodings, S. J.; Bluemink, J. J.; de Vries, J. H. W.; Niatsetski, Y.; van Veelen, B.; Schillings, J.; Kok, J. G. M.; Wolthaus, J. W. H.; Hackett, S. L.; van Asselen, B.; van Zijp, H. M.; Pencea, S.; Roberts, D. A.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2018-04-01

    As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1  ×  1 and 57  ×  22 cm2. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of  +0.24 cm. For a 10  ×  10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%–80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm)  =  57%. The entrance surface dose is  ∼36% of . Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017

  18. High-field strong-focusing undulator designs for X-ray Linac Coherent Light Source (LCLS) applications

    International Nuclear Information System (INIS)

    Caspi, S.; Schlueter, R.; Tatchyn, R.

    1995-01-01

    Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1 angstrom--0.1 angstrom range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B 0 in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 angstrom LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies

  19. The Fermilab 400-MeV Linac Upgrade

    International Nuclear Information System (INIS)

    Schmidt, C.W.

    1993-05-01

    The Fermilab Linac Upgrade will increase the linac energy from 201 MeV to 401.5 MeV. Seven accelerating modules, composed of 805-MHz side-coupled cells, will accelerate H - beams from 116.5 to 401.5 MeV. The side-coupled structure (SCS) has been built, tuned, tested to full power, and placed in the linac enclosure along side the operating Linac. All seven accelerating modules, each containing four sections of sixteen cells, have been connected to 12-MW power klystrons and tested to full power for a significant period. The transition section to match the beam from the 201.25-MHz drift-tube linac to the SCS, consisting of a sixteen-cell cavity and a vernier four-cell cavity, has also been tested at full power. A new import line from the Linac to the Booster synchrotron with a new Booster injection girder is to be installed. Removal of the last four Alvarez linac tanks (116.5 to 201 MeV) and beam-line installation of the Upgrade components is to begin in early June 1993 and should take about 12 weeks. Beam commissioning of the project will follow and normal operation is expected in a short period. In preparation for beam commissioning, studies are being done with done operating linac to characterize the beam at transition and prepare for phase, amplitude and energy measurements to commission the new linac. The past, present and future activities of the 400-MeV Upgrade will be reviewed

  20. Preliminary design study and problem definition for intense CW superconducting deuteron ion linac for fusion material study

    International Nuclear Information System (INIS)

    Tanabe, Y.; Kakutani, N.; Ota, T.; Yamaguchi, A.; Takeda, O.; Wachi, Y.; Yamazaki, C.; Morii, Y.

    1997-01-01

    The advantages of superconducting (SC) cavity have been verified for many electron accelerators and the application of SC cavity to high intensity CW ion linacs is currently being considered. These linacs have been required for neutron irradiation tests of materials, transmutation of nuclear waste and so on. An SC linac consisting of SC cavities, SC quadrupole magnets and cryostats, was preliminarily designed to investigate the feasibility of applying to deuteron machine. Beam dynamics analysis was also carried out by using a modified PARMILA code in order to confirm no beam loss. Since radiation damage of superconductors is especially severe for such a machine, data relating to the damage were surveyed and discussed. Moreover, other major facilities such as cryogenic system, radio frequency amplifier and RF control system were considered. Many problems to be solved were defined but no critical issues were found. In consequence, it became clear that SC linac is very attractive and competitive with a room-temperature linac. (orig.)

  1. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-01-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results of past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs are presented

  2. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-06-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs

  3. Superconducting heavy-ion linac at Argonne

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.G.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Pardo, R.C.; Shepard, K.W.

    1981-01-01

    The design, status, and performance of the first operating superconducting heavy-ion accelerator, a linac used to boost the energies of beams from a 9-MV tandem, is summarized. When completed in 1981, the linac will consist of 24 independently-phased split-ring niobium resonators operating at 97 MHz. This linac is designed to provide 29 MV of acceleration. Because of the modular character of the system, the linac has been operable and useful since mid-1978, when a beam was accelerated through 2 units and the first nuclear-physics experiments were preformed. Now, 16 resonators are in use, and a beam has been accelerated for approx. 6000 h. Resonator performance has been remarkably stable, in spite of vacuum accidents, and the linac as a whole operates reliably without operators in attendance during nights and weekends. The ease and speed with which the beam energy can be changed is proving to be unexpectedly valuable to users

  4. The trajectory control in the SLC linac

    International Nuclear Information System (INIS)

    Hsu, I.C.; Adolphsen, C.E.; Himel, T.M.; Seeman, J.T.

    1991-05-01

    Due to wake field effects, the trajectories of accelerated beams in the Linac should be well maintained to avoid severe beam breakup. In order to maintain a small emittance at the end of the Linac, the tolerance on the trajectory deviations become tighter when the beam intensities increase. The existing two beam trajectory correction method works well when the theoretical model agrees with the real machine lattice. Unknown energy deviations along the linac as well as wake field effects can cause the real lattice to deviate from the model. This makes the trajectory correction difficult. Several automated procedures have been developed to solve these problems. They are: an automated procedure to frequently steer the whole Linac by dividing the Linac into several small regions; an automated procedure to empirically correct the model to fit the real lattice and eight trajectory correcting feedback loops along the linac and steering through the collimator region with restricted corrector strengths and a restricted number of correctors. 6 refs., 2 figs

  5. Characterization of the Photon Energy Spectrum of a 6 MV Linac

    International Nuclear Information System (INIS)

    Hernandez Bojorquez, M.; Larraga, J. M.; Garcia, A.; Celis, M. A.; Martinez-Davalos, A.; Rodriguez-Villafuerte, M.

    2006-01-01

    In this work we study the influence of the purity of the materials used in experimental transmission measurements to obtain data to reconstruct the photon energy spectrum of a 6 MV Linac. We also evaluate the contribution to PDDs due to electron contamination in the reconstructed spectrum

  6. SRF and RF systems for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Polizzo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  7. System engineering in the SSC Linac

    International Nuclear Information System (INIS)

    Tooker, J.F.; Chang, C.R.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Hale, R.; Leifeste, G.T.; Nonte, J.; Prichard, B.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Yao, C.G.

    1992-01-01

    The design and construction of the SSC Linac involves various departments within the SSCL and many outside vendors. The adaptive incorporation of system engineering principles into the SSC Linac is described. This involves the development of specification trees with the breakdown and flow of functional and physical requirements from the top level system specifications to the lower level component specifications. Interfaces are defined, which specify and control the interconnections between the various components. Review cycles are presented during which the requirements, evolution of the design, and test plans are reviewed, monitored, and finalized. The Linac specification tree, interface definition, and reviews of the Linac are presented, including typical examples. (Author) 2 refs., 3 tabs

  8. SRF LINAC for future extension of the PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  9. SRF LINAC for future extension of the PEFP

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub

    2014-01-01

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  10. Home made FPGA based instrumentation development for linac automation at IUAC

    International Nuclear Information System (INIS)

    Antony, J.; Mathuria, D.S.; Sacharias, J.

    2011-01-01

    In order to make the Inter-University Accelerator Centre (IUAC) linac operation with less human intervention and with minimum effort, different mechanisms of automation are being thought of and are being implemented. Among the various projects in the automation, the first one is the development of a 16-channel digital linearizer unit for RF power read-backs and control. In another development, 8 channel programmable pulse generators (PPG) were designed, developed and used at the time of RF pulse conditioning of the SC resonators. As a third project of linac automation, a computer controlled drive probe controller was developed to control the movement of 8 drive couplers of the resonator along with position sensor read back mechanisms. (author)

  11. Preinjector for Linac 1, inside the Faraday cage

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. Here, the view is towards the upper level of the Faraday cage. Far to the right, a technician is peering through the service door. The huge box-shaped cubicle is the electronics platform, at 520 kV potential during operation. The "bull eye" at the left back sits at the top end of the accelerating column (see 7403081X) and houses the ion source with its electronics (see 7403083X). The SAMES generator, providing the 520 kV HV (7403074) sits on the floor and is not visible here.

  12. TH-C-BRC-03: Emerging Linac Based SRS/SBRT Technologies with Modulated Arc Delivery

    International Nuclear Information System (INIS)

    Ren, L.

    2016-01-01

    The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioning capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to

  13. TH-C-BRC-03: Emerging Linac Based SRS/SBRT Technologies with Modulated Arc Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ren, L. [Duke University Medical Center (United States)

    2016-06-15

    The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioning capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to

  14. Radiation Protection in the Commissioning and the use of a iort-dedicated mobile linac

    International Nuclear Information System (INIS)

    Tosi, G.; Ciocca, M.

    2002-01-01

    Iort (Intra-Operative Radiation Therapy) is a radiotherapy treatment technique consisting in the administration during a surgical intervention, of a single and high radiation dose (up to 30 Gy) to the tumour bed/environment, after the surgical removal. the main objective of IORT is to increase both the probability of local control of the tumour and the therapeutic ratio between local control of the tumour and tolerance of the adjacent healthy tissues and organs: this goal can be achieved through a better definition of the target volume and the displacement and/or screening of the organs and tissues at risk during the surgical intervention. IOT is not a new treatment technique: it had been proposed in 1909 at the beginning of radiotherapy, when only X-ray orthovoltage therapy equipment (120-250 kV) were available, and the results obtained did not justify the development and a widespread use of this technique. The main reason for this situation lied in the unfavourable depth dose distribution of the X-ray beams. When, in the years after 1970, the new linear accelerators (linacs), able to produce electron beams with energies >4 MeV were introduced in the clinical use, IORT was against taken into serious considerations by radio therapists and surgeons. Abe et al, demonstrated that IORT could offer great advantages over conventional radiotherapy with external beams, not only for tumours located nearby critical organs and tissues, but also for locally advanced tumours, difficult to be controlled by surgery or external radiotherapy alone, thanks to its possibility of delivering high radiation doses to the regions of possible macroscopic local diffusion of tumour cells. This possibility is offered by an appropriate choice of the energy, and consequently of the range in the tissues, of the electron beams. As a simple mnemonic rule, we remember that the maximum range in water (and therefore in the soft tissues) of the electron beams, if expressed in cm, is approximately

  15. Design of LINAC4, A New Injector for the CERN Booster

    CERN Document Server

    Garoby, R; Lombardi, A M; Rossi, C; Vretenar, M; Gerigk, F

    2004-01-01

    A new H- linac (Linac4) is presently under study at CERN. This accelerator, based on normal conducting structures at 352 and 704 MHz, will provide a 30 mA 160 MeV H- beam to the CERN PS Booster (PSB), thus overcoming the present space-charge bottleneck at injection with a 50 MeV proton beam. Linac4 is conceived as the first stage of a future 2.2 GeV superconducting linac (SPL) and it is therefore designed for a higher duty cycle than necessary for the PSB. This paper discusses the design choices, presents the layout of the facility and illustrates the advantages for the LHC and other CERN users. The R&D and construction strategy, which mainly relies upon international collaborations, is also presented.

  16. Multiplacting analysis on 650 MHz, BETA 0.61 superconducting RF LINAC cavity

    International Nuclear Information System (INIS)

    Seth, Sudeshna; Som, Sumit; Mandal, Aditya; Ghosh, Surajit; Saha, S.

    2013-01-01

    Design, analysis and development of high-β multi-cell elliptical shape Superconducting RF linac cavity has been taken up by VECC, Kolkata as a part of IIFC collaboration. The project aims to provide the-art technology achieving very high electric field gradient in superconducting linac cavity, which can be used in high energy high current proton linear accelerator to be built for ADSS/SNS programme in India and in Project-X at Fermilab, USA. The performance of this type of superconducting RF structure can be greatly affected due to multipacting when we feed power to the cavity. Multipacting is a phenomenon of resonant electron multiplication in which a large number of electrons build up an electron Avalanche which absorbs RF Energy leading to remarkable power losses and heating of the walls, making it impossible to raise the electric field by increasing the RF Power. Multipacting analysis has been carried out for 650 MHz, β=0.61, superconducting elliptical cavity using 2D code MultiPac 2.1 and 3 D code CST particle studio and the result is presented in this paper. (author)

  17. Transient behaviour of a ``beam loaded`` prebuncher cavity and linac structure

    Energy Technology Data Exchange (ETDEWEB)

    Messina, Giovanni; Picardi, Luigi; Ronsivalle, Concetta; Vignati, Angelo [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-03-01

    They present the evaluation of the effect of the beam loading on the time response of a 3 GHz prebuncher cavity to the generator and to an input 120 deg chopped electron beam for two different cavity materials. The lumped-element representation of the cavity as a parallel RLC circuit is used which allows to compute also the sensitivity of the prebuncher voltage amplitude and phase with respect to beam current fluctuations. The analysis has been extended to the transient behaviour of a linac positioned after the prebuncher cavity. The consequences of the computation results on the application of a chopper-prebuncher system in a linac devoted to the MUH FEL experiment are discussed.

  18. Mutual compensation of wakefield and chromatic effects of intense linac bunches

    International Nuclear Information System (INIS)

    Seeman, J.T.; Merminga, N.

    1990-05-01

    Mutual compensation of transverse and chromatic effects for intense electron bunches in a high-energy linac is a recent Novosibirsk idea which provides a new control of emittance enlargement. In this paper we elaborate on the principles and constraints for this new technique which requires careful matching of internal bunch parameters with external forces. With species values of the bunch length, bunch intensity, and klystron phasing, the transverse-wakefield-induced forces within the bunch can be cancelled by energy-dependent forces from the quadrupole lattice at all positions along the linac. Under these conditions the tolerances for quadrupole alignment, dipole stability, and injection launch errors are significantly relaxed. 7 refs., 8 figs

  19. A linac-based stereotactic irradiation technique of uveal melanoma

    International Nuclear Information System (INIS)

    Dieckmann, Karin; Bogner, Joachim; Georg, Dietmar; Zehetmayer, Martin; Kren, Gerhard; Poetter, Richard

    2001-01-01

    Purpose: To describe a stereotactic irradiation technique for uveal melanomas performed at a linac, based on a non-invasive eye fixation and eye monitoring system. Methods: For eye immobilization a light source system is integrated in a standard stereotactic mask system in front of the healthy eye: During treatment preparation (computed tomography/magnetic resonance imaging) as well as for treatment delivery, patients are instructed to gaze at the fixation light source. A mini-video camera monitors the pupil center position of the diseased eye. For treatment planning and beam delivery standard stereotactic radiotherapy equipment is used. If the pupil center deviation from a predefined 'zero-position' exceeds 1 mm (for more than 2 s), treatment delivery is interrupted. Between 1996 and 1999 60 patients with uveal melanomas, where (i) tumor height exceeded 7 mm, or (ii) tumor height was more than 3 mm, and the central tumor distance to the optic disc and/or the macula was less than 3 mm, have been treated. A total dose of 60 or 70 Gy has been given in 5 fractions within 10 days. Results: The repositioning accuracy in the mask system is 0.47±0.36 mm in rostral-occipital direction, 0.75±0.52 mm laterally, and 1.12±0.96 mm in vertical direction. An eye movement analysis performed for 23 patients shows a pupil center deviation from the 'zero' position<1 mm in 91% of all cases investigated. In a theoretical analysis, pupil center deviations are correlated with GTV 'movements'. For a pupil center deviation of 1 mm (rotation of the globe of 5 degree sign ) the GTV is still encompassed by the 80% isodose in 94%. Conclusion: For treatments of uveal melanomas, linac-based stereotactic radiotherapy combined with a non-invasive eye immobilization and monitoring system represents a feasible, accurate and reproducible method. Besides considerable technical requirements, the complexity of the treatment technique demands an interdisciplinary team continuously dedicated to this

  20. Two-pulse acceleration for BEPCII injector linac

    International Nuclear Information System (INIS)

