WorldWideScience

Sample records for electron ion interaction

  1. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  2. Electron-electron interaction and transfer ionization in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2008-01-01

    Recently it was pointed out that electron capture occurring in fast ion-atom collisions can proceed via a mechanism which earlier was not considered. In the present paper we study this mechanism in more detail. Similarly as in radiative capture, where the electron transfer occurs due to the interaction with the radiation field and proceeds via emission of a photon, within this mechanism the electron capture is caused by the interaction with another atomic electron leading mainly to the emission of the latter. In contrast to the electron-electron Thomas capture, this electron-electron (E-E) mechanism is basically a first-order one having similarities to the kinematic and radiative capture channels. It also possesses important differences with the latter two. Leading to transfer ionization, this first-order capture mechanism results in the electron emission mainly in the direction opposite to the motion of the projectile ion. The same, although less pronounced, feature is also characteristic for the momenta of the target recoil ions produced via this mechanism. It is also shown that the action of the E-E mechanism is clearly seen in recent experimental data on the transfer ionization in fast proton-helium collisions.

  3. ENERGETIC PHOTON AND ELECTRON INTERACTIONS WITH POSITIVE IONS

    Energy Technology Data Exchange (ETDEWEB)

    Phaneuf, Ronald A. [UNR

    2013-07-01

    The objective of this research is a deeper understanding of the complex multi-electron interactions that govern inelastic processes involving positive ions in plasma environments, such as those occurring in stellar cares and atmospheres, x-ray lasers, thermonuclear fusion reactors and materials-processing discharges. In addition to precision data on ionic structure and transition probabilities, high resolution quantitative measurements of ionization test the theoretical methods that provide critical input to computer codes used for plasma modeling and photon opacity calculations. Steadily increasing computational power and a corresponding emphasis on simulations gives heightened relevance to precise and accurate benchmark data. Photons provide a highly selective probe of the internal electronic structure of atomic and molecular systems, and a powerful means to better understand more complex electron-ion interactions.

  4. Electronic structures in ion-surface interactions

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    A chemical bond generated by the interaction between low energy ion and base was investigated by ab initio molecular orbital method. The effects of ion charge were studied by calculation of this method. When carbon ion approached to graphite base (C 24 H 12 ), the positive ion and the neutral atom covalently bonded, but the negative ion did not combine with it. When carbon ion was injected into h-BN base (B 12 N 12 H 12 , hexagonal system boron nitride), the positive ion and the neutron atom formed covalent bond and the van der Waals binding, and the negative ion interacted statically with it. (S.Y.)

  5. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  6. Extraction of highly charged ions from the Berlin Electron Beam Ion Trap for interactions with a gas target

    International Nuclear Information System (INIS)

    Allen, F.I.; Biedermann, C.; Radtke, R.; Fussmann, G.

    2006-01-01

    Highly charged ions are extracted from the Berlin Electron Beam Ion Trap for investigations of charge exchange with a gas target. The classical over-the-barrier model for slow highly charged ions describes this process, whereby one or more electrons are captured from the target into Rydberg states of the ion. The excited state relaxes via a radiative cascade of the electron to ground energy. The cascade spectra are characteristic of the capture state. We investigate x-ray photons emitted as a result of interactions between Ar 17+ ions at energies ≤5q keV with Ar atoms. Of particular interest is the velocity dependence of the angular momentum capture state l c

  7. Calculation of ion storage in electron beams with account of ion-ion interactions

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.; Shirkov, G.D.

    1979-01-01

    Ion storage in relativistic electron beams was calculated taking account of ion-ion charge exchange and ionization. The calculations were made for nitrogen ion storage from residual gas during the compression of electron rings in the adhezator of the JINR heavy ion accelerator. The calculations were made for rings of various parameters and for various pressures of the residual gas. The results are compared with analogous calculations made without account of ion-ion processes. It is shown that at heavy loading of a ring by ions ion-ion collisions play a significant part, and they should be taken into account while calculating ion storage

  8. Electron-ion collisions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1982-01-01

    This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments

  9. Electron emission induced by resonant coherent ion-surface interaction at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1992-01-01

    A new spectroscopy based on the resonant coherently induced electron loss to the continuum in ion-surface scattering under grazing incidence is proposed. A series of peaks, corresponding to the energy differences determined by the resonant interaction with the rows of atoms in the surface, is predicted to appear in the energy distribution of electrons emitted from electronic states bound to the probe. Calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with a glancing angle of 0--2 mrad show a total yield close to 1

  10. Measurement of the magnetic interaction between two bound electrons of two separate ions.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-19

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.

  11. Fast ions and hot electrons in the laser--plasma interaction

    International Nuclear Information System (INIS)

    Gitomer, S.J.; Jones, R.D.; Begay, F.; Ehler, A.W.; Kephart, J.F.; Kristal, R.

    1986-01-01

    Data on the emission of energetic ions produced in laser--matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x-ray-determined hot electron temperature. Five theoretical models have been used to explain this correlation. The models include (1) a steady-state spherically symmetric fluid model with classical electron heat conduction, (2) a steady-state spherically symmetric fluid model with flux limited electron heat conduction, (3) a simple analytic model of an isothermal rarefaction followed by a free expansion, (4) the lasneX hydrodynamics code [Comments Plasma Phys. Controlled Fusion 2, 85 (1975)], calculations employing a spherical expansion and simple initial conditions, and (5) the lasneX code with its full array of absorption, transport, and emission physics. The results obtained with these models are in good agreement with the experiments and indicate that the detailed shape of the correlation curve between mean fast ion energy and hot electron temperature is due to target surface impurities at the higher temperatures (higher laser intensities) and to the expansion of bulk target material at the lower temperatures (lower laser intensities)

  12. Interactions between electrons in the field of a positive ion

    International Nuclear Information System (INIS)

    Heideman, A.G.M.; Eck, J. van.

    1976-01-01

    Recent studies on the (auto)ionization of atoms by means of electron-atom collisions reveal the existence of phenomena probably brought about by post-collision interactions in the vicinity of a positive ion. In this article, a review of the subject is given in relation to the research program of the Utrecht atomic physics group

  13. Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1994-01-01

    The resonant coherent interaction of an ion with an oriented crystal surface, under grazing-incidence conditions with respect to a special direction of the crystal, gives rise to electron loss to the continuum from electronic bound states of the ion. The calculations presented below predict large probabilities for electron emission due to this mechanism. The electrons are emitted with well defined energies, expressed in terms of the condition of resonance. Furthermore, the emission takes place around certain preferential directions, which are determined by both the latter condition and the symmetry of the surface lattice. Our calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with glancing angle of 0--2 mrad indicate a yield of emission close to 1. Using heavier projectiles, one obtains smaller yields, but still large enough to be measurable in some cases (e.g., ∼0.9 for 53 MeV B 4+ and an angle of incidence of 1 mrad). Besides, the initial bound state is energy shifted due to the interaction with both the crystal potential and the velocity-dependent image potential. This results in a slight shift of the peaks of emission, which suggests a possible spectroscopy for analyzing the dynamical interaction of electronic bound states with solid surfaces

  14. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-01-01

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  15. Electron emission during multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Meyer, F.W.; Zehner, D.M.

    1990-01-01

    Recent measurements of electron spectra for slow multicharged N ion-surface collisions are presented. The emphasis is on potential emission, i.e. the electron emission related to the neutralization of the ions. When using N ions that carry a K shell vacancy into the collision, characteristic K Auger electron emission from the projectiles is observed, as well as, for specific surfaces, target atom Auger transitions (resulting from vacancy transfer). Measurements of the intensity of these Auger transitions as a function of the time the ions spend above the surface can serve as a useful probe of the timescales characterizing the relevant neutralization processes. This technique is elucidated with the help of some computer simulations. It is shown that neutralization timescales required in the atomic ladder picture, in which neutralization takes place by resonant capture followed by purely intra-atomic Auger transitions, are too long to explain our experimental results. The introduction of additional neutralization/de-excitation mechanisms in the simulations leads to much better agreement with the experiments

  16. A study of effective atomic numbers and electron densities of some vitamins for electron, H, He and C ion interactions

    Science.gov (United States)

    Büyükyıldız, M.

    2017-09-01

    The radiological properties of some vitamins such as Retinol, Beta-carotene, Riboflavin, Niacin, Niacinamide, Pantothenic acid, Pyridoxine, Pyridoxamine, Pyridoxal, Biotin, Folic acid, Ascorbic acid, Cholecalciferol, Alpha-tocopherol, Gamma-tocopherol, Phylloquinone have been investigated with respect to total electron interaction and some heavy charged particle interaction as means of effective atomic numbers (Z_{eff}) and electron densities (N_{eff}) for the first time. Calculations were performed for total electron interaction and heavy ions such as H, He and C ion interactions in the energy region 10keV-10MeV by using a logarithmic interpolation method. Variations in Z_{eff}'s and N_{eff}'s of given vitamins have been studied according to the energy of electron or heavy charged particles, and significant variations have been observed for all types of interaction in the given energy region. The maximum values of Z_{eff} have been found in the different energy regions for different interactions remarkably and variations in N_{eff} seem approximately to be the same with variation in Z_{eff} for the given vitamins as expected. Z_{eff} values of some vitamins were plotted together and compared with each other for electron, H, He and C interactions and the ratios of Z_{eff}/ have been changed in the range of 0.25-0.36, 0.20-0.36, 0.22-0.35 and 0.20-0.35 for electron, H, He and C interactions, respectively.

  17. Does an electronic continuum correction improve effective short-range ion-ion interactions in aqueous solution?

    Science.gov (United States)

    Bruce, Ellen E.; van der Vegt, Nico F. A.

    2018-06-01

    Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.

  18. Ion beam modification of solids ion-solid interaction and radiation damage

    CERN Document Server

    Wesch, Werner

    2016-01-01

    This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for ins...

  19. Interaction of an ultra-intense laser pulse with a dense plasma: heating and transport of electrons and ions

    International Nuclear Information System (INIS)

    Toupin, Catherine

    1999-01-01

    This work was aimed at characterizing the acceleration and transport of the plasma electrons and ions during the interaction of an ultra-intense laser pulse with a dense plasma. Our main tool was numerical simulation with kinetic particle-in-cell codes. During the interaction, the target surface electrons are accelerated up to high energies inward the target. The electron acceleration mechanisms are proved to strongly depend on the density profile deformation due to the ion motion. This motion has been studied as well and different acceleration mechanisms have been identified: pushing in of the target surface by the laser ponderomotive pressure, acceleration by an electrostatic shock or by breaking of an ion acoustic wave, acceleration by the space charge force induced by radial expulsion of the electrons out of a channel drilled in a slightly overcritical plasma. The electrons and ions accelerated at the target surface penetrate inward the target and interact with it. The competition between the focussing due to the self-generated magnetic field, driven by the very important electron current, and the scattering induced by collisions has been analyzed. In a homogeneous, hot plasma, the existence of an optimum current for which the propagation length without scattering is maximum, has been demonstrated. The electron drag-back effect of the axial electric field is also proved to be more significant than the friction due to collisions. By penetrating into the target, the accelerated ions can produce neutrons if the target is deuterated. A strong correlation between the ion acceleration mechanisms and the angle and energy distributions of the produced neutrons has been underlined. (author) [fr

  20. Incident ion charge state dependence of electron emission during slow multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Hughes, I.G.; Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    Characteristic variations in the total electron yield γ as a function of crystal azimuthal orientation are reported for slow N 2+ , N 5+ and N 6+ ions incident on a Au(011) single crystal, together with measurements of γ as a function of incident ion velocity. Kinetic electron emission is shown to arise predominantly in close collisions between incident ions and target atoms, and potential electron emission is found to be essentially constant within our present velocity range. The incident ion charge state is shown to play no role in kinetic electron emission. Extremely fast neutralization times of the order of 10 - 15 secs are needed to explain the observations

  1. Many-electron phenomena in the ionization of ions

    International Nuclear Information System (INIS)

    Mueller, A.

    2004-01-01

    Full text: Single and multiple ionization in ion-atom collisions involve a multitude of complex interactions between the electrons and nuclei of projectile and target. Some of the complexity is avoided in studies of fast collisions when the impulse approximation can be applied and the electrons can be described as independent quasi-free particles with a known momentum distribution. For the detailed investigation of ionization mechanisms that can occur in fast ion-atom collisions, it is illuminating to consider collisions of ions (or atoms) and really free electrons with a narrow energy spread. High energy resolution in electron-ion collision studies provides access to individual, possibly even state-selective, reaction pathways. Even in the simple electron-ion collision system (simple compared with the initial ion-atom problem) single and multiple ionization still involve a multitude of complex mechanisms. Besides the direct removal of one or several electrons from the target by electron impact, resonant and non-resonant formation of intermediate multiply excited states which subsequently decay by electron emission is important in single and multiple ionization of ions and atoms. Direct ionization proceeds via one-step or multi-step knock-off mechanisms which can partly be disentangled by studying effects of different projectile species. The role of multiply excited states in the ionization can be experimentally studied in great detail by a further reduction of the initial ion-atom problem. Multiply excited states of atoms and ions can be selectively populated by photon-ion interactions making use of the potential for extreme energy resolution made available at modern synchrotron radiation sources. In the review talk, examples of studies on single and multiple ionization in electron-ion collisions will be discussed in some detail. Electron-ion collision experiments will also be compared with photon-ion interaction studies. Many-electron phenomena have been observed

  2. Electron, ion and atomic beams interaction with solid high-molecular dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Milyavskij, V V; Skvortsov, V A [Russian Academy of Sciences, Moscow (Russian Federation). High Energy Density Research Center

    1997-12-31

    A mathematical model was constructed and numerical investigation performed of the interaction between intense electron, ion and atomic beams and solid high-molecular dielectrics under various boundary conditions. The model is based on equations of the mechanics of continuum, electrodynamics and kinetics, describing the accumulation and relaxation of space charge and shock-wave processes, as well as the evolution of electric field in the sample. A semi-empirical procedure is proposed for the calculation of energy deposition by electron beam in a target in the presence of a non-uniform electric field. (author). 4 figs., 2 refs.

  3. Influence of the Coulomb interaction in the final state on the cross section of single-electron capture by fast ions

    International Nuclear Information System (INIS)

    Novikov, N.V.; Teplova, Ya.A.

    2011-01-01

    It is shown that the Coulomb interaction of ions in the final state must be taken into account in the estimation of the cross section of electron capture by fast ions. The cross section of electron capture decreases considerably, and the dependence of the cross section on the collision energy becomes close to the experimental one if the interaction of charged particles after collision is taken into account. -- Highlights: → Coulomb interaction of ions in the final state must be taken into account. → This interaction leads to a considerable decrease in the cross section. → The dependence on energy close to the experimental one.

  4. Future directions in electron--ion collision physics

    International Nuclear Information System (INIS)

    Reed, K.J.; Griffin, D.C.

    1992-01-01

    This report discusses the following topics: Summary of session on synergistic co-ordination of theory and experiment; synergism between experiment and theory in atomic physics; comparison of theory and experiment for electron-ion excitation and ionization; summary of session on new theoretical and computational methods; new theoretical and computational methods-r-matrix calculations; the coulomb three-body problem: a progress report; summary of session on needs and applications for electron-ion collisional data; electron-ion collisions in the plasma edge; needs and applications of theoretical data for electron impact excitation; summary of session on relativistic effects, indirect effects, resonance, etc; direct and resonant processes in electron-ion collisions; relativistic calculations of electron impact ionization and dielectronic recombination cross section for highly charged ions; electron-ion recombination in the close-coupling approximation; modified resonance amplitudes with strongly correlated channels; a density-matrix approach to the broadening of spectral lines by autoionization, radiative transitions and electron-ion collisions; towards a time-dependent description of electron-atom/ion collisions two electron systems; and comments on inclusion of the generalized bright interaction in electron impact excitation of highly charged ions

  5. Electron cloud and ion effects

    CERN Document Server

    Arduini, Gianluigi

    2002-01-01

    The significant progress in the understanding and control of machine impedances has allowed obtaining beams with increasing brilliance. Dense positively charged beams generate electron clouds via gas ionization, photoemission and multipacting. The electron cloud in turn interacts with the beam and the surrounding environment originating fast coupled and single bunch instabilities, emittance blow-up, additional loads to vacuum and cryogenic systems, perturbation to beam diagnostics and feedbacks and it constitutes a serious limitation to machine performance. In a similar way high brilliance electron beams are mainly affected by positively charged ions produced by residual gas ionization. Recent observations of electron cloud build-up and its effects in present accelerators are reviewed and compared with theory and with the results of state-of-the-art computer simulations. Two-stream instabilities induced by the interaction between electron beams and ions are discussed. The implications for future accelerators ...

  6. Electron-Ion Beam Coupling Through Collective Interactions

    National Research Council Canada - National Science Library

    Wheelock, Adrian; Cooke, David L; Gatsonis, Nikolaos A

    2006-01-01

    .... It is shown that Coulomb collisions, which can act to match velocities through strong ion-electron collisions between particles with low relative velocities, are far too slow to explain the phenomenon...

  7. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    Science.gov (United States)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  8. Magnetic behavior of Van Vleck ions and an electron gas interacting by exchange

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. da.

    1980-01-01

    The magnetic behavior of a model in which Van Vleck ions, under the action of a crystal field, interacting by exchange with an electron gas is investigated. The condition of onset of ferromagnetism and the behavior of the critical temperature, band and ionic magnetizations (and susceptibilities) versus temperature, as a function of the band width, exchange interaction and the crystal field splitting energy parameters are obtained within an approximation equivalent to a molecular field formulation. (Author) [pt

  9. Basic atomic interactions of accelerated heavy ions in matter atomic interactions of heavy ions

    CERN Document Server

    Tolstikhina, Inga; Winckler, Nicolas; Shevelko, Viacheslav

    2018-01-01

    This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.

  10. Calculation of helium-like ion dipole susceptibility with account for electron interaction

    International Nuclear Information System (INIS)

    Pal'chikov, V.G.; Tkachev, A.N.

    1989-01-01

    Numerical estimations of electron interaction effects are carried out for helium-like ions inserted in a homogeneous electric field. Statistical dipole polarizations and hyperpolarizations are calculated for the main state taking into account corrections of the first order to approximation of noninteracting electrons. Summation according to the full spectrum of intermediate states is carried out by the method of Coulomb-Green functions (CGF), that permitted to use analytical methods to calculate matrix elements of correlation diagrams. When calculating polarizations, relativistic corrections ∼(αZ) 2 , where α - the constant of a fine structure, Z-nucleus charge, are taken into account

  11. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    International Nuclear Information System (INIS)

    Sahai, Aakash A.

    2014-01-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a 0 >1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary

  12. Electron-molecule interactions and their applications

    CERN Document Server

    Christophorou, L G

    1984-01-01

    Electron-Molecule Interactions and Their Applications, Volume 2 provides a balanced and comprehensive account of electron-molecule interactions in dilute and dense gases and liquid media. This book consists of six chapters. Chapter 1 deals with electron transfer reactions, while Chapter 2 discusses electron-molecular positive-ion recombination. The electron motion in high-pressure gases and electron-molecule interactions from single- to multiple-collision conditions is deliberated in Chapter 3. In Chapter 4, knowledge on electron-molecule interactions in gases is linked to that on similar proc

  13. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    International Nuclear Information System (INIS)

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm 4+ and Bk 4+ in CeF 4 are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab

  14. Cell for studying electron-adsorbed gas interactions; Cellule d'etudes des interactions electron-gaz adsorbe

    Energy Technology Data Exchange (ETDEWEB)

    Golowacz, H; Degras, D A [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, Deptartement de Physique des Plasmas et de la Fusion Controlee, Service de Physique Appliquee, Service de Physique des Interractions Electroniques, Section d' Etude des Interactions Gaz-Solides

    1967-07-01

    The geometry and the technology of a cell used for investigations on electron-adsorbed gas interactions are described. The resonance frequencies of the surface ions which are created by the electron impact on the adsorbed gas are predicted by simplified calculations. The experimental data relative to carbon monoxide and neon are in good agreement with these predictions. (authors) [French] Les caracteristiques geometriques et technologiques generales d'une cellule d'etude des interactions entre un faisceau d'electrons et un gaz adsorbe sont donnees. Un calcul simplifie permet de prevoir les frequences de resonance des ions de surface crees par l'impact des electrons sur le gaz adsorbe. Les donnees experimentales sur l'oxyde de carbone et le neon confirment les previsions du calcul. (auteurs)

  15. Atomic physics of highly charged ions in an electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.

    1990-07-01

    Two electron beam ion traps are in use at LLNL for the purpose of studying the properties of very highly charged ions and their interactions with electrons. This paper reviews the operation of the traps and discusses recent experiments in three areas: precision transition energy measurements in the limit of very high ion charge, dielectronic recombination measurements for the He-like isoelectronic sequence, and measurements of x-ray polarization. 22 refs., 11 figs., 1 tab

  16. New experimental initiatives using very highly charged ions from an 'electron beam ion trap'

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    A short review of the experimental program in highly-charged heavy ion physics conducted at the Lawrence Livermore National Laboratory Electron Beam Ion Trap (EBIT) facility is presented. The heavy-ion research, involving ions up to fully stripped U 92+ , includes precision x-ray spectroscopy and lifetime studies, electron impact ionization and excitation cross section measurements. The investigations of ion-surface interactions following the impact of high-Z highly charged ions on surfaces are aimed to study the neutralization dynamics effecting the ion and the response of the surface as well. (author)

  17. Electronic stopping in ion-fullerene collisions

    NARCIS (Netherlands)

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  18. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  19. Numerical simulation of ion-surface interactions

    International Nuclear Information System (INIS)

    Hou, M.

    1994-01-01

    This paper, based on examples from the author's contribution, aims to illustrate the role of ballistic simulations of the interaction between an ion beam and a surface in the characterization of surface properties. Several aspects of the ion-surface interaction have been modelled to various levels of sophistication by computer simulation. Particular emphasis is given to the ion scattering in the impact mode, in the multiple scattering regime and at grazing incidence, as well as to the Auger emission resulting from electronic excitation. Some examples are then given in order to illustrate the use of the combination between simulation and experiment to study the ion-surface interaction and surface properties. Ion-induced Auger emission, the determination of potentials and of overlay structures are discusse. The possibility to tackle dynamical surface properties by menas of a combination between molecular dynamics, ballistic simulations and ion scattering measurements in then briefly discussed. (orig.)

  20. Ion-Ion Plasmas Produced by Electron Beams

    Science.gov (United States)

    Fernsler, R. F.; Leonhardt, D.; Walton, S. G.; Meger, R. A.

    2001-10-01

    The ability of plasmas to etch deep, small-scale features in materials is limited by localized charging of the features. The features charge because of the difference in electron and ion anisotropy, and thus one solution now being explored is to use ion-ion plasmas in place of electron-ion plasmas. Ion-ion plasmas are effectively electron-free and consist mainly of positive and negative ions. Since the two ion species behave similarly, localized charging is largely eliminated. However, the only way to produce ion-ion plasmas at low gas pressure is to convert electrons into negative ions through two-body attachment to neutrals. While the electron attachment rate is large at low electron temperatures (Te < 1 eV) in many of the halogen gases used for processing, these temperatures occur in most reactors only during the afterglow when the heating fields are turned off and the plasma is decaying. By contrast, Te is low nearly all the time in plasmas produced by electron beams, and therefore electron beams can potentially produce ion-ion plasmas continuously. The theory of ion-ion plasmas formed by pulsed electron beams is examined in this talk and compared with experimental results presented elsewhere [1]. Some general limitations of ion-ion plasmas, including relatively low flux levels, are discussed as well. [1] See the presentation by D. Leonhardt et al. at this conference.

  1. Screened ion-ion interaction in mercury-chain compounds: Single chain

    International Nuclear Information System (INIS)

    Mohan, M.M.; Griffin, A.

    1985-01-01

    At room temperature, the mercury chains in Hg/sub 3-delta/AsF 6 exhibit phonons characteristic of a one-dimensional lattice. We calculate the screening of the Hg ion-ion interaction in a single chain by electrons moving in a cylindrical potential of finite radius, within the random-phase approximation. The resulting Bohm-Staver-type expression for the phonon velocity is (Z 2 mN/sub I//MN/sub e/)/sup 1/2/v/sub F/, where Z is the Hg ionic charge and N/sub I/ (N/sub e/) is the number of ions (electrons) per unit length. Use of the Tomonaga-Luttinger solution for the electronic response function (keeping only the small-momentum scattering processes) just renormalizes the Fermi velocity in this expression

  2. Effects of electrostatic interactions on electron transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    The fast reactions of electron transfer are studied by pulse radiolysis. This technique allows the creation in about 10 -8 second radicals and radical ions with high redox potentials. For solvated electrons electrostatic interaction on the kinetics of reactions limited by diffusion is described by Debye's equation when ion mobility is known. Deviation from theory can occur in ion pairs formation. This is evidenced experimentally for anions by cation complexation with a cryptate. Relatively slow reactions are more sensitive to electrostatic interactions than limited by diffusion. If ion pairs are not formed kinetics constant depends on dielectric constant of solvent and reaction radius. Experimentally is studied the effect of electrostatic interaction on the rate constants of solvated electrons with anions and cations in water-ethanol mixtures where the dielectric constant change from 80 to 25 at room temperature. 17 refs

  3. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  4. Interactions of electrons with biologically important molecules

    International Nuclear Information System (INIS)

    Pisklova, K.; Papp, P.; Stano, M.

    2012-01-01

    For the study of interactions of low-energy electrons with the molecules in the gas phase, the authors used electron-molecule cross-beam apparatus. The experiment is carried out in high vacuum, where molecules of the tested compound are inducted through a capillary. For purposes of this experiment the sample was electrically heated to 180 Deg C., giving a bundle of GlyGly molecules into the gas phase. The resulting signals can be evaluated in two different modes: mass spectrum - at continuous electron energy (e.g. 100 eV) they obtained the signal of intensity of the ions according to their mass to charge ratio; ionization and resonance spectra - for selected ion mass when the authors received the signal of intensity of the ions, depending on the energy of interacting electron.

  5. Newly appreciated roles for electrons in ion-atom collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies

  6. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  7. Computational simulation of electron and ion beams interaction with solid high-molecular dielectrics and inorganic glasses

    International Nuclear Information System (INIS)

    Milyavskiy, V.V.

    1998-01-01

    Numerical investigation of interaction of electron beams (with the energy within the limits 100 keV--20 MeV) and ion beams (with the energy over the range 1 keV--50 MeV) with solid high-molecular dielectrics and inorganic glasses is performed. Note that the problem of interaction of electron beams with glass optical covers is especially interesting in connection with the problem of radiation protection of solar power elements on cosmic satellites and stations. For computational simulation of the above-mentioned processes a mathematical model was developed, describing the propagation of particle beams through the sample thickness, the accumulation and relaxation of volume charge and shock-wave processes, as well as the evolution of electric field in the sample. The calculation of energy deposition by electron beam in a target in the presence of nonuniform electric field was calculated with the assistance of the semiempirical procedure, formerly proposed by author of this work. Propagation of the low energy ions through the sample thickness was simulated using Pearson IV distribution. Damage distribution, ionization distribution and range distribution was taken into account. Propagation of high energy ions was calculated in the approximation of continuous deceleration. For description of hydrodynamic processes the system of equations of continuum mechanics in elastic-plastic approximation and the wide-range equation of state were used

  8. New method of ionization energy calculation for two-electron ions

    International Nuclear Information System (INIS)

    Ershov, D.K.

    1997-01-01

    A new method for calculation of the ionization energy of two-electron ions is proposed. The method is based on the calculation of the energy of second electron interaction with the field of an one-electron ion the potential of which is well known

  9. Preliminary results of a broad beam RF ion source with electron plasma interaction. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E; Zakhary, S G; Ghanem, A A; Abdel-Ghaffar, A M [Ion Sources and Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    A new design of a broad beam RF ion source is made to be capable to deliver wide and uniform beam with currents reaching (100 {mu} A up to 30 mA) at extraction voltages (200 V up to 2 kV). Its plasma intensifying system is made with the addition of electrons from an immersed filament in the discharge and axial magnetic field (70 up to 300 G). A uniform beam distribution is made with a planner graphite cathode which has a number of holes arranged to produce perveance matching with the normal Gaussian distribution of the beam density. These holes are arranged in a consequent orbits with equal distance between the adjacent holes in each orbit. These holes increase in diameter with increasing the orbit radius. This allows increasing the extracted ion currents at the source outer edges and decreases its value at the source inner region; producing wide and uniform beam which is suitable for material modifications. The beam profiles are traced with electromechanical scanner and X-Y recorder. The perveance matching is found to produce a beam uniformity of =66% of its width which reaches =6 cm. The variation of the output currents are with the variation of extraction voltages, magnetic field, discharge pressure and electron injection into the plasma. The extracted current increases with the increase of the discharge pressure, RF power and magnetic field intensity. The influence of electron plasma interaction is found to have a great effect on increasing the ion currents to about four times its value without electron interaction, however, this increase is limited due to presence of breakdown at V{sub ex} > 2 kV. The simple design of this source, its cleanness due to the use of pyrex discharge bottle, easy operation and maintenance adds other features to this broad beam type ion source which makes it suitable for metallurgical applications in broad beam accelerators. 6 figs.

  10. Electronic excitations in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Burgdoerfer, J.

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs

  11. Electron-ion recombination in merged beams

    International Nuclear Information System (INIS)

    Wolf, A.; Habs, D.; Lampert, A.; Neumann, R.; Schramm, U.; Schuessler, T.; Schwalm, D.

    1993-01-01

    Detailed studies of recombination processes between electrons and highly charged ions have become possible by recent improvements of merged-beams experiments. We discuss in particular measurements with stored cooled ion beams at the Test Storage Ring (TSR) in Heidelberg. The cross section of dielectronic recombination was measured with high energy resolution for few-electron systems up to the nuclear charge of Cu at a relative energy up to 2.6 keV. At low energy (∼0.1 eV) total recombination rates of several ions were measured and compared with calculated radiative recombination rates. Laser-stimulated recombination of protons and of C 6+ ions was investigated as a function of the photon energy using visible radiation. Both the total recombination rates and the stimulated recombination spectra indicate that in spite of the short interaction time in merged beams, also collisional capture of electrons into weakly bound levels (related to three-body recombination) could be important

  12. First experiments with the Greifswald electron-beam ion trap

    Science.gov (United States)

    Schabinger, B.; Biedermann, C.; Gierke, S.; Marx, G.; Radtke, R.; Schweikhard, L.

    2013-09-01

    The former Berlin electron-beam ion trap (EBIT) was moved to Greifswald. In addition to x-ray studies the setup will be used for the investigation of interaction processes between highly charged ions and atomic clusters such as charge exchange and fragmentation. The EBIT setup has now been reassembled and highly charged ions have been produced from Xe-Ar gas mixtures to study the ‘sawtooth effect’. In addition, the layout of the extraction beamline, the interaction region and product analysis for interaction studies with highly charged ions are presented.

  13. Interaction of energetic ions with high-density plasmas

    International Nuclear Information System (INIS)

    Gericke, D.O.; Edie, D.; Grinenko, A.; Vorberger, J.

    2010-01-01

    Complete text of publication follows. The talk will review the importance of energetic ions in different inertial confinement fusion scenarios: i) heavy ion beams are very efficient drivers that can deliver the energy for compression in indirect as well as direct drive approaches; ii) the interaction of α-particles, that are created in a burning plasma, with the surrounding cold plasma is essential for creating a burn wave; iii) laser-produced ion beams are also a strong candidate to create the hot spot needed for fast ignition. In all applications the ions interact with dense matter that is characterized by strongly coupled ions and (possibly) partially degenerate electrons. Moreover, the coupling between beam ions and target electrons can be strong as well. Under these conditions, standard approaches for the beam-plasma interactions process are known to fail. The presentation will demonstrate how advanced models for the energy loss of ions in dense plasmas can resolve the issues mentioned above. These models are largely built on quantum kinetic theory that is able to describe degeneracy and strong coupling in a systematic way. In particular, strong interactions require a quantum description for electron-ion collisions in dense plasma environments, which is done by direct solutions of the Schroedinger equation. Degeneracy and collective excitations can be included via the Lenard-Balescu description where strong interactions may be included via a pseudo-potential approach. Finally, results are shown for all three fusion applications described above. The effects related to strong coupling and degeneracy mainly concern the end of the stopping range where the beam ion dose not have enough energy to excite all possible degrees of freedom and, thus, certain processes are frozen out. However, we also find a significant reduction of the range for swift heavy ions in the GeV-range when stopping in dense matter is considered. The stopping range of α-particles in the

  14. The dynamics of electron and ion holes in a collisionless plasma

    Directory of Open Access Journals (Sweden)

    B. Eliasson

    2005-01-01

    Full Text Available We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly

  15. Electron-photon and electron-electron interactions in the presence of strong electromagnetic fields

    International Nuclear Information System (INIS)

    Surzhykov, A.; Fritzsche, S.; Stoehlker, Th.

    2010-01-01

    During the last decade, photon emission from highly-charged, heavy ions has been in the focus of intense studies at the GSI accelerator and storage ring facility in Darmstadt. These studies have revealed unique information about the electron-electron and electron-photon interactions in the presence of extremely strong nuclear fields. Apart from the radiative electron capture processes, characteristic photon emission following collisional excitation of projectile ions has also attracted much interest. In this contribution, we summarize the recent theoretical studies on the production of excited ionic states and their subsequent radiative decay. We will pay special attention to the angular and polarization properties of Kα emission from helium-like ions produced by means of dielectronic recombination. The results obtained for this (resonant) capture process will be compared with the theoretical predictions for the characteristic X-rays following Coulomb excitation and radiative recombination of few-electron, heavy ions. Work is supported by Helmholtz Association and GSl under the project VH-NG--421. (author)

  16. Oblique Interaction of Dust-ion Acoustic Solitons with Superthermal Electrons in a Magnetized Plasma

    Science.gov (United States)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2018-01-01

    The oblique interaction between two dust-ion acoustic (DIA) solitons travelling in the opposite direction, in a collisionless magnetized plasma composed of dynamic ions, static dust (positive/negative) charged particles and interialess kappa distributed electrons is investigated. By employing extended Poincaré-Lighthill-Kuo (PLK) method, Korteweg-de Vries (KdV) equations are derived for the right and left moving low amplitude DIA solitons. Their trajectories and corresponding phase shifts before and after their interaction are also obtained. It is found that in negatively charged dusty plasma above the critical dust charged to ion density ratio the positive polarity pulse is formed, while below the critical dust charged density ratio the negative polarity pulse of DIA soliton exist. However it is found that only positive polarity pulse of DIA solitons exist for the positively charged dust particles case in a magnetized nonthermal plasma. The nonlinearity coefficient in the KdV equation vanishes for the negatively charged dusty plasma case for a particular set of parameters. Therefore, at critical plasma density composition for negatively charged dust particles case, the modified Korteweg-de Vries (mKdV) equations having cubic nonlinearity coefficient of the DIA solitons, and their corresponding phase shifts are derived for the left and right moving solitons. The effects of the system parameters including the obliqueness of solitons propagation with respect to magnetic field direction, superthermality of electrons and concentration of positively/negatively static dust charged particles on the phase shifts of the colliding solitons are also discussed and presented numerically. The results are applicable to space magnetized dusty plasma regimes.

  17. Numerical simulation methods for electron and ion optics

    International Nuclear Information System (INIS)

    Munro, Eric

    2011-01-01

    This paper summarizes currently used techniques for simulation and computer-aided design in electron and ion beam optics. Topics covered include: field computation, methods for computing optical properties (including Paraxial Rays and Aberration Integrals, Differential Algebra and Direct Ray Tracing), simulation of Coulomb interactions, space charge effects in electron and ion sources, tolerancing, wave optical simulations and optimization. Simulation examples are presented for multipole aberration correctors, Wien filter monochromators, imaging energy filters, magnetic prisms, general curved axis systems and electron mirrors.

  18. Study of electron vibrational interaction parameters in chlorophosphate activated with Eu2+ ion

    International Nuclear Information System (INIS)

    Bhoyar, Priyanka D.; Dhoble, S.J.

    2014-01-01

    We present the results of theoretical study of photoluminescence of Eu 2+ ions activated chlorophosphate M 5.17 (PO 4 ) 3 Cl 5 :Eu 2+ with M = Ca, Sr and Ba estimating electron-vibrational interaction (EVI) parameters such as Huang–Rhys factor, effective phonon energy, Stokes shift and zero phonon line position. Validity of the calculated result was established by modeling the emission line which was found to be in good agreement with the measured photoluminescence spectrum of Eu 2+ doped chorophosphates. - Highlights: • The EVI parameters such as Huang–Rhys factor, effective phonon energy and zero phonon line position were estimated. • Eu 2+ ion emission observed in chlorophosphate. • Material analyzed in this work have intermediate Huang–Rhys factor, high Stokes shift and low effective phonon energy

  19. Impulse approximation treatment of electron-electron excitation and ionization in energetic ion-atom collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Lee, D.H.; Sanders, J.M.; Richard, P.

    1993-01-01

    The effect of electron-electron interactions between projectile and target electrons observed in recent measurements of projectile K-shell excitation and ionization using 0 projectile Auger electron spectroscopy are analysed within the framework of the impulse approximation (IA). The IA formulation is seen to give a good account of the threshold behavior of both ionization and excitation, while providing a remarkably simple intuitive picture of such electron-electron interactions in ion-atom collisions in general. Thus, the applicability of the IA treatment is extended to cover most known processes involving such interactions including resonance transfer excitation, binary encounter electron production, electron-electron excitation and ionization. (orig.)

  20. Transport of secondary electrons and reactive species in ion tracks

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  1. Secondary electrons as probe of preequilibrium stopping power of ions penetrating solids

    International Nuclear Information System (INIS)

    Kroneberger, K.; Rothard, H.; Koschar, P.; Lorenzen, P.; Groeneveld, K.O.; Clouvas, A.; Veje, E.; Kemmler, J.

    1990-01-01

    The passage of ions through solid media is accompanied by the emission of low energy secondary electrons. At high ion velocities v p (i.e. v p > 10 7 cm/s) the kinetic emission of electrons as a result of direct Coulomb interaction between the ion and the target electron is the dominant initial production mechanism. The energy lost by the ion and, thus, transferred to the electrons is known as electronic stopping power in the solid. Elastic and inelastic interactions of primary, liberated electrons on their way through the bulk and the surface of the solid modify strongly their original energy and angular distribution and, in particular, leads to the transfer of their energy to further, i.e. secondary electrons (SE), such that the main part of the deposited energy of the ion is eventually over transferred to SE. It is, therefore, suggestive to assume a proportionality between the electronic stopping power S sm-bullet of the ion and the total SE yield g, i.e. the number of electrons ejected per ion. Following Sternglass the authors consider schematically for kinetic SE emission contributions from two extreme cases: (a) SEs produced mostly isotropically with large impact parameter, associated with an escape depth L SE from the solid; (b) SEs produced mostly unisotropically in forward direction with small impact parameter (δ-electrons), associated with a transport length L δ

  2. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    International Nuclear Information System (INIS)

    Schneider, D.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA's astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th 80+ can be performed routinely. Measurements of the rates and cross sections for electron transfer from H 2 performed to determine the lifetime of HCI up to Xe q+ and Th q+ (35 ≤ q ≤ 80) have been studied at mean energies estimated to be ∼ 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events

  3. Theoretical investigation of electron-positive ion/atom interactions

    International Nuclear Information System (INIS)

    Msezane, A.Z.

    1992-01-01

    Very brief summaries are given on three research topics. Electron impact elastic, excitation, and total cross sections for K were investigated by using elaborate Cl target wave functions in the close-coupling approximation. Photoionization cross sections from ground-state Na were calculated near the 2s 2 2p 5 3s and 2s2p 6 3s inner-shell thresholds; also, the photoionization cross sections of excited 3p 2 P o and 3d 2 D states were calculated with the R-matrix methodology near the 2s2p 6 3s thresholds. A numerical approach was developed to calculate the charge transfer matrix elements for ion-atom(ion) collisions; this was used for the proton-hydrogen collision problem as an illustration

  4. Measuring the electron-ion ring parameters by bremsstrahlung

    International Nuclear Information System (INIS)

    Inkin, V.D.; Mozelev, A.A.; Sarantsev, V.P.

    1982-01-01

    A system is described for measuring the number of electrons and ions in the electron-ion rings of a collective heavy ion accelerator. The system operation is based on detecting gamma quanta of bremsstrahlung following the ring electron interaction with the nuclei of neutral atoms and ions at different stages of filling the ring with ions. The radiation detector is a scintillation block - a photomultiplier operating for counting with NaI(Tl) crystal sized 30x30 mm and ensuring the detection efficiency close to unity. The system apparatus is made in the CAMAC standard and rems on-line with the TRA/i miniature computer. The block-diagrams of the system and algorithm of data processing are presented. A conclusion is drawn that the results of measuring the ring parameters with the use of the diagnostics system described are in good agreement within the range of measuring errors with those obtained by means of the diagnostics system employing synchrotron radiation and induction sensors

  5. Spin-dependent electron emission from metals in the neutralization of He+ ions

    International Nuclear Information System (INIS)

    Alducin, M.; Roesler, M.; Juaristi, J.I.; Muino, R. Diez; Echenique, P.M.

    2005-01-01

    We calculate the spin-polarization of electrons emitted in the neutralization of He + ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He + ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He + ion neutralization process and on the electronic properties of the surface

  6. Interaction of two solitary waves in quantum electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Xu Yanxia; Lin Maimai; Shi Yuren; Duan Wenshan; Liu Zongming; Chen Jianmin

    2011-01-01

    The collision between two ion-acoustic solitary waves with arbitrary colliding angle θ in an unmagnetized, ultracold quantum three-component e-p-i plasma has been investigated. By using the extended Poincare-Lighthill-Kuo (PLK) perturbation method, we obtain the KdV equations and the analytical phase shifts after the collision of two solitary waves in this three-component plasma. The effects of the quantum parameter H, the ratio of Fermi positron temperature to Fermi electron temperature σ, the ratio of Fermi positron number density to Fermi electron number density μ, and the ratio of Fermi ion temperature to Fermi electron temperature ρ on the phase shifts are studied. It is found that these parameters can significantly influence the phase shifts of the solitons.

  7. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D. [ed.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  8. Nonlinear interaction of an ion flux with plasma

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Krasheninnikov, S.I.; Pistunovich, V.I.; Soboleva, T.K.; Yushamanov, P.N.

    The present report discusses the interaction of an ion beam, formed during the charge exchange of injected neutral atoms, with a plasma. Methods of analytical study by means of quasi-linear equations as well as two-dimensional numerical modelling are used. It is shown that at a beam velocity U 0 /C/sub s/ approximately less than 1 / 2 , the relaxation process may be described by using the theory of quasi-linear relaxation of electron beams, at U 0 /C/sub s/ approximately greater than 10; one can neglect the slowing down of the ion beam and consider only the angular spread. An analytical dependence of the spread angle on time was obtained. On the basis of the ion beam relaxation theory evolved, experiments on charge exchange of plasma fluxes on a gas target are analyzed. It is shown that the anomalous scattering of the plasma flux observed in a series of experiments may be explained by the interaction of ions of the flux with ion-acoustic oscillations of the target plasma. Consideration of damping of ion-acoustic noise by the plasma electrons and ions leads to a limitation of the relaxation of the angular distribution function. The relationships obtained are in good agreement with the experimental results

  9. Theoretical study of the electron stopping power in ion planar channeling

    International Nuclear Information System (INIS)

    Haymann, P.

    1974-01-01

    A theory recently developed by the authors for slow and fast electrons is shown to be also applicable to channeled ions and to explain the experimental results about electron loss phenomena as a whole. The theory is based on the fundamental hypothesis of the nonadiabaticity of the ion-target interactions. How essential an exponential form of the interaction pseudo-potential is in explaining the energy exchange mechanism at the walls may be deduced from a quasi-classical development of the quantum model. The theory also allows a number of new experiments to be envisaged in the field of surface electron states [fr

  10. Effect of electrostatic interactions on electron-transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    Fast reactions of electron transfer are studied by pulsed radiolysis. By this technique radicals and ionic radicals with high redox potentials are created homogeneously in the solution in about 10 -8 second. For solvated electron effect of electrostatic interaction on kinetics of reactions limited by diffusion is obtained with a good approximation by the Debye equation when ion mobility is known. Deviation from the theory occurs in ion pair formation, which is evidenced experimentally in reactions between anions when cations are complexed by a cryptate. Slow reactions k 8 M -1 s -1 are more sensitive to electrostatic interactions than reactions limited by diffusion. When there is no ion pair formation the velocity constant depends upon dielectric constant of the solvent and reaction distance. 17 refs

  11. Ion plasma electron gun

    International Nuclear Information System (INIS)

    Wakalopulos, G.

    1976-01-01

    In the disclosed electron gun positive ions generated by a hollow cathode plasma discharge in a first chamber are accelerated through control and shield grids into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam having a distribution adjacent to the cathode emissive surface substantially the same as the distribution of the ion beam impinging upon the cathode. After passing through the grids and the plasma discharge chamber, the electron beam exits from the electron gun via a foil window. Control of the generated electron beam is achieved by applying a relatively low control voltage between the control grid and the electron gun housing (which resides at ground potential) to control the density of the positive ions bombarding the cathode

  12. Electronic excitation effects on secondary ion emission in highly charged ion-solid interaction

    International Nuclear Information System (INIS)

    Sekioka, T.; Terasawa, M.; Mitamura, T.; Stoeckli, M.P.; Lehnert, U.; Fehrenbach, C.

    2001-01-01

    In order to investigate the secondary ion emission from the surface of conductive materials bombarded by highly charged heavy ions, we have done two types of experiments. First, we have measured the yield of the sputtered ions from the surface of solid targets of conductive materials (Al, Si, Ni, Cu) bombarded by Xe q+ (q=15-44) at 300 keV (v p =0.30 a.u) and at 1.0 MeV (v p =0.54 a.u). In view of the secondary ion yields as a function of the potential energy of the projectile, the increase rates below q=35, where the potential energy amounts to 25.5 keV, were rather moderate and showed a prominent increase above q=35. These phenomena were rather strong in the case of the metal targets. Second, we have measured the energy dependence of the yield of the sputtered ions from the surface of solid targets of conductive materials (C, Al) bombarded by Xe q+ (q=30,36,44) between 76 keV (v p =0.15 a.u) and 6.0 MeV (v p =1.3 a.u). A broad enhancement of the secondary ion yield has been found for Al target bombarded by Xe 44+ . From these experimental results, the electronic excitation effects in conductive materials for impact of slow highly charged heavy ions bearing high potential energy is discussed

  13. Interactions of heavy ions with biomolecules: a dynamical microscopic approach

    International Nuclear Information System (INIS)

    Zhang Fengshou; Beijing Radiation Center, Beijing; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou

    2006-01-01

    The status of studying biology system therapy with X-rays, γ-rays, neutron, proton, and heavy ions is reviewed. The depth dose profile, called Bragg profile, makes heavy ion an ideal tool for radiotherapy. The physical process of therapy with heavy ions is analyzed and a 3-step interaction processes of heavy ions with biomolecules is proposed, that is, nuclear fragmentation in nuclear interaction, electron excitation in Coulomb interaction, and the biomolecules relaxation in surroundings, finally leads to a new structure of biomolecule. Since this physical process is the base of the following chemical process and biological process, a dynamical microscopic approach is strongly demanded to be built. (authors)

  14. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  15. Electron capture by highly charged ions from surfaces and gases

    International Nuclear Information System (INIS)

    Allen, F.

    2008-01-01

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar 17+ and Ar 18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu -1 , charge-selected and then decelerated down to 5 eVu -1 for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar 17+ and Ar 18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu -1 , charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar 16+ and Xe 44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  16. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  17. The Electron Transport Chain: An Interactive Simulation

    Science.gov (United States)

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  18. Electron paramagnetic resonance of transition ions

    CERN Document Server

    Abragam, Anatole

    1970-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  19. Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection

    Science.gov (United States)

    Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.; hide

    2016-01-01

    In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.

  20. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  1. Monte Carlo simulations of secondary electron emission due to ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mahady, Kyle [Univ. of Tennessee, Knoxville, TN (United States); Tan, Shida [Intel Corp., Santa Clara, CA (United States); Greenzweig, Yuval [Intel Israel Ltd., Haifa (Israel); Livengood, Richard [Intel Corp., Santa Clara, CA (United States); Raveh, Amir [Intel Israel Ltd., Haifa (Israel); Fowlkes, Jason D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rack, Philip [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes this study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.

  2. Electron cyclotron resonance (E.C.R.) multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1978-01-01

    High charge state ions can be produced by electron bombardment inside targets when the target electron density n (cm -3 ) multiplied by the ion transit time through the target tau (sec) is: n tau > 5.10 9 cm -3 sec. The relative velocity between electrons and ions determines the balance between stripping and capture i.e. the final ion charge state. (In a stripper foil fast ions interact with slow electrons involving typically n approximately 10 24 cm -3 , tau approximately 10 -14 sec). In the E.C.R. source a cold ion plasma created in a first stage diffuses slowly through a second stage containing a hot E.C.R. plasma with n > 3.10 11 cm -3 and tau > 10 -2 sec. Continuous beams of several μA of C 6+ N 7+ Ne 9+ A 11+ are extracted from the second stage with normalized emittances of approximately 0.5 π mm mrad. The absence of cathodes and plasma arcs makes the source very robust, reliable and well-fitted for cyclotron injection. A super conducting source is under development

  3. Direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear optical and dynamical laser interaction

    International Nuclear Information System (INIS)

    Lalousis, P.

    1984-01-01

    Nonthermal direct electrodynamic interaction between laser energy and a fully ionized plasma was studied. The particular emphasis is on the action of nonlinear forces, in which the optical electromagnetic fields act on the plasma electrons which then transfer their energy to the ions electrostatically. Instead of the usual single fluid model, the plasma is treated as two separate conducting fluids for electrons and ions, coupled by momentum and Coulomb interactions. The equations governing the two fluids are derived from first principles, and numerical algorithms for computing these equations are developed, enabling the plasma oscillatons to be resolved and studied. Fully ionized plasma expansion without laser irradiation is studied first numerically. Remarkable damping mechanisms by coupling to ion oscillations have been observed. Inhomogeneities in densities of the two fluids result in large electrostatic fields and double layers are generated. There is quite close agreement between numerically calculated electrostatic fields and analytical solutions. Laser interaction with fully ionized plasma is also studied numerically. The generation of cavitons is numerically observed, and it is inferred that laser plasma interactions produce very high electrostatic fields in the vicinity of cavitons. It is further shown that charge neutrality is not necessarily maintained in a caviton

  4. Advances in electron cooling in heavy-ion storage rings

    International Nuclear Information System (INIS)

    Danared, H.

    1994-01-01

    The efficiency of electron cooling can be improved by reducing the temperature of the electrons. If the magnetic field at the location of the electron gun is stronger than in the region where the electrons interact with the ions, and the field gradient is adiabatic with respect to the cyclotron motion of the electrons, the resulting expansion of the electron beam reduces its transverse temperature by a factor equal to the ratio between the two fields. A ten times expanded electron beam was introduced in the CRYRING electron cooler in the summer of 1993, and similar arrangements have since then been made at the TSR ring in Heidelberg and at ASTRID in Aarhus. The reduction of the transverse electron temperature has increased cooling rates with large factors, and improves the energy resolution and increases count rates when the cooler is used as an electron target for ion-electron recombination experiments

  5. Collective ion acceleration by relativistic electron beams in plasmas

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.

    1991-01-01

    A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena

  6. Dynamic plasma screening effects on electron capture process in hydrogenic ion fully stripped ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on electron capture from hydrogenic ions by past fully stripped ions. The classical Bohr Lindhard model has been applied to obtain the electron capture probability. The interaction potential in dense plasmas is represented in terms of the longitudinal dielectric function. The classical straight-line trajectory approximation is applied to the motion of the projectile ion in order to visualize the electron capture probability as a function of the impact parameter, projectile energy, and plasma parameters. The electron capture probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the plasma electron thermal velocity, the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low energy projectiles. It is found that the static screening formula obtained by the Debye Hueckel model overestimates the plasma screening effects on the electron capture processes in dense plasmas. copyright 1997 American Institute of Physics

  7. Two dimensional simulation of ion beam-plasm interaction | Echi ...

    African Journals Online (AJOL)

    Hybrid plasma simulation is a model in which different components of the plasma are treated differently. In this work the ions are treated as particles while the electrons are treated as a neutralizing background fluid through which electric signals may propagate. Deuterium ion beams incident on the tritium plasma interact ...

  8. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  9. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  10. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  11. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  12. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  13. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Thomé, Lionel, E-mail: thome@csnsm.in2p3.fr; Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3-Université Paris-Sud, Bât. 108, F-91405 Orsay (France); Velisa, Gihan [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Miro, Sandrine; Trocellier, Patrick; Serruys, Yves [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  14. On novel mechanisms of slow ion induced electron emission

    International Nuclear Information System (INIS)

    Eder, H.

    2000-09-01

    The present work has contributed in new ways to the field of slow ion induced electron emission. First, measurements of the total electron yield γ for impact of slow singly and multiply charged ions on atomically clean polycrystalline gold and graphite have been made. The respective yields were determined by current measurements and measurements of the electron number statistics. A new mechanism for kinetic emission (KE) below the so called 'classical threshold' was found and discussed. For a given ion species and impact velocity a slight decrease of the yields was found for ion charge state q = 1 toward 3, but no significant differences in KE yields for higher q values. Comparison of the results from gold and graphite showed overall similar behavior, but for C+ a relatively strong difference was observed and ascribed to more effective electron promotion in the C-C- than in the C-Au system. Secondly, for the very specific system H0 on LiF we investigated single electron excitation processes under grazing incidence conditions. In this way long-range interactions of hydrogen atoms with the ionic crystal surface could be probed. Position- and velocity-dependent electron production rates were found which indicate that an electron promotion mechanism is responsible for the observed electron emission. Thirdly, in order to investigate the importance of plasmon excitation and -decay in slow ion induced electron emission, measurements of electron energy distributions from impact of singly and doubly charged ions on poly- and monocrystalline aluminum surfaces were performed. From the results we conclude that direct plasmon excitation by slow ions occurs due to the potential energy of the projectile in a quasi-resonant fashion. The highest relative plasmon intensities were found for impact of 5 keV Ne+ on Al(111) with 5 % of the total yield. For impact of H + and H 2 + characteristical differences were observed for Al(111) and polycrystalline aluminum. We show that

  15. Magnetism of singlet - singlet ions interacting with an electron gas: application to PrAl2

    International Nuclear Information System (INIS)

    Palermo, L.

    1986-01-01

    Various magnetic quantities are investigated for a system consisting of singlet-singlet ions interacting with an electron gas. In obtaining the magnetic state equations, the molecular field approximation is used. At T=0, an onset magnetic order condition in function of crystal field and exchange parameters and eletronic density of states at Fermi level is derived. A parametric study of the model is performed numerically. Main results are shown on diagrams. From the experimental data existent in the literature for magnetisation, susceptibility and magnetic specific heat of the PrAl 2 , a fitting with the model predictions is obtained using the following parameters: exchange interaction: 611meV; crystal field parameters: 2,5 meV; band with: 10 eV (of a rectangular density of states with 0,8 el/atom). (author) [pt

  16. On the electron-ion temperature ratio established by collisionless shocks

    Science.gov (United States)

    Vink, Jacco; Broersen, Sjors; Bykov, Andrei; Gabici, Stefano

    2015-07-01

    Astrophysical shocks are often collisionless shocks, in which the changes in plasma flow and temperatures across the shock are established not through Coulomb interactions, but through electric and magnetic fields. An open question about collisionless shocks is whether electrons and ions each establish their own post-shock temperature (non-equilibration of temperatures), or whether they quickly equilibrate in the shock region. Here we provide a simple, thermodynamic, relation for the minimum electron-ion temperature ratios that should be expected as a function of Mach number. The basic assumption is that the enthalpy-flux of the electrons is conserved separately, but that all particle species should undergo the same density jump across the shock, in order for the plasma to remain charge neutral. The only form of additional electron heating that we allow for is adiabatic heating, caused by the compression of the electron gas. These assumptions result in an analytic treatment of expected electron-ion temperature ratio that agrees with observations of collisionless shocks: at low sonic Mach numbers, Ms ≲ 2, the electron-ion temperature ratio is close to unity, whereas for Mach numbers above Ms ≈ 60 the electron-ion temperature ratio asymptotically approaches a temperature ratio of Te/Ti = me/ ⟨ mi ⟩. In the intermediate Mach number range the electron-ion temperature ratio scales as Te/Ti ∝ Ms-2. In addition, we calculate the electron-ion temperature ratios under the assumption of adiabatic heating of the electrons only, which results in a higher electron-ion temperature ratio, but preserves the Te/Ti ∝ Ms-2 scaling. We also show that for magnetised shocks the electron-ion temperature ratio approaches the asymptotic value Te/Ti = me/ ⟨ mi ⟩ for lower magnetosonic Mach numbers (Mms), mainly because for a strongly magnetised shock the sonic Mach number is larger than the magnetosonic Mach number (Mms ≤ Ms). The predicted scaling of the electron-ion

  17. Interaction effects in liquids with low electron densities

    International Nuclear Information System (INIS)

    Warren, W.W. Jr.

    1987-01-01

    The author discusses two complementary classes of systems in which strong electron-electron or electron-ion interactions appear at low electron densities. The first are the expanded liquid alkali metals (cesium) in which electron correlation effects have a profound effect on the magnetic properties on the metallic side of the metal-nonmetal transition. The second group are molten alkali halides containing low densities of localized electrons introduced, say, by dissolution of small amounts of excess metal. (Auth.)

  18. Kinetic Simulation of Fast Electron Transport with Ionization Effects and Ion Acceleration

    International Nuclear Information System (INIS)

    Robinson, A. P. L.; Bell, A. R.; Kingham, R. J.

    2005-01-01

    The generation of relativistic electrons and multi-MeV ions is central to ultra intense (> 1018Wcm-2) laser-solid interactions. The production of energetic particles by lasers has a number of potential applications ranging from Fast Ignition ICF to medicine. In terms of the relativistic (fast) electrons the areas of interest can be divided into three areas. Firstly there is the absorption of laser energy into fast electrons and MeV ions. Secondly there is the transport of fast electrons through the solid target. Finally there is a transduction stage, where the fast electron energy is imparted. This may range from being the electrostatic acceleration of ions at a plasma-vacuum interface, to the heating of a compressed core (as in Fast Ignitor ICF).We have used kinetic simulation codes to study the transport stage and electrostatic ion acceleration. (Author)

  19. Spin polarization of a magnetic electron gas induced by a van Vleck ion

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. do

    1978-11-01

    The mutual polarization of a magnetic electron gas and a van Vleck ion, interacting via exchange, are theoretically investigated using the double-time Green function method. A pair of equations describing the dynamics of the electron gas and the ion are conveniently decoupled and an analytic expression for the electron gas polarization, which depends on the square of the exchange parameter, is obtained. Besides a RKKY-like term, a new term associated to the process of formation of the magnetic moment of the ion appears [pt

  20. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  1. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  2. Electron spin resonance and electron spin echo modulation studies of Cu(II) ions in the aluminosilicate chabazite: A comparison of Cu(II) cation location and adsorbate interaction with isostructural silicoaluminophosphate-34

    International Nuclear Information System (INIS)

    Zamadics, M.; Kevan, L.

    1992-01-01

    This study focuses on Cu(II) ions exchanged in the aluminosilicate zeolite chabazite. The various Cu(II) species formed after dehydration, rehydration, and exposure to adsorbates are characterized by electron spin resonance and electron spin echo modulation spectroscopies. These results are interpreted in terms of Cu(II) ion location and adsorbate interaction. The results of this study are compared to the results found earlier for SAPO-34, chabazite's structural analog from the silicoaluminophosphate group. In a hydrated sample of chabazite the Cu(II) ions are found to be in a near octahedral environment coordinated to three nonequivalent water molecules and three framework oxygens. The most probable location of the Cu(II) ion in a hydrated sample is above the plane of the six-membered ring slightly displaced into the ellipsoidal cavity. A somewhat similar location and coordination is found for Cu(II) ions in H-SAPO-34. A feature common to both CuH-chabazite and CuH-SAPO-34 is the generation of two distinct Cu(II) species upon dehydration. It is found that Cu(II) cations in chabazite interact with the various adsorbate molecules in a similar manner as Cu(II) cation in H-chabazite and three molecules of ethanol and three propanol molecules. Only the Cu(II) ions located in the hexagonal rings after dehydration were found to complex with ethylene. The differences observed in the interaction of the Cu(II) in with water, propanol, and ehtylene between SAPO-34 and chabazite can be related to the differing cation densities of these two materials. 32 refs., 7 figs., 21 tabs

  3. Ion - biomolecule interactions and radiation damage

    International Nuclear Information System (INIS)

    Schlathoelter, T.

    2004-01-01

    Full text: The biological effects of ionizing radiation in living cells are not a mere result of the direct impact of high energy quanta of radiation. Secondary particles such as low energy electrons, radicals and (multiply charged) ions are formed within the track. The interaction of these secondary particles with biologically relevant molecules is responsible for a large fraction of biological radiation damage to a cell, as well. Singly and multiply charged ions can be of importance as both, primary and secondary particles, and are known to cause severe biological damage. For instance, in heavy ion therapy and proton therapy the pronounced Bragg peak of fast (typically a few 100 MeV/u) ions in biological tissue is utilized. The Bragg peak is located at a depth, where the ions (mostly C q+ or protons) are slowed down to about 100 keV/u and have their maximum linear energy transfer (LET) to the medium. This depth is reasonably well defined and depends on the initial ion kinetic energy. Since the ions are rapidly stopped in this energy range, penetration beyond the Bragg peak is weak and it is thus possible to 'scan' the Bragg peak through a malignant tumour without excessive damage of the surrounding tissue by mere variation of the ion kinetic energy (i.e. the penetration depth). Severe biological damage is almost only possible, when the track of a primary quantum of ionizing radiation crosses the nucleus of a cell. Particularly the induction of double strand breaks of DNA or clustered DNA lesions is potentially lethal or mutagenic. A primary particle interacting with individual molecules within this environment leads to molecular excitation, ionization and fragmentation. In the process, the primary particle looses energy and slow secondary electrons and ions are formed, which might induce further damage. For a deep understanding of biological radiation damage on the level of individual molecules it is thus important to quantify excitation, ionization and

  4. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  5. Ion-materials interactions and their application

    International Nuclear Information System (INIS)

    Whitlow, H.J.

    1998-01-01

    The interaction of energetic ions and other charged particles with solid matter leads to a wealth of physical processes. This thesis comprises a collection of papers and an introductory commentary, which explore some aspects of how these interactions may be used for: (i) Characterisation of thin surface layers of material, (ii) characterisation of energetic charged particles, and (iii) modification of materials by ion bombardment. In (i) Elastic Recoil Detection using a detector system for measurement of Time of Flight and kinetic energy of recoiling target atoms has been developed as a quantitative method for elemental depth profiling of thin (0.5-1 μm) surface layers. This method has been applied to the study of reactions of metal/III-V structures, which are of importance for the semiconductor industry. (ii) MeV-ion - materials interactions have been used as the basis for developing Si p-i-n detectors for the CHICSi programme which will undertake experimental studies of heavy ion collisions at intermediate energies. This involved development and testing of extremely thin (10-12 μm) Si ΔE detectors for characterising light- and intermediate mass charged particles as well as calibration of Si p-i-n detectors and their susceptibility to radiation damage. (iii) Nuclear Reaction Analysis (NRA) with resonant nuclear reactions has been used to study modification of material with ion beams. In the first study, the accumulation of fluorine in BF 2 + ion implanted WSi 2 solid diffusion sources was investigated. The second study investigated if there was a correlation between photoluminescence and segregation of hydrogen to buried heterojunctions in plasma-etched III-V quantum-well structures. The ion bombardment in this case was during etching in an Ar+CH 4 plasma using an Electron Cyclotron Resonance (ECR) source. (author)

  6. Note on measuring electronic stopping of slow ions

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2017-11-01

    Extracting stopping cross sections from energy-loss measurements requires careful consideration of the experimental geometry. Standard procedures for separating nuclear from electronic stopping treat electronic energy loss as a friction force, ignoring its dependence on impact parameter. In the present study we find that incorporating this dependence has a major effect on measured stopping cross sections, in particular for light ions at low beam energies. Calculations have been made for transmission geometry, nuclear interactions being quantified by Bohr-Williams theory of multiple scattering on the basis of a Thomas-Fermi-Molière potential, whereas electronic interactions are characterized by Firsov theory or PASS code. Differences between the full and the restricted stopping cross section depend on target thickness and opening angle of the detector and need to be taken into account in comparisons with theory as well as in applications of stopping data. It follows that the reciprocity principle can be violated when checked on restricted instead of full electronic stopping cross sections. Finally, we assert that a seeming gas-solid difference in stopping of low-energy ions is actually a metal-insulator difference. In comparisons with experimental results we mostly consider proton data, where nuclear stopping is only a minor perturbation.

  7. Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator

    Science.gov (United States)

    Gamelin, A.; Bruni, C.; Radevych, D.

    2018-05-01

    The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.

  8. Creation and dynamical co-evolution of electron and ion channel transport barriers

    International Nuclear Information System (INIS)

    Newman, D.E.

    2002-01-01

    A wide variety of magnetic confinement devices have found transitions to an enhanced confinement regime. Simple dynamical models have been able to capture much of the dynamics of these barriers however an open question has been the disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard ('ion channel' barrier. By adding to simple barrier model an evolution equation for electron fluctuations we can investigate the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. Barrier formation in the electron channel is even more sensitive to the alignment of the various gradients making up the sheared radial electric field than the ion barrier is. Electron channel heat transport is found to significantly increase after the formation of the ion channel barrier but before the electron channel barrier is formed. This increased transport is important in the barrier evolution. (author)

  9. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  10. Dynamics in ion-molecule collisions at high velocities: One- and two-electron processes

    International Nuclear Information System (INIS)

    Wang, Yudong.

    1992-01-01

    This dissertation addresses the dynamic interactions in ion-molecule collisions. Theoretical methods are developed for single and multiple electron transitions in fast collisions with diatomic molecules by heavy-ion projectiles. Various theories and models are developed to treat the three basic inelastic processes (excitation, ionization and charge transfer) involving one and more electrons. The development, incorporating the understanding of ion-atom collision theories with some unique characteristics for molecular targets, provides new insights into phenomena that are absent from collisions with atomic targets. The influence from the multiple scattering centers on collision dynamics is assessed. For diatomic molecules, effects due to a fixed molecular orientation or alignment are calculated and compared with available experimental observations. Compared with excitation and ionization, electron capture, which probes deeper into the target, presents significant two-center interference and strong orientation dependence. Attention has been given in this dissertation to exploring mechanisms for two-and multiple electron transitions. Application of independent electron approximation to transfer excitation from molecular hydrogen is studied. Electron-electron interaction originated from projectile and target nuclear centers is studied in conjunction with the molecular nature of target. Limitations of the present theories and models as well as possible new areas for future theoretical and experimental applications are also discussed. This is the first attempt to describe multi-electron processes in molecular dynamics involving fast highly charged ions

  11. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Science.gov (United States)

    Saha, Asit; Pal, Nikhil; Chatterjee, Prasanta

    2014-10-01

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  12. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  13. Secondary electron/reflected particle coincidence studies during slow highly charged ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, C.T.; Szilagyi, Z.; Shah, M.B.; McCullough, R.W. [Queen' s Univ., Belfast, Northern Ireland (United Kingdom); Woolsey, J.M. [Stirling Univ. (United Kingdom). DBMS; Trassl, R.; Salzborn, E. [Giessen Univ. (Germany). Inst. fuer Kernphysik

    2001-07-01

    We have measured the secondary electron emission statistics (ES) for 5 keV N{sup q+} (q = 1-4) ions incident at 10 on polycrystalline aluminium, in coincidence with specularly reflected N{sup 0}. In this arrangement the kinetic contribution to secondary electron emission is minimised. The experimental data shows that the coincident electron yield, {gamma}, increases linearly with incident ion charge state. The kinetic emission contribution has also been determined from this data. The ES due to 2 and 4 keV He{sup 2+} impact on polycrystalline aluminium in coincidence with specularly reflected He{sup +} and He{sup 0} have also been determined. The process He{sup 2+} {yields} He{sup 0} yields a larger {gamma} value than the process He{sup 2+} {yields} He{sup +}. (orig.)

  14. Cross-sections of charge and electronic states change of particles at ion-ion and ion-molecule collisions

    International Nuclear Information System (INIS)

    Panov, M.N.; Afrosimov, V.V.; Basalaev, A.A.; Guschina, N.A.; Nikulin, V.K.

    2006-01-01

    The interactions of protons and alpha-particles with hydrocarbons are investigated. A quantum-mechanical computation of the electronic structure of all hydrocarbons from methane to butane and its fragment ions was performed in the Hartree-Fock RHF/UHF approximation using a GAMESS program (General Atomic Molecular Electron Structure System). The correlation energy was taken into account within the framework of MP2 perturbation theory. The structural parameters of the hydrocarbon molecules and their charged and neutral fragments were calculated in two cases: in the geometry of the parent molecule or of the relaxation states. The difference of the full energy of the same fragments in and out of brackets gives us the vibration excitation energies of the fragments at the moment of creation. Additional Mulliken effective charges (in electron charge units) of atoms in the fragments have been calculated. The calculations show that removing one electron from the ethane molecule without electronic excitation produced a single charged molecular ion in vibration state with binding energy of hydrogen atoms, some decimal eV. As results we obtain C 2 H 6 + and C 2 H 5 + . Additional fragmentation of hydrocarbon needs electronic excitation of produced single charged ions. Cross sections for electron capture and excitation processes in collisions between the hydrogen-like He + , B 4+ and O 7+ ions have been evaluated. The purpose of the theory within this project during the period under review was to get for the first time new data on Single-Electron Capture (SEC) and Excitation Processes (EP) in collisions of He + (1s) ions with hydrogen-like impurity ions B 4+ (1s) and O 7+ (1s) in the energy range for He + ions from 0.2 MeV to 3.0 MeV. The calculations were carried out by using the method of close-coupling equations with basis sets of eleven and ten quasimolecular two-electron states for reactions (1, 2) and (3, 4), respectively (entrance channel, seven charge transfer channels

  15. ECR ion source with electron gun

    Science.gov (United States)

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  16. Spectral line shape simulation for electron stark-broadening of ion emitters in plasmas

    International Nuclear Information System (INIS)

    Dufour, Emmanuelle; Calisti, Annette; Talin, Bernard; Gigosos, Marco A.; Gonzalez, Manuel A.; Dufty, Jim W.

    2002-01-01

    Electron broadening for ions in plasmas is investigated in the framework of a simplified semi-classical model involving an ionic emitter imbedded in an electron gas. A regularized Coulomb potential that removes the divergence at short distances is postulated for the ion-electron interaction. Line shape simulations based on Molecular Dynamics for the ion impurity and the electrons, accounting for all the correlations, are reported. Comparisons with line shapes obtained with a quasi-particle model show expected correlation effects. Through an analysis of the results with the line shape code PPP, it is inferred that the correlation effect results mainly from the microfield dynamic properties

  17. Electron loss process and cross section of multiply charged ions by neutral atoms

    International Nuclear Information System (INIS)

    Karashima, S.; Watanabe, T.

    1985-01-01

    The significance of experimental and theoretical results on the electron loss and capture of ions in matter plays an important role in the charge equilibrium problems of fusion plasma physics and of accelerator physics. In the report, we calculate electron stripping cross section by using the binary encounter approximation (BEA). Our treatment of the electron loss process is based on BEA, in which the nucleus of B screened by the surrounding electrons collides with electrons in the ion A sup(q+). The basic approximation in EBA is that the ion interacts with only one electron or nucleus of the target atom at a time. In the calculation for Li sup(2+) + H, we have found that EBA will give approximately reliable results. (Mori, K.)

  18. Cornell electron beam ion source

    International Nuclear Information System (INIS)

    Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.

    1981-01-01

    An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies

  19. Calculations on Electron Capture in Low Energy Ion-Molecule Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, P.C. [Oak Ridge National Lab., TN (United States); Zygelman, B. [W.M. Keck Lab. for Computational Physics, Univ. of Nevada, Las Vegas, NV (United States); Kirby, K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    1997-12-31

    Recent progress on the application of a quantal, molecular-orbital, close-coupling approach to the calculation of electron capture in collisions of multiply charged ions with molecules is discussed. Preliminary results for single electron capture by N{sup 2+} with H{sub 2} are presented. Electron capture by multiply charged ions colliding with H{sub 2} is an important process in laboratory and astrophysical plasmas. It provides a recombination mechanism for multiply charged ions in x-ray ionized astronomical environments which may have sparse electron and atomic hydrogen abundances. In the divertor region of a tokamak fusion device, charge exchange of impurity ions with H{sub 2} plays a role in the ionization balance and the production of radiative energy loss leading to cooling, X-ray and ultraviolet auroral emission from Jupiter is believed to be due to charge exchange of O and S ions with H{sub 2} in the Jovian atmosphere. Solar wind ions interacting with cometary molecules may have produced the x-rays observed from Comet Hyakutake. In order to model and understand the behavior of these environments, it is necessary to obtain total, electronic state-selective (ESS), and vibrational (or rotational) state-selective (VSS) capture cross sections for collision energies as low as 10 meV/amu to as high as 100 keV/amu in some instances. Fortunately, charge transfer with molecular targets has received considerable experimental attention. Numerous measurements have been made with flow tubes, ion traps, and ion beams. Flow tube and ion trap studies generally provide information on rate coefficients for temperatures between 800 K and 20,000 K. In this article, we report on the progress of our group in implementing a quantum-mechanical Molecular Orbital Close Coupling (MOCC) approach to the study of electron capture by multiply charged ions in collisions with molecules. We illustrate this with a preliminary investigation of Single Electron Capture (SEC) by N{sup 2+} with H

  20. Ion- and electron-acoustic solitons in two-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Kakad, A. P.; Singh, S. V.; Verheest, F.

    2008-01-01

    Properties of ion- and electron-acoustic solitons are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons and hot ions using the Sagdeev pseudopotential technique. The analysis is based on fluid equations and the Poisson equation. Solitary wave solutions are found when the Mach numbers exceed some critical values. The critical Mach numbers for the ion-acoustic solitons are found to be smaller than those for electron-acoustic solitons for a given set of plasma parameters. The critical Mach numbers of ion-acoustic solitons increase with the increase of hot electron temperature and the decrease of cold electron density. On the other hand, the critical Mach numbers of electron-acoustic solitons increase with the increase of the cold electron density as well as the hot electron temperature. The ion-acoustic solitons have positive potentials for the parameters considered. However, the electron-acoustic solitons have positive or negative potentials depending whether the fractional cold electron density with respect to the ion density is greater or less than a certain critical value. Further, the amplitudes of both the ion- and electron-acoustic solitons increase with the increase of the hot electron temperature. Possible application of this model to electrostatic solitary waves observed on the auroral field lines by the Viking spacecraft is discussed

  1. Electron ejection from solids induced by fast highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Schiwietz, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD; Xiao, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD

    1996-02-01

    Total electron-ejection yields and Auger-electron spectra for highly-charged ions interacting with different foil targets have been investigated in this work. New experimental and theoretical data for normal incident 5 MeV/u heavy ions on graphite and polypropylene foils are presented and discussed. These two materials have been selected as model systems representing conductors and insulator targets. Our measured projectile nuclear-charge dependence of the total electron yield from carbon foils clearly deviates from results of some transport models that predict a proportionality with respect to the electronic stopping power of the projectiles. Possible reasons for this deviation are discussed. We have also extended our measurements on cascade-induced C-KLL Auger-electron production. The corresponding results for 5 MeV/u S ions on carbon were obtained with a new method and agree fairly well with previous data. Furthermore, we have performed an experimental and theoretical investigation on the nuclear-track potential in insulators. Comparison of experimental data with theoretical results for N{sup 7+}, Ne{sup 9+}, Ar{sup 16+} and Ni{sup 23+} ions allow for an estimate of the electron/hole pair recombination time at the center of the track in polypropylene. (orig.).

  2. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  3. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  4. Electron spin resonance investigations on polycarbonate irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Reyes-Romero, J

    2001-12-01

    Electron spin resonance investigations on polycarbonate irradiated with uranium ions are reported. The dependence of the resonance line parameters (line intensity, line width, double integral) on penetration depth and dose is studied. The nature of free radicals induced in polycarbonate by the incident ions is discussed in relation with the track structure. The presence of severe exchange interactions among free radicals is noticed.

  5. Effects of electron-electron interactions on the electron distribution function of a plasma in the presence of an external electric field

    International Nuclear Information System (INIS)

    Molinari, V.G.; Pizzio, F.; Spiga, G.

    1979-01-01

    The electron distribution function, the electron temperature and some transport parameters (electrical conductivity and energy flow coefficient) are obtained starting from the nonlinear Boltzmann equation for a plasma under the action of an external electric field. The Fokker-Planck approximation is used for electron-electron and electron-ion interactions. The effects of electron-electron collisions are studied for different values of collision frequencies and electric field. (author)

  6. Ab initio theory of the electronic structure of nf-ions in solids and liquids

    International Nuclear Information System (INIS)

    Kulagin, N.

    1998-01-01

    Full text: In the books and papers we developed the self-consistent field theory of nl- ions in Me+n:[L]k- clusters, where k is number of ligands - L, by ion-ligands distance - R. The results which were obtained for all RE and AC ions for Me+n:[L]k, where L - F - , O -2 and so on ligands, are closely corresponded to experimental data. The expression for energy of the cluster may be write as: E = E 0 + kE 1 + k'(E z + E c + E e + E ex ), (Eq.1), where E 0 and E 1 are the energies of the free nl-ion and surrounding one; E z , E c and E e are the energy of electrons interaction with 'strange' nucleus, Coulomb electron-electron interaction and exchange one. E ex is the energy of the interaction of electrons and nucleus with external field. The equations for the radial one-electron wave functions of the ions in the cluster were obtained by minimizing the Eq. 1 for the radial orbitals of the central ion and ligand one. We have received the general system of equations of the self-consistent field for cluster in liquids and solid states. The results of calculations of the energy structure of clusters and values of the standard radial integrals (spectroscopy parameters) for Ac-ions in 1-2-3 superconductors and RE-ions in garnet crystals by different values of R are qualitatively and quantitatively correct. We've got the best results for pressure dependence of Nd ions spectra, change of optical and X-Ray spectra after irradiation of garnets. We explained the nature of anomalous in SrTiO 3 and separate lasers crystals by used of results of the calculations. In the framework of our approach we obtained the best accuracy for the energy of X- Ray lines for all nf- ions in solids and liquids

  7. Study of highly charged ion production by electron cyclotron resonance ion source. Interactions of Argon 17+ ions with metallic surface at grazing incidence

    International Nuclear Information System (INIS)

    Ban, G.

    1992-04-01

    In this thesis divided in 2 parts, the author first presents the operating of MiniMafios 16/18 GHz ECR ion sources and methods of extracted multicharged ion identification and then, studies the highly charged ion interactions with a metallic surface and the formation of 'hollow atoms'. 556 figs., 17 tabs

  8. Theoretical Studies of Electron Interaction with Molecular Ions and Mutual Neutralization - HeH and BeH

    International Nuclear Information System (INIS)

    Larson, Asa

    2012-01-01

    Reactions driven through electronic resonant states of HeH and BeH are discussed. These reactions are dissociative recombination (DR), resonant vibrational excitations (VE) and resonant dissociative excitations (DE). Another process is mutual neutralization (MN). HeH: The electronic resonant states of HeH are calculated using the full Configuration Interaction (CI) method with a large basis set. To obtain the autoionization widths electron scattering calculations are carried out using the Complex-Kohn variational method. The target ion is then described with a multi- reference CI wave function. Non-adiabatic couplings between the resonant states are computed using a method developed by V. Sidis. Cross sections for VE and DE of HeH in different vibrational states are computed by solving a driven Schroedinger equation and including autoionization using a local model. The non-adiabatic couplings between the resonant states are neglected. The cross sections become large when the energy is high enough to capture into the resonant states. The computed cross section for DE with the ion in the ground vibrational state is in very good agreement with measurement. The MN reaction, He + + H - →He*+ H, will be studied using strictly diabatic states. Autoionization will be included using the local model and the cross section will be computed by numerically solving a Matrix-Riccati equation for the radial wave function. BeH: We have previously studied DR of BeH + including the capture into electronic resonant states. Electronic couplings between the neutral states were included using a quasidiabatization procedure. Using the multi-channel quantum defect theory, the non-adiabatic couplings to the Rydberg states are now also incorporated. The indirect process results in sharp oscillations in the cross section and it influences the low temperature thermal rate coefficient for the reaction. Resonant VE and DE of BeH + in different vibrational states are investigated. The cross

  9. Secondary electron emission of thin carbon foils under the impact of hydrogen atoms, ions and molecular ions, under energies within the MeV range

    International Nuclear Information System (INIS)

    Vidovic, Z.

    1997-06-01

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H 0 , H 2 + and H 3 + projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H 2 + and H 3 + polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)

  10. Secondary-electron yield from Au induced by highly charged Ta ions

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Láska, Leoš; Stöckli, M. P.; Fry, D.

    2001-01-01

    Roč. 173, - (2001), s. 281-286 ISSN 0168-583X R&D Projects: GA AV ČR IAA1010819 Institutional research plan: CEZ:AV0Z1010914 Keywords : highly charged ion-surface interaction * ion-induced electron emission * angle impact effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.041, year: 2001

  11. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  12. A novel spectrometer for studying exotic nuclei with the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Woertche, H.J.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    A novel concept of an electron spectrometer developed for the ELISe facility is presented. This spectrometer will be constructed as a part of the international Facility for Antiprotons and Ion Research (FAIR) at GSI Helmholtzzentrum fuer Schwerionenforschung. The spectrometer is designed to analyze electron scattering at the ion-electron interaction region of the NESR and EAR colliding storage rings with a high resolution and a large solid angle. A pre-deflector with a zero-field central channel along the path of the intersecting beam allows the measurement of scattered electrons without interfering with the circulating beams. Ion-optical and magnet design calculations are presented to demonstrate the feasibility and achievement of realistic design specifications.

  13. Electron-impact excitation of molecular ions

    International Nuclear Information System (INIS)

    Neufeld, D.A.; Dalgarno, A.

    1989-01-01

    A simple expression is derived that relates the rate coefficient for dipole-allowed electron-impact excitation of a molecular ion in the Coulomb-Born approximation to the Einstein A coefficient for the corresponding radiative decay. Results are given for several molecular ions of astrophysical interest. A general analytic expression is obtained for the equilibrium rotational level populations in the ground vibrational state of any molecular ion excited by collisions with electrons. The expression depends only upon the electron temperature, the electron density, and the rotational constant of the molecular ion. A similar expression is obtained for neutral polar molecules

  14. Four faces of the interaction between ions and aromatic rings.

    Science.gov (United States)

    Papp, Dóra; Rovó, Petra; Jákli, Imre; Császár, Attila G; Perczel, András

    2017-07-15

    Non-covalent interactions between ions and aromatic rings play an important role in the stabilization of macromolecular complexes; of particular interest are peptides and proteins containing aromatic side chains (Phe, Trp, and Tyr) interacting with negatively (Asp and Glu) and positively (Arg and Lys) charged amino acid residues. The structures of the ion-aromatic-ring complexes are the result of an interaction between the large quadrupole moment of the ring and the charge of the ion. Four attractive interaction types are proposed to be distinguished based on the position of the ion with respect to the plane of the ring: perpendicular cation-π (CP ⊥ ), co-planar cation-π (CP ∥ ), perpendicular anion-π (AP ⊥ ), and co-planar anion-π (AP ∥ ). To understand more than the basic features of these four interaction types, a systematic, high-level quantum chemical study is performed, using the X -  + C 6 H 6 , M +  + C 6 H 6 , X -  + C 6 F 6 , and M +  + C 6 F 6 model systems with X -  = H - , F - , Cl - , HCOO - , CH 3 COO - and M +  = H + , Li + , Na + , NH4+, CH 3 NH3+, whereby C 6 H 6 and C 6 F 6 represent an electron-rich and an electron-deficient π system, respectively. Benchmark-quality interaction energies with small uncertainties, obtained via the so-called focal-point analysis (FPA) technique, are reported for the four interaction types. The computations reveal that the interactions lead to significant stabilization, and that the interaction energy order, given in kcal mol -1 in parentheses, is CP ⊥ (23-37) > AP ⊥ (14-21) > CP ∥ (9-22) > AP ∥ (6-16). A natural bond orbital analysis performed leads to a deeper qualitative understanding of the four interaction types. To facilitate the future quantum chemical characterization of ion-aromatic-ring interactions in large biomolecules, the performance of three density functional theory methods, B3LYP, BHandHLYP, and M06-2X, is tested against the FPA benchmarks

  15. Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Hu, Zhimin; Watanabe, Hirofumi; Li, Yueming; Kato, Daiji; Currell, Fred J.; Tong Xiaomin; Watanabe, Tsutomu; Ohtani, Shunsuke

    2011-01-01

    In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.

  16. Spectroscopy of heavy few-electron ions

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1986-07-01

    In this paper we ask first, why is it interesting to investigate heavy-few electron ions. Then the various accelerator-based methods to produce heavy few-electron ions are discussed. In the main part an overview on available heavy few-electron ion data and current experiments is given. The summary will end up with future aspects in this field. (orig.)

  17. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    Science.gov (United States)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  18. Liquid alkali metals and alkali-based alloys as electron-ion plasmas

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1981-06-01

    The article reviews the theory of thermodynamic and structural properties of liquid alkali metals and alkali-based alloys, within the framework of linear screening theory for the electron-ion interactions. (author)

  19. Feedback scheme for kink instability in ERL based electron ion collider

    International Nuclear Information System (INIS)

    Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.

    2011-01-01

    Kink instability presents one of the limiting factors from achieving higher luminosity in ERL based electron ion collider (EIC). However, we can take advantage of the flexibility of the linac and design a feedback system to cure the instability. This scheme raises the threshold of kink instability dramatically and provides opportunity for higher luminosity. We studied the effectiveness of this system and its dependence on the amplitude and phase of the feedback. In this paper we present results of theses studies of this scheme and describe its theoretical and practical limitations. The main advantage of an energy recovery linac (ERL) based electron ion collider (EIC) over a ring-ring type counterpart is the higher achievable luminosity. In ERL-based version, one electron beam collides with the opposing ion beam only once so that the beam-beam parameter can largely exceed the usual limitation in an electron collider ring, while the beam-beam parameter for the ion beam remains small values. The resulting luminosity may be enhanced by one order of magnitude. The beam dynamics related challenges also arise as the luminosity boost in ERL based EIC due to the significant beam-beam effect on the electron beam. The effects on the electron beam include the additional large beam-beam tune shift and nonlinear emittance growth, which are discussed. The ion beam may develop a head-tail type instability, referred as 'kink instability', through the interaction with the electron beam. In this paper, we discuss the feasibility of an active feedback system to mitigate the kink instability, by taking advantage of the flexibility of ERL. Throughout the paper, we will discuss the collision between proton and electron beam. Any other ion species can be scaled by its charge Z and ion mass A.

  20. Influence of the inter-ion interaction on the phase diagrams of the 1D Falicov-Kimball system

    International Nuclear Information System (INIS)

    Gajek, Z.; Lemanski, R.

    2004-01-01

    A model of itinerant, spinless electrons interacting with ions via the on-site Coulomb potential U, modified by the inter-ionic nearest-neighbour interaction V, is studied on the one-dimensional infinite lattice. Only periodical configurations of the ions with a limited number of lattice sites in a unit cell and their mixtures are taken into account. Phases whose energies reach minimum values for given electron and ion chemical potentials are selected and depicted for a set of model parameters. Then the results are translated into the ion density-electron density canonical phase diagrams and summarized in the electron density-U plane. The diagrams clearly show how various kinds of charge ordering evolve with V, starting from V=0 case, that represents the standard Falicov-Kimball model discussed previously

  1. Influence of the inter-ion interaction on the phase diagrams of the 1D Falicov-Kimball system

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. E-mail: gajek@int.pan.wroc.pl; Lemanski, R

    2004-05-01

    A model of itinerant, spinless electrons interacting with ions via the on-site Coulomb potential U, modified by the inter-ionic nearest-neighbour interaction V, is studied on the one-dimensional infinite lattice. Only periodical configurations of the ions with a limited number of lattice sites in a unit cell and their mixtures are taken into account. Phases whose energies reach minimum values for given electron and ion chemical potentials are selected and depicted for a set of model parameters. Then the results are translated into the ion density-electron density canonical phase diagrams and summarized in the electron density-U plane. The diagrams clearly show how various kinds of charge ordering evolve with V, starting from V=0 case, that represents the standard Falicov-Kimball model discussed previously.

  2. Electron beam ion trap bi-annual report 1996/1997

    International Nuclear Information System (INIS)

    Schneider, D.

    1999-01-01

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U 92+ ), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime and

  3. Ion mobilities and ion-atom interaction potentials

    International Nuclear Information System (INIS)

    Gatland, I.R.

    1982-01-01

    The techniques for measuring the mobilities of ions in gases, relating interaction potentials to mobilities, and determining potentials from experimental mobilities are reviewed. Applications are presented for positive alkali ions and negative halogen ions in inert gases. (Auth.)

  4. Interaction of singly and multiply charged ions with a lithium-fluoride surface

    International Nuclear Information System (INIS)

    Wirtz, L.

    2001-10-01

    Charge transfer between slow ions and an ionic crystal surface still poses a considerable challenge to theory due to the intrinsic many-body character of the system. For the neutralization of multiply charged ions in front of metal surfaces, the Classical Over the Barrier (COB) model is a widely used tool. We present an extension of this model to ionic crystal surfaces where the localization of valence electrons at the anion sites and the lack of cylindrical symmetry of the ion-surface system impede a simple analytical estimate of electron transfer rates. We use a classical trajectory Monte Carlo approach to calculate electron transfer rates for different charge states of the projectile ion. With these rates we perform a Monte Carlo simulation of the neutralization of slow Ne10+ ions in vertical incidence on an LiF surface. Capture of one or several electrons may lead to a local positive charge up of the surface. The projectile dynamics depends on the balance between the repulsion due to this charge and the attraction due to the self-image potential. In a simulation that treats electronic and nuclear dynamics simultaneously, we show that the image attraction dominates over the repulsive force. Backscattering of very slow multiply charged projectiles high above the surface without touching it ('trampoline effect') does not take place. Instead, the projectile ion penetrates into the surface or is reflected due to close binary collision with surface ions. The case of a singly charged ion in front of an LiF surface is within the reach of ab-initio calculations. We use a multi-configuration self consistent field (MCSCF) and a multi-reference configuration interaction (MR-CI) method to calculate adiabatic potential energy curves for a system consisting of the projectile ion and an embedded cluster of surface ions. With increasing cluster size, the energy levels of the embedded cluster converge towards the band structure of the infinitely extended solid. Due to

  5. PIC simulation of the electron-ion collision effects on suprathermal electrons

    International Nuclear Information System (INIS)

    Wu Yanqing; Han Shensheng

    2000-01-01

    The generation and transportation of suprathermal electrons are important to both traditional ICF scheme and 'Fast Ignition' scheme. The author discusses the effects of electron-ion collision on the generation and transportation of the suprathermal electrons by parametric instability. It indicates that the weak electron-ion term in the PIC simulation results in the enhancement of the collisional absorption and increase of the hot electron temperature and reduction in the maximum electrostatic field amplitude while wave breaking. Therefore the energy and distribution of the suprathermal electrons are changed. They are distributed more close to the phase velocity of the electrostatic wave than the case without electron-ion collision term. The electron-ion collision enhances the self-consistent field and impedes the suprathermal electron transportation. These factors also reduce the suprathermal electron energy. In addition, the authors discuss the effect of initial condition on PIC simulation to ensure that the results are correct

  6. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  7. The status of the Electron Beam Ion Sources

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs

  8. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-12-31

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes` efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  9. Ion acceleration in modulated electron beams

    International Nuclear Information System (INIS)

    Bonch-Osmolovskij, A.G.; Dolya, S.N.

    1977-01-01

    A method of ion acceleration in modulated electron beams is considered. Electron density and energy of their rotational motion are relatively low. However the effective ion-accelerating field is not less than 10 MeV/m. The electron and ion numbers in an individual bunch are also relatively small, although the number of produced bunches per time unit is great. Some aspects of realization of the method are considered. Possible parameters of the accelerator are given. At 50 keV electron energy and 1 kA beam current a modulation is realized at a wave length of 30 cm. The ion-accelerating field is 12 MeV/m. The bunch number is 2x10 3 in one pulse at a gun pulse duration of 2 μs. With a pulse repetition frequency of 10 2 Hz the number of accelerated ions can reach 10 13 -10 14 per second

  10. Electron-vibrational transitions under molecular ions collisions with slow electrons

    International Nuclear Information System (INIS)

    Andreev, E.A.

    1993-01-01

    A concept of a multichannel quantum defect is considered and basic theoretic ratios of inelastic collisional processes with the participation of molecular positive ions and slow electrons playing an important role both in atmospheric and laboratory plasma, are presented. The problem of scattering channel number limitation with the provision of S-matrix unique character is considered. Different models of electron rotation-vibrational connection under collision of two-atom molecular ions with slow electrons are analysed. Taking N 2 + as an example, a high efficiency of transitions between different electron states of a molecular ion is shown. 73 refs., 9 figs., 1 tab

  11. Ion interactions with solids and plasma

    International Nuclear Information System (INIS)

    Arista, N.R.

    1987-01-01

    The models developed for studying processing of energy losses in dense medium, in particular some recent results for atomic systems confined in solids and in partially degenerated medium are described. Applications of these models to some cases of ion interaction with thin metallic foils and with dense plasmas are described. The processes of excitation and energy losses in the case of a degenerated electron gas, and in the general case of a plasma with arbitrary degenerescency are considered. (M.C.K.) [pt

  12. Electron-deficient anthraquinone derivatives as cathodic material for lithium ion batteries

    Science.gov (United States)

    Takeda, Takashi; Taniki, Ryosuke; Masuda, Asuna; Honma, Itaru; Akutagawa, Tomoyuki

    2016-10-01

    We studied the electronic and structural properties of electron-deficient anthraquinone (AQ) derivatives, Me4N4AQ and TCNAQ, and investigated their charge-discharge properties in lithium ion batteries along with those of AQ. Cyclic voltammogram, X-ray structure analysis and theoretical calculations revealed that these three acceptors have different features, such as different electron-accepting properties with different reduction processes and lithium coordination abilities, and different packing arrangements with different intermolecular interactions. These differences greatly affect the charge-discharge properties of lithium ion batteries that use these compounds as cathode materials. Among these compounds, Me4N4AQ showed a high charge/discharge voltage (2.9-2.5 V) with high cyclability (>65% of the theoretical capacity after 30 cycles; no decrease after 15 cycles). These results provide insight into more in-depth design principles for lithium ion batteries using AQ derivatives as cathodic materials.

  13. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  14. Excitation of electrostatic ion cyclotron wave in electron beam plasma system

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1984-01-01

    The electrostatic ion cyclotron waves excited in an electron beam plasma system was investigated. The excitation condition of the waves was calculated by using Harris type dispersion relation under some assumption, and its comparison with the experimental result was made. Beam plasma discharge is a kind of RF discharge, and it is caused by the waves generated by the interaction of electron beam with plasma. It was shown that electrostatic ion cyclotron waves seemed to be the most probable as excited waves. But the excitation mechanism of these waves has not been concretely investigated. In this study, the excitation condition of electrostatic ion cyclotron waves was calculated as described above. The experimental apparatus and the results of potential, electric field and ion saturation current in beam plasma, electron drift motion in azimuthal direction and the waves excited in beam plasma are reported. The frequency of oscillation observed in beam plasma corresponds to the harmonics or subharmonics of ion cyclotron frequency. The calculation of Harris type dispersion relation, the numerical calculation and the comparison of the experimental result with the calculated result are described. (Kako, I.)

  15. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  16. Total yield and escape depth of electrons from heavy ion solid interactions

    International Nuclear Information System (INIS)

    Frischkorn, H.J.; Burkhard, M.; Groenveld, K.O.; Hofmann, D.; Koschar, P.; Latz, R.; Schader, J.

    1983-01-01

    At high projectile energies ( aboutMeV/U) several mechanisms for electron production are discussed as e.g. direct ionization collisions, recoil particle cascades, collective electron emission. Results are presented of total electron yield (#betta#) measurements over a wide projectile energy E /SUB p/ range (40 keV/U< E /SUB p/ /M <12 MeV/U) and a wide projectile Z /SUB p/ range (1<2 /SUB p-/ <92) of both monoionic and molecular projectiles and of different target thicknesses. From the target thickness dependence of #betta# the mean free path lambda of electrons in carbon can be calculated. The data are discussed in the frame of current theories. Significant deviations from calculated values and predicted dependencies are found, in particular for projectile velocities v /SUB p/ close to the Fermi velocity v /SUB F/ of target electrons and for molecular projectile ions

  17. Giant resonance phenomena in the electron impact ionization of heavy atoms and ions

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    Heavy atoms and ions offer an interesting opportunity to study atomic physics in a region where the atomic structure is dominated by the interelectronic interactions. One illustration of this is the profound term dependence of atomic orbitals for certain configurations of heavy atoms and ions. The appearance of giant scattering resonances in the cross sections for ionization of heavy atoms by electron impact is a manifestation of resonance behavior. Such resonant structures arise from the double well nature of the scattering potential and have recently been identified in the cross sections for the electron impact ionization of several xenon-like ions. The results of calculations showing effects for a variety of other ions are summarized. 7 refs., 4 figs

  18. Electron capture into excited states of multi-charged ions

    International Nuclear Information System (INIS)

    Dijkkamp, D.

    1985-01-01

    This thesis deals with charge exchange reactions in slow collisions of multi-charged ions with neutral atoms or molecules. These reactions proceed very efficiently via a curve crossing mechanism, which leads to preferential population of excited states of the ion. The subsequent decay of these states leads to the emission of characteristic radiation. From wavelength resolved measurements of the absolute intensity of this radiation, cross sections for selective population of the excited (n,l-) states of the ion were determined. In addition, for some systems the total capture cross section was measured directly by means of charge state analysis of the secondary projectile ions. The role of charge exchange processes in fusion plasmas and in astrophysical plasmas is indicated. An experimental set-up is described with emphasis on the Electron Cyclotron Resonance Ion Source that was used in the experiments. Results for collisions of C 6+ , N 6+ , O 6+ and Ne 6+ with He, H 2 and Ar are presented as well as for electron capture from Li atoms by C 4+ and He 2+ . The interaction of the iso-electronic sequence C 4+ , N 5+ , O 6+ with atomic hydrogen, molecular hydrogen and helium is studied. First results for partial and total cross sections in collisions of fully stripped carbon, nitrogen and oxygen ions with atomic hydrogen are presented. These data are of particular importance for applications in fusion diagnostics. The data indicate that calculations of both molecular and atomic orbital type yield correct results, if an extended basis set is used. (Auth.)

  19. Compton profiles by inelastic ion-electron scattering

    International Nuclear Information System (INIS)

    Boeckl, H.; Bell, F.

    1983-01-01

    It is shown that Compton profiles (CP) can be measured by inelastic ion-electron scattering. Within the impulse approximation the binary-encounter peak (BEP) reflects the CP of the target atom whereas the electron-loss peak (ELP) is given by projectile CP's. Evaluation of experimental data reveals that inelastic ion-electron scattering might be a promising method to supply inelastic electron or photon scattering for the determination of target CP's. The measurement of projectile CP's is unique to ion scattering since one gains knowledge about wave-function effects because of the high excitation degree of fast heavy-ion projectiles

  20. Influence of the inter-ion interaction on the phase diagrams of the 1D Falicov-Kimball system

    Science.gov (United States)

    Gajek, Z.; Lemański, R.

    2004-05-01

    A model of itinerant, spinless electrons interacting with ions via the on-site Coulomb potential U, modified by the inter-ionic nearest-neighbour interaction V, is studied on the one-dimensional infinite lattice. Only periodical configurations of the ions with a limited number of lattice sites in a unit cell and their mixtures are taken into account. Phases whose energies reach minimum values for given electron and ion chemical potentials are selected and depicted for a set of model parameters. Then the results are translated into the ion density-electron density canonical phase diagrams and summarized in the electrondensity-U plane. The diagrams clearly show how various kinds of charge ordering evolve with V, starting from V=0 case, that represents the standard Falicov-Kimball model discussed previously.

  1. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    Science.gov (United States)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  2. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    Science.gov (United States)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse

  3. Higher-order resonant electronic recombination as a manifestation of configuration interaction

    International Nuclear Information System (INIS)

    Beilmann, C; Amaro, P; Tashenov, S; Bekker, H; Harman, Z; Crespo López-Urrutia, J R

    2013-01-01

    Theoretical and experimental investigations of higher-order electron–ion recombination resonances including inter-shell excitations are presented for L-shell ions of Kr with the aim of examining details of atomic structure calculations. The particular importance of electron–electron interaction and configuration mixing effects for these recombination processes enables their use for detailed tests of electron correlation effects. A test of the required level of considered mixing configurations is presented and further experiments involving higher-order recombination channels are motivated. (paper)

  4. The interaction of low-energy electrons with fructose molecules

    Science.gov (United States)

    Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.

    2017-11-01

    Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.

  5. Wave–particle interactions in a resonant system of photons and ion-solvated water

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Eiji, E-mail: konishi.eiji.27c@st.kyoto-u.ac.jp

    2017-02-26

    Highlights: • We consider a QED model of rotating water molecules with ion solvation effects. • The equations of motion are cast in terms of a conventional free electron laser. • We offer a new quantum coherence mechanism induced by collective instability. - Abstract: We investigate a laser model for a resonant system of photons and ion cluster-solvated rotating water molecules in which ions in the cluster are identical and have very low, non-relativistic velocities and direction of motion parallel to a static electric field induced in a single direction. This model combines Dicke superradiation with wave–particle interaction. As the result, we find that the equations of motion of the system are expressed in terms of a conventional free electron laser system. This result leads to a mechanism for dynamical coherence, induced by collective instability in the wave–particle interaction.

  6. Modeling the interaction of high power ion or electron beams with solid target materials

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam

  7. Concerning the maximum energy of ions accelerated at the front of a relativistic electron cloud expanding into vacuum

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Koga, J.; Tajima, T.; Farina, D.

    2004-01-01

    Results of particle-in-cell simulations are presented that demonstrate characteristic interaction regimes of high-power laser radiation with plasma. It is shown that the maximum energy of fast ions can substantially exceed the electron energy. A theoretical model is proposed of ion acceleration at the front of a relativistic electron cloud expanding into vacuum in the regime of strong charge separation. The model describes the electric field structure and the dynamics of fast ions inside the electron cloud. The maximum energy the ions can gain at the front of the expanding electron cloud is found

  8. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  9. Interaction of multicharged ions with molecules (CO2, C60) by coincident electron spectroscopy

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    2001-01-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems 18 O 8+ +Ar, CO 2 and C 60 have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C n + fragments (n=1 to 8) produced in multiple capture processes from C 60 target are given. A detailed investigation of the double capture process with CO 2 molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO 2 2+ molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  10. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange.......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...

  11. Elementary processes in plasma-surface interactions with emphasis on ions

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1985-01-01

    Elementary processes occurring at solid surfaces immersed in low pressure plasmas are reviewed. In particular mechanisms leading to anisotropic or directional etching are discussed. The crucial role of ion bombardment is emphasized. First a brief summary of the interaction of (excited) neutrals, ions and electrons with targets is given. Next various aspects of sputter-etching with noble gas and reactive ions are surveyed. Finally it will be argued that synergistic effects, invoked by ion bombardment of a surface under simultaneous exposure to a reactive gas flux, are foremost important in explaining anisotropic plasma etching. It is shown that the role of the ions is not merely to stimulate the chemical reaction path but rather that the active gas flow chemically enhances the sputtering. (author)

  12. Electron removal from H and He atoms in collisions with C q+ , O q+ ions

    Science.gov (United States)

    Janev, R. K.; McDowell, M. R. C.

    1984-06-01

    Cross sections for electron capture and ionisation in collision of partially and completely stripped C q+ , N q+ and O q+ ions with hydrogen and helium atoms have been calculated at selected energies. The classical trajectory Monte Carlo method was used with a variable-charge pseudopotential to describe the interaction of the active electron with the projectile ion. A scalling relationship has been derived for the electron removal (capture and ionisation) cross section which allows a unifield representation of the data.

  13. Electron impact ionization of heavy ions: some surprises

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    This paper reports the results of calculations of electron impact ionization cross sections for a variety of heavy ions using a distorted wave Born-exchange approximation. The target is described by a Hartree-Fock wavefunction. The scattering matrix element is represented by a triple partial wave expansion over incident, scattered, and ejected (originally bound) continuum states. These partial waves are computed in the potentials associated with the initial target (incident and scattered waves) and the residual ion (ejected waves). A Gauss integration was performed over the distribution of energy between the two final state continuum electrons. For ionization of closed d- and f-subshells, the ejected f-waves were computed in frozen-core term-dependent Hartree-Fock potentials, which include the strong repulsive contribution in singlet terms which arises from the interaction of an excited orbital with an almost closed shell. Ground state correlation was included in some calculations of ionization of d 10 subshells

  14. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  15. Fine structures of atomic excited states: precision atomic spectroscopy and electron-ion collision process

    International Nuclear Information System (INIS)

    Gao Xiang; Cheng Cheng; Li Jiaming

    2011-01-01

    Scientific research fields for future energies such as inertial confinement fusion researches and astrophysics studies especially with satellite observatories advance into stages of precision physics. The relevant atomic data are not only enormous but also of accuracy according to requirements, especially for both energy levels and the collision data. The fine structure of high excited states of atoms and ions can be measured by precision spectroscopy. Such precision measurements can provide not only knowledge about detailed dynamics of electron-ion interactions but also a bench mark examination of the accuracy of electron-ion collision data, especially incorporating theoretical computations. We illustrate that by using theoretical calculation methods which can treat the bound states and the adjacent continua on equal footing. The precision spectroscopic measurements of excited fine structures can be served as stringent tests of electron-ion collision data. (authors)

  16. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    Science.gov (United States)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  17. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  18. The impact parameter dependence of swift electron-matter interactions

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    In quantal collision theories, momentum and energy are usually taken to be good quantal variables. Classical collision theory, on the other hand, uses position and time to describe interactions between a probe and a target. In modern physics one may wish to express quantal theories in terms of spacelike variables. For example, experiments are now common in which one measures, by means of a narrowly focused beam of swift electrons, the distribution in energy of losses experienced in a very small region of space. Also, in experiments with channeled ions, and in microdosimetry, one is interested in the spatial coherence of unlocalized excitations created by swift ions and electrons, and their ultimate localization through transfer of energy to, e.g., single-particle excitations. In this lecture the author describes work, done in part in collaboration with Professor Howie, on some aspects of the spatial dependence of inelastic interactions between a charged particle and a condensed matter target. 6 refs., 1 fig

  19. Non-planar ion-acoustic solitary waves and their head-on collision in a plasma with nonthermal electrons and warm adiabatic ions

    Energy Technology Data Exchange (ETDEWEB)

    Han Jiuning; He Yonglin; Chen Yan; Zhang Kezhi; Ma Baohong [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)

    2013-01-15

    By using the model of Cairns et al.[Geophys. Rev. Lett. 22, 2709 (1995)], the head-on collision of cylindrical/spherical ion-acoustic solitary waves in an unmagnetized non-planar plasma consisting of warm adiabatic ions and nonthermally distributed electrons is investigated. The extended Poincare-Lighthill-Kuo perturbation method is used to derive the modified Korteweg-de Vries equations for ion-acoustic solitary waves in this plasma system. The effects of the plasma geometry m, the ion to electron temperature ratio {sigma}, and the nonthermality of the electron distribution {alpha} on the interaction of the colliding solitary waves are studied. It is found that the plasma geometries have a big impact on the phase shifts of solitary waves. Also it is important to note that the phase shifts induced by the collision of compressive and rarefactive solitary waves are very different. We point out that this study is useful to the investigations about the observations of electrostatic solitary structures in astrophysical as well as in experimental plasmas with nonthermal energetic electrons.

  20. Suprathermal electron environment of comet 67P/Churyumov-Gerasimenko: Observations from the Rosetta Ion and Electron Sensor

    Science.gov (United States)

    Clark, G.; Broiles, T. W.; Burch, J. L.; Collinson, G. A.; Cravens, T.; Frahm, R. A.; Goldstein, J.; Goldstein, R.; Mandt, K.; Mokashi, P.; Samara, M.; Pollock, C. J.

    2015-11-01

    Context. The Rosetta spacecraft is currently escorting comet 67P/Churyumov-Gerasimenko until its perihelion approach at 1.2 AU. This mission has provided unprecedented views into the interaction of the solar wind and the comet as a function of heliocentric distance. Aims: We study the interaction of the solar wind and comet at large heliocentric distances (>2 AU) using data from the Rosetta Plasma Consortium Ion and Electron Sensor (RPC-IES). From this we gain insight into the suprathermal electron distribution, which plays an important role in electron-neutral chemistry and dust grain charging. Methods: Electron velocity distribution functions observed by IES fit to functions used to previously characterize the suprathermal electrons at comets and interplanetary shocks. We used the fitting results and searched for trends as a function of cometocentric and heliocentric distance. Results: We find that interaction of the solar wind with this comet is highly turbulent and stronger than expected based on historical studies, especially for this weakly outgassing comet. The presence of highly dynamical suprathermal electrons is consistent with observations of comets (e.g., Giacobinni-Zinner, Grigg-Skjellerup) near 1 AU with higher outgassing rates. However, comet 67P/Churyumov-Gerasimenko is much farther from the Sun and appears to lack an upstream bow shock. Conclusions: The mass loading process, which likely is the cause of these processes, plays a stronger role at large distances from the Sun than previously expected. We discuss the possible mechanisms that most likely are responsible for this acceleration: heating by waves generated by the pick-up ion instability, and the admixture of cometary photoelectrons.

  1. Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Chawla, J. K.; Mishra, M. K.

    2010-01-01

    Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,σ), where p and σ are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.

  2. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  3. Ion-surface interaction: simulation of plasma-wall interaction (ITER)

    International Nuclear Information System (INIS)

    Salou, Pierre

    2013-01-01

    The wall materials of magnetic confinement in fusion machines are exposed to an aggressive environment; the reactor blanket is bombarded with a high flux of particles extracted from the plasma, leading to the sputtering of surface material. This sputtering causes wall erosion as well as plasma contamination problems. In order to control fusion reactions in complex reactors, it is thus imperative to well understand the plasma-wall interactions. This work proposes the study of the sputtering of fusion relevant materials. We propose to simulate the charged particles influx by few keV single-charged ion beams. This study is based on the catcher method; to avoid any problem of pollution (especially in the case of carbon) we designed a new setup allowing an in situ Auger electron spectroscopy analysis. The results provide the evolution of the angular distribution of the sputtering yield as a function of the ion mass (from helium to xenon) and its energy (from 3 keV to 9 keV). (author) [fr

  4. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  5. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    International Nuclear Information System (INIS)

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  6. Sawtooth activity of the ion cloud in an electron-beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.

    2003-01-01

    The dynamics of an ensemble of highly charged Ar and Ba ions in an electron-beam ion trap (EBIT) was studied by recording time-resolved x-ray spectra emitted from trapped ions. Sawtoothlike signatures manifest in the spectra for a variety of EBIT operating conditions indicating a sudden collapse of the ion inventory in the trap. The collapse occurs on a time scale of approximately 100 ms and the evolution of the sawteeth is very sensitive to parameters such as electron-beam current and axial trap depth. Analysis of the measurements is based on a time-dependent calculation of the trapping process showing that sawtooth activity is caused by the feedback between the low-Z argon and high-Z barium ions. This unexpected behavior demonstrates the importance of nonlinear effects in electron-beam traps containing more than a single ion species

  7. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  8. Advanced ion beam analysis of materials using ion-induced fast electron

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Hiroshi; Tanabe, Atsushi; Ishihara, Toyoyuki [Tsukuba Univ., Ibaraki (Japan); and others

    1997-03-01

    Recent progress in the study of high-energy shadowing effect using ion-induced electron spectroscopy is reported with emphasis on a possibility of determination of local electronic structure in solids, which has been a difficult problem to approach with other experimental techniques. We demonstrate real-space determination of covalent-bond electron distribution in Si crystal. The analysis technique may provide a new field of ion beam analysis of solids. (author)

  9. Electron emission during interactions of multicharged N and Ar ions with Au(110) and Cu(001) surfaces

    International Nuclear Information System (INIS)

    Meyer, F.W.; Overbury, S.H.; Havener, C.C.; Zeijlmans van Emmichoven, P.A.; Burgdoerfer, J.; Zehner, D.M.

    1991-01-01

    We report measurements of energy distributions of electrons emitted during interactions 10q-keV N 6+ , and Ar q+ (q=7,8,9) ions with Au(110) and Cu(001) surfaces at grazing angles. The electron energy distributions have been measured as a function of angle of incidence, observation angle, and target-crystal azimuth. For both Au and Cu targets, the projectile KLL Auger peak observed for the case of the N 6+ projectiles is seen to consist of two components whose intensities have strikingly different dependences on incident perpendicular velocity. The main component of the KLL peak is attributed to subsurface electron emission and is modeled using a Monte Carlo simulation of the projectile trajectories in the bulk. The second component, observed only for the smallest incident perpendicular velocities, is attributed to above-surface KLL Auger electron emission and is modeled using computer simulations of the resonance neutralization-autoionization cascade that occurs prior to projectile penetration of the surface. In the case of the Au target, NNV and NVV transitions, attributed to vacancy transfer from the projectile K shell to the N shell of Au, are also observed. The Monte Carlo simulation of the subsurface contribution to the electron emission is able to reproduce the observed angle-of-incidence dependence of both the projectile and the target Auger electron intensities. In addition, it shows reasonable agreement with the observed dependences of the projectile KLL intensity on observation angle and crystal azimuth

  10. Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud; Shukla, Padma Kant

    2012-05-01

    The dust-modified ion-acoustic waves of Shukla and Silin are revisited within the theoretical framework of the Tsallis statistical mechanics. Nonextensivity may originate from correlation or long-range plasma interactions. Interestingly, we find that owing to electron nonextensivity, dust ion-acoustic (DIA) solitary waves may exhibit either compression or rarefaction. Our analysis is then extended to include self-consistent dust charge fluctuation. In this connection, the correct nonextensive electron charging current is rederived. The Korteweg-de Vries equation, as well as the Korteweg-de Vries-Burgers equation, is obtained, making use of the reductive perturbation method. The DIA waves are then analyzed for parameters corresponding to space dusty plasma situations.

  11. An improved electron impact ion source power supply

    International Nuclear Information System (INIS)

    Beaver, E.M.

    1974-01-01

    An electron impact ion source power supply has been developed that offers improved ion beam stability. The electrical adjustments of ion source parameters are more flexible, and safety features are incorporated to protect the electron emitting filament from accidental destruction. (author)

  12. Defect production and annihilation in metals through electronic excitation by energetic heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Defect production, radiation annealing and defect recovery are studied in Ni and Cu irradiated with low-energy ({approx}1-MeV) and high-energy ({approx}100-MeV) ions. Irradiation of Ni with {approx}100-MeV ions causes an anomalous reduction, or even a complete disappearance of the stage-I recovery. This result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of the stage-I interstitials. This effect is also observed in Ni as a large radiation annealing during 100-MeV heavy ion irradiation. On the other hand, in Cu thin foils, we find the defect production process strongly associated with electron excitation, where the defect production cross section is nearly proportional to S{sub e}{sup 2}. (author)

  13. EUV spectrum of highly charged tungsten ions in electron beam ion trap

    International Nuclear Information System (INIS)

    Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N.

    2016-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra was investigated for electron energy from 540 to 1370 eV. Previously unreported lines were presented in the EUV range, and comparing the wavelengths with theoretical calculations identified them. (author)

  14. Ion-acoustic solitons in a plasma with electron beam

    International Nuclear Information System (INIS)

    Esfandyari, A. R.; Khorram, S.

    2001-01-01

    Ion-acoustic solitons in a collisionless plasma consisting of warm ions, hot isothermal electrons and a electron beam are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries and modified Korteweg-de Vries temperature and electron beam on ion acoustic equations. The effect of ion solitons are investigated

  15. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence

  16. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    International Nuclear Information System (INIS)

    Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong

    2009-01-01

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  17. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  18. Electron cyclotron resonance multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1975-01-01

    Three ion sources, that deliver multiply charged ion beams are described. All of them are E.C.R. ion sources and are characterized by the fact that the electrons are emitted by the plasma itself and are accelerated to the adequate energy through electron cyclotron resonance (E.C.R.). They can work without interruption during several months in a quasi-continuous regime. (Duty cycle: [fr

  19. Effect of electron-excitation on radiation damage in ion-irradiated FCC metals

    International Nuclear Information System (INIS)

    Iwase, Akihiro

    1989-06-01

    FCC metals (Al, Cu, Ag, Ni) were irradiated with 0.5-1.8 MeV H, He, N and Ar ions, and 84-126 MeV C, F, Si, Cl, Br and I ions at liquid helium temperatures. After the irradiations, thermal annealing experiments were performed up to 300 K. Anomalous reduction of Stage-I recovery was observed in Al and Ni irradiated with high-energy (∼100 MeV) heavy ions. Radiation annealing by 100 MeV I ions was studied in predoped Ni and Cu. The experimental results were analyzed by using a new model which describes the production and radiation annealing of two or more types of defects. The extraordinarily large cross sections for subthreshold recombination of Stage-I defects were obtained in Ni. These results show that in Al and Ni, the energies transferred from the excited electrons to lattice through the electron-lattice interaction contribute to the annihilations of defects during irradiation. (author)

  20. Ion-electron recombination in merged-beams experiments

    International Nuclear Information System (INIS)

    Schmidt, H.T.

    1994-01-01

    In the present thesis, studies of recombination processes applying the technique of merged beams of fast ions and electrons are described. The main advantage of this technique is that the low relative velocity of ions and electrons necessary for these investigations can be achieved, at the same time as the velocity of the ions relative to the molecules of the residual gas is high. The high ion velocity leads to a very low reaction cross section for the leading contribution to the background signal, the capture of electrons in collisions with residual gas molecules. The experimental technique is described, emphasizing the electron beam velocity distribution and its relation to the energy resolution of the experiments. The presentation of the process of electron cooling is aimed at introducing this process as a tool for merged-beams experiments in storage rings rather than investigating the process itself. The non-resonant process of radiative recombination for non-fully stripped ions, showing evidence of incomplete screening is presented. Experimental investigation of dielectronic recombination is presented. Results of measurements of this process for He-like ions form the Aarhus single-pass experiment and the Heidelberg storage ring experiment are compared. Recombination is reduced from being the aim of the investigation to being a tool for high-precision measurements of the lifetimes of the 1s2s 3 S metastable states of HE-like ions of boron, carbon, and nitrogen, performed at the Heidelberg storage ring. The experiment is concerned with the process of dissociative recombination of molecular hydrogen ions. The discussion of this experiment emphasizes the distribution of population on the different vibrational levels of the ions in the initial state. In particular, a laser photo-dissociation technique was introduced to reduce the number of initial levels in the experiment. (EG) 24 refs

  1. Convoy electron production by heavy ions in solids

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    The term convoy electron refers to those electrons ejected in fast ion-atom and ion-solid collisions closely matched in vector velocity to that of the incident heavy particles responsible for their ejection. Similarities and differences among electrons ejected into such states through binary electron capture to continuum and electron loss to continuum processes in single ion-atom encounters are compared and contrasted to more complex ejection processes occurring in solid targets. Puzzles posed by the apparent strong projectile Z dependence but weak emergent ion charge dependence of the yield in the case of solid targets are reviewed. Very recent progress in resolving these puzzles has been made by recent observations that the apparent mean free path for electron scattering out of the forward direction within the target is observed to be an order of magnitude greater than that for free electrons of equal velocity provided the projectile charge is high. 13 references, 2 figures, 1 table

  2. New simulation capabilities of electron clouds in ion beams with large tune depression

    International Nuclear Information System (INIS)

    Vay, J.L.; Furman, M.A.; Seidl, P.A.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff-Covo, M.; Molvik, A.W.; Stoltz, P.H.; Veitzer, S.; Verboncoeur, J.P.

    2006-01-01

    The authors have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC code WARP and the 2-D ''slice'' e-cloud code POSINST, as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new ''drift-Lorentz'' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX). They describe the capabilities and present recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC)

  3. Kinetic theory for electron dynamics near a positive ion

    International Nuclear Information System (INIS)

    Wrighton, Jeffrey M; Dufty, James W

    2008-01-01

    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron–ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron–electron and electron–ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single-particle trajectories of the electron–ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron–ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron–ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas

  4. An experimental study of electron transfer and emission during particle-surface interactions

    International Nuclear Information System (INIS)

    McGrath, C.T.

    2000-09-01

    A new coincidence technique has been developed and used to study the secondary electron emission that arises during the interaction of ions with surfaces. This coincidence technique allows the secondary electron emission statistics due to the impact of singly, doubly and multiply charged ions on surfaces to be measured in coincidence with reflected particles, in specific charge states and with specific post-collision trajectories. This system has been used to study the impact of 8 keV H + ions on polycrystalline copper and aluminium targets. Under these conditions the potential emission contribution is negligible and the electron emission is almost entirely due to kinetic emission processes. The sub-surface contribution to the observed electron emission has been isolated using two newly developed models. These models provide valuable information about the depth and amount of surface penetration and on the probability for subsequent electron transport to the surface. The impact of 2 - 100 keV Xe q+ (q = 1 - 10) ions on polycrystalline copper has also been studied using this system. From the subsequent data the potential and kinetic contributions to secondary electron emission have been separated using a previously established model for potential emission. The resulting kinetic emission yield increases with increasing ion impact energy, consistent with current concepts on quasimolecular ionisation. For ions impacting at large incident angles evidence for sub-surface emission has also been observed. The degree of penetration increases with ion impact energy, consistent with current concepts on this effect. The formation of H - ions from incident H + ions has also been studied by measuring the secondary electron emission statistics in coincidence with reflected particles in specific final charge states. This preliminary data is consistent with a two-step process of Auger neutralisation followed by resonant electron capture to the affinity level. However this mechanism

  5. Radiative double electron capture in fast heavy ion-atom collisions

    International Nuclear Information System (INIS)

    Yakhontov, V.L.; Amusia, M.Ya.

    1996-01-01

    Two-electron capture with emission of a single photon (TESP) in collisions of highly charged ions with light atoms is considered. Such a process is actually a time-reversed double photoionization but occurring at specific kinematics. In the lowest order in the inter-electron interaction, the TESP probability is determined by two diagrams which are evaluated analytically by means of the Coulomb Green function. The calculated ratio of the TESP and single recombination cross sections is in fair agreement with the data obtained in the recent experimental study of this phenomena. (orig.)

  6. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  7. Anisotropic exchange interaction for magnetic ion pairs in insulators

    International Nuclear Information System (INIS)

    Passeggi, M.C.G.

    1975-12-01

    The sources of possible contributions to the magnetic anisotropy for a pair of orbitally non degenerate magnetic ions are investigated. The problem being formulated with the help of the operator form of perturbation theory and irreducible tensor operators. Apart from the usual dipole-dipole effective interaction, mainly induced by the electronic spin-spin dipole coupling corrected by covalency, other mechanisms mediated by the spin-orbit coupling appear. These are a consequence of an appropriate description of the spin-orbit operators for a system which allows for delocalization of the magnetic electrons. A process similar to that known as pseudodipolar appears from contributions in which spin orbit combined with the Coulomb repulsion and with one-electron interactions (acting analogously as for the ''kinetic exchange'') produce compensating effects in third and fourth order, respectively. However, this effect does not appear to be describable in terms of the phenomenological exchange, as is usually assumed. (Passeggi, M.C.G.)

  8. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  9. Interaction of electrons with biomolecules and development of a helium cluster source

    International Nuclear Information System (INIS)

    Denifl, S.

    2004-07-01

    In the main part of the present work electron interaction (attachment/ionization) with molecules of biological relevance has been studied in the electron energy range from about 0 to 70 eV. For these measurements a crossed neutral / high resolution electron beams apparatus in conjunction with a quadrupole mass spectrometer has been used. The present work should evaluate the description of the damage induced by high energy radiation since low secondary electrons with energies below 20 eV are created in a large amount in the interaction of the primary radiation with cell compounds. Thus dissociative electron attachment (DEA) and electron impact ionization near the threshold of biomulecules has been studied below 20 eV under isolated conditions. DEA to the DNA/RNA molecules thymine, cytosine and uracil has been carried out. As for most of the recently studied simple biomolecules (like isolated DNA bases, amino acids and sugars) no parent ion has been observed. It turned out that the most abundant fragment ions for DNA/RNA bases are the dehydrogenated bases. In addition to DNA/RNA bases also electron interaction with 6-Chlorouracil has been studied. Another part of this thesis is the construction of a He cluster source. Helium clusters are most difficult to produce as temperatures of about 10 K have to be reached in the stagnation chamber at the stagnation pressure of about 20 bar. The newly developed source allows achieving stagnation conditions for a helium cluster production. (author)

  10. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu; Aly, Shawkat Mohammede; Usman, Anwar; Parida, Manas R.; Del Gobbo, Silvano; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  11. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  12. Ion induced high energy electron emission from copper

    International Nuclear Information System (INIS)

    Ruano, G.; Ferron, J.

    2008-01-01

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He + , Ne + and Ar + ) and Li + ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  13. Enhanced confinement in electron cyclotron resonance ion source plasma.

    Science.gov (United States)

    Schachter, L; Stiebing, K E; Dobrescu, S

    2010-02-01

    Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.

  14. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  15. Secondary electron ion source neutron generator

    Science.gov (United States)

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  16. Forward electron production in heavy ion-atom and ion-solid collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table

  17. 5f state interaction with inner coordination sphere ligands: einsteinium 3+ ion fluorescence in aqueous and organic phases

    International Nuclear Information System (INIS)

    Beitz, J.V.; Wester, D.W.; Williams, C.W.

    1983-01-01

    The interaction between 5f electron states of einsteinium 3+ ion and coordinated ligands in solution has been probed using laser-induced fluorescence. Aquo einsteinium 3+ ion was observed to fluoresce from its first excited J = 5 state in a broad-band peaking at 9260 wavenumbers. The observed fluorescence lifetimes were 1.05 microseconds and 2.78 microseconds in H 2 O and D 2 O (99+ % D atom), respectively. The non-radiative decay rates derived from the lifetime data are compared with previously reported data for Cm, Sm, Eu, Tb, and Dy aquo 3+ ions. The 5f actinide states exhibit substantially greater non-radiative decay rates than do lanthanide 4f states of similar energy gap. This provides evidence that actinide 5f electrons interact more strongly with their inner coordination sphere than do lanthanide ion 4f electrons. The fluorescence lifetime of einsteinium 3+ ion complexed with 1 formal di(2-ethylhexyl)orthophosphoric acid in h-heptane was 2.34 microseconds. 3 figures, 1 table

  18. Ion current reduction in pinched electron beam diodes

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Poukey, J.W.

    1977-01-01

    A new version of a particle-in-cell diode code has been written which permits the accurate treatment of higher-current diodes with greater physical dimensions. Using this code, we have studied ways to reduce the ion current in large-aspect-ratio pinched electron beam diodes. In particular, we find that allowing the ions to reflex in such diodes lowers the ion to electron current ratio considerably. In a 3-MV R/d=24 case this ratio was lowered by a factor of 6--8 compared with the corresponding nonreflexing-ion diode, while still producing a superpinched electron beam

  19. Simulating electron clouds in heavy-ion accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2005-01-01

    Contaminating clouds of electrons are a concern for most accelerators of positively charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly magnetized, weakly magnetized, and unmagnetized. The approach to such self-consistency is described, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyroperiod in the magnets. Tests and applications are presented: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the high-current experiment [L. R. Prost, P. A. Seidl, F. M. Bieniosek, C. M. Celata, A. Faltens, D. Baca, E. Henestroza, J. W. Kwan, M. Leitner, W. L. Waldron, R. Cohen, A. Friedman, D. Grote, S. M. Lund, A. W. Molvik, and E. Morse, 'High current transport experiment for heavy ion inertial fusion', Physical Review Special Topics, Accelerators and Beams 8, 020101 (2005)], at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam on an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-time-step mover to accurately calculate the instability

  20. Nonplanar ion acoustic waves with kappa-distributed electrons

    International Nuclear Information System (INIS)

    Sahu, Biswajit

    2011-01-01

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing κ) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.

  1. Ion induced high energy electron emission from copper

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)], E-mail: gdruano@ceride.gov.ar; Ferron, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina); Departamento de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)

    2008-11-15

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He{sup +}, Ne{sup +} and Ar{sup +}) and Li{sup +} ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  2. Dynamic plasma screening effects on semiclassical inelastic electron endash ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on 1s→2p dipole transition probabilities for electron-impact excitation of hydrogenic ions. The electron endash ion interaction potential is considered by introduction of the plasma dielectric function. A semiclassical straight-line trajectory method is applied to the path of the projectile electron in order to visualize the semiclassical transition probability as a function of the impact parameter, projectile energy, and plasma parameters. The transition probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the electron thermal velocity, then the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low-energy projectiles. It is also found that the static plasma screening formula obtained by the Debye endash Hueckel model overestimates the plasma screening effects on the atomic excitation processes in dense plasmas. copyright 1997 American Institute of Physics

  3. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  4. A research of possibility for negative muon production by a low energy electron beam accompanying ion beam

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1993-12-01

    A low energy electron beam (≤ 2000 eV) is injected perpendicularly to a uniform magnetic field, together with a low energy positive ion beam. On this magnetic mass analysis (using the uniform magnetic field), a peak of secondary electron current to the beam collector (arranging as a mass analyzer of 90deg type), appears at an analyzing magnetic field which corresponds exactly to a relation of negative muon μ - (the mass m=207 m e and the charge q=e, where m e and e are mass and charge of electron). The ion beam is essential for the peak appearance, which is produced by decelerating electrically the electron beam in front of the entrance slit of the mass analyzer, and by introducing a neutral gas into the electron beam region and producing a plasma through the ionization. We consider that a very small amount of negative muons may be produced through local cyclotron motions of the injected beam electrons in the ion beam or by an interaction between the bunched beam electrons and beam ions. (author)

  5. Electronic structure of molecular Rydberg states of some small molecules and molecular ion

    International Nuclear Information System (INIS)

    Sun Biao; Li Jiaming

    1993-01-01

    Based on an independent-particle-approximation (i.e. the multiple scattering self-consistent-field theory), the electronic structures of Rydberg states of the small diatomic molecules H 2 , He 2 and the He 2 + molecular ion were studied. The principal quantum number of the first state of the Rydberg series is determined from a convention of the limit of the molecular electronic configuration. The dynamics of the excited molecules and molecular ion has been elucidated. The theoretical results are in fair agreement with the existing experimental measurements, thus they can serve as a reliable basis for future refined treatment such as the configuration interaction calculation

  6. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  7. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  8. Electron collector and ion species experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.; Greenly, J.B.; Hammer, D.A.; Horioka, K.; Meyerhofer, D.D.

    1987-01-01

    Studies of the effects of an electron collector on the electron flow in an ion diode and on diode impedance history are being done with an extractor geometry ion diode (B/sub r/ magnetic insulation field) on the LION accelerator (1.5 MV, 4Ω, 40 ns). The collector is a flux-penetrable metal protrusion on the inner radius of the anode that collects electrons. This device increases the diode operating impedance particularly during the later part of the pulse when the diode impedance collapses without the collector. In the present set of experiments, several thin wires are inserted into the anode and allowed to protrude a few millimeters into the A-K gap. These wires are damaged by the electron flow during the pulse and by measuring the length of the remaining wire, the distance of the electron layer from the anode can be inferred. The ion current density is also measured in three radial locations across the diode, giving a measure, through the Child-Langmuir law, of the effective gap spacing between the anode and the electron sheath. A simple model is proposed to account for the scaling of ion current density with the diode voltage observed in the experiment

  9. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  10. The operator technique in the theory of the rare earth ion interaction with ligand nuclei

    International Nuclear Information System (INIS)

    Anikeenok, O.A.; Eremin, M.V.; Khutsishvili, O.G.

    1986-01-01

    The tensor structure of the operator of rare earth ion interaction with nuclei of close ligands conditioned by virtual processes of charge transport is established. It is taken into account that virtual processes of electron transport from the ligand can take place to the non-filled 4f-, void 5d- and 6s- and preliminarily excited 5p-shells of the rare earth ion. Effects of 4f- and 5d-state mixing by the odd crystal field are considered for the first time. In contrast to the usual multipole-dipole interaction the given one is characterized by anomalously greater significance of highest multipole momenta of the rare earth ion and in the common case it does not have axial symmetry. The theory is compared with data on double electron-nuclear resonance and radiofrequency discrete saturation, taking CaF 2 :Ce 3+ impurity centers as an example

  11. Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas

    Directory of Open Access Journals (Sweden)

    Malvina B. Trzhaskovskaya

    2015-05-01

    Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.

  12. Theoretical studies of the electronic structure of the ions KCs+ and RbCs+

    International Nuclear Information System (INIS)

    Abdul Al, Saleh Nabhan

    2000-01-01

    Author.the theoretical investigation of the electronic structure of the molecular ions KCs + and RbCs + , by using ab initio calculation, is being considered. Some of the approximation methods may form a theoretical model; with which many physical properties of molecular systems can be explored by once a mathematical procedure has been implanted through a computer program. This theoretical structure is referred to as ab initio electronic structure. The Hamiltonian for a multi-electron system cannot be separated into one-electron parts without making the independent electron approximation. The one-electron molecular wave function is referred to as molecular orbital (MO). The MOs may be expressed as linear combinations of atomic orbitals. Making the Born-Oppenheimer approximation, we seek to solve for the electronic eigenfunctions and eigenvalues with the nuclei fixed at various separation distances. A rigorous variational calculation on a system involves the following steps: write down the Hamiltonian operator for the system; Select some mathematical functional form ψ as the trial wave function. This form should have variable parameters (we take ψto be made up of Slater determinants containing molecular-spin orbitals); Minimize the average value of the energy (E) with respect to variations in the parameters. We describe an approach in the ab initio calculations, called the self-consistent field (SCF) method. The Hartree-Fock equation is obtained by requiring E to be stationary with respect to variations in ψ. The best MOs are eigenfunctions of the Fock operator. The instantaneous part of the interaction that SCF neglects is referred to as electron correlation. One general technique, for including the effects of correlation, is called configuration interaction (CI). Moeller-Plesset perturbation theory is an alternative approach to the correlation problem. The calculation has been performed for the two molecular ions, through the CI PSI (Configuration Interaction

  13. Electron - ion recombination processes - an overview

    International Nuclear Information System (INIS)

    Hahn, Yukap

    1997-01-01

    Extensive theoretical and experimental studies have been carried out for the past 20 years on electron - ion recombination processes, as they are applied to the analysis of astrophysical and laboratory plasmas. We review the basic understanding gained through these efforts, with emphasis on some of the more recent progress made in recombination theory as the recombining system is affected by time-dependent electric fields and plasma particles at low temperature. Together with collisional ionization and excitation processes, recombination is important in determining ionization balance and excited-state population in non-equilibrium plasmas. The radiation emitted by plasmas is usually the principal medium with which to study the plasma condition, as it is produced mainly during the recombination and decay of excited states of ions inside the plasma. This is especially true when the plasma under study is not readily accessible by direct probes, as in astrophysical plasmas. Moreover, external probes may sometimes cause undesirable disturbances of the plasma. Electron-ion recombination proceeds in several different modes. The direct modes include three-body recombination (TBR) and one-step radiative recombination (RR), all to the ground- and singly-excited states of the target ions. By contrast, the indirect resonant mode is a two-step dielectronic recombination (DR), which proceeds first with the formation of doubly-excited states by radiationless excitation/capture. The resonant states thus formed may relax by autoionization and/or radiative cascades. For more exotic modes of recombination, we consider off-shell dielectronic recombination (radiative DR = RDR), in which an electron capture is accompanied by simultaneous radiative emission and excitation of the target ion. Some discussion on attachment of electrons to neutral atoms, resulting in the formation of negative ions, is also given. When resonance states involve one or more electrons in high Rydberg states

  14. Experimental study of interactions of highly charged ions with atoms at keV energies: Progress report for period May 15, 1985-February 15, 1987

    International Nuclear Information System (INIS)

    Kostroun, V.O.

    1987-01-01

    Interest in interactions of low energy highly charged ions with electrons, atoms or ions is due to their importance to controlled thermonuclear fusion research and the interesting nature of the fundamental processes involved. Studies of such interactions have long been hampered by a lack of suitable ions sources. A superconducting solenoid, cryogenic Electron Beam Ion Source, CEBIS, has been constructed at Cornell University to produce low energy very highly charged ions. At present, using a pulsed 0.5A,8.5 keV electron beam, the source is capable of producing highly charged ions of C,N,O, including bare nuclei, and ions of Ar up to charge state 11 + in 1 millisecond of confinement time. The source is being used in experiments to investigate charge transfer and accompanying processes in low energy, highly charged ion-atom collisions

  15. Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: Pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-09-01

    We report on experiments of secondary electron emission in the interaction of helium ions with aluminum surfaces. Comparison between the electron emission induced by the impact of {sup 3}He{sup +} and {sup 4}He{sup +} on Al illustrates similarities and differences between the two projectiles. The intensity of emission shows the same dependence on velocity for the two isotopes, showing that KEE yields for helium ions impact on Al are dominated by direct excitation of valence electrons and not by electron promotion. Electron promotion and charge transfer processes are unambiguously identified by the observation of Auger electron emission from Al, at energies below the excitation threshold of Al–Al collisions, indicating energy losses for the projectiles higher than those commonly considered.

  16. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  17. Electron cloud effects in intense, ion beam linacs theory and experimental planning for heavy-ion fusion

    International Nuclear Information System (INIS)

    Molvik, A.W.; Cohen, R.H.; Lund, S.M.; Bieniosek, F.M.; Lee, E.P.; Prost, L.R.; Seidl, P.A.; Vay, Jean-Luc

    2002-01-01

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Without special preparation a large fractional electron population ((ge)1%) is predicted in the High-Current Experiment (HCX), but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the ∼4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron flow is limited to drift velocities (E x B and (del)B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as the their effect on the ion beam

  18. Electron cloud measurements in heavy-ion driver for HEDP and inertial fusion energy

    International Nuclear Information System (INIS)

    Kireeff Covo, Michel; Molvik, Arthur W.; Friedman, Alex; Cohen, Ronald; Vay, Jean-Luc; Bieniosek, Frank; Baca, David; Seidl, Peter A.; Logan, Grant; Vujic, Jasmina L.

    2007-01-01

    The high-current experiment (HCX) at LBNL is a driver scale single beam injector that provides a 1 MeV K + ion beam current of 0.18 A for 5 μs. It transports high-current beams with large fill factor (ratio of the maximum beam envelope radius to the beam pipe radius) and low emittance growth that are required to keep the cost of the power plant competitive and to satisfy the target requirements of focusing ion beams to high-power density. Beam interaction with the background gas and walls desorbs electrons that can multiply and accumulate, creating an electron cloud. This ubiquitous effect grows at higher fill factors and degrades the quality of the beam. We review simulations and diagnostics tools used to measure electron production, accumulation and its properties

  19. Electron-Cloud Simulation and Theory for High-Current Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Cohen, R; Friedman, A; Lund, S; Molvik, A; Lee, E; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-01-01

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize the distinguishing features of electron cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds. We also present results from several ingredients in this capability: (1) We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2) We simulate of the effect of specified electron cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics

  20. Electron-cloud simulation and theory for high-current heavy-ion beams

    Directory of Open Access Journals (Sweden)

    R. H. Cohen

    2004-12-01

    Full Text Available Stray electrons can arise in positive-ion accelerators for heavy-ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize the distinguishing features of electron-cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds (also applicable to other accelerators. We also present results from several ingredients in this capability. (1 We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2 We simulate the effect of specified electron-cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing-mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope “breathing” mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3 We report first results from a long-time-step algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics.

  1. Theoretical study of the electronic structure of different states of the KRb+ molecular ion

    International Nuclear Information System (INIS)

    Korek, M.; Younis, G.

    2000-01-01

    Full text.The molecular activities in ultra-cold alkali atom trapping stimulate theoretical developments to compute relevant adiabatic potential curves, especially in the framework of the pseudopotential methods. For these methods the molecular ion KRb+ is treated as system with one active electron moving in a field of two ionic cores, where core valence electron interactions are presented by an effective potential. Potential energies have been calculated over a wide range of internuclear distance (5.0-60a o ) for the lowest states of symmetry 2 Σ, 2 Π, 2 Δ and Ω for the molecular ion KRb+. To avoid an over estimation of the dissociation energy the perturbative treatment is replaced by an l-dependent core-polarization potential of the Foucrault et al. For the one valence electron of the two considered atoms, we recalculated the polarization potential cut-off parameters r k l , and r R b l by taking l=0,1,2 and r i 2 =r i 3 . Molecular orbital for the molecular ion KRb+ were derived from Self Consistent Field calculations (SCF), and full valence Configuration Interaction (IC) calculations were performed. Extensive tables of energy values versus internuclear distance are displayed and molecular spectroscopic constants have been derived, for the first time, for the bound states with regular shape

  2. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  3. New simulation capabilities of electron clouds in ion beams with large tune depression

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.; Seidl, P.A.

    2007-01-01

    We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC code WARP and the 2-D 'slice' e-cloud code POSINST [M. Furman, this workshop, paper TUAX05], as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX) [experimental results discussed by A. Molvik, this workshop, paper THAW02]. We describe the capabilities and present recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC). (author)

  4. New simulation capabilities of electron clouds in ion beams with large tune depression

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory

    2006-01-01

    We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC code WARP and the 2-D ''slice'' e-cloud code POSINST [M. Furman, this workshop, paper TUAX05], as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new ''drift-Lorentz'' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX) [experimental results discussed by A. Molvik, this workshop, paper THAW02]. We describe the capabilities and present recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC)

  5. Electron string ion sources for carbon ion cancer therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Katagiri, K.; Noda, K. [National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  6. Nonlinear interaction of powerful short electromagnetic pulses with an electron plasma

    International Nuclear Information System (INIS)

    Rao, N.N.; Yu, M.Y.; Shukla, P.K.

    1990-01-01

    The nonlinear interaction of powerful short electromagnetic pulses with a plasma consisting of two groups of electrons and immobile ions has been studied. It is shown that the interaction is governed by a nonlinear equation for the electromagnetic wave envelope and a driven nonlinear equation for the low-frequency electron fluctuations. The driver for the latter depends explicitly on the spatio-temporal evolution of the electromagnetic wave flux. It is found that, depending on the cold-to-hot electron density ratio, the localized pulse can propagate with sub- as well as supersonic velocities accompanied by compressional or rarefactional density perturbations. The conditions of existence for the different types of solitary pulses are obtained. The present investigation may be relevant to the study of wave-plasma interaction devices such as inertial fusion confinement as well as to ionospheric modification experiments. (author)

  7. Effect of electronic spatial extents (ESE) of ions on overpotential of lithium ion capacitors

    International Nuclear Information System (INIS)

    Xu, Fan; Lee, Chung ho; Koo, Chong Min; Jung, Cheolsoo

    2014-01-01

    Highlights: •Electronic spatial extent (ESE) of ion characterizes its electron density volume. •The ESE of ion proposes to assess overpotential of nanoporous capacitor. •Anion with low ESE shows low overpotential of the capacitor. •The ESE is more realistic to assess overpotential than conductivity or ion size. -- Abstract: The electronic spatial extent (ESE) of ions was defined as a major concept for assessing the cause of overpotential in the charging and discharging processes of a nanoporous activated carbon (AC) electrode. The performance degradation of AC/Li half-cells was caused by the overpotential, which was in discord with the electrolyte conductivity and ion size. Compared to the overpotential with the salt concentration, the AC/Li half-cell with a high concentration had a smaller overpotential, and its discharge patterns were similar to the curves obtained from the half-cells with a smaller ESE of BF 4 − ion. The ESE is a more realistic solution for determining the overpotential of the nanoporous capacitor, such as supercapacitor and Li ion capacitor, because its capacity is dependent on the electron density at the electric double layer of the capacitor electrode

  8. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  9. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  10. Free-electron lasers with magnetized ion-wiggler

    International Nuclear Information System (INIS)

    Mehdian, H.; Jafari, S.; Hasanbeigi, A.; Ebrahimi, F.

    2009-01-01

    Significant progress has been made using laser ionized channels to guide electron beams in the ion focus regime in a free-electron laser. Propagation of an electron beam in the ion focusing regime (IFR) allows the beam to propagate without expanding from space-charge repulsion. The ninth-degree polynomial dispersion relation for electromagnetic and space-charge waves is derived analytically by solving the electron momentum transfer and wave equations. The variation of resonant frequencies and peak growth rates with axial magnetic field strength has been demonstrated. Substantial enhancement in peak growth rate is obtained as the axial field frequency approaches the gyroresonance frequency.

  11. Ion-solid interactions for materials modification and processing

    International Nuclear Information System (INIS)

    Poker, D.B.; Ila, D.; Cheng, Y.T.; Harriott, L.R.; Sigmon, T.W.

    1996-01-01

    Topics ranged from the very fundamental ion-solid interactions to the highly device-oriented semiconductor applications. Highlights of the symposium featured in this volume include: nanocrystals in insulators, plasma immersion ion implantation. Focused ion beams, molecular dynamics simulations of ion-surface interactions, ion-beam mixing of insulators, GeV ion irradiation, electro-optical materials, polymers, tribological materials, and semiconductor processing. Separate abstracts were prepared for most papers in this volume

  12. Experimental determination of the electron-avalanche and the electron-ion recombination coefficient

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.

    1980-01-01

    The electron-ion recombination coefficient γ and the avalanche coefficient δ = (α − a) · vd, where α and a are the ionizat ion and attachment coefficients respectively and vd the drift velocity of the electrons, have been experimentally determined in a self-sustained CO2-laser system (1:1:3 mixture)

  13. Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt

    International Nuclear Information System (INIS)

    Stoeckl, C.; Boine-Frankenheim, O.; Geissel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Suess, W.; Hoffmann, D.H.H.

    1998-01-01

    One of the main objectives of the experimental plasma physics activities at the Gesellschaft fuer Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stoeckl et al. Energy loss of heavy ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Suess et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geissel et al. (orig.)

  14. Electron cooling of PB$^{54+}$ ions in the low energy ion ring (LEIR)

    CERN Document Server

    Bosser, Jacques; Chanel, M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Tranquille, G

    1998-01-01

    For the preparation of dense bunches of lead ions for the LHC, electron cooling will be essential for accumula tion in a storage ring at 4.2 MeV/u. Tests have been carried out on the LEAR ring (renamed LEIR for Low Energy Ion Ring) in order to determine the optimum parameters for a future state-of-the-art electron cooling device which would be able to cool linac pulses of lead ions in less than 100 ms. The experiments focused on the generation of a stable high intensity electron beam that is needed to free space in both longitudinal and transverse phase space for incoming pulses. Investigations on the ion beam lifetime in the presence of the electron beam and on the dependency of the cooling times on the optical settings of the storage ring will also be discussed. This paper concentrates on the cooling aspects with the multiturn injection, vacuum, and high intensity aspects discussed in a companion paper at this conference.

  15. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  16. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  17. A 2-100 keV, UHV ion impact spectrometer for ion-solid interaction studies

    International Nuclear Information System (INIS)

    Berg, J.A. Van den; Armour, D.G.; Verheij, L.K.

    1978-01-01

    A 2 to 100 keV ion accelerator has been constructed as part of an ion impact spectrometer in which a number of analytical techniques have been combined to allow a comprehensive study of the interaction of low- and medium-energy ions with solids to be carried out under carefully controlled conditions. The overall requirements of the ion beam system in terms of ion species, beam purity, uniformity, energy spread and intensity were dictated by the interest in carrying out low-energy ion scattering, Rutherford back-scattering and thermal desorption experiments. The accelerator design utilises the principle of low-energy extraction and mass analysis, and post-acceleration up to the required high energy. The ions are produced in a duoplasmatron ion source and a parallel beam is obtained after mass selection, utilising a quadrupole triplet lens in conjunction with a 60 0 stigmatic focusing magnetic analyser. Proton and rare gas ion beams of 1 to 100 nA are routinely obtained on target. The 54 cm diameter, UHV target chamber is pumped by a 270 1 s -1 turbo-molecular pump in conjunction with an in-line titanium sublimator, and typical base pressures of 1 to 4 x 10 -11 Torr are achieved. The target is supported in a precision, three-axis goniometer and the detection system, at present comprising a 90 mm mean diameter hemispherical energy analyser and channel electron multiplier, is mounted on a two-axis manipulator. Preliminary measurements using the system have employed the low-energy ion scattering technique to study the oxidation of a Ni(110) surface. (author)

  18. Secondary emission of negative ions and electrons resulting from electronic sputtering of cesium salts

    International Nuclear Information System (INIS)

    Allali, H.; Nsouli, B.; Thomas, J.P.

    1993-04-01

    Secondary ion emission of negative ions and electrons from alkali salts bombarded with high energy (9 MeV) Ar +++ is discussed. Quite different features are observed according to the nature of the salt investigated (halide or oxygenated). In the case of cesium, the electron emission from halides is characterized by intense electron showers (several hundred electrons) with narrow distributions in intensity and orientation. Conversely, for oxygenated salts, these distributions are broader, much less intense (one order of magnitude), and the ion emission exhibits an dissymmetry, which has never been observed for inorganics. This last result is interpreted in terms of radiolysis of the oxygenated salt, a process well documented for gamma-ray irradiation, but not yet reported in secondary ion emission. (author) 17 refs.; 10 figs

  19. Simulation of Coulomb interaction effects in electron sources

    International Nuclear Information System (INIS)

    Rouse, John; Zhu Xieqing; Liu Haoning; Munro, Eric

    2011-01-01

    Over many years, we have developed electron source simulation software that has been used widely in the electron optics community to aid the development of rotationally symmetric electron and ion guns. The simulation includes the modelling of cathode emission and the effects of volumetric space charge. In the present paper we describe the existing software and explain how we have extended this software to include the effects of discrete Coulomb interactions between the electrons as they travel from the cathode surface to the exit of the gun. In the paper, we will describe the numerical models we have employed, the techniques we have used to maximize the speed of the Coulomb force computation and present several illustrative examples of cases analyzed using the new software, including thermal field emitters, LaB 6 guns and flat dispenser-type cathodes.

  20. The interaction of a nanoscale coherent helium-ion probe with a crystal

    International Nuclear Information System (INIS)

    D'Alfonso, A.J.; Forbes, B.D.; Allen, L.J.

    2013-01-01

    Thickness fringing was recently observed in helium ion microscopy (HIM) when imaging magnesium oxide cubes using a 40 keV convergent probe in scanning transmission mode. Thickness fringing is also observed in electron microscopy and is due to quantum mechanical, coherent, multiple elastic scattering attenuated by inelastic phonon excitation (thermal scattering). A quantum mechanical model for elastic scattering and phonon excitation correctly models the thickness fringes formed by the helium ions. However, unlike the electron case, the signal in the diffraction plane is due mainly to the channeling of ions which have first undergone inelastic thermal scattering in the first few atomic layers so that the origin of the thickness fringes is not due to coherent interference effects. This quantum mechanical model affords insight into the interaction of a nanoscale, focused coherent ion probe with the specimen and allows us to elucidate precisely what is needed to achieve atomic resolution HIM. - Highlights: • Thickness fringing has recently been observed imaging MgO cubes using helium ion microscopy. • A quantum mechanical model for elastic scattering and phonon excitation models the fringes. • The signal is due mainly to the coherent scattering of ions after inelastic thermal scattering. • We elucidate precisely what is needed to achieve atomic resolution HIM

  1. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  2. Electron-nuclear γ transition spectrum of a nucleus in a multicharged atomic ion

    International Nuclear Information System (INIS)

    Ivanov, L.N.; Letokhov, V.S.

    1987-01-01

    The nuclear emission of absorption spectrum of an atom possesses a set of electron satelites which are due to an alternation of the state of the electron shell. It is shown that the mechanism of formation of the satellites might be different for neutral atoms and high-charge ions. In the first case (loose electron shell) a ''shaking'' of the shell resulting from the interaction between the nucleus and γ quantum is predominant. In the second case (rigid electron shell) the mechanism involves a direct interaction between the γ quantum and electrons. The second mechanism is important in the case of dipole nuclear transitions and dominates at γ quantum energies p 2λ (λ is the nuclear transition multipole order, μ p ∼ 1/2 π is the relative proton mass and z the core mass). In the spectrum of the plasma source the electron satellites corresponding to the γ quantum emission and absorption lines are not overlapped by the Doppler contour of the γ line

  3. Production processes of multiply charged ions by electron impact

    International Nuclear Information System (INIS)

    Oda, Nobuo

    1980-02-01

    First, are compared the foil or gas stripper and the ion sources utilizing electron-atom ionizing collisions, which are practically used or are under development to produce multiply charged ions. A review is made of the fundamental physical parameters such as successive ionization potentials and various ionization cross sections by electron impact, as well as the primary processes in multiply charged ion production. Multiply charged ion production processes are described for the different existing ion sources such as high temperature plasma type, ion-trapping type and discharge type. (author)

  4. Relativistic configuration-interaction calculation of the correlation energies of heliumlike ions. Revision 1

    International Nuclear Information System (INIS)

    Cheng, K.T.; Chen, M.H.; Johnson, W.R.

    1994-04-01

    A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table

  5. Fast ion beam-laser interactions

    International Nuclear Information System (INIS)

    Berry, H.G.; Young, L.; Engstroem, L.; Hardis, J.E.; Somerville, L.P.; Ray, W.J.; Kurtz, C.

    1985-01-01

    The authors are using collinear laser excitation of fast ion beams to study a number of atomic structure problems. The problems include the determination of fine and hyperfine structure in light positive and negative ions, plus measurements of absolute wavelengths of light from two-electron ions. In addition the authors intend to use a similar experimental arrangement to study excitation and decay of high Rydberg states first in the absence of fields and then in crossed electric and magnetic fields

  6. 15.0 MeV/u He2+ ion-induced low energy electrons from water vapor

    International Nuclear Information System (INIS)

    Okada, Y.; Sato, Y.; Soga, F.; Ohsawa, D.

    2005-01-01

    We present the absolute doubly differential cross sections (DDCS) of low-energy electrons and their angular distributions (20deg - 160deg ) produced in the collisions of 15.0 MeV/u He 2+ ions with water vapor. Details of the experiments by 6.0 and 10.0 MeV/u He 2+ ions were already reported in our previous paper, in which the total uncertainty (±13%) was discussed. This paper shows the absolute DDCS data (1 - 100 eV) by 15.0 MeV/u He 2+ ions, in which the cover surrounding the interaction region was changed to μ-metal from Cu, in order to suppress the residual magnetic field for measuring the low-energy electrons effectively. (author)

  7. Correlations in a partially degenerate electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The density-functional theory proves that an ion-electron mixture can be treated as a one-component liquid interacting only via a pairwise interaction in the evaluation of the ion-ion radial distribution function (RDF), and provides a set of integral equations: one is an integral equation for the ion-ion RDF and another for an effective ion-ion interaction, which depends on the ion-ion RDF. This formulation gives a set of integral equation to calculate plasma structures with combined use of the electron-electron correlations in a partially degenerate electron plasma. Therefore, it is important for this purpose to determine the electron-electron correlations at a arbitrary temperature. Here, they are calculated by the quantal version of the hypernetted chain (HNC) equation. On the basis of the jellium-vacancy model, the ionic and electronic structures of rubidium are calculated for the range from liquid metal to plasma states by increasing the temperature at the fixed density using the electron-correlation results. (author)

  8. Compton polarimetry of 6-35 keV X-rays. Influence of Breit interaction on the linear polarisation of KLL dielectronic recombination transitions in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Holger Eric

    2016-12-21

    The polarisation of X-rays emitted during K shell dielectronic recombination (DR) into highly charged ions was studied using electron beam ion traps. In the first experiment, the degree of linear polarisation of X-rays due to K shell DR transitions of highly charged krypton ions was measured with a newly developed Compton polarimeter based on SiPIN diodes. Such polarisation measurements allow a study of the population mechanism of magnetic sublevels in collisions between electrons and ions. In a second experiment, the influence of Breit interaction between electrons on the polarisation of X-rays emitted during K shell DR into highly charged xenon ions was studied. Here, polarisation measurements provide an access to the finer details of the electron-electron interaction in electron-ion collisions. Furthermore, a second Compton polarimeter based on silicon drift detectors has been developed for polarisation measurements at synchrotrons. It has been developed for X-ray polarimetry with a high energy resolution for energies between 6 keV and 35 keV. It was tested in the course of polarisation measurements at an electron beam ion trap and at a synchrotron radiation source.

  9. Electron emission from solids induced by swift heavy ions

    International Nuclear Information System (INIS)

    Xiao Guoqing

    2000-01-01

    The recent progresses in experimental and theoretical studies of the collision between swift heavy ion and solids as well as electron emission induced by swift heavy ion in solids were briefly reviewed. Three models, Coulomb explosion, thermal spike and repulsive long-lived states, for interpreting the atomic displacements stimulated by the electronic energy loss were discussed. The experimental setup and methods for measuring the electron emission from solids were described. The signification deviation from a proportionality between total electron emission yields and electronic stopping power was found. Auger-electron and convoy-electron spectra are thought to be a probe for investigating the microscopic production mechanisms of the electronic irradiation-damage. Electron temperature and track potential at the center of nuclear tracks in C and polypropylene foils induced by 5 MeV/u heavy ions, which are related to the electronic excitation density in metals and insulators respectively, were extracted by measuring the high resolution electron spectra

  10. Fluid aspects of electron streaming instability in electron-ion plasmas

    International Nuclear Information System (INIS)

    Jao, C.-S.; Hau, L.-N.

    2014-01-01

    Electrons streaming in a background electron and ion plasma may lead to the formation of electrostatic solitary wave (ESW) and hole structure which have been observed in various space plasma environments. Past studies on the formation of ESW are mostly based on the particle simulations due to the necessity of incorporating particle's trapping effects. In this study, the fluid aspects and thermodynamics of streaming instabilities in electron-ion plasmas including bi-streaming and bump-on-tail instabilities are addressed based on the comparison between fluid theory and the results from particle-in-cell simulations. The energy closure adopted in the fluid model is the polytropic law of d(pρ −γ )/dt=0 with γ being a free parameter. Two unstable modes are identified for the bump-on-tail instability and the growth rates as well as the dispersion relation of the streaming instabilities derived from the linear theory are found to be in good agreement with the particle simulations for both bi-streaming and bump-on-tail instabilities. At the nonlinear saturation, 70% of the electrons are trapped inside the potential well for the drift velocity being 20 times of the thermal velocity and the pρ −γ value is significantly increased. Effects of ion to electron mass ratio on the linear fluid theory and nonlinear simulations are also examined

  11. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society

  12. Interaction of multicharged ions with molecules (CO{sub 2}, C{sub 60}) by coincident electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. CAR-IRSAMC

    2001-07-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems {sup 18}O{sup 8+}+Ar, CO{sub 2} and C{sub 60} have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C{sub n}{sup +} fragments (n=1 to 8) produced in multiple capture processes from C{sub 60} target are given. A detailed investigation of the double capture process with CO{sub 2} molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO{sub 2}{sup 2+} molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  13. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Electron Beam and Plasma Technology, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Silze, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  14. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.

    Science.gov (United States)

    Moberlychan, Warren J

    2009-06-03

    Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.

  15. Axial ion-electron emission microscopy of IC radiation hardness

    Science.gov (United States)

    Doyle, B. L.; Vizkelethy, G.; Walsh, D. S.; Swenson, D.

    2002-05-01

    A new system for performing radiation effects microscopy (REM) has been developed at Sandia National Laboratory in Albuquerque. This system combines two entirely new concepts in accelerator physics and nuclear microscopy. A radio frequency quadrupole (RFQ) linac is used to boost the energy of ions accelerated by a conventional Tandem Van de Graaff-Pelletron to velocities of 1.9 MeV/amu. The electronic stopping power for heavy ions is near a maximum at this velocity, and their range is ˜20 μm in Si. These ions therefore represent the most ionizing form of radiation in nature, and are nearly ideal for performing single event effects testing of integrated circuits. Unfortunately, the energy definition of the RFQ-boosted ions is rather poor (˜ a few %), which makes problematic the focussing of such ions to the submicron spots required for REM. To circumvent this problem, we have invented ion electron emission microscopy (IEEM). One can perform REM with the IEEM system without focussing or scanning the ion beam. This is because the position on the sample where each ion strikes is determined by projecting ion-induced secondary electrons at high magnification onto a single electron position sensitive detector. This position signal is then correlated with each REM event. The IEEM system is now mounted along the beam line in an axial geometry so that the ions pass right through the electron detector (which is annular), and all of the electrostatic lenses used for projection. The beam then strikes the sample at normal incidence which results in maximum ion penetration and removes a parallax problem experienced in an earlier system. Details of both the RFQ-booster and the new axial IEEM system are given together with some of the initial results of performing REM on Sandia-manufactured radiation hardened integrated circuits.

  16. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    Science.gov (United States)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  17. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  18. Bursts of electron waves modulated by oblique ion waves

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1984-01-01

    Experimental evidence is presented which shows small packets of electron plasma waves modulated by large amplitude obliquely propagating non-linear ion plasma waves. Very often the whole system is modulated by an oscillation near the ion gyro frequency or its harmonics. The ion waves seem to be similar to those measured in the current carrying auroral plasma. These results suggest that the generation of ion and electron waves in the auroral plasma may be correlated

  19. Electron-impact ionization of multicharged ions at ORNL: 1985--1992

    International Nuclear Information System (INIS)

    Gregory, D.C.; Bannister, M.E.

    1994-07-01

    Absolute cross sections are presented in graphs and tables for single ionization of forty-one ions, multiple ionization of four ions, and for dissociation and ionization of two molecular ions by electron impact. This memo is the third in a series of manuscripts summarizing previously published as well as unpublished ionization cross section measurements at ORNL; contents of the two previous memos are also referenced in this work. All work tabulated in this memo involved ion beams generated in the ORNL-ECR ion source and utilized the ORNL electron-ion crossed beams apparatus. Target ions range from atomic number Z = 8 (oxygen) to Z = 92 (uranium) in initial charge states from +1 to +16. Electron impact energies typically range from threshold to 1500 eV

  20. Interplay between electron-phonon and electron-electron interactions

    International Nuclear Information System (INIS)

    Roesch, O.; Gunnarsson, O.; Han, J.E.; Crespi, V.H.

    2005-01-01

    We discuss the interplay between electron-electron and electron-phonon interactions for alkali-doped fullerides and high temperature superconductors. Due to the similarity of the electron and phonon energy scales, retardation effects are small for fullerides. This raises questions about the origin of superconductivity, since retardation effects are believed to be crucial for reducing effects of the Coulomb repulsion in conventional superconductors. We demonstrate that by treating the electron-electron and electron-phonon interactions on an equal footing, superconductivity can be understood in terms of a local pairing. The Jahn-Teller character of the important phonons in fullerides plays a crucial role for this result. To describe effects of phonons in cuprates, we derive a t-J model with phonons from the three-band model. Using exact diagonalization for small clusters, we find that the anomalous softening of the half-breathing phonon as well as its doping dependence can be explained. By comparing the solution of the t-J model with the Hartree-Fock approximation for the three-band model, we address results obtained in the local-density approximation for cuprates. We find that genuine many-body results, due to the interplay between the electron-electron and electron-phonon interactions, play an important role for the the results in the t-J model. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Dust ion-acoustic shock waves in magnetized pair-ion plasma with kappa distributed electrons

    Science.gov (United States)

    Kaur, B.; Singh, M.; Saini, N. S.

    2018-01-01

    We have performed a theoretical and numerical analysis of the three dimensional dynamics of nonlinear dust ion-acoustic shock waves (DIASWs) in a magnetized plasma, consisting of positive and negative ion fluids, kappa distributed electrons, immobile dust particulates along with positive and negative ion kinematic viscosity. By employing the reductive perturbation technique, we have derived the nonlinear Zakharov-Kuznetsov-Burgers (ZKB) equation, in which the nonlinear forces are balanced by dissipative forces (associated with kinematic viscosity). It is observed that the characteristics of DIASWs are significantly affected by superthermality of electrons, magnetic field strength, direction cosines, dust concentration, positive to negative ions mass ratio and viscosity of positive and negative ions.

  2. Electronic energy loss of the latent track in heavy ion-irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Youmei; Liu Jie; Zhang Chonghong; Wang Zhiguang; Jin Yunfan; Duan Jinglai; Song Yin

    2005-01-01

    In the interaction process of a swift heavy ion (SHI) and polymer, a latent track with radius of several nanometers appears near the ion trajectory due to the dense ionization and excitation. To describe the role of electronic energy loss (dE/dX) e , multi-layer stacks (with different dE/dX) of polyimide (PI) films were irradiated by different SHIs (1.158 GeV Fe 56 and 1.755 GeV Xe 136 ) under vacuum at room temperature. Chemical changes of modified PI films were studied by Fourier Transform Infrared (FTIR) spectroscopy. The main feature of SHI irradiation is the degradation of the functional group and creation of alkyne. The chain disruption rate of PI was investigated in the fluence range from 1 x 10 11 to 6 x 10 12 ions/cm 2 and a wider energy stopping power range (2.2 to 5.2 keV/nm for Fe 56 ions and 8.6 to 11.3 keV/nm for Xe 136 ions). Alkyne formation was observed over the electronic energy loss range of interest. Assuming the saturated track model (the damage process only occur in a cylinder of area σ), the mean degradation and alkyne formation radii in tracks were deduced for Fe and Xe ion irradiation, respectively. The results were validated by the thermal spike model and the threshold electronic energy loss of track formation S et in PI was deduced. The analysis of the irradiated PI films shows that the predictions of the thermal spike model are in qualitative agreement with the curve shape of experimental results. (authors)

  3. Glancing-angle scattering of fast ions at crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mannami, Michihiko; Narumi, Kazumasa; Katoh, Humiya; Kimura, Kenji [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    Glancing angle scattering of fast ions from a single crystal surface is a novel technique to study ion-surface interaction. Results of recent studies of ion-surface interaction are reviewed for ions with velocities faster than the Fermi velocity of solid. For the ions with velocities less than the Fermi velocity of target valence electrons the ion-surface interaction shows a new aspect where only the valence electrons of target solid participate in the stopping processes. It will show that the position-dependent stopping power of a surface for these ions governed by the elastic collisions of valence electrons and the ions. A method is proposed from this position-dependent stopping power to derived the electron density distribution averaged over the plane parallel to the surface. (author)

  4. Electron capture by highly charged low-velocity ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Dubois, R.; Justiniano, E.; Gray, T.J.; Can, C.

    1982-01-01

    This paper describes the use of a fast heavy ion beam to produce, by bombardment of gaseous targets, highly-charged low-velocity recoil ions, and the use of these secondary ions in turn as projectiles in studies of electron capture and ionization in low-energy collision systems. The interest in collisions involving low-energy highly-charged projectiles comes both from the somewhat simplifying aspects of the physics which attend the long-range capture and from applications to fusion plasmas, astrophysics and more speculative technology such as the production of X-ray lasers. The ions of interest in such applications should have both electronic excitation and center-of-mass energies in the keV range and cannot be produced by simply stripping fast heavy ion beams. Several novel types of ion source have been developed to produce low-energy highly-charged ions, of which the secondary ion recoil source discussed in this paper is one. (Auth.)

  5. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  6. An ion cooling and state characterization apparatus for studies of molecular ion dissociative interactions

    International Nuclear Information System (INIS)

    Deng, Shihu; Vane, C R; Bannister, M E; Havener, C C; Meyer, F W; Krause, H F; Hettich, R L; Goeringer, D E; Van Berkel, G J

    2009-01-01

    An experimental capability is being developed at the Oak Ridge National Laboratory Multi-Charged Ion Research Facility (ORNL MIRF) to enable stored cooling and state characterization of molecular ions of essentially any mass. Ions selected from a variety of available sources are injected from the side into a 1.5 meter long electrostatic mirror trap, where excited internal states are cooled by radiative cooling. An electron beam target located near the middle of the ion-trap region, coupled with neutral fragment imaging detector systems at each end of the trap, permits state-specific studies of electron-molecular ion dissociation.

  7. Electron-electron interactions in disordered systems

    CERN Document Server

    Efros, AL

    1985-01-01

    ``Electron-Electron Interactions in Disordered Systems'' deals with the interplay of disorder and the Coulomb interaction. Prominent experts give state-of-the-art reviews of the theoretical and experimental work in this field and make it clear that the interplay of the two effects is essential, especially in low-dimensional systems.

  8. Electron inertia effects for an electron fluid model by the applied-B ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A V; Levchenko, S V [Kurchatov Institute, Moscow (Russian Federation). Nuclear Fusion Institute

    1997-12-31

    Numerical calculations within the framework of the one-dimensional vortex-like electron fluid model in applied-B ion diodes, taking account the electron inertia effects, are presented. The existence of the additional relation between the magnetic field and the electric potential offers an opportunity to reduce the ion diode problem to the system of the algebraic equations for the constants introduced. The ion current density in an ion diode is determined only by the magnetic flux cut out by the virtual cathode. As an illustration, the ion diode impedance for the KALIF device was calculated. (author). 2 figs., 6 refs.

  9. The structural design and the electron optics of a hybrid electron-ion gun

    International Nuclear Information System (INIS)

    Bas, E.B.; Gisler, E.; Stucki, F.

    1984-01-01

    This paper describes a new kind of a particle gun called the hybrid gun. It is able to deliver a finely focused electron or ion beam simply by reversing the polarity of the acceleration voltage. The detailed design features of the gun are given and the electron-ion optical properties are discussed. (author)

  10. Helium like impurity in CdTe/ Cd1-xMnxTe semimagnetic semiconductors under magnetic field: Dimensionality effect on electron - Electron interaction

    Science.gov (United States)

    Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram

    2017-11-01

    We study the effect of magnetic field on the Coulomb interaction between the two electrons confined inside a CdTe/Cd1-xMnxTe Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD) for the composition of Mn2+ ion, x = 0.3. The two particle Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the applied magnetic field tremendously alters the Coulomb interaction of the electrons and their binding to the donor impurity by shrinking the spatial extension of the two particle wavefunction and leads to tunnelling through the barrier. The qualitative phenomenon involved in such variation of electron - electron interaction with the magnetic field has also been explained through the 3D - plot of the probability density function.

  11. Electron-cyclotron-resonance ion sources (review)

    International Nuclear Information System (INIS)

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs

  12. Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.

    2009-01-01

    Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.

  13. Electronic spectral study of interaction of electron donor – acceptor dyes in the ground and excited state with a metal ion. Effect of molecular structure of the dye

    International Nuclear Information System (INIS)

    Sardar, Sanjib Kr; Mandal, Prasun K.; Bagchi, Sanjib

    2014-01-01

    Interaction of manganese (II) ion with electron donor (D)–acceptor (A) dyes having symmetric D–A–D configuration of chromophores (ketocyanine dye) and the corresponding parent merocyanines (D–A configuration) in acetonitrile has been compared by monitoring the electronic absorption, and steady state and time resolved fluorescence characteristics of the dyes. Absorption spectral studies point to the formation of a 1:1 metal ion–dye (S 0 -state) complex. Equilibrium constant (K 0 ) and other thermodynamic parameters for complex formation have been determined for all the systems. Symmetric ketocyanine dyes (D–A–D) form stronger complex than the corresponding dye with D–A configuration. Quenching of fluorescence is caused due to complex formation with the cation. However, for very low concentration of salts, where complex formation is insignificant, an enhancement of fluorescence intensity takes place due to addition of salt. The absorption band of the dye undergoes a slight blue shift in the same concentration range of the metal ion. Fluorescence life time of the excited state also increases with an increase in salt concentration in that concentration range. Results have been explained in terms of formation of a weak association complex where one or more cations replace equivalent solvent molecules in the cybotatic region around the dye. The binding constant of the association complex involving cation and the dye (S 1 -state) has been determined. While the value of the binding constant is higher for a symmetric D–A–D dye relative to that for the corresponding dye with D–A configuration, the extent of fluorescence enhancement for the latter is larger. Values of decay constant for the different photophysical processes have been calculated. Formation of association complex in the S 1 -state is characterised by a slower nonradiative decay of S 1 -state of the dyes. -- Highlights: • A ketocyanine dye forms 1:1 complex with metal ions. • Slight

  14. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  15. Collision strengths for the excitation of lithium- and boron-like ions by electron impact

    International Nuclear Information System (INIS)

    Goett, S.J.

    1983-01-01

    The theory of collision strengths of highly charged ions is presented in terms of the R-matrix formalism by utilizing time-dependent perturbation theory. This theory is then applied to the general case of an ion with three valence electrons. The theory is general enough to admit the possiblity of three equivalent electrons. The effects of configuration interaction and intermediate coupling are incorporated through the mixing coefficients calculated by diagonalizing the perturbation matrix. This matrix is formed by taking into account the electron-electron electrostatic interaction as well as all first order relativistic corrections. The dipole radiative line strengths are also calculated using these mix coefficients. The line strengths are needed for the Coulomb-Bethe approximation which estimates the contributions to the collision strengths from large values of the impact electron's orbital angular momentum. All the above quantities are calculated in both the LS and jj coupling schemes. This dual calculation provides useful information about the mixing of the states present, as well as serving as a valuable check on the development of the theory and the coding of the computer programs. An application is made to the calculation of transition energies, line strengths and collision strengths of transitions from all lower states with a configuration of 1s 2 2I to all upper states with a configuraiton of 1s2I/sub a/'2I/sub b/'

  16. Sensitivity of Electron Transfer Mediated Decay to Ion Pairing.

    Science.gov (United States)

    Pohl, Marvin N; Richter, Clemens; Lugovoy, Evgeny; Seidel, Robert; Slavíček, Petr; Aziz, Emad F; Abel, Bernd; Winter, Bernd; Hergenhahn, Uwe

    2017-08-17

    Ion pairing in electrolyte solutions remains a topic of discussion despite a long history of research. Very recently, nearest-neighbor mediated electronic de-excitation processes of core hole vacancies (electron transfer mediated decay, ETMD) were proposed to carry a spectral fingerprint of local solvation structure and in particular of contact ion pairs. Here, for the first time, we apply electron-electron coincidence detection to a liquid microjet, and record ETMD spectra of Li 1s vacancies in aqueous solutions of lithium chloride (LiCl) in direct comparison to lithium acetate (LiOAc). A change in the ETMD spectrum dependent on the electrolyte anion identity is observed for 4.5 M salt concentration. We discuss these findings within the framework of the formation and presence of contact ion pairs and the unique sensitivity of ETMD spectroscopy to ion pairing.

  17. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  18. Enhanced electron/fuel-ion equilibration through impurity ions: Studies applicable to NIF and Omega

    Science.gov (United States)

    Petrasso, R. D.; Sio, H.; Kabadi, N.; Lahmann, B.; Simpson, R.; Parker, C.; Frenje, J.; Gatu Johnson, M.; Li, C. K.; Seguin, F. H.; Rinderknecht, H.; Casey, D.; Grabowski, P.; Graziani, F.; Taitano, W.; Le, A.; Chacon, L.; Hoffman, N.; Kagan, G.; Simakov, A.; Zylstra, A.; Rosenberg, M.; Betti, R.; Srinivasan, B.; Mancini, R.

    2017-10-01

    In shock-driven exploding-pushers, a platform used extensively to study multi-species and kinetic effects, electrons and fuel ions are far out of equilibrium, as reflected by very different temperatures. However, impurity ions, even in small quantities, can couple effectively to the electrons, because of a Z2 dependence, and in turn, impurity ions can then strongly couple to the fuel ions. Through this mechanism, electrons and fuel-ions can equilibrate much faster than they otherwise would. This is a quantitative issue, depending upon the amount and Z of the impurity. For NIF and Omega, we consider the role of this process. Coupled non-linear equations, reflecting the temperatures of the three species, are solved for a range of conditions. Consideration is also given to ablatively driven implosions, since impurities can similarly affect the equilibration. This work was supported in part by DOE/NNSA DE-NA0002949 and DE-NA0002726.

  19. Fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons

    International Nuclear Information System (INIS)

    Sabry, R.; Shukla, P. K.; Moslem, W. M.

    2009-01-01

    Properties of fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive the energy integral equation with a new Sagdeev potential. The latter is analyzed to examine the existence regions of the solitary pulses. It is found that the solitary excitations strongly depend on the mass and density ratios of the positive and negative ions as well as the nonthermal electron parameter. Numerical solution of the energy integral equation clears that both positive and negative potentials exist together. It is found that faster solitary pulses are taller and narrower. Furthermore, increasing the electron nonthermality parameter (negative-to-positive ions density ratio) decreases (increases) the localized excitation amplitude but increases (decreases) the pulse width. The present model is used to investigate the solitary excitations in the (H + ,O 2 - ) and (H + ,H - ) plasmas, where they are presented in the D- and F-regions of the Earth's ionosphere. This investigation should be helpful in understanding the salient features of the fully nonlinear ion-acoustic solitary waves in space and in laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.

  20. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  1. Electron: Cluster interactions

    International Nuclear Information System (INIS)

    Scheidemann, A.A.; Knight, W.D.

    1994-02-01

    Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E ∼ 0.1 to E ∼ 6 eV. The investigation focused on the closed shell clusters Na 8 , Na 20 , Na 40 . The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size

  2. Electron detachment in ion-atom collisions

    International Nuclear Information System (INIS)

    Vreugd, C. de.

    1980-01-01

    The electron detachment process that occurs in negative ion-atom collisions is investigated. Differential cross sections were measured for the collisions of F - , Cl - , Br - , I - on He, Ne, Ar, Kr, Xe, Na and K. Electron energy distributions were obtained for some of the systems. (Auth.)

  3. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  4. A new approach to nuclear microscopy: The ion-electron emission microscope

    International Nuclear Information System (INIS)

    Doyle, B.L.; Vizkelethy, G.; Walsh, D.S.; Senftinger, B.; Mellon, M.

    1998-01-01

    A new multidimensional high lateral resolution ion beam analysis technique, Ion-Electron Emission Microscopy or IEEM is described. Using MeV energy ions, IEEM is shown to be capable of Ion Beam Induced Charge Collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IIEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion

  5. Ion accumulation in an electron plasma confined on magnetic surfaces

    International Nuclear Information System (INIS)

    Berkery, John W.; Marksteiner, Quinn R.; Pedersen, Thomas Sunn; Kremer, Jason P.

    2007-01-01

    Accumulation of ions can alter and may destabilize the equilibrium of an electron plasma confined on magnetic surfaces. An analysis of ion sources and ion content in the Columbia Non-neutral Torus (CNT) [T.S. Pedersen, J.P. Kremer, R.G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgreen, and X. Sarasola, Fusion Sci. Technol. 50, 372 (2006)] is presented. In CNT ions are created preferentially at locations of high electron temperature, near the outer magnetic surfaces. A volumetric integral of n e ν iz gives an ion creation rate of 2.8x10 11 ions/s. This rate of accumulation would cause neutralization of a plasma with 10 11 electrons in about half a second. This is not observed experimentally, however, because currently in CNT ions are lost through recombination on insulated rods. From a steady-state balance between the calculated ion creation and loss rates, the equilibrium ion density in a 2x10 -8 Torr neutral pressure, 7.5x10 11 m -3 electron density plasma in CNT is calculated to be n i =6.2x10 9 m -3 , or 0.8%. The ion density is experimentally measured through the measurement of the ion saturation current on a large area probe to be about 6.0x10 9 m -3 for these plasmas, which is in good agreement with the predicted value

  6. The role of the ion-molecule and molecule-molecule interactions in the formation of the two-ion average force interaction potential

    CERN Document Server

    Ajrian, E A; Sidorenko, S N

    2002-01-01

    The effect of the ion-molecule and intermolecular interactions on the formation of inter-ion average force potentials is investigated within the framework of a classical ion-dipole model of electrolyte solutions. These potentials are shown to possess the Coulomb asymptotics at large distances while in the region of mean distances they reveal creation and disintegration of solvent-shared ion pairs. The calculation results provide a qualitatively authentic physical picture which is experimentally observed in strong electrolytes solutions. In particular, an increased interaction between an ion and a molecule enhances formation of ion pairs in which the ions are separated by one solvent molecule

  7. Multiple-electron processes in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs

  8. Ion-molecule interactions in crossed-beams

    International Nuclear Information System (INIS)

    Hansen, S.G.

    1980-09-01

    Interactions of the ions N + , F + , and CO 2 + with H 2 and/or its isotopes were examined using the crossed-beam technique in the low ( + ( 3 P) + H 2 → NH + + H, complex formation dominates up to 1.9 eV and a substantial interaction occurs between all collision partners up to 3.6 eV. The distribution of N + scattered nonreactively from H 2 also showed a long-lived complex channel below 1.9 eV. The reaction F + ( 3 P) + H 2 →FH + + H proceeded by a direct reaction mechanism at 0.20 to 1.07 eV. The reaction CO 2 + + D 2 → DCO 2 + + D gives asymmetric product distributions at 0.27 eV and above, indicating a direct reaction mechanism. Results indicated that there are probably barriers in the exit channels for DCO 2 + , DCO + , and D 2 O + products. The electronic state distributions of the N + , F + , and CO 2 + beams was investigated using beam attenuation and total luminescence techniques

  9. TARGET EXCITATION IN BARE ION XE/AR COLLISIONS STUDIED BY ELECTRON TARGET ION COINCIDENCES

    NARCIS (Netherlands)

    DENIJS, G; HOEKSTRA, R; MORGENSTERN, R

    We present electron spectra resulting from collisions of bare ions N-15(7+) and C-13(6+) on Ar and the charge state distribution of target ions resulting from C-13(6+)-Xe collisions. From both type of experiments we find evidence that electron capture accompanied by target excitation is an important

  10. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    Science.gov (United States)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  11. Laser-induced electron--ion recombination used to study enhanced spontaneous recombination during electron cooling

    International Nuclear Information System (INIS)

    Schramm, U.; Wolf, A.; Schuess ler, T.; Habs, D.; Schwalm, D.; Uwira, O.; Linkemann, J.; Mueller, A.

    1997-01-01

    Spontaneous recombination of highly charged ions with free electrons in merged velocity matched electron and ion beams has been observed in earlier experiments to occur at rates significantly higher than predicted by theoretical estimates. To study this enhanced spontaneous recombination, laser induced recombination spectra were measured both in velocity matched beams and in beams with well defined relative velocities, corresponding to relative electron-ion detuning energies ranging from 1 meV up to 6.5 meV where the spontaneous recombination enhancement was found to be strongly reduced. Based on a comparison with simplified calculations, the development of the recombination spectra for decreasing detuning energies indicates additional contributions at matched velocities which could be related to the energy distribution of electrons causing the spontaneous recombination rate enhancement

  12. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  13. Relativistic nonlinear waves of cyclotron in electron and electron-ion plasmas

    International Nuclear Information System (INIS)

    Bruno, R.

    1981-12-01

    Dispersion relations for electron-cyclotron and ion-cyclotron waves are examined in two models of plasmas, the first propagating in fluent electronic plasmas (''streaming'') as well as in fluent electron-ionic plasmas, and the last in fluent electron-ionic plasmas. The identification of the propagation modes is realized with the aid of a special technique of polinomial expantion of the dispersion relation in the limit of large frequencies and short wavelenghts. The analisys so developed on these dispersion relations for fluent plasmas show that: (i) the wave amplitudes are frequency dependent; (ii) the ''resonances'' frequencies of the respective estationary plasmas must be re-examined with the relations between wave amplitudes and the propagation frequencies near these frequencies; (iii) the electric field amplitudes for the non-linear waves of electron-cyclotron and ion-cyclotron go to zero in the limits of the respective cyclotron frequencies in both fluent plasma models. (M.W.O.) [pt

  14. Particle emission induced by the interaction of highly charged slow Xe-ions with a SiO2 surface

    International Nuclear Information System (INIS)

    Schiwietz, G.; Skogvall, B.; Schneider, D.; Clark, M.; DeWitt, D.; McDonald, J.

    1991-01-01

    Sputtering of surface atoms by low energy (a few keV) heavy ions is a commonly used technique in material science and applied physics. In general, sputtering occurs via nuclear energy transfer processes and is determined mainly by the atom-atom interaction potentials. In the energy range of interest these potentials depend only slightly on the charge state of one collision partner if the other is neutral. The development of new ion-sources, however, allows for the use of ions with charged states of q > 50. For these highly charged ions it is conceivable that electronic processes come into play as well. If, for example, the density of charged surface atoms exceeds a certain limit, then particle emission can occur via the electrostatic repulsion of target atoms, the so-called Coulomb explosion. Indications for such electronic effects have been found in a few investigations of ion-induced sputtering Si (q q+ ). However, the order of magnitude of this effect is not clear until now. In this work we present preliminary data on sputtering, ion backscattering, electron and photon emission from SiO 2 surface induced by incident Xe ions of very high charge states (q=30--50). The experiment was performed at the electron beam ion trap (EBIT) of the Lawrence Livermore National Laboratory using a time-of-flight (TOF) ion analyzer-system from the Hahn-Meitner-Institute, Berlin

  15. Structure of very heavy few-electron ions - new results from the heavy ion storage ring, ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Bosch, F.; Kandler, T.

    1993-08-01

    The heavy ion synchrotron/storage ring facility at GSI, SIS/ESR, provides intense beams of cooled, highly-charged ions up to naked uranium (U 92+ ). By electron capture during ion-atom collisions in the gas target of the ESR or by recombination at ion-electron encounters in the ''electron cooler'' excited states are populated. The detailed structure of very heavy one-, two- and three-electron ions is studied. The different mechanisms leading to the excited states are described, as well as the new experimental tools now available for a detailed spectroscopy of these interesting systems. Special emphasis is given to X-ray transitions to the groundstates in H- and He-like systems. For the heaviest species the groundstate Lambshift can now be probed on an accuracy level of better than 10% using solid-state X-ray detectors. Applying dispersive X-ray analyzing techniques, this accuracy will certainly be improved in future. However, utilizing the dielectronic resonances for a spectroscopy, the structure in Li-like heavy ions can already be probed now on the sub eV level. (orig.)

  16. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1998-01-01

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ , and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ , and U 34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ , and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  17. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    1999-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  18. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    2001-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  19. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  20. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  1. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    Science.gov (United States)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  2. Construction of ion accelerator for ion-surface interaction research

    International Nuclear Information System (INIS)

    Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho

    1977-09-01

    A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)

  3. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  4. The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zare, S.; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir; Anvari, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Yazdani, E. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2015-04-14

    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.

  5. Simultaneous electron capture and excitation in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Graham, W.G.; Clark, M.; Shafroth, S.M.; Johnson, B.M.; Jones, K.; Meron, M.

    1982-01-01

    A review of recent efforts to observe simultaneous electron capture-and-K-shell excitation in ion-atom collisions is presented. This process which has been referred to as resonant-transfer-and-excitation (RTE), is qualitatively analogous to dielectronic recombination (inverse Auger transition) in free-electron-ion collisions, and, hence, is expected to be resonant. Experimentally, events having the correct signature for simultaneous capture-and-excitation are isolated by detecting projectile K x rays in coincidence with ions which capture a single electron. In a recent experiment involving 70-160 MeV S 13+ ions incident on Ar, a maximum was observed in the yield of projectile K x rays associated with electron capture. This maximum is attributed to simultaneous capture - and excitation. The position (120 MeV) and width (60 MeV) of the observed maximum are in good agreement with theoretical calculations. The data indicate that RTE is an important mechanism for inner-shell vacancy production in the energy range studied

  6. Fragmentation of cluster ions produced by electron impact ionization

    International Nuclear Information System (INIS)

    Parajuli, R.

    2001-12-01

    By studying fragmentation of dimer and cluster ions produced by electron impact ionization of a neutral cluster beam, it is possible to elucidate structure, stability and energetics of these species and the dynamics of the corresponding decay reactions. Fragmentation of carbon cluster ions formed from C 6 0 fullerenes, rare gas cluster ions and dimer ions and simple molecular cluster ions (oxygen and nitrogen) and dimer ions have been studied in this thesis using a high resolution two sector field mass spectrometer of reversed geometry and a NIER type electron impact ion source. Spontaneous decay reactions of triply and quadruply charged C 4 0 z + and C 4 1 z + cluster ions which are formed from C 6 0 fullerenes by electron impact ionization have been analyzed. A new but very weak decay reaction for the even-sized carbon clusters ions is observed, namely loss of C 3 . The odd-sized clusters ions preferentially decay by loss of carbon atoms and, to a lesser degree, trimers. A weak signal due to C 2 loss is observed for C 4 1 3 + ion. These decay channels are discussed in terms of the geometric structure of these metastable, relatively cold cluster ions. Measurements on metastable fragmentation of mass selected rare gas cluster ions (Ne, Ar, Kr) which are produced by electron impact ionization of a neutral rare gas cluster beam have been carried out. From the shape of the fragment ion peaks (MIKE scan technique) information about the distribution of kinetic energy that is released in the decay reaction can be deduced. In this study, the peak shape observed for cluster ions with sizes larger than five is Gaussian and thus from the peak width the mean kinetic energy release of the corresponding decay reactions can be calculated. Using finite heat bath theory, the binding energies of the decaying cluster ions are calculated from these data and have been compared to data in the literature where available. In addition to the decay reactions of cluster ions the metastable

  7. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  8. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    Science.gov (United States)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  9. Ion and electron swarm studies of relevance to plasma processing: positive ion-molecule and electron-molecule studies of SF6 and derivatives

    International Nuclear Information System (INIS)

    Atterbury, C.; Kennedy, R.A.; Critchley, A.D.J.; Mayhew, C.A.

    2002-01-01

    Many sequential and parallel chemical reactions involving charged species occur in a plasma. Data needed to model plasma's chemical and physical environment includes cross-section, rate coefficients, and product ion distribution of electron-molecule and ion-molecule processes. Such reactions are studied by our group away from the complexity of the plasma environment, with experimental techniques that allow us to concentrate on a single process, where usually only one or two species are involved. A molecule commonly used in plasma etching applications is SF 6 1,2 . We have performed a series of positive ion-molecule and electron attachment studies on SF 6 and related molecules, including SeF 6 , TeF 6 (i.e. XF 6 molecules), SF 5 CF 3 and SF 5 Cl (i.e. SF 5 X molecules) 3- (. The studies of ion reactions with and electron attachment to SF 6 and physically similar molecules are of value when seeking to understand the ion and electron chemistry occurring in SF 6 containing plasma. The result of these studies are presented in this poster. Ion-molecule reactions. Rate coefficients and ion product branching ratios have been determined with the Selected Ion Flow Tube (SIFT) at room temperature (300 K) for reactions of SF 5 X with the following twenty-two cations; Ne + , F + , Ar + , N 2 + , N + , CO + , CO 2 + , O + , N 2 O + , O 2 + , SF 4 + , CF 2 + , SF + , SF 2 + , NO 2 + , SF 5 + , NO + , CF + , CF 3 + , SF 3 + , and H 3 O + (listed in order of decreasing recombination energy). SF 2 + , NO 2 + , NO + , SF 3 + , and H 3 O + are found to be unreacted with both SF 5 CF 3 and SF 5 Cl. The majority of the other reactions proceed with rate coefficients that are close to the capture value. Those found to occur at rates significantly less than the capture mechanism value re the reactions of O 2 + , SF + , SF 5 + , and CF 3 + with SF 5 CF 3 , and SF 4 + and SF 5 + with SF 5 Cl. Several distinction processes are observed among the large number of reactions studied, including

  10. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  11. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  12. Electron loss mechanisms in collisions of He+ ions with various targets

    International Nuclear Information System (INIS)

    Sant'Anna, M.M.; Melo, W.S.; Santos, A.C.F.; Sigaud, G.M.; Montenegro, E.C.

    1995-01-01

    The electron loss of high-velocity ions by neutral atoms is due to two different and competing mechanisms. In the screening mode, the electron loss is basically due to the nucleus-electron interaction, with the target electrons assuming the passive role of decreasing the Coulomb field of the target nucleus in the vicinity of the projectile active electron. For a fixed projectile velocity, this contribution is expected to give a non-linear dependence with the target atomic number Z 2 due to the incomplete screening at the impact parameter region where the projectile ionization is more likely to occur. Within first-order theories, if the screening is completely absent, the expected dependence would be Z 2 2 ; with screening, it should scale between Z 2 and Z 2 2 . On the other hand, in the antiscreening mode, where the loss is due to the action of the target electrons and the target nucleus plays no active role, the expected dependence would be approximately linear with Z 2 . Thus, for first-order theories, the expected overall dependence with Z 2 would be dominated by the screening mode as Z 2 increases. We have measured total electron-loss cross sections of He + ions impinging upon He, Ne, Ar, Kr and Xe targets in the energy range from 1.0 to 4.0 MeV to complement previous measurements and the results point towards a much smaller contribution from the screening mode than expected from first-order theories, possibly due to a saturation effect manifested only in the screening channel. (orig.)

  13. Swift-heavy ion track electronics (SITE)

    International Nuclear Information System (INIS)

    Fink, D.; Chadderton, L.T.; Hoppe, K.; Fahrner, W.R.; Chandra, A.; Kiv, A.

    2007-01-01

    An overview about the state-of-art of the development of a new type of nanoelectronics based on swift-heavy ions is given. Polymeric as well as silicon-based substrates have been used, and both latent and etched ion tracks play a role. Nowadays the interest has shifted from simple scaling-down of capacitors, magnets, transformers, diodes, transistors, etc. towards new types of ion track-based structures hitherto unknown in electronics. These novel structures, denoted by the acronyms 'TEAMS' (tunable electrically anisotropic material on semiconductor) and 'TEMPOS' (tunable electronic material with pores in oxide on semiconductor), may exhibit properties of tunable resistors, capacitors, diodes, sensors and transistors. Their general current/voltage characteristics are outlined. As these structures are often influenced by ambient physical or chemical parameters they also act as sensors. A peculiarity of these structures is the occurrence of negative differential resistances (NDRs) which makes them feasible for applications in tunable flip-flops, amplifiers and oscillators

  14. Swift-heavy ion track electronics (SITE)

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [Hahn-Meitner-Institute Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)]. E-mail: fink@hmi.de; Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, G.P.O. Box 4, ACT (Australia); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Fahrner, W.R. [Chair of Electronic Devices, Inst. of Electrotechnique, Fernuniversitaet, Hagen (Germany); Chandra, A. [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Kiv, A. [Ben Gurion University of the Negev, Israel, P.O. Box 653, Beer-Sheva, 84105 (Israel)

    2007-08-15

    An overview about the state-of-art of the development of a new type of nanoelectronics based on swift-heavy ions is given. Polymeric as well as silicon-based substrates have been used, and both latent and etched ion tracks play a role. Nowadays the interest has shifted from simple scaling-down of capacitors, magnets, transformers, diodes, transistors, etc. towards new types of ion track-based structures hitherto unknown in electronics. These novel structures, denoted by the acronyms 'TEAMS' (tunable electrically anisotropic material on semiconductor) and 'TEMPOS' (tunable electronic material with pores in oxide on semiconductor), may exhibit properties of tunable resistors, capacitors, diodes, sensors and transistors. Their general current/voltage characteristics are outlined. As these structures are often influenced by ambient physical or chemical parameters they also act as sensors. A peculiarity of these structures is the occurrence of negative differential resistances (NDRs) which makes them feasible for applications in tunable flip-flops, amplifiers and oscillators.

  15. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    Science.gov (United States)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  16. Electron-muon correlation as a new probe of strongly interacting quark-gluon plasma

    International Nuclear Information System (INIS)

    Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi

    2009-01-01

    As a new and clean probe to the strongly interacting quark-gluon plasma (sQGP), we propose an azimuthal correlation of an electron and a muon that originate from the semileptonic decay of charm and bottom quarks. By solving the Langevin equation for the heavy quarks under the hydrodynamic evolution of the hot plasma, we show that substantial quenching of the away-side peak in the electron-muon correlation can be seen if the sQGP drag force acting on heavy quarks is large enough as suggested from the gauge/gravity correspondence. The effect could be detected in high-energy heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  17. Fundamentals of ion-solid interaction. A compact introduction

    International Nuclear Information System (INIS)

    Moeller, Wolfhard

    2017-01-01

    Since Rutherford's famous paper which first described the scattering of α-particles in matter, the field of ion-solid interaction has matured by now during one entire century. First theoretical concepts addressing particle penetration of solids were given by Thomson and Bohr. Quantum theory entered the field in treatments of ion stopping by Born and Bethe. Still on classical grounds, transport theory was first introduced in a paper on multiple scattering by Bothe. The discovery of nuclear fission launched theoretical studies by Bohr on the scattering and stopping of fission products. A further milestone in the understanding of particle penetration phenomena is the 1948 paper by Bohr. On this basis, the theoretical understanding was enhanced in the early 1960's in particular by a series of papers by Lindhard. Simultaneously, an increasing amount of experimental studies on ion stopping and scattering were launched in connection with the development of ion acceleration devices and corresponding equipment for particle detection. During this period, also first computer simulation studies came up which later proved to be an utmost efficient tool for the description of collisional phenomena in ion-solid interaction. The relevance for numerous applications became evident, such as for the compositional and structural analysis of thin films and near-surface layers, for semiconductor technology, and nuclear fission and fusion technology. This caused increasing interest not only in the penetration and the scattering of the impinging ions, but also in the modification of the irradiated material due to ion implantation, radiation damage and surface erosion by sputtering. Consequently, ion-solid interaction established around 1970 internationally as a quickly expanding field at the intersection of solid-state physics and nuclear physics. Numerous reviews and textbooks are available which cover the fundamentals of ion-solid interaction. Torrens reviewed the knowledge about

  18. Fundamentals of ion-solid interaction. A compact introduction

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Wolfhard [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Ion Beam Physics and Materials Research

    2017-09-01

    Since Rutherford's famous paper which first described the scattering of α-particles in matter, the field of ion-solid interaction has matured by now during one entire century. First theoretical concepts addressing particle penetration of solids were given by Thomson and Bohr. Quantum theory entered the field in treatments of ion stopping by Born and Bethe. Still on classical grounds, transport theory was first introduced in a paper on multiple scattering by Bothe. The discovery of nuclear fission launched theoretical studies by Bohr on the scattering and stopping of fission products. A further milestone in the understanding of particle penetration phenomena is the 1948 paper by Bohr. On this basis, the theoretical understanding was enhanced in the early 1960's in particular by a series of papers by Lindhard. Simultaneously, an increasing amount of experimental studies on ion stopping and scattering were launched in connection with the development of ion acceleration devices and corresponding equipment for particle detection. During this period, also first computer simulation studies came up which later proved to be an utmost efficient tool for the description of collisional phenomena in ion-solid interaction. The relevance for numerous applications became evident, such as for the compositional and structural analysis of thin films and near-surface layers, for semiconductor technology, and nuclear fission and fusion technology. This caused increasing interest not only in the penetration and the scattering of the impinging ions, but also in the modification of the irradiated material due to ion implantation, radiation damage and surface erosion by sputtering. Consequently, ion-solid interaction established around 1970 internationally as a quickly expanding field at the intersection of solid-state physics and nuclear physics. Numerous reviews and textbooks are available which cover the fundamentals of ion-solid interaction. Torrens reviewed the knowledge

  19. Radiative electron capture by channeled ions

    International Nuclear Information System (INIS)

    Pitarke, J.M.; Ritchie, R.H.; Tennessee Univ., Knoxville, TN

    1989-01-01

    Considerable experimental data have been accumulated relative to the emission of photons accompanying electron capture by swift, highly stripped atoms penetrating crystalline matter under channeling conditions. Recent data suggest that the photon energies may be less than that expected from simple considerations of transitions from the valence band of the solid to hydrogenic states on the moving ion. We have studied theoretically the impact parameter dependence of the radiative electron capture (REC) process, the effect of the ion's wake and the effect of capture from inner shells of the solid on the photon emission probability, using a statistical approach. Numerical comparisons of our results with experiment are made. 13 refs., 6 figs

  20. Electron emission from Inconel under ion bombardment

    International Nuclear Information System (INIS)

    Alonso, E.V.; Baragiola, R.A.; Ferron, J.; Oliva-Florio, A.

    1979-01-01

    Electron yields from clean and oxidized Inconel 625 surfaces have been measured for H + ,H 2 + ,He + ,O + and Ar + ions at normal incidence in the energy range 1.5 to 40 keV. These measurements have been made under ultrahigh vacuum and the samples were freed of surface contaminants by bombarding with high doses of either 20 keV H 2 + or 30 keV Ar + ions. Differences in yields of oxidized versus clean surfaces are explained in terms of differences in the probability that electrons internally excited escape upon reaching the surface. (author)

  1. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  2. Electron-electron correlation in two-photon double ionization of He-like ions

    Science.gov (United States)

    Hu, S. X.

    2018-01-01

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.

  3. Atomic physics measurements in an electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Beiersdorfer, P.; Bennett, C.

    1989-01-01

    An electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged ions (q ≤ 70/+/) for x-ray spectroscopy measurements. Recent measurements of transition energies and electron excitation cross sections for x-ray line emission are summarized. 13 refs., 10 figs

  4. Extreme ultra-violet emission spectroscopy of highly charged gadolinium ions with an electron beam ion trap

    International Nuclear Information System (INIS)

    Ohashi, Hayato; Nakamura, Nobuyuki; Sakaue, Hiroyuki A

    2013-01-01

    We present extreme ultra-violet emission spectra of highly charged gadolinium ions obtained with an electron beam ion trap at electron energies of 0.53–1.51 keV. The electron energy dependence of the spectra in the 5.7–11.3 nm range is compared with calculation with the flexible atomic code. (paper)

  5. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  6. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  7. Mechanistic insights into the interaction between energetic oxygen ions and nanosized ZnFe2O4: XAS-XMCD investigations.

    Science.gov (United States)

    Singh, Jitendra Pal; Kaur, Baljeet; Sharma, Aditya; Kim, So Hee; Gautam, Sanjeev; Srivastava, Ramesh Chandra; Goyal, Navdeep; Lim, Weol Cheol; Lin, H-J; Chen, J M; Asokan, K; Kanjilal, D; Won, Sung Ok; Lee, Ik-Jae; Chae, Keun Hwa

    2018-04-20

    The interactions of energetic ions with multi-cation compounds and their consequences in terms of changes in the local electronic structure, which may facilitate intriguing hybridization between O 2p and metal d orbitals and magnetic ordering, are the subject of debate and require a deep understanding of energy transfer processes and magnetic exchange mechanisms. In this study, nanocrystals of ZnFe2O4 were exposed to O7+ ions with an energy of 100 MeV to understand, qualitatively and quantitatively, the metal-ligand field interactions, cation migration and magnetic exchange interactions by employing X-ray absorption fine structure measurements and X-ray magnetic circular dichroism to get deeper mechanistic insights. Nanosized zinc ferrite nanoparticles (NPs) with a size of ∼16 nm synthesized in the cubic spinel phase exhibited deterioration of the crystalline phase when 100 MeV O7+ ions passed through them. However, the size of these NPs remained almost the same. The behaviour of crystal deterioration is associated with the confinement of heat in this interaction. The energy confined inside the nanoparticles promotes cation redistribution as well as the modification of the local electronic structure. Prior to this interaction, almost 42% of Zn2+ ions occupied AO4 tetrahedra; however, this value increased to 63% after the interaction. An inverse effect was observed for metal ion occupancies in BO6 octahedra. The L-edge spectra of Fe and Zn reveal that the spin and valence states of the metal ions were not affected by this interaction. This effect is also supported by K-edge measurements for Fe and Zn. The t2g/eg intensity ratio in the O K-edge spectra decreased after this interaction, which is associated with detachment of Zn2+ ions from the lattice. The extent of hybridization, as estimated from the ratio of the post-edge to the pre-edge region of the O K-edge spectra, decreased after this interaction. The metal-oxygen and metal-metal bond lengths were modified

  8. Indirect processes in electron-ion scattering

    International Nuclear Information System (INIS)

    Bottcher, C.; Griffin, D.C.; Pindzola, M.S.; Phaneuf, R.A.

    1983-10-01

    A summary is given of an informal workshop held at Oak Ridge National Laboratory on June 22-23, 1983, in which the current status of theoretical calculations of indirect processes in electron-ion scattering was reviewed. Processes of particular interest in astrophysical and fusion plasmas were emphasized. Topics discussed include atomic structure effects, electron-impact ionization, and dielectronic recombination

  9. Indirect processes in electron-ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bottcher, C.; Griffin, D.C.; Pindzola, M.S.; Phaneuf, R.A.

    1983-10-01

    A summary is given of an informal workshop held at Oak Ridge National Laboratory on June 22-23, 1983, in which the current status of theoretical calculations of indirect processes in electron-ion scattering was reviewed. Processes of particular interest in astrophysical and fusion plasmas were emphasized. Topics discussed include atomic structure effects, electron-impact ionization, and dielectronic recombination.

  10. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  11. Effect of nonthermal electrons on oblique electrostatic excitations in a magnetized electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alinejad, H. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)

    2012-05-15

    The linear and nonlinear propagation of ion-acoustic waves are investigated in a magnetized electron-positron-ion (e-p-i) plasma with nonthermal electrons. In the linear regime, the propagation of two possible modes and their evolution are studied via a dispersion relation. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. Then, the Korteweg-de Vries equation describing the dynamics of ion-acoustic solitary waves is derived from a weakly nonlinear analysis. The influence on the solitary wave characteristics of relevant physical parameters such as nonthermal electrons, magnetic field, obliqueness, positron concentration, and temperature ratio is examined. It is observed that the increasing nonthermal electrons parameter makes the solitary structures much taller and narrower. Also, it is revealed that the magnetic field strength makes the solitary waves more spiky. The present investigation contributes to the physics of the nonlinear electrostatic ion-acoustic waves in space and laboratory e-p-i plasmas in which wave damping produces an electron tail.

  12. Secondary electron emission of thin carbon foils under the impact of hydrogen atoms, ions and molecular ions, under energies within the MeV range; Multiplicite des electrons secondaires emis par des cibles minces de carbone sous l'impact de projectiles H0, H2+, H3+ d'energie de l'ordre du MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vidovic, Z

    1997-06-15

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H{sub 2}{sup +} and H{sub 3}{sup +} polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)

  13. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  14. Electron and ion kinetics in a micro hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G J; Iza, F; Lee, J K [Electronics and Electrical Engineering Department, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2006-10-21

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall.

  15. Electron and ion kinetics in a micro hollow cathode discharge

    International Nuclear Information System (INIS)

    Kim, G J; Iza, F; Lee, J K

    2006-01-01

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall

  16. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  17. Materials analysis fast ions

    CERN Document Server

    Denker, A; Rauschenberg, J; Röhrich, J; Strub, E

    2006-01-01

    Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.

  18. Dynamics of solid inner-shell electrons in collisions with bare and dressed swift ions

    International Nuclear Information System (INIS)

    Montanari, C.C.; Miraglia, J. E.; Arista, N.R.

    2002-01-01

    We analyze the dynamical interactions of swift heavy projectiles and solid inner-shell electrons. The dielectric formalism employed to deal with the free-electron gas is extended to account for the core electrons, by using the local plasma approximation. Results for stopping power, energy straggling, and inner-shell ionization in collisions of bare ions with metals are displayed, showing very good accord with the experimental data. Simultaneous excitations of projectile and target electrons are also analyzed. In the high-energy range we find a similar contribution of target core and valence electrons to the probability of projectile-electron loss. The problem of no excitation threshold within the local plasma approximation and the possibility of collective excitations of the shells are discussed

  19. Ion production and trapping in electron rings

    International Nuclear Information System (INIS)

    Gluckstern, R.C.; Ruggiero, A.G.

    1979-08-01

    The electron beam in the VUV and X-ray rings of NSLS will ionize residual gas by collisions. Positive ions will be produced with low velocity, and will be attracted by the electron beam to the beam axis. If they are trapped in stable (transverse) orbits, they may accumulate, thereby increasing the ν/sub x,z/ of the individual electrons. Since the accumulated ions are unlikely to be of uniform density, a spread in ν/sub x,z/ will also occur. Should these effects be serious, it may be necessary to introduce clearing electrodes, although this may increase Z/n in the rings, thereby adding to longitudinal instability problems. The seriousness of the above effect for the VUV and X-ray rings is estimated

  20. Positron Interactions with Atoms and Ions

    Science.gov (United States)

    Bhatia, Anand K.

    2012-01-01

    Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the collision of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with atoms and ions. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.

  1. Experimental evidence of beam-foil plasma creation during ion-solid interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prashant, E-mail: prashant@iuac.res.in; Nandi, Tapan [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2016-08-15

    Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion–solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance between charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion–solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.

  2. Fragment ion and electron emission from C sub 6 sub 0 by fast heavy ion impact

    CERN Document Server

    Mizuno, T; Itoh, A; Tsuchida, H; Nakai, Y

    2003-01-01

    Correlation between electron emission and fragmentation of C sub 6 sub 0 was studied using 847keV Si sup + ions. Mass distribution of fragment ions, number distribution of secondary electrons, and final charge distribution of outgoing projectiles were successfully measured by means of a triple coincidence time-of-flight method. Strong correlation was observed for electron emission and fragmentation.

  3. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  4. Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas

    International Nuclear Information System (INIS)

    Masood, W.; Rizvi, H.

    2011-01-01

    Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the small amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.

  5. Characterization of electron temperature by simulating a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Yeong Heum [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Ghergherehchi, Mitra; Kim, Sang Bum; Jun, Woo Jung [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Lee, Jong Chul; Mohamed Gad, Khaled Mohamed [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Namgoong, Ho [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Chai, Jong Seo, E-mail: jschai@skku.edu [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of)

    2016-12-01

    Multicusp ion sources are used in cyclotrons and linear accelerators to produce high beam currents. The structure of a multicusp ion source consists of permanent magnets, filaments, and an anode body. The configuration of the array of permanent magnets, discharge voltage of the plasma, extraction bias voltage, and structure of the multicusp ion source body decide the quality of the beam. The electrons are emitted from the filament by thermionic emission. The emission current can be calculated from thermal information pertaining to the filament, and from the applied voltage and current. The electron trajectories were calculated using CST Particle Studio to optimize the plasma. The array configuration of the permanent magnets decides the magnetic field inside the ion source. The extraction bias voltage and the structure of the multicusp ion source body decide the electric field. Optimization of the electromagnetic field was performed with these factors. CST Particle Studio was used to calculate the electron temperature with a varying permanent magnet array. Four types of permanent magnet array were simulated to optimize the electron temperature. It was found that a 2-layer full line cusp field (with inverse field) produced the best electron temperature control behavior.

  6. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    International Nuclear Information System (INIS)

    Inoue, T.; Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-01-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz

  7. Effects of external field on elastic electron-ion collision in a plasma

    International Nuclear Information System (INIS)

    Na, Sang-Chul; Jung, Young-Dae

    2008-01-01

    The field effects on elastic electron-ion collision are investigated in a plasma with the presence of the external field. The eikonal method and effective interaction potential including the far-field term caused by the external field is employed to obtain the eikonal phase shift and eikonal cross section as functions of the field strength, external frequency, impact parameter, collision energy, thermal energy and Debye length. The result shows that the effect of the external field on the eikonal cross section is given by the second-order eikonal phase. In addition, the external field effects suppress the eikonal cross section as well as eikonal phase for the elastic electron-ion collision. The eikonal phase and cross section are found to be increased with an increase of the frequency of the external field. It is also shown that the eikonal cross section increases with an increase of the thermal energy and Debye length.

  8. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  9. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  10. Stimulated scattering of space-charge waves in a relativistic electron beam by the ion acoustic wave of a plasma waveguide

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Buts, V.A.

    1982-01-01

    The interaction of a relativistic electron beam with a plasma waveguide whose density is modulated by an ion acoustic wave leads to the emission of electromagnetic radiation. The wavelength of the radiation is 2#betta# 2 times shorter than the ion acoustic wavelength. The emission is accompanied by the amplification of the ion acoustic wave. The maximum amplitudes of the excited waves are found

  11. Effect of electron correlations and Breit interactions on ground-state fine-structures along the nitrogen-like isoelectronic sequence

    International Nuclear Information System (INIS)

    Wang Xiaolu; Lu Wenlai; Gao Xiang; Li Jiaming

    2009-01-01

    The accurate atomic data of nitrogen and nitrogen-like ions have an importance role in fusion plasma studies and astrophysics studies. The precise calculation of fine-structures is required to obtain such atomic data. Along the whole nitrogen isoelectronic sequence, the contributions of the electron correlations, the Breit interactions and the quantum electrodynamics corrections on the ground-state fine-structures are elucidated. When Z is low, the electron correlations are important, and the Breit interactions, which cannot be neglected cause interesting anomalous fine-structure splittings. When Z is high, the electron correlations are less important, and the Breit interactions are important in addition to spin-orbit interactions for precise calculations. (authors)

  12. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  13. A simple photoionization scheme for characterizing electron and ion spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wituschek, A.; Vangerow, J. von; Grzesiak, J.; Stienkemeier, F.; Mudrich, M., E-mail: mudrich@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany)

    2016-08-15

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  14. Evaluation of electron beam stabilization for ion implant processing

    Science.gov (United States)

    Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.

    1999-06-01

    With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.

  15. Electron backstream to the source plasma region in an ion source

    International Nuclear Information System (INIS)

    Ohara, Y.; Akiba, M.; Arakawa, Y.; Okumura, Y.; Sakuraba, J.

    1980-01-01

    The flux of backstream electrons to the source plasma region increases significantly with the acceleration voltage of an ion beam, so that the back plate in the arc chamber should be broken for quasi-dc operation. The flux of backstream electrons is estimated at the acceleration voltage of 50--100 kV for a proton beam with the aid of ion beam simulation code. The power flux of backstream electrons is up to about 7% of the total beam output at the acceleration voltage of 75 kV. It is pointed out that the conventional ion sources such as the duoPIGatron or the bucket source which use a magnetic field for source plasma production are not suitable for quasi-dc and high-energy ion sources, because the surface heat flux of the back plate is increased by the focusing of backstream electrons and the removal of it is quite difficult. A new ion source which has an electron beam dump in the arc chamber is proposed

  16. Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Matteson, S.; Nicolet, M.A.

    1979-01-01

    The magnitude and characteristics of the currents which flow in the target and the chamber of an MeV ion backscattering spectrometer are examined. Measured energy distributions and the magnitude of high-energy secondary electron currents are reported. An empirical universal curve is shown to fit the energy distribution of secondary electrons for several combinations of ion energy, targets and ion species. The magnitude of tertiary electron currents which arise at the vacuum vessel walls is determined for various experimental situations and is shown to be non-negligible in many cases. An experimental arrangement is described which permits charge integrations to 1% arruracy without restricting access to the target as a Faraday cage does. (Auth.)

  17. A hybrid gyrokinetic ion and isothermal electron fluid code for astrophysical plasma

    Science.gov (United States)

    Kawazura, Y.; Barnes, M.

    2018-05-01

    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) Schekochihin et al. (2009) [9]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into AstroGK, an Eulerian δf gyrokinetics code specialized to a slab geometry Numata et al. (2010) [41]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant-Friedrichs-Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼ 2√{mi /me } ∼ 100 times faster than AstroGK with a single ion species and kinetic electrons where mi /me is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron-ion temperature ratio and plasma beta.

  18. Study of electron-vibrational interaction in 5d states of Ce{sup 3+} ions in the chloroapatite system

    Energy Technology Data Exchange (ETDEWEB)

    Bhoyar, Priyanka D. [Department of Physics, R.T.M. Nagpur University, Nagpur, 440033 (India); Brik, M.G., E-mail: brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu, 50411 (Estonia); Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668, Warsaw (Poland); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200, Czestochowa (Poland); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur, 440033 (India)

    2016-08-15

    Electron-vibrational interaction (EVI) in interconfigurational 5d-4f transition of Ce{sup 3+}-doped alkaline-earth chlorophosphates, also known as apatites, is studied for the first time in this work. Using the configurational coordinate model, the main EVI parameters such as Huang-Rhys factor, effective phonon energy and the zero-phonon line (ZPL) position are determined for all samples studied. Photoluminescence characteristics of these compounds are utilized to estimate EVI parameters. As a reliable test validating the obtained results, the emission band shape of was modeled to yield good agreement with experimental emission spectra. The values of EVI parameters were systematically compared for all studied materials as well as with similar systems with halide ions. - Highlights: • EVI in Ce{sup 3+}-doped alkaline-earth halochlorophosphates is studied for the first time in this work. • The EVI parameters are estimated using the configurational coordinate model. • Estimated EVI parameters are validated by modeling emission spectra. • Parameters are systematically compared.

  19. Electron-translation effects in heavy-ion scattering

    International Nuclear Information System (INIS)

    Heinz, U.; Greiner, W.; Mueller, B.

    1981-01-01

    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for delta electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

  20. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  1. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, February 16, 1993--April 15, 1994

    International Nuclear Information System (INIS)

    Kostroun, V.O.

    1994-01-01

    Experimental study of low energy, highly charged ions with other atomic species requires an advanced ion source such as an electron beam ion source, EBIS or an electron cyclotron ion source, ECRIS. Five years ago we finished the design and construction of the Cornell superconducting solenoid, cryogenic EBIS (CEBIS). Since then, this source has been in continuous operation in a program whose main purpose is the experimental study of interactions of highly charged ions with atoms at keV energies. This progress report for the period February 16, 1993 to April 15, 1994 describes the work accomplished during this time in the form of short abstracts

  2. Electron-ion-x-ray spectrometer system

    International Nuclear Information System (INIS)

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.

    1993-01-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays

  3. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  4. Solvation of positive ions in water: the dominant role of water-water interaction

    International Nuclear Information System (INIS)

    Krekeler, Christian; Site, Luigi Delle

    2007-01-01

    Local polarization effects, induced by monovalent and divalent positive ions in water, influence (and in turn are influenced by) the large-scale structural properties of the solvent. Experiments can only distinguish this process of interplay in a generic qualitative way. Instead, first-principles calculations can address the question at both the electronic and atomistic scale, accounting for electronic polarization as well as geometrical conformations. For this reason we study the extension of the scales' interconnection by means of first-principle Car-Parrinello molecular dynamics applied to systems of different size. In this way we identify the general aspects dominating the physics of the first solvation shell and their connection to the effects related to the formation of the outer shells and eventually the bulk. We show that while the influence of the ions is extended to the first shell only, the water-water interaction is instead playing a dominant role even within the first shell independently of the size or the charge of the ion. (fast track communication)

  5. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.

    1989-01-01

    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs

  6. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    Science.gov (United States)

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  7. Analytical and Numerical Studies of the Complex Interaction of a Fast Ion Beam Pulse with a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Plasma neutralization of an intense ion beam pulse is of interest for many applications, including plasma lenses, heavy ion fusion, high energy physics, etc. Comprehensive analytical, numerical, and experimental studies are underway to investigate the complex interaction of a fast ion beam with a background plasma. The positively charged ion beam attracts plasma electrons, and as a result the plasma electrons have a tendency to neutralize the beam charge and current. A suite of particle-in-cell codes has been developed to study the propagation of an ion beam pulse through the background plasma. For quasi-steady-state propagation of the ion beam pulse, an analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The analytical results agree well with the results of the numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and ex it from the plasma

  8. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  9. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  10. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  11. Secondary electron emission of thin carbon foils under the impact of hydrogen atoms, ions and molecular ions, under energies within the MeV range; Multiplicite des electrons secondaires emis par des cibles minces de carbone sous l'impact de projectiles H0, H2+, H3+ d'energie de l'ordre du MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vidovic, Z

    1997-06-15

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H{sub 2}{sup +} and H{sub 3}{sup +} polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)

  12. X-ray spectroscopy of hydrogen-like ions in an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Tarbutt, M.R.; Crosby, D.; Silver, J.D. [Univ. of Oxford, Clarendon Lab. (United Kingdom); Myers, E.G. [Dept. of Physics, Florida State Univ., Tallahassee, FL (United States); Nakamura, N.; Ohtani, S. [ICORP, JST, Chofu, Tokyo (Japan)

    2001-07-01

    The X-ray emission from highly charged hydrogen-like ions in an electron beam ion trap is free from the problems of satellite contamination and Doppler shifts inherent in fast-beam sources. This is a favourable situation for the measurement of ground-state Lamb shifts in these ions. We present recent progress toward this goal, and discuss a method whereby wavelength comparison between transitions in hydrogenlike ions of different nuclear charge Z, enable the measurement of QED effects without requiring an absolute calibration.

  13. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    International Nuclear Information System (INIS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-01-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50 to 900 eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200 nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35 eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50 eV. This energy was limited by our electron gun design. These results are particularly relevant for the

  14. Ion collection efficiency of ionization chambers in electron beams

    International Nuclear Information System (INIS)

    Garcia, S.; Cecatti, E.R.

    1984-01-01

    When ionization chambers are used in pulsed radiation beams the high-density of ions produced per pulse permits ion recombination, demanding the use of a correction factor. An experimental technique using the charge collected at two different voltages permits the calculation of the ion collection efficiency. The ion collection efficiency of some common ionization chambers in pulsed electron beams were studied as a function of electron energy, dose rate and depth. Accelerators with magnetic scanning system, in which the instantaneous dose rate is much greater than the average dose rate, present a smaller collection efficiency than accelerators with scattering foil. The results lead to the introduction of a correction factor for ion recombination that is the reciprocal of the ion collection efficiency. It is also suggested a simple technique to connect an external variable DC power supply in a Baldwin Farmer dosemeter. (Author) [pt

  15. Electron capture by fast protons from helium-like ions

    International Nuclear Information System (INIS)

    Samanta, R.; Purkait, M.

    2011-01-01

    Four-body formalism of boundary corrected continuum intermediate state (BCCIS-4B) approximation have been applied to calculate the single-electron capture cross sections by fast protons through some helium-like ions in a large energy range from 30-1000 keV. In this model, distortion has been taken into account in the entrance channel. In the final channel, the passive electron plays the role of screening of the target ion. However, continuum states of the projectile and the electron in the field of the residual target ion are included. The comparison of the results is made with those of other theoretical investigations and experimental findings. The present calculated results are found to be in good agreement with the available experimental findings. (authors)

  16. Z1 dependence of ion-induced electron emission from aluminum

    International Nuclear Information System (INIS)

    Alonso, E.V.; Baragiola, R.A.; Ferron, J.; Jakas, M.M.; Oliva-Florio, A.

    1980-01-01

    We have measured the electron emission yields γ of clean aluminum under bombardment with H + , H 2 + , D + , D 2 + , He + , B + , C + , N + , N 2 + , O + , O 2 + , F + , Ne + , S + , Cl + , Ar + , Kr + , and Xe + in the energy range 1.2--50 keV. The clean surfaces were prepared by in situ evaporation of high-purity Al under ultra-high-vacuum conditions. It is found that kinetic electron emission yields γ/sub k/, obtained after subtracting from the measured γ a contribution due to potential emission, are roughly proportional to the electronic stopping powers, for projectiles lighter than Al. For heavier projectiles there is a sizable contribution to electron emission from collisions involving rapidly recoiling target atoms, which increases with the mass of the projectile, and which dominates the threshold and near-threshold behavior of kinetic emission. The results, together with recently reported data on Auger electron emission from ion-bombarded Al show that the mechanism proposed by Parilis and Kishinevskii of inner-shell excitation and subsequent Auger decay is negligible for light ions and probably small for heavy ions on Al and in our energy range. We thus conclude that kinetic electron emission under bombardment by low-energy ions results mainly from the escape of excited valence electrons

  17. Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction.

    Science.gov (United States)

    Lukas, Aaron S; Bushard, Patrick J; Weiss, Emily A; Wasielewski, Michael R

    2003-04-02

    The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination

  18. Experiments on ion space-charge neutralization with pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [CERN LHC-Division, Geneva (Switzerland)

    1997-12-31

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes was investigated experimentally. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant and may reach a factor of 4 for highly charged ions from an Al target. (author). 7 figs., 3 -refs.

  19. Hyperpolarizabilities of one and two electron ions under strongly coupled plasma

    International Nuclear Information System (INIS)

    Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard

    2013-01-01

    Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.

  20. Evaporative cooling of highly charged ions in EBIT [Electron Beam Ion Trap]: An experimental realization

    International Nuclear Information System (INIS)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-01-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs

  1. Effects of positron density and temperature on large amplitude ion-acoustic waves in an electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Nejoh, Y.N.

    1997-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with positrons. We have presented the region of existence of the ion-acoustic waves by analysing the structure of the pseudopotential. The region of existence sensitively depends on the positron to electron density ratio, the ion to electron mass ratio and the positron to electron temperature ratio. It is shown that the maximum Mach number increases as the positron temperature increases and the region of existence of the ion-acoustic waves spreads as the positron temperature increases. 12 refs., 6 figs

  2. Shifts in electron capture to the continuum at low collision energies: Enhanced role of target postcollision interactions

    International Nuclear Information System (INIS)

    Shah, M. B.; McGrath, C.; Luna, H.; Crothers, D.S.F.; O'Rourke, S.F.C.; Gilbody, H.B.; Illescas, Clara; Riera, A.; Pons, B.

    2003-01-01

    Measurements of electron velocity distributions emitted at 0 deg. for collisions of 10- and 20-keV H + incident ions on H 2 and He show that the electron capture to the continuum cusp formation, which is still possible at these low impact energies, is shifted to lower momenta than its standard position (centered on the projectile velocity), as recently predicted. Classical trajectory Monte Carlo calculations reproduce the observations remarkably well, and indicate that a long-range residual interaction of the electron with the target ion after ionization is responsible for the shifts, which is a general effect that is enhanced at low nuclear velocities

  3. Large amplitude ion-acoustic waves in a plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.; Sanuki, H.

    1995-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with an electron beam, by the pseudopotential method. The region of the existence of large amplitude ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the electron beam temperature, the ion temperature, the electrostatic potential, and the concentration of the electron beam density. It turns out that the region of the existence spreads as the beam temperature increases but the effect of the electron beam velocity is relatively small. New findings of large amplitude ion-acoustic waves in a plasma with an electron beam are predicted. copyright 1995 American Institute of Physics

  4. Interaction of langmuir and ion acoustic waves

    International Nuclear Information System (INIS)

    Lee, Hee Jae

    1991-01-01

    Interaction of Langmuir and ion acoustic waves in a plasma is described by Landau-Ginzburg type of equation when the group velocity of the Langmuir wave is equal to the wave velocity of ion acoustic wave. (Author)

  5. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  6. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    Kondo, K.; Okamura, M.; Yamamoto, T.; Sekine, M.

    2012-01-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  7. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  8. Electrical properties of irradiated PVA film by using ion/electron beam

    Science.gov (United States)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  9. Electron loss from hydrogen-like highly charged ions in collisions with electrons, protons and light atoms

    Science.gov (United States)

    Lyashchenko, K. N.; Andreev, O. Yu; Voitkiv, A. B.

    2018-03-01

    We consider electron loss from a hydrogen-like highly charged ion (HCI) in relativistic collisions with hydrogen and helium in the range of impact velocities v min ≤ v ≤ v max (v min and v max correspond to the threshold energy ε th for electron loss in collisions with a free electron and to ≈5 ε th, respectively) where any reliable data for loss cross sections are absent. In this range, where the loss process is characterized by large momentum transfers, we express it in terms of electron loss in collisions with equivelocity protons and electrons and explore by performing a detailed comparative study of these subprocesses. Our results, in particular, show that: (i) compared to equivelocity electrons protons are more effective in inducing electron loss, (ii) the relative effectiveness of electron projectiles grows with increase in the atomic number of a HCI, (iii) collisions with protons and electrons lead to a qualitatively different population of the final-state-electron momentum space and even when the total loss cross sections in these collisions become already equal the spectra of the outgoing electrons still remain quite different in almost the entire volume of the final-state-electron momentum space, (iv) in collisions with hydrogen and helium the contributions to the loss process from the interactions with the nucleus and the electron(s) of the atom could be rather well separated in a substantial part of the final-state-electron momentum space.

  10. Parallel electric fields accelerating ions and electrons in the same direction

    International Nuclear Information System (INIS)

    Hultqvist, B; Lundin, R.

    1988-01-01

    In this contribution the authors present Viking observations of electrons and positive ions which move upward along the magnetic field lines with energies of the same order of magnitude. The authors propose that both ions and electrons are accelerated by an electric field which has low-frequency temporal variations such that the ions experience and average electrostatic potential drop along the magnetic field lines whereas the upward streaming electrons are accelerated in periods of downward pointing electric field which is quasi-static for the electrons and forces them to beam out of the field region before the field changes direction

  11. Electron excitation relaxation in wide-gap single crystal insulators under swift heavy-ion irradiation

    International Nuclear Information System (INIS)

    Yavlinskii, Yu.N.

    2000-01-01

    A heavy, multicharged ion moving in a solid interacts with nuclei and electrons of the matter atoms. If the projectile velocity exceeds the typical orbital velocity of the target electrons, the main process is excitation of the electronic subsystem, i.e., excitation and ionization of bound electrons. Initially, relaxation of the electron excitations results from electronic processes alone, and energy transfer from electrons to lattice happens later. Since free charge carriers are absent in insulators before irradiation, the motion of the excited electrons is possible only together with holes. Due to inner pressure of the electron-hole plasma the expansion takes place. The velocity of the expansion is determined by the heat velocity of electron-hole pairs. As the excitation region expands, the density of the electron-hole pairs decreases, the average distance between pairs increases, and excitons are produced. The expansion can be terminated in the time t≅10 -13 s, when, due to the electron-phonon interaction, self-trapped holes (and excitons) are formed. The annihilation of the trapped excitons gives rise to Frenkel defects. The set of equations comprising the continuity equation, the Euler equation and energy conservation is considered. The analytic dependence on time of the electron temperature and the radius of the excitation region is derived. The observation of projectile traces in a target is discussed in the single projectile regime

  12. Faraday rotation in an electron-positron plasma containing a fraction of ions

    International Nuclear Information System (INIS)

    Hall, J.O.; Shukla, P.K.

    2005-01-01

    The Faraday rotation in a magnetized electron-positron plasma containing a fraction of ions is investigated by using a multifluid description. It is shown that the Faraday rotation for circularly polarized electromagnetic waves with frequencies much larger than the electron/positron plasma and electron gyrofrequencies is proportional to the ion number density and the magnitude of the ambient magnetic-field strength. The results are relevant for astrophysical observations and diagnostics of laboratory electron-positron-ion magnetoplasmas

  13. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    Science.gov (United States)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  14. Origin of poor doping efficiency in solution processed organic semiconductors† †Electronic supplementary information (ESI) available: Additional details on sample characterization, quantum chemistry calculations to obtain transition dipole moments of the ions and determine the strength of the Coulomb interaction, two-dimensional correlation analysis has been provided. In addition, this document also contains details of the calculations used to simulate 2D electronic spectra. See DOI: 10.1039/c8sc00758f

    Science.gov (United States)

    Jha, Ajay; Duan, Hong-Guang; Tiwari, Vandana; Thorwart, Michael

    2018-01-01

    Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ∼250 cm–1 with an intermolecular distance of ∼4.5 Å between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films. PMID:29896388

  15. Response to ''Comment on 'Interaction of two solitary waves in quantum electron-positron-ion plasma''' [Phys. Plasmas 18, 084701 (2011)

    International Nuclear Information System (INIS)

    Xu Yanxia; Lin Maimai; Shi Yuren; Duan Wenshan; Liu Zongming

    2011-01-01

    According to the comments of Akbari-Moghanjoughi that the electron-positron-ion(e-p-i) plasmas parameters σ representing the ratio of the positron to electron Fermi-temperature and p standing for the positron to electron number-density ratio are related by the equation of p σ 3/2 . Based on this conclusion, we have replaced the Figs. 1-6 (Ref. 1) in the present paper.

  16. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  17. The influence of electron inertia on the modulational instability of ion-acoustic waves

    International Nuclear Information System (INIS)

    Parkes, E.J.

    1993-01-01

    The influence of electron inertia, ion streaming and weak relativistic effects on the modulational instability of ion-acoustic waves in a collisionless unmagnetized plasma is investigated. The derivative expansion method is used to derive a nonlinear Schroedinger equation, from which an instability criterion is deduced. When electron inertia is ignored, ion streaming and weak relativistic effects have little effect on the instability criterion. It is shown that when electron inertia is taken into account, the instability criterion is sensitive to weakly relativistic ion streaming, but not to the ratio of electron mass to ion mass. (Author)

  18. Electron-electron interaction in strong electromagnetic fields The two-electron contribution to the ground-state energy in He-like uranium

    CERN Document Server

    Gumberidze, A; Barnás, D; Beckert, Karl; Beller, Peter; Beyer, H F; Bosch, F; Cai, X; Stöhlker, T; Hagmann, S; Kozhuharov, C; Liesen, D; Nolden, F; Ma, X; Mokler, P H; Orsic-Muthig, A; Steck, Markus; Sierpowski, D; Tashenov, S; Warczak, A; Zou, Y

    2004-01-01

    Radiative recombination transitions into the ground state of cooled bare and hydrogen-like uranium ions were measured at the storage ring ESR. By comparing the corresponding x-ray centroid energies, this technique allows for a direct measurement of the electron-electron contribution to the ionization potential in the heaviest He-like ions. For the two-electron contribution to the ionization potential of He-like uranium we obtain a value of 2248 ± 9 eV. This represents the most accurate determination of two-electron effects in the domain of high-Z He-like ions and the accuracy reaches already the size of the specific two-electron radiative QED corrections.

  19. Strong electron dissipation by a mode converted ion hybrid (Bernstein) wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Ram, A.K.

    1996-01-01

    The fast wave approximation, extended to include the effects of electron dissipation, is used to calculate the power mode converted to the ion hybrid (Bernstein) wave in the vicinity of the ion hybrid resonance. The power absorbed from the fast wave by ion cyclotron damping and by electron Landau and transit time damping (including cross terms) is also calculated. The fast wave equation is solved for either the Budden configuration of a cut-off-resonance pair or the triplet configuration of cut-off-resonance-cut-off. The fraction mode converted is compared for the triplet case and the Budden multi-pass situation. The electron damping rate of the ion hybrid wave is obtained from the local dispersion relation and a ray tracing code is used to calculate the damping of the mode converted ion hybrid wave by the electrons as it propagates away from the resonance. Quantitative results for a range of conditions relevant to JET, TFTR and ITER are given. copyright 1996 American Institute of Physics

  20. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  1. Precision laser spectroscopy of highly charged ions

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Becker, S.; Dax, A.; Engel, T.; Grieser, R.; Huber, G.; Klaft, I.; Klepper, O.; Kohl, A.; Marx, D.; Meier, K.; Neumann, R.; Schmitt, F.; Seelig, P.; Voelker, L.

    1996-01-01

    Recently, intense beams of highly charged ions have become available at heavy ion cooler rings. The obstacle for producing these highly interesting candidates is the large binding energy of K-shell electrons in heavy systems in excess of 100 keV. One way to remove these electrons is to strip them off by passing the ion through material. In the cooler ring, the ions are cooled to a well defined velocity. At the SIS/ESR complex it is possible to produce, store, and cool highly charged ions up to bare uranium with intensities exceeding 10 8 atoms in the ring. This opens the door for precision laser spectroscopy of hydrogenlike-heavy ions, e.g. 209 Bi 82+ , and allows to examine the interaction of the single electron with the large fields of the heavy nucleus, exceeding any artificially produced electric and magnetic fields by orders of magnitude. In the electron cooler the interaction of electrons and highly charged ions otherwise only present in the hottest plasmas can be studied. (orig.)

  2. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  3. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  4. Characteristics of electron-ion whistlers and their application to ionospheric probing

    International Nuclear Information System (INIS)

    Singh, S.N.; Tiwari, S.; Tolpadi, S.K.

    1976-01-01

    In this communication the effect of ion temperature on the propagation of electron-ion whistlers in the ionosphere is investigated. A general expression including the effect of ion temperature is derived for the group travel time for the electron-ion whistler as it travels from the base of the ionosphere to the satellite. A study of the dependence of the group travel time for the proton whislters. Further, from the expression for the group travel time including the effect of the ion temperature in conjunction with the generalized dispersion relation a relation for the cyclotron damping rate (both temporal and spatial) has been obtained. A detailed study if the cyclotron damping rate with travel time and ion temperature leads to the conclusion that the observed amplitude cutoff characteristics for the proton whistler can be explained on the basis of the mechanism of cyclotron damping. It is also shown that the knowledge of the group travel time of an electron-ion whistler can be used to estimate the ion temperature at the satellite

  5. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  6. Electron-electron interaction in p-SiGe/Ge quantum wells

    International Nuclear Information System (INIS)

    Roessner, Benjamin; Kaenel, Hans von; Chrastina, Daniel; Isella, Giovanni; Batlogg, Bertram

    2005-01-01

    The temperature dependent magnetoresistance of high mobility p-SiGe/Ge quantum wells is studied with hole densities ranging from 1.7 to 5.9 x 10 11 cm -2 . At magnetic fields below the onset of quantum oscillations that reflect the high mobility values (up to 75000 cm 2 /Vs), we observe the clear signatures of electron-electron interaction. We compare our experiment with the theory of electron-electron interaction including the Zeeman band splitting. The observed magnetoresistance is well explained as a superposition of band structure induced positive magnetoresistance and the negative magntoresistance due to the electron-electron interaction effect

  7. Study of the effect of heavy ion energy on the sensitivity of electronic devices

    International Nuclear Information System (INIS)

    Raine, M.

    2011-01-01

    This thesis studies the sensitivity of advanced electronic devices in radiative environments. The work deals with the detailed modeling of the deposited energy induced by heavy-ion in matter, and the influence of taking it into account in the tools simulating the response of irradiated devices. To do so, a simulation chain was developed, combining different calculation codes at various scales. In a first step, the particle-matter interaction code Geant4 is used to model the heavy ion track. These tracks are then implemented in a TCAD simulator, in order to study the response of elementary transistors to these detailed energy deposits. This step is completed with experimental measurements. Finally, the study is extended to the circuit level, by interfacing the heavy ion tracks with a SEE prediction tool. These different steps evidence the need for taking into account the radial extension of the ion track to all simulation levels, to adequately model the response of advanced devices under heavy ion irradiations. (author) [fr

  8. Pseudoclassical approach to electron and ion density correlations in simple liquid metals

    International Nuclear Information System (INIS)

    Vericat, F.; Tosi, M.P.; Pastore, G.

    1986-04-01

    Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)

  9. Electron ejection cross sections in electron and ion impact ionization: Ab initio and semiempirical calculations

    International Nuclear Information System (INIS)

    Manson, S.T.; Miller, J.H.; Pacific Northwest Lab., Richland, WA)

    1983-01-01

    Ionization cross sections for heavy ions and electrons incident on various atoms and molecules are required in the modeling of the interaction of radiation with matter. For each case, the energy distribution of secondary electrons (the single differential cross section, SDCS) is needed over a broad range of projectile and secondary electron (delta-ray) energies. In many cases the energy and angular distribution of secondary electrons (the double differential cross section, DDCS) is also necessary. Clearly, it would be desirable to have laboratory SDCS and DDCS measurements for all of the cases required. For a variety of reasons, this is not yet possible. Thus, one must turn elsewhere to obtain the needed cross sections. In this paper, we discuss cross sections obtained in two different ways; ab initio theory based on the first Born approximation, and a semi-empirical method based on the Bethe-Born Approximation. In both cases, results on helium will be presented since the largest amount of data is available in this case. Applications of both methods to other target species are given in the references. The accuracy of the methods and plans for the near future are also discussed. 23 references, 6 figures

  10. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  11. Electron transport effects in ion induced electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium)]. E-mail: adubus@ulb.ac.be; Pauly, N. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium); Roesler, M. [Karl-Pokern-Str. 12, D-12587 Berlin (Germany)

    2007-03-15

    Ion induced electron emission (IIEE) is usually described as a three-step process, i.e. electron excitation by the incident projectile, electron transport (and multiplication) and electron escape through the potential barrier at the surface. In many cases, the first step of the process has been carefully described. The second step of the process, i.e. electron transport and multiplication, has often been treated in a very rough way, a simple decreasing exponential law being sometimes used. It is precisely the aim of the present work to show the importance of a correct description of electron transport and multiplication in a theoretical calculation of IIEE. A short overview of the electron transport models developed for IIEE is given in this work. The so-called 'Infinite medium slowing-down model' often used in recent works is evaluated by means of Monte Carlo simulations. In particular, the importance of considering correctly the semi-infinite character of the medium and the boundary condition at the vacuum-medium interface is discussed. Quantities like the electron escape depth are also briefly discussed. This evaluation has been performed in the particular case of protons (25keV

  12. The g-factor of the bound electron in hydrogenic ions

    International Nuclear Information System (INIS)

    Quint, Wolfgang

    2001-01-01

    We report on the measurement of the g-factor of the electron bound in an atomic ion. A single hydrogenic ion ( 12 C 5+ ) is stored in a Penning trap. The electronic spin state of the ion is monitored via the continuous Stern-Gerlach effect in a quantum non-demolition measurement. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g-factor of the bound electron is obtained by varying the microwave frequency and counting the number of spin flips for a fixed time interval. Applications of the continuous Stern-Gerlach effect include high-accuracy tests of bound-state quantum electrodynamics (QED), the measurement of the atomic mass of the electron, the determination of the fine structure constant α, and the measurement of nuclear g-factors

  13. The future of the SIRAD SEE facility Ion-Electron Emission Microscopy

    CERN Document Server

    Wyss, J; Kaminski, A; Magalini, A; Nigro, M; Pantano, D; Sedhykh, S

    2002-01-01

    The SIRAD facility is dedicated to radiation damage studies on semiconductor detectors, electronic devices and systems, using proton and ion beams delivered by a 15 MV tandem accelerator. It is routinely used by groups involved in detector development for elementary particle physics, electronic device physics and space applications. In particular, Single Event Effect studies are very important to the latter two activities. Presently, the facility can only characterize the global sensitivity of a device or system to single ion impacts. To map out the sensitivity of a device with micrometric resolution, following an idea developed at SANDIA, we will implement an Ion-Electron Emission Microscope (IEEM) to reconstruct the X,Y and time coordinates of an impacting energetic ion by imaging the secondary electrons emitted by the sample using a standard emission electron microscope and position sensitive detector system. After describing typical Single Event Effect activities at SIRAD we will discuss the basic princip...

  14. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  15. Do Electrons and Ions Coexist in an EBIT?

    International Nuclear Information System (INIS)

    Lapierre, A.; Crespo Lopez-Urrutia, J.R.; Braun, J.; Brenner, G.; Bruhns, H.; Fischer, D.; Gonzalez Martinez, A.J.; Mironov, V.; Osborne, C. J.; Sikler, G.; Soria Orts, R.; Tawara, H.; Ullrich, J.; Yamazaki, Y.

    2005-01-01

    Detailed analysis of an extended exponential tail observed in the decay curve of the 2P3/2-2P1/2 magnetic dipole (M1) transition in boron-like Ar13+ provides evidence that electrons and ions might coexist in the same spatial region in the Heidelberg Electron Beam Ion Trap (HD-EBIT). On this basis, new trapping-cooling-recombination schemes for positron-antiproton plasmas are envisioned, integrated in a magnetic bottle configuration that should be able to trap the subsequently formed recombined cold antihydrogen. Moreover, the EBIT configuration, providing excellent spectroscopic access to the trapping region via seven view ports is shown to be well suited for performing precision spectroscopy of antiprotonic ions. Those might be generated either by recombination of antiprotons with neutral gas atoms or through radiative recombination and state-selective dielectronic-recombination-like processes with highly charged ions produced and stored in the EBIT simultaneously in a nested trap configuration

  16. Electron and ion distribution functions in magnetopause reconnection

    Science.gov (United States)

    Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.

    2015-12-01

    We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.

  17. Structure and electron-ion correlation of liquid germanium

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2005-08-15

    Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.

  18. Early time interaction of lithium ions with the solar wind in the AMPTE mission

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Goodrich, C.C.; Mankofsky, A.; Papadopoulos, K.

    1986-01-01

    The early time interaction of an artificially injected lithium cloud with the solar wind is simulated with a one-dimensional hybrid code. Simulation results indicate that the lithium cloud presents an obstacle to the solar wind flow, forming a shock-like interaction region. Several notable features are found: (1) The magnetic field is enhanced up to a factor of about 6 followed by a magnetic cavity downstream. (2) Solar wind ions are slowed down inside the lithium cloud, with substantial upstream reflection. (3) Most of the lithium ions gradually pick up the velocity of the solar wind and move downstream. (4) Intense and short-wavelength electric fields exist ahead of the interaction region. (5) Strong electron heating occurs within the lithium clouds. (6) The convection electric field in the in the solar wind is modulated in the interaction region. The simulation results are in remarkable agreement with in situ spacecraft measurements made during lithium releases in the solar wind by the AMPTE (Active magnetospheric Particle Tracer Explorers) Program

  19. Electron Emission by N6+ Ions Scattered at a Magnetized Iron Surface

    International Nuclear Information System (INIS)

    Solleder, B.; Lemell, C.; Burgdoerfer, J.; Tokesi, K.

    2006-01-01

    Complete text of publication follows. Magnetized materials are of considerable interest in the electronics industry (hard discs, spintronics, etc.). A detailed understanding of the properties of magnetized surfaces is therefore important to optimize technical applications. In the last decades, different experimental techniques have been developed to probe spin effects in magnetized materials. In this work the spin polarization of electrons emitted during the impact of N 6+ ions on a magnetized Fe surface is investigated. We study potential emission (PE) of electrons as well as secondary electron (SE) production and transport in the target with the help of Monte Carlo (MC) simulations. Spin dependence of electron transfer processes and of transport in the solid are included. Fig. 1 shows the results of our simulation for the energy distribution and spin polarization of emitted electrons in comparison with experimental data of Pfandzelter et al. [1] for the interaction of N 6+ ions with magnetized Fe. Electrons with energies higher than 200 eV are predominantly PE electrons, emitted close to the surface via autoionization (AI), Auger capture (AC) and Auger deexcitation (AD) channels. Low energy electrons are dominated by promoted, autoionized, and secondary electrons. The polarization of above surface electrons is determined by the high of the potential barrier separating projectile and target. At large distances, the barrier drops only slightly below the Fermi edge and enables transitions of electrons from this part of the band structure which has about 50% polarization. These electrons are transferred to high n states feeding promotion and AI processes between high lying states. Electrons emitted by these processes therefore reflect the polarization near the Fermi edge. Close to the surface, the barrier is low enough to allow for electron capture from the entire conduction band. K-Auger electrons are emitted in immediate vicinity of the surface and therefore mirror

  20. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    Science.gov (United States)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  1. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.

    2004-01-01

    Electron cyclotron resonance (ECR) ion sources are scientific instruments particularly useful for physics: they are extensively used in atomic, nuclear, and high energy physics, for the production of multicharged beams. Moreover, these sources are also of fundamental interest for plasma physics, because of the very particular properties of the ECR plasma. This article describes the state of the art on the physics of the ECR plasma related to multiply charged ion sources. In Sec. I, we describe the general aspects of ECR ion sources. Physics related to the electrons is presented in Sec. II: we discuss there the problems of heating and confinement. In Sec. III, the problem of ion production and confinement is presented. A numerical code is presented, and some particular and important effects, specific to ECR ion sources, are shown in Sec. IV. Eventually, in Sec. V, technological aspects of ECR are presented and different types of sources are shown

  2. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1987-10-01

    Multiple electron capture is reported for Ca 17+ in Ar. Close collisions are defined by the observation of a coincident Ca K or Ar K x-ray. A large number of electrons is transferred to the projectile in a single close collision when the Ca ion projectile is of the order of the Ar L-shell electron velocity. The cross section for electron capture is reported

  3. Investigation of the influence of intermolecular interactions on the electronic stopping cross sections

    International Nuclear Information System (INIS)

    Krotz, R.; Neuwirth, W.; Pietsch, W.

    1980-01-01

    The electronic stopping cross sections for Li projectiles have been measured in various kinds of targets. They are analyzed here with respect to the different types of interactions between the constituents of the target: interactions between the atoms in a compound (chemical bonding), the ion-dipole interaction, if the target is an electrolytic solution, and the dipole-dipole interaction among polar molecules. The influence on the stopping cross section depends on the strength of these interactions; it varies from a few percent in the latter case up to 20% and more in a compound. These influences are the largest, if the velocity of the projectile is of the order of the average orbital velocity of the target atoms. (author)

  4. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  5. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    Science.gov (United States)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  6. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    International Nuclear Information System (INIS)

    De Filippo, E.; Lanzano, G.; Cardella, G.; Amorini, F.; Geraci, E.; Grassi, L.; Politi, G.; La Guidara, E.; Lombardo, I.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-01-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  7. Interaction of relativistic H- ions with thin foils

    International Nuclear Information System (INIS)

    Mohagheghi, A.H.

    1990-09-01

    The response of relativistic H - ions to thin carbon foils was investigated for beam energies ranging from 226 MeV to 800 MeV. For the foil thicknesses we have studied, ranging from 15 to 300 μg/cm 2 , an appreciable fraction of the H - beam survives intact, some H - ions are stripped down to protons, and the remainder is distributed over the states of H 0 . This experiment is different from the low energy studies in that the projectile velocity is comparable to the speed of light, leading to an interaction time of typically less than a femtosecond. The present results challenge the theoretical understanding of the interaction mechanisms. An electron spectrometer was used to selectively field-ionize the Rydberg states, 9 < n < 17, at beam energies of 581 MeV and 800 MeV. The yield of low-lying states were measured by Doppler tuning a Nd:YAG laser to excite transitions to a Rydberg state which was then field-ionized and detected. A simple model is developed to fit the yield of each state as a function of foil thickness. The simple model is successful in predicting the general features of the yield data. However, the data are suggestive of a more complex structure in the yield curves. The yield of a given state depends strongly on the foil thickness, demonstrating that the excited states are formed during the passage of the ions through a foil. The optimum thickness to produce a given state increases with the principal quantum number of the state suggesting an excitation process which is at least pratially stepwise. The results of a Monte Carlo simulation are compared with the experimental data to estimate the distribution of the excited states coming out of a foil. The distributions of the excited states and their dependence on foil thickness are discussed

  8. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  9. RF-driven ion source with a back-streaming electron dump

    Science.gov (United States)

    Kwan, Joe; Ji, Qing

    2014-05-20

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

  10. ELECTRON BEAM ION SOURCE PRE-INJECTOR DIGNOSTICS

    International Nuclear Information System (INIS)

    WILINSKI, M.; ALESSI, J.; BEEBE, E.; BELLAVIA, S.; PIKIN, A.

    2006-01-01

    A new ion pre-injector line is currently under design at Brookhaven National Laboratory (BNL) for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL,). Collectively, this new line is referred to as the EBIS project. This pre-injector is based on an Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (R-FQ) accelerator, and a linear accelerator. The new EBIS will be able to produce a wide range of heavy ion species as well as rapidly switching between species. To aid in operation of the pre-injector line, a suite of diagnostics is currently proposed which includes faraday cups, current transformers, profile monitors, and a pepperpot emittance measurement device

  11. INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES

    International Nuclear Information System (INIS)

    CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.

    2003-01-01

    OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results

  12. Enhanced ion acoustic fluctuations and ion outflows

    Directory of Open Access Journals (Sweden)

    F. R. E. Forme

    1999-02-01

    Full Text Available A number of observations showing enhanced ion acoustic echoes observed by means of incoherent scatter radars have been reported in the literature. The received power is extremely enhanced by up to 1 or 2 orders of magnitude above usual values, and it is mostly contained in one of the two ion acoustic lines. This spectral asymmetry and the intensity of the received signal cannot be resolved by the standard analysis procedure and often causes its failure. As a result, and in spite of a very clear spectral signature, the analysis is unable to fit the plasma parameters inside the regions of ion acoustic turbulence. We present European Incoherent Scatter radar (EISCAT observations of large ion outflows associated with the simultaneous occurrence of enhanced ion acoustic echoes. The ion fluxes can reach 1014 m-2 s-1 at 800 km altitude. From the very clear spectral signatures of these echoes, a method is presented to extract estimates of the electron temperature and the ion drift within the turbulent regions. It is shown that the electron gas is strongly heated up to 11 000 K. Also electron temperature gradients of about 0.02 K/m exist. Finally, the estimates of the electron temperature and of the ion drift are used to study the possible implications for the plasma transport inside turbulent regions. It is shown that strong electron temperature gradients cause enhancement of the ambipolar electric field and can account for the observed ion outflows.Key words. Ionosphere (auroral ionosphere; ionosphere · magnetosphere interactions; plasma waves and instabilities.

  13. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    Science.gov (United States)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}zz≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  14. Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation

    Science.gov (United States)

    Shamim, M. M.; Scheuer, J. T.; Fetherston, R. P.; Conrad, J. R.

    1991-11-01

    An experimental procedure has been developed to measure electron emission due to energetic ion bombardment during plasma source ion implantation. Spherical targets of copper, stainless steel, graphite, titanium alloy, and aluminum alloy were biased negatively to 20, 30, and 40 kV in argon and nitrogen plasmas. A Langmuir probe was used to detect the propagating sheath edge and a Rogowski transformer was used to measure the current to the target. The measurements of electron emission coefficients compare well with those measured under similar conditions.

  15. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  16. Study of heliumlike neon using an electron beam ion trap

    International Nuclear Information System (INIS)

    Wargelin, B.J.; Kahn, S.M.; Beiersdorfer, P.

    1992-01-01

    The 2-to-1 spectra of several astrophysically abundant He-like ions are being studied using the Electron Beam Ion Trap (EBIT) at Lawrence Livermore National Laboratory. Spectra are recorded for a broad range of plasma parameters, including electron density, energy, and ionization balance. We describe the experimental equipment and procedure and present some typical data

  17. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Institute for Microelectronics, TU Wien, Gusshausstrasse 27–29/E360, 1040 Vienna (Austria)

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  18. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    Science.gov (United States)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2018-01-01

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production to the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.

  19. Energy transfer and quenching processes of excited uranyl ion and lanthanide ions in solutions

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Tomiyasu, Hiroshi

    1995-01-01

    Deactivation processes of photoexcited uranyl ion by various lanthanide ions in aqueous solution were studied. Each lanthanide ions show different interaction with excited uranyl ion depending on its lowest excited energy level, the number of 4f electrons and the acid concentration of the solution. (author)

  20. Thermodynamic approach of the poly-azine - f element ions interaction in aqueous conditions

    International Nuclear Information System (INIS)

    Miguirditchian, M.; Guillaumont, D.; Moisy, P.; Guillaneux, D.; Madic, C.

    2004-01-01

    2-Amino-4,6-di-(pyridine-2-yl)-1,3,5-triazine (Adptz) was considered as a model compound for selective aromatic nitrogen extractants (poly-azines) of minor actinides. Thermodynamic data ( ΔG 0 , ΔH 0 , ΔS 0 ) were systematically acquired for the complexation of lanthanide(III) ions as well as yttrium(III) and americium(III) in hydro-alcoholic medium. Two complementary experimental approaches were followed. Stability constants for the formation of the 1:1 complexes were evaluated from UV-visible spectrophotometry titration experiments, whereas enthalpies and entropies of reaction were obtained consistently from either temperature dependence experiments or micro-calorimetry. The interaction of Adptz with lanthanide(III) and yttrium(III) ions was found to be essentially ionic and dependent upon the hydration and size of the ion. As for americium(III) ion, stability constant and enthalpy of complexation was significantly larger. This was attributed to a partial electronic transfer from the ligand to empty orbitals of the cation. DFT calculations support this interpretation. (authors)

  1. Accelerated electron exchange between U4+ and UO22+ by foreign metal ions

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Onitsuka, Hatsuki; Takeda, Kunihiko

    1990-01-01

    The rate constant of U 4+ -UO 2 2+ electron exchange (k et ) was increased by more than 100 times in the presence of various metal ions. The larger rate constant was observed for the smaller difference of the standard reduction potential strength between metal ion and UO 2 2+ ion (Δμ θ e ). Detailed investigation of the electron exchange reaction in the presence of Mo 5+ suggested that the mechanism of the electron transfer reaction catalyzed by metal ions is the outer-sphere type independent of U-Clcomplex ions. (author)

  2. Monte Carlo simulation of heavy ion induced kinetic electron emission from an Al surface

    CERN Document Server

    Ohya, K

    2002-01-01

    A Monte Carlo simulation is performed in order to study heavy ion induced kinetic electron emission from an Al surface. In the simulation, excitation of conduction band electrons by the projectile ion and recoiling target atoms is treated on the basis of the partial wave expansion method, and the cascade multiplication process of the excited electrons is simulated as well as collision cascade of the recoiling target atoms. Experimental electron yields near conventional threshold energies of heavy ions are simulated by an assumption of a lowering in the apparent surface barrier for the electrons. The present calculation derives components for electron excitations by the projectile ion, the recoiling target atoms and the electron cascades, from the calculated total electron yield. The component from the recoiling target atoms increases with increasing projectile mass, whereas the component from the electron cascade decreases. Although the components from the projectile ion and the electron cascade increase with...

  3. Measurements of scrape-off layer ion-to-electron temperature ratio in Tore Supra ohmic plasmas

    Czech Academy of Sciences Publication Activity Database

    Kočan, M.; Gunn, J. P.; Pascal, J.-Y.; Bonhomme, G.; Devynck, P.; Ďuran, Ivan; Gauthier, E.; Ghendrih, P.; Marandet, Y.; Pegourie, B.; Vallet, J.-C.

    390-391, - (2009), s. 1074-1077 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Devices/18th./. Toledo, 26.05.2008-30.05. 2008] Institutional research plan: CEZ:AV0Z20430508 Keywords : Ion temperature * Electron temperature * Edge plasma * Tore Supra Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.933, year: 2009

  4. 3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards self-consistency

    International Nuclear Information System (INIS)

    Mascali, D.; Neri, L.; Castro, G.; Celona, L.; Gammino, S.; Torrisi, G.; Sorbello, G.

    2015-01-01

    Electron Cyclotron Resonance (ECR) ion Sources are the most performing machines for the production of intense beams of multi-charged ions in fundamental science, applied physics and industry. Investigation of plasma dynamics in ECRIS still remains a challenge. A better comprehension of electron heating, ionization and diffusion processes, ion confinement and ion beam formation is mandatory in order to increase ECRIS performances both in terms of output beams currents, charge states, beam quality (emittance minimization, beam halos suppression, etc.). Numerical solution of Vlasov equation via kinetic codes coupled to FEM solvers is ongoing at INFN-LNS, based on a PIC strategy. Preliminary results of the modeling will be shown about wave-plasma interaction and electron-ion confinement: the obtained results are very helpful to better understand the influence of the different parameters (especially RF frequency and power) on the ion beam formation mechanism. The most important clues coming out from the simulations are that although vacuum field RF field distribution (that is a cavity, modal field distribution) is perturbed by the plasma medium, the non-uniformity in the electric field amplitude still persists in the plasma filled cavity. This non-uniformity can be correlated with non-uniform plasma distribution, explaining a number of experimental observations

  5. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  6. Ion-induced electron emission from clean metals

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Ferron, J.; Oliva-Florio, A.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1979-01-01

    We report recent experimental work on electron emission from clean polycrystalline metal surfaces under ion bombardment. We critically discuss existing theories and point out the presently unsolved problems. (orig.)

  7. Radiative double-electron capture in collisions of fast heavy ions with solid carbon targets

    International Nuclear Information System (INIS)

    Yakhontov, V.L.; Amusia, M.Y.

    1997-01-01

    Two-electron capture with an emission of a single photon (TESP) in collisions of highly charged ions with light atoms is considered. Such a process is actually a time-reversed double photoionization but occurring at specific kinematics. In the lowest order in the interelectron interaction, the TESP probability is determined by two diagrams which are evaluated analytically by means of the Coulomb Green close-quote s function. The calculated ratio of the radiative double-electron capture and single recombination cross sections is in fair agreement with the data obtained in the recent experimental study of this phenomenon. copyright 1997 The American Physical Society

  8. Super TOF secondary ion mass spectroscopy using very highly charged primary ions up to Th70+

    International Nuclear Information System (INIS)

    Briere, M.A.; Schenkel, T.; Schneider, D.

    1995-01-01

    The LLNL Electron Beam Ion Trap (EBIT) has made low emittance beams of slow highly charged ions available for ion-solid interaction studies. Such interactions feature the dominance of electronic over collisional effects, and the shock waves generated by the ionized target atoms can desorb large numbers of large molecular species from the surface. This paper presents the first systematic study of the sputtering process due to the incidence of slow very highly charged ions; Th 70+ ions are extracted from EBIT at 7 keV * q and directed onto thin SiO 2 films on Si. Results suggest secondary ion yields of up to 25 per incident ion for Th 70+ (secondary ion yield is increased over that for singly or moderately charged ions). Correlations of the negative, positive, and negative cluster ion yields show promise for application of highly charged ion induced sputtering for enhanced sensitivity and quantitative (absolute) SIMS analysis of deep submicron scale surface layers and polymeric and biomolecular material analysis

  9. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions (updated 1993)

    International Nuclear Information System (INIS)

    Tawara, H.

    1993-04-01

    Following our previous compilations [IPPJ-AM-45 (1986), NIFS-DATA-7 (1990)], bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1980-1992 are included. For easy finding references for particular combination of collision partners, a simple list is also provided. (author) 1542 refs

  10. Effect of electron emission on an ion sheath structure

    International Nuclear Information System (INIS)

    Mishra, M K; Phukan, A; Chakraborty, M

    2014-01-01

    This article reports on the variations of ion sheath structures due to the emission of both hot and cold electrons in the target plasma region of a double plasma device. The ion sheath is produced in front of a negatively biased plate. The plasma is produced by hot filament discharge in the source region, and no discharge is created in the target region of the device. The plate is placed in the target (diffused plasma) region where cold electron emitting filaments are present. These cold electrons are free from maintenance of discharge, which is sustained in the source region. The hot ionizing electrons are present in the source region. Three important parameters are changed by both hot and cold electrons i.e. plasma density, plasma potential and electron temperature. The decrease in plasma potential and the increase in plasma density lead to the contraction of the sheath. (paper)

  11. Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model

    International Nuclear Information System (INIS)

    Aprea, G.; Di Castro, C.; Grilli, M. . E-mail marco.grilli@roma1.infn.it; Lorenzana, J.

    2006-01-01

    We investigate the interplay between the electron-electron and the electron-phonon interaction in the Hubbard-Holstein model. We implement the flow-equation method to investigate within this model the effect of correlation on the electron-phonon effective coupling and, conversely, the effect of phonons in the effective electron-electron interaction. Using this technique we obtain analytical momentum-dependent expressions for the effective couplings and we study their behavior for different physical regimes. In agreement with other works on this subject, we find that the electron-electron attraction mediated by phonons in the presence of Hubbard repulsion is peaked at low transferred momenta. The role of the characteristic energies involved is also analyzed

  12. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  13. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    International Nuclear Information System (INIS)

    Haseroth, Helmut; Hora, Heinrich; Regensburg Inst. of Tech.

    1996-01-01

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10 11 C 4+ ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ''hot'' electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author)

  14. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  15. Role of electron-electron interactions in the RKKY theory of magnetism

    International Nuclear Information System (INIS)

    Cooke, J.F.

    1978-10-01

    The theory of magnetism in heavy rare earth metals is based on the RKKY theory. In this formalism the indirect exchange interaction between the local 4f spins is mediated by the conduction electrons. When carried to second order in the 4f-conduction electron interaction, traditional perturbation theory leads to a Heisenberg-like interaction between the local spins which depends on the electronic energy bands and 4f-conduction electron exchange matrix elements. This derivation neglects the detailed behavior of electron-electron interaction within the conduction band, which is known to be important in metallic systems. By using an equation of motion method, an expression for the inelastic neutron scattering cross-section has been derived which includes, in an approximate way, this electron-electron interaction. The results of this calculation indicate that spin-wave peaks can be broadened and shifted if the spin-wave band lies near the conduction electron Stoner continuum. The origin of this effect is similar to that found in itinerant electron systems where the spin-wave band actually intersects the Stoner continuum, resulting in the disappearance of the spin-wave mode

  16. Role of electron-electron interactions in the RKKY theory of magnetism

    International Nuclear Information System (INIS)

    Cooke, J.F.

    1979-01-01

    The theory of magnetism in heavy rare earth metals is based on the RKKY theory. In this formalism the indirect exchange interaction between the local 4f spins is mediated by the conduction electrons. When carried to second order in the 4f-conduction electron interaction, traditional pertubation theory leads to a Heisenberg-like interaction between the local spins which depends on the electronic energy bands and 4f-conduction electron exchange matrix elements. This derivation neglects the detailed behavior of electron-electron interaction within the conduction band, which is known to be important in metallic systems. By using an equation of motion method, an expression for the inelastic neutron scattering cross-section has been derived which includes, in an approximate way, this electron-electron interaction. The results of this calculation indicate that spin-wave peaks can be broadened and shifted if the spin-wave band lies near the conduction electron Stoner continuum. The origin of this effect is similar to that found in itinerant electron systems where the spin-wave band actually intersects the Stoner continuum, resulting in the disappearance of the spin-wave mode

  17. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  18. Simulation studies of electron acceleration by ion ring distributions in solar flares

    International Nuclear Information System (INIS)

    McClements, K.G.; Bingham, R.; Su, J.J.; Dawson, J.M.; Spicer, D.S.

    1990-07-01

    Using a 21/2-D fully relativistic electromagnetic particle-in-cell code (PIC) we have investigated a potential electron acceleration mechanism in solar flares. The free energy is provided by ions which have a ring velocity distribution about the magnetic field direction. Ion rings may be produced by perpendicular shocks, which could in turn be generated by the super-Alfvenic motion of magnetic flux tubes emerging from the photosphere or by coronal mass ejections (CMEs). Such ion distributions are known to be unstable to the generation of lower hybrid waves, which have phase velocities in excess of the electron thermal speed parallel to the field and can therefore resonantly accelerate electrons in that direction. The simulations show the transfer of perpendicular ion energy to energetic electrons via lower hybrid wave turbulence. With plausible ion ring velocities, the process can account for the observationally inferred fluxes and energies of non-thermal electrons during the impulsive phase of flares. Our results also show electrostatic wave generation close to the plasma frequency: we suggest that this is due to bump-in-tail instability of the electron distribution. (author)

  19. Linear electrostatic waves in a three-component electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mugemana, A., E-mail: mugemanaa@gmail.com; Moolla, S. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lazarus, I. J. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Durban 4000 (South Africa)

    2014-12-15

    Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.

  20. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen

    1979-01-01

    The kinetic emission of secondary electrons from ion-bombarded solid surfaces is split into two contributions, a direct one caused by ionizing collisions between the bombarding ion and target atoms, and an indirect one originating from ionizing collisions undergone by recoil atoms with other target...... atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...

  1. The effect of closed channels on the electron impact excitation of Mg +, Cd + ions

    Science.gov (United States)

    Li, Yueming

    2018-04-01

    Based on the developed method for solving the multi-channel equation, which had been applied to the calculations of several kinds of ions including only open-open interactions, closed channels and their interactions with open channels have been studied. The wave functions of the closed channels are also expressed in terms of their homogeneous solutions which is just the same as for open channels. The homogeneous solutions are described and solved in WKB form, therefore the regular and irregular solutions as well as the quantum defect numbers can be obtained simultaneously. Excitations of Mg +, Cd + ions impact by electrons are calculated for energies close to the thresholds. The results are compared with those of the experimental observations and previous theoretical calculations. The effect of including the closed channels, especially when the energy passes through the resonance energies, has been discussed according to the deduced formulae and the calculated results.

  2. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  3. Nonlinear waves in electron-positron-ion plasmas including charge separation

    Science.gov (United States)

    Mugemana, A.; Moolla, S.; Lazarus, I. J.

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.

  4. Modeling secondary electron emission from nanostructured materials in helium ion microscope

    International Nuclear Information System (INIS)

    Ohya, K.; Yamanaka, T.

    2013-01-01

    Charging of a SiO 2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers ( 2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO 2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO 2 layer

  5. Electron-nuclear. gamma. transition spectrum of a nucleus in a multicharged atomic ion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, L N; Letokhov, V S

    1987-08-01

    The nuclear emission of absorption spectrum of an atom possesses a set of electron satelites which are due to an alternation of the state of the electron shell. It is shown that the mechanism of formation of the satellites might be different for neutral atoms and high-charge ions. In the first case (loose electron shell) a ''shaking'' of the shell resulting from the interaction between the nucleus and ..gamma.. quantum is predominant. In the second case (rigid electron shell) the mechanism involves a direct interaction between the ..gamma.. quantum and electrons. The second mechanism is important in the case of dipole nuclear transitions and dominates at ..gamma.. quantum energies electron transition multiplicity do not pertain to the second mechanism. Consequently, the satellite spectrum is much enriched and transitions between the fine and hyperfine structure components, transitions and transitions which do not involve a change in the electron configuration can be considered. The relative intensities of the satellites are determined by the smallest parameter ..mu../sub p//sup 2lambda/ (lambda is the nuclear transition multipole order, ..mu../sub p/ approx. 12 ..pi.. is the relative proton mass and z the core mass). In the spectrum of the plasma source the electron satellites corresponding to the ..gamma.. quantum emission and absorption lines are not overlapped by the Doppler contour of the ..gamma.. line.

  6. Suppression secondary electrons from target surface under pulsed ion beams bombardment

    International Nuclear Information System (INIS)

    Yang Zhen; Peng Yufei; Long Jidong; Lan Chaohui; Dong Pan; Shi Jinshui

    2012-01-01

    The producing mechanism of secondary electrons from target surface under ion beams bombardment is discussed. Several methods to suppress the secondary electrons in special vacuum devices and their advantages and disadvantages are introduced. The ways of using self-bias and curved surface target are proposed and verified in the experiment. The results show that the secondary electrons can be effectively suppressed when the self-bias is larger than 80 V. The secondary electron yield decreases by using curved surface target instead of flat target. The secondary electron yield calculated from the experimental data is about 0.67, which is slightly larger than the value (0.58) from the literature due to the impurities of the ion beam and target surface. The effect of suppressing the electron countercurrent by the self-bias method is analyzed. The result shows that the self-bias method can not only suppress the secondary electrons from target surface under ion beams bombardment, but also suppress the electron countercurrent resulting from the instability of the pulsed power source. (authors)

  7. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  8. Modifications of poly (vinilydene fluoride) under electronic excitations produced by charged particles (heavy ions and electrons)

    International Nuclear Information System (INIS)

    Fina, A.

    1990-04-01

    Some of the physico-chemical properties of organic solids like conductivity or permeation can be improved by irradiation. The aim of this work is to characterize modifications induced in poly (vinylidene fluoride) films (PVDF) by charged particles (ions and electrons), with electronic stopping power, for doses ranging from zero to twenty G-Grays. Influence of dose, density of electronic excitations, and flux (in particles per square centimeter), and the nature of defects induced by the beam, were studied with two methods: X-ray Photoelectron Spectroscopy (or XPS) for surface analysis, and electron Spin Resonance (or ESR) to probe the bulk of the film. Three ranges of doses are revealed in view of experimental results. At lower doses, PVDF undergoes deshydrofluorination induced by desorption; it is a low modifications regime. For intermediate range doses, conjugated carbon backbones of polyene compounds are produced. At higher doses, intermolecular interactions between the resulting fragments give a crosslinked network. For the upper limit of doses used, bond breaking results in a non reversible degradation of PVDF. In this last situation, direct atomic displacement of target atoms, is not negligible [fr

  9. The ion-electron correlation function in liquid metals

    International Nuclear Information System (INIS)

    Takeda, S.; Tamaki, S.; Waseda, Y.

    1985-01-01

    The structure factors of liquid Zn at 723 K, Sn at 523 K and Bi at 573 K have been determined by neutron diffraction with sufficient accuracy and compared with those of X-ray diffraction. A remarkable difference in the structural information between the two methods is clearly found around the first peak region as well as in the slightly varied peak positions, and it is apparently larger than the experimental errors. With these facts in mind, a new method evaluating the ion-electron correlation function in liquid metals has been proposed by using the measured structural data of X-rays and neutrons, with the help of theoretical values of the electron-electron correlation function by he Utsumi-Ichimaru scheme. This method has been applied to liquid Zn, Sn and Bi, and the radial distribution function of valence electrons around an ion has been estimated, from which the ionic radius and the schematic diagram of the electron distribution map are obtained. The ionic radii evaluated in this work have been found to agree well with those proposed by Pauling. (author)

  10. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  11. Electrostatic analyzer for electron and ion energy in glow discharge tube

    International Nuclear Information System (INIS)

    Bong Kil Yeon.

    1984-01-01

    The project, the construction and use of an electrostatic energy analyser (Faraday Cup) are described explaining physically its working mechanism. The analyser was used in a glow discharge tube with air and an air-argon mixture. A chapter with the theory of the glow discharge is included. The ion and electron temperatures, the plasma potential and the distribution function for ions and electrons were measured. The electron temperature and plasma potential were also measured using a Langmuir probe and the results show reasonable agreement with the results of the analyser. Good fits of the experimental electron and ion distribution functions were obtained with Maxwellian distributions centered values near the plasma potential. Finally, we discuss the performance of the analyser compared to Langmuir probes. (author) [pt

  12. ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS

    NARCIS (Netherlands)

    MORGENSTERN, R

    1993-01-01

    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons,

  13. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments

    Directory of Open Access Journals (Sweden)

    Zhengfeng Fan

    2017-01-01

    Full Text Available The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into the hot spot are less than unity assuming electrons and ions have the same temperature [Meezan et al., Phys. Plasmas 22, 062703 (2015], which is not self-consistent because it can lead to negative ablator mixing into the hot spot. Actually, this non-consistency implies ion-electron non-equilibrium within the hot spot. From our study, we can infer that ion-electron non-equilibrium exists in high-foot implosions and the ion temperature could be ∼9% larger than the equilibrium temperature in some NIF shots.

  14. Ion assistance effects on electron beam deposited MgF sub 2 films

    CERN Document Server

    Alvisi, M; Della Patria, A; Di Giulio, M; Masetti, E; Perrone, M R; Protopapa, M L; Tepore, A

    2002-01-01

    Thin films of MgF sub 2 have been deposited by the ion-assisted electron-beam evaporation technique in order to find out the ion beam parameters leading to films of high laser damage threshold whose optical properties are stable under uncontrolled atmosphere conditions. It has been found that the ion-assisted electron-beam evaporation technique allows getting films with optical properties (refraction index and extinction coefficient) of high environmental stability by properly choosing the ion-source voltage and current. But, the laser damage fluence at 308 nm was quite dependent on the assisting ion beam parameters. Larger laser damage fluences have been found for the films deposited by using assisting ion beams delivered at lower anode voltage and current values. It has also been found that the films deposited without ion assistance were characterized by the highest laser damage fluence (5.9 J/cm sup 2) and the lowest environmental stability. The scanning electron microscopy analysis of the irradiated areas...

  15. [Effect of high magnesium ion concentration on the electron transport rate and proton exchange in thylakoid membranes in higher plants].

    Science.gov (United States)

    Ignat'ev, A R; Khorobrykh, S A; Ivanov, B N

    2001-01-01

    The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.

  16. Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models.

    Science.gov (United States)

    Scheers, Johan; Niedzicki, Leszek; Zukowska, Grażyna Z; Johansson, Patrik; Wieczorek, Władysław; Jacobsson, Per

    2011-06-21

    Molecular level interactions are of crucial importance for the transport properties and overall performance of ion conducting electrolytes. In this work we explore ion-ion and ion-solvent interactions in liquid and solid polymer electrolytes of lithium 4,5-dicyano-(2-trifluoromethyl)imidazolide (LiTDI)-a promising salt for lithium battery applications-using Raman spectroscopy and density functional theory calculations. High concentrations of ion associates are found in LiTDI:acetonitrile electrolytes, the vibrational signatures of which are transferable to PEO-based LiTDI electrolytes. The origins of the spectroscopic changes are interpreted by comparing experimental spectra with simulated Raman spectra of model structures. Simple ion pair models in vacuum identify the imidazole nitrogen atom of the TDI anion to be the most important coordination site for Li(+), however, including implicit or explicit solvent effects lead to qualitative changes in the coordination geometry and improved correlation of experimental and simulated Raman spectra. To model larger aggregates, solvent effects are found to be crucial, and we finally suggest possible triplet and dimer ionic structures in the investigated electrolytes. In addition, the effects of introducing water into the electrolytes-via a hydrate form of LiTDI-are discussed.

  17. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  18. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  19. Nonlinear effects in interactions of swift ions with solids

    International Nuclear Information System (INIS)

    Crawford, O.H.; Dorado, J.J.; Flores, F.

    1994-01-01

    The passage of a swift charged particle through a solid gives rise to a wake of induced electron density behind the particle. It is calculated for a proton penetrating an electron gas having the density of the valence electrons in gold, assuming linear response of the medium. The induced potential associated with the wake is responsible for the energy loss of the particle, and for many effects that have captured recent interest. These include, among others, vicinage effects on swift ion clusters, emission of electrons from bombarded solids, forces on swift ions near a surface, and energy shifts in electronic states of channeled ions. Furthermore, the wake has a determining influence on the spatial distribution, and character, of energy deposition in the medium. Previous theoretical studies of these phenomena have employed a linear wake, i.e., one that is proportional to the charge of the projectile, eZ. However, in most experiments that measure these effects, the conditions are such that the wake must include higher-order terms in Z. The purpose of this study is to analyze the nonlinear wake, to understand how the linear results must be revised

  20. Anomalous electron heating and energy balance in an ion beam generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guethlein, G.

    1987-04-01

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H/sub 2/ gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy.