WorldWideScience

Sample records for electron flavoprotein dehydrogenase

  1. Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex.

    Science.gov (United States)

    Jang, M H; Scrutton, N S; Hille, R

    2000-04-28

    The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.

  2. A single arginine residue is required for the interaction of the electron transferring flavoprotein (ETF) with three of its dehydrogenase partners.

    Science.gov (United States)

    Parker, Antony R

    2003-12-01

    The interaction of several dehydrogenases with the electron transferring flavoprotein (ETF) is a crucial step required for the successful transfer of electrons into the electron transport chain. The exact determinants regarding the interaction of ETF with its dehydrogenase partners are still unknown. Chemical modification of ETF with arginine-specific reagents resulted in the loss, to varying degrees, of activity with medium chain acyl-coenzyme A dehydrogenase (MCAD). The kinetic profiles showed the inactivations followed pseudo-first-order kinetics for all reagents used. For activity with MCAD, maximum inactivation of ETF was accomplished by 2,3-butanedione (4% residual activity after 120 min) and it was shown that modification of one arginine residue was responsible for the inactivation. Almost 100% restoration of this ETF activity was achieved upon incubation with free arginine. However, the same 2,3-butanedione modified ETF only possessed decreased activity with dimethylglycine-(DMGDH, 44%) and sarcosine- (SDH, 27%) dehydrogenases unlike the abolition with MCAD. Full protection of ETF from arginine modification by 2,3-butanedione was achieved using substrate-protected DMGDH, MCAD and SDH respectively. Cross-protection studies of ETF with the three dehydrogenases implied use of the same single arginine residue in the binding of all three dehydrogenases. These results lead us to conclude that this single arginine residue is essential in the binding of the ETF to MCAD, but only contributes partially to the binding of ETF to SDH and DMGDH and thus, the determinants of the dehydrogenase binding sites overlap but are not identical.

  3. Studies on the Mechanism of Electron Bifurcation Catalyzed by Electron Transferring Flavoprotein (Etf) and Butyryl-CoA Dehydrogenase (Bcd) of Acidaminococcus fermentans*

    Science.gov (United States)

    Chowdhury, Nilanjan Pal; Mowafy, Amr M.; Demmer, Julius K.; Upadhyay, Vikrant; Koelzer, Sebastian; Jayamani, Elamparithi; Kahnt, Joerg; Hornung, Marco; Demmer, Ulrike; Ermler, Ulrich; Buckel, Wolfgang

    2014-01-01

    Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD+ complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH− is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH− by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD⨪, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH•, immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH− that converts crotonyl-CoA to butyryl-CoA. PMID:24379410

  4. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans.

    Science.gov (United States)

    Chowdhury, Nilanjan Pal; Mowafy, Amr M; Demmer, Julius K; Upadhyay, Vikrant; Koelzer, Sebastian; Jayamani, Elamparithi; Kahnt, Joerg; Hornung, Marco; Demmer, Ulrike; Ermler, Ulrich; Buckel, Wolfgang

    2014-02-21

    Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD(+) complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH(-) is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH(-) by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH(•), immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH(-) that converts crotonyl-CoA to butyryl-CoA.

  5. Binding of the human "electron transferring flavoprotein" (ETF) to the medium chain acyl-CoA dehydrogenase (MCAD) involves an arginine and histidine residue.

    Science.gov (United States)

    Parker, Antony R

    2003-10-01

    The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.

  6. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene

    Science.gov (United States)

    Gempel, Klaus; Topaloglu, Haluk; Talim, Beril; Schneiderat, Peter; Schoser, Benedikt G. H.; Hans, Volkmar H.; Pálmafy, Beatrix; Kale, Gulsev; Tokatli, Aysegul; Quinzii, Catarina; Hirano, Michio; Naini, Ali; DiMauro, Salvatore; Prokisch, Holger; Lochmüller, Hanns; Horvath, Rita

    2014-01-01

    Coenzyme Q10 (CoQ10) deficiency is an autosomal recessive disorder with heterogenous phenotypic manifestations and genetic background. We describe seven patients from five independent families with an isolated myopathic phenotype of CoQ10 deficiency. The clinical, histological and biochemical presentation of our patients was very homogenous. All patients presented with exercise intolerance, fatigue, proximal myopathy and high serum CK. Muscle histology showed lipid accumulation and subtle signs of mitochondrial myopathy. Biochemical measurement of muscle homogenates showed severely decreased activities of respiratory chain complexes I and II +III, while complex IV (COX) was moderately decreased. CoQ10 was significantly decreased in the skeletal muscle of all patients. Tandem mass spectrometry detected multiple acyl-CoA deficiency, leading to the analysis of the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene, previously shown to result in another metabolic disorder, glutaric aciduria type II (GAII). All of our patients carried autosomal recessive mutations in ETFDH, suggesting that ETFDH deficiency leads to a secondary CoQ10 deficiency. Our results indicate that the late-onset form of GAII and the myopathic form of CoQ10 deficiency are allelic diseases. Since this condition is treatable, correct diagnosis is of the utmost importance and should be considered both in children and in adults. We suggest to give patients both CoQ10 and riboflavin supplementation, especially for long-term treatment. PMID:17412732

  7. Cross-linking of the electron-transfer flavoprotein to electron-transfer flavoprotein-ubiquinone oxidoreductase with heterobifunctional reagents.

    OpenAIRE

    Steenkamp, D J

    1988-01-01

    The mitochondrial electron-transfer flavoprotein (ETF) is a heterodimer containing only one FAD. In previous work on the structure-function relationships of ETF, its interaction with the general acyl-CoA dehydrogenase (GAD) was studied by chemical cross-linking with heterobifunctional reagents [D. J. Steenkamp (1987) Biochem. J. 243, 519-524]. GAD whose lysine residues were substituted with 3-(2-pyridyldithio)propionyl groups was preferentially cross-linked to the small subunit of ETF, the ly...

  8. 5,5'-Dithiobis-(2-nitrobenzoic acid) as a probe for a non-essential cysteine residue at the medium chain acyl-coenzyme A dehydrogenase binding site of the human 'electron transferring flavoprotein' (ETF).

    Science.gov (United States)

    Parker, A; Engel, P C

    1999-01-01

    Human 'electron transferring flavoprotein' (ETF) was inactivated by the thiol-specific reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). The kinetic profile showed the reaction followed pseudo-first-order kinetics during the initial phase of inactivation. Monitoring the release of 5-thio-2-nitrobenzoate (TNB) showed that modification of 1 cysteine residue was responsible for the loss of activity. The inactivation of ETF by DTNB could be reversed upon incubation with thiol-containing reagents. The loss of activity was prevented by the inclusion of medium chain acyl-CoA dehydrogenase (MCAD) and octanoyl-CoA. Cyanolysis of the DTNB modified-ETF with KCN led to the release of TNB accompanied presumably by the formation of the thio-cyano enzyme and with almost full recovery of activity. Conservation studies and the lack of 100% inactivation, however, suggested that this cysteine residue is not essential for the interaction with MCAD.

  9. Electron transfer flavoprotein deficiency: Functional and molecular aspects

    DEFF Research Database (Denmark)

    Schiff, M; Froissart, R; Olsen, Rikke Katrine Jentoft

    2006-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a recessively inherited metabolic disorder that can be due to a deficiency of electron transfer flavoprotein (ETF) or its dehydrogenase (ETF-ubiquinone oxidoreductase). ETF is a mitochondrial matrix protein consisting of alpha- (30kDa) and beta......- (28kDa) subunits encoded by the ETFA and ETFB genes, respectively. In the present study, we have analysed tissue samples from 16 unrelated patients with ETF deficiency, and we report the results of ETF activity, Western blot analysis and mutation analysis. The ETF assay provides a reliable diagnostic...... tool to confirm ETF deficiency in patients suspected to suffer from MADD. Activity ranged from less than 1 to 16% of controls with the most severely affected patients disclosing the lowest activity values. The majority of patients had mutations in the ETFA gene while only two of them harboured...

  10. Characterization and redesign of galactonolactone dehydrogenase, a flavoprotein producing vitamin C

    NARCIS (Netherlands)

    Leferink, N.G.H.

    2009-01-01

    Keywords: aldonolactone oxidoreductases, Arabidopsis thaliana, flavoprotein, galactonolactone dehydrogenase, molecular gatekeeper, oxidase, protein engineering, vanillyl-alcohol oxidase family, vitamin C Redox enzymes are attractive biocatalysts because of their intrinsic (enantio-)selectivity and

  11. Late-onset form of beta-electron transfer flavoprotein deficiency

    DEFF Research Database (Denmark)

    Curcoy, A; Olsen, Rikke Katrine Jentoft; Ribes, A

    2003-01-01

    Multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein (ETF) or electron transfer flavoprotein ubiquinone oxidoreductase (ETF-QO). We report the clinical features...... and biochemical and molecular genetic analyses of a patient with a mild late-onset form of GAII due to beta-ETF deficiency. Biochemical data showed an abnormal urine organic acid profile, low levels of free carnitine, increased levels of C(10:1n-6), and C(14:1n-9) in plasma, and decreased oxidation of [9,10-3H...

  12. Probing the dynamic interface between trimethylamine dehydrogenase (TMADH) and electron transferring flavoprotein (ETF) in the TMADH-2ETF complex: role of the Arg-alpha237 (ETF) and Tyr-442 (TMADH) residue pair.

    Science.gov (United States)

    Burgess, Selena G; Messiha, Hanan Latif; Katona, Gergely; Rigby, Stephen E J; Leys, David; Scrutton, Nigel S

    2008-05-06

    We have used multiple solution state techniques and crystallographic analysis to investigate the importance of a putative transient interaction formed between Arg-alpha237 in electron transferring flavoprotein (ETF) and Tyr-442 in trimethylamine dehydrogenase (TMADH) in complex assembly, electron transfer, and structural imprinting of ETF by TMADH. We have isolated four mutant forms of ETF altered in the identity of the residue at position 237 (alphaR237A, alphaR237K, alphaR237C, and alphaR237E) and with each form studied electron transfer from TMADH to ETF, investigated the reduction potentials of the bound ETF cofactor, and analyzed complex formation. We show that mutation of Arg-alpha237 substantially destabilizes the semiquinone couple of the bound FAD and impedes electron transfer from TMADH to ETF. Crystallographic structures of the mutant ETF proteins indicate that mutation does not perturb the overall structure of ETF, but leads to disruption of an electrostatic network at an ETF domain boundary that likely affects the dynamic properties of ETF in the crystal and in solution. We show that Arg-alpha237 is required for TMADH to structurally imprint the as-purified semiquinone form of wild-type ETF and that the ability of TMADH to facilitate this structural reorganization is lost following (i) redox cycling of ETF, or simple conversion to the oxidized form, and (ii) mutagenesis of Arg-alpha237. We discuss this result in light of recent apparent conflict in the literature relating to the structural imprinting of wild-type ETF. Our studies support a mechanism of electron transfer by conformational sampling as advanced from our previous analysis of the crystal structure of the TMADH-2ETF complex [Leys, D. , Basran, J. , Sutcliffe, M. J., and Scrutton, N. S. (2003) Nature Struct. Biol. 10, 219-225] and point to a key role for the Tyr-442 (TMADH) and Arg-alpha237 (ETF) residue pair in transiently stabilizing productive electron transfer configurations. Our work

  13. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Winter, V

    1999-01-01

    The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability, wher....... This is compatible with a negative modulating effect of the less-stable alpha-T171 ETF variant in this group of VLCAD patients that harbor missense mutations in at least one allele and therefore potentially display residual levels of VLCAD enzyme activity....

  14. Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.

    Science.gov (United States)

    Garcia Costas, Amaya M; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J; Ledbetter, Rhesa N; Fixen, Kathryn R; Seefeldt, Lance C; Adams, Michael W W; Harwood, Caroline S; Boyd, Eric S; Peters, John W

    2017-11-01

    Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes.IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize

  15. Late-onset form of beta-electron transfer flavoprotein deficiency

    DEFF Research Database (Denmark)

    Curcoy, A; Olsen, R K J; Ribes, A

    2003-01-01

    Multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein (ETF) or electron transfer flavoprotein ubiquinone oxidoreductase (ETF-QO). We report the clinical features...... and biochemical and molecular genetic analyses of a patient with a mild late-onset form of GAII due to beta-ETF deficiency. Biochemical data showed an abnormal urine organic acid profile, low levels of free carnitine, increased levels of C(10:1n-6), and C(14:1n-9) in plasma, and decreased oxidation of [9,10-3H......]palmitate and [9,10-3H]myristate in fibroblasts, suggesting MAD deficiency. In agreement with these findings, mutational analysis of the ETF/ETFDH genes demonstrated an ETFB missense mutation 124T>C in exon 2 leading to replacement of cysteine-42 with arginine (C42R), and a 604_606AAG deletion in exon 6...

  16. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)

    Science.gov (United States)

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  17. l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis.

    NARCIS (Netherlands)

    Leferink, N.G.H.; Berg, van den W.A.M.; Berkel, van W.J.H.

    2008-01-01

    l-Galactono-1,4-lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l-ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant

  18. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO).

    Science.gov (United States)

    Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  19. Phylogenetic characterization of the ubiquitous electron transfer flavoprotein families ETF-alpha and ETF-beta.

    Science.gov (United States)

    Tsai, M H; Saier, M H

    1995-06-01

    Electron transfer flavoproteins (ETF) are alpha beta-heterodimers found in eukaryotic mitochondria and bacteria. We have identified currently sequenced protein members of the ETF-alpha and ETF-beta families. Members of these two families include (a) the ETF subunits of mammals and bacteria, (b) homologous pairs of proteins (FixB/FixA) that are essential for nitrogen fixation in some bacteria, and (c) a pair of carnitine-inducible proteins encoded by two open reading frames in Escherichia coli (YaaQ and YaaR). These three groups of proteins comprise three clusters on both the ETF-alpha and ETF-beta phylogenetic trees, separated from each other by comparable phylogenetic distances. This fact suggests that these two protein families evolved with similar overall rates of evolutionary divergence. Relative regions of sequence conservation are evaluated, and signature sequences for both families are derived.

  20. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Spaan, András N.; Ijlst, Lodewijk; van Roermund, Carlo W. T.; Wijburg, Frits A.; Wanders, Ronald J. A.; Waterham, Hans R.

    2005-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have

  1. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia.

    Science.gov (United States)

    Stietz, Maria S; Lopez, Christina; Osifo, Osasumwen; Tolmasky, Marcelo E; Cardona, Silvia T

    2017-10-01

    There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.

  2. Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene.

    Science.gov (United States)

    Goodman, Stephen I; Binard, Robert J; Woontner, Michael R; Frerman, Frank E

    2002-01-01

    Glutaric acidemia type II is a human inborn error of metabolism which can be due to defects in either subunit of electron transfer flavoprotein (ETF) or in ETF:ubiquinone oxidoreductase (ETF:QO), but few disease-causing mutations have been described. The ETF:QO gene is located on 4q33, and contains 13 exons. Primers to amplify these exons are presented, together with mutations identified by molecular analysis of 20 ETF:QO-deficient patients. Twenty-one different disease-causing mutations were identified on 36 of the 40 chromosomes.

  3. Measurement of the oxidation-reduction potentials for one-electron and two-electron reduction of electron-transfer flavoprotein from pig liver.

    OpenAIRE

    Husain, M.; Stankovich, M T; Fox, B G

    1984-01-01

    Potentiometric titrations of pig liver electron-transfer flavoprotein (ETF) were performed at pH 7.5 and 4 degrees C, both in the reductive and oxidative directions. Reduction of ETF to the hydroquinone form required a total of two reducing equivalents/mol of ETF with the formation of sub-stoichiometric amounts of anionic semiquinone as an intermediate. The oxidation-reduction potentials for the two one-electron couples, oxidized ETF/ETF semiquinone and ETF semiquinone/fully reduced ETF, are ...

  4. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties.

    Science.gov (United States)

    Beckmann, J D; Frerman, F E

    1985-07-16

    Electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) was purified to homogeneity from pig liver submitochondrial particles. It is comparable in molecular weight and general properties to ETF-QO from beef heart [Ruzicka, F. J., & Beinert, H. (1977) J. Biol. Chem. 252, 8440-8445], and the electron spin resonance signals of the reduced iron-sulfur cluster are essentially identical. ETF-QO catalyzes the transfer of electrons from electron-transfer flavoprotein (ETF) to nitro blue tetrazolium, with a sluggish reaction turnover number of about 10-30 min-1. In contrast, the enzyme rapidly disproportionates ETF semiquinone, with a turnover number of 200 s-1. The reverse reaction, comproportionation of oxidized and hydroquinone ETF, provides an enzymatic assay for ETF-QO with picomolar sensitivity. Equilibrium spectrophotometric titrations show that ETF-QO accepts a maximum of two electrons from ETF and accepts three electron equivalents from dithionite or by photochemical reduction. All electrons from the enzymatically or chemically reduced protein can be transferred to 2,3-dimethoxy-5-methyl-6-pentyl-1,4-benzoquinone (PB), and this reaction is readily reversible. Reduction of ETF-QO by 2,3-dimethoxy-5-methyl-6-pentyl-1,4-benzohydroquinone is pH dependent and indicates the enzyme to have a redox potential that decreases by 47 mV per pH unit. Therefore, ETF-QO binds one to two protons upon reduction. The EO' at pH 7.3 is 38 mV. The ability of ETF-QO to catalyze the equilibration of ETF redox states has been used to evaluate the equilibrium 2ETFsq + nH+ in equilibrium ETFox + ETFhq.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Restricting the conformational freedom of the neuronal nitric-oxide synthase flavoprotein domain reveals impact on electron transfer and catalysis.

    Science.gov (United States)

    Dai, Yue; Haque, Mohammad Mahfuzul; Stuehr, Dennis J

    2017-04-21

    The signaling molecule nitric oxide (NO) is synthesized in animals by structurally related NO synthases (NOSs), which contain NADPH/FAD- and FMN-binding domains. During catalysis, NADPH-derived electrons transfer into FAD and then distribute into the FMN domain for further transfer to internal or external heme groups. Conformational freedom of the FMN domain is thought to be essential for the electron transfer (ET) reactions in NOSs. To directly examine this concept, we utilized a "Cys-lite" neuronal NOS flavoprotein domain and substituted Cys for two residues (Glu-816 and Arg-1229) forming a salt bridge between the NADPH/FAD and FMN domains in the conformationally closed structure to allow cross-domain disulfide bond formation or cross-linking by bismaleimides of various lengths. The disulfide bond cross-link caused a ≥95% loss of cytochrome c reductase activity that was reversible with DTT treatment, whereas graded cross-link lengthening gradually increased activity, thus defining the conformational constraints in the catalytic process. We used spectroscopic and stopped-flow techniques to further investigate how the changes in FMN domain conformational freedom impact the following: (i) the NADPH interaction; (ii) kinetics of electron loading (flavin reduction); (iii) stabilization of open versus closed conformational forms in two different flavin redox states; (iv) reactivity of the reduced FMN domain toward cytochrome c ; (v) response to calmodulin binding; and (vi) the rates of interflavin ET and the FMN domain conformational dynamics. Together, our findings help explain how the spatial and temporal behaviors of the FMN domain impact catalysis by the NOS flavoprotein domain and how these behaviors are governed to enable electron flow through the enzyme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Assignment of electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) to human chromosome 4q33 by fluorescence in situ hybridization and somatic cell hybridization.

    Science.gov (United States)

    Spector, E B; Seltzer, W K; Goodman, S I

    1999-08-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a nuclear-encoded protein located in the inner mitochondrial membrane. Inherited defects of ETF-QO cause glutaric acidemia type II. We here describe the localization of the ETF-QO gene to human chromosome 4q33 by somatic cell hybridization and fluorescence in situ hybridization. Copyright 1999 Academic Press.

  7. The Iron-Sulfur Cluster of Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETF-QO) is the Electron Acceptor for Electron Transfer Flavoprotein†

    Science.gov (United States)

    Swanson, Michael A.; Usselman, Robert J.; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2011-01-01

    Electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron-transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone-pool. It contains one [4Fe-4S]2+,1+ and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S]2+,1+ to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S]+ at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 mV and −30 mV for wild type to −11 mV and −19 mV, respectively. The N338A mutation decreased the potentials to −37 mV and −49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e− catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone, but not in electron transfer from ETF to ETF-QO. Therefore the iron-sulfur cluster is the immediate acceptor from ETF. PMID:18672901

  8. Distinct Properties Underlie Flavin-Based Electron Bifurcation in a Novel Electron Transfer Flavoprotein FixAB from Rhodopseudomonas palustris

    Energy Technology Data Exchange (ETDEWEB)

    King, Paul W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lubner, Carolyn E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duan, H. Diessel [University of Kentucky; Tokmina-Lukaszewska, Monika [Montana State University; Gauss, George H. [Montana State University; Bothner, Brian [Montana State University; Peters, John W. [Washington State University; Miller, Anne-Frances [University of Kentucky

    2018-02-09

    A newly-recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low potential electrons to demanding chemical reactions such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation.

  9. The METTL20 Homologue from Agrobacterium tumefaciens Is a Dual Specificity Protein-lysine Methyltransferase That Targets Ribosomal Protein L7/L12 and the β Subunit of Electron Transfer Flavoprotein (ETFβ).

    Science.gov (United States)

    Małecki, Jędrzej; Dahl, Helge-André; Moen, Anders; Davydova, Erna; Falnes, Pål Ø

    2016-04-29

    Human METTL20 is a mitochondrial, lysine-specific methyltransferase that methylates the β-subunit of electron transfer flavoprotein (ETFβ). Interestingly, putative METTL20 orthologues are found in a subset of α-proteobacteria, including Agrobacterium tumefaciens Using an activity-based approach, we identified in bacterial extracts two substrates of recombinant METTL20 from A. tumefaciens (AtMETTL20), namely ETFβ and the ribosomal protein RpL7/L12. We show that AtMETTL20, analogous to the human enzyme, methylates ETFβ on Lys-193 and Lys-196 both in vitro and in vivo ETF plays a key role in mediating electron transfer from various dehydrogenases, and we found that its electron transferring ability was diminished by AtMETTL20-mediated methylation of ETFβ. Somewhat surprisingly, AtMETTL20 also catalyzed monomethylation of RpL7/L12 on Lys-86, a common modification also found in many bacteria that lack METTL20. Thus, we here identify AtMETTL20 as the first enzyme catalyzing RpL7/L12 methylation. In summary, here we have identified and characterized a novel bacterial lysine-specific methyltransferase with unprecedented dual substrate specificity within the seven β-strand class of lysine-specific methyltransferases, as it targets two apparently unrelated substrates, ETFβ and RpL7/L12. Moreover, the present work establishes METTL20-mediated methylation of ETFβ as the first lysine methylation event occurring in both bacteria and humans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction : correlations with the crystal structure

    NARCIS (Netherlands)

    Popelková, Hana; Fraaije, Marco W.; Novák, Ondřej; Frébortová, Jitka; Bilyeu, Kristin D.; Frébort, Ivo

    2006-01-01

    CKX (cytokinin dehydrogenase) is a flavoprotein that cleaves cytokinins to adenine and the corresponding side-chain aldehyde using a quinone-type electron acceptor. In the present study, reactions of maize (Zea mays) CKX with five different substrates (N6-isopentenyladenine, trans-zeatin, kinetin,

  11. Impact of mutations on the midpoint potential of the [4Fe-4S]+1,+2 cluster and on catalytic activity in electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO).

    Science.gov (United States)

    Usselman, Robert J; Fielding, Alistair J; Frerman, Frank E; Watmough, Nicholas J; Eaton, Gareth R; Eaton, Sandra S

    2008-01-08

    Electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is an iron-sulfur flavoprotein that accepts electrons from electron-transfer flavoprotein (ETF) and reduces ubiquinone from the Q-pool. ETF-QO contains a single [4Fe-4S]2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. Mutations were introduced by site-directed mutagenesis of amino acids in the vicinity of the iron-sulfur cluster of Rhodobacter sphaeroides ETF-QO. Y501 and T525 are equivalent to Y533 and T558 in the porcine ETF-QO. In the porcine protein, these residues are within hydrogen-bonding distance of the Sgamma of the cysteine ligands to the iron-sulfur cluster. Y501F, T525A, and Y501F/T525A substitutions were made to determine the effects on midpoint potential, activity, and EPR spectral properties of the cluster. The integrity of the mutated proteins was confirmed by optical spectra, EPR g-values, and spin-lattice relaxation rates, and the cluster to flavin point-dipole distance was determined by relaxation enhancement. Potentiometric titrations were monitored by changes in the CW EPR signals of the cluster and semiquinone. Single mutations decreased the midpoint potentials of the iron-sulfur cluster from +37 mV for wild type to -60 mV for Y501F and T525A and to -128 mV for Y501F/T525A. Lowering the midpoint potential resulted in a decrease in steady-state ubiquinone reductase activity and in ETF semiquinone disproportionation. The decrease in activity demonstrates that reduction of the iron-sulfur cluster is required for activity. There was no detectable effect of the mutations on the flavin midpoint potentials.

  12. Impact of Mutations on the Midpoint Potential of the [4Fe-4S]+1,+2 Cluster and on Catalytic Activity in Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETF-QO)†

    Science.gov (United States)

    Usselman, Robert J.; Fielding, Alistair J.; Frerman, Frank E.; Watmough, Nicholas J.; Eaton, Gareth R.; Eaton, Sandra S.

    2011-01-01

    Electron transfer flavoprotein - ubiquinone oxidoreductase (ETF-QO) is an iron-sulfur flavoprotein that accepts electrons from electron-transfer flavoprotein (ETF) and reduces ubiquinone from the Q-pool. ETF-QO contains a single [4Fe-4S]2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. Mutations were introduced by site-directed mutagenesis of amino acids in the vicinity of the iron-sulfur cluster of Rhodobacter sphaeroides ETF-QO. Y501 and T525 are equivalent to Y533 and T558 in the porcine ETF-QO. In the porcine protein, these residues are within hydrogen bonding distance of the Sγ of the cysteine ligands to the iron-sulfur cluster. Y501F, T525A, and Y501F/T525A substitutions were made to determine the effects on midpoint potential, activity, and EPR spectral properties of the cluster. The integrity of the mutated proteins was confirmed by optical spectra, EPR g-values, and spin-lattice relaxation rates, and the cluster to flavin point-dipole distance was determined by relaxation enhancement. Potentiometric titrations were monitored by changes in the CW EPR signals of the cluster and semiquinone. Single mutations decreased the mid-point potentials of the iron-sulfur cluster from +37 mV for wild type to −60 mV for Y501F and T525A and to −128 mV for Y501F/T525A. Lowering the midpoint potential resulted in a decrease in steady-state ubiquinone reductase activity and in ETF semiquinone disproportionation. The decrease in activity demonstrates that reduction of the iron-sulfur cluster is required for activity. There was no detectable effect of the mutations on the flavin midpoint potentials. PMID:18069858

  13. Biosynthesis of electron transfer flavoprotein in a cell-free system and in cultured human fibroblasts. Defect in the alpha subunit synthesis is a primary lesion in glutaric aciduria type II.

    OpenAIRE

    Ikeda, Y; Keese, S M; Tanaka, K.

    1986-01-01

    We investigated the biosynthesis of electron transfer flavoprotein (ETF) in a cell-free system. Both alpha-(alpha-ETF, 32,000 molecular weight [mol wt]) and beta-subunits (beta-ETF, 27,000 mol wt) were nuclear-coded, and synthesized in the cytosol. alpha-ETF was synthesized as a precursor (p alpha-ETF), 3,000 mol wt larger than its mature counterpart, and was translocated into the mitochondria and processed to the mature alpha-ETF. The newly synthesized beta-ETF was the same as the mature bet...

  14. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy.

    Science.gov (United States)

    Mohsen, Al-Walid A; Rigby, Stephen E J; Jensen, Kaj Frank; Munro, Andrew W; Scrutton, Nigel S

    2004-06-01

    Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD(+). The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have been used to determine the reduction potentials of the flavins and the 2Fe-2S center and to characterize radicals and their interactions. Reductive titration using dithionite indicates a five-electron capacity for DHODB. The midpoint reduction potential of the 2Fe-2S center (-212 +/- 3 mV) was determined from analysis of absorption data at 540 nm, where absorption contributions from the two flavins are small. The midpoint reduction potentials of the oxidized/semiquinone (E(1)) and semiquinone/hydroquinone (E(2)) couples for the FMN (E(1) = -301 +/- 6 mV; E(2) = -252 +/- 8 mV) and FAD (E(1) = -312 +/- 6 mV; E(2) = -297 +/- 5 mV) were determined from analysis of spectral changes at 630 nm. Corresponding values for the midpoint reduction potentials for FMN (E(1) = -298 +/- 4 mV; E(2) = -259 +/- 5 mV) in the isolated catalytic subunit (subunit D, which lacks the 2Fe-2S center and FAD) are consistent with the values determined for the FMN couples in DHODB. During reductive titration of DHODB, small amounts of the neutral blue semiquinone are observed at approximately 630 nm, consistent with the measured midpoint reduction potentials of the flavins. An ENDOR spectrum of substrate-reduced DHODB identifies hyperfine couplings to proton nuclei similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible spectroscopy and further identify an unusual EPR signal with very small rhombic anisotropy and g values of 2.02, 1.99, and 1.96. This unusual

  15. Flavoproteins : studies on flavodoxins and phenol hydroxylase

    NARCIS (Netherlands)

    Peelen, J.C.J.

    1996-01-01


    Flavoproteins play an important role in a variety of catalytic reactions. The chemistry underlying these reactions is quite different from case to case. The basis for this broad reaction spectrum is formed by the flavin. Free flavin is a versatile molecule, capable to undergo many

  16. Catalytic reaction of cytokinin dehydrogenase : preference for quinones as electron acceptors

    NARCIS (Netherlands)

    Frébortová, Jitka; Fraaije, Marco W.; Galuszka, Petr; Šebela, Marek; Peč, Pavel; Hrbáč, Jan; Novák, Ondřej; Bilyeu, Kristin D.; English, James T.; Frébort, Ivo; Sebela, M.; Pec, P.; Hrbac, J.; Frebort, [No Value

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that

  17. Electron transfer between a quinohemoprotein alcohol dehydrogenase and an electrode via a redox polymer network

    NARCIS (Netherlands)

    Stigter, E.C.A.; Jong, G.A.H. de; Jongejan, J.A.; Duine, J.A.; Lugt, J.P. van der; Somers, W.A.C.

    1996-01-01

    A quinohemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni was immobilized on an electrode in a redox polymer network consisting of a polyvinylpyridine partially N-complexed with osmiumbis-(bipyridine)chloride. The enzyme effectively transfers electrons to the electrode via the

  18. Flavoprotein-mediated tellurite reduction: structural basis and applications to the synthesis of tellurium-containing nanostructures

    Directory of Open Access Journals (Sweden)

    Mauricio Arenas-Salinas

    2016-07-01

    Full Text Available The tellurium oxyanion tellurite (TeO32- is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(PH-dependent, reduction to the less toxic form elemental tellurium (Te0. To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3, among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR. Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P+-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB, alkyl hydroperoxide reductase (AhpF, glutathione reductase (GorA, mercuric reductase (MerA, NADH: flavorubredoxin reductase (NorW, dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9-10 and 37 °C.Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS. While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (> 100 nm. Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA and YkgC.

  19. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    Directory of Open Access Journals (Sweden)

    Teresa Anna eGiancaspero

    2015-04-01

    Full Text Available The primary role of the water-soluble vitamin B2 (riboflavin in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in energetic metabolism, epigenetics, protein folding, as well as in a number of diverse regulatory processes. The problem of localisation of flavin cofactor synthesis events and in particular of the FAD synthase (EC 2.7.7.2 in HepG2 cells is addressed here by confocal microscopy in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalysed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesising activity, hFADS is able to operate as a FAD chaperone.The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear or a mitochondrial enzyme that is lysine specific demethylase 1 (LSD1, EC 1.-.-.- and dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4, respectively which carry out similar reactions of oxidative demethylation, assisted by tetrahydrofolate used to form 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

  20. Analyzing Xanthine Dehydrogenase Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hodson, R.

    2004-02-05

    Xanthine dehydrogenase is a metalloenzyme that is present in a variety of eukaryotic and prokaryotic organisms. The oxidation of the xanthine occurs at the molybdenum site, and the catalytic cycle is completed by electron transfer to the iron-sulfur (Fe/S) clusters and finally the flavin, where they are accepted by nicotinamide adenine dinucleotide (NAD). Since the site giving rise to the Fe/S I electron paramagnetic resonance (EPR) signal is thought to be the initial recipient of the electrons from the Mo, we wish to understand which EPR signal is associated with which Fe/S cluster in the structure in order to develop an understanding of the electron flow within the molecule. Samples of xanthine dehydrogenase wild-type and mutant forms were analyzed with EPR spectroscopy techniques at low and high temperatures. The results showed an altered Fe/S I signal along with an unaltered Fe/S II signal. The converted Cysteine, in the mutant, did affect the Fe/S cluster immediately adjacent to it. Therefore, the Fe/S I signal arises from the Fe/S cluster closest to the Mo and immediately adjacent to the mutated amino acid, and the Fe/S II signal must arise from the more distant Fe/S cluster.

  1. Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria.

    Science.gov (United States)

    Helman, Yael; Tchernov, Dan; Reinhold, Leonora; Shibata, Mari; Ogawa, Teruo; Schwarz, Rakefet; Ohad, Itzhak; Kaplan, Aaron

    2003-02-04

    O(2) photoreduction by photosynthetic electron transfer, the Mehler reaction, was observed in all groups of oxygenic photosynthetic organisms, but the electron transport chain mediating this reaction remains unidentified. We provide the first evidence for the involvement of A-type flavoproteins that reduce O(2) directly to water in vitro. Synechocystis sp. strain PCC 6803 mutants defective in flv1 and flv3, encoding A-type flavoproteins, failed to exhibit O(2) photoreduction but performed normal photosynthesis and respiration. We show that the light-enhanced O(2) uptake was not due to respiration or photorespiration. After dark acclimation, photooxidation of P(700) was severely depressed in mutants Deltaflv1 and Deltaflv3 but recovered after light activation of CO(2) fixation, which gives P(700) an additional electron acceptor. Inhibition of CO(2) fixation prevented recovery but scarcely affected P(700) oxidation in the wild-type, where the Mehler reaction provides an alternative route for electrons. We conclude that the source of electrons for O(2) photoreduction is PSI and that the highly conserved A-type flavoproteins Flv1 and Flv3 are essential for this process in vivo. We propose that in cyanobacteria, contrary to eukaryotes, the Mehler reaction produces no reactive oxygen species and may be evolutionarily related to the response of anaerobic bacteria to O(2).

  2. In situ Regeneration of NADH via Lipoamide Dehydrogenase-catalyzed Electron Transfer Reaction Evidenced by Spectroelectrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong; Liu, Jun

    2012-08-01

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvate to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.

  3. Controlled direct electron transfer kinetics of fructose dehydrogenase at cup-stacked carbon nanofibers.

    Science.gov (United States)

    Komori, K; Huang, J; Mizushima, N; Ko, S; Tatsuma, T; Sakai, Y

    2017-10-18

    Graphene edge sites not only facilitate heterogeneous electron transfer reactions of redox species because of localization of electrons, but also allow sensitivities and selectivities to be tuned by controlling the atomic oxygen/carbon (O/C) ratio. Here, we immobilized fructose dehydrogenase (FDH) onto the surface of cup-stacked carbon nanofibers (CSCNFs), which provide highly ordered graphene edges with a controlled O/C ratio, and investigated the direct electron communication with FDH. As the O/C ratio decreased at the CSCNF surface, the negative zeta potential was mitigated and the electrochemical communication with FDH was facilitated. This is likely due to improved orientation of FDH molecules on the CSCNF surface. CSCNFs with a controlled O/C ratio could be applied to FDH-based d-fructose biosensors with tunable dynamic range and fructose biofuel cells with a controlled maximum current.

  4. Molecular Basis for Converting (2S-Methylsuccinyl-CoA Dehydrogenase into an Oxidase

    Directory of Open Access Journals (Sweden)

    Simon Burgener

    2017-12-01

    Full Text Available Although flavoenzymes have been studied in detail, the molecular basis of their dioxygen reactivity is only partially understood. The members of the flavin adenosine dinucleotide (FAD-dependent acyl-CoA dehydrogenase and acyl-CoA oxidase families catalyze similar reactions and share common structural features. However, both enzyme families feature opposing reaction specificities in respect to dioxygen. Dehydrogenases react with electron transfer flavoproteins as terminal electron acceptors and do not show a considerable reactivity with dioxygen, whereas dioxygen serves as a bona fide substrate for oxidases. We recently engineered (2S-methylsuccinyl-CoA dehydrogenase towards oxidase activity by rational mutagenesis. Here we characterized the (2S-methylsuccinyl-CoA dehydrogenase wild-type, as well as the engineered (2S-methylsuccinyl-CoA oxidase, in detail. Using stopped-flow UV-spectroscopy and liquid chromatography-mass spectrometry (LC-MS based assays, we explain the molecular base for dioxygen reactivity in the engineered oxidase and show that the increased oxidase function of the engineered enzyme comes at a decreased dehydrogenase activity. Our findings add to the common notion that an increased activity for a specific substrate is achieved at the expense of reaction promiscuity and provide guidelines for rational engineering efforts of acyl-CoA dehydrogenases and oxidases.

  5. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics.

    Science.gov (United States)

    Kadek, Alan; Kavan, Daniel; Marcoux, Julien; Stojko, Johann; Felice, Alfons K G; Cianférani, Sarah; Ludwig, Roland; Halada, Petr; Man, Petr

    2017-02-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Autofluorescent flavoprotein imaging of spinal nociceptive activity.

    Science.gov (United States)

    Jongen, Joost L M; Pederzani, Tiziana; Koekkoek, Sebastiaan K; Shapiro, Joël; van der Burg, Johannes; De Zeeuw, Chris I; Huygen, Frank J; Holstege, Jan C

    2010-03-17

    Pain arises from activation of peripheral nociceptors, and strong noxious stimuli may cause an increase in spinal excitability called central sensitization, which is likely involved in many pathological pain states. So far, it has not been achieved to simultaneously visualize in vivo both the temporal and spatial aspects of spinal activity, including central sensitization. Using autofluorescent flavoprotein imaging (AFI), an optical technique suitable for mapping activity in nervous tissue, we demonstrate a close temporal and spatial correlation of electrically evoked nociceptive input with the spinal AFI signal, representing spinal neuronal activity. The AFI signal increases linearly with stimulation intensity. Furthermore, we found that the AFI signal was much larger in intensity and size when the same electrical stimulation was applied after the induction of central sensitization by a subcutaneous capsaicin injection. Finally, innocuous palpation of the hindpaw did not evoke an AFI response in naive animals, but after capsaicin injection a strong response was obtained. This is the first report demonstrating simultaneously the temporal and spatial propagation of spinal nociceptive activity in vivo.

  7. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kouta [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Matsumura, Hirotoshi; Ishida, Takuya [Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Yoshida, Makoto [Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509 (Japan); Igarashi, Kiyohiko; Samejima, Masahiro [Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Ohno, Hiroyuki [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Nakamura, Nobuhumi, E-mail: nobu1@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2016-08-26

    A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron to a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of L-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. - Highlights: • pH dependencies of activity were different for the reduction of cyt c and DCPIP. • DET-based bioelectrocatalysis of CcPDH was observed. • The similar pH-dependent profile was found with cyt c and electrode. • The present results suggested that IET reaction of CcPDH shows pH dependence.

  8. Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase.

    Science.gov (United States)

    Costeira-Paulo, Joana; Gault, Joseph; Popova, Gergana; Ladds, Marcus J G W; van Leeuwen, Ingeborg M M; Sarr, Médoune; Olsson, Anders; Lane, David P; Laín, Sonia; Marklund, Erik G; Landreh, Michael

    2018-01-17

    The interactions between proteins and biological membranes are important for drug development, but remain notoriously refractory to structural investigation. We combine non-denaturing mass spectrometry (MS) with molecular dynamics (MD) simulations to unravel the connections among co-factor, lipid, and inhibitor binding in the peripheral membrane protein dihydroorotate dehydrogenase (DHODH), a key anticancer target. Interrogation of intact DHODH complexes by MS reveals that phospholipids bind via their charged head groups at a limited number of sites, while binding of the inhibitor brequinar involves simultaneous association with detergent molecules. MD simulations show that lipids support flexible segments in the membrane-binding domain and position the inhibitor and electron acceptor-binding site away from the membrane surface, similar to the electron acceptor-binding site in respiratory chain complex I. By complementing MS with MD simulations, we demonstrate how a peripheral membrane protein uses lipids to modulate its structure in a similar manner as integral membrane proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor.

    Science.gov (United States)

    Kim, Dong-Min; Kim, Min-yeong; Reddy, Sanapalli S; Cho, Jaegeol; Cho, Chul-ho; Jung, Suntae; Shim, Yoon-Bo

    2013-12-03

    A new electron-transfer mediator, 5-[2,5-di (thiophen-2-yl)-1H-pyrrol-1-yl]-1,10-phenanthroline iron(III) chloride (FePhenTPy) oriented to the nicotinamide adenine dinucleotide-dependent-glucose dehydrogenase (NAD-GDH) system was synthesized through a Paal-Knorr condensation reaction. The structure of the mediator was confirmed by Fourier-transform infrared spectroscopy, proton and carbon nucler magnetic resonance spectroscopy, and mass spectroscopy, and its electron-transfer characteristic for a glucose sensor was investigated using voltammetry and impedance spectroscopy. A disposable amperometric glucose sensor with NAD-GDH was constructed with FePhenTPy as an electron-transfer mediator on a screen printed carbon electrode (SPCE) and its performance was evaluated, where the addition of reduces graphene oxide (RGO) to the mediator showed the enhanced sensor performance. The experimental parameters to affect the analytical performance and the stability of the proposed glucose sensor were optimized, and the sensor exhibited a dynamic range between 30 mg/dL and 600 mg/dL with the detection limit of 12.02 ± 0.6 mg/dL. In the real sample experiments, the interference effects by acetaminophen, ascorbic acid, dopamine, uric acid, caffeine, and other monosaccharides (fructose, lactose, mannose, and xylose) were completely avoided through coating the sensor surface with the Nafion film containing lead(IV) acetate. The reliability of proposed glucose sensor was evaluated by the determination of glucose in artificial blood and human whole blood samples.

  10. The role of exogenous electron carriers in NAD(P)-dependent dehydrogenase cytochemistry studied in vitro and with a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.

    1982-01-01

    The applicability of phenazine methosulfate, 1-methoxyphenazine methosulfate, menadione, and meldola blue as exogenous electron carriers for the cytochemical staining of nicotinamide adenine dinucleotide (phosphate) (NAD(P))-dependent dehydrogenases has been studied quantitatively with tetranitro BT

  11. Analysis of flavin oxidation and electron-transfer inhibition in Plasmodium falciparum dihydroorotate dehydrogenase.

    Science.gov (United States)

    Malmquist, Nicholas A; Gujjar, Ramesh; Rathod, Pradipsinh K; Phillips, Margaret A

    2008-02-26

    Plasmodium falciparum dihydroorotate dehydrogenase (pfDHODH) is a flavin-dependent mitochondrial enzyme that provides the only route to pyrimidine biosynthesis in the parasite. Clinically significant inhibitors of human DHODH (e.g., A77 1726) bind to a pocket on the opposite face of the flavin cofactor from dihydroorotate (DHO). This pocket demonstrates considerable sequence variability, which has allowed species-specific inhibitors of the malarial enzyme to be identified. Ubiquinone (CoQ), the physiological oxidant in the reaction, has been postulated to bind this site despite a lack of structural evidence. To more clearly define the residues involved in CoQ binding and catalysis, we undertook site-directed mutagenesis of seven residues in the structurally defined A77 1726 binding site, which we term the species-selective inhibitor site. Mutation of several of these residues (H185, F188, and F227) to Ala substantially decreased the affinity of pfDHODH-specific inhibitors (40-240-fold). In contrast, only a modest increase in the Kmapp for CoQ was observed, although mutation of Y528 in particular caused a substantial reduction in kcat (40-100-fold decrease). Pre-steady-state kinetic analysis by single wavelength stopped-flow spectroscopy showed that the mutations had no effect on the rate of the DHO-dependent reductive half-reaction, but most reduced the rate of the CoQ-dependent flavin oxidation step (3-20-fold decrease), while not significantly altering the Kdox for CoQ. As with the mutants, inhibitors that bind this site block the CoQ-dependent oxidative half-reaction without affecting the DHO-dependent step. These results identify residues involved in inhibitor binding and electron transfer to CoQ. Importantly, the data provide compelling evidence that the binding sites for CoQ and species-selective site inhibitors do not overlap, and they suggest instead that inhibitors act either by blocking the electron path between flavin and CoQ or by stabilizing a

  12. Analysis of Flavin Oxidation and Electron Transfer Inhibition in Plasmodium falciparum Dihydroorotate Dehydrogenase

    Science.gov (United States)

    Malmquist, Nicholas A.; Gujjar, Ramesh; Rathod, Pradipsinh K.; Phillips, Margaret A.

    2010-01-01

    Plasmodium falciparum dihydroorotate dehydrogenase (pfDHODH) is a flavin-dependent mitochondrial enzyme that provides the only route to pyrimidine biosynthesis in the parasite. Clinically significant inhibitors of human DHODH (e.g. A77 1726) bind to a pocket on the opposite face of the flavin-cofactor from dihydroorotate (DHO). This pocket demonstrates considerable sequence variability, which has allowed species-specific inhibitors of the malarial enzyme to be identified. Ubiquinone (CoQ), the physiological oxidant in the reaction, has been postulated to bind this site despite a lack of structural evidence. To more clearly define the residues involved in CoQ binding and catalysis we undertook site-directed mutagenesis of seven residues in the structurally defined A77 1726 binding site, which we term the species-selective inhibitor site. Mutation of several of these residues (H185, F188 and F227) to Ala substantially decreased the affinity of pfDHODH specific inhibitors (40 – 240-fold). In contrast, only a modest increase in the Kmapp for CoQ was observed, though mutation of Y528 in particular caused a substantial reduction in kcat (40 – 100-fold decrease). Pre-steady-state kinetic analysis by single wavelength stopped-flow spectroscopy showed that the mutations had no effect on the rate of the DHO-dependent reductive half-reaction, but most reduced the rate of the CoQ-dependent flavin oxidation step (3 – 20-fold decrease), while not significantly altering the Kdox for CoQ. As with the mutants, inhibitors that bind this site block the CoQ-dependent oxidative half-reaction without affecting the DHO-dependent step. These results identify residues involved in inhibitor binding and electron transfer to CoQ. Importantly, the data provide compelling evidence that the binding-sites for CoQ and species-selective site inhibitors do not overlap, and they suggest instead that inhibitors act either by blocking the electron path between flavin and CoQ, or by stabilizing a

  13. Characterization of the Iron-Sulfur Clusters in Xanthine Dehydrogenase Using Electron Paramagnetic Resonance Spectroscopy and Magnetic Coupling Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J. Robert

    2004-02-04

    Xanthine dehydrogenase is a metalloenzyme that is present in numerous eukaryotic and prokaryotic organisms. It contains molybdenum, two different iron-sulfur clusters, and flavin. While the structures of both iron-sulfur clusters were known, it was unclear as to which structure was in which location. Electron paramagnetic resonance spectroscopy probes the paramagnetic qualities of molecules or ions. With this technology we wished to understand which EPR spectrum was associated with which iron-sulfur cluster by looking at magnetic coupling between the paramagnetic Mo(V) oxidation state and the reduced iron-sulfur clusters. We then assigned the clusters to their corresponding locations. The spin-spin interactions observed between Mo(V) and Fe-S I in xanthine dehydrogenase at low temperature show that Fe-S I is the closer site in contrast to Fe-S II.

  14. CRYSTAL-STRUCTURE OF AN ELECTRON-TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE AND AMICYANIN

    NARCIS (Netherlands)

    CHEN, LY; DURLEY, R; POLIKS, BJ; HAMADA, K; CHEN, ZW; MATHEWS, FS; DAVIDSON, VL; SATOW, Y; HUIZINGA, E; VELLIEUX, FMD; HOL, WGJ

    1992-01-01

    The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-angstrom resolution using molecular replacement. The search model was MADH from Thiobacillus

  15. Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Kádek, Alan; Kavan, Daniel; Felice, A.K.G.; Ludwig, R.; Halada, Petr; Man, Petr

    2015-01-01

    Roč. 589, č. 11 (2015), s. 1194-1199 ISSN 0014-5793 R&D Projects: GA ČR GAP206/12/0503; GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Hydrogen/deuterium exchange * Cellobiose dehydrogenase * Calcium effect Subject RIV: CE - Biochemistry Impact factor: 3.519, year: 2015

  16. Identification of a Gatekeeper Residue That Prevents Dehydrogenases from Acting as Oxidases

    NARCIS (Netherlands)

    Leferink, Nicole G. H.; Fraaije, Marco W.; Joosten, Henk-Jan; Schaap, Peter J.; Mattevi, Andrea; van Berkel, Willem J. H.

    2009-01-01

    The oxygen reactivity of flavoproteins is poorly understood. Here we show that a single Ala to Gly substitution in L-galactono-gamma-lactone dehydrogenase (GALDH) turns the enzyme into a catalytically competent oxidase. GALDH is an aldonolactone oxidoreductase with a vanillyl-alcohol oxidase (VAO)

  17. Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases

    NARCIS (Netherlands)

    Leferink, N.G.H.; Fraaije, M.W.; Joosten, H.J.; Schaap, P.J.; Mattevi, A.; Berkel, van W.J.H.

    2009-01-01

    The oxygen reactivity of flavoproteins is poorly understood. Here we show that a single Ala to Gly substitution in L-galactono-1,4-lactone dehydrogenase (GALDH) turns the enzyme into a catalytically competent oxidase. GALDH is an aldonolactone oxidoreductase with a vanillyl-alcohol oxidase (VAO)

  18. Designing Flavoprotein-GFP fusion Probes for Analyte-specific Ratiometric Fluorescence Imaging.

    Science.gov (United States)

    Hudson, Devin A; Caplan, Jeffrey L; Thorpe, Colin

    2018-01-17

    The development of genetically encoded fluorescent probes for analyte-specific imaging has revolutionized our understanding of intracellular processes. Current classes of intracellular probes depend on the selection of binding domains that either undergo conformational changes on analyte binding or can be linked to thiol redox chemistry. Here we have designed novel probes by fusing a flavoenzyme, whose fluorescence is quenched on reduction by the analyte of interest, with a GFP domain to allow for rapid and specific ratiometric sensing. Two flavoproteins, Escherichia coli thioredoxin reductase and Saccharomyces cerevisiae lipoamide dehydrogenase, were successfully developed into thioredoxin and NAD+/NADH specific probes respectively and their performance was evaluated in vitro and in vivo. A flow cell format, which allowed dynamic measurements, was utilized in both bacterial and mammalian systems. In E. coli the first reported intracellular steady-state of the cytoplasmic thioredoxin pool was measured. In HEK293T mammalian cells, the steady-state cytosolic ratio of NAD+/NADH induced by glucose was determined. These genetically encoded fluorescent constructs represent a modular approach to intracellular probe design that should extend the range of metabolites that can be quantitated in live cells.

  19. Xanthine dehydrogenase: An old enzyme with new knowledge and prospects

    Science.gov (United States)

    Wang, Cheng-Hua; Zhang, Chong; Xing, Xin-Hui

    2016-01-01

    ABSTRACT Xanthine dehydrogenase (EC 1.17.1.4, XDH) is a typical and complex molybdenum-containing flavoprotein which has been extensively studied for over 110 years. This enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and sometimes can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor. XDHs are widely distributed in all eukarya, bacteria and archaea domains, and are proposed to play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. The recent applications of XDHs include clinical detections of xanthine and hypoxanthine content in body fluidics, and other diagnostic biomarkers like inorganic phosphorus, 5′-nucleotidase and adenosine deaminase. XDHs can also find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin. In this commentary, we would outline the latest knowledge on occurrence, structure, biosynthesis, and recent advances of production and applications of XDH, and highlighted the need to develop XDHs with improved performances by gene prospecting and protein engineering, and protocols for efficient production of active XDHs in response to the increasing demands. PMID:27537049

  20. ELECTRON-MICROSCOPIC ANALYSIS AND BIOCHEMICAL-CHARACTERIZATION OF A NOVEL METHANOL DEHYDROGENASE FROM THE THERMOTOLERANT BACILLUS-SP C1

    NARCIS (Netherlands)

    Vonck, Janet; Arfman, Nico; de Vries, Gert E.; Beeumen, Jozef van; Bruggen, Ernst F.J. van; Dijkhuizen, Lubbert

    1991-01-01

    Methanol dehydrogenase from the thermotolerant Bacillus sp. C1 was studied by electron microscopy and image processing. Two main projections can be distinguished: one exhibits 5-fold symmetry and has a diameter of 15 nm, the other is rectangular with sides of 15 and 9 nm. Subsequent image processing

  1. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Geisler, Daniela A; Møller, Ian Max

    2008-01-01

    The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabol...

  2. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Directory of Open Access Journals (Sweden)

    Jessica Schmiesing

    Full Text Available Glutaric aciduria type 1 (GA1 is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH, which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.

  3. Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect

    Energy Technology Data Exchange (ETDEWEB)

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; Atanassov, Plamen

    2015-06-24

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-dependent glucose dehydrogenase (PQQ–sGDH) anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.

  4. Coupling between d-3-phosphoglycerate dehydrogenase and d-2-hydroxyglutarate dehydrogenase drives bacterial l-serine synthesis.

    Science.gov (United States)

    Zhang, Wen; Zhang, Manman; Gao, Chao; Zhang, Yipeng; Ge, Yongsheng; Guo, Shiting; Guo, Xiaoting; Zhou, Zikang; Liu, Qiuyuan; Zhang, Yingxin; Ma, Cuiqing; Tao, Fei; Xu, Ping

    2017-09-05

    l-Serine biosynthesis, a crucial metabolic process in most domains of life, is initiated by d-3-phosphoglycerate (d-3-PG) dehydrogenation, a thermodynamically unfavorable reaction catalyzed by d-3-PG dehydrogenase (SerA). d-2-Hydroxyglutarate (d-2-HG) is traditionally viewed as an abnormal metabolite associated with cancer and neurometabolic disorders. Here, we reveal that bacterial anabolism and catabolism of d-2-HG are involved in l-serine biosynthesis in Pseudomonas stutzeri A1501 and Pseudomonas aeruginosa PAO1. SerA catalyzes the stereospecific reduction of 2-ketoglutarate (2-KG) to d-2-HG, responsible for the major production of d-2-HG in vivo. SerA combines the energetically favorable reaction of d-2-HG production to overcome the thermodynamic barrier of d-3-PG dehydrogenation. We identified a bacterial d-2-HG dehydrogenase (D2HGDH), a flavin adenine dinucleotide (FAD)-dependent enzyme, that converts d-2-HG back to 2-KG. Electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) are also essential in d-2-HG metabolism through their capacity to transfer electrons from D2HGDH. Furthermore, while the mutant with D2HGDH deletion displayed decreased growth, the defect was rescued by adding l-serine, suggesting that the D2HGDH is functionally tied to l-serine synthesis. Substantial flux flows through d-2-HG, being produced by SerA and removed by D2HGDH, ETF, and ETFQO, maintaining d-2-HG homeostasis. Overall, our results uncover that d-2-HG-mediated coupling between SerA and D2HGDH drives bacterial l-serine synthesis.

  5. Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni - Structural basis for substrate oxidation and electron transfer

    NARCIS (Netherlands)

    Oubrie, A; Rozeboom, HJ; Kalk, KH; Huizinga, EG; Dijkstra, BW; Huizinga, Eric G.; Dijkstra, Bauke W.

    2002-01-01

    Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been

  6. Purification and properties of L-3-glycerophosphate dehydrogenase from pig brain mitochondria.

    Science.gov (United States)

    Cottingham, I R; Ragan, C I

    1980-10-15

    L-3-Glycerophosphate dehydrogenase (EC 1.1.99.5) was purified from pig brain mitochondria by extraction with deoxycholate, ion-exchange chromatography and (NH4)2SO4 fractionation in cholate, and preparative isoelectric focusing in Triton X-100. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis shows that the purified enzyme consists of a single subunit of mol.wt. 75 000. The enzyme contains non-covalently bound FAD and low concentrations of iron and acid labile sulphide. No substrate reducible e.p.r. signals were detected. The conditions of purification, particularly the isoelectric focusing step, lead to considerable loss of FAD and possibly iron-sulphur centres. It is therefore not possible to decide with certainty whether the enzyme is a flavoprotein or a ferroflavoprotein. The enzyme catalyses the oxidation of L-3-glycerophosphate by a variety of electron acceptors, including ubiquinone analogues. A number if compounds known to inhibit ubiquinone oxidoreduction by other enzymes of the respiratory chain failed to inhibit L-3-glycerophosphate dehydrogenase, except at very high concentrations.

  7. Differently substituted sulfonated polyanilines: the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase.

    Science.gov (United States)

    Sarauli, David; Xu, Chenggang; Dietzel, Birgit; Schulz, Burkhard; Lisdat, Fred

    2013-09-01

    Sulfonated polyanilines have become promising building blocks in the construction of biosensors, and therefore we use here differently substituted polymer forms to investigate the role of their structural composition and properties in achieving a direct electron transfer with the redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). To this end, new copolymers containing different ratios of 2-methoxyaniline-5-sulfonic acid (MAS), 3-aminobenzenesulfonic acid (ABS) and 3-aminobenzoic acid (AB) units have been chemically synthesized. All polymers have been studied with respect to their ability to react directly with PQQ-GDH. This interaction has been monitored initially in solution, and subsequently on electrode surfaces. The results show that only copolymers with MAS and aniline units can directly react with PQQ-GDH in solution; the background can be mainly ascribed to the emeraldine salt redox state of the polymer, allowing rather easy reduction. However, when polymers and the enzyme are immobilized on the surface of carbon nanotube-containing electrodes, direct bioelectrocatalysis is also feasible in the case of copolymers composed of ABS/AB and MAS/AB units, existing initially in pernigraniline base form. This verifies that a productive interaction of the enzyme with differently substituted polymers is feasible when the electrode potential can be used to drive the reaction towards the oxidation of the substrate-reduced enzyme. These results clearly demonstrate that enzyme electrodes based on sulfonated polyanilines and direct bioelectrocatalysis can be successfully constructed. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. A flavoprotein supports cell wall properties in the necrotrophic fungus Alternaria brassicicola.

    Science.gov (United States)

    Pigné, Sandrine; Zykwinska, Agata; Janod, Etienne; Cuenot, Stéphane; Kerkoud, Mohammed; Raulo, Roxane; Bataillé-Simoneau, Nelly; Marchi, Muriel; Kwasiborski, Anthony; N'Guyen, Guillaume; Mabilleau, Guillaume; Simoneau, Philippe; Guillemette, Thomas

    2017-01-01

    Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the AbMak1 gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus Alternaria brassicicola, by generating a deficient mutant and examining its phenotype. Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δabmak1 strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δabmak1 strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δabmak1 strain. This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization.

  9. Kinetic and structural investigation of the cytokinin oxidase/dehydrogenase active site.

    Science.gov (United States)

    Kopečný, David; Končitíková, Radka; Popelka, Hana; Briozzo, Pierre; Vigouroux, Armelle; Kopečná, Martina; Zalabák, David; Šebela, Marek; Skopalová, Jana; Frébort, Ivo; Moréra, Solange

    2016-01-01

    Cytokinins are hormones that regulate plant development and their environmental responses. Their levels are mainly controlled by the cytokinin oxidase/dehydrogenase (CKO), which oxidatively cleaves cytokinins using redox-active electron acceptors. CKO belongs to the group of flavoproteins with an 8α-N1-histidyl FAD covalent linkage. Here, we investigated the role of seven active site residues, H105, D169, E288, V378, E381, P427 and L492, in substrate binding and catalysis of the CKO1 from maize (Zea mays, ZmCKO1) combining site-directed mutagenesis with kinetics and X-ray crystallography. We identify E381 as a key residue for enzyme specificity that restricts substrate binding as well as quinone electron acceptor binding. We show that D169 is important for catalysis and that H105 covalently linked to FAD maintains the enzyme's structural integrity, stability and high rates with electron acceptors. The L492A mutation significantly modulates the cleavage of aromatic cytokinins and zeatin isomers. The high resolution X-ray structures of ZmCKO1 and the E381S variant in complex with N6-(2-isopentenyl)adenosine reveal the binding mode of cytokinin ribosides. Those of ZmCKO2 and ZmCKO4a contain a mobile domain, which might contribute to binding of the N9 substituted cytokinins. © 2015 FEBS.

  10. Evidence for chloroplastic succinate dehydrogenase participating in the chloroplastic respiratory and photosynthetic electron transport chains of Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Willeford, K.O.; Gombos, Z.; Gibbs, M. (Brandeis Univ., Waltham, MA (USA))

    1989-07-01

    A method for isolating intact chloroplasts from Chlamydomonas reinhardtii F-60 was developed from the Klein, Chen, Gibbs, Platt-Aloia procedure. Protoplasts, generated by treatment with autolysine, were lysed with a solution of digitonin and fractionated on Percoll step gradients. The chloroplasts were assessed to be 90% intact (ferricyanide assay) and free from cytoplasmic contamination (NADP isocitrate dehydrogenase activity) and to range from 2 to 5% in mitochondrial contamination (cytochrome c oxidase activity). About 25% of the cellular succinate dehydrogenase activity (21.6 micromoles per milligram chlorophyll per hour, as determined enzymically) was placed within the chloroplast. Chloroplastic succinate dehydrogenase had a K{sub m} for succinate of 0.55 millimolar and was associated with the thylakoidal material derived from the intact chloroplasts. This same thylakoidal material, with an enzymic assay of 21.6 micromoles per milligram chlorophyll per hour was able to initiate a light-dependent uptake of oxygen at a rate of 16.4 micromoles per milligram chlorophyll per hour when supplied with succinate and methyl viologen. Malonate was an apparent competitive inhibitor of this reaction. The succinate dehydrogenase activity present in the chloroplast was sufficient to account for the photoanaerobic rate of acetate dissimilation in H{sub 2} adapted Chlamydomonas.

  11. Ca2+-Switchable Glucose Dehydrogenase Associated with Electrochemical/Electronic Interfaces: Applications to Signal-Controlled Power Production and Biomolecular Release.

    Science.gov (United States)

    Koushanpour, Ashkan; Gamella, Maria; Guo, Zhong; Honarvarfard, Elham; Poghossian, Arshak; Schöning, Michael J; Alexandrov, Kirill; Katz, Evgeny

    2017-12-28

    An artificial Ca2+-regulated PQQ glucose dehydrogenase (PQQ-GDH) enzyme was electrically connected to conducting electrodes and semiconductor interfaces. Direct electron transfer from the enzyme to the conducting electrode support was stimulated by the addition of Ca2+ cations resulting in reversible enzyme activation. A signal-switchable biofuel cell and biomolecular release have been realized using the Ca2+-activated enzyme immobilized on conducting electrodes. Interfacing the signal-switchable enzyme with a semiconductor chip allowed electronic read out of the enzyme ON-OFF states. The developed approach based on the signal-regulated PQQ-GDH enables numerous bioelectrochemical/bioelectronic applications of the developed systems in signal-activated biosensors and biofuel cells, as well as in biomolecular computing/logic systems.

  12. Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light.

    Science.gov (United States)

    Yamori, Wataru; Shikanai, Toshiharu; Makino, Amane

    2015-09-11

    Cyclic electron transport around photosystem I (PS I) was discovered more than a half-century ago and two pathways have been identified in angiosperms. Although substantial progress has been made in understanding the structure of the chloroplast NADH dehydrogenase-like (NDH) complex, which mediates one route of the cyclic electron transport pathways, its physiological function is not well understood. Most studies focused on the role of the NDH-dependent PS I cyclic electron transport in alleviation of oxidative damage in strong light. In contrast, here it is shown that impairment of NDH-dependent cyclic electron flow in rice specifically causes a reduction in the electron transport rate through PS I (ETR I) at low light intensity with a concomitant reduction in CO2 assimilation rate, plant biomass and importantly, grain production. There was no effect on PS II function at low or high light intensity. We propose a significant physiological function for the chloroplast NDH at low light intensities commonly experienced during the reproductive and ripening stages of rice cultivation that have adverse effects crop yield.

  13. Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role.

    OpenAIRE

    Cereghino, G P; Atencio, D P; Saghbini, M; Beiner, J; Scheffler, I E

    1995-01-01

    We have demonstrated previously that glucose repression of mitochondrial biogenesis in Saccharomyces cerevisiae involves the control of the turnover of mRNAs for the iron protein (Ip) and flavoprotein (Fp) subunits of succinate dehydrogenase (SDH). Their half-lives are > 60 min in the presence of a nonfermentable carbon source (YPG medium) and 60 min in the presence of a nonfermentable carbon source...

  14. Identification of Electronic and Structural Descriptors of Adenosine Analogues Related to Inhibition of Leishmanial Glyceraldehyde-3-Phosphate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Norka B. H. Lozano

    2013-04-01

    Full Text Available Quantitative structure–activity relationship (QSAR studies were performed in order to identify molecular features responsible for the antileishmanial activity of 61 adenosine analogues acting as inhibitors of the enzyme glyceraldehyde 3-phosphate dehydrogenase of Leishmania mexicana (LmGAPDH. Density functional theory (DFT was employed to calculate quantum-chemical descriptors, while several structural descriptors were generated with Dragon 5.4. Variable selection was undertaken with the ordered predictor selection (OPS algorithm, which provided a set with the most relevant descriptors to perform PLS, PCR and MLR regressions. Reliable and predictive models were obtained, as attested by their high correlation coefficients, as well as the agreement between predicted and experimental values for an external test set. Additional validation procedures were carried out, demonstrating that robust models were developed, providing helpful tools for the optimization of the antileishmanial activity of adenosine compounds.

  15. The electron transport system of the anaerobic Propionibacterium shermanii: cytochrome and inhibitor studies.

    Science.gov (United States)

    Schwartz, A C; Sporkenbach, J

    1975-03-10

    1. Electron transport particles obtained from cell-free extracts of Propionibacterium shermanii by centrifugation at 105000 times g for 3 hrs oxidized NADH, D,L-lactate, L-glycerol-3-phosphate and succinate with oxygen and, except for succinate, with fumarate, too. 2. Spectral investigation of the electron transport particles revealed the presence of cytochromes b, d and o, and traces of cytochrome alpha1 and a c-type cytochrome. Cytochrome b was reduced by succinate to about 50%, and by NADH, lactate or glycerol-3-phosphate to 80--90%. 3. The inhibitory effects of amytal and rotenone on NADH oxidation, but not on the oxidation of the other substrates, indicated the presence of the NADH dehydrogenase complex, or "site I region", in the electron transport system of P. shermanii. 4. NQNO inhibited substrate oxidations by oxygen and fumarate, as well as equilibration of the flavoproteins of the substrate dehydrogenases by way of menaquinone. The inhibition occurred at low concentrations of the inhibitor and reached 80--100%, depending on the substrate tested. The site of inhibition of the respiratory activity was located between menaquinone and cytochrome b. In addition, inhibition of flavoprotein equilibration suggested that NQNO acted upon the electron transfer directed from menaquinol towards the acceptor to be reduced, either cytochrome b or the flavoproteins, which would include fumarate reductase. 5. In NQNO-inhibited particles, cytochrome b was not oxidized by oxygen-free fumarate, but readily oxidized by oxygen. It was concluded from this and the above evidence that the branching-point of the electron transport chain towards fumarate reductase was located at the menaquinone in P. shermanii. It was further concluded that all cytochromes were situated in the oxygen-linked branch of the chain, which formed a dead end of the system under anaerobic conditions. 6. Antimycin A inhibited only oxygen-linked reactions of the particles to about 50% at high concentrations

  16. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation1[OPEN

    Science.gov (United States)

    Grossman, Arthur R.

    2016-01-01

    When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H+ gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF. The H+ gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes. PMID:26858365

  17. Control of the Quantum Efficiencies of Photosystems I and II, Electron Flow, and Enzyme Activation following Dark-to-Light Transitions in Pea Leaves: Relationship between NADP/NADPH Ratios and NADP-Malate Dehydrogenase Activation State.

    Science.gov (United States)

    Foyer, C H; Lelandais, M; Harbinson, J

    1992-07-01

    The quantum efficiencies of photosystems I and II (PSI and PSII), [NADP]/[NADPH] ratios, and the activities of chloroplastic fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were measured in intact pea (Pisum sativum L.) leaves in air following the transition from darkness to 750 microeinsteins per square meter per second irradiance. PSII efficiency declined from a low value to a minimum within the first 10 to 15 seconds of irradiance, after which it increased progressively to the steady-state value. The resistance of electron flow between the photosystems was high at this time, but it was not the principal factor limiting electron flow. Oxidation of P700 was restricted by acceptor side processes for approximately the first 60 seconds of illumination. Once the acceptor side limitation was relieved, the oxidation state of P700 was used to estimate the quantum efficiency of electron transport by PSI. This was observed to increase progressively with time. The quantum efficiencies of both photosystems increased in parallel, consistent with a predominant role for noncyclic electron transport. Fructose-1,6-bisphosphatase activity increased in an approximately sigmoidal fashion with time of irradiance, paralleling the changes in the quantum efficiencies of the photosystems. In contrast, the activation of NADP-malate dehydrogenase did not show a lag period but increased with time, reaching a maximum value at about 50 seconds of illumination, after which it declined. The NADP pool was not extensively reduced during the first 10 seconds of illumination, but became so subsequently. It remained in the reduced state until about 60 seconds of illumination and then became relatively oxidized. The empirical relationship between NADP-malate dehydrogenase activity and the reduction state of the NADP pool supports the suggestion that NADP-malate dehydrogenase activity is a useful estimate of the reduction state of the stroma.

  18. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism.

    Science.gov (United States)

    Gu, F; Chauhan, V; Kaur, K; Brown, W T; LaFauci, G; Wegiel, J; Chauhan, A

    2013-09-03

    Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence suggests that mitochondrial dysfunction and oxidative stress may contribute to the etiology of autism. This is the first study to compare the activities of mitochondrial electron transport chain (ETC) complexes (I-V) and pyruvate dehydrogenase (PDH), as well as mitochondrial DNA (mtDNA) copy number in the frontal cortex tissues from autistic and age-matched control subjects. The activities of complexes I, V and PDH were most affected in autism (n=14) being significantly reduced by 31%, 36% and 35%, respectively. When 99% confidence interval (CI) of control group was taken as a reference range, impaired activities of complexes I, III and V were observed in 43%, 29% and 43% of autistic subjects, respectively. Reduced activities of all five ETC complexes were observed in 14% of autistic cases, and the activities of multiple complexes were decreased in 29% of autistic subjects. These results suggest that defects in complexes I and III (sites of mitochondrial free radical generation) and complex V (adenosine triphosphate synthase) are more prevalent in autism. PDH activity was also reduced in 57% of autistic subjects. The ratios of mtDNA of three mitochondrial genes ND1, ND4 and Cyt B (that encode for subunits of complexes I and III) to nuclear DNA were significantly increased in autism, suggesting a higher mtDNA copy number in autism. Compared with the 95% CI of the control group, 44% of autistic children showed higher copy numbers of all three mitochondrial genes examined. Furthermore, ND4 and Cyt B deletions were observed in 44% and 33% of autistic children, respectively. This study indicates that autism is associated with mitochondrial dysfunction in the brain.

  19. Catalytic electrochemistry of xanthine dehydrogenase.

    Science.gov (United States)

    Kalimuthu, Palraj; Leimkühler, Silke; Bernhardt, Paul V

    2012-09-27

    We report the mediated electrocatalytic voltammetry of the molybdoenzyme xanthine dehydrogenase (XDH) from Rhodobacter capsulatus at a thiol-modified Au electrode. The 2-electron acceptor N-methylphenazinium methanesulfonate (phenazine methosulfate, PMS) is an effective artificial electron transfer partner for XDH instead of its native electron acceptor NAD(+). XDH catalyzes the oxidative hydroxylation of hypoxanthine to xanthine and xanthine to uric acid. Cyclic voltammetry was used to generate the active (oxidized) form of the mediator. Simulation of the catalytic voltammetry across a broad range of substrate and PMS concentrations at different sweep rates was achieved with the program DigiSim to yield a set of consistent rate and equilibrium constants that describe the catalytic system. This provides the first example of the mediated electrochemistry of a xanthine dehydrogenase (or oxidase) that is uncomplicated by interference from product oxidation. A remarkable two-step, sequential oxidation of hypoxanthine to uric acid via xanthine by XDH is observed.

  20. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  1. Lactate dehydrogenase test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  2. Imaging of Neuronal Activity in Awake Mice by Measurements of Flavoprotein Autofluorescence Corrected for Cerebral Blood Flow

    Directory of Open Access Journals (Sweden)

    Manami Takahashi

    2018-01-01

    Full Text Available Green fluorescence imaging (e.g., flavoprotein autofluorescence imaging, FAI can be used to measure neuronal activity and oxygen metabolism in living brains without expressing fluorescence proteins. It is useful for understanding the mechanism of various brain functions and their abnormalities in age-related brain diseases. However, hemoglobin in cerebral blood vessels absorbs green fluorescence, hampering accurate assessments of brain function in animal models with cerebral blood vessel dysfunctions and subsequent cerebral blood flow (CBF alterations. In the present study, we developed a new method to correct FAI signals for hemoglobin-dependent green fluorescence reductions by simultaneous measurements of green fluorescence and intrinsic optical signals. Intrinsic optical imaging enabled evaluations of light absorption and scatters by hemoglobin, which could then be applied to corrections of green fluorescence intensities. Using this method, enhanced flavoprotein autofluorescence by sensory stimuli was successfully detected in the brains of awake mice, despite increases of CBF, and hemoglobin interference. Moreover, flavoprotein autofluorescence could be properly quantified in a resting state and during sensory stimulation by a CO2 inhalation challenge, which modified vascular responses without overtly affecting neuronal activities. The flavoprotein autofluorescence signal data obtained here were in good agreement with the previous findings from a condition with drug-induced blockade of cerebral vasodilation, justifying the current assaying methodology. Application of this technology to studies on animal models of brain diseases with possible changes of CBF, including age-related neurological disorders, would provide better understanding of the mechanisms of neurovascular coupling in pathological circumstances.

  3. Using Intrinsic Flavoprotein and NAD(P)H Imaging to Map Functional Circuitry in the Main Olfactory Bulb

    Science.gov (United States)

    Puche, Adam C.; Munger, Steven D.

    2016-01-01

    Neurons exhibit strong coupling of electrochemical and metabolic activity. Increases in intrinsic fluorescence from either oxidized flavoproteins or reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] in the mitochondria have been used as an indicator of neuronal activity for the functional mapping of neural circuits. However, this technique has not been used to investigate the flow of olfactory information within the circuitry of the main olfactory bulb (MOB). We found that intrinsic flavoprotein fluorescence signals induced by electrical stimulation of single glomeruli displayed biphasic responses within both the glomerular (GL) and external plexiform layers (EPL) of the MOB. Pharmacological blockers of mitochondrial activity, voltage-gated Na+ channels, or ionotropic glutamate receptors abolished stimulus-dependent flavoprotein responses. Blockade of GABAA receptors enhanced the amplitude and spatiotemporal spread of the flavoprotein signals, indicating an important role for inhibitory neurotransmission in shaping the spread of neural activity in the MOB. Stimulus-dependent spread of fluorescence across the GL and EPL displayed a spatial distribution consistent with that of individual glomerular microcircuits mapped by neuroanatomic tract tracing. These findings demonstrated the feasibility of intrinsic fluorescence imaging in the olfactory systems and provided a new tool to examine the functional circuitry of the MOB. PMID:27902689

  4. Structure-function relationship of flavoproteins : with special reference to p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens

    NARCIS (Netherlands)

    Berkel, van W.J.H.

    1989-01-01

    In this thesis different studies probing the structurefunction relationship of some flavoproteins are dealt with. The attention has been focused on two central themes:
    The first part of the thesis deals with studies concerning the application of affinity

  5. GenBank blastx search result: AK061948 [KOME

    Lifescience Database Archive (English)

    Full Text Available etfA genes for thiolase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase, butyryl-CoA dehydrogenase, electron... transfer flavoprotein beta-subunit, electron transfer flavoprotein alpha-subunit, complete cds, strain:ATCC 19171.|BCT BCT 9e-48 +3 ...

  6. GenBank blastx search result: AK058946 [KOME

    Lifescience Database Archive (English)

    Full Text Available genes for thiolase, beta hydroxybutyryl-CoA dehydrogenase, butyryl-CoA dehydrogenase, electron transfer fla...voprotein beta-subunit, electron transfer flavoprotein alpha-subunit, complete cds, strain:ATCC 51255.|BCT BCT 1e-12 +3 ...

  7. GenBank blastx search result: AK061665 [KOME

    Lifescience Database Archive (English)

    Full Text Available genes for thiolase, beta hydroxybutyryl-CoA dehydrogenase, butyryl-CoA dehydrogenase, electron transfer fla...voprotein beta-subunit, electron transfer flavoprotein alpha-subunit, complete cds, strain:ATCC 51255.|BCT BCT 4e-16 +3 ...

  8. GenBank blastx search result: AK062168 [KOME

    Lifescience Database Archive (English)

    Full Text Available etfA genes for thiolase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase, butyryl-CoA dehydrogenase, electro...n transfer flavoprotein beta-subunit, electron transfer flavoprotein alpha-subunit, complete cds, strain:ATCC 19171.|BCT BCT 8e-16 +2 ...

  9. Dihydrooxonate is a substrate of dihydroorotate dehydrogenase (DHOD) providing evidence for involvement of cysteine and serine residues in base catalysis.

    Science.gov (United States)

    Björnberg, O; Jordan, D B; Palfey, B A; Jensen, K F

    2001-07-15

    The flavoprotein dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate. Dihydrooxonate is an analogue of dihydroorotate in which the C5 carbon is substituted by a nitrogen atom. We have investigated dihydrooxonate as a substrate of three DHODs, each representing a distinct evolutionary class of the enzyme, namely the two family 1 enzymes from Lactococcus lactis, DHODA and DHODB, and the enzyme from Escherichia coli, which, like the human enzyme, belongs to family 2. Dihydrooxonate was accepted as a substrate although much less efficiently than dihydroorotate. The first half-reaction was rate limiting according to pre-steady-state and steady-state kinetics with different electron acceptors. Cysteine and serine have been implicated as active site base residues, which promote substrate oxidation in family 1 and family 2 DHODs, respectively. Mutants of DHODA (C130A) and E. coli DHOD (S175A) have extremely low activity in standard assays with dihydroorotate as substrate, but with dihydrooxonate the mutants display considerable and increasing activity above pH 8.0. Thus, the absence of the active site base residue in the enzymes seems to be compensated for by a lower pK(a) of the 5-position in the substrate. Oxonate, the oxidation product of dihydrooxonate, was a competitive inhibitor versus dihydroorotate, and DHODA was the most sensitive of the three enzymes. DHODA was reinvestigated with respect to product inhibition by orotate. The results suggest a classical one-site ping-pong mechanism with fumarate as electron acceptor, while the kinetics with ferricyanide is highly dependent on the detailed reaction conditions. Copyright 2001 Academic Press.

  10. Spinal autofluorescent flavoprotein imaging in a rat model of nerve injury-induced pain and the effect of spinal cord stimulation

    NARCIS (Netherlands)

    Jongen, Joost L M; Smits, Helwin; Pederzani, Tiziana; Bechakra, Malik; Hossaini, Mehdi; Koekkoek, Sebastiaan K; Huygen, Frank J P M; De Zeeuw, Chris I; Holstege, Jan C; Joosten, Elbert A J

    2014-01-01

    Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging

  11. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.

    Science.gov (United States)

    Jiang, Tianyi; Guo, Xiaoting; Yan, Jinxin; Zhang, Yingxin; Wang, Yujiao; Zhang, Manman; Sheng, Binbin; Ma, Cuiqing; Xu, Ping; Gao, Chao

    2017-11-15

    Bacterial membrane-associated NAD-independent d-lactate dehydrogenase (Fe-S d-iLDH) oxidizes d-lactate into pyruvate. A sequence analysis of the enzyme reveals that it contains an Fe-S oxidoreductase domain in addition to a flavin adenine dinucleotide (FAD)-containing dehydrogenase domain, which differs from other typical d-iLDHs. Fe-S d-iLDH from Pseudomonas putida KT2440 was purified as a His-tagged protein and characterized in detail. This monomeric enzyme exhibited activities with l-lactate and several d-2-hydroxyacids. Quinone was shown to be the preferred electron acceptor of the enzyme. The two domains of the enzyme were then heterologously expressed and purified separately. The Fe-S cluster-binding motifs predicted by sequence alignment were preliminarily verified by site-directed mutagenesis of the Fe-S oxidoreductase domain. The FAD-containing dehydrogenase domain retained 2-hydroxyacid-oxidizing activity, although it decreased compared to the full Fe-S d-iLDH. Compared to the intact enzyme, the FAD-containing dehydrogenase domain showed increased catalytic efficiency with cytochrome c as the electron acceptor, but it completely lost the ability to use coenzyme Q10 Additionally, the FAD-containing dehydrogenase domain was no longer associated with the cell membrane, and it could not support the utilization of d-lactate as a carbon source. Based on the results obtained, we conclude that the Fe-S oxidoreductase domain functions as an electron transfer component to facilitate the utilization of quinone as an electron acceptor by Fe-S d-iLDH, and it helps the enzyme associate with the cell membrane. These functions make the Fe-S oxidoreductase domain crucial for the in vivo d-lactate utilization function of Fe-S d-iLDH.IMPORTANCE Lactate metabolism plays versatile roles in most domains of life. Lactate utilization processes depend on certain enzymes to oxidize lactate to pyruvate. In recent years, novel bacterial lactate-oxidizing enzymes have been

  12. An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency

    DEFF Research Database (Denmark)

    Mosegaard, Signe; Bruun, Gitte Hoffmann; Flyvbjerg, Karen Freund

    2017-01-01

    transfer flavoprotein (ETF) and its dehydrogenase (ETFDH), uses FAD as cofactor. The ETF and ETFDH are forming the electron transport pathway for many mitochondrial flavoprotein dehydrogenases involved in fatty acid, amino acid and choline metabolism. A variation in either ETF or ETFDH causes multiple acyl...

  13. Crystal structure determination of a flavoprotein FP390 from a luminescent bacterium, Photobacterium phosphoreum.

    Science.gov (United States)

    Kita, A; Kasai, S; Miki, K

    1995-03-01

    The three-dimensional structure of a flavoprotein, FP390, purified from a luminescent bacterium, Photobacterium phosphoreum, has been determined at 3 A resolution by X-ray crystallography. Crystallographic refinements of the structural model have led to an R-factor of 0.24 for the intensity data between 6 to 3 A resolution collected with synchrotron radiation. It was found that a homodimer of the FP390 molecules related by a non-crystallographic 2-fold axis is comprised in the asymmetric unit. Two homodimers are arranged around a crystallographic 2-fold axis to form a tetrameric assembly. The monomer molecule of FP390, to which two molecules of the flavin cofactor (Q-flavin) are bound, consists of a seven-stranded parallel beta-sheet which forms a half of the beta-barrel structure and seven alpha-helices which surround one side of the beta-barrel. We suggest that the reason why the Q-flavin sample prepared from FP390 is always a mixture of two components is connected with the fact that the monomer molecules has two flavin binding sites, at the dimer interface and at the molecular surface.

  14. Express your LOV: an engineered flavoprotein as a reporter for protein expression and purification.

    Directory of Open Access Journals (Sweden)

    Jayde A Gawthorne

    Full Text Available In this work, we describe the utility of Light, Oxygen, or Voltage-sensing (LOV flavoprotein domains from plant phototropins as a reporter for protein expression and function. Specifically, we used iLOV, an enhanced and more photostable variant of LOV. A pET-based plasmid for protein expression was constructed, encoding a C terminal iLOV-octahistidine (His8-tag and a HRV 3C protease cleavage recognition site. Ten different proteins, with various sub-cellular locations, were cloned into the plasmid, creating iLOV-His8 tag fusions. To test protein expression and how iLOV could be used as a reporter, the proteins were expressed in three different cell lines, in four different culture media, at two different temperatures. To establish whether the presence of the iLOV tag could have an impact on the functionality, one of the proteins, EspG, was over-expressed and purified. EspG is an "effector" protein normally produced by enterohemorrhagic E. coli strains and "injected" into host cells via the T3SS. We tested functionality of EspG-iLOV fusion by performing functional studies of EspG in mammalian host cells. When EspG-iLOV was microinjected into the host cell, the Golgi apparatus was completely disrupted as had previously been observed for EspG.

  15. ON THE NATURE OF THE NOTHING DEHYDROGENASE REACTION

    NARCIS (Netherlands)

    van Noorden, C. J.; Kooij, A.; Vogels, I. M.; Frederiks, W. M.

    1985-01-01

    The biochemical mechanism underlying the 'nothing dehydrogenase' reaction during the histochemical demonstration of dehydrogenases using tetranitro BT as the final electron acceptor has been investigated in unfixed, frozen rat liver sections. The reaction is stronger with NAD+ than either with NADP+

  16. Plant Formate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  17. A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Safina, Gulnara, E-mail: Gulnara.Safina@chem.gu.s [Department of Analytical Chemistry/Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); Ludwig, Roland [Department of Analytical Chemistry/Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); Research Centre Applied Biocatalysis, Petersgasse 18, 8010 Graz (Austria); Gorton, Lo, E-mail: Lo.Gorton@biochemistry.lu.s [Department of Analytical Chemistry/Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden)

    2010-11-01

    A rapid and simple approach of lactose analysis is proposed based on 3rd generation amperometric biosensors employing cellobiose dehydrogenase (CDH) from Trametes villosa or Phanerochaete sordida immobilised on screen-printed carbon electrodes (SPCEs). After optimisation of the working conditions of the biosensors - pH of the carrier buffer, flow rate and applied potential - the sensors were able to detect lactose in a concentration range between 0.5-200 {mu}M and 0.5-100 {mu}M employing T. villosa and P. sordida CDH, respectively. The limit of detection is 250 nM (90 {mu}g/L) for both. Biosensors based on SPCEs modified with multiwalled carbon nanotubes showed a higher sensitivity than unmodified SPCEs. Cross-linking with glutaraldehyde or poly(ethyleneglycol)diglycidyl ether improved not only the stability but also the analytical response. The developed sensor has been successfully applied for the determination of lactose in dairy (milk with different percentages of fat, lactose-free milk and yogurt) with a good reproducibility (RSD = 1.5-2.2%). No sample preparation except a simple dilution process is needed. The biosensor is easy to make and operate, is inexpensive and reveals a high sensitivity and reliability.

  18. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  19. Studies on lipoamide dehydrogenase

    NARCIS (Netherlands)

    Visser, J.

    1969-01-01

    Gel-filtration, ultracentrifugation and sucrose density gradient centrifugation demonstrated differences in physico-chemical properties of holoenzyme and apoenzyme of lipoamide dehydrogenase. The native apoenzyme has a mol.wt. of approx. 52,000 which is half that of the native holoenzyme. The

  20. Studies on lipoamide dehydrogenase

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a

  1. Disease-causing mutations affecting surface residues of mitochondrial glutaryl-CoA dehydrogenase impair stability, heteromeric complex formation and mitochondria architecture.

    Science.gov (United States)

    Schmiesing, Jessica; Lohmöller, Benjamin; Schweizer, Michaela; Tidow, Henning; Gersting, Søren W; Muntau, Ania C; Braulke, Thomas; Mühlhausen, Chris

    2017-02-01

    The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The application of various NMR techniques to free and protein-bound flavins : an approach to elucidate the active center of flavoproteins

    NARCIS (Netherlands)

    Schagen, van C.G.

    1983-01-01

    The subject of this thesis is the application of high resolution NMR techniques to study the structure of free and protein-bound flavins. The main part of the thesis deals with low molecular weight flavoproteins, especially with the flavodoxins from M.elsdenii and

  3. Membrane-bound lactate dehydrogenases and mandelate dehydrogenases of Acinetobacter calcoaceticus. Purification and properties.

    OpenAIRE

    Allison, N; O'Donnell, M J; Fewson, C A

    1985-01-01

    Procedures were developed for the optimal solubilization of D-lactate dehydrogenase, D-mandelate dehydrogenase, L-lactate dehydrogenase and L-mandelate dehydrogenase from wall + membrane fractions of Acinetobacter calcoaceticus. D-Lactate dehydrogenase and D-mandelate dehydrogenase were co-eluted on gel filtration, as were L-lactate dehydrogenase and L-mandelate dehydrogenase. All four enzymes could be separated by ion-exchange chromatography. D-Lactate dehydrogenase and D-mandelate dehydroge...

  4. Dihydrooxonate is a substrate of Dihydroorrotate Dehydrogenase (DHOD) providing evidence for involvement of crsteine and serine residues in base catalysis

    DEFF Research Database (Denmark)

    Björnberg, Olof; Jordan, Douglas B.; Palfey, Bruce Allan

    2001-01-01

    The flavoprotein dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate. Dihydrooxonate is an analogue of dihydroorotate in which the C5 carbon is substituted by a nitrogen atom. We have investigated dihydrooxonate as a substrate of three DHODs, each representing...... pKa of the 5-position in the substrate. Oxonate, the oxidation product of dihydrooxonate, was a competitive inhibitor versus dihydroorotate, and DHODA was the most sensitive of the three enzymes. DHODA was reinvestigated with respect to product inhibition by orotate. The results suggest a classical...... a distinct evolutionary class of the enzyme, namely the two family 1 enzymes from Lactococcus lactis, DHODA and DHODB, and the enzyme from Escherichia coli, which, like the human enzyme, belongs to family 2. Dihydrooxonate was accepted as a substrate although much less efficiently than dihydroorotate...

  5. [Malate dehydrogenase and lactate dehydrogenase in trematodes and turbellarians].

    Science.gov (United States)

    Vykhrestiuk, N P; Burenina, E A; Iarygina, G V

    1986-01-01

    Studies have been made on the activity and properties of malate and lactate dehydrogenases from the cattle rumen trematodes Eurytrema pancreaticum, Calicophoron ijimai and the turbellarian Phagocata sibirica which has a common free-living ancestor with the trematodes. All the species studied have a highly active malate dehydrogenase, its activity in the reaction of reducing oxaloacetate being 6-14 times higher than in the reaction of malate oxidation. The affinity of malate dehydrogenase to oxaloacetate was found to be higher than that to malate. The activity of lactate dehydrogenase (reducing the pyruvate) was lower than the activity of malate dehydrogenase, the difference being 50 times for C. ijimai, 4 times for E. pancreaticum and 10 times for P. sibirica.

  6. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus.

    Science.gov (United States)

    Truglio, James J; Theis, Karsten; Leimkühler, Silke; Rappa, Roberto; Rajagopalan, K V; Kisker, Caroline

    2002-01-01

    Xanthine dehydrogenase (XDH), a complex molybdo/iron-sulfur/flavoprotein, catalyzes the oxidation of hypoxanthine to xanthine followed by oxidation of xanthine to uric acid with concomitant reduction of NAD+. The 2.7 A resolution structure of Rhodobacter capsulatus XDH reveals that the bacterial and bovine XDH have highly similar folds despite differences in subunit composition. The NAD+ binding pocket of the bacterial XDH resembles that of the dehydrogenase form of the bovine enzyme rather than that of the oxidase form, which reduces O(2) instead of NAD+. The drug allopurinol is used to treat XDH-catalyzed uric acid build-up occurring in gout or during cancer chemotherapy. As a hypoxanthine analog, it is oxidized to alloxanthine, which cannot be further oxidized but acts as a tight binding inhibitor of XDH. The 3.0 A resolution structure of the XDH-alloxanthine complex shows direct coordination of alloxanthine to the molybdenum via a nitrogen atom. These results provide a starting point for the rational design of new XDH inhibitors.

  7. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Lactate dehydrogenase deficiency Lactate dehydrogenase deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Lactate dehydrogenase deficiency is a condition that affects how the ...

  8. On the oxygen reactivity of flavoprotein oxidases: an oxygen access tunnel and gate in brevibacterium sterolicum cholesterol oxidase.

    Science.gov (United States)

    Piubelli, Luciano; Pedotti, Mattia; Molla, Gianluca; Feindler-Boeckh, Susanne; Ghisla, Sandro; Pilone, Mirella S; Pollegioni, Loredano

    2008-09-05

    The flavoprotein cholesterol oxidase from Brevibacterium sterolicum (BCO) possesses a narrow channel that links the active center containing the flavin to the outside solvent. This channel has been proposed to serve for the access of dioxygen; it contains at its "bottom" a Glu-Arg pair (Glu-475-Arg-477) that was found by crystallographic studies to exist in two forms named "open" and "closed," which in turn was suggested to constitute a gate functioning in the control of oxygen access. Most mutations of residues that flank the channel have minor effects on the oxygen reactivity. Mutations of Glu-311, however, cause a switch in the basic kinetic mechanism of the reaction of reduced BCO with dioxygen; wild-type BCO and most mutants show a saturation behavior with increasing oxygen concentration, whereas for Glu-311 mutants a linear dependence is found that is assumed to reflect a "simple" second order process. This is taken as support for the assumption that residue Glu-311 finely tunes the Glu-475-Arg-477 pair, forming a gate that functions in modulating the access/reactivity of dioxygen.

  9. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations

    NARCIS (Netherlands)

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W

    2016-01-01

    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the

  10. Lactate dehydrogenase-elevating virus

    Science.gov (United States)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  11. The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate.

    Directory of Open Access Journals (Sweden)

    Tien Chye Tan

    Full Text Available Pyranose dehydrogenases (PDHs are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O activates oxygen by a mechanism that proceeds via a covalent flavin C(4a-hydroperoxide intermediate. Although the flavin C(4a adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2

  12. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein.

    Science.gov (United States)

    Chen, Huizhong; Hopper, Sherryll L; Cerniglia, Carl E

    2005-05-01

    Azo dyes are a predominant class of colourants used in tattooing, cosmetics, foods and consumer products. A gene encoding NADPH-flavin azoreductase (Azo1) from the skin bacterium Staphylococcus aureus ATCC 25923 was identified and overexpressed in Escherichia coli. RT-PCR results demonstrated that the azo1 gene was constitutively expressed at the mRNA level in S. aureus. Azo1 was found to be a tetramer with a native molecular mass of 85 kDa containing four non-covalently bound FMN. Azo1 requires NADPH, but not NADH, as an electron donor for its activity. The enzyme was resolved to dimeric apoprotein by removing the flavin prosthetic groups using hydrophobic-interaction chromatography. The dimeric apoprotein was reconstituted on-column and in free stage with FMN, resulting in the formation of a fully functional native-like tetrameric enzyme. The enzyme cleaved the model azo dye 2-[4-(dimethylamino)phenylazo]benzoic acid (Methyl Red) into N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. The apparent Km values for NADPH and Methyl Red substrates were 0.074 and 0.057 mM, respectively. The apparent Vmax was 0.4 microM min(-1) (mg protein)(-1). Azo1 was also able to metabolize Orange II, Amaranth, Ponceau BS and Ponceau S azo dyes. Azo1 represents the first azoreductase to be identified and characterized from human skin microflora.

  13. Molecular and biochemical characterisation of Mycobacterium smegmatis alcohol dehydrogenase C.

    Science.gov (United States)

    Galamba, A; Soetaert, K; Buyssens, P; Monnaie, D; Jacobs, P; Content, J

    2001-03-01

    The gene encoding of an alcohol dehydrogenase C (ADHC) from Mycobacterium smegmatis was cloned and sequenced. The protein encoded by this gene has 78% identity with Mycobacterium tuberculosis and Mycobacterium bovis BCG ADHC. The M. smegmatis ADHC was purified from M. smegmatis and the kinetic parameters of this enzyme showed that using NADPH as electron donor it has a strong preference for aliphatic and aromatic aldehyde substrates. Like the M. bovis BCG ADHC, this enzyme is more likely to act as an aldehyde reductase than as an alcohol dehydrogenase. The discovery of such an ADHC in a fast-growing, and easily engineered mycobacterial species opens the way to the utilisation of this M. smegmatis enzyme as a convenient model for the study of the physiological role of this alcohol dehydrogenase in mycobacteria.

  14. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of ?,?-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a

  15. The mechanism of assembly and cofactor insertion into Rhodobacter capsulatus xanthine dehydrogenase.

    Science.gov (United States)

    Schumann, Silvia; Saggu, Miguel; Möller, Nadine; Anker, Stefan D; Lendzian, Friedhelm; Hildebrandt, Peter; Leimkühler, Silke

    2008-06-13

    Rhodobacter capsulatus xanthine dehydrogenase (XDH) is a molybdo-flavoprotein that is highly homologous to the homodimeric mammalian xanthine oxidoreductase. However, the bacterial enzyme has an (alphabeta)(2) heterotetrameric structure, and the cofactors were identified to be located on two different polypeptides. We have analyzed the mechanism of cofactor insertion and subunit assembly of R. capsulatus XDH, using engineered subunits with appropriate substitutions in the interfaces. In an (alphabeta) heterodimeric XDH containing the XdhA and XdhB subunits, the molybdenum cofactor (Moco) was shown to be absent, indicating that dimerization of the (alphabeta) subunits has to precede Moco insertion. In an (alphabeta)(2) XDH heterotetramer variant, including only one active Moco-center, the active (alphabeta) site of the chimeric enzyme was shown to be fully active, revealing that the two subunits act independent without cooperativity. Amino acid substitutions at two cysteine residues coordinating FeSI of the two [2Fe-2S] clusters of the enzyme demonstrate that an incomplete assembly of FeSI impairs the formation of the XDH (alphabeta)(2) heterotetramer and, thus, insertion of Moco into the enzyme. The results reveal that the insertion of the different redox centers into R. capsulatus XDH takes place sequentially. Dimerization of two (alphabeta) dimers is necessary for insertion of sulfurated Moco into apo-XDH, the last step of XDH maturation.

  16. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer. © 2015 The Protein Society.

  17. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  18. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation.

    Science.gov (United States)

    Buckel, Wolfgang; Thauer, Rudolf K

    2013-02-01

    The review describes four flavin-containing cytoplasmatic multienzyme complexes from anaerobic bacteria and archaea that catalyze the reduction of the low potential ferredoxin by electron donors with higher potentials, such as NAD(P)H or H(2) at ≤ 100 kPa. These endergonic reactions are driven by concomitant oxidation of the same donor with higher potential acceptors such as crotonyl-CoA, NAD(+) or heterodisulfide (CoM-S-S-CoB). The process called flavin-based electron bifurcation (FBEB) can be regarded as a third mode of energy conservation in addition to substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP). FBEB has been detected in the clostridial butyryl-CoA dehydrogenase/electron transferring flavoprotein complex (BcdA-EtfBC), the multisubunit [FeFe]hydrogenase from Thermotoga maritima (HydABC) and from acetogenic bacteria, the [NiFe]hydrogenase/heterodisulfide reductase (MvhADG-HdrABC) from methanogenic archaea, and the transhydrogenase (NfnAB) from many Gram positive and Gram negative bacteria and from anaerobic archaea. The Bcd/EtfBC complex that catalyzes electron bifurcation from NADH to the low potential ferredoxin and to the high potential crotonyl-CoA has already been studied in some detail. The bifurcating protein most likely is EtfBC, which in each subunit (βγ) contains one FAD. In analogy to the bifurcating complex III of the mitochondrial respiratory chain and with the help of the structure of the human ETF, we propose a conformational change by which γ-FADH(-) in EtfBC approaches β-FAD to enable the bifurcating one-electron transfer. The ferredoxin reduced in one of the four electron bifurcating reactions can regenerate H(2) or NADPH, reduce CO(2) in acetogenic bacteria and methanogenic archaea, or is converted to ΔμH(+)/Na(+) by the membrane-associated enzyme complexes Rnf and Ech, whereby NADH and H(2) are recycled, respectively. The mainly bacterial Rnf complexes couple ferredoxin oxidation by NAD(+) with

  19. Simultaneous immobilization of dehydrogenases on polyvinylidene difluoride resin after separation by non-denaturing two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Youji [Graduate School of Science and Engineering (Science Section) and Venture Business Laboratory, Ehime University, Bunkyo-cho 2-5, Matsuyama City 790-8577 (Japan)], E-mail: yoji@dpc.ehime-u.ac.jp; Kadota, Mariko [Faculty of Science, Ehime University, Matsuyama (Japan)

    2008-06-16

    We detected mouse liver malate, sorbitol and aldehyde dehydrogenases by negative staining, analysis of malate and sorbitol dehydrogenase activities using each substrate, and electron transfers including nicotinamide adenine dinucleotide (NAD) and nitroblue tetrazolium in non-denaturing two-dimensional electrophoresis (2-DE) gel. Dehydrogenases were also identified by electrospray ionization tandem mass spectrometry (ESI-MS/MS) after 2-DE separation and protein detection by negative staining. Spots of dehydrogenases separated by 2-DE were excised, and simultaneously transferred and immobilized on polyvinylidene difuoride (PVDF) resin by electrophoresis. The dehydrogenase activities remained intact after immobilization. In conclusion, resin-immobilized dehydrogenases can be simultaneously obtained after separation by non-denaturing 2-DE, detection by negative staining and transferring to resins.

  20. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration

    OpenAIRE

    Van Vranken, Jonathan G.; Bricker, Daniel K.; Dephoure, Noah; Gygi, Steven P.; Cox, James E.; Thummel, Carl S.; Rutter, Jared

    2014-01-01

    Succinate dehydrogenase (SDH) occupies a central place in cellular energy production, linking the tricarboxylic cycle with the electron transport chain. As a result, a subset of cancers and neuromuscular disorders result from mutations affecting any of the four SDH structural subunits or either of two known SDH assembly factors. Herein we characterize a novel evolutionarily conserved SDH assembly factor designated Sdh8/SDHAF4, using yeast, Drosophila, and mammalian cells. Sdh8 interacts speci...

  1. Formaldehyde dehydrogenase preparations from Methylococcus capsulatus (Bath) comprise methanol dehydrogenase and methylene tetrahydromethanopterin dehydrogenase.

    Science.gov (United States)

    Adeosun, Ekundayo K; Smith, Thomas J; Hoberg, Anne-Mette; Velarde, Giles; Ford, Robert; Dalton, Howard

    2004-03-01

    In methylotrophic bacteria, formaldehyde is an important but potentially toxic metabolic intermediate that can be assimilated into biomass or oxidized to yield energy. Previously reported was the purification of an NAD(P)(+)-dependent formaldehyde dehydrogenase (FDH) from the obligate methane-oxidizing methylotroph Methylococcus capsulatus (Bath), presumably important in formaldehyde oxidation, which required a heat-stable factor (known as the modifin) for FDH activity. Here, the major protein component of this FDH preparation was shown by biophysical techniques to comprise subunits of 64 and 8 kDa in an alpha(2)beta(2) arrangement. N-terminal sequencing of the subunits of FDH, together with enzymological characterization, showed that the alpha(2)beta(2) tetramer was a quinoprotein methanol dehydrogenase of the type found in other methylotrophs. The FDH preparations were shown to contain a highly active NAD(P)(+)-dependent methylene tetrahydromethanopterin dehydrogenase that was the probable source of the NAD(P)(+)-dependent formaldehyde oxidation activity. These results support previous findings that methylotrophs possess multiple pathways for formaldehyde dissimilation.

  2. Direct Enzymatic Assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in Colonies of Hansenula polymorpha

    OpenAIRE

    Eggeling, L; Sahm, H.

    1980-01-01

    A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.

  3. Changes in the zonation of lactate dehydrogenase activity in lobules of rat liver after experimentally induced colon carcinoma metastases

    NARCIS (Netherlands)

    Griffini, P.; Freitas, I.; Vigorelli, E.; van Noorden, C. J.

    1994-01-01

    Visualization of lactate dehydrogenase (LDH) activity with Neotetrazolium as final electron acceptor under anaerobic conditions and an incubation medium containing polyvinyl alcohol showed that under normal physiological conditions a zonal distribution of LDH activity is present in the liver lobule

  4. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.

    Science.gov (United States)

    Grabbe, Roman; Schmitz, Ruth A

    2003-04-01

    In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.

  5. Assignment of Etfdh, Etfb, and Etfa to chromosomes 3, 7, and 13: The mouse homologs of genes respondible for glutaric acidemia type II in human

    Energy Technology Data Exchange (ETDEWEB)

    White, R.A.; Dowler, L.L.; Angeloni, S.V. [UMKC School of Medicine, Kansas City, MO (United States); Koeller, D.M. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)

    1996-04-01

    Electron transfer flavoprotein (composed of {alpha} and {beta} subunits) is an obligatory electron acceptor for several dehydrogenases and is located in the mitochondrial matrix. Electrons accepted by electron transfer flavo-protein (ETF) are transferred to the main mitochondrial respiratory chain by the way of ETF dehydrogenase (ETFDH). In humans, deficiency of ETF or ETFDH leads to glutaric acidemia type II, an inherited metabolic disorder that can be fatal in its neonatal form and is characterized by severe hypoketotic hypoglycemia and acidosis. We used cDNA probes for the Etfdh, Etfb, and Etfa genes to determine localization of these mouse genes to chromosomes 3, 7, and 13. 18 refs., 3 figs.

  6. The Y42H mutation in medium-chain acyl-CoA dehydrogenase, which is prevalent in babies identified by MS/MS-based newborn screening, is temperature sensitive

    DEFF Research Database (Denmark)

    O'Reilly, Linda; Bross, Peter; Corydon, Thomas J

    2004-01-01

    variant. To distinguish between effects of temperature on folding/assembly and the stability of the native enzyme, the thermal stability of the variant proteins was studied after expression and purification by dye affinity chromatography. This showed that, compared with the wild-type enzyme......Medium-chain acyl-CoA dehydrogenase (MCAD) is a homotetrameric flavoprotein which catalyses the initial step of the beta-oxidation of medium-chain fatty acids. Mutations in MCAD may cause disease in humans. A Y42H mutation is frequently found in babies identified by newborn screening with MS....../MS, yet there are no reports of patients presenting clinically with this mutation. As a basis for judging its potential consequences we have examined the protein phenotype of the Y42H mutation and the common disease-associated K304E mutation. Our studies of the intracellular biogenesis of the variant...

  7. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  8. Corynebacterium glutamicum sdhA encoding succinate dehydrogenase subunit A plays a role in cysR-mediated sulfur metabolism.

    Science.gov (United States)

    Lee, Dong-Seok; Park, Joon-Song; Kim, Younhee; Lee, Heung-Shick

    2014-08-01

    The Corynebacterium glutamicum CysR protein plays a critical regulatory role in sulfur metabolism. In this study, we isolated a protein interacting with CysR by employing a two-hybrid system. Subsequent analysis identified the gene as sdhA annotated to encode succinate dehydrogenase flavoprotein subunit A, a Krebs cycle enzyme. Deletion of the gene (ΔsdhA) severely affected cell growth and final cell yield, particularly in complex media. In addition, the ΔsdhA mutant strain was unable to use acetate as the sole carbon source, showing the identity of the gene. Transcription of the cysR gene and genes known to be regulated by cysR was affected in the ΔsdhA mutant strain, suggesting a positive role for sdhA on cysR. Furthermore, ΔsdhA cells showed increased sensitivity to oxidants, such as diamide, menadione, and hydrogen peroxide. In ΔsdhA cells, the trx gene, which encodes thioredoxin reductase, was severely repressed. Taken together, our findings show that the SdhA protein not only performs a role as a TCA enzyme but also communicates with sulfur metabolism, thereby regulating genes involved in redox homeostasis.

  9. Opine dehydrogenases in marine invertebrates.

    Science.gov (United States)

    Harcet, Matija; Perina, Drago; Pleše, Bruna

    2013-10-01

    It is well known today that opine production anaerobic pathways are analogs to the classical glycolytic pathway (lactate production pathway). These pathways, catalyzed by a group of enzymes called opine dehydrogenases (OpDHs), ensure continuous flux of glycolysis and a constant supply of ATP by maintaining the NADH/NAD(+) ratio during exercise and hypoxia, thus regulating the cytosolic redox balance in glycolysis under anoxia. OpDHs are distributed in a wide range of marine invertebrate phyla, including sponges (Porifera). Phylogenetic analyses supported with enzymatic assays strongly indicate that sponge OpDHs constitute an enzyme class unrelated to other OpDHs. Therefore, OpDHs in marine invertebrates are divided into two groups, a mollusk/annelid type and a sponge type, which belongs to the OCD/mu-crystallin family.

  10. Sequence variation in human succinate dehydrogenase genes: evidence for long-term balancing selection on SDHA

    Directory of Open Access Journals (Sweden)

    Lawrence Elizabeth C

    2007-03-01

    Full Text Available Abstract Background Balancing selection operating for long evolutionary periods at a locus is characterized by the maintenance of distinct alleles because of a heterozygote or rare-allele advantage. The loci under balancing selection are distinguished by their unusually high polymorphism levels. In this report, we provide statistical and comparative genetic evidence suggesting that the SDHA gene is under long-term balancing selection. SDHA encodes the major catalytical subunit (flavoprotein, Fp of the succinate dehydrogenase enzyme complex (SDH; mitochondrial complex II. The inhibition of Fp by homozygous SDHA mutations or by 3-nitropropionic acid poisoning causes central nervous system pathologies. In contrast, heterozygous mutations in SDHB, SDHC, and SDHD, the other SDH subunit genes, cause hereditary paraganglioma (PGL tumors, which show constitutive activation of pathways induced by oxygen deprivation (hypoxia. Results We sequenced the four SDH subunit genes (10.8 kb in 24 African American and 24 European American samples. We also sequenced the SDHA gene (2.8 kb in 18 chimpanzees. Increased nucleotide diversity distinguished the human SDHA gene from its chimpanzee ortholog and from the PGL genes. Sequence analysis uncovered two common SDHA missense variants and refuted the previous suggestions that these variants originate from different genetic loci. Two highly dissimilar SDHA haplotype clusters were present in intermediate frequencies in both racial groups. The SDHA variation pattern showed statistically significant deviations from neutrality by the Tajima, Fu and Li, Hudson-Kreitman-Aguadé, and Depaulis haplotype number tests. Empirically, the elevated values of the nucleotide diversity (% π = 0.231 and the Tajima statistics (D = 1.954 in the SDHA gene were comparable with the most outstanding cases for balancing selection in the African American population. Conclusion The SDHA gene has a strong signature of balancing selection. The

  11. Crystal Structure of Human Dihydrolipoamide Dehydrogenase: NAD[superscript +]/NADH Binding and the Structural Basis of Disease-causing Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Brautigam, Chad A.; Chuang, Jacinta L.; Tomchick, Diana R.; Machius, Mischa; Chuang, David T. (U. of Texas-SMED)

    2010-07-13

    Human dihydrolipoamide dehydrogenase (hE3) is an enzymatic component common to the mitochondrial {alpha}-ketoacid dehydrogenase and glycine decarboxylase complexes. Mutations to this homodimeric flavoprotein cause the often-fatal human disease known as E3 deficiency. To catalyze the oxidation of dihydrolipoamide, hE3 uses two molecules: noncovalently bound FAD and a transiently bound substrate, NAD{sup +}. To address the catalytic mechanism of hE3 and the structural basis for E3 deficiency, the crystal structures of hE3 in the presence of NAD{sup +} or NADH have been determined at resolutions of 2.5 {angstrom} and 2.1 {angstrom}, respectively. Although the overall fold of the enzyme is similar to that of yeast E3, these two structures differ at two loops that protrude from the proteins and at their FAD-binding sites. The structure of oxidized hE3 with NAD{sup +} bound demonstrates that the nicotinamide moiety is not proximal to the FAD. When NADH is present, however, the nicotinamide base stacks directly on the isoalloxazine ring system of the FAD. This is the first time that this mechanistically requisite conformation of NAD{sup +} or NADH has been observed in E3 from any species. Because E3 structures were previously available only from unicellular organisms, speculations regarding the molecular mechanisms of E3 deficiency were based on homology models. The current hE3 structures show directly that the disease-causing mutations occur at three locations in the human enzyme: the dimer interface, the active site, and the FAD and NAD{sup +}-binding sites. The mechanisms by which these mutations impede the function of hE3 are discussed.

  12. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(PH-dependent dehydrogenases (synthases, which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti plasmid. In addition to the reverse oxidative reaction(s, the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation. We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A, and exhibited dehydrogenase (but not oxidase activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.

  13. Spinal autofluorescent flavoprotein imaging in a rat model of nerve injury-induced pain and the effect of spinal cord stimulation.

    Directory of Open Access Journals (Sweden)

    Joost L M Jongen

    Full Text Available Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS, an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.

  14. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate specificities and inhibition studies.

    OpenAIRE

    Mackintosh, R W; Fewson, C A

    1988-01-01

    The apparent Km and maximum velocity values of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus were determined for a range of alcohols and aldehydes and the corresponding turnover numbers and specificity constants were calculated. Benzyl alcohol was the most effective alcohol substrate for benzyl alcohol dehydrogenase. Perillyl alcohol was the second most effective substrate, and was the only non-aromatic alcohol oxidized. The other substrates o...

  15. The ETFDH c.158A>G Variation Disrupts the Balanced Binding of ESE and ESS Proteins Causing Missplicing and Multiple acyl-CoA Dehydrogenation Deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Brøner, Sabrina; Sabaratnam, Rugivan

    2013-01-01

    Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostica......Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only...

  16. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase...

  17. Neuropathology in Succinic Semialdehyde Dehydrogenase Deficiency

    NARCIS (Netherlands)

    Knerr, I.; Gibson, K.M.; Murdoch, G.; Salomons, G.S.; Jakobs, C.; Combs, S.; Pearl, P.L.

    2010-01-01

    Reported here is the novel finding of neuropathology in a patient with succinic semialdehyde dehydrogenase deficiency, an inherited disorder of γ-aminobutyric acid metabolism characterized by intellectual deficiency, hypotonia, and epilepsy, with 4-hydroxybutyric aciduria and abnormalities of the

  18. Isocitrate dehydrogenase mutations in gliomas

    Science.gov (United States)

    Waitkus, Matthew S.; Diplas, Bill H.; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg132 of IDH1 and Arg172 of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014

  19. Response of Chloroplast NAD(PH Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress

    Directory of Open Access Journals (Sweden)

    Jemaa eEssemine

    2016-03-01

    Full Text Available Cyclic electron flow around PSI can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and PSII to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e. Q4149 with a high capacity (hcef and C4023 with a low capacity (lcef. The absorbance change at 820 nm (ΔA820 was used here to assess the charge separation in the photosystem I (PSI reaction center (P700. The results obtained show that short-term heat stress abolishes the FQR-dependent CEF in rice and accelerates the initial rate of P700+ re-reduction. The P700+ amplitude was slightly increased at a moderate heat-stress (35°C because of a partial restriction of FQR but it was decreased following high heat-stress (42°C. Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than photosystem II (PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149 was characterized by higher FQR- and NDH-dependent CEF rates than lcef (C4023. Following thermal stress, the activation of NDH-pathway was 130% and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defence against heat stress after the main route, i.e. FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the evolution of C4 photosynthesis is briefly discussed.

  20. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  1. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    Directory of Open Access Journals (Sweden)

    Alexander Basner

    Full Text Available Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P, the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  2. Free Radical Production from the Interaction of 2-Chloroethyl Vesicants (Mustard Gas) with Pyridine Nucleotide-Driven Flavoprotein Electron Transport Systems

    Science.gov (United States)

    2009-01-01

    2 , 2 ′- chloroethyl sulfide [CAS 505-60- 2 ], mustard gas, NATO...MO. The nitrogen mustard mechlorethamine (methylbis ( chloroethyl amine), HN2), the monofunctional sulfur mustards chloroethyl ethyl sulfide (CEES...and chloroethyl methyl sulfide (CEMS), the spin trap 2 -methyl- 2 - nitrosopropane dimer (MNP) and trimethylsulfonium iodide were purchased from

  3. Crystallization of quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni : crystals with unique optical properties

    NARCIS (Netherlands)

    Oubrie, Arthur; Huizinga, Eric G.; Rozeboom, Henriëtte J.; Kalk, Kor H.; Jong, Govardus A.H. de; Duine, Johannis A.; Dijkstra, Bauke W.

    2001-01-01

    Quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni is a functional electron-transfer protein containing both a haem c and a pyrroloquinoline quinone cofactor. The enzyme has been crystallized at 277 K using polyethylene glycol 6000 as precipitant. The crystals belong to space group

  4. A Novel Caffeine Dehydrogenase in Pseudomonas sp. Strain CBB1 Oxidizes Caffeine to Trimethyluric Acid▿

    Science.gov (United States)

    Yu, Chi Li; Kale, Yogesh; Gopishetty, Sridhar; Louie, Tai Man; Subramanian, Mani

    2008-01-01

    A unique heterotrimeric caffeine dehydrogenase was purified from Pseudomonas sp. strain CBB1. This enzyme oxidized caffeine to trimethyluric acid stoichiometrically and hydrolytically, without producing hydrogen peroxide. The enzyme was not NAD(P)+ dependent; coenzyme Q0 was the preferred electron acceptor. The enzyme was specific for caffeine and theobromine and showed no activity with xanthine. PMID:17981969

  5. Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia.

    Science.gov (United States)

    Gill, Anthony J

    2012-06-01

    The genes for the succinate dehydrogenase (SDH) subunits SDHA, SDHB, SDHC and SDHD are encoded in the autosome. The proteins are assembled in the mitochondria to form the mitochondrial complex 2, a key respiratory enzyme which links the Krebs cycle and the electron transport chain. Thirty percent of phaeochromocytoma and paraganglioma (PHEO/PGL) are hereditary and perhaps as many as half of these familial cases are caused by germline mutations of the SDH subunits. Negative immunohistochemical staining for the SDHB subunit identifies PHEO/PGL associated with germline mutation of any of the mitochondrial complex 2 components and can be used to triage formal genetic testing of all PHEO/PGL for SDH mutations. PHEO/PGL associated with SDHA mutation also show negative staining for SDHA as well as SDHB.A unique subgroup of gastrointestinal stromal tumours (GISTs) are driven by mitochondrial complex 2 dysfunction. These SDH deficient GISTs can also be definitively identified by negative staining for SDHB and show distinct clinical and morphological features including frequent onset in childhood and young adulthood, gastric location, a tendency to multifocality, absence of KIT and PDGFRA mutations, a prognosis not predicted by size and mitotic rate and a tendency to indolent behaviour of metastases. Some of these SDH deficient GISTs are driven by classical SDH mutations, but the precise mechanisms of tumourigenesis in many (including those associated with the Carney triad) remain unknown. Germline SDHB mutation is associated with a newly recognised type of renal carcinoma which commonly but not always demonstrates distinctive morphology and can also be recognised by negative staining for SDHB.Immunohistochemistry for SDHB therefore has emerged as a useful tool to recognise these distinct neoplasias driven by mitochondrial complex 2 dysfunction and to triage formal genetic testing for the associated syndromes.

  6. The flavoproteins CryD and VvdA cooperate with the white collar protein WcoA in the control of photocarotenogenesis in Fusarium fujikuroi.

    Directory of Open Access Journals (Sweden)

    Marta Castrillo

    Full Text Available Light stimulates carotenoid biosynthesis in the ascomycete fungus Fusarium fujikuroi through transcriptional activation of the structural genes of the pathway carRA, carB, and cart, but the molecular basis of this photoresponse is unknown. The F. fujikuroi genome contains genes for different predicted photoreceptors, including the WC protein WcoA, the DASH cryptochrome CryD and the Vivid-like flavoprotein VvdA. We formerly found that null mutants of wcoA, cryD or vvdA exhibit carotenoid photoinduction under continuous illumination. Here we show that the wild type exhibits a biphasic response in light induction kinetics experiments, with a rapid increase in carotenoid content in the first hours, a transient arrest and a subsequent slower increase. The mutants of the three photoreceptors show different kinetic responses: the wcoA mutants are defective in the rapid response, the cryD mutants are affected in the slower response, while the fast and slow responses were respectively enhanced and attenuated in the vvdA mutants. Transcriptional analyses of the car genes revealed a strong reduction of dark and light-induced transcript levels in the wcoA mutants, while minor or no reductions were found in the cryD mutants. Formerly, we found no change on carRA and carB photoinduction in vvdA mutants. Taken together, our data suggest a cooperative participation of WcoA and CryD in early and late stages of photoinduction of carotenoid biosynthesis in F. fujikuroi, and a possible modulation of WcoA activity by VvdA. An unexpected transcriptional induction by red light of vvdA, cryD and carRA genes suggest the participation of an additional red light-absorbing photoreceptor.

  7. Pyruvate dehydrogenase : its structure, function and interactions within the pyruvate dehydrogenase multienzyme complex

    NARCIS (Netherlands)

    Hengeveld, A.F.

    2002-01-01

    Pyruvate dehydrogenase multi-enzyme complex (PDHC) is member of a family of multienzyme complexes that catalyse the irreversible decarboxylation of various 2-oxoacid substrates to their corresponding acyl-CoA derivatives, NADH and C02. 2-oxoacid dehydrogenase complexes hold key points in

  8. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Glusoce-6-phosphate dehydrogenase- History and diagnosis

    Directory of Open Access Journals (Sweden)

    K Gautam

    2016-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase deficiency is the most common enzymatic defect of red blood cells, which increases the vulnerability of erythrocytes to oxidative stress leading to hemolytic anemia. Since its identification more than 60 years ago, much has been done with respect to its clinical diagnosis, laboratory diagnosis and treatment. Association of G6PD is not just limited to anti malarial drugs, but a vast number of other diseases. In this article, we aimed to review the history of Glucose-6-phosphate dehydrogenase, the diagnostic methods available along with its association with other noncommunicable diseases. 

  10. Deletion of murine choline dehydrogenase results in diminished sperm motility.

    Science.gov (United States)

    Johnson, Amy R; Craciunescu, Corneliu N; Guo, Zhong; Teng, Ya-Wen; Thresher, Randy J; Blusztajn, Jan K; Zeisel, Steven H

    2010-08-01

    Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh(-/-) mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh(-/-) males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh(+/+) and Chdh(-/-) mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh(-/-) males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh(-/-) sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh(-/-) animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.

  11. Reduction of lipoic acid by lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Biewenga, G.Ph.; Dorstijn, M.A.; Verhagen, J.V.; Haenen, G.R.M.M.; Bast, A.

    1996-01-01

    Racemic lipoic acid is therapeutically applied in pathologies in which free radicals are involved. The in vivo reduction of lipoic acid may play an essential role in its antioxidant effect. It was found that mitochondrial lipoamide dehydrogenase (LipDH, EC 1.8.1.4.) reduces the R-enantiomer 28 times

  12. Coenzyme and effector binding to glutamate dehydrogenase

    NARCIS (Netherlands)

    Zantema, Alt

    1979-01-01

    Glutamaat-dehydrogenase is een enzym dat de reactie katalyseert van 2-oxoglutaraat (substraat), NAD(P)H (co-enzym) en ammonia naar L-glutaminezuur en NAD(P)+. Het enzym is opgebouwd uit 6 identieke subeenheden. Dit proefschrift beschrijft de bestudering van twee aspecten van dit enzym, nl. 1. de

  13. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently

  14. Malaria Protection In Glucose-6-Phosphate Dehydrogenase ...

    African Journals Online (AJOL)

    The high frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency gene in malaria endemic regions is believed to be due to the enzyme deficiency advantage against fatal malaria. However, the mechanism of this protection is not well understood and therefore was investigated by comparing differences in ...

  15. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    Science.gov (United States)

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  16. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase.

    OpenAIRE

    Lorowitz, W; CLARK, D.

    1982-01-01

    Mutants of Escherichia coli resistant to allyl alcohol were selected. Such mutants were found to lack alcohol dehydrogenase. In addition, mutants with temperature-sensitive alcohol dehydrogenase activity were obtained. These mutations, designated adhE, are all located at the previously described adh regulatory locus. Most adhE mutants were also defective in acetaldehyde dehydrogenase activity.

  17. Calculations of hydrogen tunnelling and enzyme catalysis: a comparison of liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase

    Science.gov (United States)

    Tresadern, Gary; McNamara, Jonathan P.; Mohr, Matthias; Wang, Hong; Burton, Neil A.; Hillier, Ian H.

    2002-06-01

    Although the potential energy barrier for hydrogen transfer is similar for the enzymes liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase, the degree of tunnelling is predicted to differ greatly, and is reflected by their primary kinetic isotope effects.

  18. Flavoprotein oxidases : classification and applications

    NARCIS (Netherlands)

    Dijkman, Willem P.; de Gonzalo, Gonzalo; Mattevi, Andrea; Fraaije, Marco W.

    This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical

  19. The crystal structure of the flavin containing enzyme dihydroorotate dehydrogenase A from Lactococcus lactis.

    Science.gov (United States)

    Rowland, P; Nielsen, F S; Jensen, K F; Larsen, S

    1997-02-15

    . Dihydroorotate dehydrogenase (DHOD) is a flavin mononucleotide containing enzyme, which catalyzes the oxidation of (S)-dihydroorotate to orotate, the fourth step in the de novo biosynthesis of pyrimidine nucleotides. Lactococcus lactis contains two genes encoding different functional DHODs whose sequences are only 30% identical. One of these enzymes, DHODA, is a highly efficient dimer, while the other, DHODB, shows optimal activity only in the presence of an iron-sulphur cluster containing protein with which it forms a complex tetramer. Sequence alignments have identified three different families among the DHODs: the two L. lactis enzymes belong to two of the families, whereas the enzyme from E. coli is a representative of the third. As no three-dimensional structures of DHODs are currently available, we set out to determine the crystal structure of DHODA from L. lactis. The differences between the two L. lactis enzymes make them particularly interesting for studying flavoprotein redox reactions and for identifying the differences between the enzyme families. . The crystal structure of DHODA has been determined to 2.0 resolution. The enzyme is a dimer of two crystallographically independent molecules related by a non-crystallographic twofold axis. The protein folds into and alpha/beta barrel with the flavin molecule sitting between the top of the barrel and a subdomain formed by several barrel inserts. Above the flavin isoalloxazine ring there is a small water filled cavity, completely buried beneath the protein surface and surrounded by many conserved residues. This cavity is proposed as the substrate-binding site. . The crystal structure has allowed the function of many of the conserved residues in DHODs to be identified: many of these are associated with binding the flavin group. Important differences were identified in some of the active-site residues which vary across the distinct DHOD families, implying significant mechanistic differences. The substrate

  20. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration

    Science.gov (United States)

    Van Vranken, Jonathan G.; Bricker, Daniel K.; Dephoure, Noah; Gygi, Steven P.; Cox, James E.; Thummel, Carl S.; Rutter, Jared

    2014-01-01

    SUMMARY Succinate dehydrogenase (SDH) occupies a central place in cellular energy production, linking the tricarboxylic cycle with the electron transport chain. As a result, a subset of cancers and neuromuscular disorders result from mutations affecting any of the four SDH structural subunits or either of two known SDH assembly factors. Herein we characterize a novel evolutionarily conserved SDH assembly factor designated Sdh8/SDHAF4, using yeast, Drosophila, and mammalian cells. Sdh8 interacts specifically with the catalytic Sdh1 subunit in the mitochondrial matrix, facilitating its association with Sdh2 and the subsequent assembly of the SDH holocomplex. These roles for Sdh8 are critical for preventing motility defects and neurodegeneration in Drosophila as well as the excess ROS generated by free Sdh1. These studies provide insights into the mechanisms by which SDH is assembled and raise the possibility that some forms of neuromuscular disease may be associated with mutations that affect this SDH assembly factor. PMID:24954416

  1. Preparation and some properties of L-3-glycerophosphate dehydrogenase from pig brain mitochondria.

    Science.gov (United States)

    Dawson, A P; Thorne, C J

    1969-01-01

    1. A method is described for extraction and partial purification of mitochondrial l-3-glycerophosphate dehydrogenase from pig brain. 2. By the criteria that have so far been applied, the extraction and purification procedures do not modify the activity of the enzyme towards artificial electron acceptors. 3. The amounts of acid-liberatable flavine and iron in the preparation were measured. 4. A study was made of the effects of various analogues of l-3-glycerophosphate on the activity of the enzyme.

  2. Development of an amine dehydrogenase for synthesis of chiral amines.

    Science.gov (United States)

    Abrahamson, Michael J; Vázquez-Figueroa, Eduardo; Woodall, Nicholas B; Moore, Jeffrey C; Bommarius, Andreas S

    2012-04-16

    A leucine dehydrogenase has been successfully altered through several rounds of protein engineering to an enantioselective amine dehydrogenase. Instead of the wild-type α-keto acid, the new amine dehydrogenase now accepts the analogous ketone, methyl isobutyl ketone (MIBK), which corresponds to exchange of the carboxy group by a methyl group to produce chiral (R)-1,3-dimethylbutylamine. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Pyruvate dehydrogenase deficiency in a Sussex spaniel.

    Science.gov (United States)

    Abramson, C J; Platt, S R; Shelton, G D

    2004-03-01

    A two-year-old, intact female Sussex spaniel was presented with signs of exercise intolerance. Pre- and post-exercise serum lactate and pyruvate concentrations and urinary organic acid screening supported a diagnosis of pyruvate dehydrogenase deficiency, as previously reported in this breed. Dietary therapy was initiated for six months, during which time there was no reported clinical deterioration. A full neurological examination and repeat evaluation of lactate and pyruvate concentrations before and after exercise was conducted one year after diagnosis, at which time the patient had been without dietary modification for six months and had developed more severe exercise intolerance along with evidence of central nervous system dysfunction.

  4. Neonatal jaundice and glucose-6-phosphate dehydrogenase

    OpenAIRE

    Amauri Antiquera Leite

    2010-01-01

    A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.Glucose-6-phosphate dehydrogenase...

  5. Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath.

    Science.gov (United States)

    Zahn, J A; Bergmann, D J; Boyd, J M; Kunz, R C; DiSpirito, A A

    2001-12-01

    A membrane-associated, dye-linked formaldehyde dehydrogenase (DL-FalDH) was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The enzyme was the major formaldehyde-oxidizing enzyme in cells cultured in high (above 1 micromol of Cu per mg of cell protein) copper medium and expressing the membrane-associated methane monooxygenase. Soluble NAD(P)(+)-linked formaldehyde oxidation was the major activity in cells cultured in low-copper medium and expressing the soluble methane monooxygenase (Tate and Dalton, Microbiology 145:159-167, 1999; Vorholt et al., J. Bacteriol. 180:5351-5356, 1998). The membrane-associated enzyme is a homotetramer with a subunit molecular mass of 49,500 Da. UV-visible absorption, electron paramagnetic resonance, and electrospray mass spectrometry suggest the redox cofactor of the DL-FalDH is pyrroloquinoline quinone (PQQ), with a PQQ-to-subunit stochiometry of approximately 1:1. The enzyme was specific for formaldehyde, oxidizing formaldehyde to formate, and utilized the cytochrome b(559/569) complex as the physiological electron acceptor.

  6. Membrane-Associated Quinoprotein Formaldehyde Dehydrogenase from Methylococcus capsulatus Bath

    Science.gov (United States)

    Zahn, James A.; Bergmann, David J.; Boyd, Jeffery M.; Kunz, Ryan C.; DiSpirito, Alan A.

    2001-01-01

    A membrane-associated, dye-linked formaldehyde dehydrogenase (DL-FalDH) was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The enzyme was the major formaldehyde-oxidizing enzyme in cells cultured in high (above 1 μmol of Cu per mg of cell protein) copper medium and expressing the membrane-associated methane monooxygenase. Soluble NAD(P)+-linked formaldehyde oxidation was the major activity in cells cultured in low-copper medium and expressing the soluble methane monooxygenase (Tate and Dalton, Microbiology 145:159–167, 1999; Vorholt et al., J. Bacteriol. 180:5351–5356, 1998). The membrane-associated enzyme is a homotetramer with a subunit molecular mass of 49,500 Da. UV-visible absorption, electron paramagnetic resonance, and electrospray mass spectrometry suggest the redox cofactor of the DL-FalDH is pyrroloquinoline quinone (PQQ), with a PQQ-to-subunit stochiometry of approximately 1:1. The enzyme was specific for formaldehyde, oxidizing formaldehyde to formate, and utilized the cytochrome b559/569 complex as the physiological electron acceptor. PMID:11698372

  7. Maple syrup urine disease: The E1{beta} gene of human branched-chain {alpha}-ketoacid dehydrogenase complex has 11 rather than 10 exons, and the 3{prime} UTR in one of the two E1{beta} mRNAs arises from intronic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, J.L.; Chuang, D.T.; Cox, R.P. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States)

    1996-06-01

    Maple syrup urine disease (MSUD) or branched-chain ketoaciduria is caused by a deficiency in the mitochondrial branched-chain {alpha}-ketoacid dehydrogenase (BCKAD) complex. The clinical manifestations are characterized by accumulation of branched chain amino and {alpha}-ketoacids, which leads to severe cerebral edema with seizures, ketoacidosis, and mental retardation. The BCKAD complex comprises three catalytic components, i.e., a decarboxylase (E1) consisting of two E1{alpha} (M{sub r} = 46,000) and two E1{Beta} (M{sub r} = 37,500) subunits, a transacylase (E2) that contains 24 lipoic acid-bearing subunits, and a dehydrogenase (E3), which is a homodimeric flavoprotein. MSUD is genetically heterogeneous, since mutations in the E1{alpha} subunit (type IA MSUD), the E1{Beta} subunit (type IB), the E2 subunit (type II) and the E3 subunit (type III) have been described. The functional consequences of certain mutations in the BCKAD complex have been studied. 23 refs., 3 figs.

  8. Changes in native alcohol dehydrogenase activity of Drosophila ...

    Indian Academy of Sciences (India)

    tribpo

    and within the Mexican populations of the insect after treatment with the denaturants. Keywords. Drosophila melanogaster; alcohol dehydrogenase; guanidine hydrochloride; urea; heat. Introduction. The existence of clines in the frequency of alcohol dehydrogenase (Adh) alleles in. Drosophila under various environmental ...

  9. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  10. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  12. Methanol/Oxygen Enzymatic Biofuel Cell Using Laccase and NAD+-Dependent Dehydrogenase Cascades as Biocatalysts on Carbon Nanodots Electrodes.

    Science.gov (United States)

    Wu, Guozhi; Gao, Yue; Zhao, Dan; Ling, Pinghua; Gao, Feng

    2017-11-22

    The efficient immobilization of enzymes on favorable supporting materials to design enzyme electrodes endowed with specific catalysis performances such as deep oxidation of biofuels, and direct electron transfer (DET)-type bioelectrocatalysis is highly desired for fabricating enzymatic biofuel cells (BFCs). In this study, carbon nanodots (CNDs) have been used as the immobilizing matrixes and electron relays of enzymes to construct (NAD + )-dependent dehydrogenase cascades-based bioanode for the deep oxidation of methanol and DET-type laccase-based biocathode for oxygen reduction to water. At the bioanode, multiplex enzymes including alcohol dehydrogenase, aldehyde dehydrogenase, and formate dehydrogenase are coimmobilized on CNDs electrode which is previously coated with in situ polymerized methylene blue as the electrocatalyst for oxidizing NADH to NAD + . At the biocathode, fungal laccase is directly cast on CNDs and facilitated DET reaction is allowed. As a result, a novel membrane-less methanol/O 2 BFC has been assembled and displays a high open-circuit voltage of 0.71(±0.02) V and a maximum power density of 68.7 (±0.4) μW cm -2 . These investigated features imply that CNDs may act as new conductive architectures to elaborate enzyme electrodes for further bioelectrochemical applications.

  13. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer?

    Science.gov (United States)

    Laurenti, Giulio; Tennant, Daniel A

    2016-08-15

    In the early 1920s Otto Warburg observed that cancer cells have altered metabolism and from this, posited that mitochondrial dysfunction underpinned the aetiology of cancers. The more recent identification of mutations of mitochondrial metabolic enzymes in a wide range of human cancers has now provided a direct link between metabolic alterations and cancer. In this review we discuss the consequences of dysfunction of three metabolic enzymes involved in or associated with the tricarboxylic acid (TCA) cycle: succinate dehydrogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase (IDH) focusing on the similarity between the phenotypes of cancers harbouring these mutations. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Betaine aldehyde dehydrogenase isozymes of spinach

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  15. Fast internal dynamics in alcohol dehydrogenase

    Science.gov (United States)

    Monkenbusch, M.; Stadler, A.; Biehl, R.; Ollivier, J.; Zamponi, M.; Richter, D.

    2015-08-01

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  16. [Glucose-6-phosphate dehydrogenase deficiency in Japan].

    Science.gov (United States)

    Kanno, Hitoshi; Ogura, Hiromi

    2015-07-01

    In the past 10 years, we have diagnosed congenital hemolytic anemia in 294 patients, approximately 33% of whom were found to have glucose-6-phosphate dehydrogenase (G6PD) deficiency. It is becoming more common for Japanese to marry people of other ethnic origins, such that G6PD deficiency is becoming more prevalent in Japan. Japanese G6PD deficiency tends to be diagnosed in the neonatal period due to severe jaundice, while G6PD-deficient patients with foreign ancestors tend to be diagnosed at the onset of an acute hemolytic crisis before the age of six. It is difficult to predict the clinical course of each patient by G6PD activity, reduced glutathione content, or the presence/absence of severe neonatal jaundice. We propose that both neonatal G6PD screening and systematic analyses of G6PD gene mutations may be useful for personalized management of patients with G6PD-deficient hemolytic anemia.

  17. The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate.

    Science.gov (United States)

    Nemeria, Natalia S; Gerfen, Gary; Guevara, Elena; Nareddy, Pradeep Reddy; Szostak, Michal; Jordan, Frank

    2017-07-01

    Recently, we reported that the human 2-oxoglutarate dehydrogenase (hE1o) component of the 2-oxoglutarate dehydrogenase complex (OGDHc) could produce the reactive oxygen species superoxide and hydrogen peroxide (detected by chemical means) from its substrate 2-oxoglutarate (OG), most likely concurrently with one-electron oxidation by dioxygen of the thiamin diphosphate (ThDP)-derived enamine intermediate to a C2α-centered radical (detected by Electron Paramagnetic Resonance) [Nemeria et al., 2014 [17]; Ambrus et al. 2015 [18

  18. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.

    Science.gov (United States)

    Vienozinskis, J; Butkus, A; Cenas, N; Kulys, J

    1990-01-01

    The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed. PMID:2375745

  19. Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1.

    Science.gov (United States)

    Denger, Karin; Weinitschke, Sonja; Smits, Theo H M; Schleheck, David; Cook, Alasdair M

    2008-01-01

    The utilization of organosulfonates as carbon sources by aerobic or nitrate-reducing bacteria usually involves a measurable, uncharacterized sulfite dehydrogenase. This is tacitly assumed to be sulfite : ferricytochrome-c oxidoreductase [EC 1.8.2.1], despite negligible interaction with (eukaryotic) cytochrome c: the enzyme is assayed at high specific activity with ferricyanide as electron acceptor. Purified periplasmic sulfite dehydrogenases (SorAB, SoxCD) are known from chemoautotrophic growth and are termed 'sulfite oxidases' by bioinformatic services. The catalytic unit (SorA, SoxC; termed 'sulfite oxidases' cd02114 and cd02113, respectively) binds a molybdenum-cofactor (Moco), and involves a cytochrome c (SorB, SoxD) as electron acceptor. The genomes of several bacteria that express a sulfite dehydrogenase during heterotrophic growth contain neither sorAB nor soxCD genes; others contain at least four paralogues, for example Cupriavidus necator H16, which is known to express an inducible sulfite dehydrogenase during growth with taurine (2-aminoethanesulfonate). This soluble enzyme was enriched 320-fold in four steps. The 40 kDa protein (denatured) had an N-terminal amino acid sequence which started at position 42 of the deduced sequence of H16_B0860 (termed 'sulfite oxidase' cd02114), which we named SorA. The neighbouring gene is an orthologue of sorB, and the sorAB genes were co-transcribed. Cell fractionation showed SorA to be periplasmic. The corresponding enzyme in Delftia acidovorans SPH-1 was enriched 270-fold, identified as Daci_0055 (termed 'sulfite oxidase' cd02110) and has a cytochrome c encoded downstream. We presume, from genomic data for bacteria and archaea, that there are several subgroups of sulfite dehydrogenases, which all contain a Moco, and transfer electrons to a specific cytochrome c.

  20. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    Science.gov (United States)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2017-08-29

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  1. E. coli dihydroorotate dehydrogenase reveals structural and functional distinctions between different classes of dihydroorotate dehydrogenases

    DEFF Research Database (Denmark)

    Nørager, Sofie; Jensen, Kaj Frank; Björnberg, Olof

    2002-01-01

    The flavoenzymes dihydroorotate dehydrogenases (DHODs) catalyze the fourth and only redox step in the de novo biosynthesis of UMP. Enzymes belonging to class 2, according to their amino acid sequence, are characterized by having a serine residue as the catalytic base and a longer N terminus...... by comparison of the E. coli DHOD with the other known DHOD structures, and differences with the class 2 human DHOD explain the variation in their inhibitors....

  2. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  3. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Adam L Orr

    Full Text Available Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD⁺ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5 were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC₅₀ and K(i values between ∼1-15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems.

  4. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Science.gov (United States)

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase.

    Science.gov (United States)

    Aguey-Zinsou, Kondo François; Bernhardt, Paul V; Leimkühler, Silke

    2003-12-17

    Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD(+) as the electron acceptor. R. capsulatus XDH forms an (alphabeta)(2) heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds; however, R.capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. Here we demonstrate electrocatalytic activity of the recombinant enzyme, expressed in Escherichia coli, while immobilized on an edge plane pyrolytic graphite working electrode. Furthermore, we have determined all redox potentials of the four cofactors (Mo(VI/V), Mo(V/IV), FAD/FADH, FADH/FADH(2) and two distinct [2Fe-2S](2+/+) clusters) using a combination of potentiometric and voltammetric methods. A novel feature identified in catalytic voltammetry of XDH concerns the potential for the onset of catalysis (ca. 400 mV), which is at least 600 mV more positive than that of the highest potential cofactor. This unusual observation is explained on the basis of a pterin-associated oxidative switch during voltammetry that precedes catalysis.

  6. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  7. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1

    Directory of Open Access Journals (Sweden)

    Zhou Cong-Zhao

    2007-06-01

    Full Text Available Abstract Background As the third enzyme of the pentose phosphate pathway, 6-phosphogluconate dehydrogenase (6PGDH is the main generator of cellular NADPH. Both thioredoxin reductase and glutathione reductase require NADPH as the electron donor to reduce oxidized thioredoxin or glutathione (GSSG. Since thioredoxin and GSH are important antioxidants, it is not surprising that 6PGDH plays a critical role in protecting cells from oxidative stress. Furthermore the activity of 6PGDH is associated with several human disorders including cancer and Alzheimer's disease. The 3D structural investigation would be very valuable in designing small molecules that target this enzyme for potential therapeutic applications. Results The crystal structure of 6-phosphogluconate dehydrogenase (6PGDH/Gnd1 from Saccharomyces cerevisiae has been determined at 2.37 Å resolution by molecular replacement. The overall structure of Gnd1 is a homodimer with three domains for each monomer, a Rossmann fold NADP+ binding domain, an all-α helical domain contributing the majority to hydrophobic interaction between the two subunits and a small C-terminal domain penetrating the other subunit. In addition, two citrate molecules occupied the 6PG binding pocket of each monomer. The intact Gnd1 had a Km of 50 ± 9 μM for 6-phosphogluconate and of 35 ± 6 μM for NADP+ at pH 7.5. But the truncated mutants without the C-terminal 35, 39 or 53 residues of Gnd1 completely lost their 6PGDH activity, despite remaining the homodimer in solution. Conclusion The overall tertiary structure of Gnd1 is similar to those of 6PGDH from other species. The substrate and coenzyme binding sites are well conserved, either from the primary sequence alignment, or from the 3D structural superposition. Enzymatic activity assays suggest a sequential mechanism of catalysis, which is in agreement with previous studies. The C-terminal domain of Gnd1 functions as a hook to further tighten the dimer, but it is not

  8. Detergent-dependent kinetics of truncated Plasmodium falciparum dihydroorotate dehydrogenase.

    Science.gov (United States)

    Malmquist, Nicholas A; Baldwin, Jeffrey; Phillips, Margaret A

    2007-04-27

    The survival of the malaria parasite Plasmodium falciparum is dependent upon the de novo biosynthesis of pyrimidines. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in this pathway in an FMN-dependent reaction. The full-length enzyme is associated with the inner mitochondrial membrane, where ubiquinone (CoQ) serves as the terminal electron acceptor. The lipophilic nature of the co-substrate suggests that electron transfer to CoQ occurs at the two-dimensional lipid-solution interface. Here we show that PfDHODH associates with liposomes even in the absence of the N-terminal transmembrane-spanning domain. The association of a series of ubiquinone substrates with detergent micelles was studied by isothermal titration calorimetry, and the data reveal that CoQ analogs with long decyl (CoQ(D)) or geranyl (CoQ(2)) tails partition into detergent micelles, whereas that with a short prenyl tail (CoQ(1)) remains in solution. PfDHODH-catalyzed reduction of CoQ(D) and CoQ(2), but not CoQ(1), is stimulated as detergent concentrations (Tween 80 or Triton X-100) are increased up to their critical micelle concentrations, beyond which activity declines. Steady-state kinetic data acquired for the reaction with CoQ(D) and CoQ(2) in substrate-detergent mixed micelles fit well to a surface dilution kinetic model. In contrast, the data for CoQ(1) as a substrate were well described by solution steady-state kinetics. Our results suggest that the partitioning of lipophilic ubiquinone analogues into detergent micelles needs to be an important consideration in the kinetic analysis of enzymes that utilize these substrates.

  9. Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Testing Registry: Deficiency of isobutyryl-CoA dehydrogenase Other Diagnosis and Management Resources (2 links) Baby's First Test MedlinePlus Encyclopedia: Dilated Cardiomyopathy General Information from MedlinePlus (5 links) Diagnostic Tests ...

  10. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as acute...

  11. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction...

  12. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children

    National Research Council Canada - National Science Library

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice...

  13. Glucose-6-Phosphate Dehydrogenase Deficiency in Nigerian Children: e68800

    National Research Council Canada - National Science Library

    Olatundun Williams; Daniel Gbadero; Grace Edowhorhu; Ann Brearley; Tina Slusher; Troy C Lund

    2013-01-01

      Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice...

  14. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Daisy Ouya

    1) glutamate dehydrogenases (GDH) and (2) glutamine synthetase (GS)/ glutamate synthase (GOGAT). In the GS/ GOGAT route, ammonia is first incorporated into glutamine by the action of GS and subsequently into glutamic acid by GOGAT.

  15. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Science.gov (United States)

    2010-04-01

    ... found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red... conditions known to cause increased lactic dehydrogenase levels. (b) Classification. Class I (general...

  16. SAXS fingerprints of aldehyde dehydrogenase oligomers

    Directory of Open Access Journals (Sweden)

    John J. Tanner

    2015-12-01

    Full Text Available Enzymes of the aldehyde dehydrogenase (ALDH superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2, Sjögren–Larsson syndrome (ALDH3A2, hyperprolinemia type II (ALDH4A1, γ-hydroxybutyric aciduria (ALDH5A1, methylmalonic aciduria (ALDH6A1, pyridoxine dependent epilepsy (ALDH7A1, and hyperammonemia (ALDH18A1. We previously reported crystal structures and small-angle X-ray scattering (SAXS analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015 5513–5522; Luo et al., J. Mol. Biol. 425 (2013 3106–3120. Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs.

  17. Targeting isocitrate dehydrogenase (IDH) in cancer.

    Science.gov (United States)

    Fujii, Takeo; Khawaja, Muhammad Rizwan; DiNardo, Courtney D; Atkins, Johnique T; Janku, Filip

    2016-05-01

    Isocitrate dehydrogenase (IDH) is an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. Recurrent mutations in IDH1 or IDH2 are prevalent in several cancers including glioma, acute myeloid leukemia (AML), cholangiocarcinoma and chondrosarcoma. The mutated IDH1 and IDH2 proteins have a gain-of-function, neomorphic activity, catalyzing the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) by NADPH. Cancer-associated IDH mutations block normal cellular differentiation and promote tumorigenesis via the abnormal production of the oncometabolite 2-HG. High levels of 2-HG have been shown to inhibit α-KG dependent dioxygenases, including histone and deoxyribonucleic acid (DNA) demethylases, which play a key role in regulating the epigenetic state of cells. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2 (AG881) selectively inhibit mutant IDH protein and induce cell differentiation in in vitro and in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with advanced hematologic malignancies have demonstrated an objective response rate ranging from 31% to 40% with durable responses (>1 year) observed. Furthermore, the IDH inhibitors have demonstrated early signals of activity in solid tumors with IDH mutations, including cholangiocarcinomas and low grade gliomas.

  18. A bioluminescence assay for aldehyde dehydrogenase activity.

    Science.gov (United States)

    Duellman, Sarah J; Valley, Michael P; Kotraiah, Vinayaka; Vidugiriene, Jolanta; Zhou, Wenhui; Bernad, Laurent; Osterman, Jean; Kimball, Joshua J; Meisenheimer, Poncho; Cali, James J

    2013-03-15

    The aldehyde dehydrogenase (ALDH) family of enzymes is critical for cell survival and adaptation to cellular and environmental stress. These enzymes are of interest as therapeutic targets and as biomarkers of stem cells. This article describes a novel, homogeneous bioluminescence assay to study the activity of the ALDH enzymes. The assay is based on a proluciferin-aldehyde substrate that is recognized and utilized by multiple ALDH enzyme isoforms to generate luciferin. A detection reagent is added to inactivate ALDH and generate light from the luciferin product. The luminescent signal is dependent on the ALDH enzyme concentration and the incubation time in the ALDH reaction; moreover, the luminescent signal generated with the detection reagent is stable for greater than 2 h. This assay provides many advantages over standard NADH fluorescence assays. It is more sensitive and the signal stability provided allows convenient assay setup in batch mode-based high-throughput screens. The assay also shows an accurate pharmacological response for a common ALDH inhibitor and is robust, with a large assay window (S/B=64) and Z'=0.75. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats.

    Science.gov (United States)

    Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V

    2009-08-01

    Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (pKrebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.

  20. Dehydrogenase isoenzyme polymorphism in genus Prunus, subgenus Cerasus

    Directory of Open Access Journals (Sweden)

    Čolić Slavica

    2012-01-01

    Full Text Available Dehydrogenase polymorphism was studied in 36 sour cherry (Prunus cerasus L., sweet cherry (Prunus avuim L., mahaleb (Prunus mahaleb L., ground cherry (Prunus fruticosa Pall., duke cherry (Prunus gondounii Redh., Japanese flowering cherry (Prunus serrulata Lindl. and four iterspecific hybrids (standard cherry rootstocks ‘Gisela 5’, ‘Gisela 6’, ‘Max Ma’ and ‘Colt’. Inner bark of one-year-old shoots, in dormant stage, was used for enzyme extraction. Vertical PAGE was used for isoenzyme analysis: alcohol dehydrogenase (ADH, formate dehydrogenase (FDH, glutamate dehydrogenase (GDH, isocitrate dehydrogenaze (IDH, malate dehydrogenase (MDH, phosphogluconate dehydrogenase (PGD, and shikimate dehydrogenase (SDH. All studied systems were polymorphic at 10 loci: Adh -1 (3 genotypes and Adh-2 (5 genotypes, Fdh-1 (2 genotypes, Gdh-1 (3 genotypes, Idh-1 (4 genotypes i Idh -2 (5 genotypes, Mdh-1 (3 genotypes, Pgd-1 (4 genotypes, Sdh-1 (1 genotype i Sdh-2 (3 genotypes. Cluster analysis was used to construct dendrogram on which four groups of similar genotypes were separated. Obtained results indicate that studied enzyme systems can be used for determination of genus Prunus, subgenus Cerasus. Among studied enzyme systems ADH, IDH and SDH were the most polymorphic and most useful to identify genetic variability. Polymorphism of FDH and GDH in genus Prunus, subgenus Cerasus was described first time in this work. First results for dehydrogenase variability of Oblačinska indicate that polymorphism of loci Idh-2 and Sdh-2 can be useful for discrimination of different clones.

  1. Characterization of the 11β-hydroxysteroid dehydrogenase 1-related short-chain dehydrogenase/reductase DHRS7

    OpenAIRE

    Seibert, Julia Katharina

    2015-01-01

    Short-chain dehydrogenase/reductase (SDR) enzymes metabolize a broad spectrum of substrates and play a pivotal role in the regulation of different metabolic and signaling pathways. In one part of this thesis the activity and specificity of potential inhibitors of the SDRs were tested. These enzymes, 11β-hydroxysteroid dehydrogenase type 1 and 2 (11βHSD1 and 2), are currently evaluated as potential novel therapeutic targets for several diseases, such as metabolic syndrome, atherosclerosis, ost...

  2. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cha, Jae-Young; Jeong, Jae-Jun; Yang, Hyun-Ju; Lee, Bae-Jin; Cho, Young-Su

    2011-08-01

    Sea tangle, a kind of brown seaweed, was fermented with Lactobacillus brevis BJ-20. The gamma-aminobutyric acid (GABA) content in fermented sea tangle (FST) was 5.56% (w/w) and GABA in total free amino acid of FST was 49.5%. The effect of FST on the enzyme activities and mRNA protein expression of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) involved in alcohol metabolism in Saccharomyces cerevisiae was investigated. Yeast was cultured in YPD medium supplemented with different concentrations of FST powder [0, 0.4, 0.8, and 1.0% (w/v)] for 18 h. FST had no cytotoxic effect on the yeast growth. The highest activities and protein expressions of ADH and ALDH from the cell-free extracts of S. cerevisiae were evident with the 0.4% and 0.8% (w/v) FST-supplemented concentrations, respectively. The highest concentrations of GABA as well as minerals (Zn, Ca, and Mg) were found in the cell-free extracts of S. cerevisiae cultured in medium supplemented with 0.4% (w/v) FST. The levels of GABA, Zn, Ca, and Mg in S. cerevisiae were strongly correlated with the enzyme activities of ADH and ALDH in yeast. These results indicate that FST can enhance the enzyme activities and protein expression of ADH and ALDH in S. cerevisiae.

  3. [Distribution of genotypes of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 in Japanese twin children].

    Science.gov (United States)

    Qu, W; Yamagata, Z; Wu, D; Zhang, B; Zhang, Y

    1999-03-01

    In order to prevent alcohol related deseases, this study investigated the distribution of the genes controlling alcohol metabolism in Japan's twin. Restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) technique was used to measure the control gene of alcohol metabolized enzymes and the genotypes of alcohol dehydrogenase 2 (ADH2) and aldehyde dehydrogenase 2 (ALDH2), which were distributed in Japan's twins. At the same time, according to the difference in genotypes, the sensitive individuals were screened from the study subjects. The distribution of ADH2 and ALDH2 genes were consistent with the Hardy-weinberg equation. The three genotypes of ADH2 gene were ADH2(1)/ADH2(1) (1.1%), ADH2(1)/ADH2(2) (44.6%) and ADH2(2)/ADH2(2) (54.3%). And those of ALDH2 gene were ALDH2(1)/ALDH2(1) (41.3%), ALDH2(1)/ALDH2(2) (39.1%) and ALDH2(2)/ALDH2(2) (19.6%). The frequency of ADH2 and ALDH2 genes was 0.255, 0.745 and 0.609, 0.391 respectively. Not only the distribution of genotypes of ADH2 and ALDH2 is known, but also the sensitive individuals are found, which can help prevent alcohol related disease.

  4. Structural Studies of Human Pyruvate Dehydrogenase

    Science.gov (United States)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  5. Catalytic Properties and Classification of Cellobiose Dehydrogenases from Ascomycetes▿ †

    Science.gov (United States)

    Harreither, Wolfgang; Sygmund, Christoph; Augustin, Manfred; Narciso, Melanie; Rabinovich, Mikhail L.; Gorton, Lo; Haltrich, Dietmar; Ludwig, Roland

    2011-01-01

    Putative cellobiose dehydrogenase (CDH) genes are frequently discovered in various fungi by genome sequencing projects. The expression of CDH, an extracellular flavocytochrome, is well studied in white rot basidiomycetes and is attributed to extracellular lignocellulose degradation. CDH has also been reported for plant-pathogenic or saprotrophic ascomycetes, but the molecular and catalytic properties of these enzymes are currently less investigated. This study links various ascomycetous cdh genes with the molecular and catalytic characteristics of the mature proteins and suggests a differentiation of ascomycete class II CDHs into two subclasses, namely, class IIA and class IIB, in addition to the recently introduced class III of hypothetical ascomycete CDHs. This new classification is based on sequence and biochemical data obtained from sequenced fungal genomes and a screening of 40 ascomycetes. Thirteen strains showed CDH activity when they were grown on cellulose-based media, and Chaetomium atrobrunneum, Corynascus thermophilus, Dichomera saubinetii, Hypoxylon haematostroma, Neurospora crassa, and Stachybotrys bisbyi were selected for detailed studies. In these strains, one or two cdh-encoding genes were found that stem either from class IIA and contain a C-terminal carbohydrate-binding module or from class IIB without such a module. In several strains, both genes were found. Regarding substrate specificity, class IIB CDHs show a less pronounced substrate specificity for cellobiose than class IIA enzymes. A pH-dependent pattern of the intramolecular electron transfer was also observed, and the CDHs were classified into three groups featuring acidic, intermediate, or alkaline pH optima. The pH optimum, however, does not correlate with the CDH subclasses and is most likely a species-dependent adaptation to different habitats. PMID:21216904

  6. Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes.

    Science.gov (United States)

    Harreither, Wolfgang; Sygmund, Christoph; Augustin, Manfred; Narciso, Melanie; Rabinovich, Mikhail L; Gorton, Lo; Haltrich, Dietmar; Ludwig, Roland

    2011-03-01

    Putative cellobiose dehydrogenase (CDH) genes are frequently discovered in various fungi by genome sequencing projects. The expression of CDH, an extracellular flavocytochrome, is well studied in white rot basidiomycetes and is attributed to extracellular lignocellulose degradation. CDH has also been reported for plant-pathogenic or saprotrophic ascomycetes, but the molecular and catalytic properties of these enzymes are currently less investigated. This study links various ascomycetous cdh genes with the molecular and catalytic characteristics of the mature proteins and suggests a differentiation of ascomycete class II CDHs into two subclasses, namely, class IIA and class IIB, in addition to the recently introduced class III of hypothetical ascomycete CDHs. This new classification is based on sequence and biochemical data obtained from sequenced fungal genomes and a screening of 40 ascomycetes. Thirteen strains showed CDH activity when they were grown on cellulose-based media, and Chaetomium atrobrunneum, Corynascus thermophilus, Dichomera saubinetii, Hypoxylon haematostroma, Neurospora crassa, and Stachybotrys bisbyi were selected for detailed studies. In these strains, one or two cdh-encoding genes were found that stem either from class IIA and contain a C-terminal carbohydrate-binding module or from class IIB without such a module. In several strains, both genes were found. Regarding substrate specificity, class IIB CDHs show a less pronounced substrate specificity for cellobiose than class IIA enzymes. A pH-dependent pattern of the intramolecular electron transfer was also observed, and the CDHs were classified into three groups featuring acidic, intermediate, or alkaline pH optima. The pH optimum, however, does not correlate with the CDH subclasses and is most likely a species-dependent adaptation to different habitats.

  7. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  8. Monovalent Cation Activation of Plant Pyruvate Dehydrogenase Kinase.

    Science.gov (United States)

    Schuller, K. A.; Gemel, J.; Randall, D. D.

    1993-05-01

    The pyruvate dehydrogenase kinase-catalyzed inactivation of the pyruvate dehydrogenase complex was studied using dialyzed, soluble proteins from mitochondria purified from green leaf tissue of Pisum sativum L. seedlings. At subsaturating ATP concentrations, K+ or NH4+, but not Na+, stimulated the pyruvate dehydrogenase kinase by lowering the Km(ATP). Micromolar concentrations of NH4+ were required to produce the same effect as millimolar concentrations of K+. This is apparent from the observations that the activation constant (Kact) for NH4+ was 0.1 mM, whereas the Kact(K+) was 0.7 mM. Maximal pyruvate dehydrogenase kinase velocities attained with NH4+ were higher than those with K+, and, therefore, NH4+ was able to stimulate PDH kinase further in the presence of saturating K+. This result supports our conclusion that photorespiratory NH4+ production in plant mitochondria may be involved in regulating the entry of carbon into the Krebs cycle by way of the pyruvate dehydrogenase complex.

  9. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun-Hee [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States); Patel, Mulchand S., E-mail: mspatel@buffalo.edu [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States)

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  10. Alcohol dehydrogenase 1B and Aldehyde dehydrogenase 2 Polymorphisms in Uzbekistan.

    Science.gov (United States)

    Ahn, Keun Soo; Abdiev, Shavkat; Rahimov, Bakhodir; Malikov, Yusuf; Bahramov, Saidkarim; Okada, Rieko; Naito, Mariko; Hamajima, Nobuyuki

    2009-01-01

    The alcohol dehydrogenase 1B (ADH1B) -2 (47His) allele and the aldehyde dehydrogenase 2 (ALDH2) - 2 (487Lys) alleles are seen among some Asian peoples, but rare among other ethnic groups. This study examined the allele frequencies in the Uzbekistan Republic, which is located in Central Asia. Subjects were derived from a case-control study on peptic ulcer disease, which included 161 Uzbeks and 23 Russians. They were enrolled at the Republic Research Center of Emergency Medicine located in the capital, Tashkent City. Genotyping was performed for ADH1B Arg47His and ALDH2 Glu487Lys with a polymerase chain reaction using confronting two-pair primers. The frequency for the ADH1B- 2 allele was similar among cases and controls. The ALDH2 -2 allele was rare in both. Among 161 Uzbeks, the ADH1B -2 allele frequency was 0.286 (95% confidence interval, 0.237-0.338) and for the ALDH2 -2 allele was 0.016 (0.005-0.036), while among the 23 Russians the figures were 0.083 (0.024-0.208) and 0.000 (0.000-0.077), respectively. There were no significant differences in drinking habits among individuals with different genotypes, although the ALDH2 -2-2 genotype was not observed. The present study demonstrated that the ADH1B -2 allele frequency among Uzbeks was closer to that among Caucasians than East Asians, some Uzbeks also demonstrating the ALDH2 -2 allele.

  11. [Informatics analysis of malate dehydrogenase from Taenia saginata asiatica].

    Science.gov (United States)

    Huang, Jiang; Hu, Xu-Chu; Huang, Yan; Yu, Xin-Bing; Bao, Huai-En; Lang, Shu-Yuan; Liao, Xing-Jiang

    2008-06-30

    Tools from bioinformatics websites such as NCBI, ExPaSy were used for the analysis. The malate dehydrogenase full-length gene from Taenia saginata asiatica was 1 212 bp in length, with a coding region of 30-1 028 bp and coding 332 amino acids. It was a complete and full-length gene compared with the homologues in GenBank. The protein showed no transmembrane region, with stable physical-chemical characteristics. Three major linear epitopes located aa95-aa100, aa322-aa327 and aa117-aa122, with certain distance from each other on the surface of spatial structure of malate dehydrogenase (MDH). The last one was the linear epitope of Taenia. This cytosolic malate dehydrogenase gene is a potential antigen for diagnosis.

  12. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  13. Purification and properties of an NAD(P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath).

    Science.gov (United States)

    Stirling, D I; Dalton, H

    1978-07-01

    Crude soluble extracts of Methylococcus capsulatus strain Bath, grown on methane, were found to contain NAD(P)+-linked formaldehyde dehydrogenase activity. Activity in the extract was lost on dialysis against phosphate buffer, but could be restored by supplementing with inactive, heat-treated extract (70 degrees C for 12 min). The non-dialysable, heat-sensitive component was isolated and purified, and has a molecular weight of about 115000. Sodium dodecyl sulphate gel electrophoresis of the protein suggested there were two equal subunits with molecular weights of 57000. The heat-stable fraction, which was necessary for activity of the heat-sensitive protein, was trypsin-sensitive and presumed to be a low molecular weight protein or peptide. A number of thiol compounds and other common cofactors could not replace the component present in the heat-treated soluble extract. The purified formaldehyde dehydrogenase oxidized three other aldehydes with the following Km values: 0.68 mM (formaldehyde); 0.075 mM (glyoxal); 7.0 mM (glycolaldehyde); and 2.0 mM (DL-glyceraldehyde). NAD+ or NADP+ was required for activity, with Km values of 0.063 and 0.155 mM respectively, and could not be replaced by any of the artificial electron acceptors tested. The enzyme was heat-stable at 45 degrees C for at least 10 min and had temperature and pH optima of 45 degrees C and pH 7.2 respectively. A number of metal-binding agents and substrate analogues were not inhibitory. Thiol reagents gave varying degrees of inhibition, the most potent being p-hydroxymercuribenzoate which at 1 mM gave 100% inhibition. The importance of possessing an NAD(P)+-linked formaldehyde dehydrogenase, with respect to M. capsulatus, is discussed.

  14. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  15. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  16. [Human semen lactate dehydrogenase isoenzymes in fertility studies (author's transl)].

    Science.gov (United States)

    Gonzalez Buitrago, J M; García Díez, L C; de Castro, S

    1981-01-01

    The lactate dehydrogenase isoenzyme pattern has been obtained in the semen of 87 males undergoing fertility studies. The proportion of LDH-X, the isoenzyme specific to the spermatozoa, is reduced in proportion to the reduction of the sperm density and motility. LDH-X is the most abundant isoenzyme in the semen of normospermic subjects. As to the other isoenzymes, the most abundant ones are the LDH-2 and the LDH-3. The results obtained lead us to conclude that the measurement of the lactate dehydrogenase isoenzymes may be useful in studies of fertility as an indicative parameter of the quality of the semen.

  17. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    Science.gov (United States)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  18. Isocitrate dehydrogenase, lactate dehydrogenase and α-glycerophosphate dehydrogenase polymorphysm enzyme of Black Tiger Shrimp (Penaeus monodon Fab. which is hydrogen sulfide resistant

    Directory of Open Access Journals (Sweden)

    OKID PARAMA ASTIRIN

    2006-07-01

    Full Text Available The hydrogen sulfide is one of compound which very often found in the shrimp pond caused by anaerobic decomposition or as a natural condition of the sea water which have volcano activity. This research was obtaining information of the differences of genetic expression between black tiger shrimp which could resist to H2S and the one which could not survive in this H2S. This research also trying to obtain information the genetic variety which could resist to H2S. The genetic variety of black tiger shrimp which could resist to H2S has been analysis with allozyme electrophoresis technique, using specific tissue meat and buffer CAPM (Citric Acid Aminopolimorpholine pH 6. From the three enzymes analyzed it could be detected that IDH enzyme (Isocitrate dehydrogenase has locus polymorphic, whereas enzyme α-GDP (α-glycerophosphate dehydrogenase and LDH (lactate dehydrogenase with monomorphic locus. The average heterozygosity for the group which could resist to H2S is 0.070, whereas the group which could not survive in the H2S is 0.042. The control group has heterozygosity 0.041. The group which could resist to H2S with higher heterozygosity will have bigger chance to survive and have better adaptation ability in environmental changes. A high heterozygosity made possible for genetic population improvement by exploiting the good gene.

  19. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects approximately 400 million people worldwide.

  20. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.

    In chapter 2 a survey is given of the recent literature on

  1. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Pradeep Kumar

    2016-02-06

    Feb 6, 2016 ... REVIEW. Prevalence of glucose-6-phosphate dehydrogenase deficiency in India: An updated meta-analysis. Pradeep Kumar, Upendra Yadav, Vandana Rai*. Department of Biotechnology, VBS Purvanchal University, Jaunpur 222003, UP, India. Received 18 December 2015; accepted 14 January 2016.

  2. Properties of glucoside 3-dehydrogenase and its potential applications

    African Journals Online (AJOL)

    These 3-ketoglucosides are useful as building blocks for chemicals such as detergents and polymers. The versatile glucoside 3-dehydrogenase has potential applications in different fields including sugar industry, clinical diagnosis and pharmaceutical intermediates synthesis. This review attempts to describe the glucoside ...

  3. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... as some antibiotics and medications used to treat malaria). Hemolytic anemia can also occur after eating fava beans or inhaling pollen from fava plants (a reaction called favism). Glucose-6-phosphate dehydrogenase deficiency is also a significant cause of mild to severe jaundice in newborns. Many ...

  4. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico ...

    Indian Academy of Sciences (India)

    Abstract. Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in ...

  5. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in patients ...

    African Journals Online (AJOL)

    This is a study of Glucose-6-phosphate dehydrogenase(G6PD) deficiency in sickle cell anaemia patients attending the haematology clinic of the Jos University Teaching Hospital (JUTH), Jos- Nigeria. The prevalence of G6PD deficiency among the 130 sickle cell anaemia patients studied was found to be 18.5%. G6PD ...

  6. Idiopathic intracranial hypertension, hormones, and 11β-hydroxysteroid dehydrogenases

    DEFF Research Database (Denmark)

    Markey, Keira A; Uldall, Maria; Botfield, Hannah

    2016-01-01

    the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11β-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors...... such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH....

  7. Glucose-6-phosphate dehydrogenase deficiency; the single most ...

    African Journals Online (AJOL)

    Introduction: Glucose- 6-phosphate dehydrogenase deficiency is the most common enzymatic disorder of the red cell and an important risk factor for neonatal jaundice. Methodology: The aim of the study was to determine the incidence of G-6-PD deficiency among jaundiced neonates, and describe the associated morbidity ...

  8. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate ... NAD-/NADP- and NADH-/ NADPH-dependent activities were the order of 11:1 and 1:1.8, respectively. The pH optima for ... This work is licensed under a Creative Commons Attribution 3.0 License.

  9. Lactate dehydrogenase assay for assessment of polycation cytotoxicity

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Moghimi, Seyed Moien

    2013-01-01

    cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early...

  10. Study on soluble expression of glutamate dehydrogenase from tea ...

    African Journals Online (AJOL)

    Yomi

    2012-03-20

    Mar 20, 2012 ... Glutamate dehydrogenase (GDH; EC1.4.1.2) catalyses the reversible amination of 2-oxoglutarate for the synthesis of glutamate using ... CsGDH2 was predominantly found in insoluble bodies and no soluble protein was detected by either .... phosphatase (TAP) to remove the 50 cap structure from intact full-.

  11. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    DEFF Research Database (Denmark)

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.

    2003-01-01

    Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha...

  12. Inhibition of lactate dehydrogenase isoenzymes by sodium perchlorate evaluated

    NARCIS (Netherlands)

    Sanders, G. T.; van der Neut, E.; van Straalen, J. P.

    1990-01-01

    We evaluated a method of measuring lactate dehydrogenase isoenzyme 1 (LD-1) selectively (Clin Chem 1987;33:991-2), in which all other LD isoenzymes were inhibited by adding sodium perchlorate to the reaction medium to a final concentration of 0.825 mol/L. In this study we used the different

  13. Lactate dehydrogenase in the cyanobacterium Microcystis PCC7806

    NARCIS (Netherlands)

    Moezelaar, R.; Teixeira, de M.J.; Stal, L.J.

    1995-01-01

    The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not

  14. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase ...

    Indian Academy of Sciences (India)

    Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key ...

  15. Glucose -6- phosphate dehydrogenase (g6pd) activity and ...

    African Journals Online (AJOL)

    The activity of red blood cell Glucose 6-phosphate dehydrogenase (G6PD) in one hundred and twenty six healthy male individuals who are Nigerians residing in Jos was evaluated. The enzyme activity was determined quantitatively by spectrophotometer assay method. The activity of red cell G6PD enzyme was subnormal ...

  16. Prevalence and Pattern of Glucose-6-Phosphate Dehydrogenase ...

    African Journals Online (AJOL)

    Status of glucose-6-phosphate dehydrogenase (G-6-PD) and haemoglobin (Hb) types were determined in 1,216 individuals in Ile-Ife, Nigeria, using methaemoglobin reduction and cellulosoe acetate electrophoresis methods. The subjects were made up of 556 males and 660 females. Their ages ranged between 1 and 65 ...

  17. Assessment of the activity of glucose-6-phosphate dehydrogenase ...

    African Journals Online (AJOL)

    Glucose-6-phosphate dehydrogenase (G-6-PD) is an enzyme in the pentose phosphate pathway (PPP) which reduces NADP to NADPH while oxidizing glucose-6-phosphate. In turn, NADPH then provides reducing equivalents needed for the conversion of oxidized glutathione to reduced glutathione, which protects against ...

  18. Characterization of the L-lactate dehydrogenase from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Stacie A Brown

    Full Text Available Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a K(m of approximately 150 microM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans.

  19. Assessment of creatine kinase and lactate dehydrogenase activities ...

    African Journals Online (AJOL)

    Ina bid to investigate the influence of menopausal on coronary heart disease, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) enzymes were analysed on a prospective cohort of 100 women attending Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo state-Nigeria. They were divided into two groups; ...

  20. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  1. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670 Section 862.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES.... Measurements obtained by this device are used in the diagnosis and treatment of liver disorders such as...

  2. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Malic dehydrogenase test system. 862.1500 Section 862.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the bone...

  3. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  4. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    NARCIS (Netherlands)

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for

  5. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol degrad...

  6. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    The results indicate that dehydrogenase activity (DHA) can effectively facilitate the biochemical reaction of tomato paste wastewater treatment upon analysis of the influences of various DHA and kinetic factors. The biological activity of the activated sludge by TTC-DHA was changed to become applicable to aeration and ...

  7. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  8. Identification of glucose 6 phosphate dehydrogenase mutations by ...

    African Journals Online (AJOL)

    Objective: To identify mutation among Turkish individuals who demonstrated deficiency of glucose 6 phosphate dehydrogenase(G 6 P D). Design: Laboratory based experimental study. Setting: The molecular diagnostic laboratory of the Royal Postgraduate medical school Hammersmith Hospital, London. Subject: Six DNA ...

  9. Glucose 6 phosphate dehydrogenase levels in babies delivered at ...

    African Journals Online (AJOL)

    Background: Glucose-6-phosphate dehydrogenase deficiency, an X-linked recessive disorder, is the most common enzymopathy producing disease in humans.It is known to cause severe neonatal hyperbilirubinaemia. Aims and Objectives: To determine G6PD levels in babies delivered at the University of Ilorin Teaching ...

  10. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates

    NARCIS (Netherlands)

    Rozeboom, Henriette J.; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J.; Dijkstra, Bauke W.

    2015-01-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The

  11. Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven.

    Science.gov (United States)

    Amenábar, Maximiliano J; Blamey, Jenny M

    2012-02-01

    Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and 70 degrees C, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both NAD(+) and NADP(+) as electron acceptors, displaying more affinity for NADP(+) than for NAD(+). No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at 100(o)C for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.

  12. Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven

    Directory of Open Access Journals (Sweden)

    Maximiliano J. Amenábar

    2012-02-01

    Full Text Available Glutamate dehydrogenase from axenic bacterial cultures of anew microorganism, called GWE1, isolated from the interior ofa sterilization drying oven, was purified by anion-exchange andmolecular-exclusion liquid chromatography. The apparent molecularmass of the native enzyme was 250.5 kDa and wasshown to be an hexamer with similar subunits of molecularmass 40.5 kDa. For glutamate oxidation, the enzyme showedan optimal pH and temperature of 8.0 and 70oC, respectively.In contrast to other glutamate dehydrogenases isolated frombacteria, the enzyme isolated in this study can use both NAD+and NADP+ as electron acceptors, displaying more affinity forNADP+ than for NAD+. No activity was detected with NADHor NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionallythermostable, maintaining more than 70% of activityafter incubating at 100oC for more than five hours suggestingbeing one of the most thermoestable enzymes reported inthe family of dehydrogenases. [BMB reports 2012; 45(2: 91-95

  13. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  14. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  15. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Guss, Adam M [ORNL; Karpinets, Tatiana V [ORNL; Parks, Jerry M [ORNL; Smolin, Nikolai [ORNL; Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Bhandiwad, Ashwini [Thayer School of Engineering at Dartmouth; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Mielenz, Jonathan R [ORNL; Smith, Jeremy C [ORNL; Keller, Martin [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  16. Engineering of Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Rahman, Mahbubur; Zangrilli, Beatrice

    2017-01-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular flavocytochrome capable of direct electron transfer (DET). Unlike other CDHs, the pH optimum for CDHs from Corynascus thermophilus (CtCDH) and Humicola insolens (HiCDH) is close to the human physiological pH in blood (7.4). These are......, therefore, interesting candidates for glucose measurements in human blood and the application in enzymatic fuel cells is, however, limited by their relatively low activity with this substrate. In this work, the substrate specificities of CtCDH and HiCDH have been altered by a single cysteine to tyrosine...... substitution in the active sites of CtCDH (position 291) and HiCDH (position 285), which resulted in improved kinetic constants with glucose while decreasing the activity with several disaccharides, including maltose. The DET properties of the generated CDH variants were tested in the absence...

  17. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum.

    Science.gov (United States)

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn M; Bhandiwad, Ashwini; Rodriguez, Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-08-16

    Clostridium thermocellum is a thermophilic, obligately anaerobic, gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  18. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati......BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian...

  19. A highly selective biosensor with nanomolar sensitivity based on cytokinin dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Faming Tian

    Full Text Available We have developed a N6-dimethylallyladenine (cytokinin dehydrogenase-based microbiosensor for real-time determination of the family of hormones known as cytokinins. Cytokinin dehydrogenase from Zea mays (ZmCKX1 was immobilised concurrently with electrodeposition of a silica gel film on the surface of a Pt microelectrode, which was further functionalized by free electron mediator 2,6-dichlorophenolindophenol (DCPIP in supporting electrolyte to give a bioactive film capable of selective oxidative cleavage of the N6- side chain of cytokinins. The rapid electron shuffling between freely diffusible DCPIP and the FAD redox group in ZmCKX1 endowed the microbiosensor with a fast response time of less than 10 s. The immobilised ZmCKX1 retained a high affinity for its preferred substrate N6-(Δ2-isopentenyl adenine (iP, and gave the miniaturized biosensor a large linear dynamic range from 10 nM to 10 µM, a detection limit of 3.9 nM and a high sensitivity to iP of 603.3 µAmM-1cm-2 (n = 4, R2 = 0.9999. Excellent selectivity was displayed for several other aliphatic cytokinins and their ribosides, including N6-(Δ2-isopentenyl adenine, N6-(Δ2-isopentenyl adenosine, cis-zeatin, trans-zeatin and trans-zeatin riboside. Aromatic cytokinins and metabolites such as cytokinin glucosides were generally poor substrates. The microbiosensors exhibited excellent stability in terms of pH and long-term storage and have been used successfully to determine low nanomolar cytokinin concentrations in tomato xylem sap exudates.

  20. A highly selective biosensor with nanomolar sensitivity based on cytokinin dehydrogenase.

    Science.gov (United States)

    Tian, Faming; Greplová, Marta; Frébort, Ivo; Dale, Nicholas; Napier, Richard

    2014-01-01

    We have developed a N6-dimethylallyladenine (cytokinin) dehydrogenase-based microbiosensor for real-time determination of the family of hormones known as cytokinins. Cytokinin dehydrogenase from Zea mays (ZmCKX1) was immobilised concurrently with electrodeposition of a silica gel film on the surface of a Pt microelectrode, which was further functionalized by free electron mediator 2,6-dichlorophenolindophenol (DCPIP) in supporting electrolyte to give a bioactive film capable of selective oxidative cleavage of the N6- side chain of cytokinins. The rapid electron shuffling between freely diffusible DCPIP and the FAD redox group in ZmCKX1 endowed the microbiosensor with a fast response time of less than 10 s. The immobilised ZmCKX1 retained a high affinity for its preferred substrate N6-(Δ2-isopentenyl) adenine (iP), and gave the miniaturized biosensor a large linear dynamic range from 10 nM to 10 µM, a detection limit of 3.9 nM and a high sensitivity to iP of 603.3 µAmM-1cm-2 (n = 4, R2 = 0.9999). Excellent selectivity was displayed for several other aliphatic cytokinins and their ribosides, including N6-(Δ2-isopentenyl) adenine, N6-(Δ2-isopentenyl) adenosine, cis-zeatin, trans-zeatin and trans-zeatin riboside. Aromatic cytokinins and metabolites such as cytokinin glucosides were generally poor substrates. The microbiosensors exhibited excellent stability in terms of pH and long-term storage and have been used successfully to determine low nanomolar cytokinin concentrations in tomato xylem sap exudates.

  1. The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity

    Directory of Open Access Journals (Sweden)

    Trchounian Armen

    2011-08-01

    Full Text Available Abstract Background Escherichia coli synthesizes three membrane-bound molybdenum- and selenocysteine-containing formate dehydrogenases, as well as up to four membrane-bound [NiFe]-hydrogenases. Two of the formate dehydrogenases (Fdh-N and Fdh-O and two of the hydrogenases (Hyd-1 and Hyd-2 have their respective catalytic subunits located in the periplasm and these enzymes have been shown previously to oxidize formate and hydrogen, respectively, and thus function in energy metabolism. Mutants unable to synthesize the [NiFe]-hydrogenases retain a H2: benzyl viologen oxidoreductase activity. The aim of this study was to identify the enzyme or enzymes responsible for this activity. Results Here we report the identification of a new H2: benzyl viologen oxidoreductase enzyme activity in E. coli that is independent of the [NiFe]-hydrogenases. This enzyme activity was originally identified after non-denaturing polyacrylamide gel electrophoresis and visualization of hydrogen-oxidizing activity by specific staining. Analysis of a crude extract derived from a variety of E. coli mutants unable to synthesize any [NiFe]-hydrogenase-associated enzyme activity revealed that the mutants retained this specific hydrogen-oxidizing activity. Enrichment of this enzyme activity from solubilised membrane fractions of the hydrogenase-negative mutant FTD147 by ion-exchange, hydrophobic interaction and size-exclusion chromatographies followed by mass spectrometric analysis identified the enzymes Fdh-N and Fdh-O. Analysis of defined mutants devoid of selenocysteine biosynthetic capacity or carrying deletions in the genes encoding the catalytic subunits of Fdh-N and Fdh-O demonstrated that both enzymes catalyze hydrogen activation. Fdh-N and Fdh-O can also transfer the electrons derived from oxidation of hydrogen to other redox dyes. Conclusions The related respiratory molybdo-selenoproteins Fdh-N and Fdh-O of Escherichia coli have hydrogen-oxidizing activity. These findings

  2. Lactate dehydrogenase inhibition: biochemical relevance and therapeutical potential.

    Science.gov (United States)

    Laganà, Giuseppina; Barreca, Davide; Calderaro, Antonella; Bellocco, Ersilia

    2017-02-08

    Lactate dehydrogenase (LHD) is a key enzyme of anaerobic metabolism in almost all living organisms and it is also a functional checkpoint for glucose restoration during gluconeogenesis and single-stranded DNA metabolism. This enzyme has a well preserved structure during evolution and among the species, with little, but sometimes very useful, changes in the amino acid sequence, which makes it an attractive target for the design and construction of functional molecules able to modulate its catalytic potential and expression. Research has focused mainly on the selection of modulator especially as far as LDH isozymes (especially LDH-5) and lactate dehydrogenases of Plasmodium falciparum (pfLDH) are concerned. This review summarizes the recent advances in the design and development of inhibitors, pointing out their specificity and therapeutic potentials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  4. Methanol dehydrogenase biofuel cells and enzyme-based electrodes

    OpenAIRE

    Aston, W. J.

    1984-01-01

    This thesis describes the linking of enzymes to electrodes and their application in biofuel cells and as analytical devices. Methanol dehydrogenase, an NAD independent enzyme was purified by two phase aqueous partition. The enzyme incorporated into a biofuel cell was capable of producing a current in the presence of either a soluble or insoluble mediator. Optimisation of the current was carried out and a variety of alternative membranes, mediators and electrodes were investigated for possi...

  5. Role of mannitol dehydrogenases in osmoprotection of Gluconobacter oxydans.

    Science.gov (United States)

    Zahid, Nageena; Deppenmeier, Uwe

    2016-12-01

    Gluconobacter (G.) oxydans is able to incompletely oxidize various sugars and polyols for the production of biotechnologically important compound. Recently, we have shown that the organism produces and accumulates mannitol as compatible solute under osmotic stress conditions. The present study describes the role of two cytoplasmic mannitol dehydrogenases for osmotolerance of G. oxydans. It was shown that Gox1432 is a NADP+-dependent mannitol dehydrogenase (EC 1.1.1.138), while Gox0849 uses NAD+ as cofactor (EC 1.1.1.67). The corresponding genes were deleted and the mutants were analyzed for growth under osmotic stress and non-stress conditions. A severe growth defect was detected for Δgox1432 when grown in high osmotic media, while the deletion of gox0849 had no effect when cells were exposed to 450 mM sucrose in the medium. Furthermore, the intracellular mannitol content was reduced in the mutant lacking the NADP+-dependent enzyme Gox1432 in comparison to the parental strain and the Δgox0849 mutant under stress conditions. In addition, transcriptional analysis revealed that Gox1432 is more important for mannitol production in G. oxydans than Gox0849 as the transcript abundance of gene gox1432 was 30-fold higher than of gox0849. In accordance, the activity of the NADH-dependent enzyme Gox0849 in the cell cytoplasm was 10-fold lower in comparison to the NADPH-dependent mannitol dehydrogenase Gox1432. Overexpression of gox1432 in the corresponding deletion mutant restored growth of the cells under osmotic stress, further strengthening the importance of the NADP+-dependent mannitol dehydrogenase for osmotolerance in G. oxydans. These findings provide detailed insights into the molecular mechanism of mannitol-mediated osmoprotection in G. oxydans and are helpful engineering strains with improved osmotolerance for biotechnological applications.

  6. Arabidopsis CDS blastp result: AK061773 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061773 001-039-D01 At1g50940.1 electron transfer flavoprotein alpha subunit famil...y protein contains Pfam profile: PF00766 electron transfer flavoprotein, alpha subunit 1e-105 ...

  7. Arabidopsis CDS blastp result: AK063110 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063110 001-111-D06 At5g43430.1 electron transfer flavoprotein beta subunit family... protein contains Pfam profile: PF01012 electron transfer flavoprotein, beta subunit 1e-100 ...

  8. Arabidopsis CDS blastp result: AK105896 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105896 001-204-F02 At1g50940.1 electron transfer flavoprotein alpha subunit famil...y protein contains Pfam profile: PF00766 electron transfer flavoprotein, alpha subunit 1e-105 ...

  9. Arabidopsis CDS blastp result: AK098986 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK098986 J013093P06 At1g50940.1 electron transfer flavoprotein alpha subunit family... protein contains Pfam profile: PF00766 electron transfer flavoprotein, alpha subunit 1e-105 ...

  10. GenBank blastx search result: AK061773 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061773 001-039-D01 U17242.1 Methylophilus methylotrophus electron transfer flavop...rotein small subunit and electron transfer flavoprotein large subunit genes, complete cds.|BCT BCT 1e-17 +3 ...

  11. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers

    Directory of Open Access Journals (Sweden)

    Nam Ho Jeoung

    2015-06-01

    Full Text Available Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4 and pyruvate dehydrogenase phosphatases (PDP1 and 2. PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.

  12. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology.

    Science.gov (United States)

    Yakushi, Toshiharu; Matsushita, Kazunobu

    2010-05-01

    Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) of acetic acid bacteria is a membrane-bound enzyme involved in the acetic acid fermentation by oxidizing ethanol to acetaldehyde coupling with reduction of membranous ubiquinone (Q), which is, in turn, re-oxidized by ubiquinol oxidase, reducing oxygen to water. PQQ-ADHs seem to have co-evolved with the organisms fitting to their own habitats. The enzyme consists of three subunits and has a pyrroloquinoline quinone, 4 heme c moieties, and a tightly bound Q as the electron transfer mediators. Biochemical, genetic, and electrochemical studies have revealed the unique properties of PQQ-ADH since it was purified in 1978. The enzyme is unique to have ubiquinol oxidation activity in addition to Q reduction. This mini-review focuses on the molecular properties of PQQ-ADH, such as the roles of the subunits and the cofactors, particularly in intramolecular electron transport of the enzyme from ethanol to Q. Also, we summarize biotechnological applications of PQQ-ADH as to enantiospecific oxidations for production of the valuable chemicals and bioelectrocatalysis for sensors and fuel cells using indirect and direct electron transfer technologies and discuss unsolved issues and future prospects related to this elaborate enzyme.

  13. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.

    Science.gov (United States)

    Umasankar, Yogeswaran; Adhikari, Bal-Ram; Chen, Aicheng

    2017-12-01

    An efficient approach for immobilizing alcohol dehydrogenase (ADH) while enhancing its electron transfer ability has been developed using poly(2-(trimethylamino)ethyl methacrylate) (MADQUAT) cationic polymer and carbon nanoscaffolds. The carbon nanoscaffolds were comprised of single-walled carbon nanotubes (SWCNTs) wrapped with reduced graphene oxide (rGO). The ADH entrapped within the MADQUAT that was present on the carbon nanoscaffolds exhibited a high electron exchange capability with the electrode through its cofactor β-nicotinamide adenine dinucleotide hydrate and β-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NAD + /NADH) redox reaction. The advantages of the carbon nanoscaffolds used as the support matrix and the MADQUAT employed for the entrapment of ADH versus physisorption were demonstrated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Our experimental results showed a higher electron transfer, electrocatalytic activity, and rate constant for MADQUAT entrapped ADH on the carbon nanoscaffolds. The immobilization of ADH using both MADQUAT and carbon nanoscaffolds exhibited strong potential for the development of an efficient bio-anode for ethanol powered biofuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biosynthetic Dihydroorotate Dehydrogenase from Lactobacillus bulgaricus: Partial Characterization of the Enzyme

    Science.gov (United States)

    Taylor, W. Herman; Taylor, Craig D.; Taylor, Mary L.

    1974-01-01

    Some of the catalytic properties of the biosynthetic dihydroorotate dehydrogenase purified from an anaerobic bacterium, Lactobacillus bulgaricus, are described. Studies with p-hydroxymercuribenzoate, N-ethylmaleimide, and mercuric chloride showed that sulfhydryl groups are necessary for transfer of electrons from dihydroorotate to a variety of electron acceptors. Protection studies with substrates for the enzyme indicated that free sulfhydryl groups at or near the active center are required for catalytic activity. Evidence is presented for the production of superoxide free radicals during reaction of the enzyme with molecular oxygen. Inhibitor studies with Tiron indicated that reduction of cytochrome c by the enzyme may involve the superoxide free radical as an intermediate. Orotate, one of the substrates for the enzyme, has been found to be a competitive inhibitor for the dihydroorotate site. The Ki for orotate as estimated by several techniques is 0.1 mM. The Km for dihydroorotate with ferricyanide as the electron acceptor is estimated to be 0.5 mM. PMID:4366023

  15. Succinate-dependent energy generation and pyruvate dehydrogenase complex activity in isolated Ascaris suum mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, T.A.

    1988-01-01

    Body wall muscle from the parasitic nematode, Ascaris suum, contain unique anaerobic mitochondria that preferentially utilize fumarate and branched-chain enoyl CoA's as terminal electron acceptors instead of oxygen. While electron transport in these organelles is well characterized, the role of oxygen in succinate-dependent phosphorylation is still not clearly defined. Therefore, the present study was designed to more fully characterize succinate metabolism in these organelles as well as the in vitro regulation of a key mitochondrial enzyme, the pyruvate dehydrogenase complex (PDC). In the absence of added adenine nucleotides, incubations in succinate resulted in substantial elevations in intramitochrondrial ATP levels, but ATP/ADP ratios were considerably higher in incubations with malate. The stimulation of phosphorylation in aerobic incubations with succinate was rotenone sensitive and appears to be Site I dependent. Increase substrate level phosphorylation, coupled to propionate formation, or additional sites of electron-transport associated ATP synthesis were not significant. Under aerobic conditions, {sup 14}CO{sub 2} evolution from 1,4-({sup 14}C)succinate was stimulated and NADH/NAD{sup +} ratios were elevated, but the formation of {sup 14}C propionate was unchanged.

  16. A quantitative histochemical study of lactate dehydrogenase and succinate dehydrogenase activities in the membrana granulosa of the ovulatory follicle of the rat.

    Science.gov (United States)

    Zoller, L C; Enelow, R

    1983-11-01

    Using a microdensitometer, lactate dehydrogenase and succinate dehydrogenase activities were measured in the membrana granulosa of the rat ovulatory follicle. Ovaries were removed on each day of the oestrous cycle; oestrus, dioestrus-1, dioestrus-2, and proestrus; and enzyme activities measured in the membrana granulosa as a whole and in four regions within it: peripheral (PR), antral (AR), cumulus oophorus (CO) and corona radiata (CR). Throughout the cycle, lactate dehydrogenase activity was greatest in PR. On oestrus, lactate dehydrogenase activity was progressively less in AR, CO and CR. On dioestrus-1, activity was identical in AR and CO and less in CR. On dioestrus-2, activity was greater in AR than in CO or CR. By proestrus, activity was equal in AR, CO and CR. In the membrana granulosa as a whole, and in each region, lactate dehydrogenase activity declined as ovulation approached. In contrast, succinate dehydrogenase activity in the membrana granulosa as a whole and in PR was constant throughout the cycle. Activity fluctuated in the other regions. Succinate dehydrogenase activity on oestrus was greatest in PR, less in AR and CO and least in CR. On the remaining days, succinate dehydrogenase activity was greatest in PR and less but equal in the remainder of the membrana granulosa.

  17. X-linked glucose-6-phosphate dehydrogenase (G6PD) and autosomal 6-phosphogluconate dehydrogenase (6PGD) polymorphisms in baboons

    Energy Technology Data Exchange (ETDEWEB)

    VandeBerg, J.L.; Aivaliotis, M.J.; Samollow, P.B. (Southwest Foundation for Biomedical Research, San Antonio, TX (United States))

    1992-12-01

    Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 61 refs., 1 fig., 4 tabs.

  18. Effect of Punica granatum fruit peel on glucose-6-phosphate dehydrogenase and malate dehydrogenase in amphistome Gastrothylax indicus.

    Science.gov (United States)

    Aggarwal, Rama; Bagai, Upma

    2017-03-01

    Increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against helminth parasite in sheep. Important lipogenic enzymes like glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) show subcellular distribution pattern. Activity of G-6-PDH was largely restricted to cytosolic fraction while MDH was found in both cytosolic and mitochondrial fraction in Gastrothylax indicus. Following in vitro treatment with ethanolic and aqueous extracts of Punica granatum fruit peel and commercial anthelmintic, albendazole G-6-PDH activity was decreased by 19-32 %, whereas MDH was suppressed by 24-41 %, compared to the respective control. Albendazole was quite effective when compared with negative control and both the extracts. The results indicate that phytochemicals of plant may act as potential vermifuge or vermicide.

  19. X-ray crystallographic studies of two bacterial quinoproteins. Methylamine Dehydrogenase and Quinohaemoprotein Alcohol Dehydrogenase

    NARCIS (Netherlands)

    Huizinga, Eric Geert

    1994-01-01

    For the catalysis of reactions involving the transfer of electrons enzymes utilize either metal ions or special organic compounds called cofactors. A group of enzymes, known as quinoproteins, makes use of cofactors that contain a quinone function. This quinone function enables quinoproteins to

  20. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    Science.gov (United States)

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    Energy Technology Data Exchange (ETDEWEB)

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. (Laval Univ., Quebec City, Quebec (Canada))

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  2. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles

    Science.gov (United States)

    Figueroa-Teran, Rubi; Pak, Heidi; Blomquist, Gary J.; Tittiger, Claus

    2016-01-01

    Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (−)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (−)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (−)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (−)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition. PMID:26953347

  3. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles.

    Science.gov (United States)

    Figueroa-Teran, Rubi; Pak, Heidi; Blomquist, Gary J; Tittiger, Claus

    2016-09-01

    Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (-)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (-)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (-)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (-)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    Science.gov (United States)

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  5. The ancestors of diatoms evolved a unique mitochondrial dehydrogenase to oxidize photorespiratory glycolate.

    Science.gov (United States)

    Schmitz, Jessica; Srikanth, Nishtala V; Hüdig, Meike; Poschmann, Gereon; Lercher, Martin J; Maurino, Veronica G

    2017-05-01

    Like other oxygenic photosynthetic organisms, diatoms produce glycolate, a toxic intermediate, as a consequence of the oxygenase activity of Rubisco. Diatoms can remove glycolate through excretion and through oxidation as part of the photorespiratory pathway. The diatom Phaeodactylum tricornutum encodes two proteins suggested to be involved in glycolate metabolism: PtGO1 and PtGO2. We found that these proteins differ substantially from the sequences of experimentally characterized proteins responsible for glycolate oxidation in other species, glycolate oxidase (GOX) and glycolate dehydrogenase. We show that PtGO1 and PtGO2 are the only sequences of P. tricornutum homologous to GOX. Our phylogenetic analyses indicate that the ancestors of diatoms acquired PtGO1 during the proposed first secondary endosymbiosis with a chlorophyte alga, which may have previously obtained this gene from proteobacteria. In contrast, PtGO2 is orthologous to an uncharacterized protein in Galdieria sulphuraria, consistent with its acquisition during the secondary endosymbiosis with a red alga that gave rise to the current plastid. The analysis of amino acid residues at conserved positions suggests that PtGO2, which localizes to peroxisomes, may use substrates other than glycolate, explaining the lack of GOX activity we observe in vitro. Instead, PtGO1, while only very distantly related to previously characterized GOX proteins, evolved glycolate-oxidizing activity, as demonstrated by in gel activity assays and mass spectrometry analysis. PtGO1 localizes to mitochondria, consistent with previous suggestions that photorespiration in diatoms proceeds in these organelles. We conclude that the ancestors of diatoms evolved a unique alternative to oxidize photorespiratory glycolate: a mitochondrial dehydrogenase homologous to GOX able to use electron acceptors other than O 2 .

  6. Regioselective hydroxylation of cholecalciferol, cholesterol and other sterol derivatives by steroid C25 dehydrogenase.

    Science.gov (United States)

    Rugor, A; Tataruch, M; Staroń, J; Dudzik, A; Niedzialkowska, E; Nowak, P; Hogendorf, A; Michalik-Zym, A; Napruszewska, D B; Jarzębski, A; Szymańska, K; Białas, W; Szaleniec, M

    2017-02-01

    Steroid C25 dehydrogenase (S25DH) from Sterolibacterium denitrificans Chol-1S is a molybdenum oxidoreductase belonging to the so-called ethylbenzene dehydrogenase (EBDH)-like subclass of DMSO reductases capable of the regioselective hydroxylation of cholesterol or cholecalciferol to 25-hydroxy products. Both products are important biologically active molecules: 25-hydroxycholesterol is responsible for a complex regulatory function in the immunological system, while 25-hydroxycholecalciferol (calcifediol) is the activated form of vitamin D3 used in the treatment of rickets and other calcium disorders. Studies revealed that the optimal enzymatic synthesis proceeds in fed-batch reactors under anaerobic conditions, with 6-9 % (w/v) 2-hydroxypropyl-β-cyclodextrin as a solubilizer and 1.25-5 % (v/v) 2-methoxyethanol as an organic co-solvent, both adjusted to the substrate type, and 8-15 mM K3[Fe(CN)6] as an electron acceptor. Such thorough optimization of the reaction conditions resulted in high product concentrations: 0.8 g/L for 25-hydroxycholesterol, 1.4 g/L for calcifediol and 2.2 g/L for 25-hydroxy-3-ketosterols. Although the purification protocol yields approximately 2.3 mg of pure S25DH from 30 g of wet cell mass (specific activity of 14 nmol min-1 mg-1), the non-purified crude extract or enzyme preparation can be readily used for the regioselective hydroxylation of both cholesterol and cholecalciferol. On the other hand, pure S25DH can be efficiently immobilized either on powder or a monolithic silica support functionalized with an organic linker providing NH2 groups for enzyme covalent binding. Although such immobilization reduced the enzyme initial activity more than twofold it extended S25DH catalytic lifetime under working conditions at least 3.5 times.

  7. A novel flavin adenine dinucleotide (FAD) containing d-lactate dehydrogenase from the thermoacidophilic crenarchaeota Sulfolobus tokodaii strain 7: purification, characterization and expression in Escherichia coli.

    Science.gov (United States)

    Satomura, Takenori; Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2008-07-01

    Dye-linked D-lactate dehydrogenase activity was found in the crude extract of a continental thermoacidophilic crenarchaeota, Sulfolobus tokodaii strain 7, and was purified 375-fold through four sequential chromatography steps. With a molecular mass of about 93 kDa, this enzyme was a homodimer comprised of identical subunits with molecular masses of about 48 kDa. The enzyme retained its full activity after incubation at 80 degrees C for 10 min and after incubation at pHs ranging from 6.5 to 10.0 for 30 min at 50 degrees C. The preferred substrate for this enzyme was D-lactate, with 2,6-dichloroindophenol serving as the electron acceptor. Using high-performance liquid chromatography (HPLC), the enzyme's prosthetic group was determined to be flavin adenine dinucleotide (FAD). Its N-terminal amino acid sequence was MLEGIEYSQGEEREDFVGFKIKPKI. Using that sequence and previously reported genome information, the gene encoding the enzyme (ST0649) was identified. It was subsequently cloned and expressed in Escherichia coli and found to encode a polypeptide of 440 amino acids with a calculated molecular weight of 49,715. The amino acid sequence of this dye-linked D-lactate dehydrogenase showed higher homology (39% identity) with that of a glycolate oxidase subunit homologue from Archaeoglobus fulgidus, but less similarity (32% identity) to D-lactate dehydrogenase from A. fulgidus. Taken together, our findings indicate that the dye-linked D-lactate dehydrogenase from S. tokodaii is a novel type of FAD containing D-lactate dehydrogenase.

  8. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    National Research Council Canada - National Science Library

    Gideon C. Okpokwasili; Christian Okechukwu Nweke

    2010-01-01

    .... At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds...

  9. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  10. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones.

    Science.gov (United States)

    Frébortová, Jitka; Novák, Ondrej; Frébort, Ivo; Jorda, Radek

    2010-02-01

    Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones.

  11. Two different dihydroorotate dehydrogenases from yeast Saccharomyees kluyveri

    DEFF Research Database (Denmark)

    Zameitat, E.; Knecht, Wolfgang; Piskur, Jure

    2004-01-01

    Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces klujveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family...... for their biochemical properties and interaction with inhibitors. Benzoates as pyrimidine ring analogs were shown to he selective inhibitors of cytosolic DHODs. This unique property of Saccharomyces DHODHs could appoint DHODH as a species-specific target for novel anti-fungal therapeutics....

  12. Spinal Cord Astrocytoma with Isocitrate Dehydrogenase 1 Gene Mutation.

    Science.gov (United States)

    Takai, Keisuke; Tanaka, Shota; Sota, Takashi; Mukasa, Akitake; Komori, Takashi; Taniguchi, Makoto

    2017-12-01

    In 2016, the World Health Organization updated its classification of tumors, adding genetic profiles to the conventional histopathologic typing. The authors present herein the first case of a 44-year-old female with isocitrate dehydrogenase-mutant World Health Organization grade II diffuse spinal astrocytoma diagnosed on the basis of both histopathologic and genetic findings. The present case underscores the significant role of a molecular genetic analysis in the differential diagnosis of intramedullary spinal gliomas. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  14. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  15. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  16. Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase.

    Science.gov (United States)

    Boa, Andrew N; Canavan, Shane P; Hirst, Paul R; Ramsey, Christopher; Stead, Andrew M W; McConkey, Glenn A

    2005-03-15

    A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.

  17. Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase

    Science.gov (United States)

    Biehl, Ralf; Hoffmann, Bernd; Monkenbusch, Michael; Falus, Peter; Préost, Sylvain; Merkel, Rudolf; Richter, Dieter

    2008-09-01

    Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spin-echo spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffening of the domain complex due to the binding of the cofactor.

  18. Lactate dehydrogenase in two digenetic trematodes and their host.

    Science.gov (United States)

    Haque, M; Siddiqi, A H; Siddiqui, J

    1990-12-01

    Polyacrylamide gel electrophoresis of the two digenetic trematodes, Gigantocotyle explanatum from the liver and Gastrothylax crumenifer from the rumen of the water buffalo, Bubalus bubalis revealed the presence of at least six and seven isoenzymes of lactate dehydrogenase (LDH), respectively in a partially purified enzyme preparation. The respective host tissues showed five isoenzymes of LDH, which are characteristic to the vertebrates. Both parachloromercuribenzoate and iodoacetate affected the LDH activity of the parasites and host tissues differently. Spectrophotometric analysis also showed different specific activity and susceptibility to the action of thiol inhibitors. The host LDH was quite stable at 57 degrees C for 30 min, but that of the parasites was less stable.

  19. Electrical activity of cellobiose dehydrogenase adsorbed on thiols: Influence of charge and hydrophobicity.

    Science.gov (United States)

    Lamberg, P; Hamit-Eminovski, J; Toscano, M D; Eicher-Lorka, O; Niaura, G; Arnebrant, T; Shleev, S; Ruzgas, T

    2017-06-01

    The interface between protein and material surface is of great research interest in applications varying from implants, tissue engineering to bioelectronics. Maintaining functionality of bioelements depends greatly on the immobilization process. In the present study direct electron transfer of cellobiose dehydrogenase from Humicola insolens (HiCDH), adsorbed on four different self-assembled monolayers (SAMs) formed by 5-6 chain length carbon thiols varying in terminal group structure was investigated. By using a combination of quartz crystal microbalance with dissipation, ellipsometry and electrochemistry the formation and function of the HiCDH film was studied. It was found that the presence of charged pyridinium groups was needed to successfully establish direct electron contact between the enzyme and electrode. SAMs formed from hydrophilic charged thiols achieved nearly two times higher current densities compared to hydrophobic charged thiols. Additionally, the results also indicated proportionality between HiCDH catalytic constant and water content of the enzyme film. Enzyme films on charged pyridine thiols had smaller variations in water content and viscoelastic properties than films adsorbed on the more hydrophobic thiols. This work highlights several perspectives on the underlying factors affecting performance of immobilized HiCDH. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Interconversion between formate and hydrogen carbonate by tungsten-containing formate dehydrogenase-catalyzed mediated bioelectrocatalysis

    Directory of Open Access Journals (Sweden)

    Kento Sakai

    2015-09-01

    Full Text Available We have focused on the catalytic properties of tungsten-containing formate dehydrogenase (FoDH1 from Methylobacterium extorquens AM1 to construct a bioelectrochemical interconversion system between formate (HCOO− and hydrogen carbonate (HCO3−. FoDH1 catalyzes both of the HCOO oxidation and the HCO3− reduction with several artificial dyes. The bi-molecular reaction rate constants between FoDH1 and the artificial electron acceptors and NAD+ (as the natural electron acceptor show the property called a linear free energy relationship (LFER, indicating that FoDH1 would have no specificity to NAD+. Similar LFER is also observed for the catalytic reduction of HCO3−. The reversible reaction between HCOO− and HCO3− through FoDH1 has been realized on cyclic voltammetry by using methyl viologen (MV as a mediator and by adjusting pH from the thermodynamic viewpoint. Potentiometric measurements have revealed that the three redox couples, MV2+/MV·−+, HCOO−/HCO3−, FoDH1 (ox/red, reach an equilibrium in the bulk solution when the two-way bioelectrocatalysis proceeds in the presence of FoDH1 and MV. The steady-state voltammograms with two-way bioelectrocatalytic properties are interpreted on a simple model by considering the solution equilibrium.

  1. Biochemical characterization of recombinant dihydroorotate dehydrogenase from the opportunistic pathogenic yeast Candida albicans.

    Science.gov (United States)

    Zameitat, Elke; Gojković, Zoran; Knecht, Wolfgang; Piskur, Jure; Löffler, Monika

    2006-07-01

    Candida albicans is the most prevalent yeast pathogen in humans, and recently it has become increasingly resistant to the current antifungal agents. In this study we investigated C. albicans dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), which catalyzes the fourth step of de novo pyrimidine synthesis, as a new target for controlling infection. We propose that the enzyme is a member of the DHODH family 2, which comprises mitochondrially bound enzymes, with quinone as the direct electron acceptor and oxygen as the final electron acceptor. Full-length DHODH and N-terminally truncated DHODH, which lacks the targeting sequence and the transmembrane domain, were subcloned from C. albicans, recombinantly expressed in Escherichia coli, purified, and characterized for their kinetics and substrate specificity. An inhibitor screening with 28 selected compounds was performed. Only the dianisidine derivative, redoxal, and the biphenyl quinoline-carboxylic acid derivative, brequinar sodium, which are known to be potent inhibitors of mammalian DHODH, markedly reduced C. albicans DHODH activity. This study provides a background for the development of antipyrimidines with high efficacy for decreasing in situ pyrimidine nucleotide pools in C. albicans.

  2. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production.

    Science.gov (United States)

    Tataruch, M; Heider, J; Bryjak, J; Nowak, P; Knack, D; Czerniak, A; Liesiene, J; Szaleniec, M

    2014-12-20

    The molybdenum/iron-sulfur/heme protein ethylbenzene dehydrogenase (EbDH) was successfully applied to catalyze enantiospecific hydroxylation of alkylaromatic and alkylheterocyclic compounds. The optimization of the synthetic procedure involves use of the enzyme in a crude purification state that saves significant preparation effort and is more stable than purified EbDH without exhibiting unwanted side reactions. Moreover, immobilization of the enzyme on a crystalline cellulose support and changes in reaction conditions were introduced in order to increase the amounts of product formed (anaerobic atmosphere, electrochemical electron acceptor recycling or utilization of ferricyanide as alternative electron acceptor in high concentrations). We report here on an extension of effective enzyme activity from 4h to more than 10 days and final product yields of up to 0.4-0.5g/l, which represent a decent starting point for further optimization. Therefore, we expect that the hydrocarbon-hydroxylation capabilities of EbDH may be developed into a new process of industrial production of chiral alcohols. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering.

    Science.gov (United States)

    Ludwig, Roland; Ortiz, Roberto; Schulz, Christopher; Harreither, Wolfgang; Sygmund, Christoph; Gorton, Lo

    2013-04-01

    The flavocytochrome cellobiose dehydrogenase (CDH) is a versatile biorecognition element capable of detecting carbohydrates as well as quinones and catecholamines. In addition, it can be used as an anode biocatalyst for enzymatic biofuel cells to power miniaturised sensor-transmitter systems. Various electrode materials and designs have been tested in the past decade to utilize and enhance the direct electron transfer (DET) from the enzyme to the electrode. Additionally, mediated electron transfer (MET) approaches via soluble redox mediators and redox polymers have been pursued. Biosensors for cellobiose, lactose and glucose determination are based on CDH from different fungal producers, which show differences with respect to substrate specificity, pH optima, DET efficiency and surface binding affinity. Biosensors for the detection of quinones and catecholamines can use carbohydrates for analyte regeneration and signal amplification. This review discusses different approaches to enhance the sensitivity and selectivity of CDH-based biosensors, which focus on (1) more efficient DET on chemically modified or nanostructured electrodes, (2) the synthesis of custom-made redox polymers for higher MET currents and (3) the engineering of enzymes and reaction pathways. Combination of these strategies will enable the design of sensitive and selective CDH-based biosensors with reduced electrode size for the detection of analytes in continuous on-site and point-of-care applications.

  4. Polyethyleneimine as a promoter layer for the immobilization of cellobiose dehydrogenase from Myriococcum thermophilum on graphite electrodes.

    Science.gov (United States)

    Schulz, Christopher; Ludwig, Roland; Gorton, Lo

    2014-05-06

    Cellobiose dehydrogenase (CDH) is a promising enzyme for the construction of biofuel cell anodes and biosensors capable of oxidizing aldoses as cellobiose as well as lactose and glucose and with the ability to connect to an electrode through a direct electron transfer mechanism. In the present study, we point out the beneficial effect of a premodification of spectrographic graphite electrodes with the polycation polyethyleneimine (PEI) prior to adsorption of CDH from Myriococcum thermophilum (MtCDH). The application of PEI shifts the pH optimum of the response of the MtCDH modified electrode from pH 5.5 to 8. The catalytic currents to lactose were increased up to 140 times, and the K(M)(app) values were increased up to 9 times. The previously investigated, beneficial effect of divalent cations on the activity of CDH was also present for graphite/PEI/MtCDH electrodes but was less pronounced. Polarization curves revealed a second unexpected catalytic wave for graphite/PEI/MtCDH electrodes especially pronounced at pH 8. Square wave voltammetric studies revealed the presence of an unknown redox functionality present at 192 mV vs Ag|AgCl (0.1 M KCl) at pH 8, probably originating from an oxidized adenosine derivative. Adenosine is a structural part of the flavin adenine dinucleotide (FAD) cofactor of the dehydrogenase domain of CDH. It is suggested that for some enzyme molecules FAD leaks out from the active site, adsorbs onto graphite, and is oxidized on the electrode surface into a product able to mediate the electron transfer between CDH and the electrode. PEI is suggested and discussed to act in several manners by (a) increasing the surface loading of the enzyme, (b) possibly increasing the electron transfer rate between CDH and the electrode, and (c) facilitating the creation or immobilization of redox active adenosine derivatives able to additionally mediate the electron transfer between CDH and the electrode.

  5. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  6. Purification and characterization of aldehyde dehydrogenase with a broad substrate specificity originated from 2-phenylethanol-assimilating Brevibacterium sp. KU1309.

    Science.gov (United States)

    Hirano, Jun-ichiro; Miyamoto, Kenji; Ohta, Hiromichi

    2007-08-01

    Phenylacetaldehyde dehydrogenase (PADH) was purified and characterized from Brevibacterium sp. KU1309, which can grow on the medium containing 2-phenylethanol as the sole carbon source. This enzyme was a homotetrameric protein with a subunit of 61 kDa. The enzyme catalyzed the oxidation of aryl (benzaldehyde, phenylacetaldehyde, 3-phenylpropionaldehyde) and aliphatic (hexanal, octanal, decanal) aldehydes to the corresponding carboxylic acids using NAD(+) as the electron acceptor. The PADH activity was enhanced by several divalent cationic ions such as Mg(2+), Ca(2+), and Mn(2+). On the other hand, it was inhibited by SH reagents (Hg(2+), p-chloromercuribenzoate, iodoacetamide, and N-ethylmaleinimide). The substrate specificity of the enzyme is compared with those of various aldehyde dehydrogenases.

  7. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Álvaro D. Fernández-Fernández

    2016-01-01

    Full Text Available NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2 and nitric oxide (NO. NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH. Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS, while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

  8. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials.

    Science.gov (United States)

    Granchi, C; Bertini, S; Macchia, M; Minutolo, F

    2010-01-01

    In many different species, lactate dehydrogenase (LDH) constitutes a major checkpoint of anaerobic glycolysis, by catalyzing the reduction of pyruvate into lactate. This enzyme has recently received a great deal of attention since it may constitute a valid therapeutic target for diseases so different as malaria and cancer. In fact, the isoform expressed by Plasmodium falciparum (pfLDH) is a key enzyme for energy generation of malarial parasites. These species mostly depend on anaerobic glycolysis for energy production, since they lack a citric acid cycle for ATP formation. Therefore, inhibitors of pfLDH would potentially cause mortality of P. falciparum and, to this purpose, several small organic molecules have been recently designed and developed with the aim of blocking this new potential antimalarial chemotherapeutic target. Moreover, most invasive tumour phenotypes show a metabolic switch (Warburg effect) from oxidative phosphorylation to an increased anaerobic glycolysis, by promoting an upregulation of the human isoform-5 of lactate dehydrogenase (hLDH-5 or LDH-A), which is normally present in muscles and in the liver. Hence, inhibition of hLDH-5 may constitute an efficient way to interfere with tumour growth and invasiveness. This review provides an overview of the LDH inhibitors that have been developed up to now, an analysis of their possible isoform-selectivity, and their therapeutic potentials.

  9. Plasmodium glyceraldehyde-3-phosphate dehydrogenase: A potential malaria diagnostic target.

    Science.gov (United States)

    Krause, Robert G E; Hurdayal, Ramona; Choveaux, David; Przyborski, Jude M; Coetzer, Theresa H T; Goldring, J P Dean

    2017-08-01

    Malaria rapid diagnostic tests (RDTs) are immunochromatographic tests detecting Plasmodial histidine-rich protein 2 (HRP2), lactate dehydrogenase (LDH) and aldolase. HRP2 is only expressed by Plasmodium falciparum parasites and the protein is not expressed in several geographic isolates. LDH-based tests lack sensitivity compared to HRP2 tests. This study explored the potential of the Plasmodial glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a new malaria diagnostic biomarker. The P. falciparum and P. yoelii proteins were recombinantly expressed in BL21(DE3) Escherischia coli host cells and affinity purified. Two epitopes (CADGFLLIGEKKVSVFA and CAEKDPSQIPWGKCQV) specific to P. falciparum GAPDH and one common to all mammalian malaria species (CKDDTPIYVMGINH) were identified. Antibodies were raised in chickens against the two recombinant proteins and the three epitopes and affinity purified. The antibodies detected the native protein in parasite lysates as a 38 kDa protein and immunofluorescence verified a parasite cytosolic localization for the native protein. The antibodies suggested a 4-6 fold higher concentration of native PfGAPDH compared to PfLDH in immunoprecipitation and ELISA formats, consistent with published proteomic data. PfGAPDH shows interesting potential as a malaria diagnostic biomarker. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhang, Wangluo; Chen, Shuai; Liao, Yuanping; Wang, Dingli; Ding, Jianfeng; Wang, Yingming; Ran, Xiaoyuan; Lu, Daru; Zhu, Huaxing

    2013-12-01

    As a member of zinc-containing medium-chain alcohol dehydrogenase family, formaldehyde dehydrogenase (FDH) can oxidize toxic formaldehyde to less active formate with NAD(+) as a cofactor and exists in both prokaryotes and eukaryotes. Most FDHs are well known to be glutathione-dependent in the catalysis of formaldehyde oxidation, but the enzyme from Pseudomonas putida is an exception, which is independent of glutathione. To identify novel glutathione-independent FDHs from other bacterial strains and facilitate the corresponding structural and enzymatic studies, high-level soluble expression and efficient purification of these enzymes need to be achieved. Here, we present molecular cloning, expression, and purification of the FDH from Pseudomonas aeruginosa, which is a Gram-negative pathogenic bacterium causing opportunistic human infection. The FDH of P. aeruginosa shows high sequence identity (87.97%) with that of P. putida. Our results indicated that coexpression with molecular chaperones GroES, GroEL, and Tig has significantly attenuated inclusion body formation and improved the solubility of the recombinant FDH in Escherichiacoli cells. A purification protocol including three chromatographic steps was also established to isolate the recombinant FDH to homogeneity with a yield of ∼3.2 mg from 1L of cell culture. The recombinant P. aeruginosa FDH was properly folded and biologically functional, as demonstrated by the mass spectrometric, crystallographic, and enzymatic characterizations of the purified proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)+as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD+versusNADP+, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP+cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.

  12. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Nagae, Takayuki; Kawamura, Takashi [Nagoya University, (Japan); Chavas, Leonard M. G. [High Energy Research Organization (KEK), (Japan); Niwa, Ken; Hasegawa, Masashi [Nagoya University, (Japan); Kato, Chiaki [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), (Japan); Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp [Nagoya University, (Japan); Nagoya University, (Japan)

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  13. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  14. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  15. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus.

    Science.gov (United States)

    Frey, Jasmin; Rusche, Hendrik; Schink, Bernhard; Schleheck, David

    2016-11-25

    The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO 2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD + but not NADPH/NADP + as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C 3 - C 5 -aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg -1 protein), butanal to butanol (300 ± 24 mU mg -1 ), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg -1 ), however, the enzyme also oxidized 3-hydroxybutanal with NAD + to acetoacetaldehyde (83 ± 18 mU mg -1 ). The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.

  16. Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production.

    Science.gov (United States)

    Sygmund, Christoph; Santner, Paul; Krondorfer, Iris; Peterbauer, Clemens K; Alcalde, Miguel; Nyanhongo, Gibson S; Guebitz, Georg M; Ludwig, Roland

    2013-04-23

    The ability of fungal cellobiose dehydrogenase (CDH) to generate H2O2 in-situ is highly interesting for biotechnological applications like cotton bleaching, laundry detergents or antimicrobial functionalization of medical devices. CDH's ability to directly use polysaccharide derived mono- and oligosaccharides as substrates is a considerable advantage compared to other oxidases such as glucose oxidase which are limited to monosaccharides. However CDH's low activity with oxygen as electron acceptor hampers its industrial use for H2O2 production. A CDH variant with increased oxygen reactivity is therefore of high importance for biotechnological application. Uniform expression levels and an easy to use screening assay is a necessity to facilitate screening for CDH variants with increased oxygen turnover. A uniform production and secretion of active Myriococcum thermophilum CDH was obtained by using Saccharomyces cerevisiae as expression host. It was found that the native secretory leader sequence of the cdh gene gives a 3 times higher expression than the prepro leader of the yeast α-mating factor. The homogeneity of the expression in 96-well deep-well plates was good (variation coefficient H2O2 production. A 4.5-fold increase for variant N700S over the parent enzyme was found. For production, N700S was expressed in P. pastoris and purified to homogeneity. Characterization revealed that not only the kcat for oxygen turnover was increased in N700S (4.5-fold), but also substrate turnover. A 3-fold increase of the kcat for cellobiose with alternative electron acceptors indicates that mutation N700S influences the oxidative- and reductive FAD half-reaction. Site-directed mutagenesis and directed evolution of CDH is simplified by the use of S. cerevisiae instead of the high-yield-host P. pastoris due to easier handling and higher transformation efficiencies with autonomous plasmids. Twelve clones which exhibited an increased H2O2 production in the subsequent screening were

  17. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) as candidates for tumor markers in patients with pancreatic cancer.

    Science.gov (United States)

    Jelski, Wojciech; Kutylowska, Emilia; Laniewska-Dunaj, Magdalena; Szmitkowski, Maciej

    2011-09-01

    Various alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) exist in the pancreas. Moreover, ADH and ALDH are present in pancreatic cancer cells. The activity of ADH class III isoenzymes is significantly higher in cancerous than in healthy tissues. The expression of these enzymes in cancer cells is reflected by increased enzyme activity in the sera and thus could be helpful for diagnosing pancreatic cancer. The aim of this study was to investigate the potential role of ADH and ALDH as tumor markers for pancreatic carcinoma. Serum samples were taken from 165 patients with pancreatic cancer and 166 healthy controls. Total ADH activity and class III and IV isoenzymes were measured by photometric and ALDH activity, ADH I and II by the fluorometric method. There was a significant increase in the activity of ADH III isoenzyme (14.03 mU/l vs 11.45 mU/l; p pancreatic cancer patients compared to the control. The diagnostic sensitivity for ADH III was 70%, specificity 76%, positive and negative predictive values were 79% and 71% respectively. Area under ROC curve for ADH III was 0.64. The results suggest a potential role for ADH III as a marker of pancreatic cancer.

  18. The activity of class I, II, III, and IV of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in pancreatic cancer.

    Science.gov (United States)

    Jelski, Wojciech; Chrostek, Lech; Szmitkowski, Maciej

    2007-08-01

    The pancreas can metabolize ethanol via oxidative pathway involving the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) as well as the nonoxidative pathway. In this study, we compared the activity of ADH isoenzymes and ALDH in the pancreatic cancer with the activity in normal tissue. In addition, the differences between enzyme activities of drinkers and nondrinkers were compared. For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, we used the fluorometric methods. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The samples were taken from 56 pancreatic cancer patients (22 drinkers and 34 nondrinkers) and 56 healthy subjects. The activity of class III ADH was significantly higher in cancer than in healthy tissues. Total activities of ADH and ALDH were not significantly different in cancer and normal cells. The differences between enzymes of drinkers and nondrinkers in both cancer and healthy tissue were not significant. Pancreatic cancer tissue exhibits higher activity of class III ADH isoenzyme than healthy tissue, and we consider that oxidative pathway of ethanol metabolism via ADH and ALDH does not play a role in pancreatic carcinogenesis.

  19. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    Science.gov (United States)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  20. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    Science.gov (United States)

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  1. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  2. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    Science.gov (United States)

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The Diagnostic Significance of Serum Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase Activity in Urinary Bladder Cancer Patients.

    Science.gov (United States)

    Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej

    2017-07-01

    The aim of this study was to investigate a potential role of alcohol dehydrogenase and aldehyde dehydrogenase as tumor markers for urinary bladder cancer. Serum samples were obtained from 41 patients with bladder cancer and 52 healthy individuals. Class III and IV of ADH and total ADH activity were measured by the photometric method. For measurement of class I and II ADH and ALDH activity, the fluorometric method was employed. Significantly higher total activity of ADH was found in sera of both, low-grade and high-grade bladder cancer patients. The diagnostic sensitivity for total ADH activity was 81.5%, specificity 98.1%, positive (PPV) and negative (NPV) predictive values were 97.4% and 92.3% respectively. Area under ROC curve for total ADH activity was 0.848. A potential role of total ADH activity as a marker for bladder cancer, is herein proposed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. The crystal structure of SDR-type pyridoxal 4-dehydrogenase of Mesorhizobium loti.

    Science.gov (United States)

    Chu, Huy Nhat; Kobayashi, Jun; Mikami, Bunzo; Yagi, Toshiharu

    2011-01-01

    Pyridoxal 4-dehydrogenase catalyzes the irreversible oxidation of pyridoxal to 4-pyridoxolactone and is involved in degradation pathway I of pyridoxine, a vitamin B(6) compound. Its crystal structure was elucidated for the first time. Molecular replacement with (S)-1-phenylthanol dehydrogenase (PDB code 2EW8) was adopted to determine the tertiary structure of the NAD(+)-bound enzyme.

  5. Alternative splicing directs dual localization of Candida albicans 6-phosphogluconate dehydrogenase to cytosol and peroxisomes

    NARCIS (Netherlands)

    Strijbis, Karin; van den Burg, Janny; F Visser, Wouter; van den Berg, Marlene; Distel, Ben

    2012-01-01

    The pentose phosphate pathway (PPP) is the main source of NADPH in the cell and therefore essential for the maintenance of the redox balance and anabolic reactions. NADPH is produced by the two dehydrogenases in the oxidative branch of the PPP: glucose-6-phosphate dehydrogenase (Zwf1) and

  6. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  7. Synthesis of allitol from D-psicose using ribitol dehydrogenase and ...

    African Journals Online (AJOL)

    Purpose: To synthesize allitol from D-psicose by a combination of novel ribitol dehydrogenase (RDH) and formate dehydrogenase (FDH) under optimised production conditions. Methods: RDH and FDH genes were cloned and introduced into pET-22b(+) vectors for expression in Escherichia coli to produce the ...

  8. Succinic Semialdehyde Dehydrogenase: Biochemical-Molecular-Clinical Disease Mechanisms, Redox Regulation, and Functional Significance

    NARCIS (Netherlands)

    Kim, K.J.; Pearl, P.L.; Jensen, K.; Snead, O.C.; Malaspina, P.; Jakobs, C.A.J.M.; Gibson, K.M.

    2011-01-01

    Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1, ALDH5A1; E.C. 1.2.1.24; OMIM 610045, 271980) deficiency is a rare heritable disorder that disrupts the metabolism of the inhibitory neurotransmitter 4-aminobutyric acid (GABA). Identified in conjunction with increased urinary

  9. Structures of Michaelis and Product Complexes of Plant Cytokinin Dehydrogenase : Implications for Flavoenzyme Catalysis

    NARCIS (Netherlands)

    Malito, Enrico; Coda, Alessandro; Bilyeu, Kristin D.; Fraaije, Marco W.; Mattevi, Andrea

    2004-01-01

    Cytokinins form a diverse class of compounds that are essential for plant growth. Cytokinin dehydrogenase has a major role in the control of the levels of these plant hormones by catalysing their irreversible oxidation. The crystal structure of Zea mays cytokinin dehydrogenase displays the same

  10. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle.

    Science.gov (United States)

    Maalcke, Wouter J; Reimann, Joachim; de Vries, Simon; Butt, Julea N; Dietl, Andreas; Kip, Nardy; Mersdorf, Ulrike; Barends, Thomas R M; Jetten, Mike S M; Keltjens, Jan T; Kartal, Boran

    2016-08-12

    Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii.

    Science.gov (United States)

    Baminger, U; Subramaniam, S S; Renganathan, V; Haltrich, D

    2001-04-01

    Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by several wood-degrading fungi. In the presence of a suitable electron acceptor, e.g., 2,6-dichloro-indophenol (DCIP), cytochrome c, or metal ions, CDH oxidizes cellobiose to cellobionolactone. The phytopathogenic fungus Sclerotium rolfsii (teleomorph: Athelia rolfsii) strain CBS 191.62 produces remarkably high levels of CDH activity when grown on a cellulose-containing medium. Of the 7,500 U of extracellular enzyme activity formed per liter, less than 10% can be attributed to the proteolytic product cellobiose:quinone oxidoreductase. As with CDH from wood-rotting fungi, the intact, monomeric enzyme from S. rolfsii contains one heme b and one flavin adenine dinucleotide cofactor per molecule. It has a molecular size of 101 kDa, of which 15% is glycosylation, and a pI value of 4.2. The preferred substrates are cellobiose and cellooligosaccharides; additionally, beta-lactose, thiocellobiose, and xylobiose are efficiently oxidized. Cytochrome c (equine) and the azino-di-(3-ethyl-benzthiazolin-6-sulfonic acid) cation radical were the best electron acceptors, while DCIP, 1,4-benzoquinone, phenothiazine dyes such as methylene blue, phenoxazine dyes such as Meldola's blue, and ferricyanide were also excellent acceptors. In addition, electrons can be transferred to oxygen. Limited in vitro proteolysis with papain resulted in the formation of several protein fragments that are active with DCIP but not with cytochrome c. Such a flavin-containing fragment, with a mass of 75 kDa and a pI of 5.1 and lacking the heme domain, was isolated and partially characterized.

  12. A Refined Analysis of Superoxide Production by Mitochondrial sn-Glycerol 3-Phosphate Dehydrogenase*

    Science.gov (United States)

    Orr, Adam L.; Quinlan, Casey L.; Perevoshchikova, Irina V.; Brand, Martin D.

    2012-01-01

    The oxidation of sn-glycerol 3-phosphate by mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a major pathway for transfer of cytosolic reducing equivalents to the mitochondrial electron transport chain. It is known to generate H2O2 at a range of rates and from multiple sites within the chain. The rates and sites depend upon tissue source, concentrations of glycerol 3-phosphate and calcium, and the presence of different electron transport chain inhibitors. We report a detailed examination of H2O2 production during glycerol 3-phosphate oxidation by skeletal muscle, brown fat, brain, and heart mitochondria with an emphasis on conditions under which mGPDH itself is the source of superoxide and H2O2. Importantly, we demonstrate that a substantial portion of H2O2 production commonly attributed to mGPDH originates instead from electron flow through the ubiquinone pool into complex II. When complex II is inhibited and mGPDH is the sole superoxide producer, the rate of superoxide production depends on the concentrations of glycerol 3-phosphate and calcium and correlates positively with the predicted reduction state of the ubiquinone pool. mGPDH-specific superoxide production plateaus at a rate comparable with the other major sites of superoxide production in mitochondria, the superoxide-producing center shows no sign of being overreducible, and the maximum superoxide production rate correlates with mGPDH activity in four different tissues. mGPDH produces superoxide approximately equally toward each side of the mitochondrial inner membrane, suggesting that the Q-binding pocket of mGPDH is the major site of superoxide generation. These results clarify the maximum rate and mechanism of superoxide production by mGPDH. PMID:23124204

  13. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  14. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase

  15. The Electron

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, George

    1972-01-01

    Electrons are elementary particles of atoms that revolve around and outside the nucleus and have a negative charge. This booklet discusses how electrons relate to electricity, some applications of electrons, electrons as waves, electrons in atoms and solids, the electron microscope, among other things.

  16. Evaluation of cellobiose dehydrogenase and laccase containing culture fluids of Termitomyces sp. OE147 for degradation of Reactive blue 21

    Directory of Open Access Journals (Sweden)

    Rishabh Gangwar

    2016-12-01

    Full Text Available This study evaluates culture filtrate, rich in cellobiose dehydrogenase and laccases, of Termitomyces sp. OE 147, in decolouration and degradation of Reactive blue (RB 21. About 35% decolouration was achieved at low volumes of the culture supernatant without addition of external redox mediators. An optimized dye to culture fluid ratio (75 ppm: 0.1 ml at a pH of 4–5 resulted in removal of colour by 60%. The degradation products of RB21 were analysed by Electron Spray Ionization-Mass Spectrometry and several small molecules (of m/z 106–199 were detected. These were concluded to be o-Xylene, 2,3-Dihydro-1H-isoindole, Isoindole-1,3-dione, 2,Benzenesulfonyl-ethanol, (4-Hydroxy-phenyl-sulfamic acid, 2,3-Dihydro-1H-isoindole-5-sulfonic acid and proposed to result from joint action of cellobiose dehydrogenase, laccase, peroxidases and unidentified oxidoreductases present in the culture fluids. Based on the products formed and the known reactions of these enzymes, a degradation pathway was proposed for RB21. The culture fluid was also effective in decolouration (by about 50% and detoxification (by ∼25% of the combined effluent collected from a local mill indicating a treatment process that bypasses use of H2O2 and toxic mediators.

  17. Succinate Dehydrogenase Activity Assay in situ with Blue Tetrazolium Salt in Crabtree-Positive Saccharomyces cerevisiae Strain

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2008-01-01

    Full Text Available A spectrophotometric method for determining succinate dehydrogenase (SDH activity assay in azide-sensitive yeast Saccharomyces cerevisiae has been developed. The permeabilization of yeast cells by 0.05 % digitonin permitted to study yeast enzymatic activity in situ. The reduction of blue tetrazolium salt (BT to blue tetrazolium formazan (BTf was conducted in the presence of phenazine methosulphate (PMS as an exogenous electron carrier, and sodium azide (SA as an inhibitor of cytochrome oxidase (Cyt pathway. Various factors such as type of substrate, BT concentration, cell number, temperature and time of incubation, and different Cyt pathway blockers were optimized. In earlier studies, dimethyl sulfoxide (DMSO had been selected as the best solvent for extraction of BTf from yeast cells. The linear correlation between permeabilized yeast cell density and amount of formed formazan was evidenced in the range from 9·10^7 to 5·10^8 cells per sample solution. Below the yeast cell concentration of 10^7 the absorbance values were too low to detect formazans with good precision. This standarized procedure allows the estimation of SDH activity in whole cells, depending on vitality level of yeast populations. Significant increases of succinate dehydrogenase activities were observed in sequential passages as the result of the increase of activity of the strain and adaptation to cultivation conditions.

  18. Circadian rhythm in succinate dehydrogenase activity in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Álvarez Barón

    2004-07-01

    Full Text Available Neurospora crassa is a widely studied model of circadian rhythmicity. In this fungus, metabolism is controlled by multiple factors which include development, medium characteristics and the circadian clock. The study of the circadian control of metabolism in this fungus could be masked by the use of restrictive media that inhibit growth and development. In this report, the presence of a circadian rhythm in the activity of the enzyme Succinate Dehydrogenase in Neurospora crassa is demonstrated. Rhythmic and arrhythmic Neurospora strains were grown in complete medium without conidiation restriction. A circadian change in the enzymatic activity was found with high values in hours corresponding to the night and a low level during the day. This finding highlights the importance of deeper studies in the circadian control of metabolism in this fungus, given the existence of multiple pathways of regulation of metabolic enzymes and a circadian clock control at the transcriptional and post-transcriptional levels.

  19. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    Science.gov (United States)

    Shiga, Hirokazu; Joreau, Hiromi; Neoh, Tze Loon; Furuta, Takeshi; Yoshii, Hidefumi

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11) was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders. PMID:24662364

  20. Bilateral cataracts associated with glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Nair, V; Hasan, S U; Romanchuk, K; Al Awad, E; Mansoor, A; Yusuf, K

    2013-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) has an essential role in the defense against cellular oxidative injury. In neonates, the most common manifestation of G6PD deficiency is jaundice and hemolysis due to factors causing oxidative stress. Less known are the ocular associations described with G6PD deficiency, including cataracts. Oxidative injury is involved in the pathogenesis of almost all forms of cataracts, causing the lens proteins to undergo modifications, denaturation and form insoluble aggregates resulting in cataracts. Although cataracts in adult males have been reported in several studies, there are few reports of cataracts in infants with G6PD deficiency. We describe a preterm male neonate with G6PD deficiency who developed bilateral cataracts following an episode of neonatal sepsis and severe hemolysis necessitating an exchange blood transfusion.

  1. Mechanistic enzymology of CO dehydrogenase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Ragsdale, S.W.

    1992-01-01

    The final steps in acetyl-CoA biosynthesis by anaerobic bacteria are performed by carbon monoxide dehydrogenase (CODH), a nickel/iron-sulfur protein. An important achievement was to establish conditions under which acetyl-CoA synthesis by purified enzymes equals the in vivo rate of acetate synthesis. Under these optimized conditions we established that the rate limiting step in the synthesis of acetyl-CoA from methyl-H[sub 4]folate, CO and CoA is likely to be the methylation of CODH by the methylated corrinoid/iron-sulfur protein. We then focused on stopped flow studies of this rate limiting transmethylation reaction and established its mechanism. We have studied the carbonylation of CODH by infrared and resonance Raman spectroscopy and determined that the [Ni-Fe[sup 3-4]S[sub 4

  2. Lactate dehydrogenase (LDH isoenzymes patterns in ocular tumours

    Directory of Open Access Journals (Sweden)

    Singh Rajendra

    1991-01-01

    Full Text Available Estimation of lactate dehydrogenase (LDH isoenzymes in the serum and aqueous humor was carried out in 15 cases of benign ocular tumour, 15 cases of malignant tumor and 15 normal cases. Cases of both sexes aged between 1 year and 75 years were included. LDH, isoenzymes specially LDH4 and LDH5 are higher and LDH1 and LDH2 lower in sera of patients with malignant tumor specially retinoblastoma as compared to benign tumor cases and control cases. LDH isoenzymes in aqueous humor are significantly higher and show a characteristic pattern in retinoblastoma cases, the concentration was presumably too low in the control, malignant tumor other than retinoblastoma and benign tumor cases as its fractionation was not possible.

  3. Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum.

    Science.gov (United States)

    Shoemark, Deborah K; Cliff, Matthew J; Sessions, Richard B; Clarke, Anthony R

    2007-06-01

    The lactate dehydrogenase enzyme from Plasmodium falciparum (PfLDH) is a target for antimalarial compounds owing to structural and functional differences from the human isozymes. The plasmodial enzyme possesses a five-residue insertion in the substrate-specificity loop and exhibits less marked substrate inhibition than its mammalian counterparts. Here we provide a comprehensive kinetic analysis of the enzyme by steady-state and transient kinetic methods. The mechanism deduced by product inhibition studies proves that PfLDH shares a common mechanism with the human LDHs, that of an ordered sequential bireactant system with coenzyme binding first. Transient kinetic analysis reveals that the major rate-limiting step is the closure of the substrate-specificity loop prior to hydride transfer, in line with other LDHs. The five-residue insertion in this loop markedly increases substrate specificity compared with the human muscle and heart isoforms.

  4. Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment.

    Science.gov (United States)

    Di Stefano, Giuseppina; Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi

    2016-04-01

    Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.

  5. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...... stable at pH 6-7 for 24 h and 30degreesC. K-m values for D-xylitol and NAD(+) were 94 mM and 0.14 mM, respectively. Mn2+ at 10 mM increased XDH activity 2-fold and Cu2+ at 10 mM inhibited activity completely....

  6. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    Science.gov (United States)

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti.

  7. [Succinic semialdehyde dehydrogenase deficiency: an inheritable neurometabolic disease].

    Science.gov (United States)

    Gahr, M; Connemann, B J; Schönfeldt-Lecuona, C J; Freudenmann, R W

    2013-03-01

    Succinic semialdehyde dehydrognase deficiency (SSADHD) is a neurometabolic disease with autosomal recessive inheritance. Although only about 450 cases are known worldwide, SSADHD is a frequent paediatric disorder of the neurotransmitter metabolism. SSADHD is caused by a mutation of the Aldh5a1-gene resulting in a dysfunction of the enzyme succinic semialdehyde dehydrogenase. This is followed by an accumulation of γ-aminobutyric acid and succinic semialdehyde that is alternatively metabolised via succinic semialdehyde reductase to γ-hydroxybutyric acid. The clinical phenotype is unspecific with pronounced interindividual variability. However, delayed acquisition of motor and language developmental milestones as well as epilepsy, mental retardation, sleep disorder, ataxia, muscle hypotonia, and behavioural disturbances are frequent. First symptoms frequently occur in the first year of life while the general course of the disease is non-progressive. Currently, no causal therapy exists. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Idiopathic intracranial hypertension, hormones, and 11β-hydroxysteroid dehydrogenases

    Science.gov (United States)

    Markey, Keira A; Uldall, Maria; Botfield, Hannah; Cato, Liam D; Miah, Mohammed A L; Hassan-Smith, Ghaniah; Jensen, Rigmor H; Gonzalez, Ana M; Sinclair, Alexandra J

    2016-01-01

    Idiopathic intracranial hypertension (IIH) results in raised intracranial pressure (ICP) leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11β-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH. PMID:27186074

  9. Alcohol Dehydrogenase of Bacillus strain for Measuring Alcohol Electrochemically

    Science.gov (United States)

    Iswantini, D.; Nurhidayat, N.; Ferit, H.

    2017-03-01

    Alcohol dehydrogenase (ADH) was applied to produce alcohol biosensor. The enzyme was collected from cultured Bacillus sp. in solid media. From 6 tested isolates, bacteria from fermented rice grain (TST.A) showed the highest oxidation current which was further applied as the bioreceptor. Various ethanol concentrations was measured based on the increase of maximum oxidation current value. However, a reduction value was happened when the ethanol concentration was higher than 5%. Comparing the result of spectrophotometry measurement, R2 value obtained from the biosensor measurement method was higher. The new proposed method resulted a wider detection range, from 0.1-5% of ethanol concentration. The result showed that biosensor method has big potency to be used as alcohol detector in foods or bevearages.

  10. 17 beta-hydroxysteroid dehydrogenase activity in canine pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Hernandez, G.; Lopez-Solache, I.; Rendon, J.L.; Diaz-Sanchez, V.; Diaz-Zagoya, J.C.

    1988-04-15

    The mitochondrial fraction of the dog pancreas showed NAD(H)-dependent enzyme activity of 17 beta-hydroxysteroid dehydrogenase. The enzyme catalyzes oxidoreduction between androstenedione and testosterone. The apparent Km value of the enzyme for androstenedione was 9.5 +/- 0.9 microM, the apparent Vmax was determined as 0.4 nmol mg-1 min-1, and the optimal pH was 6.5. In phosphate buffer, pH 7.0, maximal rate of androstenedione reduction was observed at 37 degrees C. The oxidation of testosterone by the enzyme proceeded at the same rate as the reduction of the androstenedione at a pH of 6.8-7.0. The apparent Km value and the optimal pH of the enzyme for testosterone were 3.5 +/- 0.5 microM and 7.5, respectively.

  11. Pharmacophore-based discovery of new human dihydroorotate dehydrogenase inhibitor.

    Science.gov (United States)

    Lu, Peng; Wang, Yubin; Ma, Bo; She, Jinxiong; Zhang, Qi; He, Mingfang; Liu, Ying

    2014-06-01

    Pharmacophore models of human dihydroorotate dehydrogenase (HsDHODH) have been developed using Discovery Studio V2.1 with a training set of 27 HsDHODH inhibitors. With one hydrogen bond receptor, two hydrophobic, one ring aromatic and one neg ionizable features, Hypo 1 has a correlation coefficient of 0.948, cost difference of 78.894, and RMSD 0.926. This model was validated by test set and Fischer randomization test. Hypo 1 was employed as a 3D query to identify potent molecules from our lab chemical database. Compound 38-C11 had Hypo 1 estimated IC50 of 489 nM. Then 38-C11 was synthesized and evaluated in HsDHODH inhibition assay. The IC50 of 38-C11 was 136.9 nM suggesting that 38-C11 could be proceeded for further evaluation in future study.

  12. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    Directory of Open Access Journals (Sweden)

    Hirokazu Shiga

    2014-03-01

    Full Text Available The retention of the enzyme activity of alcohol dehydrogenase (ADH has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11 was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  13. Genetic variants of 6-phosphogluconate dehydrogenase in the Indonesian populations.

    Science.gov (United States)

    Sofro, A S; Kirk, R L

    1986-01-01

    Blood samples from 2,091 individuals representing 14 Indonesian populations (11 Austronesian and 3 non-Austronesian speakers) have been tested electrophoretically for 6-phosphogluconate dehydrogenase (6-PGD). Two common alleles, PGDA and PGDC are found in all populations studied, and the phenotype distribution agrees well with the Hardy-Weinberg equilibrium. The PGDC gene frequency varies from as low as 3.5% in the Galelarese to 29% in the Asmat. In general, the PGDC allele seems to decrease in frequency towards the west. A low frequency of PGDC in the Galelarese, a non-Austronesian-speaking population, is thought to be the result of admixture of Austronesian genes, which has not led to language change. In addition to the common alleles, a new variant, PGD A-Lombok, is also described.

  14. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

    DEFF Research Database (Denmark)

    Madiraju, Anila K; Erion, Derek M; Rahimi, Yasmeen

    2014-01-01

    Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been...... prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered...... hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense...

  15. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  16. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Keiki Nagaharu

    2016-01-01

    Full Text Available Over the past decades, 5-Fluorouracil (5-FU has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment.

  17. Succinate dehydrogenase (SDH) deficiency, Carney triad and the epigenome.

    Science.gov (United States)

    Settas, Nikolaos; Faucz, Fabio R; Stratakis, Constantine A

    2017-07-21

    In this report, we review the relationship between succinate dehydrogenase (SDH) deficiency and the epigenome, especially with regards to two clinical conditions. Carney triad (CT) is a very rare disease with synchronous or metachronous occurrence of at least three different tumor entities; gastric gastrointestinal stromal tumor (GIST), paraganglioma (PGL), and pulmonary chondroma. This condition affects mostly females and it is never inherited. Another disease that shares two of the tumor components of CT, namely GIST and PGL is the Carney-Stratakis syndrome (CSS) or dyad. CSS affects both genders during childhood and adolescence. We review herein the main clinical features and molecular mechanisms behind those two syndromes that share quite a bit of similarities, but one is non-hereditary (CT) whereas the other shows an autosomal-dominant, with incomplete penetrance, inheritance pattern (CSS). Both CT and CSS are caused by the deficiency of the succinate dehydrogenase (SDH) enzyme. The key difference between the two syndromes is the molecular mechanism that causes the SDH deficiency. Most cases of CT show down-regulation of SDH through site-specific hyper-methylation of the SDHC gene, whereas CSS cases carry inactivating germline mutations within one of the genes coding for the SDH subunits A, B, C, or D (SDHA, SDHB, SDHC, and SDHD). There is only partial overlap between the two conditions (there are a few patients with CT that have SDH subunit mutations) but both lead to increased methylation of the entire genome in the tumors associated with them. Other tumors (outside CT and CSS) that have SDH deficiency are associated with increased methylation of the entire genome, but only in CT there is site-specific methylation of the SDHC gene. These findings have implications for diagnostics and the treatment of patients with these, often metastatic tumors. Published by Elsevier B.V.

  18. Lactate dehydrogenase A silencing in IDH mutant gliomas.

    Science.gov (United States)

    Chesnelong, Charles; Chaumeil, Myriam M; Blough, Michael D; Al-Najjar, Mohammad; Stechishin, Owen D; Chan, Jennifer A; Pieper, Russell O; Ronen, Sabrina M; Weiss, Samuel; Luchman, H Artee; Cairncross, J Gregory

    2014-05-01

    Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1α degradation and, by doing so, may have unexpected metabolic effects. We used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1α target genes in IDH mutant ((mt)) and IDH wild-type ((wt)) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas. We found that HIF1α-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDH(mt) gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDH(mt) derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDH(wt)), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDH(mt) glioblastomas. To our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDH(mt) gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis.

  19. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  20. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    V.M.T. Trindade

    2013-05-01

    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at: http://www6.ufrgs.br/gcoeb/LDH

  1. Electron radiography

    Science.gov (United States)

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  2. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  3. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization.

    Science.gov (United States)

    Saengdee, Pawasuth; Chaisriratanakul, Woraphan; Bunjongpru, Win; Sripumkhai, Witsaroot; Srisuwan, Awirut; Jeamsaksiri, Wutthinan; Hruanun, Charndet; Poyai, Amporn; Promptmas, Chamras

    2015-05-15

    Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2 surface. In addition, the SiO2 surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4 surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases.

    Science.gov (United States)

    Jeoung, Jae-Hun; Fesseler, Jochen; Goetzl, Sebastian; Dobbek, Holger

    2014-01-01

    Carbon monoxide (CO) pollutes the atmosphere and is toxic for respiring organisms including man. But CO is also an energy and carbon source for phylogenetically diverse microbes living under aerobic and anaerobic conditions. Use of CO as metabolic fuel for microbes relies on enzymes like carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS), which catalyze conversions resembling processes that eventually initiated the dawn of life.CODHs catalyze the (reversible) oxidation of CO with water to CO2 and come in two different flavors with unprecedented active site architectures. Aerobic bacteria employ a Cu- and Mo-containing CODH in which Cu activates CO and Mo activates water and takes up the two electrons generated in the reaction. Anaerobic bacteria and archaea use a Ni- and Fe-containing CODH, where Ni activates CO and Fe provides the nucleophilic water. Ni- and Fe-containing CODHs are frequently associated with ACS, where the CODH component reduces CO2 to CO and ACS condenses CO with a methyl group and CoA to acetyl-CoA.Our current state of knowledge on how the three enzymes catalyze these reactions will be summarized and the different strategies of CODHs to achieve the same task within different active site architectures compared.

  5. A high-throughput fluorescence-based assay for Plasmodium dihydroorotate dehydrogenase inhibitor screening.

    Science.gov (United States)

    Caballero, Iván; Lafuente, María José; Gamo, Francisco-Javier; Cid, Concepción

    2016-08-01

    Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pyranose Dehydrogenase from Agaricus campestris and Agaricus xanthoderma: Characterization and Applications in Carbohydrate Conversions

    Directory of Open Access Journals (Sweden)

    Clemens K. Peterbauer

    2013-08-01

    Full Text Available Pyranose dehydrogenase (PDH is a flavin-dependent sugar oxidoreductase that is limited to a rather small group of litter-degrading basidiomycetes. The enzyme is unable to utilize oxygen as an electron acceptor, using substituted benzoquinones and (organo metal ions instead. PDH displays a broad substrate specificity and intriguing variations in regioselectivity, depending on substrate, enzyme source and reaction conditions. In contrast to the related enzyme pyranose 2-oxidase (POx, PDHs from several sources are capable of oxidizing α- or β-1→4-linked di- and oligosaccharides, including lactose. PDH from A. xanthoderma is able to perform C-1 and C-2 oxidation, producing, in addition to lactobionic acid, 2-dehydrolactose, an intermediate for the production of lactulose, whereas PDH from A. campestris oxidizes lactose nearly exclusively at the C-1 position. In this work, we present the isolation of PDH-encoding genes from A. campestris (Ac and A. xanthoderma (Ax and a comparison of other so far isolated PDH-sequences. Secretory overexpression of both enzymes in Pichia pastoris was successful when using their native signal sequences with yields of 371 U·L−1 for AxPDH and 35 U·L−1 for AcPDH. The pure enzymes were characterized biochemically and tested for applications in carbohydrate conversion reactions of industrial relevance.

  7. Involvement of Dihydrolipoyl Dehydrogenase in the Phagocytosis and Killing of Paracoccidioides brasiliensis by Macrophages

    Directory of Open Access Journals (Sweden)

    Taise N. Landgraf

    2017-09-01

    Full Text Available Paracoccidioides brasiliensis and Paracoccidioides lutzii are fungi causing paracoccidioidomycosis (PCM, an autochthonous systemic mycosis found in Latin America. These microorganisms contain a multitude of molecules that may be associated with the complex interaction of the fungus with the host. Here, we identify the enzyme dihydrolipoyl dehydrogenase (DLD as an exoantigen from P. brasiliensis (Pb18_Dld by mass spectrometry. Interestingly, the DLD gene expression in yeast form showed higher expression levels than those in mycelial form and transitional phases. Pb18_Dld gene was cloned, and the recombinant protein (rPb18_Dld was expressed and purified for subsequent studies and production of antibodies. Immunogold labeling and transmission electron microscopy revealed that the Pb18_Dld is also localized in mitochondria and cytoplasm of P. brasiliensis. Moreover, when macrophages were stimulated with rPb18Dld, there was an increase in the phagocytic and microbicidal activity of these cells, as compared with non-stimulated cells. These findings suggest that Pb18_Dld can be involved in the pathogen-host interaction, opening possibilities for studies of this protein in PCM.

  8. Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp.

    Science.gov (United States)

    Sato, Tsuneo; Horiuchi, Tatsuo; Nishimura, Ikuko

    2005-11-15

    A colorimetric enzyme assay for the quantitative analysis of histamine in food has been developed using a new histamine dehydrogenase (HDH) from Rhizobium sp. The HDH specifically catalyzes the oxidation of histamine but not other biogenic amines such as putrescine and cadaverine. The principle of our photometric assay is as follows. The HDH catalyzes the oxidative deamination of histamine in the presence of 1-methoxy PMS (electron carrier), which converts WST-8 (tetrazolium salt) to a formazan. This product is measured in the visible range at 460 nm. The correlation between the histamine level and absorbance was acceptable, ranging from 0 to 96 microM with histamine standard solutions, corresponding to 0 to 30 microM of the reaction solution (r = 1.000, CV = 1.0% or less). Assays of canned tuna (in oil and soup) and raw tuna with 45-675 micromol/kg histamine added showed good recoveries of 96-113, 98-108, and 100-106%. The histamine contents of a commercial canned tuna and fish meal containing histamine at high concentrations were determined using the new method and other reference methods (HPLC method, Association of Official Analytical Chemists official method, and two commercial enzyme immunoassay test kits). This simple and rapid enzymatic method is as reliable as the conventional methods.

  9. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor.

    Science.gov (United States)

    Huijbers, Mieke M E; Martínez-Júlvez, Marta; Westphal, Adrie H; Delgado-Arciniega, Estela; Medina, Milagros; van Berkel, Willem J H

    2017-03-03

    Flavoenzymes are versatile biocatalysts containing either FAD or FMN as cofactor. FAD often binds to a Rossmann fold, while FMN prefers a TIM-barrel or flavodoxin-like fold. Proline dehydrogenase is denoted as an exception: it possesses a TIM barrel-like fold while binding FAD. Using a riboflavin auxotrophic Escherichia coli strain and maltose-binding protein as solubility tag, we produced the apoprotein of Thermus thermophilus ProDH (MBP-TtProDH). Remarkably, reconstitution with FAD or FMN revealed that MBP-TtProDH has no preference for either of the two prosthetic groups. Kinetic parameters of both holo forms are similar, as are the dissociation constants for FAD and FMN release. Furthermore, we show that the holo form of MBP-TtProDH, as produced in E. coli TOP10 cells, contains about three times more FMN than FAD. In line with this flavin content, the crystal structure of TtProDH variant ΔABC, which lacks helices αA, αB and αC, shows no electron density for an AMP moiety of the cofactor. To the best of our knowledge, this is the first example of a flavoenzyme that does not discriminate between FAD and FMN as cofactor. Therefore, classification of TtProDH as an FAD-binding enzyme should be reconsidered.

  10. Metabolic engineering of Escherichia coli cell factory for highly active xanthine dehydrogenase production.

    Science.gov (United States)

    Wang, Cheng-Hua; Zhang, Chong; Xing, Xin-Hui

    2017-12-01

    The aim of this work was to demonstrate the first proof-of-concept for the use of ab initio-aided assembly strategy intensifying in vivo biosynthesis process to construct Escherichia coli cell factory overproducing highly active xanthine dehydrogenase (XDH). Three global regulator (IscS, TusA and NarJ) and four chaperone proteins (DsbA, DsbB, NifS and XdhC) were overexpressed to aid the formation and ordered assembly of three redox center cofactors of Rhodobacter capsulatus XDH in E. coli. The NifS, IscS and DsbB enhanced the specific activity of RcXDH by 30%, 94% and 49%, respectively. The combinatorial expression of NarJ and IscS synergistically increased the specific activity by 129% and enhanced the total enzyme activity by a remarkable 3.9-fold. The crude enzyme showed nearly the same coupling efficiency of electron transfer and product formation as previously purified XDHs, indicating an integrity and efficient assembly of highly active XDH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  12. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae.

    Science.gov (United States)

    Liu, Long; Zhuge, Xin; Shin, Hyun-Dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2015-04-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  14. Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role.

    Science.gov (United States)

    Cereghino, G P; Atencio, D P; Saghbini, M; Beiner, J; Scheffler, I E

    1995-09-01

    We have demonstrated previously that glucose repression of mitochondrial biogenesis in Saccharomyces cerevisiae involves the control of the turnover of mRNAs for the iron protein (Ip) and flavoprotein (Fp) subunits of succinate dehydrogenase (SDH). Their half-lives are > 60 min in the presence of a nonfermentable carbon source (YPG medium) and YPD medium). This is a rare example in yeast in which the half-lives are > 60 min in the presence of a nonfermentable carbon source (YPG medium) and YPD medium). This is a rare example in yeast in which the half-life of an mRNA can be controlled by manipulating external conditions. In our current studies, a series of Ip transcripts with internal deletions as well as chimeric transcripts with heterologous sequences (internally or at the ends) have been examined, and we established that the 5'-untranslated region (5' UTR) of the Ip mRNA contains a major determinant controlling its differential turnover in YPG and YPD. Furthermore, the 5' exonuclease encoded by the XRN1 gene is required for the rapid degradation of the Ip and Fp mRNAs upon the addition of glucose. In the presence of cycloheximide the nucleolytic degradation of the Ip mRNA can be slowed down by stalled ribosomes to allow the identification of intermediates. Such intermediates have lost their 5' ends but still retain their 3' UTRs. If protein synthesis is inhibited at an early initiation step by the use of a prt1 mutation (affecting the initiation factor eIF3), the Ip and Fp mRNAs are very rapidly degraded even in YPG. Significantly, the arrest of translation by the introduction of a stable hairpin loop just upstream of the initiation codon does not alter the differential stability of the transcript in YPG and YPD. These observations suggest that a signaling pathway exists in which the external carbon source can control the turnover of mRNAs of specific mitochondrial proteins. Factors must be present that control either the activity or more likely the access of a

  15. Cationic surfactant-based colorimetric detection of Plasmodium lactate dehydrogenase, a biomarker for malaria, using the specific DNA aptamer.

    Directory of Open Access Journals (Sweden)

    Seonghwan Lee

    Full Text Available A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH and Plasmodium falciparum LDH (PfLDH was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB. The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM. The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum.

  16. Cationic surfactant-based colorimetric detection of Plasmodium lactate dehydrogenase, a biomarker for malaria, using the specific DNA aptamer.

    Science.gov (United States)

    Lee, Seonghwan; Manjunatha, D H; Jeon, Weejeong; Ban, Changill

    2014-01-01

    A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum LDH (PfLDH) was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs) as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB). The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum.

  17. A Cytochemical Study of the Dehydrogenases of Mitochondria and Mitochondrial Particulates by a Monotetrazolium-Cobalt Chelation Method

    Science.gov (United States)

    Pearse, A. G. E.; Scarpelli, D. G.; Hess, R.

    1960-01-01

    In one of the current histochemical methods for dehydrogenases and diaphorases the final product is a metal-formazan dye derived from reduction of an N-thiazolyl-substituted tetrazolium. Sites of enzymic activity consistently appear as intramitochondrial dots 0.2 to 0.3 µ in diameter. When applied to active particles from disrupted mitochondria (Keilin-Hartree preparation, electron transport particle, Cooper-Lehninger particle) the individual particles appear as black dots 0.1 to 0.3 µ in diameter. It is clear that formazan is deposited progressively upon the particles and the results suggest that the latter may be spatially arranged in mitochondria so that areas of activity are separated by quiescent regions. PMID:14431240

  18. Effects of atovaquone and other inhibitors on Pneumocystis carinii dihydroorotate dehydrogenase.

    Science.gov (United States)

    Ittarat, I; Asawamahasakda, W; Bartlett, M S; Smith, J W; Meshnick, S R

    1995-01-01

    Dihydroorotate dehydrogenase (DHOD) is a pyrimidine biosynthetic enzyme which is usually directly linked to the mitochondrial respiratory chain. Antimalarial naphthoquinones such as atovaquone (566c80) inhibit malarial DHOD by inhibiting electron transport. Since atovaquone also has therapeutic activity against Pneumocystis carinii, the P. carinii DHOD may also be an important drug target. Organisms were obtained from immunosuppressed rats, incubated for 24 h in a short-term in vitro culture system, and then lysed. P. carinii lysates catalyzed the generation of orotate from dihydroorotate at a rate of 852 pmol/mg of protein per min. Control preparations made from uninfected mice showed much less total enzymatic activity and enzyme specific activity. As expected, P. carinii DHOD activity was susceptible to respiratory inhibitors such as cyanide, antimycin A, and salicylhydroxamic acid (SHAM). Susceptibility to SHAM suggests the presence of an alternative oxidase. In contrast, neither pentamidine nor 5-hydroxy-6-demethylprimaquine (5H6DP), a quinone metabolite of primaquine, inhibited the enzyme. Atovaquone inhibited DHOD by 76.3% at 100 microM and 36.5% at 10 microM. A similar degree of inhibition was found when the organisms were preincubated with the drug. Atovaquone inhibited P. carinii growth in vitro at a somewhat lower concentration (between 0.3 and 3 microM). In contrast, Plasmodium falciparum growth and enzyme activity are susceptible to nanomolar concentrations of atovaquone. Thus, while it is possible that atovaquone acts by inhibiting the P. carinii electron transport chain, the possibility of another drug target cannot be excluded. PMID:7726490

  19. Toluidine blue adsorbed on alcohol dehydrogenase modified glassy carbon electrode for voltammetric determination of ethanol.

    Science.gov (United States)

    Periasamy, Arun Prakash; Umasankar, Yogeswaran; Chen, Shen-Ming

    2011-01-15

    A novel toluidine blue O (TBO) adsorbed alcohol dehydrogenase (ADH) biocomposite film have been prepared through simple adsorption technique with the help of electrostatic interaction between oppositely charged layers. Nafion (NF) coating was made on top of the biocomposite film modified glassy carbon electrode (GCE) to protect ADH from leaching. The fabricated ADH/TBO/NF biocomposite electrode remains highly stable in the pH range from 4 to 13. More facile electron transfer process occurs at ADH/TBO/NF biocomposite than at TBO/NF film, which is obvious from the six folds increase in k(s) value. Maximum surface coverage concentration (Γ) of TBO is noticed at ADH/TBO/NF film, which is 82% higher than at TBO/NF and 15% higher than at ADH/TBO film modified GCEs. Electrochemical impedance spectroscopy studies reveal that ADH has been well immobilized in the biocomposite film. Scanning electron microscopy studies confirm the discriminate surface morphology of various components present in the biocomposite film. Cyclic voltammetry studies validate that ADH/TBO/NF biocomposite film exhibits excellent electrocatalytic activity for ethanol oxidation at low over potential (I(pa)=-0.14 V). The same studies show biocomposite film possesses a good sensitivity of 7.91 μAM(-1)cm(-2) for ethanol determination. This above sensitivity value is 17.40% higher than the sensitivity obtained for TBO/NF film (6.74 μAM(-1)cm(-2)). Further, using differential pulse voltammetry, a sensitivity of 1.70 μAM(-1)cm(-2) has been achieved for ADH/TBO/NF biocomposite film. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    Science.gov (United States)

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus.

    Science.gov (United States)

    Baker, M E; Blasco, R

    1992-04-13

    Mammalian 3 beta-hydroxysteroid dehydrogenase and plant dihydroflavonol reductases are descended from a common ancestor. Here we present evidence that Nocardia cholesterol dehydrogenase, E. coli UDP-galactose-4 epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus are homologous to 3 beta-hydroxysteroid dehydrogenase and dihydroflavonol reductase. Analysis of a multiple alignment of these sequences indicates that viral ORFs are most closely related to the mammalian 3 beta-hydroxysteroid dehydrogenases. The ancestral protein of this superfamily is likely to be one that metabolized sugar nucleotides. The sequence similarity between 3 beta-hydroxysteroid dehydrogenase and the viral ORFs is sufficient to suggest that these ORFs have an activity that is similar to 3 beta-hydroxysteroid dehydrogenase or cholesterol dehydrogenase, although the putative substrates are not yet known.

  2. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  3. Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase.

    Science.gov (United States)

    Dong, Chao; Yang, Jing; Reschke, Stefan; Leimkühler, Silke; Kirk, Martin L

    2017-06-19

    The pyranopterin dithiolene (PDT) ligand is an integral component of the molybdenum cofactor (Moco) found in all molybdoenzymes with the sole exception of nitrogenase. However, the roles of the PDT in catalysis are still unknown. The PDT is believed to be bound to the proteins by an extensive hydrogen-bonding network, and it has been suggested that these interactions may function to fine-tune Moco for electron- and atom-transfer reactivity in catalysis. Here, we use resonance Raman (rR) spectroscopy to probe Moco-protein interactions using heavy-atom congeners of lumazine, molecules that bind tightly to both wild-type xanthine dehydrogenase (wt-XDH) and its Q102G and Q197A variants following enzymatic hydroxylation to the corresponding violapterin product molecules. The resulting enzyme-product complexes possess intense near-IR absorption, allowing high-quality rR spectra to be collected on wt-XDH and the Q102G and Q197A variants. Small negative frequency shifts relative to wt-XDH are observed for the low-frequency Moco vibrations. These results are interpreted in the context of weak hydrogen-bonding and/or electrostatic interactions between Q102 and the -NH 2 terminus of the PDT, and between Q197 and the terminal oxo of the Mo≡O group. The Q102A, Q102G, Q197A, and Q197E variants do not appreciably affect the kinetic parameters k red and k red /K D , indicating that a primary role for these glutamine residues is to stabilize and coordinate Moco in the active site of XO family enzymes but to not directly affect the catalytic throughput. Raman frequency shifts between wt-XDH and its Q102G variant suggest that the changes in the electron density at the Mo ion that accompany Mo oxidation during electron-transfer regeneration of the catalytically competent active site are manifest in distortions at the distant PDT amino terminus. This implies a primary role for the PDT as a conduit for facilitating enzymatic electron-transfer reactivity in xanthine oxidase family

  4. Dihydroorotate dehydrogenase depletion hampers mitochondrial function and osteogenic differentiation in osteoblasts

    NARCIS (Netherlands)

    Fang, J.; Yamaza, H.; Uchiumi, T.; Hoshino, Y.; Masuda, K.; Hirofuji, Y.; Wagener, F.A.D.T.G.; Kang, D.; Nonaka, K.

    2016-01-01

    Mutation of the dihydroorotate dehydrogenase (DHODH) gene is responsible for Miller syndrome, which is characterized by craniofacial malformations with limb abnormalities. We previously demonstrated that DHODH was involved in forming a mitochondrial supercomplex and that mutated DHODH led to protein

  5. Immobilisation and characterisation of glucose dehydrogenase immobilised on ReSyn: a proprietary polyethylenimine support matrix

    CSIR Research Space (South Africa)

    Twala, BV

    2010-01-01

    Full Text Available Immobilisation of enzymes is of considerable interest due to the advantages over soluble enzymes, including improved stability and recovery. Glucose Dehydrogenase (GDH) is an important biocatalytic enzyme due to is ability to recycle the biological...

  6. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Acylcarnitine (PDF) Formal Treatment/Management Guidelines (2 links) British Inherited Metabolic Disease Group: MCADD Dietary Management Guidelines ( ... Orphanet: Medium chain acyl-CoA dehydrogenase deficiency Screening, Technology, and Research in Genetics Virginia Department of Health ( ...

  7. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  8. Novel control of lactate dehydrogenase from the freeze tolerant wood frog: role of posttranslational modifications

    National Research Council Canada - National Science Library

    Abboud, Jean; Storey, Kenneth B

    2013-01-01

    Lactate dehydrogenase (LDH), the terminal enzyme of anaerobic glycolysis, plays a crucial role both in sustaining glycolytic ATP production under oxygen-limiting conditions and in facilitating the catabolism of accumulated...

  9. Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence

    National Research Council Canada - National Science Library

    Kwok, Man Ki; Leung, Gabriel M; Schooling, C. Mary

    2016-01-01

      Background To examine the association of glucose-6-phosphate dehydrogenase (G6PD) deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported...

  10. Succinate dehydrogenase (SDH)-deficient pancreatic neuroendocrine tumor expands the SDH-related tumor spectrum

    NARCIS (Netherlands)

    Niemeijer, Nicolasine D.; Papathomas, Thomas G.; Korpershoek, Esther; De Krijger, Ronald R.; Oudijk, Lindsey; Morreau, Hans; Bayley, Jean Pierre; Hes, Frederik J.; Jansen, Jeroen C.; Dinjens, Winand N M; Corssmit, Eleonora P M

    2015-01-01

    Context: Mutations in genes encoding the subunits of succinate dehydrogenase (SDH) can lead to pheochromocytoma/paraganglioma formation. However, SDH mutations have also been linked to nonparaganglionic tumors. Objective: The objective was to investigate which nonparaganglionic tumors belong to the

  11. Ozone: a possible cause of hemolytic anemia in glucose-6-phosphate dehydrogenase deficient individuals

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (School of Health Sciences, Amherst, MA); Kojola, W.H.; Carnow, B.W.

    1977-01-01

    A theoretical model is described that predicts that individuals with a glucose-6-phosphate dehydrogenase deficiency may experience acute hemolysis on exposure to ozone at levels reached in certain urban centers.

  12. Stereoselective biotransformation of racemic mandelic acid using immobilized laccase and (S)-mandelate dehydrogenase

    National Research Council Canada - National Science Library

    Chen, Xing; Yang, Chengli; Wang, Peng; Zhang, Xuan; Bao, Bingxin; Li, Dali; Shi, Ruofu

    2017-01-01

    (S)-Mandelate dehydrogenase (SMDH) and laccase were immobilized on chitosan. The bi-enzymatic system with immobilized SMDH and immobilized laccase was taken to catalyze the stereoselective transformation of racemic mandelic acid and (R...

  13. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Directory of Open Access Journals (Sweden)

    Alparslan Merdin

    2014-03-01

    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  14. Dihydropyrimidine Dehydrogenase Deficiency Caused by a Novel Genomic Deletion c.505_513del of DPYD

    NARCIS (Netherlands)

    van Kuilenburg, A. B. P.; Meijer, J.; Gokcay, G.; Baykal, T.; Rubio-Gozalbo, M. E.; Mul, A. N. P. M.; de Die-Smulders, C. E. M.; Weber, P.; Mori, A. Capone; Bierau, J.; Fowler, B.; Macke, K.; Sass, J. O.; Meinsma, R.; Hennermann, J. B.; Miny, P.; Zoetekouw, L.; Roelofsen, J.; Vijzelaar, R.; Nicolai, J.; Hennekam, R. C. M.

    2010-01-01

    Dihydropyrimidine dehydrogenase (DPD) deficiency is an autosomal recessive disorder of the pyrimidine degradation pathway. In a patient presenting with convulsions, psychomotor retardation and Reye like syndrome, strongly elevated levels of uracil and thymine were detected in urine. No DPD activity

  15. Kernicterus by glucose-6-phosphate dehydrogenase deficiency: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Cossio de Gurrola Gladys

    2008-05-01

    Full Text Available Abstract Introduction Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. This deficiency is the most common human innate error of metabolism, affecting more than 400 million people worldwide. Case presentation Here, we present the first documented case of kernicterus in Panama, in a glucose-6-phosphate dehydrogenase-deficient newborn clothed in naphthalene-impregnated garments, resulting in reduced psychomotor development, neurosensory hypoacousia, absence of speech and poor reflex of the pupil to light. Conclusion Mutational analysis revealed the glucose-6-phosphate dehydrogenase Mediterranean polymorphic variant, which explained the development of kernicterus after exposition of naphthalene. As the use of naphthalene in stored clothes is a common practice, glucose-6-phosphate dehydrogenase testing in neonatal screening could prevent severe clinical consequences.

  16. Genetics Home Reference: 17β-hydroxysteroid dehydrogenase type 10 deficiency

    Science.gov (United States)

    ... Multiple functions of type 10 17beta-hydroxysteroid dehydrogenase. Trends Endocrinol Metab. 2005 May-Jun;16(4):167-75. ... What are genome editing and CRISPR-Cas9? What is direct-to-consumer genetic testing? ...

  17. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis

    Science.gov (United States)

    Ingram, Lonnie O.; Conway, Tyrrell

    1992-01-01

    The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

  18. Cloning, protein sequence clarification, and substrate specificity of a leucine dehydrogenase from Bacillus sphaericus ATCC4525.

    Science.gov (United States)

    Li, Hongmei; Zhu, Dunming; Hyatt, Brooke A; Malik, Fahad M; Biehl, Edward R; Hua, Ling

    2009-08-01

    Although an X-ray model sequence of a leucine dehydrogenase from Bacillus sphaericus ATCC4525 was reported, the amino acid sequence of this enzyme has not been confirmed. In the current study, this leucine dehydrogenase gene was cloned, sequenced, and over-expressed in Escherichia coli, and the protein sequence has been clarified. This leucine dehydrogenase is not identical with that of B. sphaericus IFO3525 because there are 16 different amino acid residues between these two proteins. Since the information on the catalytic properties of leucine dehydrogenase from B. sphaericus ATCC4525 has been limited, the recombinant enzyme was purified as His-tagged protein and further studied. This enzyme showed activity toward aliphatic substrates for both oxidative deamination and reductive amination and is an effective catalyst for the asymmetric synthesis of alpha-amino acids from the corresponding alpha-ketoacids.

  19. Multiple soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva Maria Regina de

    1998-01-01

    Full Text Available A recent locus duplication hypothesis for sMDH-B* was proposed to explain the complex electrophoretic pattern of six bands detected for the soluble form of malate dehydrogenase (MDH, EC 1.1.1.37 in 84% of the Geophagus brasiliensis (Cichlidae, Perciformes analyzed (AB1B2 individuals. Klebe's serial dilutions were carried out in skeletal muscle extracts. B1 and B2 subunits had the same visual end-points, reflecting a nondivergent pattern for these B-duplicated genes. Since there is no evidence of polyploidy in the Cichlidae family, MDH-B* loci must have evolved from regional gene duplication. Tissue specificities, thermostability and kinetic tests resulted in similar responses from both B-isoforms, in both sMDH phenotypes, suggesting that these more recently duplicated loci underwent the same regulatory gene action. Similar results obtained with the two sMDH phenotypes did not show any indication of a six-banded specimen adaptive advantage in subtropical regions.

  20. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase

    Science.gov (United States)

    Ilic, Nina; Birsoy, Kıvanç; Aguirre, Andrew J.; Kory, Nora; Pacold, Michael E.; Singh, Shambhavi; Moody, Susan E.; DeAngelo, Joseph D.; Spardy, Nicole A.; Freinkman, Elizaveta; Weir, Barbara A.; Cowley, Glenn S.; Root, David E.; Asara, John M.; Vazquez, Francisca; Widlund, Hans R.; Sabatini, David M.; Hahn, William C.

    2017-01-01

    Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustain PIK3CA mutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy within PIK3CA mutant cells. Reduced levels of aspartate deregulated the malate–aspartate shuttle, which is important for cytoplasmic NAD+ regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, because PIK3CA mutant cells exhibit a profound reliance on glucose metabolism, malate–aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene. PMID:28396387

  1. Metabolic engineering of lactate dehydrogenase rescues mice from acidosis.

    Science.gov (United States)

    Acharya, Abhinav P; Rafi, Mohammad; Woods, Elliot C; Gardner, Austin B; Murthy, Niren

    2014-06-05

    Acidosis causes millions of deaths each year and strategies for normalizing the blood pH in acidosis patients are greatly needed. The lactate dehydrogenase (LDH) pathway has great potential for treating acidosis due to its ability to convert protons and pyruvate into lactate and thereby raise blood pH, but has been challenging to develop into a therapy because there are no pharmaceutical-based approaches for engineering metabolic pathways in vivo. In this report we demonstrate that the metabolic flux of the LDH pathway can be engineered with the compound 5-amino-2-hydroxymethylphenyl boronic acid (ABA), which binds lactate and accelerates the consumption of protons by converting pyruvate to lactate and increasing the NAD(+)/NADH ratio. We demonstrate here that ABA can rescue mice from metformin induced acidosis, by binding lactate, and increasing the blood pH from 6.7 to 7.2 and the blood NAD(+)/NADH ratio by 5 fold. ABA is the first class of molecule that can metabolically engineer the LDH pathway and has the potential to have a significant impact on medicine, given the large number of patients that suffer from acidosis.

  2. Anti-peptide antibodies differentiate between plasmodial lactate dehydrogenases.

    Science.gov (United States)

    Hurdayal, Ramona; Achilonu, Ikechukwu; Choveaux, David; Coetzer, Theresa H T; Dean Goldring, J P

    2010-04-01

    Malaria lactate dehydrogenase, a glycolytic enzyme, is a malaria diagnostic target in lateral flow immunochromatographic rapid diagnostic tests. Recombinant Plasmodium yoelii LDH was cloned into the pET-28a vector, expressed and the expressed protein purified from a Ni-NTA affinity matrix. A pan-malarial LDH antibody directed against a common malaria LDH peptide (APGKSDKEWNRDDLL) and two anti-peptide antibodies, each targeting a unique Plasmodium falciparum (LISDAELEAIFDC) and Plasmodium vivax (KITDEEVEGIFDC) LDH peptide were raised in chickens. The antibodies were affinity purified with the appropriate peptide affinity matrix. The affinity purified anti-peptide antibodies detected recombinant P. falciparum, P. vivax and P. yoelii LDH and native P. falciparum and P. yoelii LDH in western blots and immunofluorescence studies. The pan-malarial antibody detected LDH from the three malaria species in western blots. The species-specific anti-peptide antibodies differentiated between P. falciparum and P. vivax LDH. Affinity purified chicken antibodies against recombinant PfLDH, PvLDH and PyLDH proteins each detected the parent and orthologous proteins with similar titers in an ELISA. The study supports an anti-peptide antibody approach to the development of diagnostic reagents. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Alternative Splicing Regulates Targeting of Malate Dehydrogenase in Yarrowia lipolytica

    Science.gov (United States)

    Kabran, Philomène; Rossignol, Tristan; Gaillardin, Claude; Nicaud, Jean-Marc; Neuvéglise, Cécile

    2012-01-01

    Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3′-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment. PMID:22368181

  4. Elevation of serum lactate dehydrogenase in patients with pectus excavatum.

    Science.gov (United States)

    Kim, Jae Jun; Kim, Chi Kyeong; Park, Hyung Joo; Park, Jae Kil; Moon, Seok Whan; Moon, Young Kyu; Kim, Hyun Jung

    2014-04-29

    Pectus excavatum is the most common congenital chest wall deformity and the depression of the anterior chest wall, which compresses the internal organs. The aim of the present study is to investigate the effects of pectus excavatum on blood laboratory findings. From March 2011 to December 2011, 71 patients with pectus excavatum who visited Seoul Saint Mary Hospital for Nuss procedure were reviewed and analyzed. The blood samples were routinely taken at the day before surgery and pectus bar removal was usually performed in 2 to 3 years after Nuss procedure. To investigate the effects on blood laboratory findings, preoperative routine blood laboratory data and postoperative changes of abnormal laboratory data were analyzed. Only lactate dehydrogenase (LDH), one of 26 separate routine laboratory tests, was abnormal and significantly elevated than normal value (age pectus excavatum. The symmetric subgroup had significantly higher LDH level than the asymmetric subgroup (p pectus excavatum and the compression of the internal organs. Further studies on LDH including isoenzyme studies in patients with pectus excavatum will be needed, and these studies will provide a deeper and wider comprehension of pectus excavatum.

  5. Structure and Function of Lactate Dehydrogenase from Hagfish

    Directory of Open Access Journals (Sweden)

    Mitsumasa Okada

    2010-03-01

    Full Text Available The lactate dehydrogenases (LDHs in hagfish have been estimated to be the prototype of those in higher vertebrates. The effects of high hydrostatic pressure from 0.1 to 100 MPa on LDH activities from three hagfishes were examined. The LDH activities of Eptatretus burgeri, living at 45–60 m, were completely lost at 5 MPa. In contrast, LDH-A and -B in Eptatretus okinoseanus maintained 70% of their activities even at 100 MPa. These results show that the deeper the habitat, the higher the tolerance to pressure. To elucidate the molecular mechanisms for adaptation to high pressure, we compared the amino acid sequences and three-dimensional structures of LDHs in these hagfish. There were differences in six amino acids (6, 10, 20, 156, 269, and 341. These amino acidresidues are likely to contribute to the stability of the E. okinoseanus LDH under high-pressure conditions. The amino acids responsible for the pressure tolerance of hagfish are the same in both human and hagfish LDHs, and one substitution that occurred as an adaptation during evolution is coincident with that observed in a human disease. Mutation of these amino acids can cause anomalies that may be implicated in the development of human diseases.

  6. Binding of titanium dioxide nanoparticles to lactate dehydrogenase.

    Science.gov (United States)

    Zaqout, Mazen S K; Sumizawa, Tomoyuki; Igisu, Hideki; Wilson, Donald; Myojo, Toshihiko; Ueno, Susumu

    2012-07-01

    Measurement of released lactate dehydrogenase (LDH) activity, a commonly used marker of lethal cell injury in both in vitro and in vivo screenings, has been used to assess the cytotoxicity of nanoparticles (NPs), chemical compounds, and environmental factors. We have recently demonstrated that titanium dioxide (TiO₂) particles bind to several serum proteins. In the present study we investigated the binding of TiO₂ NPs to LDH. Purified LDH was incubated with TiO₂ NPs at 37°C for 1 h. The particles were then sedimented by centrifugation, and the activity and quantity of LDH in the supernatant and precipitated fraction were analyzed. Incubation with TiO₂ reduced the LDH activity in the supernatant in a dose-dependent manner, while LDH activity in the precipitated fraction increased in a dose-dependent manner. Moreover, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed a TiO₂ dose-dependent reduction in the quantity of LDH protein in the supernatant and an increase of LDH in particulate re-suspensions. These findings, although based on a purified form of LDH, suggest that TiO₂ NPs bind to LDH, and consequently, TiO₂ NP-induced toxicity could be underestimated by the LDH activity assay.

  7. [Succinate dehydrogenase (SDH)-deficient renal cell carcinoma].

    Science.gov (United States)

    Agaimy, A

    2016-03-01

    Succinate dehydrogenase (SDH) represents a type II mitochondrial complex related to the respiratory chain and Krebs cycle. The complex is composed of four major subunits, SDHA, SDHB, SDHC and SDHD. The oncogenic role of this enzyme complex has only recently been recognized and the complex is currently considered an important oncogenic signaling pathway with tumor suppressor properties. In addition to the familial paraganglioma syndromes (types 1-5) as prototypical SDH-related diseases, many other tumors have been defined as SDH-deficient, in particular a subset of gastrointestinal stromal tumors (GIST), rare hypophyseal adenomas, a subset of pancreatic neuroendocrine neoplasms (recently added) and a variety of other tumor entities, the latter mainly described as rare case reports. As a central core subunit responsible for the integrity of the SDH complex, the expression of SDHB is lost in all SDH-deficient neoplasms irrespective of the specific SDH subunit affected by a genetic mutation in addition to concurrent loss of the subunit specifically affected by genetic alteration. Accordingly, all SDH-deficient neoplasms are by definition SDHB-deficient. The SDH-deficient renal cell carcinoma (RCC) has only recently been well-characterized and it is included as a specific subtype of RCC in the new World Health Organization (WHO) classification published in 2016. In this review, the major clinicopathological, immunohistochemical and genetic features of this rare disease entity are presented and discussed in the context of the broad differential diagnosis.

  8. Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors

    Directory of Open Access Journals (Sweden)

    Martin G. Belinsky

    2013-05-01

    Full Text Available Gastrointestinal stromal tumors (GISTs in adults are generally driven by somatic gain-of-function mutations in KIT or PDGFRA, and biological therapies targeted to these receptor tyrosine kinases comprise part of the treatment regimen for metastatic and inoperable GISTs. A minority (10-15% of GISTs in adults, along with ~ 85% of pediatric GISTs, lacks oncogenic mutations in KIT and PDGFRA. Not surprisingly these wild type (WT GISTs respond poorly to kinase inhibitor therapy. A subset of WT GISTs shares a set of distinguishing clinical and pathological features, and a flurry of recent reports has convincingly demonstrated shared molecular characteristics. These GISTs have a distinct transcriptional profile including over-expression of the insulin-like growth factor-1 receptor (IGF1R, and exhibit deficiency in the succinate dehydrogenase (SDH enzyme complex. The latter is often but not always linked to bi-allelic inactivation of SDH subunit genes, particularly SDHA. This review will summarize the molecular, pathological and clinical connections that link this group of SDH-deficient neoplasms, and offer a view towards understanding the underlying biology of the disease and the therapeutic challenges implicit to this biology.

  9. Structure of Plasmodium falciparum dihydroorotate dehydrogenase with a bound inhibitor.

    Science.gov (United States)

    Hurt, Darrell E; Widom, Joanne; Clardy, Jon

    2006-03-01

    Membrane-associated dihydroorotate dehydrogenase (DHODH) is an antimalarial therapeutic target without an effective inhibitor. Studies on human DHODH (HsDHODH) led to a structural mechanistic model in which respiratory quinones bind in a tunnel formed by the highly variable N-terminus that leads to the flavin mononucleotide-binding site. The therapeutic agents leflunomide (Arava) and brequinar sodium inhibit HsDHODH by binding in this tunnel. Plasmodium falciparum DHODH (PfDHODH) and HsDHODH have markedly different sensitivities to the two drugs. To understand the structural basis of this differential sensitivity and begin a structure-based drug-design cycle for PfDHODH inhibitors, the three-dimensional structure (2.4 Angstroms, R = 20.1%) of PfDHODH bound to the active metabolite of leflunomide was determined by X-ray crystallography. Comparison of the structures of HsDHODH and PfDHODH reveals a completely different binding mode for the same inhibitor in these two catalytically identical enzymes and explains the previously observed species-specific preferential binding. Because no effective inhibitors have been described for PfDHODH, this structure provides critical insight for the design of potential antimalarials.

  10. Crystal structure of dihydroorotate dehydrogenase from Leishmania major.

    Science.gov (United States)

    Cordeiro, Artur T; Feliciano, Patricia R; Pinheiro, Matheus P; Nonato, M Cristina

    2012-08-01

    Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    Science.gov (United States)

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  12. Glucose-6-phosphate dehydrogenase deficiency: a hidden risk for kernicterus.

    Science.gov (United States)

    Kaplan, Michael; Hammerman, Cathy

    2004-10-01

    Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency, a commonly occurring enzymatic defect, is an important risk factor in the pathogenesis of severe neonatal hyperbilirubinemia. Many of the recently reported cases of kernicterus, even in countries with a low overall incidence of the G-6-PD deficiency such as the United States and Canada, have been found to be enzyme deficient. In many cases the hyperbilirubinemia may be due to acute hemolysis precipitated by exposure to an identifiable chemical trigger, or to infection. In other cases the hemolysis may be mild, the hyperbilirubinemia being due to diminished bilirubin conjugation. An interaction between G-6-PD deficiency and promoter polymorphism for the gene encoding the bilirubin conjugating enzyme, UDP-glucuronosyltranferase 1A1, associated with Gilbert syndrome, has been implicated in the pathogenesis of hyperbilirubinemia. Neonates whose families originated in areas at high risk for G-6-PD deficiency should be vigilantly observed for jaundice. Phototherapy is the mainstay of treatment, with exchange transfusion being performed in those unresponsive to phototherapy. A high degree of physician awareness is essential in the identification and follow-up of these high-risk neonates.

  13. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  14. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  15. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function

    Directory of Open Access Journals (Sweden)

    Bhubanananda Sahu

    2016-11-01

    Full Text Available The visual system produces visual chromophore, 11-cis-retinal from dietary vitamin A, all-trans-retinol making this vitamin essential for retinal health and function. These metabolic events are mediated by a sequential biochemical process called the visual cycle. Retinol dehydrogenases (RDHs are responsible for two reactions in the visual cycle performed in retinal pigmented epithelial (RPE cells, photoreceptor cells and Müller cells in the retina. RDHs in the RPE function as 11-cis-RDHs, which oxidize 11-cis-retinol to 11-cis-retinal in vivo. RDHs in rod photoreceptor cells in the retina work as all-trans-RDHs, which reduce all-trans-retinal to all-trans-retinol. Dysfunction of RDHs can cause inherited retinal diseases in humans. To facilitate further understanding of human diseases, mouse models of RDHs-related diseases have been carefully examined and have revealed the physiological contribution of specific RDHs to visual cycle function and overall retinal health. Herein we describe the function of RDHs in the RPE and the retina, particularly in rod photoreceptor cells, their regulatory properties for retinoid homeostasis and future therapeutic strategy for treatment of retinal diseases.

  16. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Science.gov (United States)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  17. Interaction between lactate dehydrogenase and Tween 80 in aqueous solution.

    Science.gov (United States)

    Hillgren, Anna; Evertsson, Hans; Aldén, Maggie

    2002-04-01

    The weak aqueous interaction between the protein lactate dehydrogenase (LDH) and the nonionic surfactant Tween 80 has been investigated, because weak protein-amphiphile interactions are of significant importance in pharmaceutical formulations, but are experimentally hard to determine. The system LDH/sodium dodecyl sulphate (SDS) was used as reference because SDS, by its strong protein binding, denatures LDH completely. Fluorescence spectroscopy with pyrene and 1,3-bis(lphenyl)propane (P3P) as probes, intrinsic protein fluorescence and NMR spectroscopy have been used. The fluorescence probe pyrene monitors a weak Tween-LDH interaction, detectable below the critical micelle concentration of ordinary Tween micelles. The microviscosity probe P3P shows a surfactant-induced denaturation in the case of LDH/SDS but not in the case of LDH/Tween 80. Intrinsic LDH fluorescence verifies this behavior. Pulsed-gradient spin-echo NMR was also used to verify the weak LDH-Tween 80 interaction. CONCLUSIONS. A weak interaction between LDH and Tween 80 occurs at hydrophobic zones of the protein, but it is not strong enough to denature LDH. The experimental outline used here provides a useful approach for mapping the very weak protein-amphiphile interactions often present in pharmaceutical formulations.

  18. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    Energy Technology Data Exchange (ETDEWEB)

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  19. Lactate Dehydrogenase in Hepatocellular Carcinoma: Something Old, Something New

    Directory of Open Access Journals (Sweden)

    Luca Faloppi

    2016-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the most common primary liver tumour (80–90% and represents more than 5.7% of all cancers. Although in recent years the therapeutic options for these patients have increased, clinical results are yet unsatisfactory and the prognosis remains dismal. Clinical or molecular criteria allowing a more accurate selection of patients are in fact largely lacking. Lactic dehydrogenase (LDH is a glycolytic key enzyme in the conversion of pyruvate to lactate under anaerobic conditions. In preclinical models, upregulation of LDH has been suggested to ensure both an efficient anaerobic/glycolytic metabolism and a reduced dependence on oxygen under hypoxic conditions in tumour cells. Data from several analyses on different tumour types seem to suggest that LDH levels may be a significant prognostic factor. The role of LDH in HCC has been investigated by different authors in heterogeneous populations of patients. It has been tested as a potential biomarker in retrospective, small, and nonfocused studies in patients undergoing surgery, transarterial chemoembolization (TACE, and systemic therapy. In the major part of these studies, high LDH serum levels seem to predict a poorer outcome. We have reviewed literature in this setting trying to resume basis for future studies validating the role of LDH in this disease.

  20. Xanthine dehydrogenase (XDH): episodic evolution of a "neutral" protein.

    Science.gov (United States)

    Rodríguez-Trelles, F; Tarrío, R; Ayala, F J

    2001-01-01

    We investigated the evolution of xanthine dehydrogenase (Xdh) in 34 species from the three multicellular kingdoms, including one plant, two fungi, and three animal phyla, two classes of vertebrates, four orders of mammals, and two orders of insects. We adopted a model-based maximum-likelihood framework of inference. After accounting for among-site rate variation and heterogeneous nucleotide composition of the sequences using the discrete gamma distribution, and using nonhomogeneous nonstationary representations of the substitution process, the rate of amino acid replacement is 30.4 x 10(-10)/site/year when Drosophila species are compared but only approximately 18 x 10(-10)/site/year when comparisons are made between mammal orders, between insect orders, or between different animal phyla and approximately 11 x 10(-10)/site/year when comparisons are made between birds and mammals, between fungi, or between the three multicellular kingdoms. To account for these observations, the rate of amino acid replacement must have been eight or more times higher in some lineages and at some times than in others. Spastic evolution of Xdh appears to be related to the particularities of the genomes in which the locus is embedded.

  1. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  2. Inhibiting Sperm Pyruvate Dehydrogenase Complex and Its E3 Subunit, Dihydrolipoamide Dehydrogenase Affects Fertilization in Syrian Hamsters

    Science.gov (United States)

    Sailasree, Purnima; Singh, Durgesh K.; Kameshwari, Duvurri B.; Shivaji, Sisinthy

    2014-01-01

    Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the

  3. Population screening for glucose-6-phosphate dehydrogenase deficiency on the Baleares.

    Science.gov (United States)

    Miguel, A; Ramon, M; Petitpierre, E; Goos, C M; Vermeesch-Markslag, A M; Vermorken, A J

    1983-01-01

    Two thousand people on the Isles of the Baleares were screened for glucose-6-phosphate dehydrogenase deficiency using a commercially available kit. Among the thousand males tested, five were found deficient; of the thousand women, one had low enzyme activity according to this test. Diagnosis of glucose-6-phosphate dehydrogenase deficiency could be verified using hair follicle analysis on mailed hair samples. The same technique also allowed heterozygotes to be identified unequivocally.

  4. Isozyme pattern of lactate and malate dehydrogenases of Gastrothylax crumenifer (Trematoda: Amphistomatidae) from different hosts.

    Science.gov (United States)

    Dhandayuthapani, S; Balasubramanian, M P; Nellaiappan, K; Ramalingam, K

    1983-02-01

    Isozyme pattern of lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) of Gastrothylax crumenifer from sheep, goat and buffalo was studied using polyacrylamide gel electrophoresis. LDH of G. crumenifer from buffalo, goat and sheep consists of four fractions, three fractions and two fractions, respectively. The parasite from buffalo shows two fractions of MDH, whereas those from goats or sheep show only a single fraction. The significance of these results is discussed.

  5. The Rosy Locus in Drosophila Melanogaster: Xanthine Dehydrogenase and Eye Pigments

    OpenAIRE

    Reaume, A. G.; Knecht, D. A.; Chovnick, A.

    1991-01-01

    The rosy gene in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Mutants that have no enzyme activity are characterized by a brownish eye color phenotype reflecting a deficiency in the red eye pigment. Xanthine dehydrogenase is not synthesized in the eye, but rather is transported there. The present report describes the ultrastructural localization of XDH in the Drosophila eye. Three lines of evidence are presented demonstrating that XDH is sequestered within specif...

  6. Aldehyde dehydrogenase, Ald4p, is a major component of mitochondrial fluorescent inclusion bodies in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yoshiko Misonou

    2014-04-01

    Full Text Available When Saccharomyces cerevisiae strain 3626 was cultured to the stationary phase in a medium that contained glucose, needle-like structures that emitted autofluorescence were observed in almost all cells by fluorescence microscopy under UV excitation. The needle-like structures completely overlapped with the profile of straight elongated mitochondria. Therefore, these structures were designated as mitochondrial fluorescent inclusion bodies (MFIBs. The MFIB-enriched mitochondrial fractions were successfully isolated and 2D-gel electrophoresis revealed that a protein of 54 kDa was only highly concentrated in the fractions. Determination of the N-terminal amino acid sequence of the 54-kDa protein identified it as a mitochondrial aldehyde dehydrogenase, Ald4p. Immunofluorescence microscopy showed that anti-Ald4p antibody specifically stained MFIBs. Freeze-substitution electron microscopy demonstrated that cells that retained MFIBs had electron-dense filamentous structures with a diameter of 10 nm in straight elongated mitochondria. Immunoelectron microscopy showed that Ald4p was localized to the electron-dense filamentous structures in mitochondria. These results together showed that a major component of MFIBs is Ald4p. In addition, we demonstrate that MFIBs are common features that appear in mitochondria of many species of yeast.

  7. Aldehyde dehydrogenase, Ald4p, is a major component of mitochondrial fluorescent inclusion bodies in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Misonou, Yoshiko; Kikuchi, Maiko; Sato, Hiroshi; Inai, Tomomi; Kuroiwa, Tsuneyoshi; Tanaka, Kenji; Miyakawa, Isamu

    2014-04-25

    When Saccharomyces cerevisiae strain 3626 was cultured to the stationary phase in a medium that contained glucose, needle-like structures that emitted autofluorescence were observed in almost all cells by fluorescence microscopy under UV excitation. The needle-like structures completely overlapped with the profile of straight elongated mitochondria. Therefore, these structures were designated as mitochondrial fluorescent inclusion bodies (MFIBs). The MFIB-enriched mitochondrial fractions were successfully isolated and 2D-gel electrophoresis revealed that a protein of 54 kDa was only highly concentrated in the fractions. Determination of the N-terminal amino acid sequence of the 54-kDa protein identified it as a mitochondrial aldehyde dehydrogenase, Ald4p. Immunofluorescence microscopy showed that anti-Ald4p antibody specifically stained MFIBs. Freeze-substitution electron microscopy demonstrated that cells that retained MFIBs had electron-dense filamentous structures with a diameter of 10 nm in straight elongated mitochondria. Immunoelectron microscopy showed that Ald4p was localized to the electron-dense filamentous structures in mitochondria. These results together showed that a major component of MFIBs is Ald4p. In addition, we demonstrate that MFIBs are common features that appear in mitochondria of many species of yeast. © 2014. Published by The Company of Biologists Ltd.

  8. Methylenetetrahydrofolate dehydrogenase-cyclohydrolase from Photobacterium phosphoreum shares properties with a mammalian mitochondrial homologue.

    Science.gov (United States)

    Pawelek, P D; MacKenzie, R E

    1996-08-15

    The marine bioluminescent bacterium Photobacterium phosphoreum expresses a bifunctional methylenetetrahydrofolate dehydrogenase-cyclohydrolase with dual cofactor specificity. An investigation of the kinetic parameters of the P. phosphoreum enzyme indicate that its utilization of dinucleotide cofactors shares similarities with the human mitochondrial dehydrogenase-cyclohydrolase. Both enzymes exhibit dual cofactor specificity and the NAD(+)-dependent dehydrogenase activities from both enzymes can be activated by inorganic phosphate. Furthermore, an analysis of multiply aligned dehydrogenase-cyclohydrolase sequences from 11 species revealed that bacterial and mitochondrial enzymes are more closely related to each other than to the dehydrogenase-cyclohydrolase domains from eukaryotic trifunctional enzymes, and that the bacterial and mitochondrial enzymes share a common point of divergence. Since the NADP+ cofactor is kinetically favoured by a factor of 18 over NAD+, and is therefore likely to be the preferred in vivo cofactor, we propose that the P. phosphoreum enzyme and the human mitochondrial enzyme evolved from a common ancestral dehydrogenase-cyclohydrolase with dual cofactor specificity, but that cofactor preference in these two enzymes diverged in response to different metabolic requirements.

  9. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    Science.gov (United States)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  10. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  11. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test

    Directory of Open Access Journals (Sweden)

    Sharma Pushpa

    2009-01-01

    Full Text Available Objectives: The present study was designed to investigate the role of a mitochondrial enzyme pyruvate dehydrogenase (PDH on the severity of brain injury, and the effects of pyruvate treatment in rats with traumatic brain injury (TBI. Materials and Methods: We examined rats subjected to closed head injury using a fluid percussion device, and treated with sodium pyruvate (antioxidant and substrate for PDH enzyme. At 72 h post injury, blood was analyzed for blood gases, acid-base status, total PDH enzyme using a dipstick test and malondialdehyde (MDA levels as a marker of oxidative stress. Brain homogenates from right hippocampus (injured area were analyzed for PDH content, and immunostained hippocampus sections were used to determine the severity of gliosis and PDH E1-∞ subunit. Results: Our data demonstrate that TBI causes a significant reduction in PDH enzyme, disrupt-acid-base balance and increase oxidative stress in blood. Also, lower PDH enzyme in blood is related to the increased gliosis and loss of its PDH E1-∞ subunit PDH in brain tissue, and these effects of TBI were prevented by pyruvate treatment. Conclusion: Lower PDH enzyme levels in blood are related to the global oxidative stress, increased gliosis in brain, and severity of brain injury following TBI. These effects can be prevented by pyruvate through the protection of PDH enzyme and its subunit E-1.

  12. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii.

    Science.gov (United States)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel.

  13. Effect of cell permeability and dehydrogenase expression on octane activation by CYP153A6-based whole cell Escherichia coli catalysts.

    Science.gov (United States)

    White, Bronwyn E; Fenner, Caryn J; Smit, Martha S; Harrison, Susan T L

    2017-09-20

    The regeneration of cofactors and the supply of alkane substrate are key considerations for the biocatalytic activation of hydrocarbons by cytochrome P450s. This study focused on the biotransformation of n-octane to 1-octanol using resting Escherichia coli cells expressing the CYP153A6 operon, which includes the electron transport proteins ferredoxin and ferredoxin reductase. Glycerol dehydrogenase was co-expressed with the CYP153A6 operon to investigate the effects of boosting cofactor regeneration. In order to overcome the alkane supply bottleneck, various chemical and physical approaches to membrane permeabilisation were tested in strains with or without additional dehydrogenase expression. Dehydrogenase co-expression in whole cells did not improve product formation and reduced the stability of the system at high cell densities. Chemical permeabilisation resulted in initial hydroxylation rates that were up to two times higher than the whole cell system, but severely impacted biocatalyst stability. Mechanical cell breakage led to improved enzyme stability, but additional dehydrogenase expression was necessary to improve product formation. The best-performing system (in terms of final titres) consisted of mechanically ruptured cells expressing additional dehydrogenase. This system had an initial activity of 1.67 ± 0.12 U/gDCW (32% improvement on whole cells) and attained a product concentration of 34.8 ± 1.6 mM after 24 h (22% improvement on whole cells). Furthermore, the system was able to maintain activity when biotransformation was extended to 72 h, resulting in a final product titre of 60.9 ± 1.1 mM. This study suggests that CYP153A6 in whole cells is limited by coupling efficiencies rather than cofactor supply. However, the most significant limitation in the current system is hydrocarbon transport, with substrate import being the main determinant of hydroxylation rates, and product export playing a key role in system stability.

  14. Characterization of heterogeneous nickel sites in CO dehydrogenase from Clostridium thermoaceticum by nickel L-edge x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, C.Y. [Univ. of California, Davis, CA (United States); Kumar, M.; Ragsdale, S.W. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    L-edge x-ray absorption spectroscopy (XAS) is a useful spectroscopic technique for determining the electronic state of transition metals. For first row transition metals, the L-edge represents a transition from 2p core levels to 3d valence levels. Coulomb and exchange interactions between the core hole and 3d valence electrons make the L-edge sensitive to the number and configuration of 3d electrons, hence to the metal spin state and oxidation state. The authors have used L-edge XAS to characterize the Ni sites in the carbon monoxide dehydrogenase (CODH) enzyme from Clostridium thermoaceticum. This CODH catalyzes both CO oxidation and acetyl-CoA synthesis at two Ni and Fe containing centers, C and A, respectively. Since the enzyme exhibits complex EPR signals that never integrate to one spin per Ni, there is evidence for heterogeneity in the types of Ni present. The Ni L-edge protein spectra were recorded at ALS beamline 9.3.2. The photon energy resolutions used for protein samples and for Ni model compound spectra were 350 and 270 meV respectively. During data collection the sample chamber was maintained at less than 5{times}10{sup {minus}9} Torr using a helium cryopump. Model compound spectra were measured using total electron yield detection, while protein spectra were recorded using fluorescence detection with a windowless 13-element germanium detector, and were calibrated using the total electron yield spectrum of NiF{sub 2} or NiO. Each protein spectrum presented represents the sum of approximately 40 15-minute scans. The authors have found that by using L-edge XAS they are able to distinguish between different spin and oxidation states of Ni compounds. They have used this result to characterize the Ni containing CODH protein in various states. The L-edge spectra are consistent with other results showing that when CODH is reacted with CO, the metal centers undergo reduction.

  15. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  16. A ketogenic diet increases succinic dehydrogenase activity in aging cardiomyocytes.

    Science.gov (United States)

    Balietti, Marta; Fattoretti, Patrizia; Giorgetti, Belinda; Casoli, Tiziana; Di Stefano, Giuseppina; Solazzi, Moreno; Platano, Daniela; Aicardi, Giorgio; Bertoni-Freddari, Carlo

    2009-08-01

    Impairment of energy metabolism and an increase of reactive oxygen species (ROS) production seem to play a major role in age-related apoptotic loss of cardiomyocytes. Succinic dehydrogenase (SDH) is an important marker of the mitochondrial capability to provide an adequate amount of ATP. Moreover, because of its unique redox properties, SDH activity contributes to maintain the reduced state of the ubiquinone pool. Recent reports have shown that ketone body intake improves cardiac metabolic efficiency and exerts a cardioprotective antioxidant action, we therefore performed a cytochemical investigation of SDH activity in cardiomyocytes of late-adult (19-month-old) rats fed for 8 weeks with a medium-chain triglycerides ketogenic diet (MCT-KD). Young, age-matched and old animals fed with a standard chow were used as controls. The overall area of the precipitates (PA) from SDH activity and the area of the SDH-positive mitochondria (MA) were measured. The percent ratios PA/MA and MA/total myocardial tissue area (MA/TA) were the parameters taken into account. We found that PA/MA was significantly higher in young control rats and in MCT-KD-fed rats versus late-adult and old control rats and in young control versus MCT-KD-fed rats. MA/TA of MCT-KD-fed rats was significantly higher versus age-matched and old control rats and tended to be higher versus young control rats; this parameter was significantly higher in young versus old control rats. Thus, MCT-KD intake partially recovers age-related decrease of SDH activity and increases the myocardial area occupied by metabolically active mitochondria. These effects might counteract metabolic alterations leading to apoptosis-induced myocardial atrophy and failure during aging.

  17. The expression of succinate dehydrogenase in breast phyllodes tumor.

    Science.gov (United States)

    Choi, Junjeong; Kim, Do Hee; Jung, WooHee; Koo, Ja Seung

    2014-10-01

    The purpose of this study is to investigate the expression of succinate dehydrogenase (SDH)A, SDHB, and HIF-1α in phyllodes tumors and the association with clinic-pathologic factors. Using tissue microarray (TMA) for 206 phyllodes tumor cases, we performed immunohistochemical stains for SDHA, SDHB, and HIF-1α and analyzed their expression in regard to clinicopathologic parameters of each case. The cases were comprised of 156 benign, 34 borderline, and 16 malignant phyllodes tumors. The expression of stromal SDHA and epithelial- and stromal- SDHB increased as the tumor progressed from benign to malignant (P⟨0.001). There were five stromal SDHA-negative cases and 31 stromal SDHB-negative cases. SDHB negativity was associated with a lower histologic grade (P=0.054) and lower stromal atypia (P=0.048). Univariate analysis revealed that a shorter disease free survival (DFS) was associated with stromal SDHB high-positivity (P=0.013) and a shorter overall survival (OS) was associated with high-positivity of stromal SDHA and SDHB (P⟨0.001 and P⟨0.001, respectively). The multivariate Cox analysis with the variables stromal cellularity, stromal atypia, stromal mitosis, stromal overgrowth, tumor margin, stromal SDHA expression, and stromal SDHB expression revealed that stromal overgrowth was associated with a shorter DFS (hazard ratio: 24.78, 95% CI: 3.126-196.5, P=0.002) and a shorter OS (hazard ratio: 176.7, 95% CI: 8.466-3691, P=0.001). In conclusion, Tumor grade is positively correlated with SDHA and SDHB expression in the tumor stroma in phyllodes tumors of the breast. This result may be attributed to the increased metabolic demand in high grade tumors.

  18. Ebselen: Mechanisms of Glutamate Dehydrogenase and Glutaminase Enzyme Inhibition.

    Science.gov (United States)

    Yu, Yan; Jin, Yanhong; Zhou, Jie; Ruan, Haoqiang; Zhao, Han; Lu, Shiying; Zhang, Yue; Li, Di; Ji, Xiaoyun; Ruan, Benfang Helen

    2017-11-07

    Ebselen modulates target proteins through redox reactions with selenocysteine/cysteine residues, or through binding to the zinc finger domains. However, a recent contradiction in ebselen inhibition of kidney type glutaminase (KGA) stimulated our interest in investigating its inhibition mechanism with glutamate dehydrogenase (GDH), KGA, thioredoxin reductase (TrxR), and glutathione S-transferase. Fluorescein- or biotin-labeled ebselen derivatives were synthesized for mechanistic analyses. Biomolecular interaction analyses showed that only GDH, KGA, and TrxR proteins can bind to the ebselen derivative, and the binding to GDH and KGA could be competed off by glutamine or glutamate. From the gel shift assays, the fluorescein-labeled ebselen derivative could co-migrate with hexameric GDH and monomeric/dimeric TrxR in a dose-dependent manner; it also co-migrated with KGA but disrupted the tetrameric form of the KGA enzyme at a high compound concentration. Further proteomic analysis demonstrated that the ebselen derivative could cross-link with proteins through a specific cysteine at the active site of GDH and TrxR proteins, but for KGA protein, the binding site is at the N-terminal appendix domain outside of the catalytic domain, which might explain why ebselen is not a potent KGA enzyme inhibitor in functional assays. In conclusion, ebselen could inhibit enzyme activity by binding to the catalytic domain or disruption of the protein complex. In addition, ebselen is a relatively potent selective GDH inhibitor that might provide potential therapeutic opportunities for hyperinsulinism-hyperammonemia syndrome patients who have the mutational loss of GTP inhibition.

  19. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  20. Metabolic control analysis of eucaryotic pyruvate dehydrogenase multienzyme complex.

    Science.gov (United States)

    Modak, Jayant; Deckwer, Wolf-Dieter; Zeng, An-Ping

    2002-01-01

    Metabolic control analysis (MCA) of pyruvate dehydrogenase multienzyme (PDH) complex of eucaryotic cells has been carried out using both in vitro and in vivo mechanistic models. Flux control coefficients (FCC) for the sensitivity of pyruvate decarboxylation rate to activities of various PDH complex reactions are determined. FCCs are shown to be strong functions of both pyruvate levels and various components of PDH complex. With the in vitro model, FCCs are shown to be sensitive to only the E1 component of the PDH complex at low pyruvate concentrations. At high pyruvate concentrations, the control is shared by all of the components, with E1 having a negative influence while the other three components, E2, X, and K, exert a positive control over the pyruvate decarboxylation rate. An unusual behavior of deactivation of the E1 component leading to higher net PDH activity is shown to be linked to the combined effect of protein X acylation and E1 deactivation. The steady-state analysis of the in vivo model reveals multiple steady state behavior of pyruvate metabolism with two stable and one unstable steady-states branches. FCCs also display multiplicity, showing completely different control distribution exerted by pyruvate and PDH components on three branches. At low pyruvate concentrations, pyruvate supply dominates the decarboxylation rate and PDH components do not exert any significant control. Reverse control distribution is observed at high pyruvate concentration. The effect of dilution due to cell growth on pyruvate metabolism is investigated in detail. While pyruvate dilution effects are shown to be negligible under all conditions, significant PDH complex dilution effects are observed under certain conditions. Comparison of in vitro and in vivo models shows that PDH components exert different degrees of control outside and inside the cells. At high pyruvate levels, PDH components are shown to exert a higher degree of control when reactions are taking place inside

  1. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  2. Full Enzyme Complex Simulation: Interactions in Human Pyruvate Dehydrogenase Complex.

    Science.gov (United States)

    Hezaveh, Samira; Zeng, An-Ping; Jandt, Uwe

    2018-01-24

    The pyruvate dehydrogenase complex (PDC) is a large macromolecular machine consisting of dozens of interacting enzymes that are connected and regulated by highly flexible domains, also called swinging arms. The overall structure and function of these domains and how they organize the complex function have not been elucidated in detail to date. This lack of structural and dynamic understanding is frequently observed in multidomain enzymatic complexes. Here we present the first full and dynamic structural model of full human PDC (hPDC), including binding of the linking arms to the surrounding E1 and E3 enzymes via their binding domains with variable stoichiometries. All of the linking domains were modeled at atomistic and coarse-grained levels, and the latter was parametrized to reproduce the same properties of those from the atomistic model. The radii of gyration of the wild-type full complex and functional trimeric subunits were in agreement with available experimental data. Furthermore, the E1 and E3 population effect on the overall structure of the full complex was studied. The results indicated that decreasing the number of E1s increases the flexibility of the now nonoccupied arms. Furthermore, their flexibility depends on the presence of other E1s and E3s in the vicinity, even if they are associated with other arms. As one consequence, the radius of gyration decreases with decreasing number of E1s. This effect also provides an indication of the optimal configuration of E1 and E3 on the basis of the assumption that a certain stability of the enymatic cloud is necessary to avoid free metabolic diffusion of intermediates (metabolic channeling). Our approach and results open a window for future enzyme engineering in a more effective way by evaluating the effect of different linker arm lengths, flexibilities, and combinations of mutations on the activity of other complex enzymes that involve flexible domains, including for example processive enzymes.

  3. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases

    Directory of Open Access Journals (Sweden)

    Stephen eTechtmann

    2012-04-01

    Full Text Available Carbon monoxide (CO is commonly known as a toxic gas, yet it is used by both aerobic and anaerobic bacteria and many archaea. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases (anaerobic CODHs, or [Ni,Fe]-CODHs in currently available genomic sequence databases. More than 6% (185 genomes out of 2887 bacterial and archaeal genome sequences in the IMG database possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. The phylogenetic study of this extended protein family revealed nine distinct clades of [Ni,Fe]-CODHs. These clades consisted of [Ni,Fe]-CODHs that, while apparently monophyletic within the clades, were encoded by microorganisms of disparate phylogeny, based on 16S rRNA sequences, and widely ranging physiology. Following this discovery, it was therefore of interest to examine the extent and possible routes of horizontal gene transfer (HGT affecting [Ni,Fe]-CODH genes and gene clusters that include [Ni,Fe]-CODHs.The genome sequence of the extreme thermophile Thermosinus carboxydivorans was used as a case study for HGT. The [Ni,Fe]-CODH operon of T. carboxydivorans differs from its whole genome in its G+C content by 8.2 mol%. Here, we apply statistical methods to establish acquisition by T. carboxydivorans of the gene cluster including [Ni,Fe]-CODH via HGT. Analysis of tetranucleotide frequency and codon usage with application of the Kullback-Leibler divergence metric showed that the [Ni,Fe]-CODH-1 operon of T. carboxidyvorans is quite dissimilar to the whole genome. Using the same metrics, the T. carboxydivorans [Ni,Fe]-CODH-1 operon is highly similar to the genome of the phylogenetically distant anaerobic carboxydotroph Carboxydothermus hydrogenoformans. These results allow to assume recent HTG of the gene cluster from a relative of C. hydrogenoformans to T. carboxydivorans or a more ancient transfer from a C. hydrogenoformans ancestor to a T. carboxydivorans

  4. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.; Rubach, Jon K.; Brown, Eric N.; Ramaswamy, S. (Iowa)

    2017-07-07

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.

  5. Isolation and Expression of Lactate Dehydrogenase Genes from Rhizopus oryzae

    Science.gov (United States)

    Skory, Christopher D.

    2000-01-01

    Rhizopus oryzae is used for industrial production of lactic acid, yet little is known about the genetics of this fungus. In this study I cloned two genes, ldhA and ldhB, which code for NAD+-dependent l-lactate dehydrogenases (LDH) (EC 1.1.1.27), from a lactic acid-producing strain of R. oryzae. These genes are similar to each other and exhibit more than 90% nucleotide sequence identity and they contain no introns. This is the first description of ldh genes in a fungus, and sequence comparisons revealed that these genes are distinct from previously isolated prokaryotic and eukaryotic ldh genes. Protein sequencing of the LDH isolated from R. oryzae during lactic acid production confirmed that ldhA codes for a 36-kDa protein that converts pyruvate to lactate. Production of LdhA was greatest when glucose was the carbon source, followed by xylose and trehalose; all of these sugars could be fermented to lactic acid. Transcripts from ldhB were not detected when R. oryzae was grown on any of these sugars but were present when R. oryzae was grown on glycerol, ethanol, and lactate. I hypothesize that ldhB encodes a second NAD+-dependent LDH that is capable of converting l-lactate to pyruvate and is produced by cultures grown on these nonfermentable substrates. Both ldhA and ldhB restored fermentative growth to Escherichia coli (ldhA pfl) mutants so that they grew anaerobically and produced lactic acid. PMID:10831409

  6. Update on the aldehyde dehydrogenase gene (ALDH superfamily

    Directory of Open Access Journals (Sweden)

    Jackson Brian

    2011-05-01

    Full Text Available Abstract Members of the aldehyde dehydrogenase gene (ALDH superfamily play an important role in the enzymic detoxification of endogenous and exogenous aldehydes and in the formation of molecules that are important in cellular processes, like retinoic acid, betaine and gamma-aminobutyric acid. ALDHs exhibit additional, non-enzymic functions, including the capacity to bind to some hormones and other small molecules and to diminish the effects of ultraviolet irradiation in the cornea. Mutations in ALDH genes leading to defective aldehyde metabolism are the molecular basis of several diseases, including gamma-hydroxybutyric aciduria, pyridoxine-dependent seizures, Sjögren-Larsson syndrome and type II hyperprolinaemia. Interestingly, several ALDH enzymes appear to be markers for normal and cancer stem cells. The superfamily is evolutionarily ancient and is represented within Archaea, Eubacteria and Eukarya taxa. Recent improvements in DNA and protein sequencing have led to the identification of many new ALDH family members. To date, the human genome contains 19 known ALDH genes, as well as many pseudogenes. Whole-genome sequencing allows for comparison of the entire complement of ALDH family members among organisms. This paper provides an update of ALDH genes in several recently sequenced vertebrates and aims to clarify the associated records found in the National Center for Biotechnology Information (NCBI gene database. It also highlights where and when likely gene-duplication and gene-loss events have occurred. This information should be useful to future studies that might wish to compare the role of ALDH members among species and how the gene superfamily as a whole has changed throughout evolution.

  7. [Glutamate dehydrogenase. Its diagnostic value in Clostridioides difficile diarrhea].

    Science.gov (United States)

    Vaustat, Daniela; Rollet, Raquel

    2017-11-14

    Clostridioides difficile is the main etiological agent of diarrhea associated with health care, it produces toxins and glutamate dehydrogenase (GDH), an enzyme that is highly conserved in this species. Rapid diagnosis and effective treatment produce prompt improvement of the patient and subsequent control of the microorganism spread. There are several techniques whose results are interpreted in the context of algorithms. However, the optimal diagnostic method is yet unknown. The performance of GDH as a screening test for the diagnosis of C. difficile diarrhea was assessed. Six hundred and fifteen stool samples were studied. The presence of GDH and toxins presence was determined by TECHLAB® C. DIFF QUIK-CHEK COMPLETE and the samples were cultured for the search of C. difficile. The values of sensitivity, specificity, PPV and NPV were calculated with a p value of 0.05 or less. GDH was detected in 266 samples (43.25%), with a sensitivity of 100% and specificity of 87.10%, IC95: 84.58-91.42; toxin/s were detected in 218 (35.45%) and C. difficile developed in 235 cultures (38.21%). From 48 samples with positive GDH and negative toxin/s, 15 toxigenic and 2 non-toxigenic isolates were obtained, the remaining 31 samples were negative for C. difficile. All GDH-negative samples were negative for toxins or culture, therefore, GDH NPV was 100%, while PPV was 81.9%. We conclude that GDH is a suitable screening test for the diagnostic algorithm of C. difficile diarrhea. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. In vitro biosynthesis of 3-mercaptolactate by lactate dehydrogenases.

    Science.gov (United States)

    Andreeßen, Christina; Wolf, Natalie; Cramer, Benedikt; Humpf, Hans-Ulrich; Steinbüchel, Alexander

    2018-01-01

    3-Mercaptolactate (3ML) is an interesting mercapto compound with special regard to the biosynthesis of new polythioesters (PTEs). Unfortunately, this thioester analog of lactic acid is currently not commercially available. For this reason, we developed an in vitro biosynthesis pathway to convert cysteine to 3-mercaptopyruvate (3MPy), which is then rapidly and efficiently converted to 3ML by suitable lactate dehydrogenases (LDHs). As liver LDH from Rattus norvegicus (LDHRn) was previously described to Exhibit 3MPy reduction activity, in silico studies based on homology to LDHRn were performed and led to the identification of four potentially suitable bacterial LDH candidates from Escherichia coli (LDHEc), Corynebacterium glutamicum (LDHCg), Bacillus cereus (LDHBc) and Gloeobacter violaceus (LDHGv). After heterologous expression in E. coli followed by purification, the enzymes were assessed for their potential to reduce 3MPy to 3ML in comparison to LDHRn. With 3MPy, LDHs from E. coli, C. glutamicum and B. cereus showed no or only very low specific activities of 0.23±0.1U/mg (LDHCg) and 0.08±0.2U/mg (LDHBc), respectively. In contrast, LDHGv exhibited a remarkable specific activity of 63.6±8.1U/mg, being even twice as active as the R. norvegicus LDH. To verify LDH-catalyzed biosynthesis of 3ML we developed and optimized a detection method allowing qualitative analysis and quantification of 3MPy and 3ML by derivatization with Ellman's reagent and liquid chromatography-mass spectrometry. This study shows once more the impressive versatility of LDHs and presents a rapid and efficient biosynthesis process for 3ML, a biotechnologically interesting, yet hard-to-obtain, compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase.

    Science.gov (United States)

    Nisler, Jaroslav; Kopečný, David; Končitíková, Radka; Zatloukal, Marek; Bazgier, Václav; Berka, Karel; Zalabák, David; Briozzo, Pierre; Strnad, Miroslav; Spíchal, Lukáš

    2016-09-01

    Two new TDZ derivatives (HETDZ and 3FMTDZ) are very potent inhibitors of CKX and are promising candidates for in vivo studies. Cytokinin hormones regulate a wide range of essential processes in plants. Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-yl urea, TDZ), formerly registered as a cotton defoliant, is a well known inhibitor of cytokinin oxidase/dehydrogenase (CKX), an enzyme catalyzing the degradation of cytokinins. TDZ thus increases the lifetime of cytokinins and their effects in plants. We used in silico modeling to design, synthesize and characterize twenty new TDZ derivatives with improved inhibitory properties. Two compounds, namely 1-[1,2,3]thiadiazol-5-yl-3-(3-trifluoromethoxy-phenyl)urea (3FMTDZ) and 1-[2-(2-hydroxyethyl)phenyl]-3-(1,2,3-thiadiazol-5-yl)urea (HETDZ), displayed up to 15-fold lower IC 50 values compared with TDZ for AtCKX2 from Arabidopsis thaliana and ZmCKX1 and ZmCKX4a from Zea mays. Binding modes of 3FMTDZ and HETDZ were analyzed by X-ray crystallography. Crystal structure complexes, solved at 2.0 Å resolution, revealed that HETDZ and 3FMTDZ bound differently in the active site of ZmCKX4a: the thiadiazolyl ring of 3FMTDZ was positioned over the isoalloxazine ring of FAD, whereas that of HETDZ had the opposite orientation, pointing toward the entrance of the active site. The compounds were further tested for cytokinin activity in several cytokinin bioassays. We suggest that the combination of simple synthesis, lowered cytokinin activity, and enhanced inhibitory effects on CKX isoforms, makes 3FMTDZ and HETDZ suitable candidates for in vivo studies.

  10. Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia.

    Science.gov (United States)

    Kayyali, U S; Donaldson, C; Huang, H; Abdelnour, R; Hassoun, P M

    2001-04-27

    The enzyme xanthine oxidase (XO) has been implicated in the pathogenesis of several disease processes, such as ischemia-reperfusion injury, because of its ability to generate reactive oxygen species. The expression of XO and its precursor xanthine dehydrogenase (XDH) is regulated at pre- and posttranslational levels by agents such as lipopolysaccharide and hypoxia. Posttranslational modification of the protein, for example through thiol oxidation or proteolysis, has been shown to be important in converting XDH to XO. The possibility of posttranslational modification of XDH/XO through phosphorylation has not been adequately investigated in mammalian cells, and studies have reported conflicting results. The present report demonstrates that XDH/XO is phosphorylated in rat pulmonary microvascular endothelial cells (RPMEC) and that phosphorylation is greatly increased ( approximately 50-fold) in response to acute hypoxia (4 h). XDH/XO phosphorylation appears to be mediated, at least in part, by casein kinase II and p38 kinase as inhibitors of these kinases partially prevent XDH/XO phosphorylation. In addition, the results indicate that p38 kinase, a stress-activated kinase, becomes activated in response to hypoxia (an approximately 4-fold increase after 1 h of exposure of RPMEC to hypoxia) further supporting a role for this kinase in hypoxia-stimulated XDH/XO phosphorylation. Finally, hypoxia-induced XDH/XO phosphorylation is accompanied by a 2-fold increase in XDH/XO activity, which is prevented by inhibitors of phosphorylation. In summary, this study shows that XDH/XO is phosphorylated in hypoxic RPMEC through a mechanism involving p38 kinase and casein kinase II and that phosphorylation is necessary for hypoxia-induced enzymatic activation.

  11. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles.

    Science.gov (United States)

    Nesakumar, Noel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru

    2013-11-15

    An electrochemical biosensor was developed to determine lactate that plays an important role in clinical diagnosis, fermentation and food quality analysis. Abnormal concentration of lactate has been related to diseases such as hypoxia, acute heart disorders, lactic acidosis, muscle fatigue and meningitis. Also, lactate concentration in blood helps to evaluate the athletic performance in sports. The main aim of the work is to fabricate NADH/LDH/Nano-CeO2/GCE bio-electrode for sensing lactate in human blood samples. Toward this, CeO2 nanoparticles were synthesized by a hydroxide mediated approach using cerium nitrate hexahydrate (Ce(NO3)3·6H2O) and NaOH as precursors. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM) studies were carried out to determine the structural and morphological characteristics of CeO2 nanoparticles. XRD pattern indicated the formation of highly crystalline CeO2 nanoparticles with face centered cubic structure. The FE-SEM studies revealed the formation of nanospherical particles of size 29.73±2.59 nm. The working electrode was fabricated by immobilizing nicotinamide adenine dinucleotide (NADH) and lactate dehydrogenase (LDH) on GCE surface with CeO2 nanoparticles as an interface. Electrochemical studies were carried out through cyclic voltammetry using a three electrode system with NADH/LDH/NanoCeO2/GCE as a working electrode, Ag/AgCl saturated with 0.1M KCl as a reference electrode and Pt wire as a counter electrode. From the amperometric study, the linearity was found to be in the range of 0.2-2 mM with the response time of less than 4s. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Sheila G. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Grupo de Biofisica e Fisica Aplicada a Medicina, Instituto de Fisica, Universidade Federal de Goias, Campus Samambaia, C.P. 131, 74001-970, Goiania, GO (Brazil); Cristina Nonato, M. [Laboratorio de Cristalografia de Proteinas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/N, 14040-903, Ribeirao Preto, SP (Brazil); Costa-Filho, Antonio J., E-mail: ajcosta@ffclrp.usp.br [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Av. Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  13. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng (Pitt)

    2008-04-02

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  14. Escherichia coli Pyruvate Dehydrogenase Complex Is an Important Component of CXCL10-Mediated Antimicrobial Activity.

    Science.gov (United States)

    Schutte, Kirsten M; Fisher, Debra J; Burdick, Marie D; Mehrad, Borna; Mathers, Amy J; Mann, Barbara J; Nakamoto, Robert K; Hughes, Molly A

    2015-11-09

    Chemokines are best recognized for their role within the innate immune system as chemotactic cytokines, signaling and recruiting host immune cells to sites of infection. Certain chemokines, such as CXCL10, have been found to play an additional role in innate immunity, mediating CXCR3-independent killing of a diverse array of pathogenic microorganisms. While this is still not clearly understood, elucidating the mechanisms underlying chemokine-mediated antimicrobial activity may facilitate the development of novel therapeutic strategies effective against antibiotic-resistant Gram-negative pathogens. Here, we show that CXCL10 exerts antibacterial effects on clinical and laboratory strains of Escherichia coli and report that disruption of pyruvate dehydrogenase complex (PDHc), which converts pyruvate to acetyl coenzyme A, enables E. coli to resist these antimicrobial effects. Through generation and screening of a transposon mutant library, we identified two mutants with increased resistance to CXCL10, both with unique disruptions of the gene encoding the E1 subunit of PDHc, aceE. Resistance to CXCL10 also occurred following deletion of either aceF or lpdA, genes that encode the remaining two subunits of PDHc. Although PDHc resides within the bacterial cytosol, electron microscopy revealed localization of immunogold-labeled CXCL10 to the bacterial cell surface in both the E. coli parent and aceE deletion mutant strains. Taken together, our findings suggest that while CXCL10 interacts with an as-yet-unidentified component on the cell surface, PDHc is an important mediator of killing by CXCL10. To our knowledge, this is the first description of PDHc as a key bacterial component involved in the antibacterial effect of a chemokine. Copyright © 2015 Schutte et al.

  15. Identification of potential inhibitors for oncogenic target of dihydroorotate dehydrogenase using in silico approaches

    Science.gov (United States)

    Surekha, Kanagarajan; Nachiappan, Mutharasappan; Prabhu, Dhamodharan; Choubey, Sanjay Kumar; Biswal, Jayashree; Jeyakanthan, Jeyaraman

    2017-01-01

    Dihydroorotate dehydrogenase (DHODH) plays a major role in the rate limiting step of de novo pyrimidine biosynthesis pathway and it is pronounced as a novel target for drug development of cancer. The currently available drugs against DHODH are ineffective and bear various side effects. Three-dimensional structure of the targeted protein was constructed using molecular modeling approach followed by 100 ns molecular dynamics simulations. In this study, High Throughput Virtual Screening (HTVS) was performed using various compound libraries to identify pharmacologically potential molecules. The top four identified lead molecules includes NCI_47074, HitFinder_7630, Binding_66981 and Specs_108872 with high docking score of -9.45, -8.29, -8.04 and -8.03 kcal/mol and the corresponding binding free energy were -16.25, -56.37, -26.93 and -48.04 kcal/mol respectively. Arg122, Arg185, Glu255 and Gly257 are the key residues found to be interacting with the ligands. Molecular dynamics simulations of DHODH-inhibitors complexes were performed to assess the stability of various conformations from complex structures of TtDHODH. Furthermore, stereoelectronic features of the ligands were explored to facilitate charge transfer during the protein-ligand interactions using Density Functional Theoretical approach. Based on in silico analysis, the ligand NCI_47074 ((2Z)-3-({6-[(2Z)-3-carboxylatoprop-2-enamido]pyridin-2-yl}carbamoyl)prop-2-enoate) was found to be the most potent lead molecule which was validated using energetic and electronic parameters and it could serve as a template for designing effective anticancerous drug molecule.

  16. Pyruvate dehydrogenase kinase 4 deficiency attenuates cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Oh, Chang Joo; Ha, Chae-Myeong; Choi, Young-Keun; Park, Sungmi; Choe, Mi Sun; Jeoung, Nam Ho; Huh, Yang Hoon; Kim, Hyo-Jeong; Kweon, Hee-Seok; Lee, Ji-Min; Lee, Sun Joo; Jeon, Jae-Han; Harris, Robert A; Park, Keun-Gyu; Lee, In-Kyu

    2017-04-01

    Clinical prescription of cisplatin, one of the most widely used chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Since details of the underlying mechanisms are not fully understood, we investigated the role of pyruvate dehydrogenase kinase (PDK) in cisplatin-induced acute kidney injury. Among the PDK isoforms, PDK4 mRNA and protein levels were markedly increased in the kidneys of mice treated with cisplatin, and c-Jun N-terminal kinase activation was involved in cisplatin-induced renal PDK4 expression. Treatment with the PDK inhibitor sodium dichloroacetate (DCA) or genetic knockout of PDK4 attenuated the signs of cisplatin-induced acute kidney injury, including apoptotic morphology of the kidney tubules along with numbers of TUNEL-positive cells, cleaved caspase-3, and renal tubular injury markers. Cisplatin-induced suppression of the mitochondrial membrane potential, oxygen consumption rate, expression of electron transport chain components, cytochrome c oxidase activity, and disruption of mitochondrial morphology were noticeably improved in the kidneys of DCA-treated or PDK4 knockout mice. Additionally, levels of the oxidative stress marker 4-hydroxynonenal and mitochondrial reactive oxygen species were attenuated, whereas superoxide dismutase 2 and catalase expression and glutathione synthetase and glutathione levels were recovered in DCA-treated or PDK4 knockout mice. Interestingly, lipid accumulation was considerably attenuated in DCA-treated or PDK4 knockout mice via recovered expression of peroxisome proliferator-activated receptor-α and coactivator PGC-1α, which was accompanied by recovery of mitochondrial biogenesis. Thus, PDK4 mediates cisplatin-induced acute kidney injury, suggesting that PDK4 might be a therapeutic target for attenuating cisplatin-induced acute kidney injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane-associated N-terminal domain.

    Science.gov (United States)

    Hansen, Majbritt; Le Nours, Jérôme; Johansson, Eva; Antal, Torben; Ullrich, Alexandra; Löffler, Monika; Larsen, Sine

    2004-04-01

    The flavin enzyme dihydroorotate dehydrogenase (DHOD; EC 1.3.99.11) catalyzes the oxidation of dihydroorotate to orotate, the fourth step in the de novo pyrimidine biosynthesis of UMP. The enzyme is a promising target for drug design in different biological and clinical applications for cancer and arthritis. The first crystal structure of the class 2 dihydroorotate dehydrogenase from rat has been determined in complex with its two inhibitors brequinar and atovaquone. These inhibitors have shown promising results as anti-proliferative, immunosuppressive, and antiparasitic agents. A unique feature of the class 2 DHODs is their N-terminal extension, which folds into a separate domain comprising two alpha-helices. This domain serves as the binding site for the two inhibitors and the respiratory quinones acting as the second substrate for the class 2 DHODs. The orientation of the first N-terminal helix is very different in the two complexes of rat DHOD (DHODR). Binding of atovaquone causes a 12 A movement of the first residue in the first alpha-helix. Based on the information from the two structures of DHODR, a model for binding of the quinone and the residues important for the interactions could be defined. His 56 and Arg 136, which are fully conserved in all class 2 DHODs, seem to play a key role in the interaction with the electron acceptor. The differences between the membrane-bound rat DHOD and membrane-associated class 2 DHODs exemplified by the Escherichia coli DHOD has been investigated by GRID computations of the hydrophobic probes predicted to interact with the membrane.

  18. Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues.

    Science.gov (United States)

    Lee, Masaichi-Chang-Il; Velayutham, Murugesan; Komatsu, Tomoko; Hille, Russ; Zweier, Jay L

    2014-10-21

    The enzyme xanthine oxidoreductase (XOR) is an important source of oxygen free radicals and related postischemic injury. Xanthine dehydrogenase (XDH), the major form of XOR in tissues, can be converted to xanthine oxidase (XO) by oxidation of sulfhydryl residues or by proteolysis. The conversion of XDH to XO has been assumed to be required for radical generation and tissue injury. It is also possible that XDH could generate significant quantities of superoxide, •O₂⁻, for cellular signaling or injury; however, this possibility and its potential ramifications have not been previously considered. To unambiguously determine if XDH can be a significant source of •O₂⁻, experiments were performed to measure and characterize •O²⁻ generation using XDH from chicken liver that is locked in the dehydrogenase conformation. Electron paramagnetic resonance spin trapping experiments with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide demonstrated that XDH in the presence of xanthine produces significant amounts of •O₂⁻. NAD⁺ and NADH inhibited the generation of •O₂⁻ from XDH in a dose-dependent manner, with NAD⁺ exhibiting stronger inhibition than NADH at low physiological concentrations. Decreased amounts of NAD⁺ and NADH, which occur during and following tissue ischemia, enhanced the generation of •O₂⁻ from XDH in the presence of xanthine. It was observed that XDH-mediated oxygen radical generation markedly depressed Ca²⁺-ATPase activity of isolated sarcoplasmic reticulum vesicles from cardiac muscle, and this was modulated by NAD⁺ and NADH. Thus, XDH can be an important redox-regulated source of •O₂⁻ generation in ischemic tissue, and conversion to XO is not required to activate radical formation and subsequent tissue injury.

  19. Impaired oxygenation and increased hemolysis after cardiopulmonary bypass in patients with glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Gerrah, Rabin; Shargal, Yaron; Elami, Amir

    2003-08-01

    The purpose of this study was to determine whether the damaging effects of cardiopulmonary bypass, ischemia, and reperfusion would be more pronounced in patients with glucose-6-phosphate dehydrogenase deficiency undergoing cardiac surgery. Forty-two patients with glucose-6-phosphate dehydrogenase deficiency underwent open heart procedures using cardiopulmonary bypass. This group was matched with a control group of identical size for comparison of operative course and postoperative outcome. The perioperative variables were compared between the two groups using univariate and multivariate analysis. The duration of ventilation after the operation was significantly longer in the glucose-6-phosphate dehydrogenase-deficient group (13.7 +/- 7.6 hours versus 7.7 +/- 2.8 hours; p < 0.0001). Minimal value of arterial oxygen tension was lower in patients with glucose-6-phosphate dehydrogenase deficiency (66 +/- 12 mm Hg versus 85 +/- 14 mm Hg; p < 0.0001), and more cases of hypoxia (arterial oxygen tension < 60 mm Hg) were found in this group (11 versus 1; p = 0.001). Compared with the control group, patients with glucose-6-phosphate dehydrogenase deficiency had significantly elevated hemolytic indices expressed by bilirubin levels (26 +/- 10 mmol/L versus 17 +/- 6.7 mmol/L; p < 0.0001) and lactic dehydrogenase levels (970 +/- 496 U/L versus 505 +/- 195 U/L; p < 0.0001). They also required significantly more blood transfusion perioperatively (1.9 +/- 1.4 packed cell units/patient versus 0.8 +/- 1.0 packed cell units/patient; p = 0.0001). Patients with glucose-6-phosphate dehydrogenase deficiency who are undergoing cardiac surgery may have a more complicated course with a longer ventilation time, more hypoxia, increased hemolysis, and a need for more blood transfusion. Because this difference may be caused by subnormal free radical deactivation, strategies that minimize bypass in general and free radicals specifically may be beneficial.

  20. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    Science.gov (United States)

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  2. Electron Microscopy.

    Science.gov (United States)

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  3. Electronic Commerce

    OpenAIRE

    Slavko Đerić

    2016-01-01

    Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks...

  4. Understand electronics

    CERN Document Server

    Bishop, Owen

    2013-01-01

    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.

  5. Vacuum electronics

    CERN Document Server

    Eichmeier, Joseph A

    2008-01-01

    Nineteen experts from the electronics industry, research institutes and universities have joined forces to prepare this book. ""Vacuum Electronics"" covers the electrophysical fundamentals, the present state of the art and applications, as well as the future prospects of microwave tubes and systems, optoelectronics vacuum devices, electron and ion beam devices, light and X-ray emitters, particle accelerators and vacuum interrupters. These topics are supplemented by useful information about the materials and technologies of vacuum electronics and vacuum technology.

  6. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  7. ELECTRONIC SIGNATURES

    African Journals Online (AJOL)

    10332324

    'electronic signature' means data attached to, incorporated in, or logically associated with other data and which is intended by the user to serve as a signature;. The suggested new definition for an electronic signature reads as follows: 'electronic signature' means a sound, symbol or process that is (i) uniquely linked to the ...

  8. ELECTRONIC SIGNATURES

    African Journals Online (AJOL)

    10332324

    (a) facilitate ecommerce;2. (b) remove and prevent barriers to electronic communications in South Africa;3. (c) ensure that electronic transactions in the Republic conform to the highest international standards;4. (d) promote the development of electronic transactions services which are responsive to the needs of users and ...

  9. Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-encoded toluene pathway in Pseudomonas putida. N-terminal amino acid sequences, amino acid compositions and immunological cross-reactions.

    Science.gov (United States)

    Chalmers, R M; Keen, J N; Fewson, C A

    1991-01-01

    1. N-Terminal sequences were determined for benzyl alcohol dehydrogenase, benzaldehyde dehydrogenase I and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus N.C.I.B. 8250, benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by the TOL plasmid pWW53 in Pseudomonas putida MT53 and yeast K(+)-activated aldehyde dehydrogenase. Comprehensive details of the sequence determinations have been deposited as Supplementary Publication SUP 50161 (5 pages) at the British Library Document Supply Centre, Boston Spa. Wetherby. West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1991) 273. 5. The extent of sequence similarity suggests that the benzyl alcohol dehydrogenases are related to each other and also to established members of the family of long-chain Zn2(+)-dependent alcohol dehydrogenases. Benzaldehyde dehydrogenase II from Acinetobacter appears to be related to the Pseudomonas TOL-plasmid-encoded benzaldehyde dehydrogenase. The yeast K(+)-activated aldehyde dehydrogenase has similarity of sequence with the mammalian liver cytoplasmic class of aldehyde dehydrogenases but not with any of the Acinetobacter or Pseudomonas enzymes. 2. Antisera were raised in rabbits against the three Acinetobacter enzymes and both of the Pseudomonas enzymes, and the extents of the cross-reactions were determined by immunoprecipitation assays with native antigens and by immunoblotting with SDS-denatured antigens. Cross-reactions were detected between the alcohol dehydrogenases and also among the aldehyde dehydrogenases. This confirms the interpretation of the N-terminal sequence comparisons and also indicates that benzaldehyde dehydrogenase I from Acinetobacter may be related to the other two benzaldehyde dehydrogenases. 3. The amino acid compositions of the Acinetobacter and the Pseudomonas enzymes were determined and the numbers of amino acid residues per subunit were calculated to be: benzyl alcohol dehydrogenase

  10. Dihydroorotate dehydrogenase is required for N-(4-hydroxyphenyl)retinamide-induced reactive oxygen species production and apoptosis

    Science.gov (United States)

    Hail, Numsen; Chen, Ping; Kepa, Jadwiga J.; Bushman, Lane R.; Shearn, Colin

    2010-01-01

    The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) exhibits anticancer activity in vivo and triggers apoptosis in transformed cells in vitro. Thus, apoptosis induction is acknowledged as a mechanistic underpinning for 4HPR's cancer preventive and therapeutic effects. Apoptosis induction by 4HPR is routinely preceded by and dependent on the production of reactive oxygen species (ROS) in transformed cells. Very little evidence exists outside the possible involvement of the mitochondrial electron transport chain or the plasma membrane NADPH oxidase complex, which would pinpoint the predominant site of 4HPR-induced ROS production in transformed cells. Here, we investigated the role of dihydroorotate dehydrogenase (DHODH, an enzyme associated with the mitochondrial electron transport chain and required for de novo pyrimidine synthesis) in 4HPR-induced ROS production and attendant apoptosis in transformed skin and prostate epithelial cells. In premalignant prostate epithelial cells and malignant cutaneous keratinocytes the suppression of DHODH activity by the chemical inhibitor teriflunomide or the reduction in DHODH protein expression by RNA interference markedly reduced 4HPR-induced ROS generation and apoptosis. Conversely, colon carcinoma cells that lacked DHODH expression were markedly resistant to the prooxidant and cytotoxic effects of 4HPR. Together, these results strongly implicate DHODH in 4HPR-induced ROS production and apoptosis. PMID:20399851

  11. Dihydroorotate dehydrogenase is required for N-(4-hydroxyphenyl)retinamide-induced reactive oxygen species production and apoptosis.

    Science.gov (United States)

    Hail, Numsen; Chen, Ping; Kepa, Jadwiga J; Bushman, Lane R; Shearn, Colin

    2010-07-01

    The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) exhibits anticancer activity in vivo and triggers apoptosis in transformed cells in vitro. Thus, apoptosis induction is acknowledged as a mechanistic underpinning for 4HPR's cancer preventive and therapeutic effects. Apoptosis induction by 4HPR is routinely preceded by and dependent on the production of reactive oxygen species (ROS) in transformed cells. Very little evidence exists, outside the possible involvement of the mitochondrial electron transport chain or the plasma membrane NADPH oxidase complex, that would pinpoint the predominant site of 4HPR-induced ROS production in transformed cells. Here, we investigated the role of dihydroorotate dehydrogenase (DHODH; an enzyme associated with the mitochondrial electron transport chain and required for de novo pyrimidine synthesis) in 4HPR-induced ROS production and attendant apoptosis in transformed skin and prostate epithelial cells. In premalignant prostate epithelial cells and malignant cutaneous keratinocytes the suppression of DHODH activity by the chemical inhibitor teriflunomide or the reduction in DHODH protein expression by RNA interference markedly reduced 4HPR-induced ROS generation and apoptosis. Conversely, colon carcinoma cells that lacked DHODH expression were markedly resistant to the pro-oxidant and cytotoxic effects of 4HPR. Together, these results strongly implicate DHODH in 4HPR-induced ROS production and apoptosis. (c) 2010 Elsevier Inc. All rights reserved.

  12. Activation of the nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: Kinetic characterization and reductant requirement

    Energy Technology Data Exchange (ETDEWEB)

    Ensign, S.A.; Campbell, M.J.; Ludden, P.W. (Univ. of Wisconsin, Madison (USA))

    1990-02-27

    The requirements for and kinetics of the activation of the nickel-deficient (apo) CO dehydrogenase from Rhodospirillum rubrum by exogenous nickel have been investigated. The activation is strictly dependent upon the presence of a low-potential one-electron reductant. Sodium dithionite and reduced methylviologen are suitable reductants, whereas reduced indigo carmine and the two-electron reductants sodium borohydride, NADH, and dithiothreitol are ineffective in stimulating activation. The midpoint potential for activation was observed at approximately {minus}475 mV. The ability of a reductant to stimulate activation is correlated with the reduced state of the enzyme Fe{sub 4}-S{sub 4} centers. The activation follows apparent first-order kinetics in a saturable fashion, yielding a rate constant of 0.157 min{sup {minus}1} at saturating concentration of nickel. The initial rate at which the enzyme is activated by NiCl{sub 2} is also a saturable process, yielding a dissociation constant (K{sub D}) of 755 {mu}M for the initial association of nickel and enzyme. Cadmium(II), zinc(II), cobalt(II), and iron(II) are competitive inhibitors of nickel activation with inhibition constants of 2.44, 4.16, 175, and 349 {mu}M, respectively. Manganese(II), calcium(II), and magnesium(II) exhibit no inhibition of activation.

  13. D- and L-lactate dehydrogenases during invertebrate evolution

    Directory of Open Access Journals (Sweden)

    Stillman Jonathon H

    2008-10-01

    Full Text Available Abstract Background The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(--lactate and D(+-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh. Results Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view that the main isozymes (LDH-A, LDH-B and LDH-C evolved through a series of gene duplications after the vertebrates diverged from tunicates. We report several gene duplication events in the crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were found in both vertebrates and invertebrates. Conclusion The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the evolution of L-Ldh has been punctuated by

  14. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Science.gov (United States)

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  15. Sticker electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-09-08

    Electronic stickers may be manufactured on flexible substrates (110, 120, 130) as layers and packaged together. The package may then have an adhesive applied to one side to provide capability for sticking the electronic devices to surfaces. The stickers can be wrappable, placed on surfaces, glued on walls or mirrors or wood or stone, and have electronics (112, 122, 132) which may or may not be ultrathin. Packaging for the electronic sticker can use polymer on cellulose manufacturing and/or three dimensional (3-D) printing. The electronic stickers may provide lighting capability, sensing capability, and/or recharging capabilities.

  16. Basic electronics

    CERN Document Server

    Holbrook, Harold D

    1971-01-01

    Basic Electronics is an elementary text designed for basic instruction in electricity and electronics. It gives emphasis on electronic emission and the vacuum tube and shows transistor circuits in parallel with electron tube circuits. This book also demonstrates how the transistor merely replaces the tube, with proper change of circuit constants as required. Many problems are presented at the end of each chapter. This book is comprised of 17 chapters and opens with an overview of electron theory, followed by a discussion on resistance, inductance, and capacitance, along with their effects on t

  17. Soil dehydrogenase activity of natural macro aggregates in a toposequence of forest soil

    Directory of Open Access Journals (Sweden)

    Maira Kussainova

    2013-01-01

    Full Text Available The main objective of this study was to determine changes in soil dehydrogenase activity in natural macro aggregates development along a slope in forest soils. This study was carried out in Kocadag, Samsun, Turkey. Four landscape positions i.e., summit, shoulder backslope and footslope, were selected. For each landseape position, soil macro aggregates were separated into six aggregate size classes using a dry sieving method and then dehydrogenase activity was analyzed. In this research, topography influenced the macroaggregate size and dehydrogenase activity within the aggregates. At all landscape positions, the contents of macro aggregates (especially > 6.3 mm and 2.00–4.75 mm in all soil samples were higher than other macro aggregate contents. In footslope position, the soils had generally the higher dehydrogenase activity than the other positions at all landscape positions. In all positions, except for shoulder, dehydrogenase activity was greater macro aggregates of <1 mm than in the other macro aggregate size.

  18. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F.; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  19. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  20. [Homology modeling and molecular docking of xylitol dehydrogenase from Aspergillus Oryzae].

    Science.gov (United States)

    Chen, Hongwen; Gou, Yuanbo; Zhang, Ka; Fang, Baishan

    2011-07-01

    We investigated the structure model and function of xylitol dehydrogenase from Aspergillus oryzae. Xylitol dehydrogenase (XDH) gene from Aspergillus oryzae was cloned and sequenced. We constructed four tertiary structure models of XDH by homology modeling with Swiss-MODEL and Modeller and obtained the best quality model by evaluation of PROCHECK and Prosa2003. The dockings of NAD+, Zn2+ and xylitol with XDH were performed by Molsoft program. Structure analysis suggested that XDH was a member of medium-chain dehydrogenase/reductase (MDR) family. This was supported by the presence of the zinc-containing alcohol dehydrogenase signature and a typical alcohol dehydrogenase Rossmann fold pattern composed by NAD+ binding domain present in MDR superfamily. The molecular docking indicated that amino acid residues Asp206, Arg211, Ser255, Ser301 and Arg303 in XDH binding domain had hydrogen bonding with NAD+, His72 and Glu73 in catalytic domain had hydrogen bonding with Zn2+, Ile46, Ile349, Lys350 and Thr351 in catalytic domain had hydrogen bonding with xylitol. These key amino acid residues might play a vital role in the XDH catalytic reaction and can instruct the further directed modification of XDH.

  1. Electronic Government and Electronic Participation

    NARCIS (Netherlands)

    Tambouris, E.; Scholl, H.J.; Janssen, M.F.W.H.A.; Wimmer, M.A.; Tarabanis, K.; Gascó, M.; Klievink, A.J.; Lindgren, I.; Milano, M.; Panagiotopoulos, P.; Pardo, T.A.; Parycek, P.; Sæbø, O.

    2015-01-01

    Electronic government and electronic participation continue to transform the public sector and society worldwide and are constantly being transformed themselves by emerging information and communication technologies. This book presents papers from the 14th International Federation for Information

  2. Electronic Government and Electronic Participation

    NARCIS (Netherlands)

    Tambouris, E; Scholl, H.J.; Janssen, M.F.W.H.A.; Wimmer, M.A.; Tarabanis, K; Gascó, M; Klievink, A.J.; Lindgren, I; Milano, M; Panagiotopoulos, P; Pardo, T.A.; Parycek, P; Sæbø, Ø

    2016-01-01

    Electronic government and electronic participation continue to transform the public sector and society worldwide and are constantly being transformed themselves by emerging information and communication technologies.This book presents papers from the 14th International Federation for Information

  3. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  4. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.

    Science.gov (United States)

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun

    2013-02-01

    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Selective inhibition of acyl-CoA dehydrogenases by a metabolite of hypoglycin.

    Science.gov (United States)

    Kean, E A

    1976-01-23

    Extracts of liver mitochondria from donor rats given hypoglycin, the toxic amino acid from the ackee plant (Blighia sapida) showed drastically reduced levels of acyl-CoA dehydrogenase activity with butyryl-CoA as substrate. Activity with octanoyl- and palmitoyl-CoA was unaffected. Evidence that the active agent is methylenecyclopropylacetyl-CoA, a hypoglycin metabolite, was obtained by observing effects of the compound on a partially purified enzyme mixture prepared from rabbit liver. At 13 muM concentration, it strongly inhibited butyryl-CoA dehydrogenase (EC 1.3.99.2) with butyryl-CoA as substrate; it was far less effective with palmitoyl-CoA as substrate for the other similar enzymes present in the preparation. Unlike normal substrates of the acyl-CoA dehydrogenases, the compound itself, and not a reaction product, is inhibitory. The observed effect is consistent with quite general inhibition of fatty acid beta-oxidation by hypoglycin.

  6. Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase.

    Science.gov (United States)

    Heikkilä, Timo; Ramsey, Christopher; Davies, Matthew; Galtier, Christophe; Stead, Andrew M W; Johnson, A Peter; Fishwick, Colin W G; Boa, Andrew N; McConkey, Glenn A

    2007-01-25

    Pyrimidine biosynthesis presents an attractive drug target in malaria parasites due to the absence of a pyrimidine salvage pathway. A set of compounds designed to inhibit the Plasmodium falciparum pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (PfDHODH) was synthesized. PfDHODH-specific inhibitors with low nanomolar binding affinities were identified that bind in the N-terminal hydrophobic channel of dihydroorotate dehydrogenase, the presumed site of ubiquinone binding during oxidation of dihydroorotate to orotate. These compounds also prevented growth of cultured parasites at low micromolar concentrations. Models that suggest the mode of inhibitor binding is based on shape complementarity, matching hydrophobic regions of inhibitor and enzyme, and interaction of inhibitors with amino acid residues F188, H185, and R265 are supported by mutagenesis data. These results further highlight PfDHODH as a promising new target for chemotherapeutic intervention in prevention of malaria and provide better understanding of the factors that determine specificity over human dihydroorotate dehydrogenase.

  7. Cloning and Expression of ntnD, Encoding a Novel NAD(P)+-Independent 4-Nitrobenzyl Alcohol Dehydrogenase from Pseudomonas sp. Strain TW3

    Science.gov (United States)

    James, Keith D.; Hughes, Michelle A.; Williams, Peter A.

    2000-01-01

    Pseudomonas sp. strain TW3 is able to metabolize 4-nitrotoluene to 4-nitrobenzoate and toluene to benzoate aerobically via a route analogous to the upper pathway of the TOL plasmids. We report the cloning and characterization of a benzyl alcohol dehydrogenase gene (ntnD) which encodes the enzyme for the catabolism of 4-nitrobenzyl alcohol and benzyl alcohol to 4-nitrobenzaldehyde and benzaldehyde, respectively. The gene is located downstream of the previously reported ntn gene cluster. NtnD bears no similarity to the analogous TOL plasmid XylB (benzyl alcohol dehydrogenase) protein either in its biochemistry, being NAD(P)+ independent and requiring assay via dye-linked electron transfer, or in its deduced amino acid sequence. It does, however, have significant similarity in its amino acid sequence to other NAD(P)+-independent alcohol dehydrogenases and contains signature patterns characteristic of type III flavin adenine dinucleotide-dependent alcohol oxidases. Reverse transcription-PCR demonstrated that ntnD is transcribed during growth on 4-nitrotoluene, although apparently not as part of the same transcript as the other ntn genes. The substrate specificity of the enzyme expressed from the cloned and overexpressed gene was similar to the activity expressed from strain TW3 grown on 4-nitrotoluene, providing evidence that ntnD is the previously unidentified gene in the pathway of 4-nitrotoluene catabolism. Examination of the 14.8-kb region around the ntn genes suggests that one or more recombination events have been involved in the formation of their current organization. PMID:10809692

  8. Cloning and expression of ntnD, encoding a novel NAD(P)(+)-independent 4-nitrobenzyl alcohol dehydrogenase from Pseudomonas sp. Strain TW3.

    Science.gov (United States)

    James, K D; Hughes, M A; Williams, P A

    2000-06-01

    Pseudomonas sp. strain TW3 is able to metabolize 4-nitrotoluene to 4-nitrobenzoate and toluene to benzoate aerobically via a route analogous to the upper pathway of the TOL plasmids. We report the cloning and characterization of a benzyl alcohol dehydrogenase gene (ntnD) which encodes the enzyme for the catabolism of 4-nitrobenzyl alcohol and benzyl alcohol to 4-nitrobenzaldehyde and benzaldehyde, respectively. The gene is located downstream of the previously reported ntn gene cluster. NtnD bears no similarity to the analogous TOL plasmid XylB (benzyl alcohol dehydrogenase) protein either in its biochemistry, being NAD(P)(+) independent and requiring assay via dye-linked electron transfer, or in its deduced amino acid sequence. It does, however, have significant similarity in its amino acid sequence to other NAD(P)(+)-independent alcohol dehydrogenases and contains signature patterns characteristic of type III flavin adenine dinucleotide-dependent alcohol oxidases. Reverse transcription-PCR demonstrated that ntnD is transcribed during growth on 4-nitrotoluene, although apparently not as part of the same transcript as the other ntn genes. The substrate specificity of the enzyme expressed from the cloned and overexpressed gene was similar to the activity expressed from strain TW3 grown on 4-nitrotoluene, providing evidence that ntnD is the previously unidentified gene in the pathway of 4-nitrotoluene catabolism. Examination of the 14.8-kb region around the ntn genes suggests that one or more recombination events have been involved in the formation of their current organization.

  9. Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767

    Directory of Open Access Journals (Sweden)

    Yang Dong-Dong

    2012-06-01

    Full Text Available Abstract Background The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme. Results We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM compared to that of NADPH (39 μM. The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP + at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction. Conclusions In this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde.

  10. Homology modelling and docking analysis of L-lactate dehydrogenase from Streptococcus thermopilus

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir R.

    2016-01-01

    Full Text Available The aim of this research was to create a three-dimensional model of L-lactate dehydrogenase from the main yoghurt starter culture - Streptococcus thermopilus, to analyse its structural features and investigate substrate binding in the active site. NCBI BlastP was used against the Protein Data Bank database in order to identify the template for construction of homology models. Multiple sequence alignment was performed using the program MUSCULE within the UGENE 1.11.3 program. Homology models were constructed using the program Modeller v. 9.17. The obtained 3D model was verified by Ramachandran plots. Molecular docking simulations were performed using the program Surflex-Dock. The highest sequence similarity was observed with L-lactate dehydrogenase from Lactobacillus casei subsp. casei, with 69% identity. Therefore, its structure (PDB ID: 2ZQY:A was selected as a modelling template for homology modelling. Active residues are by sequence similarity predicted: S. thermophilus - HIS181 and S. aureus - HIS179. Binding energy of pyruvate to L-lactate dehydrogenase of S. thermopilus was - 7.874 kcal/mol. Pyruvate in L-lactate dehydrogenase of S. thermopilus makes H bonds with catalytic HIS181 (1.9 Å, as well as with THR235 (3.6 Å. Although our results indicate similar position of substrates between L-lactate dehydrogenase of S. thermopilus and S. aureus, differences in substrate distances and binding energy values could influence the reaction rate. Based on these results, the L-lactate dehydrogenase model proposed here could be used as a guide for further research, such as transition states of the reaction through molecular dynamics. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  11. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Slavko Đerić

    2016-12-01

    Full Text Available Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks, including the Internet. Electronic commerce is not limited just to buying and selling, but it also includes all pre-sales and after-sales ongoing activities along the supply chain. Introducing electronic commerce, using the Internet and Web services in business, realizes the way to a completely new type of economy - internet economy.

  13. Micropower electronics

    CERN Document Server

    Keonjian, Edward

    1964-01-01

    Micropower Electronics deals with the operation of modern electronic equipment at micropower levels and the problems associated with micropower electronics. Topics covered include the relations between minimum required power density and frequency response for semiconductor triode amplifiers; physical realization of digital logic circuits; micropower microelectronic subsystems; and metal-oxide-semiconductor field-effect devices for micropower logic circuitry. This book is comprised of 10 chapters and begins with an analysis of fundamental relationships and basic requirements pertinent to the ph

  14. Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    the active-site thiol of the enzyme and the peroxide. A number of low-molecular-mass compounds including thiols and ascorbate, but not Trolox C, can prevent inhibition by removing the initial peroxide, or species derived from it. In contrast, glutathione reductase and lactate dehydrogenase are poorly......Reaction of certain peptides and proteins with singlet oxygen (generated by visible light in the presence of rose bengal dye) yields long-lived peptide and protein peroxides. Incubation of these peroxides with glyceraldehyde-3-phosphate dehydrogenase, in the absence of added metal ions, results...

  15. Alcohol drinking habits, alcohol dehydrogenase genotypes and risk of acute coronary syndrome

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Hansen, J.L.; Gronbaek, M.

    2010-01-01

    Aims: The risk of myocardial infarction is lower among light-to-moderate drinkers compared with abstainers. Results from some previous studies, but not all, suggest that this association is modified by variations in genes coding for alcohol dehydrogenase (ADH). We aimed to test this hypothesis......). Results: Higher alcohol intake (measured as amount or drinking frequency) was associated with lower risk of acute coronary syndrome; however, there was no evidence that these finding were modified by ADH1B or ADH1C genotypes. Conclusions: The importance of functional variation in alcohol dehydrogenase...... for the association between alcohol drinking habits and the risk of developing acute coronary syndrome, if any, is very limited....

  16. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil

    2007-01-01

    ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...... previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD. PMID: 17883863 [PubMed - in process]...

  17. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil

    2007-01-01

    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  18. Brain aldehyde dehydrogenase activity in rat strains with high and low ethanol preferences.

    Science.gov (United States)

    Inoue, K; Rusi, M; Lindros, K O

    1981-01-01

    The activity of aldehyde dehydrogenase in subcellular fractions of whole brain homogenates from the AA and ANA rat strains developed respectively for high and low ethanol preferences has been studied. No significant strain or sex differences between naive AA and ANA rats were found. In ethanol-experienced rats some strain and sex differences were found, the most consistent being higher enzyme activity in AA females than in males both with aliphatic and aromatic aldehyde substrates. However, contrary to previous findings no relation between brain aldehyde dehydrogenase activity and drinking behavior was found in the AA and ANA rat strains.

  19. Differential synthesis of glyceraldehyde-3-phosphate dehydrogenase polypeptides in stressed yeast cells.

    Science.gov (United States)

    Boucherié, H; Bataille, N; Fitch, I T; Perrot, M; Tuite, M F

    1995-01-15

    Three unlinked genes, TDH1, TDH2 and TDH3, encode the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (triose-phosphate dehydrogenase; TDH) in the yeast Saccharomyces cerevisiae. We demonstrate that the synthesis of the three encoded TDH polypeptides (TDHa, TDHb and TDHc, respectively) is not co-ordinately regulated and that TDHa is only synthesised as cells enter stationary phase, due to glucose starvation, or in heat-shocked cells. Furthermore, the synthesis of TDHb, but not TDHc, is strongly repressed by a heat shock. Hence, the TDHa enzyme may play a cellular role, distinct from glycolysis, that is required by stressed cells.

  20. Reversed electron transfer through the bc1 complex enables a cytochrome c oxidase mutant (delta aa3/cbb3) of Paracoccus denitrificans to grow on methylamine

    NARCIS (Netherlands)

    van der Oost, J.; Schepper, M.; Stouthamer, A.H.; Westerhoff, H V; van Spanning, R J; de Gier, J.-W.

    1995-01-01

    In Paracoccus denitrificans four classes of redox proteins are involved in the electron transfer from methylamine to oxygen:methylamine dehydrogenase (MADH), amicyanin, cytochrome c and cytochrome c oxidase. MADH and its electron acceptor amicyanin are indispensable for growth on methylamine. At