    Pei Shilun; Wang Shuhong; Lu Weibin

    2007-01-01

    In order to double the injection rate of positron beam from the linac to the storage ring of BEPC II, a two-pulse generation and acceleration scheme has been proposed. The two-pulse simulation by programs including LIAR, PARMELA, EGUN and TRANSPORT is described first and the method is applied in the beam dynamics studies of BEPC II linac. The experiment of two-pulse acceleration was performed in BEPC II linac and some preliminary results are obtained, which provides a good reference for further upgrading of BEPC II injector linac. (authors)

  1. Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source

    International Nuclear Information System (INIS)

    2011-01-01

    We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

  2. SU-F-T-611: Critical Analysis and Efficacy of Linac Based (Beam Modulator) and Cyberknife Treatment Plans for Acoustic Neuroma/schwannoma

    International Nuclear Information System (INIS)

    KP, Karrthick; Kataria, T; Thiyagarajan, R; Selvan, T; Abhishek, A

    2016-01-01

    Purpose: To study the critical analysis and efficacy of Linac and Cyberknife (CK) treatment plans for acoustic neuroma/schwannoma. Methods: Twelve of acoustic neuroma/schwannoma patients were taken for these study that. Treatment plans were generated in Multiplan treatment planning system (TPS) for CK using 5,7.5 and 10mm diameter collimators. Target volumes were in the range of 0.280 cc to 9.256 cc. Prescription dose (Rx) ranges from 1150cGy to 1950cGy delivered over 1 to 3 Fractions. For same patients stereotactic Volumetric modulated arc plans were generated using Elekta Linac with MLC thickness of 4mm in Monaco TPS. Appropriate calculation algorithms and grid size were used with same Rx and organ at risk (OAR) constrains for both Linac and CK plans. Treatment plans were developed to achieve at least 95% of the target volume to receive the Rx. The dosimetric indices such as conformity index (CI), coverage, OAR dose and volume receiving 50% of Rx (V50%) were used to evaluate the plans. Results: Target volumes ranges from 0.280 cc to 3.5cc shows the CI of 1.16±0.109 and 1.53±0.360 for cyberknife and Linac plans respectively. For small volume targets, the OARs were well spared in CK plans. There are no significant differences in CI and OAR doses were observed between CK and Linac plans that have the target volume >3.5 cc. Perhaps the V50% were lesser in CK plans, and found to be 12.8± 8.4 and 22.8 ± 15.0 for CK and Linac respectively. Conclusion: The analysis shows the importance of collimator size for small volume targets. The target volumes >3.5 cc can be treated in Linac as comparable with CK. For targets <3.5cc CK plans showed superior plan quality with better CI and OAR sparing than the Linac based plans. Further studies may require evaluating the clinical advantage of CK robotic system.

  3. Gaerttner LINAC Laboratory report on international nuclear data measurements

    International Nuclear Information System (INIS)

    Mesh, D.W.; Block, R.C.

    1999-04-01

    The Gaerttner LINAC Laboratory has made neutron transmission and capture measurements up to several hundred eV on samples of Zr, Nb, Mo, Sm, Nd, Ho, Er, Tm, Hf, and W. A new neutron time-of-flight target has been built and installed and a new 6 Li glass transmission detector is under construction. The electron linear accelerator is being refurbished with new klystrons, a new RF transport system and the reinstallation of the ninth accelerating section. These improvements are intended to provide a more powerful and monoenergetic electron beam

  4. Study of the properties of an electron linac beam by means of the electromagnetic fields associated with the beam; Etude des proprietes du faisceau d'electrons d'un accelerateur lineaire au moyen des champs electromagnetiques associes a ce faisceau

    Energy Technology Data Exchange (ETDEWEB)

    Bergere, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    For measuring the diverse characteristic parameters of a Linac electron beam, the one method causing the least perturbation to the electron beam itself, consists in the detection of signals induced in certain types of detectors by the electromagnets fields associated with the beam. Some particular detectors are then described, for measuring the following characteristic parameters of a Linac electron beam; a) electron beam peak current, a) longitudinal dimension and density of an elementary electron bunch, c) phase position of the electrons on the travelling sine wave of the accelerating field, d) transverse position of the beam. These particular electrodes are then used to provide experimental data In order to check the theoretical computations giving the longitudinal and transversal motions Of the electrons during their acceleration. (author) [French] Parmi les methodes de mesure des diverses caracteristiques du faisceau d'electrons d'un accelerateur lineaire, celles qui perturbent le moins le faisceau sont les methodes dans lesquelles l'energie du signal de mesure provient de la perturbation par l'electrode de mesure des champs electromagnetiques associes au faisceau. On decrit les electrodes de ce type qui ont ete mises au point pour mesurer les caracteristiques suivantes du faisceau d'electrons: a) courant crete, b) extension en phase d'un paquet elementaire d'electrons, c) phase d'accrochage des electrons, d) position transversale moyenne des electrons. On decrit ensuite comment les signaux provenant de ces diverses electrodes peuvent etre utilises pour verifier experimentalement les previsions theoriques des mouvements longitudinaux et transversaux des electrons en cours d'acceleration. (auteur)

  5. A development of BPM for P-LINAC at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Almalki, Mohammed; Kester, Oliver; Forck, Peter; Kaufmann, Wolfgang; Sieber, Thomas; Kowina, Piotr; Vinzenz, Wolfgang; Krueger, Christoph [GSI, Darmstadt (Germany); Simon, Claire [CEA/DSM/IRFU (France); Tinta, Dejan; Hrovatin, Rok; Lemut, Promoz [Instrumentation Technologies, Solkan (Slovenia)

    2014-07-01

    Four-fold button Beam Position Monitor (BPM) has been developed for the planned Proton LINAC at the FAIR facility. These monitors will be installed at 14 locations along the LINAC and four of them will be mounted only about 40 mm upstream of the CH cavities. A BPM prototype will be fabricated to evaluate the rf power at the BPM location as generated by cavity excitation as well as to test different options in the mechanical design. For the read-out electronics, the I/Q digital signal processing will be implemented to derive the transverse beam position and the beam phase. This contribution presents the status of the BPM development and focuses on the mechanical design and the optimization of the button pick-ups. The development progress of digital signal processing system is discussed as well.

  6. Beam position monitor for energy recovered linac beams

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Thomas; Evtushenko, Pavel

    2017-06-06

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  7. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    International Nuclear Information System (INIS)

    Whelan, B; Keall, P; Holloway, L; Gierman, S; Schmerge, J; Tantawi, S; Tremaine, A; Trautwein, A; Scott, B; Fahrig, R

    2016-01-01

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energies up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate

  8. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Holloway, L [Liverpool Hospital and Ingham Institute, Liverpool, NSW (United Kingdom); Gierman, S; Schmerge, J; Tantawi, S; Tremaine, A; Trautwein, A; Scott, B [Stanford Linear Accelerator Facility, Palo Alto, CA (United States); Fahrig, R [Siemens Healthcare GmbH, Forchheim (Germany)

    2016-06-15

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energies up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate

  9. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  10. Basis for low beam loss in the high-current APT linac

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D.; Crandall, K.R.

    1998-01-01

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value

  11. A comprehensive study of the mechanical performance of gantry, EPID and the MLC assembly in Elekta linacs during gantry rotation.

    Science.gov (United States)

    Rowshanfarzad, P; Riis, H L; Zimmermann, S J; Ebert, M A

    2015-07-01

    In radiotherapy treatments, it is crucial to monitor the performance of linear accelerator (linac) components, including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt and the sag in leaf bank assembly owing to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with 5 ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of the image data. Nine Elekta AB (Stockholm, Sweden) linacs of different models and number of years in service were investigated. The average EPID sag was within 2 mm for all tested linacs. Some machines showed >1-mm gantry sag. Changes in the SDD values were within 1.3 cm. EPID skewness and tilt values were <1° in all machines. The maximum sag in multileaf collimator leaf bank assemblies was around 1 mm. A meaningful correlation was found between the age of the linacs and their mechanical performance. Conclusions and Advances in knowledge: The method and software developed in this study provide a simple tool for effective investigation of the behaviour of Elekta linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Elekta machines.

  12. Low-energy linac structure for PIGMI

    International Nuclear Information System (INIS)

    Swenson, D.A.; Stovall, J.E.

    1977-01-01

    The higher radio frequency (450 MHz) and lower injection energy (250 keV) of the PIGMI (Pion Generator for Medical Irradiations) linac design seriously compound the problem of beam containment in the first few meters of the structure. The conventional quadrupole-focused, drift-tube linac represents the best solution for beam energies above 8 MeV, but because of the small space available for quadrupoles in the PIGMI designs, cannot provide the required focusing at lower energies. A satisfactory solution to this focusing problem has been found based on pure alternating phase focusing for the first few MeV, followed by a smooth transition to a pure permanent magnet quadrupole-focused structure at 8 MeV. The structure and its calculated performance are described

  13. Event-synchronized data acquisition system for the SPring-8 linac beam position monitors

    Science.gov (United States)

    Masuda, T.; Fukui, T.; Tanaka, R.; Taniuchi, T.; Yamashita, A.; Yanagida, K.

    2005-05-01

    By the summer of 2003, we had completed the installation of a new non-destructive beam position monitor (BPM) system to facilitate beam trajectory and energy correction for the SPring-8 linac. In all, 47 BPM sets were installed on the 1-GeV linac and three beam-transport lines. All of the BPM data acquisition system was required to operate synchronously with the electron beam acceleration cycle. We have developed an event-synchronized data acquisition system for the BPM data readout. We have succeeded in continuously taking all the BPMs data from six VME computers synchronized with the 10 pps operation of the linac to continuously acquire data. For each beam shot, the data points are indexed by event number and stored in a database. Using the real-time features of the Solaris operating system and distributed database technology, we currently have achieved about 99.9% efficiency in capturing and archiving all of the 10 Hz data. The linac BPM data is available for off-line analysis of the beam trajectory, but also for real-time control and automatic correction of the beam trajectory and energy.

  14. A computer control system for the PNC high power cw electron linac. Concept and hardware

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T.; Hirano, K.; Takei, Hayanori; Nomura, Masahiro; Tani, S. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kato, Y.; Ishikawa, Y.

    1998-06-01

    Design and construction of a high power cw (Continuous Wave) electron linac for studying feasibility of nuclear waste transmutation was started in 1989 at PNC. The PNC accelerator (10 MeV, 20 mA average current, 4 ms pulse width, 50 Hz repetition) is dedicated machine for development of the high current acceleration technology in future need. The computer control system is responsible for accelerator control and supporting the experiment for high power operation. The feature of the system is the measurements of accelerator status simultaneously and modularity of software and hardware for easily implemented for modification or expansion. The high speed network (SCRAM Net {approx} 15 MB/s), Ethernet, and front end processors (Digital Signal Processor) were employed for the high speed data taking and control. The system was designed to be standard modules and software implemented man machine interface. Due to graphical-user-interface and object-oriented-programming, the software development environment is effortless programming and maintenance. (author)

  15. Evaluation of IsoCal geometric calibration system for Varian linacs equipped with on-board imager and electronic portal imaging device imaging systems.

    Science.gov (United States)

    Gao, Song; Du, Weiliang; Balter, Peter; Munro, Peter; Jeung, Andrew

    2014-05-08

    The purpose of this study is to evaluate the accuracy and reproducibility of the IsoCal geometric calibration system for kilovoltage (kV) and megavoltage (MV) imagers on Varian C-series linear accelerators (linacs). IsoCal calibration starts by imaging a phantom and collimator plate using MV images with different collimator angles, as well as MV and kV images at different gantry angles. The software then identifies objects on the collimator plate and in the phantom to determine the location of the treatment isocenter and its relation to the MV and kV imager centers. It calculates offsets between the positions of the imaging panels and the treatment isocenter as a function of gantry angle and writes a correction file that can be applied to MV and kV systems to correct for those offsets in the position of the panels. We performed IsoCal calibration three times on each of five Varian C-series linacs, each time with an independent setup. We then compared the IsoCal calibrations with a simplified Winston-Lutz (WL)-based system and with a Varian cubic phantom (VC)-based system. The maximum IsoCal corrections ranged from 0.7 mm to 1.5 mm for MV and 0.9 mm to 1.8 mm for kV imagers across the five linacs. The variations in the three calibrations for each linac were less than 0.2 mm. Without IsoCal correction, the WL results showed discrepancies between the treatment isocenter and the imager center of 0.9 mm to 1.6 mm (for the MV imager) and 0.5 mm to 1.1 mm (for the kV imager); with IsoCal corrections applied, the differences were reduced to 0.2 mm to 0.6 mm (MV) and 0.3 mm to 0.6 mm (kV) across the five linacs. The VC system was not as precise as the WL system, but showed similar results, with discrepancies of less than 1.0 mm when the IsoCal corrections were applied. We conclude that IsoCal is an accurate and consistent method for calibration and periodic quality assurance of MV and kV imaging systems.

  16. Beam energy spread in FERMI(at)elettra gun and linac induced by intrabeam scattering

    International Nuclear Information System (INIS)

    Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.; Penco, Giuseppe

    2008-01-01

    Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI(at)elettra electron gun

  17. Technical Note: Development and performance of a software tool for quality assurance of online replanning with a conventional Linac or MR-Linac

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Ahunbay, Ergun; Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States)

    2016-04-15

    Purpose: To develop an integrated quality assurance (QA) software tool for online replanning capable of efficiently and automatically checking radiation treatment (RT) planning parameters and gross plan quality, verifying treatment plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary monitor unit (MU) calculation with or without a presence of a magnetic field from MR-Linac, and validating the delivery record consistency with the plan. Methods: The software tool, named ArtQA, was developed to obtain and compare plan and treatment parameters from both the TPS and the R&V system database. The TPS data are accessed via direct file reading and the R&V data are retrieved via open database connectivity and structured query language. Plan quality is evaluated with both the logical consistency of planning parameters and the achieved dose–volume histograms. Beams in between the TPS and R&V system are matched based on geometry configurations. To consider the effect of a 1.5 T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. Results: ArtQA has been used in their clinic and can quickly detect inconsistencies and deviations in the entire RT planning process. With the use of the ArtQA tool, the efficiency for plan check including plan quality, data transfer, and delivery check can be improved by at least 60%. The newly developed independent MU calculation tool for MR-Linac reduces the difference between the plan and calculated MUs by 10%. Conclusions: The software tool ArtQA can be used to perform a comprehensive QA check from planning to delivery with conventional Linac or MR-Linac and is an essential tool for online replanning where the QA check needs to be performed rapidly.

  18. Technical Note: Development and performance of a software tool for quality assurance of online replanning with a conventional Linac or MR-Linac.

    Science.gov (United States)

    Chen, Guang-Pei; Ahunbay, Ergun; Li, X Allen

    2016-04-01

    To develop an integrated quality assurance (QA) software tool for online replanning capable of efficiently and automatically checking radiation treatment (RT) planning parameters and gross plan quality, verifying treatment plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary monitor unit (MU) calculation with or without a presence of a magnetic field from MR-Linac, and validating the delivery record consistency with the plan. The software tool, named ArtQA, was developed to obtain and compare plan and treatment parameters from both the TPS and the R&V system database. The TPS data are accessed via direct file reading and the R&V data are retrieved via open database connectivity and structured query language. Plan quality is evaluated with both the logical consistency of planning parameters and the achieved dose-volume histograms. Beams in between the TPS and R&V system are matched based on geometry configurations. To consider the effect of a 1.5 T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. ArtQA has been used in their clinic and can quickly detect inconsistencies and deviations in the entire RT planning process. With the use of the ArtQA tool, the efficiency for plan check including plan quality, data transfer, and delivery check can be improved by at least 60%. The newly developed independent MU calculation tool for MR-Linac reduces the difference between the plan and calculated MUs by 10%. The software tool ArtQA can be used to perform a comprehensive QA check from planning to delivery with conventional Linac or MR-Linac and is an essential tool for online replanning where the QA check needs to be performed rapidly.

  19. MO-F-CAMPUS-T-04: Implementation of a Standardized Monthly Quality Check for Linac Output Management in a Large Multi-Site Clinic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H; Yi, B; Prado, K [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: This work is to investigate the feasibility of a standardized monthly quality check (QC) of LINAC output determination in a multi-site, multi-LINAC institution. The QC was developed to determine individual LINAC output using the same optimized measurement setup and a constant calibration factor for all machines across the institution. Methods: The QA data over 4 years of 7 Varian machines over four sites, were analyzed. The monthly output constancy checks were performed using a fixed source-to-chamber-distance (SCD), with no couch position adjustment throughout the measurement cycle for all the photon energies: 6 and 18MV, and electron energies: 6, 9, 12, 16 and 20 MeV. The constant monthly output calibration factor (Nconst) was determined by averaging the machines’ output data, acquired with the same monthly ion chamber. If a different monthly ion chamber was used, Nconst was then re-normalized to consider its different NDW,Co-60. Here, the possible changes of Nconst over 4 years have been tracked, and the precision of output results based on this standardized monthly QA program relative to the TG-51 calibration for each machine was calculated. Any outlier of the group was investigated. Results: The possible changes of Nconst varied between 0–0.9% over 4 years. The normalization of absorbed-dose-to-water calibration factors corrects for up to 3.3% variations of different monthly QA chambers. The LINAC output precision based on this standardized monthly QC relative to the TG-51 output calibration is within 1% for 6MV photon energy and 2% for 18MV and all the electron energies. A human error in one TG-51 report was found through a close scrutiny of outlier data. Conclusion: This standardized QC allows for a reasonably simplified, precise and robust monthly LINAC output constancy check, with the increased sensitivity needed to detect possible human errors and machine problems.

  20. IMPACT simulation and the SNS linac beam

    International Nuclear Information System (INIS)

    Zhang, Y.; Qiang, J.

    2008-01-01

    Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results

  1. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  2. Linac Coherent Light Source Undulator RF BPM System

    International Nuclear Information System (INIS)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; Argonne; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; SLAC

    2007-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results

  3. Approach of a failure analysis for the MYRRHA linac

    International Nuclear Information System (INIS)

    Carneiro, J.P.; Medeiros-Romao, L.; Salemne, R.; Vandeplassche, D.; Biarotte, J.L.; Bouly, F.; Uriot, D.

    2015-01-01

    The MYRRHA project currently under development at SCK-CEN (Mol, Belgium) is a subcritical research reactor that requires a 600 MeV proton accelerator as a driver. This linac is expected to produce a beam power of 1.5 MW onto a spallation target for the reactor to deliver a thermal power around 70 MW. Thermomechanical considerations of the spallation target set stringent requirements on the beam trip rate which should not exceed 40 trips/year for interruptions longer than three seconds. The 3 underlying principles in the design of the MYRRHA linac are elements redundancy (like the dual-injector), elements operation at de-rated values (like cavities operating at about 30% from their nominal operating points) and the fault tolerance concept, which allows the failure of a beamline component to be compensated by its neighbouring elements. Studies presented in this document show that in the event of a failure of the first cryo-module or the first quadrupole doublet the linac can resume nominal operation with a re-matched lattice. Since the fault tolerance procedure is expected to work more efficiently at higher energies (due to lower space charge effects) we can extrapolate from our studies that the MYRRHA linac is expected to operate with the failure of any cryo-module or quadrupole doublet in the main linac. A virtual accelerator-based control system is mandatory for the operation of the MYRRHA linac to ensure the very fast implementation (<3 seconds) of the fault tolerance procedure. The virtual accelerator uses a beam dynamics code (like TRACEWIN or TRACK) to compute the model of the real accelerator in operation and interacts with this later through the accelerator control command

  4. Design of thermal neutron beam based on an electron linear accelerator for BNCT.

    Science.gov (United States)

    Zolfaghari, Mona; Sedaghatizadeh, Mahmood

    2016-12-01

    An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.

  5. Thirty-five years of drift-tube linac experience

    International Nuclear Information System (INIS)

    Knowles, H.B.

    1984-10-01

    The history of the drift-tube linear accelerator (linac) for the first 35 years of its existence is briefly reviewed. Both US and foreign experience is included. Particular attention is given to technological improvements, operational reliability, capital investment, and number of personnel committed to drift-tube linac (DTL) development. Preliminary data indicate that second- and third-generation (post-1960) DTLs have, in the US alone, operated for a combined total period of more than 75 machine-years and that very high reliability (>90%) has been achieved. Existing US drift-tube linacs represent a capital investment of at least $250 million (1983). Additional statistical evidence, derived from the proceedings of the last 11 linear accelerator conferences, supports the view that the DTL has achieved a mature technological base. The report concludes with a discussion of important recent advances in technology and their applications to the fourth generation of DTLs, many of which are now becoming operational

  6. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  7. Status and Future Plans of JAERI Eergy-Recovery Linac FEL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    An energy-recovery linac for a high-power free-electron laser is in operation at Japan Atomic Energy Research Institute (JAERI). In this paper, we report results of research activities and future plans of JAERI ERL-FEL, which are the construction of FEL transport line, the operation of newly-installed RF controller and IOTs, the development of super-lattice photo cathode.

  8. Alignment and Field Error Tolerance in Linac4

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L; Lallement, J B; Lanzone, S; Lombardi, A M; Posocco, P; Sargsyan, E

    2011-01-01

    LINAC4 [1] is a linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton LINAC (LINAC2) as linear injector for the CERN accelerators. The higher output energy (160 MeV) together with charge-exchange injection will allow increasing beam intensity in the following machines. LINAC4 is about 80 m long, normal-conducting, and will be housed in a tunnel 12 m below ground on the CERN Meyrin site. The location has been chosen to allow using LINAC4 as the first stage of acceleration for a Multi-MegaWatt superconducting LINAC (SPL [2]). A 60 m long transfer line brings the beam towards the present LINAC2-to-PS Booster transfer line, which is joined at the position of BHZ20. The new transfer line consists of 17 new quadrupoles, an RF cavity and 4 bending magnets to adjust both the direction and the level for injection into the PS Booster. End-to-end beam dynamics simulations have been carried out in parallel with the codes PATH [3] and TRACEWIN[4]. Following the definition of the layout...

  9. Update of the Linac4-PSB Transfer Line

    CERN Document Server

    HEIN, Lutz

    2010-01-01

    The installation of Linac4 represents the first step of the upgrade plans of the CERN accelerator complex for the future in order to raise the available proton flux to attain amongst others the LHC ultimate luminosity. This linac is capable to accelerate H--ions from 45keV to 160MeV, which will be injected into the Proton Synchrotron Booster (PSB). The increase of energy from 50MeV (Linac2) to 160MeV (Linac4) allows to overcome the space charge limitations at the PSB injection, which is the main bottleneck towards higher beam brightness in the downstream accelerator chain. In order to preserve beam quality from the outlet of Linac4 to PSB injection the design of the transfer line becomes crucial. As the location of Linac4 was chosen in view of upgrade scenarios, the construction of a new transfer line is foreseen, see ref.[1] and ref.[2]. Here part of the Linac2-PSB transfer line will be re-used. In the new part of the transfer line the beam is horizontally and vertically adjusted towards the bending magnet B...

  10. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  11. Parallel Beam Dynamics Simulation Tools for Future Light Source Linac Modeling

    International Nuclear Information System (INIS)

    Qiang, Ji; Pogorelov, Ilya v.; Ryne, Robert D.

    2007-01-01

    Large-scale modeling on parallel computers is playing an increasingly important role in the design of future light sources. Such modeling provides a means to accurately and efficiently explore issues such as limits to beam brightness, emittance preservation, the growth of instabilities, etc. Recently the IMPACT codes suite was enhanced to be applicable to future light source design. Simulations with IMPACT-Z were performed using up to one billion simulation particles for the main linac of a future light source to study the microbunching instability. Combined with the time domain code IMPACT-T, it is now possible to perform large-scale start-to-end linac simulations for future light sources, including the injector, main linac, chicanes, and transfer lines. In this paper we provide an overview of the IMPACT code suite, its key capabilities, and recent enhancements pertinent to accelerator modeling for future linac-based light sources

  12. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  13. Operational experience with the control scheme for IUAC linac booster

    International Nuclear Information System (INIS)

    Sahu, B.K.; Antony, J.; Mathuria, D.S.; Pandey, A.; Ghosh, S.; Mehta, R.; Rai, A.; Patra, P.; Choudhury, G.K.; Singh, K.; Ajith Kumar, B.P.; Kanjilal, D.; Roy, A.

    2009-01-01

    Accelerated beam from the first superconducting linear accelerator (linac) module of IUAC has been delivered to the user. The linac control scheme has worked successfully with the existing pelletron control scheme. Local RF control system consisting of Resonator controller and supporting RF modules are used for multipactoring conditioning, high power pulse conditioning and for the phase/amplitude locking of the superconducting resonators. Beam acceleration is done by adjusting the RF phase of each resonator with respect to master oscillator. The automation of control scheme is planned for smooth operation of linac with minimum human intervention. Python software support is added for writing automation routines in present control system software. An alternate tuning mechanism based on piezoelectric actuators has been successfully tested. (author)

  14. Argonne superconducting heavy-ion linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2 0 K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (ΔE/E approximately equal to 2 x 10 -4 ) or very good time resolution

  15. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  16. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  17. ANU LINAC upgrade using multi-stub resonators

    Indian Academy of Sciences (India)

    LINAC development work at ANU is currently aimed at improving ... current through the rf joint at the base of the outer wall and so increasing joint losses. The ... The stub geometry was developed with a help of Superfish/Poisson software [8].

  18. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  19. WE-A-304-01: Strategies and Technologies for Cranial Radiosurgery Planning: MLC-Based Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G. [University of California, San Diego (United States)

    2015-06-15

    The high fractional doses, stringent requirements for accuracy and precision, and surgical perspective characteristic of intracranial radiosurgery create considerations for treatment planning which are distinct from most other radiotherapy procedures. This session will introduce treatment planning techniques specific to two popular intracranial SRS modalities: Gamma Knife and MLC-based Linac. The basic treatment delivery characteristics of each device will be reviewed with a focus on how those characteristics determine the paradigm used for treatment planning. Basic techniques for treatment planning will be discussed, including considerations such as isodose selection, target and organ-at-risk definition, quality indices, and protection of critical structures. Future directions for SRS treatment planning will also be discussed. Learning Objectives: Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery. Demonstrate basic treatment planning techniques. Discuss metrics for evaluating SRS treatment plan quality. Discuss recent and future advances in SRS treatment planning. D. Schlesinger receives research support from Elekta, AB.

  20. WE-A-304-01: Strategies and Technologies for Cranial Radiosurgery Planning: MLC-Based Linac

    International Nuclear Information System (INIS)

    Kim, G.

    2015-01-01

    The high fractional doses, stringent requirements for accuracy and precision, and surgical perspective characteristic of intracranial radiosurgery create considerations for treatment planning which are distinct from most other radiotherapy procedures. This session will introduce treatment planning techniques specific to two popular intracranial SRS modalities: Gamma Knife and MLC-based Linac. The basic treatment delivery characteristics of each device will be reviewed with a focus on how those characteristics determine the paradigm used for treatment planning. Basic techniques for treatment planning will be discussed, including considerations such as isodose selection, target and organ-at-risk definition, quality indices, and protection of critical structures. Future directions for SRS treatment planning will also be discussed. Learning Objectives: Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery. Demonstrate basic treatment planning techniques. Discuss metrics for evaluating SRS treatment plan quality. Discuss recent and future advances in SRS treatment planning. D. Schlesinger receives research support from Elekta, AB

  1. Development of the high-power THz spectroscopy and imaging systems on the basis of an S-band compact electron LINAC

    International Nuclear Information System (INIS)

    Kuroda, R.; Taira, Y.; Tanaka, M.; Toyokawa, H.; Yamada, K.; Kumaki, M.; Tachibana, M.; Sakaue, K.; Washio, M.

    2014-01-01

    The high-power terahertz time-domain spectroscopy (THz-TDS) and imaging systems have been developed on the basis of an S-band compact electron linac at AIST. Such high-power THz source is strongly expected for inspection of dangerous materials in the homeland security field. The high-power THz radiations are generated in two methods with the high-brightness ultra-short electron bunch. One is THz coherent synchrotron radiation (THz-CSR) for THz imaging applications. The other is THz coherent transition radiation (THz-CTR) for the THz spectroscopy. The THz-CTR time-domain spectroscopy (TDS) has been constructed with the EO sampling method and demonstrated in freq. range between 0.1-2 THz. The absorption measurements of drug samples have been successfully performed in atmosphere. In this symposium, we will describe details of the THz-CTR-TDS and imaging experiments and a future plan of the THz applications. (author)

  2. First Linac4 DTL & CCDTL cavities installed in tunnel

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On 5 June, the first Drift Tube Linac (DTL) was successfully transported to its forever home in the Linac4 tunnel. Similarly, the first Cell-Coupled Drift Tube Linac (CCDTL) was installed on 6 June. These moves marked the end of years of design and manufacturing by Linac4 teams.   Although it may seem like a relatively routine transport operation, the DTL's move was a landmark event for the entire Linac4 collaboration. "Along with the first four Cell-Coupled DTL modules, which were installed on the following two working days, these are the first accelerating structures after front-end commissioning to be installed in the tunnel," says Frank Gerigk, who is responsible for all Linac4 accelerating structures. "It is a major milestone, because work on all these structures started well over a decade ago." The transport operation was also quite a victory for the Linac4 DTL team, whose journey to a complete DTL structure has been a bit of a wild ride. &qu...

  3. Radiation Shielding Analyses of A 10 MeV, 15kW LINAC for Electron Beam and X-ray at KACST

    Energy Technology Data Exchange (ETDEWEB)

    Kang, W. G.; Pyo, S. H.; Han, B. S.; Kang, C. M. [EB Tech Co., Daejeon (Korea, Republic of); Alkhuraiji, T. S. [King AbdulAziz City for Science and Technology, Riyadh (Saudi Arabia)

    2016-10-15

    The King AbdulAziz City for Science and Technology (KACST) in the Kingdom of Saudi Arabia has a plan to build a 10 MeV, 15kW linear accelerator (LINAC) for electron beam and X-ray, which is to be supplied by EB Tech in Republic of Korea. The design and construction of the accelerator building will be carried out jointly between EB Tech and KACST. Recommendations for the design and installation of radiation shielding for x-ray and gamma-ray can be found in NCRP No. 49(1976) and for accelerators with energies over 10 MeV in NCRP No. 151 (2005). Monte Carlo calculations were conducted using the MCNP6 code to determine photon fluxes and doses at the point detectors locations around the accelerator building. The problem was run as an electron, photon and neutron transport problem to account for all reactions including the (γ,n) reaction. The detectors where the DXTRAN spheres were used are indicated in the table. The computation was continued until electrons reached a total of 1x10{sup +8} histories.

  4. Variable-energy drift-tube linacs

    International Nuclear Information System (INIS)

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    1982-01-01

    Practical applications of ion linacs are more viable now than ever before because of the recent development of the radio-frequency quadrupole accelerating structure, as well as other technological advances developed under the Pion Generator for Medical Irradiations program. This report describes a practical technique for varying the energy of drift-tube linacs and thus further broadening the possibilities for linac applications. This technique involves using the post couplers (normally used to flatten and stabilize the electric fields) to create a step in the fields, thus terminating the acceleration process. In the examples given for a 70-MeV accelerator design, when using this technique the energy is continually variable down to 20 MeV, while maintaining a small energy spread

  5. Development of an Eddy Current Septum for LINAC4

    CERN Document Server

    Barnes, M; Borburgh, J; Fowler, T; Goddard, B; Ueda, A; Weterings, W

    2008-01-01

    A linear accelerator (linac) is the first stage of the CERN accelerator complex. The linac defines the beam quality for subsequent stages of acceleration and the reliability has to be high as a fault of the linac shuts down all other machines. The existing linacs at CERN were designed 30 or more years ago: recent upgrades allowed the linacs to reach LHC requirements but also showed that they are at the limit of their brightness and intensity capabilities. A replacement Superconducting Proton Linac (SPL) has been proposed; the initial part of the SPL is termed LINAC4. The LINAC4 injection bump would be made up of a set of four pulsed dipole magnets; the first of these magnets (BS1) must act as a septum with a thin element dividing the high-field region of the circulating beam from the field-free region through which injected $H^{-}$ beam must pass. The initial specifications for BS1 required; a deflection of 66 mrad at 160 MeV, achieved with a peak field of 628 mT and a length of 250 mm: the field fall time wa...

  6. Critical analysis of industrial electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S. E-mail: sergey_korenev@steris.com

    2004-10-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterilization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  7. Critical analysis of industrial electron accelerators

    Science.gov (United States)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  8. Critical analysis of industrial electron accelerators

    International Nuclear Information System (INIS)

    Korenev, S.

    2004-01-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterilization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed

  9. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  10. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    International Nuclear Information System (INIS)

    Xing, L; Wong, J; Li, R

    2014-01-01

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications

  11. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L [Stanford University, Stanford, CA (United States); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Li, R [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.

  12. LFSC - Linac Feedback Simulation Code

    International Nuclear Information System (INIS)

    Ivanov, Valentin; Fermilab

    2008-01-01

    The computer program LFSC ( ) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output

  13. A method of beam control for NFZ-10 industrial irradiation linac

    International Nuclear Information System (INIS)

    Zhao Minghua

    2000-01-01

    Traditionally negative feedback coming from output beam is used to stabilize output beam by regulating filament voltage of bombarding diode electron gun. The authors analysed the shortcomings of the method in detail and put forward a new method of regulating bombarding high voltage in NFZ-10 industrial irradiation linac. Output beam with high stability and high accuracy was obtained

  14. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    International Nuclear Information System (INIS)

    Siemann, R.H.

    1998-07-01

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  15. Pulse compression system for the ANL 20 MeV linac

    International Nuclear Information System (INIS)

    Mavrogenes, G.; Norem, J.; Simpson, J.

    1986-01-01

    This paper describes the pulse compression system being built on the Argonne 20 MeV electron linac. The system is designed to rotate the bunch from the present measured pulse length of 38 psec FWHM, to pulse lengths of 5 to 6 ps with the large instantaneous currents (1 to 4 kA) possible instantaneous current. This system was necessary to extend the study of reactive fragments of molecules to the time scale of a few picoseconds, in particular to examine the chemistry of electrons and ions before and during relaxation of the surrounding media. These experiments are not sensitive to the beam energy spread, High Energy Physics experiments studying wake fields have also been proposed using the short bunches and the facility was designed so that the wake field experiment could share the beam bunching system. The 20 MeV electron linac uses a double gap, 12th subharmonic prebuncher together with a one wavelength 1.3 Ghz prebuncher to produce a single pulse of 38 ps from one occupied rf bucket. Beam emittances of 15.7 mmmr have been measured for 40 nC of accelerated charge and 8 mmmr at 10 nC. The energy spread of dE/E = 1% (FWHM) has been measured at 40 nC. Thus the accelerated beam has excellent time structure, high current, and good emittance

  16. Linac4 H− ion sources

    International Nuclear Information System (INIS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.

    2016-01-01

    CERN’s 160 MeV H − linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H − source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H − source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described

  17. Analysis of the LSC microbunching instability in MaRIE linac reference design

    International Nuclear Information System (INIS)

    Yampolsky, Nikolai

    2016-01-01

    In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius is equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.

  18. Radio-frequency-quadrupole linac in a heavy ion fusion driver system

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Stokes, R.; Swenson, D.A.; Wangler, T.P.

    1980-01-01

    A new type of linear accelerator, the radio-frequency quadrupole (RFQ) linac, is being developed for the acceleration of low-velocity ions. The RFQ accelerator can be adapted to any high-current applications. A recent experimental test carried out at the Los Alamos Scienific Laboratory (LASL) has demonstrated the outstandig properties of RFQ systems. The test linac accepts a 30-mA proton beam of 100-keV energy and focuses, bunches, and accelerates the beam to an energy to 640 keV. This ia done in a length of 1.1 m, with a transmission efficiency of 87% and with a radial emittance growth of less than 60%. The proven capability of the RFQ linac, when extended to heavy ion acceleration, should provide an ideal technique for use in the low-velocity portion of a heavy-ion linac for inertial-confinement fusion. A specific concept for such an RFQ-based system is described

  19. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  20. Measurement of concentrations of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kawasaki, Katsuya; Kikuchi, Masamitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Harada, Yasunori

    1997-07-01

    Measurement has been made to study distributions of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility. Core boring was carried out at seven positions to take samples from the concrete shield, and {gamma}-ray counting rates and {gamma}-ray spectra of these samples were measured with a NaI(Tl) detector and a Ge semiconductor detector, respectively. The following radionuclides were detected in the concrete samples: {sup 60}Co, {sup 134}Cs, {sup 152}Eu and {sup 154}Eu generated through thermal neutron capture reaction, and {sup 22}Na and {sup 54}Mn generated through nuclear reactions by bremsstrahlung and fast neutrons. The relation between the distributions of {gamma}-ray emitters, as a function of the depth of concrete, and the positions of core boring is discussed. (author)

  1. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  2. X-ray detectors at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    This paper offers an overview of area detectors developed for use at the Linac Coherent Light Source (LCLS) with particular emphasis on their impact on science. The experimental needs leading to the development of second-generation cameras for LCLS are discussed and the new detector prototypes are presented. Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced

  3. First beam in Linac4 DTL

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following the installation of the Linac4 Drift Tube Linac (DTL) earlier this summer (see here), the first DTL tank saw beams at 12 MeV on 5 August.   Transverse emittance measured at 12 MeV after the DTL tank1 using a temporary slit-and-grid emittance device. You never forget your first beam. That was especially true for the Linac4 DTL team, as it followed years of design, construction and vigorous testing. "We performed countless measurements of the geometry, vacuum and magnet polarisation of the DTL tanks while we were in the workshop," says Suitbert Ramberger, project engineer for the Linac4 DTL. "Add that preparation to the excellent RF conditioning that we carried out in the weeks before the beam tests and I was confident that the acceleration with beam would fully meet expectations!" Indeed it did. Beam commissioning tests ran until 21 August and found the DTL operating with nominal transmission. This successful run has confirmed the innovative design ...

  4. Free-electron laser and related quantum beams

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    Past, present and future development programs of the JAERI super-conducting rf linac-based FELs and light sources with and without energy recovery have been discussed and introduced briefly. The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing mode of 255 fs ultra fast pulse, 6-9% high-efficiency, one GW high peak power, a few kW average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing, we could realize a powerful and efficient free-electron laser (FEL) for industrial uses near future. In order to realize such a tunable, ultra-short-pulse, high averaged-power FEL, we have needed the efficient and powerful CW FEL driver of the JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. The JAERI energy-recovery and/or super-conducting rf linac driver has been developed to use as an industrial electron irradiator, and millimeter-wave, far-infrared, mid-infrared, near-infrared and shorter wavelength quantum beam sources. (author)

  5. Free-electron laser and related quantum beams

    Energy Technology Data Exchange (ETDEWEB)

    Minehara, Eisuke J [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-07-01

    Past, present and future development programs of the JAERI super-conducting rf linac-based FELs and light sources with and without energy recovery have been discussed and introduced briefly. The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing mode of 255 fs ultra fast pulse, 6-9% high-efficiency, one GW high peak power, a few kW average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing, we could realize a powerful and efficient free-electron laser (FEL) for industrial uses near future. In order to realize such a tunable, ultra-short-pulse, high averaged-power FEL, we have needed the efficient and powerful CW FEL driver of the JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. The JAERI energy-recovery and/or super-conducting rf linac driver has been developed to use as an industrial electron irradiator, and millimeter-wave, far-infrared, mid-infrared, near-infrared and shorter wavelength quantum beam sources. (author)

  6. Development of electron beam facilities for research and applications in Thailand

    International Nuclear Information System (INIS)

    Vilaithong, Thiraphat

    2004-01-01

    Linear accelerators (linac) were introduced into the Kingdom of Thailand almost twenty years ago. They were installed at major hospitals around the country for radiotherapy. At present there are 20 medical electron linacs in Thailand. Three of the new linacs are recently installed at Chiang Mai University Hospital. The first industrial electron accelerator was commissioned in 1997 for sterilization of medical products such as doctor gown, pampas etc. for export. It has accelerating voltage in the range between 1.8 to 2.4 MeV and power of 10 kW. The second electron accelerator was introduced in the year 2000 for gemstone enhancement. This one is a 15 MeV, 8.5 kW electron linac. Since 2000 a program to generate electron beams for research and industrial application has been realized at Chiang Mai University. Both high (10-30 MeV) and low (300 keV) energy electron accelerating systems are being explored. Here we describe the present development status and near future applications. (author)

  7. Measurements of longitudinal phase space in the SLC linac

    International Nuclear Information System (INIS)

    Bane, K.; Adolphsen, C.; Lavine, T.L.; Ross, M.; Seeman, J.; Thompson, K.

    1990-05-01

    In the Stanford Linear Collider the beam leaves a damping ring and then enters the Ring-to-Linac (RTL) transfer line. In the RTL it is compressed in length by a factor of 10 by means of an rf section, with which a longitudinally correlated energy variation is induced in the beam, and a following beam line which has non-zero momentum compaction. The compressed beam then enters the linac proper. In this paper we describe three measurements of longitudinal properties of the beam in the SLC linac. We present measurements of single bunch beam loading, of the energy spectrum at the end of the linac, and of the linac bunch length. Since the results of all three measurements depend on the beam's longitudinal charge distribution in the linac they, in turn, also depend on the bunch lengthening that occurs in the damping rings, as well as on the behavior of the compressor. The results of the first two measurements, in addition, depend critically on the strength of the longitudinal wakefields in the linac. The results of these three measurements are compared with simulations. For these calculations, at any given current, the potential well distortion in the damping ring is first computed. The compression process is then simulated to obtain the longitudinal charge distribution in the linac. For the first two measurements this distribution is then convolved with the calculated longitudinal wake function of the SLAC linac in order to obtain the induced voltage. Finally, the induced voltage is combined with the effect of the linac rf wave to give the final energy spectrum. 8 refs., 5 figs

  8. Dispersion and betatron matching into the linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Adolphsen, C.; Corbett, W.J.; Emma, P.; Hsu, I.; Moshammer, H.; Seeman, J.T.; Spence, W.L.

    1991-05-01

    In high energy linear colliders, the low emittance beam from a damping ring has to be preserved all the way to the linac, in the linac and to the interaction point. In particular, the Ring-To-Linac (RTL) section of the SLAC Linear Collider (SLC) should provide an exact betatron and dispersion match from the damping ring to the linac. A beam with a non-zero dispersion shows up immediately as an increased emittance, while with a betatron mismatch the beam filaments in the linac. Experimental tests and tuning procedures have shown that the linearized beta matching algorithms are insufficient if the actual transport line has some unknown errors not included in the model. Also, adjusting quadrupole strengths steers the beam if it is offset in the quadrupole magnets. These and other effects have lead to a lengthy tuning process, which in the end improves the matching, but is not optimal. Different ideas will be discussed which should improve this matching procedure and make it a more reliable, faster and simpler process. 5 refs., 2 figs

  9. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  10. Range of Possible Beam Current in Linac4

    CERN Document Server

    Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    Linac4 is a new accelerator under construction at CERN. It is designed to accelerate H- ions to 160MeV, for injection into the existing Proton Synchrotron Booster (PSB). It is also the front-end of the SPL Linac, a high energy proton driver that will reach the energy of 5GeV. The Linac baseline design has been done for a nominal beam peak current of 70mA but it will certainly have to deal with different currents. 132 out of 155 quadrupoles in the Linac are permanent magnets, this choice of using PMQ having fixed gradient, mainly in the DTL and in the CCDTL may then entail issues concerning the beam transverse matching and quality from current different from the nominal one. In this paper, we present the beam dynamics performances in Linac4 obtained for different currents.

  11. Study on design of proton linacs

    International Nuclear Information System (INIS)

    Yu Qingchang

    2000-01-01

    Two important directions in the development of proton linacs are high-current proton linacs (mainly applied in nuclear power field) and compact proton linacs (for proton therapy). There are some common characteristics in them: (1) Employment of the novel accelerating structures, which are combination and evolution of the conventional ones; (2) Accelerating beam with small emittance; (3) Requirement for high reliability. The construction of the former is, however, much more difficult because it still needs low beam lose rate and as high power transformation efficiency as possible. Some important problems in the design of these accelerators are discussed and some schemes designed are presented

  12. Upgrade of the AGS H- linac

    International Nuclear Information System (INIS)

    Alessi, J.G.; Buxton, W.; Kponou, A.; LoDestro, V.; Mapes, M.; McNerney, A.J.; Raparia, D.

    1994-01-01

    The AGS linac presently accelerates 25 mA of H - to 200 MeV at a 5 Hz rep-rate and 500 μs pulse width. The Booster takes 4 pulses every 3.8 seconds, and the remaining pulses are used for isotope production. The authors are in the process of upgrading the linac to increase the average current delivered for isotope production by more than a factor of two, while at the same time expecting to decrease linac downtime. Various aspects of this upgrade are discussed, including the upgrade of the control system, new high power transmission line, transport line vacuum, and rf power supply system upgrades

  13. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    Science.gov (United States)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  14. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  15. Linac coherent light source (LCLS) undulator RF BPM system

    International Nuclear Information System (INIS)

    Lill, R.; Waldschmidt, G.; Morrison, L.; Smith, S.; Straumann, T; Li, Z.; Johnson, R.

    2006-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

  16. New control system for the KEK-linac

    International Nuclear Information System (INIS)

    Kamikubota, N.; Furukawa, K.; Nakahara, K.; Abe, I.; Akimoto, H.

    1993-01-01

    New control system for the KEK-Linac has been developed. Unix-based workstations and VME-bus computers are introduced. They are inter-connected with an Ethernet, which is used as a high-speed data-exchange network. New system will start the operation after October 1993. (author)

  17. Relocatable cargo x-ray inspection systems utilizing compact linacs

    International Nuclear Information System (INIS)

    Sapp, W. Wade; Adams, William L.; Callerame, Joseph; Grodzins, Lee; Rothschild, Peter J.; Schueller, Richard; Mishin, Andrey V.; Smith, Gerald J.

    2001-01-01

    Magnetron-powered, X-band linacs with 3-4 MeV capability are compact enough to be readily utilized in relocatable high energy cargo inspection systems. Just such a system is currently under development at AS and E trade mark sign using the commercially available ISOSearch trade mark sign cargo inspection system as the base platform. The architecture permits the retention of backscatter imaging, which has proven to be an extremely valuable complement to the more usual transmission images. The linac and its associated segmented detector will provide an additional view with superior penetration and spatial resolution. The complete system, which is housed in two standard 40 ' ISO containers, is briefly described with emphasis on the installation and operating characteristics of the portable linac. The average rf power delivered by the magnetron to the accelerator section can be varied up to the maximum of about 1 kW. The projected system performance, including radiation dose to the environment, will be discussed and compared with other high energy systems

  18. A SUPER-CONDUCTING LINAC DRIVER FOR THE HFBR.

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.; Raparia, D.; Ruggiero, A.G.

    2000-08-21

    This paper reports on the feasibility study of a proton Super-Conducting Linac (SCL) as a driver for the High-Flux Breeder Reactor (HFBR) at Brookhaven National Laboratory (BNL). The Linac operates in Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is 1.0 GeV. The average proton beam intensity in exit is 10 mA.

  19. Femtosecond and Subfemtosecond X-Ray Pulses from a SASE Based Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P

    2004-03-10

    We propose a novel method to generate femtosecond and sub-femtosecond photon pulses in a free electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 femtosecond in duration containing about 1010 transversely coherent photons.

  20. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    DEFF Research Database (Denmark)

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressu...