WorldWideScience

Sample records for electron donor-acceptor complexes

  1. Electron Donor Acceptor Interactions. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States)

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  2. Reactions of Fischer carbene complexes with Electron-deficient olefins: Scope and limitations of this route to donor-acceptor-substituted cyclopropanes

    Energy Technology Data Exchange (ETDEWEB)

    Wienand, A.; Reissig, H.U. (Inst. fuer Organische Chemie der Technischen Hochschule Darmstadt (West Germany))

    1990-12-01

    The Fischer carbene complex ((CO){sub 5}Cr{double bond}C(OMe)Ph) (1) is able to transfer its carbene ligand to a variety of electron-deficient olefins and provides donor-acceptor-substituted cyclopropanes in good yields. Apt activating groups with respect to the alkene are ester, amide, nitrile, sulfone, and dialkyl phosphonate functions. Methyl vinyl ketone (19) affords products in low yield that may arise from an intermediate cyclopropane derivative. Phenyl vinyl sulfoxide (24) mainly acts as an oxidizing agent, transforming 1 into methyl benzoate. for olefin 24 and {alpha}-(N-methylanilino)acrylonitrile the authors found products that should be formed on an olefin metathesis pathway. The methyl-substituted carbene complex 48 also affords the expected donor-acceptor-substituted cyclopropanes; however, acyclic isomers are formed in higher amounts. The molybdenum and tungsten complexes 55 and 56, respectively, also furnish cyclopropane derivatives, but the yields are lower than with the chromium compound 1. Disubstituted olefins and complex 1 still give the cyclopropanes in moderate yields, while all trisubstituted and most of the difunctionalized alkenes do not react with this Fischer carbene complex. The cyclopropanes synthesized can be deprotonated and alkylated or transformed into ring-opened products. These model reactions demonstrate the synthetic potentials of donor-acceptor-substituted cyclopropanes prepared via Fischer carbene complexes.

  3. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    Energy Technology Data Exchange (ETDEWEB)

    McCusker, James [Michigan State Univ., East Lansing, MI (United States)

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  4. Bond of donor-acceptor interaction in metal-ligand system with energies of Fermi electrons

    International Nuclear Information System (INIS)

    Vlasov, Yu.V.; Khentov, V.Ya.; Velikanova, L.N.; Semchenko, V.V.

    1993-01-01

    Role of quantum nature of metal (W, Mo and others) in donor-acceptor interaction of metal salicylalaniline - aprotic solvent was discussed. The dependence of dissolution rate and activation energy of donor-acceptor interaction on electron energy was established

  5. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    International Nuclear Information System (INIS)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.

    2016-01-01

    We study the electronic structure of C 60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C 60 -pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C 60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C 61 -butyric acid methyl ester (PCBM)-P3MT complex.

  6. A series of luminescent Re(I) complexes with electron-donor/acceptor moieties: Synthesis, characterization, and photoluminescence

    International Nuclear Information System (INIS)

    Ge Hu; Qing She; Lei Guo

    2012-01-01

    In this paper, we synthesize three Re(I) complexes of Re(CO) 3 (PPO)Br, Re(CO) 3 (PTO)Br, and Re(CO) 3 (PBI)Br, where PPO=2-phenyl-5-(pyridin-2-yl)-1,3,4-oxadiazole, PTO=2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole, PBI=2-(pyridin-2-yl)-1H-benzo[d]imidazole. Their single crystals and photophysical properties are measured and discussed in detail. The correlation between ligand structure and corresponding PL characteristics of Re(I) complex has been investigated. It is found that a ligand with strong electron-donor can efficiently increase both absorption and emissive energy of Re(I) complex. In addition, electron-rich ligand can increase the electron density of the complex and thus enhance the oscillator strength of electronic transition, improving the photoluminescence performance. - Highlights: ► Three novel phosphorescent Re(I) complexes are synthesized. ► Molecular structures, photophysical, and electronic properties are studied. ► Strong electron-donor can increase emissive energy. ► Electron-rich ligand can enhance the oscillator strength of electronic transition.

  7. On chirality transfer in electron donor-acceptor complexes. A prediction for the sulfinimine···BF3 system.

    Science.gov (United States)

    Rode, Joanna E; Dobrowolski, Jan Cz

    2012-01-01

    Stabilization energies of the electron donor-acceptor sulfinimine···BF(3) complexes calculated at either the B3LYP/aug-cc-pVTZ or the MP2/aug-cc-pVTZ level do not allow to judge, whether the N- or O-atom in sulfinimine is stronger electron-donor to BF(3) . The problem seems to be solvable because chirality transfer phenomenon between chiral sulfinimine and achiral BF(3) is expected to be vibrational circular dichroism (VCD) active. Moreover, the bands associated with the achiral BF(3) molecule are predicted to be the most intense in the entire spectrum. However, the VCD band robustness analyses show that most of the chirality transfer modes of BF(3) are unreliable. Conversely, variation of VCD intensity with change of intermolecular distance, angle, and selected dihedrals between the complex partners shows that to establish the robustness of chirality transfer mode. It is also necessary to determine the influence of the potential energy surface (PES) shape on the VCD intensity. At the moment, there is still no universal criterion for the chirality transfer mode robustness and the conclusions formulated based on one system cannot be directly transferred even to a quite similar one. However, it is certain that more attention should be focused on relation of PES shape and the VCD mode robustness problem. Copyright © 2011 Wiley Periodicals, Inc.

  8. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    International Nuclear Information System (INIS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-01-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  9. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana A.

    2016-11-30

    The efficiency of photoconversion systems, such as organic photovoltaic (OPV) cells, is largely controlled by a series of fundamental photophysical processes occurring at the interface before carrier collection. A profound understanding of ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) is the key determinant to improving the overall performances of photovoltaic devices. The discussion in this dissertation primarily focuses on the relevant parameters that are involved in photon absorption, exciton separation, carrier transport, carrier recombination and carrier collection in organic photovoltaic devices. A combination of steady-state and femtosecond broadband transient spectroscopies was used to investigate the photoinduced charge carrier dynamics in various donor-acceptor systems. Furthermore, this study was extended to investigate some important factors that influence charge transfer in donor-acceptor systems, such as the morphology, energy band alignment, electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance are found. In this thesis, we explored the significant impacts of ultrafast charge separation and charge recombination at donor/acceptor (D/A) interfaces on the performance of a conjugated polymer PTB7-Th device with three fullerene acceptors: PC71BM, PC61BM and IC60BA. Time-resolved laser spectroscopy and high-resolution electron microscopy can illustrate the basis for fabricating solar cell devices with improved performances. In addition, we studied the effects of the incorporation of heavy metals into π-conjugated chromophores on electron transfer by monitoring the triplet state lifetime of the oligomer using transient absorption spectroscopy, as understanding the mechanisms controlling intersystem crossing and

  10. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Science.gov (United States)

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  11. Nanographenes as electron-deficient cores of donor-acceptor systems.

    Science.gov (United States)

    Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus

    2018-05-15

    Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.

  12. Conformational dynamics of semiflexibly bridged electron donor-acceptor systems comprising long aliphatic tails

    NARCIS (Netherlands)

    Bleisteiner, B.; Marian, T.; Schneider, S.; Brouwer, A.M.; Verhoeven, J.W.

    2001-01-01

    In continuation of our previous work on the conformational dynamics (harpooning mechanism) of semiflexibly bridged electron donor-acceptor systems we have studied a derivative with two long aliphatic chains tethered to the donor and acceptor moieties, respectively. The fitting of the time- and

  13. Application of soft- and hard-modelling approaches to resolution of kinetics of electron donor-acceptor complex formation of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with imipramine in different solutions

    International Nuclear Information System (INIS)

    Hasani, Masoumeh; Shariati-Rad, Masoud; Abdollahi, Hamid

    2009-01-01

    Kinetics of electron donor-acceptor (EDA) complex formation of imipramine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was investigated spectrophotometrically in acetonitrile, 1,2-dichloroethane, and chloroform solutions using soft- and hard-modelling approaches. From the results of exploratory analysis of kinetic data and the spectral changes by soft-modelling approaches, evolving factor analysis (EFA) and orthogonal projection approach (OPA), a consecutive two-steps reaction with two intermediates was proposed for the process in acetonitrile and 1,2-dichloroethane media and one with a single intermediate in chloroform solution. Secondly, by applying, multivariate nonlinear least squares hard-modelling approach on the collected experimental kinetic data matrix, the nonlinear parameters (rate constants) as well as the linear parameters (spectral profiles) were obtained by fitting the collected experimental kinetic data matrix to the proposed model. Small values of standard deviation in the resulting parameters and sum of squares of the residuals (ssq) obtained showed the proper selection of the model. Furthermore, the values of lack of fit and percent of explained variance confirmed the correct identified models. Identification of the model with the aid of soft-modelling approaches followed by application of the hard-modelling approaches decreases significantly the rotational ambiguity associated with the obtained concentration and spectral profiles. Variations in the kinetic constants were in complete agreement with the model proposed and the solvent polarities

  14. Application of soft- and hard-modelling approaches to resolution of kinetics of electron donor-acceptor complex formation of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with imipramine in different solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hasani, Masoumeh [Faculty of Chemistry, Bu-Ali Sina University, Mahdieh, Hamedan, 65174 (Iran, Islamic Republic of)], E-mail: hasani@basu.ac.ir; Shariati-Rad, Masoud [Faculty of Chemistry, Bu-Ali Sina University, Mahdieh, Hamedan, 65174 (Iran, Islamic Republic of); Abdollahi, Hamid [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2009-03-23

    Kinetics of electron donor-acceptor (EDA) complex formation of imipramine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was investigated spectrophotometrically in acetonitrile, 1,2-dichloroethane, and chloroform solutions using soft- and hard-modelling approaches. From the results of exploratory analysis of kinetic data and the spectral changes by soft-modelling approaches, evolving factor analysis (EFA) and orthogonal projection approach (OPA), a consecutive two-steps reaction with two intermediates was proposed for the process in acetonitrile and 1,2-dichloroethane media and one with a single intermediate in chloroform solution. Secondly, by applying, multivariate nonlinear least squares hard-modelling approach on the collected experimental kinetic data matrix, the nonlinear parameters (rate constants) as well as the linear parameters (spectral profiles) were obtained by fitting the collected experimental kinetic data matrix to the proposed model. Small values of standard deviation in the resulting parameters and sum of squares of the residuals (ssq) obtained showed the proper selection of the model. Furthermore, the values of lack of fit and percent of explained variance confirmed the correct identified models. Identification of the model with the aid of soft-modelling approaches followed by application of the hard-modelling approaches decreases significantly the rotational ambiguity associated with the obtained concentration and spectral profiles. Variations in the kinetic constants were in complete agreement with the model proposed and the solvent polarities.

  15. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana

    2016-01-01

    , electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance

  16. Spectroscopic Studies of the Electron Donor-Acceptor Interaction of ...

    African Journals Online (AJOL)

    Conformity with Beer\\'s law was evident over the concentration range 0.8 – 8.0 mg/100 ml of chloroquine phosphate; thus making it possible for an accurate quantitative determination of the drug. Conclusion: The studied complexation phenomenon formed a basis for the quantitative determination of both pure samples and ...

  17. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.; Risko, Chad; Aziz, Saadullah Gary; Da Silva Filho, Demé trio A Da Silva; Bredas, Jean-Luc

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  18. Thermodynamic properties of donor-acceptor complexes of tertiary amine with aryl ketones in hexane medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R. [Department of Physics, The New College, Chennai 600 014 (India); Jayakumar, S. [Department of Physics, R.K.M. Vivekananda College, Chennai 600 004 (India); Kannappan, V., E-mail: vkannappan@hotmail.com [Department of Chemistry, Presidency College, Chennai 600 005 (India)

    2012-05-20

    Highlights: Black-Right-Pointing-Pointer Ultrasonic scan is carried out on ternary systems of aromatic tertiary amine and three aryl ketones. Black-Right-Pointing-Pointer Formation of CT complexes is found between tertiary amine with aryl ketones. Black-Right-Pointing-Pointer Stability constant values are computed by ultrasonic and spectral methods are compared. Black-Right-Pointing-Pointer The trend in the 'K' suggests that substituents in ketones influence the stabilities of these complexes. Black-Right-Pointing-Pointer The thermodynamic parameters suggest CT interaction is exothermic and the complexes are thermodynamically stable. - The thermodynamic stability of complexes formed between N,N-dimethylaniline (DMANI) and three ketones, namely, acetophenone (ACP), 4-chloroactophenone (ClACP) and 4-methylacetophenone (MACP) in n-hexane is extensively investigated by spectral and ultrasonic methods. The ultrasound scan was carried out in the temperature range 208.15-313.15 K and at atmospheric pressure on solutions containing equimolar concentrations of components ranging from 0.025 to 0.2 M. The existence of solute-solute interactions has also been confirmed through electronic absorption spectra analyzed with Benesi-Hildebrand theory at 303.15 K. The stability constants of the donor-acceptor complexes determined both by spectroscopic and ultrasonic methods are comparable and follow similar trends. The trend in the formation constants is discussed with structures of the components. The thermodynamic behavior of the systems was explained through the computed values of the free energy ({Delta}G), enthalpy ({Delta}H) and entropy ({Delta}S) changes for complex formation are computed and discussed.

  19. Complexes due to donor-acceptor-type transitions in GaAs

    International Nuclear Information System (INIS)

    Reynolds, D.C.; Litton, C.W.; Almassy, R.J.; McCoy, G.L.; Nam, S.B.

    1980-01-01

    A sharp line transition at 1.51385 eV has been observed in the photoluminescence spectra of an epitaxially grown crystal of GaAs. A Si 3 N 4 cap was applied by plasma deposition and the crystal was then annealed at 850 0 C for 15 min. The sharp emission line was observed after annealing. This transition was analyzed in perturbing magnetic and strain fields and is shown to result from a donor-acceptor-type complex. Three additional sharp line transitions are reported and the behavior of all of these transitions is compared with the behavior of similar transitions reported in the literature. Models for the complexes involved are re-examined and components of the complexes are suggested. All of the sharp line transitions were introduced in the growing process with the exception of the 1.51385-eV line which was introduced in the capping and annealing process

  20. Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes

    Science.gov (United States)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  1. Quantum-chemical ab initio and B3LYP study of donor-acceptor complexes of gallium halides with pyridine

    International Nuclear Information System (INIS)

    Timoshkin, A.Yu.; Suvorov, A.V.; Shefer, G.F.

    1999-01-01

    By the ab initio and density functional methods the structural characteristics and vibrational spectra of gallium iodide donor-acceptor complexes with pyridine have been calculated. The standard thermodynamic characteristics of GaI 3 Py complex dissociation in gaseous phase have been calculated, as well. Short I-H intramolecular distances suggest that hydrogen iodide elimination with Ga-N chemical bond retention is the first stage of the complex pyrolysis [ru

  2. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  3. 2010 Electron Donor-Acceptor Interactions Gordon Research Conference, August 8 - 13, 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Meyer

    2010-08-18

    The Gordon Research Conference on Electron Donor Acceptor Interactions (GRC EDAI) presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer Processes and Energy Conversion. The fundamental concepts underpinning the field of electron transfer and charge transport phenomena are understood, but fascinating experimental discoveries and novel applications based on charge transfer processes are expanding the discipline. Simultaneously, global challenges for development of viable and economical alternative energy resources, on which many researchers in the field focus their efforts, are now the subject of daily news headlines. Enduring themes of this conference relate to photosynthesis, both natural and artificial, and solar energy conversion. More recent developments include molecular electronics, optical switches, and nanoscale charge transport structures of both natural (biological) and man-made origin. The GRC EDAI is one of the major international meetings advancing this field, and is one of the few scientific meetings where fundamental research in solar energy conversion has a leading voice. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices. In addition to disseminating the latest advances in the field of electron transfer processes, the conference is an excellent forum for scientists from different disciplines to meet and initiate new directions; for scientists from different countries to make contacts; for young scientists to network and establish personal contacts with other young scientists and with established scientists who, otherwise, might not have the time to meet young people. The EDAI GRC also features an interactive atmosphere with lively poster sessions, a few of which are selected for oral presentations.

  4. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    Energy Technology Data Exchange (ETDEWEB)

    GUILFORD JONES; S ST

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  5. Selective and non-extractive spectrophotometric determination of cefdinir in formulations based on donor-acceptor complex formation

    Directory of Open Access Journals (Sweden)

    Babita K. Singh

    2010-01-01

    Full Text Available Cefdinir has broad spectrum of activity and high prescription rates, hence its counterfeiting seems imminent. We have proposed a simple, fast, selective and non-extractive spectrophotometric method for the content assay of cefdinir in formulations. The method is based on complexation of cefdinir and Fe under reducing condition in a buffered medium (pH 11 to form a magenta colored donor-acceptor complex (λ max = 550 nm; apparent molar absorptivity = 3720 L mol-1 cm-1. No other cephalosporins, penicillins and common excipients interfere under the test conditions. The Beer's law is followed in the concentration range 8-160 µg mL-1.

  6. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    Science.gov (United States)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  7. Assessment of Ab Initio and Density Functional Theory Methods for the Excitations of Donor-Acceptor Complexes: The Case of the Benzene-Tetracyanoethylene Model

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2018-04-01

    Full Text Available The understanding of the excited-state properties of electron donors, acceptors and their interfaces in organic optoelectronic devices is a fundamental issue for their performance optimization. In order to obtain a balanced description of the different excitation types for electron-donor-acceptor systems, including the singlet charge transfer (CT, local excitations, and triplet excited states, several ab initio and density functional theory (DFT methods for excited-state calculations were evaluated based upon the selected model system of benzene-tetracyanoethylene (B-TCNE complexes. On the basis of benchmark calculations of the equation-of-motion coupled-cluster with single and double excitations method, the arithmetic mean of the absolute errors and standard errors of the electronic excitation energies for the different computational methods suggest that the M11 functional in DFT is superior to the other tested DFT functionals, and time-dependent DFT (TDDFT with the Tamm–Dancoff approximation improves the accuracy of the calculated excitation energies relative to that of the full TDDFT. The performance of the M11 functional underlines the importance of kinetic energy density, spin-density gradient, and range separation in the development of novel DFT functionals. According to the TDDFT results, the performances of the different TDDFT methods on the CT properties of the B-TCNE complexes were also analyzed.

  8. Rate dependence of electron transfer on donor-acceptor separation and on free enthalpy change. The Ru(bpy)32+/viologen2+ system

    International Nuclear Information System (INIS)

    Rau, H.; Frank, R.; Greiner, G.

    1986-01-01

    By attachment of hydrocarbon chains of different lengths to the bipyridyl ligands in Ru(bpy) 3 2+ we have adjusted the donor-acceptor separation in the electron-transfer system Ru[(C/sub n/H/sub 2n+1/) 2 bpyl 3 2+ /methylviolgen. Two electron-transfer reactions with different ΔG are investigated in fluid solution: the quenching of the excited complexes by methylviologen (MV 2+ ) which is exergonic with -0.4 eV and the thermal back electron transfer which is exergonic with -1.7 eV. We observe an exponential decrease of the quenching rate on distance. The back electron transfer is independent of donor-acceptor separation; electron transfer is found to take place at distances of 1.5 nm and more. The results are discussed in terms of a hypothesis on the interdependence of transfer distance and free enthalpy change and compared with current theories. In the framework of the simple classical Marcus model, the Marcus equation relating transfer rate and free enthalpy change is transposed into the Rehm-Weller equation by simple mathematical manipulations and the implications of this are discussed

  9. Highly solvatochromic emission of electron donor-acceptor compounds containing propanedioato boron electron acceptors

    NARCIS (Netherlands)

    Brouwer, A.M.; Bakker, N.A.C.; Wiering, P.G.; Verhoeven, J.W.

    1991-01-01

    Light-induced electron transfer occurs in bifunctional compounds consisting of 1,3-diphenylpropanedioato boron oxalate or fluoride electron acceptors and simple aromatic electron-donor groups, linked by a methylene bridge; fluorescence from the highly polar charge-transfer excited state is

  10. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms

    International Nuclear Information System (INIS)

    Zhang Yonghui; Zhou Kaige; Xie Kefeng; Zeng Jing; Zhang Haoli; Peng Yong

    2010-01-01

    Using density functional theory and nonequilibrium Green's function (NEGF) formalism, we have theoretically investigated the binding of organic donor, acceptor and metal atoms on graphene sheets, and revealed the effects of the different noncovalent functionalizations on the electronic structure and transport properties of graphene. The adsorptions of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tetrathiafulvalene (TTF) induce hybridization between the molecular levels and the graphene valence bands, and transform the zero-gap semiconducting graphene into a metallic graphene. However, the current versus voltage (I-V) simulation indicates that the noncovalent modifications by organic molecules are not sufficient to significantly alter the transport property of the graphene for sensing applications. We found that the molecule/graphene interaction could be dramatically enhanced by introducing metal atoms to construct molecule/metal/graphene sandwich structures. A chemical sensor based on iron modified graphene shows a sensitivity two orders of magnitude higher than that of pristine graphene. The results of this work could help to design novel graphene-based sensing or switching devices.

  11. 2008 Electron Donor Acceptor Interactions Gordon Research Conference-August 3-8, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Malcolm [Univ. of North Carolina, Chapel Hill, NC (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2009-09-19

    The conference presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer and Transport in Molecular and Nano-scale Systems. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices.

  12. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    Science.gov (United States)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  13. Simulation of solution phase electron transfer in a compact donor-acceptor dyad.

    Science.gov (United States)

    Kowalczyk, Tim; Wang, Lee-Ping; Van Voorhis, Troy

    2011-10-27

    Charge separation (CS) and charge recombination (CR) rates in photosynthetic architectures are difficult to control, yet their ratio can make or break photon-to-current conversion efficiencies. A rational design approach to the enhancement of CS over CR requires a mechanistic understanding of the underlying electron-transfer (ET) process, including the role of the environment. Toward this goal, we introduce a QM/MM protocol for ET simulations and use it to characterize CR in the formanilide-anthraquinone dyad (FAAQ). Our simulations predict fast recombination of the charge-transfer excited state, in agreement with recent experiments. The computed electronic couplings show an electronic state dependence and are weaker in solution than in the gas phase. We explore the role of cis-trans isomerization on the CR kinetics, and we find strong correlation between the vertical energy gaps of the full simulations and a collective solvent polarization coordinate. Our approach relies on constrained density functional theory to obtain accurate diabatic electronic states on the fly for molecular dynamics simulations, while orientational and electronic polarization of the solvent is captured by a polarizable force field based on a Drude oscillator model. The method offers a unified approach to the characterization of driving forces, reorganization energies, electronic couplings, and nonlinear solvent effects in light-harvesting systems.

  14. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  15. Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface

    Science.gov (United States)

    Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname

    2018-05-01

    Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.

  16. Fascinating transformations of donor-acceptor complexes of group 13 metal (Al, Ga, In) derivatives with nitriles and isonitriles: from monomeric cyanides to rings and cages.

    Science.gov (United States)

    Timoshkin, Alexey Y; Schaefer, Henry F

    2003-08-20

    Formation of the donor-acceptor complexes of group 13 metal derivatives with nitriles and isonitriles X(3)M-D (M = Al,Ga,In; X = H,Cl,CH(3); D = RCN, RNC; R = H,CH(3)) and their subsequent reactions have been theoretically studied at the B3LYP/pVDZ level of theory. Although complexation with MX(3) stabilizes the isocyanide due to the stronger M-C donor-acceptor bond, this stabilization (20 kJ mol(-1) at most) is not sufficient to make the isocyanide form more favorable. Relationships between the dissociation enthalpy DeltaH degrees (298)(diss), charge-transfer q(CT), donor-acceptor bond energy E(DA), and the shift of the vibrational stretching mode of the CN group upon coordination Deltaomega(CN) have been examined. For a given metal center, there is a good correlation between the energy of the donor-acceptor bond and the degree of a charge transfer. Prediction of the DeltaH degrees (298)(diss) on the basis of the shift of CN stretching mode is possible within limited series of cyanide complexes (for the fixed M,R); in contrast, complexes of the isocyanides exhibit very poor Deltaomega(CN) - DeltaH degrees (298)(diss) correlation. Subsequent X ligand transfer and RX elimination reactions yielding monomeric (including donor-acceptor stabilized) and variety of oligomeric cage and ring compounds with [MN]n, [MC]n, [MNC]n cores have been considered and corresponding to thermodynamic characteristics have been obtained for the first time. Monomeric aluminum isocyanides X(2)AlNC are more stable compared to Al-C bonded isomers; for gallium and indium situation is reversed, in qualitative agreement with Pearson's HSAB concept. Substitution of X by CN in MX(3) increases the dissociation enthalpy of the MX(2)CN-NH(3) complex compared to that for MX(3)-NH(3), irrespective of the substituent X. Mechanisms of the initial reaction of the X transfer have been studied for the case X = R = H. The process of hydrogen transfer from the metal to the carbon atom in H(3)M-CNH is

  17. Photochromic and electrochromic performances of new types of donor/acceptor systems based on crosslinked polyviologen film and electron donors

    International Nuclear Information System (INIS)

    Gao Liping; Ding Guojing; Li Chaolong; Wang Yuechuan

    2011-01-01

    Viologen-functionalized copolymer COPV 2+ was synthesized by copolymer graft-modified, which was crosslinked by NH 3 .H 2 O gas-fumigated at 25 deg. C for 4 h due to the condensation of the siloxanes of COPV 2+ film. Simultaneously, different donor/acceptor systems had been prepared based on crosslinked polyviologen film (COPV 2+ ) and N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD) or hydroxyethylferrocene (HEFc) in order to shorten the response times and improve contrast ratios in response to external photo- and potential stimuli. The evolution of structures from COPO to COPV 2+ is carefully characterized. The COPV 2+ /TMPD and COPV 2+ /HEFc films exhibited both photochromic and electrochromic performances. After UV irradiations, COPV 2+ /TMPD and COPV 2+ /HEFc films changed their colors from colorless to deep blue, while optical transmissions at 610 nm decreased about 64% and 75%, respectively. When removing out from UV irradiation, the colored COPV 2+ /TMPD and COPV 2+ /HEFc films faded to the original colors within about 60 min. When COPV 2+ /TMPD and COPV 2+ /HEFc films were biased with negative voltage of -2.5 V, they changed their colors from colorless to deep blue in 4 s and 3 s, while the optical transmissions at 556 nm decreased about 81% and 75%, respectively. When electric impulse was switched off, the colored COPV 2+ /TMPD and COPV 2+ /HEFc films faded to the original colors within about 7 s and 6 s, respectively.

  18. Evaluating the Performance of DFT Functionals in Assessing the Interaction Energy and Ground-State Charge Transfer of Donor/Acceptor Complexes: Tetrathiafulvalene−Tetracyanoquinodimethane (TTF−TCNQ) as a Model Case

    KAUST Repository

    Sini, Gjergji; Sears, John S.; Brédas, Jean-Luc

    2011-01-01

    We have evaluated the performance of several density functional theory (DFT) functionals for the description of the ground-state electronic structure and charge transfer in donor/acceptor complexes. The tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ) complex has been considered as a model test case. Hybrid functionals have been chosen together with recently proposed long-range corrected functionals (ωB97X, ωB97X-D, LRC-ωPBEh, and LC-ωPBE) in order to assess the sensitivity of the results to the treatment and magnitude of exact exchange. The results show an approximately linear dependence of the ground-state charge transfer with the HOMO TTF-LUMOTCNQ energy gap, which in turn depends linearly on the percentage of exact exchange in the functional. The reliability of ground-state charge transfer values calculated in the framework of a monodeterminantal DFT approach was also examined. © 2011 American Chemical Society.

  19. Evaluating the Performance of DFT Functionals in Assessing the Interaction Energy and Ground-State Charge Transfer of Donor/Acceptor Complexes: Tetrathiafulvalene−Tetracyanoquinodimethane (TTF−TCNQ) as a Model Case

    KAUST Repository

    Sini, Gjergji

    2011-03-08

    We have evaluated the performance of several density functional theory (DFT) functionals for the description of the ground-state electronic structure and charge transfer in donor/acceptor complexes. The tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ) complex has been considered as a model test case. Hybrid functionals have been chosen together with recently proposed long-range corrected functionals (ωB97X, ωB97X-D, LRC-ωPBEh, and LC-ωPBE) in order to assess the sensitivity of the results to the treatment and magnitude of exact exchange. The results show an approximately linear dependence of the ground-state charge transfer with the HOMO TTF-LUMOTCNQ energy gap, which in turn depends linearly on the percentage of exact exchange in the functional. The reliability of ground-state charge transfer values calculated in the framework of a monodeterminantal DFT approach was also examined. © 2011 American Chemical Society.

  20. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    OpenAIRE

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-01-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

  1. The electronic structure and optical properties of donor-acceptor codoped TiO{sub 2} nanosheets from hybrid functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanyu; Zhou, Wei; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2017-01-15

    Here we explore the effect of charge-compensated donor-acceptor pairs (2Nb + C), (2Ta + C), (Mo + 2N) and (W + 2N) codoping on the electronic and optical properties of TiO{sub 2} nanosheets. The results demonstrate that the (2Nb + C) and (2Ta + C) codoping create the delocalized midgap states in TiO{sub 2} nanosheets. The appearance of impurity states extends the absorption edge of nanosheets to the visible light region. The interaction of the host and the foreign chiefly occurs at the band edges of the N-related systems, which reduces the band-gap by 0.5 eV. Although this large band-gap still renders the visible light inefficient, the enhanced UV light absorption has been observed. Besides, the position of absorption edge is independent on the doping concentration, but the higher codoping concentration yields stronger light absorption. Moreover, the band edge alignment verifies that the C-related systems are desirable visible and UV-light-driven photocatalysts for overall water splitting. - Highlights: • A systematical study has been employed on 2D TiO{sub 2} nanosheets with the donor-acceptor codoping. • The (2Nb/2Ta + C) codoping in TiO{sub 2} nanosheets creates the delocalized midgap states. • The C-related systems are desirable visible and UV-light-driven photocatalysts. • The water splitting power of (Mo/W + 2N) codoped systems is improved with enhanced UV light response. • The high doping concentration means the stronger absorption ability of the solar energy.

  2. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  3. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    Energy Technology Data Exchange (ETDEWEB)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M., E-mail: champ@neu.edu [Department of Physics and Center for Interdisciplinary Research on Complex Systems,Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  4. Real-Space Bonding Indicator Analysis of the Donor-Acceptor Complexes X3BNY3, X3AlNY3, X3BPY3, and X3AlPY3 (X, Y = H, Me, Cl).

    Science.gov (United States)

    Mebs, Stefan; Beckmann, Jens

    2017-10-12

    Calculations of real-space bonding indicators (RSBI) derived from Atoms-In-Molecules (AIM), Electron Localizability Indicator (ELI-D), Non-Covalent Interactions index (NCI), and Density Overlap Regions Indicator (DORI) toolkits for a set of 36 donor-acceptor complexes X 3 BNY 3 (1, 1a-1h), X 3 AlNY 3 (2, 2a-2h), X 3 BPY 3 (3, 3a-3h), and X 3 AlPY 3 (4, 4a-4h) reveal that the donor-acceptor bonds comprise covalent and ionic interactions in varying extents (X = Y = H for 1-4; X = H, Y = Me for 1a-4a; X = H, Y = Cl for 1b-4b; X = Me, Y = H for 1c-4c; X, Y = Me for 1d-4d; X = Me, Y = Cl for 1e-4e; X = Cl, Y = H for 1f-4f; X = Cl, Y = Me for 1g-4g; X, Y = Cl for 1h-4h). The phosphinoboranes X 3 BPY 3 (3, 3a-3h) in general and Cl 3 BPMe 3 (3f) in particular show the largest covalent contributions and the least ionic contributions. The aminoalanes X 3 AlNY 3 (2, 2a-2h) in general and Me 3 AlNCl 3 (2e) in particular show the least covalent contributions and the largest ionic contributions. The aminoboranes X 3 BNY 3 (1, 1a-1h) and the phosphinoalanes X 3 AlPY 3 (4, 4a-4h) are midway between phosphinoboranes and aminoalanes. The degree of covalency and ionicity correlates with the electronegativity difference BP (ΔEN = 0.15) < AlP (ΔEN = 0.58) < BN (ΔEN = 1.00) < AlN (ΔEN = 1.43) and a previously published energy decomposition analysis (EDA). To illustrate the importance of both contributions in Lewis formula representations, two resonance formulas should be given for all compounds, namely, the canonical form with formal charges denoting covalency and the arrow notation pointing from the donor to the acceptor atom to emphasis ionicity. If the Lewis formula mainly serves to show the atomic connectivity, the most significant should be shown. Thus, it is legitimate to present aminoalanes using arrows; however, for phosphinoboranes the canonical form with formal charges is more appropriate.

  5. Tunneling Kinetics and Nonadiabatic Proton-Coupled Electron Transfer in Proteins: The Effect of Electric Fields and Anharmonic Donor-Acceptor Interactions.

    Science.gov (United States)

    Salna, Bridget; Benabbas, Abdelkrim; Russo, Douglas; Champion, Paul M

    2017-07-20

    A proper description of proton donor-acceptor (D-A) distance fluctuations is crucial for understanding tunneling in proton-coupled electron transport (PCET). The typical harmonic approximation for the D-A potential results in a Gaussian probability distribution, which does not appropriately reflect the electronic repulsion forces that increase the energetic cost of sampling shorter D-A distances. Because these shorter distances are the primary channel for thermally activated tunneling, the analysis of tunneling kinetics depends sensitively on the inherently anharmonic nature of the D-A interaction. Thus, we have used quantum chemical calculations to account for the D-A interaction and developed an improved model for the analysis of experimental tunneling kinetics. Strong internal electric fields are also considered and found to contribute significantly to the compressive forces when the D-A distance distribution is positioned below the van der Waals contact distance. This model is applied to recent experiments on the wild type (WT) and a double mutant (DM) of soybean lipoxygenase-1 (SLO). The compressive force necessary to prepare the tunneling-active distribution in WT SLO is found to fall in the ∼ nN range, which greatly exceeds the measured values of molecular motor and protein unfolding forces. This indicates that ∼60-100 MV/cm electric fields, aligned along the D-A bond axis, must be generated by an enzyme conformational interconversion that facilitates the PCET tunneling reaction. Based on the absolute value of the measured tunneling rate, and using previously calculated values of the electronic matrix element, the population of this tunneling-active conformation is found to lie in the range 10 -5 -10 -7 , indicating this is a rare structural fluctuation that falls well below the detection threshold of recent ENDOR experiments. Additional analysis of the DM tunneling kinetics leads to a proposal that a disordered (high entropy) conformation could be

  6. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    Science.gov (United States)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  7. Structural and thermodynamic characteristics of X2MYH2 compounds (M Al, Ga, In; X = F, Cl, Br, I; Y = N, P, As) - the products of hydrohalogen elimination from X3MYH3 donor-acceptor complexes

    International Nuclear Information System (INIS)

    Timoshkin, A.Yu.; Suvorov, A.V.; Shefer, G.F.

    2001-01-01

    Geometrical and thermodynamic characteristics of complexes X 2 MYH 2 (M Al, Ga, In; X = F, Cl, Br, I; Y = N, P, As) were obtained by the method of density functional B3LYP. It is shown that nitrogen complexes X 2 MNH 2 have a plane structure, whereas phosphorus and arsenic complexes are pyramidal. In the process of HX elimination the dissociation energy of M-Y bond is strengthened essentially (by 150-270 kJ/mol), which makes dissociation of X 2 MYH 2 into components quite inefficient from thermodynamic viewpoint even at temperatures of about 1000 deg C. Dimerization enthalpies of X 2 MYH 2 lie in the range 40 (Y = P, As) - 260 (Y=N) kJ/mol. Thus, dimers [X 2 MNH 2 ] 2 can be intermediate products in the processes of nitrides chemical precipitation from gaseous phase of donor-acceptor complexes [ru

  8. Methods for the synthesis of donor-acceptor cyclopropanes

    Science.gov (United States)

    Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.

    2018-03-01

    The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.

  9. Dynamics of transfer of electron excitation in a donor-acceptor system with a carbon chain and ways of its relaxation

    Directory of Open Access Journals (Sweden)

    M.M. Sevryukova

    2017-12-01

    Full Text Available The optical properties and dynamics of transport of electron excitation and the ways of its relaxation in the supramolecular D–π–A complex on the basis of merocyanines have been investigated. There have been found two components in the transfer of charge: fast and slow, which correspond to different conformational states of the carbon chain in merocyanines. It was found that the main photoluminescence of the studied molecular solutions of merocyanines by its nature is similar to the exciplex luminescence, as a manifestation of resonant and charge transfer interaction in an excited state. The lifetime in this state is about 2000 ps.

  10. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...... charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...

  11. Photoinduced electron transfer through hydrogen bonds in a rod-like donor-acceptor molecule: A time-resolved EPR study

    International Nuclear Information System (INIS)

    Jakob, Manuela; Berg, Alexander; Stavitski, Eli; Chernick, Erin T.; Weiss, Emily A.; Wasielewski, Michael R.; Levanon, Haim

    2006-01-01

    Light-driven multi-step intramolecular electron transfer in a rod-like triad, in which two of the three redox components are linked by three hydrogen bonds, was studied by time-resolved electron paramagnetic resonance (TREPR) and optical spectroscopies. One part of the molecule consists of a p-methoxyaniline primary electron donor (MeOAn) covalently linked to a 4-aminonaphthalene-1, 8-dicarboximide (6ANI) chromophoric electron acceptor (MeOAn-6ANI). The unsubstituted dicarboximide of 6ANI serves as one half of a hydrogen bonding receptor pair. The other half of the receptor pair consists of a melamine linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) secondary electron acceptor (MEL-NI). TREPR spectroscopy is used to probe the electronic interaction between the radicals within the photogenerated, spin-correlated radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- . The results are compared to those obtained in earlier studies in which MeOAn-6ANI is covalently linked to NI through a 2,5-dimethylphenyl group (MeOAn-6ANI-Ph-NI). We show that the electronic coupling between the oxidized donor and reduced acceptor in the hydrogen-bonded radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- is very similar to that of MeOAn ·+ -6ANI-Ph-NI ·-

  12. Large-Scale Quantum Many-Body Perturbation on Spin and Charge Separation in the Excited States of the Synthesized Donor-Acceptor Hybrid PBI-Macrocycle Complex.

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-03-17

    The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    Science.gov (United States)

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  14. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells

    International Nuclear Information System (INIS)

    Sun, S.-S.

    2005-01-01

    Optimum frontier orbital energy levels and offsets of an organic donor/acceptor binary type photovoltaic material have been analyzed using classic Marcus electron transfer theory in order to achieve the most efficient photo induced charge separation. This study reveals that, an exciton quenching parameter (EQP) yields one optimum donor/acceptor frontier orbital energy offset that equals the sum of the exciton binding energy and the charge separation reorganization energy, where the photo generated excitons are converted into charges most efficiently. A recombination quenching parameter (RQP) yields a second optimum donor/acceptor energy offset where the ratio of charge separation rate constant over charge recombination rate constant becomes largest. It is desirable that the maximum RQP is coincidence or close to the maximum EQP. A third energy offset is also identified where charge recombination becomes most severe. It is desirable that the most severe charge recombination offset is far away from maximum EQP offset. These findings are very critical for evaluating and fine tuning frontier orbital energy levels of a donor/acceptor pair in order to realize high efficiency organic photovoltaic materials

  15. On the Importance of Nonbonding Donor-Acceptor Interactions Involving PO2. Radicals: An ab Initio Study.

    Science.gov (United States)

    Bauzá, Antonio; Frontera, Antonio

    2017-08-18

    In this study, several σ-type and π-hole bonding complexes between PO 2 . radicals and electron-rich entities have been optimized at the RI-MP2/aug-cc-pVQZ level of theory. We have used Cl - , Br - , I - anions, and ethene, ethyne, HCN, HF, and H 2 O as Lewis bases. In addition, we have performed natural bond orbital (NBO) and Mulliken spin density analyses, highlighting the donor-acceptor nature of the interaction. Moreover, an interesting retro-donation from the single electron lone pair of the PO 2 . radical to the Lewis base also contributes to the stabilization of the complexes studied herein. Finally, the Bader's atoms-in-molecules (AIM) analysis of several complexes has been performed to further characterize the interactions discussed herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  17. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  18. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene-Naphthalenediimide Donor-Acceptor Interactions.

    Science.gov (United States)

    Bartocci, Silvia; Berrocal, José Augusto; Guarracino, Paola; Grillaud, Maxime; Franco, Lorenzo; Mba, Miriam

    2018-02-26

    The peptide-driven formation of charge transfer (CT) supramolecular gels featuring both directional hydrogen-bonding and donor-acceptor (D-A) complexation is reported. Our design consists of the coassembly of two dipeptide-chromophore conjugates, namely diphenylalanine (FF) dipeptide conveniently functionalized at the N-terminus with either a pyrene (Py-1, donor) or naphthalene diimide (NDI-1, acceptor). UV/Vis spectroscopy confirmed the formation of CT complexes. FTIR and 1 H NMR spectroscopy studies underlined the pivotal role of hydrogen bonding in the gelation process, and electronic paramagnetic resonance (EPR) measurements unraveled the advantage of preorganized CT supramolecular architectures for charge transport over solutions containing non-coassembled D and A molecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Baris Yilmaz

    2015-08-01

    Full Text Available Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been found to be good candidates for individually dispersing nanotubes in solution. In order to identify the dispersed nanotube species, 2D excitation-emission map and Raman spectroscopy have been performed. Molecular dynamics modelling has been utilized to reveal the binding energies of dispersants with the nanotube surface and the simulation results have been compared with the experimental findings. Both experimental and theoretical results imply the presence of a complex mechanism that governs the extent of dispersion capacity and selectivity of each conjugated polymeric dispersant in solubilizing carbon nanotubes.

  20. Syntheses of donor-acceptor-functionalized dihydroazulenes

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk; Jevric, Martyn; Bond, Andrew

    2014-01-01

    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine-tuning of opt......The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine...

  1. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    International Nuclear Information System (INIS)

    Arora, Vinita; Bakhshi, A.K.

    2010-01-01

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF 2 bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF 2 ) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended π conjugation.

  2. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Vinita [Department of Chemistry, University of Delhi, Delhi 110 007 (India); Bakhshi, A.K., E-mail: akbakhshi2000@yahoo.com [Department of Chemistry, University of Delhi, Delhi 110 007 (India)

    2010-08-03

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF{sub 2} bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF{sub 2}) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended {pi} conjugation.

  3. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.

    2012-02-20

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.; Gili, Enrico; Shahid, Munazza; Rivnay, Jonathan; Salleo, Alberto; Heeney, Martin; Sirringhaus, Henning

    2012-01-01

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    International Nuclear Information System (INIS)

    Mandal, Suman; Pal, Somnath; Hazarika, Abhijit; Kundu, Asish K.; Menon, Krishnakumar S. R.; Rioult, Maxime; Belkhou, Rachid

    2016-01-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO 2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  6. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Pal, Somnath; Hazarika, Abhijit [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 (India); Kundu, Asish K.; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Rioult, Maxime; Belkhou, Rachid [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, 91192 Gif-sur-Yvette (France)

    2016-08-29

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  7. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    International Nuclear Information System (INIS)

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-01-01

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field   10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  8. Graphene oxide-Li(+)@C60 donor-acceptor composites for photoenergy conversion.

    Science.gov (United States)

    Supur, Mustafa; Kawashima, Yuki; Ohkubo, Kei; Sakai, Hayato; Hasobe, Taku; Fukuzumi, Shunichi

    2015-06-28

    An ionic endohedral metallofullerene (Li(+)@C60) with mild hydrophilic nature was combined with graphene oxide (GO) to construct a donor-acceptor composite in neat water. The resulting composite was characterised by UV-Vis and Raman spectroscopy, powder X-ray diffraction, dynamic light scattering measurements and transmission electron microscopy. Theoretical calculations (DFT at the B3LYP/6-31(d) level) were also utilized to gain further insight into the composite formation. As detected by electron paramagnetic resonance spectroscopy, photoexcitation of the GO-Li(+)@C60 composite results in electron transfer from GO to the triplet excited state of Li(+)@C60, leading to photocurrent generation at the OTE/SnO2 electrode.

  9. Excitation and recombination of donor-acceptor pairs in ZnTe

    International Nuclear Information System (INIS)

    Nakashima, S.; Yasuda, S.

    1979-01-01

    The photoluminescence spectra and its excitation spectra of the donor-acceptor pairs are observed in ZnTe crystals doped with Li and As in the region below the bandgap energy. The relaxation of electrons and holes into the first excited state of d-a pairs is studied for the three excitation processes: (1) bound-to-bound transitions, (2) bound-to-free transitions, and (3) free-to-free transitions. It is concluded that most of the electrons and holes at the excited states of each impurity level are relaxed rapidly into their ground states before the occurrence of the recombination involving the excited states. For the excitation process (2), conduction electrons are preferentially trapped by positively charged pairs. The redistribution of bound holes by hopping is suggested to explain the broad d-a emission band observed for the bound-to-free excitation for very distant pairs. (author)

  10. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  11. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Almonacid, Hannia; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  12. Generation of a Multicomponent Library of Disulfide Donor-Acceptor Architectures Using Dynamic Combinatorial Chemistry.

    Science.gov (United States)

    Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R

    2015-07-17

    We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines.

  13. Isolation by crystallization of translational isomers of a bistable donor-acceptor [2]catenane

    Science.gov (United States)

    Wang, Cheng; Olson, Mark A.; Fang, Lei; Benítez, Diego; Tkatchouk, Ekaterina; Basu, Subhadeep; Basuray, Ashish N.; Zhang, Deqing; Zhu, Daoben; Goddard, William A.; Stoddart, J. Fraser

    2010-01-01

    The template-directed synthesis of a bistable donor-acceptor [2]catenane wherein both translational isomers—one in which a tetrathiafulvalene unit in a mechanically interlocked crown ether occupies the cavity of a cyclobis(paraquat-p-phenylene) ring and the other in which a 1,5-dioxynaphthalene unit in the crown ether resides inside the cavity of the tetracationic cyclophane—exist in equilibrium in solution, has led to the isolation and separation by hand picking of single crystals colored red and green, respectively. These two crystalline co-conformations have been characterized separately at both the molecular and supramolecular levels, and also by dynamic NMR spectroscopy in solution where there is compelling evidence that the mechanically interlocked molecules are present as a complex mixture of translational, configurational, and conformational isomers wherein the isomerization is best described as being a highly dynamic and adaptable phenomenon. PMID:20663950

  14. α,β-Unsubstituted meso-Positioning Thienyl BODIPY: A Promising Electron Deficient Building Block for the Development of Near Infrared (NIR) p-type Donor-Acceptor (D-A) Conjugated Polymers

    KAUST Repository

    Squeo, Benedetta

    2018-02-27

    It is demonstrated that α,β-unsubstituted meso-positioning thienyl BODIPY is an electron deficient unit that leads to the development of ultra low optical band gap (Egopt < 1 eV) π-conjugated D-A quarterthiophene polymers. Furthermore, it is revealed that the optoelectronic, electrochemical and charge transporting properties of the resulting α,β-unsubstituted meso-positioning thienyl BODIPY quaterthiophene-based polymers are alkyl side chain positioning dependent. Tail-to-tail (TT) positioning of the alkyl side chains at the two central thiophenes of the quaterthiophene segment results to lower Egopt, higher energy levels and increased hole mobility as compared to head-to-head (HH) positioning. Finally, even though the synthesized polymers exhibit high electron affinity, higher even to that of the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), they present only p-type behaviour in field effect transistors (FETs) independent to the alkyl side chain positioning.

  15. Merocyanines: polyene-polymethine transition in donor-acceptor-substituted stilbenes and polyenes

    International Nuclear Information System (INIS)

    Rettig, Wolfgang; Dekhtyar, Marina

    2003-01-01

    Three series of donor-acceptor-substituted conjugated compounds, namely, stilbenes, the open-chain polyenes of equivalent length, and the species of intermediate structure (polyenes terminated with only one phenyl ring) have been studied by the AM1 and HMO methods to elucidate and compare the structural prerequisites of the ideal polymethinic state ('cyanine limit'). The transition from polyenic to polymethinic properties has been traced in terms of bond-length (bond-order) alternation using the variation of terminal donor and acceptor substituents. Stilbenes manifest themselves as notably 'retarded' polyenes since a larger electronic asymmetry is necessary for them to reach the same degree of polymethinic character. The ground and the excited state have been shown to differ much more strongly for stilbenes than for polyenes with respect to the position of the bond equalization point on the scale of donor-acceptor difference. For the compounds containing one phenyl ring, the features revealed are intermediate between stilbenes and polyenes. The large S 0 -S 1 discrepancy in terms of bond alternation is a general property of aromatic ring-terminated chains (stilbenes) and is related to the influence of the aromatic character which can be quantified in this way. In this context, the most relevant definition for the cyanine limit (based on the bond invariance upon excitation) was selected from the existing definitions. The major trends revealed in the polyenic/polymethinic behaviour of the molecules can be interpreted on a topological basis within HMO or even simpler models with some additional influence due to the interelectronic repulsion which is taken into account in the AM1 treatment

  16. Self-assembly of Hydrazide-based Heterodimers Driven by Hydrogen Bonding and Donor-Acceptor Interaction

    Institute of Scientific and Technical Information of China (English)

    FENG,Dai-Jun; WANG,Peng; LI,Xiao-Qiang; LI,Zhan-Ting

    2006-01-01

    A new series of hydrogen bonding-driven heterodimers have been self-assembled in chloroform from hydrazide-based monomers. Additional intermolecular donor-acceptor interaction between the electron-rich bis(p-phenylene)-34-crown-10 unit and the electron-deficient naphthalene diimide unit has been utilized to increase the stability of the dimmers, and pronounced cooperativity of the two discrete non-covalent forces to stabilize the dimer has been revealed by the quantitative 1H (2D) NMR and UV-Vis experiments.

  17. Electronic and chemical properties of donor, acceptor centers in graphene

    Czech Academy of Sciences Publication Activity Database

    Telychko, Mykola; Mutombo, Pingo; Merino, P.; Hapala, Prokop; Ondráček, Martin; Bocquet, F.C.; Sforzini, J.; Stetsovych, Oleksandr; Vondráček, Martin; Jelínek, Pavel; Švec, Martin

    2015-01-01

    Roč. 9, č. 9 (2015), 9180-9187 ISSN 1936-0851 R&D Projects: GA ČR GA15-07172S; GA MŠk(CZ) LM2011029; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : graphene * doping * AFM * STM * DFT * defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.334, year: 2015

  18. Donor-acceptor-donor thienyl/bithienyl-benzothiadiazole/quinoxaline model oligomers: experimental and theoretical studies.

    Science.gov (United States)

    Pina, João; de Melo, J Seixas; Breusov, D; Scherf, Ullrich

    2013-09-28

    A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.

  19. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    Science.gov (United States)

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  20. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    Science.gov (United States)

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  1. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Joël Teuscher

    2017-11-01

    Full Text Available Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation, which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  2. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  3. Design principle for efficient charge separation at the donor-acceptor interface for high performance organic solar cell device

    Science.gov (United States)

    Nie, Wanyi; Gupta, Gautam; Crone, Brian; Wang, Hsing-Lin; Mohite, Aditya; MPA-11 Material synthesis and integrated device Team; MPA-chemistry Team

    2014-03-01

    The performance of donor (D) /acceptor (A) structure based organic electronic devices, such as solar cell, light emitting devices etc., relays on the charge transfer process at the interface dramatically. In organic solar cell, the photo-induced electron-hole pair is tightly bonded and will form a charge transfer (CT) state at the D/A interface after dissociation. There is a large chance for them to recombine through CT state and thus is a major loss that limit the overall performance. Here, we report three different strategies that allow us to completely suppress the exciplex (or charge transfer state) recombination between any D/A system. We observe that the photocurrent increases by 300% and the power conversion efficiency increases by 4-5 times simply by inserting a spacer layer in the form of an a) insulator b) Oliogomer or using a c) heavy atom at the donor-acceptor interface in a P3HT/C60 bilayer device. By using those different functional mono layers, we successfully suppressed the exciplex recombination in evidence of increased photocurrent and open circuit voltage. Moreover, these strategies are applicable universally to any donor-acceptor interface. And we demonstrated such strategies in a bulk-heterojunction device which improved the power conversion efficiency from 3.5% up to 4.6%.

  4. A Coupling of Benzamides and Donor/Acceptor Diazo–Compounds to form γ-Lactams via Rh(III)–Catalyzed C–H Activation

    Science.gov (United States)

    Hyster, Todd K.; Ruhl, Kyle E.; Rovis, Tomislav

    2013-01-01

    The coupling of O-pivaloyl benzhydroxamic acids with donor/acceptor diazo compounds provides iso-indolones in high yield. The reaction tolerates a broad range of benzhydroxamic acids and diazo compounds including substituted 2,2,2-trifluorodiazo ethanes. Mechanistic experiments suggest that C–H activation is turnover limiting and irreversible, while insertion of the diazo compound favors electron deficient substrates. PMID:23548055

  5. Organic charge transfer phase formation in thin films of the BEDT-TTF/TCNQ donor-acceptor system

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Keller, K.; Huth, M.

    2009-01-01

    We have performed charge transfer phase formation studies on the donor/acceptor system bis-(ethylendithio)tetrathiafulvalene (BEDT-TTF)/tetracyanoquinodimethane,(TCNQ) by means of physical vapor deposition. We prepared donor/acceptor bilayer structures on glass and Si(100)/SiO substrates held...

  6. Tailored Band Gaps in Sulfur- and Nitrogen-Containing Porous Donor-Acceptor Polymers

    Czech Academy of Sciences Publication Activity Database

    Schwarz, D.; Kochergin, Y. S.; Acharjya, A.; Ichangi, Arun; Opanasenko, Maksym; Čejka, Jiří; Lappan, U.; Arki, P.; He, J.; Schmidt, J.; Nachtigall, P.; Thomas, A.; Tarábek, Ján; Bojdys, Michael J.

    2017-01-01

    Roč. 23, č. 53 (2017), s. 13023-13027 ISSN 0947-6539 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : conjugated microporous polymers * donor-acceptor dyads * photocatalysis * sulfur * triazine Subject RIV: CC - Organic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Organic chemistry; Physical chemistry (UFCH-W) Impact factor: 5.317, year: 2016

  7. Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers

    NARCIS (Netherlands)

    Mullekom, van H.A.M.; Vekemans, J.A.J.M.; Havinga, E.E.; Meijer, E.W.

    2001-01-01

    This paper reviews the tools to manipulate and minimize the band gap of conjugated (co)polymers. The effects of minimization of the bond length alternation and of the incorporation of donor-K-acceptor units are discussed in particular. A systematic study of a series of alternating donor-acceptor

  8. Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study

    Directory of Open Access Journals (Sweden)

    Joshua J. Sutton

    2018-02-01

    Full Text Available A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory. From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.

  9. Organic donor-acceptor thin film systems. Towards optimized growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kerstin Andrea

    2009-06-30

    In this work the preparation of organic donor-acceptor thin films was studied. A chamber for organic molecular beam deposition was designed and integrated into an existing deposition system for metallic thin films. Furthermore, the deposition system was extended by a load-lock with integrated bake-out function, a chamber for the deposition of metallic contacts via stencil mask technique and a sputtering chamber. For the sublimation of the organic compounds several effusion cells were designed. The evaporation characteristic and the temperature profile within the cells was studied. Additionally, a simulation program was developed, which calculates the evaporation characteristics of different cell types. The following processes were integrated: evaporation of particles, migration on the cell walls and collisions in the gas phase. It is also possible to consider a temperature gradient within the cell. All processes can be studied separately and their relative strength can be varied. To verify the simulation results several evaporation experiments with different cell types were employed. The thickness profile of the prepared thin films was measured position-dependently. The results are in good agreement with the simulation. Furthermore, the simulation program was extended to the field of electron beam induced deposition (EBID). The second part of this work deals with the preparation and characterization of organic thin films. The focus hereby lies on the charge transfer salt (BEDT-TTF)(TCNQ), which has three known structure variants. Thin films were prepared by different methods of co-evaporation and were studied with optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy (EDX).The formation of the monoclinic phase of (BEDT-TTF)(TCNQ) could be shown. As a last part tunnel structures were prepared as first thin film devices and measured in a He{sub 4} cryostat. (orig.)

  10. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  11. New donor-acceptor-donor molecules based on quinoline acceptor unit with Schiff base bridge: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kotowicz, Sonia [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Siwy, Mariola [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Filapek, Michal; Malecki, Jan G. [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Smolarek, Karolina; Grzelak, Justyna; Mackowski, Sebastian [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun (Poland); Slodek, Aneta, E-mail: aneta.slodek@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Schab-Balcerzak, Ewa, E-mail: ewa.schab-balcerzak@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2017-03-15

    Three solution-processable small organic molecules bearing quinoline as electron-accepting moiety were synthesized via condensation reaction of novel 6-amino-2-(2,2’-bithiophen-5-yl)-4-phenylquinoline with 2,2’-bithiophene-5-carboxaldehyde, 9-ethyl-9H-carbazole-3-carbaldehyde and 9-phenanthrenecarboxaldehyde. The presence of alternating electron-donating and accepting units results in a donor-acceptor-donor architecture of these molecular systems. Thermal, photophysical, and electrochemical properties of these small molecules were examined and the experimental results were supported by the density functional theory calculations. The obtained molecular systems exhibited high thermal stability with decomposition temperatures (5% weight loss) exceeding 330 °C in nitrogen atmosphere. It was found, based on DSC measurements, that investigated Schiff bases form amorphous material with glass transition temperatures between 88 and 190 °C. They also showed a UV–vis absorption in the range of 250–500 nm both in solution and in solid state as film and blend with PMMA and PVK. Photoluminescence measurements revealed moderately strong blue-light emission of the imines in solution as well as in PMMA blend with quantum yields in the range of 2–26%. In the case of imines dispersed in PVK matrix the emission of green light was mainly observed. In addition, when mixed with plasmonically active silver nanowires, the compounds exhibit relatively strong electroluminescence signal, associated with plasmonics enhancement, as evidenced by high-resolution photoluminescence imaging. The energy band gap estimated based on cyclic voltammetry was between 2.38 and 2.61 eV. - Highlights: • New Schiff bases possess donor-acceptor-imine-bridge-donor architecture were synthesized and examined. • Thorough characterization of optical and electrochemical properties of novel Schiff bases has been carried out. • Optical and electrochemical measurements were compared with DFT

  12. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  13. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Zhou, Y.C.; Liu, Z.T.; Tang, J.X.; Lee, C.S.; Lee, S.T.

    2009-01-01

    The interface energy level alignment between copper phthalocyanine (CuPC) and fullerene (C60), the widely studied donor-acceptor pair in organic photovoltaics (OPVs), on indium-tin oxide (ITO) and Mg substrate was investigated. The CuPC/C60 interface formed on ITO shows a nearly common vacuum level, but a dipole and band bending exist, resulting in a 0.8 eV band offset at the same interface on Mg. This observation indicates that the energy difference between the highest occupied molecular orbital of CuPC and the lowest unoccupied molecular orbital of C60, which dictates the open circuit voltage of the CuPC/C60 OPV, can be tuned by the work function of the substrate. Furthermore, the substrate effect on the energy alignment at the donor/acceptor interface can satisfactorily explain that a device with an anode of a smaller work function can provide a higher open circuit voltage.

  14. Recent advances in photoinduced donor/acceptor copolymerization

    International Nuclear Information System (INIS)

    Joensson, S.; Viswanathan, K.; Hoyle, C.E.; Clark, S.C.; Miller, C.; Morel, F.; Decker, C.

    1999-01-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor

  15. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.; Corbin, N. S.; Vermeulen, D.; Goetz, K. P.; Jurchescu, O. D.; McNeil, L. E.; Bredas, Jean-Luc; Coropceanu, V.

    2015-01-01

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  16. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.

    2015-12-10

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  17. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond

    Science.gov (United States)

    Löfgren, Robin; Pawar, Ravinder; Öberg, Sven; Larsson, J. Andreas

    2018-02-01

    Charged defects are traditionally computed by adding (subtracting) electrons for negative (positive) impurities. When using periodic boundary conditions this results in artificially charged supercells that also require a compensating background charge of the opposite sign, which makes slab supercells problematic because of an arbitrary dependence on the vacuum thickness. In this work, we test the method of using neutral supercells through the use of a substitutional electron donor (acceptor) to describe charged systems. We use density functional theory (DFT) to compare the effects of charging the well-studied NV-center in diamond by a substitutional donor nitrogen. We investigate the influence of the donor-N on the NV-center properties as a function of the distance between them, and find that they converge toward those obtained when adding an electron. We analyze the spin density and conclude that the donor-N has a zero magnetic moment, and thus, will not be seen in electron spin resonance. We validate our DFT energies through comparison to GW simulations. Charging the NV-center with a substitutional donor-N enables accurate calculations of slabs, without the ambiguity of using charged supercells. Implantation of donor-N atoms opens up the possibility to engineer NV-centers with the desired charge state for future ICT and sensor applications.

  18. Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Kamiyama, Satoshi

    2011-01-01

    In the present work, we investigated donor-acceptor-pair emission in N-B doped fluorescent 6H-SiC, by means of photoluminescence, Raman spectroscopy, and angle-resolved photoluminescence. The photoluminescence results were interpreted by using a band diagram with Fermi-Dirac statistics. It is shown...... intensity in a large emission angle range was achieved from angle-resolved photoluminescence. The results indicate N-B doped fluorescent SiC as a good wavelength converter in white LEDs applications....

  19. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    Science.gov (United States)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  20. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    Science.gov (United States)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  1. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  2. Giant first hyperpolarizabilities of donor-acceptor substituted graphyne: An ab initio study.

    Science.gov (United States)

    Chakraborti, Himadri

    2016-01-15

    Graphyne (Gy), a theoretically proposed material, has been utilized, for the first time, in a phenomenal donor-Gy-acceptor (D-Gy-A) structure to plan a superior nonlinear optical material. Owing to the extraordinary character of graphyne, this conjugate framework shows strikingly extensive static first hyperpolarizability (β(tot)) up to 128×10(-30) esu which is an enormous improvement than that of the bare graphyne. The donor-acceptor separation plays a key role in the change of β(tot) value. The π-conjugation of graphyne backbone has spread throughout some of the D-A attached molecules and leads to a low band gap state. Finally, two level model clarifies that the molecule having low transition energy should have high first hyperpolarizability. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Conjugated donor-acceptor-acceptor (D-A-A) molecule for organic nonvolatile resistor memory.

    Science.gov (United States)

    Dong, Lei; Li, Guangwu; Yu, An-Dih; Bo, Zhishan; Liu, Cheng-Liang; Chen, Wen-Chang

    2014-12-01

    A new donor-acceptor-acceptor (D-A-A) type of conjugated molecule, N-(4-(N',N'-diphenyl)phenylamine)-4-(4'-(2,2-dicyanovinyl)phenyl) naphthalene-1,8-dicarboxylic monoimide (TPA-NI-DCN), consisting of triphenylamine (TPA) donors and naphthalimide (NI)/dicyanovinylene (DCN) acceptors was synthesized and characterized. In conjunction with previously reported D-A based materials, the additional DCN moiety attached as end group in the D-A-A configuration can result in a stable charge transfer (CT) and charge-separated state to maintain the ON state current. The vacuum-deposited TPA-NI-DCN device fabricated as an active memory layer was demonstrated to exhibit write-once-read-many (WORM) switching characteristics of organic nonvolatile memory due to the strong polarity of the TPA-NI-DCN moiety. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hopping ladder and power relaxation due to donor-acceptor pairs

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    Hopping between donor-acceptor pairs leads to peculiar temperature dependence of the conductivity and the photoconductivity under subband gap illumination in the form of non-linear activation energies ladder. The correlated and uncorrelated distributions of pairs are considered and the conditions for the ladder existence are determined. The relaxation of the carrier concentration fluctuations is studied and power type decay is found. The temperature dependence of the exponent is calculated in agreement with the non-exponential decay of the pulse excited luminescence observed by Dean et al. The temperature dependence of the luminescence intensity also shows variable activation energy as found here. The exponent value α=1.316 is also in agreement with the data for crystalline and amorphous materials. (author)

  5. Resonant and non-resonant components of the rate of a population transfer in hybrid donor-acceptor systems

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Král, Karel

    2013-01-01

    Roč. 5, č. 6 (2013), s. 565-568 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) OC10007; GA MŠk LH12186; GA ČR(CZ) GAP205/10/2280 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : energy transfer * hybrid donor-acceptor system Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Magneto-ionic phase control in a quasi-layered donor/acceptor metal-organic framework by means of a Li-ion battery system

    Science.gov (United States)

    Taniguchi, Kouji; Narushima, Keisuke; Yamagishi, Kayo; Shito, Nanami; Kosaka, Wataru; Miyasaka, Hitoshi

    2017-06-01

    Electrical magnetism control is realized in a Li-ion battery system through a redox reaction involving ion migrations; “magneto-ionic control”. A quasi-layered metal-organic framework compound with a cross-linked π-conjugated/unconjugated one-dimensional chain motifs composed of electron-donor/acceptor units is developed as the cathode material. A change in magnetic phase from paramagnetic to ferrimagnetic is demonstrated by means of electron-filling control for the acceptor units via insertion of Li+-ions into pores in the material. The transition temperature is as high as that expected for highly π-conjugated layered systems, indicating an extension of π-conjugated exchange paths by rearranging coordination bonds in the first discharge process.

  7. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    Science.gov (United States)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  8. Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A1 -D-A2 Low-Bandgap Conjugated Polymers.

    Science.gov (United States)

    Chochos, Christos L; Drakopoulou, Sofia; Katsouras, Athanasios; Squeo, Benedetta M; Sprau, Christian; Colsmann, Alexander; Gregoriou, Vasilis G; Cando, Alex-Palma; Allard, Sybille; Scherf, Ullrich; Gasparini, Nicola; Kazerouni, Negar; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-04-01

    Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A 1 -D-A 2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A 1 -D-A 2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm -2 , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits.

    Science.gov (United States)

    Cui, Mengchao; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Liu, Boli; Saji, Hideo

    2014-03-05

    The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical brain is accepted as the main pathological hallmark of Alzheimer's disease (AD); however, early detection of AD still presents a challenge. With the assistance of molecular imaging techniques, imaging agents specifically targeting Aβ plaques in the brain may lead to the early diagnosis of AD. Herein, we report the design, synthesis, and evaluation of a series of smart near-infrared fluorescence (NIRF) imaging probes with donor-acceptor architecture bridged by a conjugated π-electron chain for Aβ plaques. The chemical structure of these NIRF probes is completely different from Congo Red and Thioflavin-T. Probes with a longer conjugated π system (carbon-carbon double bond) displayed maximum emission in PBS (>650 nm), which falls in the best range for NIRF probes. These probes were proved to have affinity to Aβ plaques in fluorescent staining of brain sections from an AD patient and double transgenic mice, as well as in an in vitro binding assay using Aβ(1-42) aggregates. One probe with high affinity (K(i) = 37 nM, K(d) = 27 nM) was selected for in vivo imaging. It can penetrate the blood-brain barrier of nude mice efficiently and is quickly washed out of the normal brain. Moreover, after intravenous injection of this probe, 22-month-old APPswe/PSEN1 mice exhibited a higher relative signal than control mice over the same period of time, and ex vivo fluorescent observations confirmed the existence of Aβ plaques. In summary, this probe meets most of the requirements for a NIRF contrast agent for the detection of Aβ plaques both in vitro and in vivo.

  10. Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongping; Swaraj, Sufal; Wang, Cheng; Ade, Harald [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Hwang, Inchan; Greenham, Neil C.; McNeill, Christopher R. [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE (United Kingdom); Groves, Chris [School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE (United Kingdom)

    2010-12-21

    Through controlled annealing of planar heterojunction (bilayer) devices based on the polyfluorene copolymers poly(9,9-dioctylfluorene-co-bis(N,N'-(4,butylphenyl))bis(N,N'-phenyl-1,4-phenylene)diamine) (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) we study the influence of interface roughness on the generation and separation of electron-hole pairs at the donor/acceptor interface. Interface structure is independently characterized by resonant soft X-ray reflectivity with the interfacial width of the PFB/F8BT heterojunction observed to systematically increase with annealing temperature from 1.6 nm for unannealed films to 16 nm with annealing at 200 C for ten minutes. Photoluminescence quenching measurements confirm the increase in interface area by the three-fold increase in the number of excitons dissociated. Under short-circuit conditions, however, unannealed devices with the sharpest interface are found to give the best device performance, despite the increase in interfacial area (and hence the number of excitons dissociated) in annealed devices. The decrease in device efficiency with annealing is attributed to decreased interfacial charge separation efficiency, partly due to a decrease in the bulk mobility of the constituent materials upon annealing but also (and significantly) due to the increased interface roughness. We present results of Monte Carlo simulations that demonstrate that increased interface roughness leads to lower charge separation efficiency, and are able to reproduce the experimental current-voltage curves taking both increased interfacial roughness and decreased carrier mobility into account. Our results show that organic photovoltaic performance can be sensitive to interfacial order, and heterojunction sharpness should be considered a requirement for high performance devices. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    Science.gov (United States)

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  12. Comparison of fluctuating potentials and donor-acceptor pair transitions in a Cu-poor Cu{sub 2}ZnSnS{sub 4} based solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, J. P.; Sousa, R. A.; Sousa, M. G.; Cunha, A. F. da; Leitão, J. P., E-mail: joaquim.leitao@ua.pt [Departamento de Física and I3N, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Fernandes, P. A. [Departamento de Física and I3N, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); Salomé, P. M. P. [INL - International Iberian Nanotechnology Laboratory, Laboratory for Nanostructured Solar Cells (LaNaSC), Av. Mestre José Veiga, 4715-330 Braga (Portugal); González, J. C. [Departamento de Física, Universidade Federal de Minas Gerais, 30123-970 Belo Horizonte, Minas Gerais (Brazil)

    2014-10-20

    The structure of the electronic energy levels of a single phase Cu{sub 2}ZnSnS{sub 4} film, as confirmed by Raman Scattering and x-ray diffraction, is investigated through a dependence on the excitation power of the photoluminescence (PL). The behavior of the observed asymmetric band, with a peak energy at ∼1.22 eV, is compared with two theoretical models: (i) fluctuating potentials and (ii) donor-acceptor pair transitions. It is shown that the radiative recombination channels in the Cu-poor film are strongly influenced by tail states in the bandgap as a consequence of a heavy doping and compensation levels. The contribution of the PL for the evaluation of secondary phases is also highlighted.

  13. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

    Science.gov (United States)

    Samanta, Suman K; Bhattacharya, Santanu

    2012-12-03

    We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Near infrared organic light-emitting diodes based on acceptor-donor-acceptor (ADA) using novel conjugated isatin Schiff bases

    International Nuclear Information System (INIS)

    Taghi Sharbati, Mohammad; Soltani Rad, Mohammad Navid; Behrouz, Somayeh; Gharavi, Alireza; Emami, Farzin

    2011-01-01

    Fabrications of a single layer organic light emitting diodes (OLEDs) based on two conjugated acceptor-donor-acceptor (ADA) isatin Schiff bases are described. The electroluminescent spectra of these materials range from 630 to 700 nm and their band gaps were measured between 1.97 and 1.77 eV. The measured maximum external quantum efficiencies (EQE) for fabricated OLEDs are 0.0515% and 0.054% for two acceptor-donor-acceptor chromophores. The Commission International De L'Eclairage (CIE) (1931) coordinates of these two compounds were attained and found to be (0.4077, 0.4128) and (0.4411, 0.4126) for two used acceptor-donor-acceptor chromophores. The measured I-V curves demonstrated the apparent diode behavior of two ADA chromophores. The turn-on voltages in these OLEDs are directly dependent on the thickness. These results have demonstrated that ADA isatin Schiff bases could be considered as promising electroluminescence-emitting materials for fabrication of OLEDs.

  15. Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells.

    Science.gov (United States)

    Zhou, Ke; Zhang, Rui; Liu, Jiangang; Li, Mingguang; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2015-11-18

    The correlated donor/acceptor (D/A) molecular orientation plays a crucial role in solution-processed all-polymer solar cells in term of photovoltaic performance. For the conjugated polymers PTB7-th and P(NDI2OD-T2), the preferential molecular orientation of neat PTB7-th films kept face-on regardless of the properties of processing solvents. However, an increasing content of face-on molecular orientation in the neat P(NDI2OD-T2) films could be found by changing processing solvents from chloronaphthalene (CN) and o-dichlorobenzene (oDCB) to chlorobenzene (CB). Besides, the neat P(NDI2OD-T2) films also exhibited a transformation of preferential molecular orientation from face-on to edge-on when extending film drying time by casting in the same solution. Consequently, a distribution diagram of molecular orientation for P(NDI2OD-T2) films was depicted and the same trend could be observed for the PTB7-th/P(NDI2OD-T2) blend films. By manufacture of photovoltaic devices with blend films, the relationship between the correlated D/A molecular orientation and device performance was established. The short-circuit current (Jsc) of devices processed by CN, oDCB, and CB enhanced gradually from 1.24 to 8.86 mA/cm(2) with the correlated D/A molecular orientation changing from face-on/edge-on to face-on/face-on, which could be attributed to facile exciton dissociation at D/A interface with the same molecular orientation. Therefore, the power conversion efficiency (PCE) of devices processed by CN, oDCB, and CB improved from 0.53% to 3.52% ultimately.

  16. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  17. Can time-dependent density functional theory predict intersystem crossing in organic chromophores? A case study on benzo(bis)-X-diazole based donor-acceptor-donor type molecules.

    Science.gov (United States)

    Tam, Teck Lip Dexter; Lin, Ting Ting; Chua, Ming Hui

    2017-06-21

    Here we utilized new diagnostic tools in time-dependent density functional theory to explain the trend of intersystem crossing in benzo(bis)-X-diazole based donor-acceptor-donor type molecules. These molecules display a wide range of fluorescence quantum yields and triplet yields, making them excellent candidates for testing the validity of these diagnostic tools. We believe that these tools are cost-effective and can be applied to structurally similar organic chromophores to predict/explain the trends of intersystem crossing, and thus fluorescence quantum yields and triplet yields without the use of complex and expensive multireference configuration interaction or multireference pertubation theory methods.

  18. Donor-acceptor properties of a single-molecule altered by on-surface complex formation

    Czech Academy of Sciences Publication Activity Database

    Meier, T.; Pawlak, R.; Kawai, S.; Geng, Y.; Liu, X.; Decurtins, S.; Hapala, Prokop; Baratoff, A.; Liu, S.X.; Jelínek, Pavel; Meyer, E.; Glatzel, T.

    2017-01-01

    Roč. 11, č. 8 (2017), s. 8413-8420 ISSN 1936-0851 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : nc AFM * DFT * acceptor donor Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 13.942, year: 2016

  19. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Lewis acid catalyzed [3 + 2] annulation of ketenimines with donor-acceptor cyclopropanes: an approach to 2-alkylidenepyrrolidine derivatives.

    Science.gov (United States)

    Alajarin, Mateo; Egea, Adrian; Orenes, Raul-Angel; Vidal, Angel

    2016-11-02

    The [3 + 2] annulation reaction of C,C,N-trisubstituted ketenimines with donor-acceptor cyclopropanes bearing aryl, styryl and vinyl substituents at the C2 position, triggered by the Lewis acid Sc(OTf) 3 , supplies highly substituted pyrrolidines. Activated cyclopropanes fused to naphthalene and [1]benzopyrane nuclei are also suitable substrates in similar transformations, yielding partially saturated benz[g]indoles and [1]benzopyran[4,3-b]pyrroles. An intramolecular version of this ketenimine/cyclopropane [3 + 2] annulation has also been developed leading to the pyrrolo[2,1-a]isoindole framework.

  1. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors.

    Science.gov (United States)

    Li, Mengmeng; An, Cunbin; Pisula, Wojciech; Müllen, Klaus

    2018-05-15

    Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10 -2 -10 0 cm 2 V -1 s -1 , while several examples showed a mobility over 10 cm 2 V -1 s -1 . The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis

  2. Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

    International Nuclear Information System (INIS)

    Srivastava, Shashi B.; Singh, Samarendra P.; Sonar, Prashant

    2015-01-01

    Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C 71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO 3 /Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10 −3 cm 2 V −1 s −1 , and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10 −5 cm 2 V −1 s −1 , and electron mobility of 8.7 × 10 −4 cm 2 V −1 s −1

  3. Exciplex elimination in an organic light-emitting diode based on a fluorene derivative by inserting 4,4'-N,N'-dicarbazole-biphenylinto donor/acceptor interface

    International Nuclear Information System (INIS)

    Wei, Zhang; Jun-Sheng, Yu; Jiang, Huang; Ya-Dong, Jiang; Qing, Zhang; Kang-Li, Cao

    2010-01-01

    Organic light-emitting diodes (OLEDs) composed of a novel fluorene derivative of 2,3-bis(9,9-dihexyl-9H-fluoren-2-yl)-6,7-difluoroquinoxaline (F2Py) were fabricated, and exciplex emission was observed in the device. To depress the exciplex in an OLED for pure colour light emission, 4, 4'-N,N'-dicarbazole-biphenyl (CBP) was inserted as a separator at the donor/acceptor interface. It was found that the device without the CBP layer emitted a green light peaking at 542 nm from the exciplex and a shoulder peak about 430 nm from F2Py. In contrast, the OLED with CBP layer emitted only a blue light peak at about 432 nm from F2Py. Device efficiencies were calculated by a simulative mode in an injection controlled type mechanism, and the results showed that exciplexes yield much lower quantum efficiency than excitons. The device with CBP has a higher power efficiency as no exciplex was present. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Synthesis and electrochemical characterization of new optoelectronic materials based on conjugated donor-acceptor system containing oligo-tri(heteroaryl)-1,3,5-triazines

    International Nuclear Information System (INIS)

    Idzik, Krzysztof R.; Rapta, Peter; Cywinski, Piotr J.; Beckert, Rainer; Dunsch, Lothar

    2010-01-01

    A series of novel oligoarylenes based on donor-acceptor system, containing triazine moiety as an electron-transporting central core, have been prepared by electrochemical polymerization. The redox behaviour of poly(2,4,6-tri[p-(2-(3,4-ethylenedioxythienyl))-phenyl]-1,3,5-triazine) was studied by cyclic voltammetry and triple in situ ESR/UV-vis-NIR spectroelectrochemistry to get more details on the type of charge carriers within the film. To obtain desired oligoarylenes, triazine-core monomers possessing various electrochromic side groups have been synthesized by the Stille cross-coupling methodology. The structures have been confirmed by 1 H NMR, 13 C NMR, and elemental analysis. Monomers show good chemical stability in common organic solvents such as chloroform, dichloromethane or toluene and also exhibit excellent thermal stability over wide range of temperatures. Furthermore, their photophysical properties have been established with the use of fluorescence spectroscopy. Electrochemical results accompanied with fluorescence spectroscopy suggest that these derivatives of triazine can be successfully used in the fabrication of organic light-emitting diodes (OLEDs).

  5. Design of ortho-Substituted Donor-Acceptor Molecules as Highly Efficient Green Thermally Activated Delayed Fluorescent Emitters

    Science.gov (United States)

    Cha, Jae-Ryung; Gong, Myoung-Seon; Lee, Tak Jae; Ha, Tae Hoon; Lee, Chil Won

    2018-04-01

    The ortho-substituted donor-acceptor molecules 2-(4,6-diphenyl-1, 3, 5-triazin-2-yl)- N,Ndiphenylaniline (DPA- o-Trz) and 2-(4,6-diphenyl-1, 3, 5-triazine-2-yl)- N,N-di- p-tolylaniline (MPA- o-Trz) were designed, synthesized, and found to exhibit green fluorescence characteristics. Notably, the singlet-triplet energy gap was less than 0.1 eV, indicating that reverse intersystem crossing gave rise to thermally activated delayed fluorescence (TADF). The organic light-emitting device performance of MPA- o-Trz showed a high external quantum efficiency of 16.3% and good color stability from 0.1 cd/m2 to 5000 cd/m2.

  6. Deep donor-acceptor pair recombination in bulk GaP studied by ODMR and DLTS techniques

    International Nuclear Information System (INIS)

    Awadelkarim, O.O.; Godlewski, M.; Monemar, B.

    1989-01-01

    Deep level transient spectroscopy (DLTS) and optically detected magnetic resonance (ODMR) are applied to study deep defect levels with photoluminescence bands observed in the near infrared region in S- and Te-doped bulk GaP crystals grown by the liquid encapsulated Czochralski method. The ODMR data suggest that the emission bands with maxima observed at 8000-8200 A (∼ 1.5 eV), common to both materials, and at 7750 A (1.6 eV), present only in GaP:Te, are due to donor-acceptor pair recombinations. The latter band, reported here for the first time, is tentatively associated with deep states observed by DLTS. (author) 19 refs., 5 figs

  7. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  8. Efficient Förster resonance energy transfer in 1,2,3-triazole linked BODIPY-Zn(II) meso-tetraphenylporphyrin donor-acceptor arrays.

    Science.gov (United States)

    Leonardi, Matthew J; Topka, Michael R; Dinolfo, Peter H

    2012-12-17

    Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays that contain one (Dyad), three (Tetrad) and four (Pentad) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) donors connected to a Zn-tetraphenylporphyrin acceptor via 1,2,3-triazole linkages. The photophysical properties of the three arrays, along with individual donor and acceptor chromophores, were investigated by UV-vis absorption and emission spectroscopy, fluorescence lifetimes, and density functional theory (DFT) electronic structure modeling. Comparison of the UV-vis absorption spectra and frontier molecular orbitals from DFT calculations of the three arrays with ZnTPP, ZnTTrzlP, and Trzl-BODIPY shows that the electronic structure of the chromophores is essentially unperturbed by the 1,2,3-triazole linkage. Time-dependent DFT (TDDFT) calculations on the Dyad reproduce the absorption spectra in THF and show no evidence of excited state mixing of the donor and acceptor. The BODIPY singlet excited state emission is significantly quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97.5, and 97.2% for the Dyad, Tetrad, and Pentad, respectively. Fluorescence excitation spectra of the three arrays, measured at the porphyrin emission, mirror the absorption profile of both the porphyrin and BODIPY chromophores and are consistent with the Förster resonance energy transfer (FRET) mechanism. Applying Förster theory to the spectroscopic data of the chromophores gives EnT efficiency estimates that are in close agreement with experimental values, suggesting that the through-space mechanism plays a dominant role in the three arrays.

  9. Self-Assembled Core-Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor-Acceptor Light-Harvesting Systems.

    Science.gov (United States)

    Istif, Emin; Kagkoura, Antonia; Hernandez-Ferrer, Javier; Stergiou, Anastasios; Skaltsas, Theodosis; Arenal, Raul; Benito, Ana M; Maser, Wolfgang K; Tagmatarchis, Nikos

    2017-12-27

    The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HT NPs ) of 100 nm as core and semiconducting CdTe quantum dots (CdTe QDs ) as shell with a thickness of a few tens of nanometers was accomplished by employing a reprecipitation approach. The structure, morphology, and composition of CdTe QDs /P3HT NPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light-scattering studies. Intimate interface contact between the CdTe QDs shell and the P3HT NPs core leads to the stabilization of the CdTe QDs /P3HT NPs nanoensemble as probed by the steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTe QDs at 555 nm, accompanied by simultaneous increase in emission of P3HT NPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTe QDs /P3HT NPs further proves the formation of a stabilized core-shell system in the solid state. Photoelectrochemical assays on CdTe QDs /P3HT NPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a 3 times increased photocurrent compared to CdTe QDs . The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTe QDs shell forces the P3HT NPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.

  10. Functionalized isothianaphthene monomers that promote quinoidal character in donor-acceptor copolymers for organic photovoltaics

    KAUST Repository

    Douglas, Jessica D.

    2012-05-22

    A series of low band gap isothianaphthene-based (ITN) polymers with various electron-withdrawing substituents and intrinsic quinoidal character were synthesized, characterized, and tested in organic photovoltaic (OPV) devices. The three investigated ITN cores contained either ester, imide, or nitrile functionalities and were each synthesized in only four linear steps. The relative electron-withdrawing strength of the three substituents on the ITN moiety was evaluated and correlated to the optical and electronic properties of ITN-based copolymers. The ester- and imide-containing p-type polymers reached device efficiencies as high as 3% in bulk heterojunction blends with phenyl C 61-butyric acid methyl ester (PC 61BM), while the significantly electron-deficient nitrile-functionalized polymer behaved as an n-type material with an efficiency of 0.3% in bilayer devices with poly(3-(4-n-octyl)phenylthiophene) (POPT). © 2012 American Chemical Society.

  11. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    International Nuclear Information System (INIS)

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  12. Synthesis of Donor-Acceptor Conjugated Polymers by "CLICK" Polymerization for OPV applications

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yu, Donghong

    The intent of this study was to utilize the Copper(I)-catalyzed Azide Alkyne Cycloaddition (CuAAC) as a polymerization technique (“Click” Polymerization) for synthesizing novel π-conjugated low band gap polymers for organic photovoltaic applications (OPV). The chosen approach was to synthesize...... an alternating electron donating (donor, D) and electron withdrawing (acceptor, A) co-polymer. The chosen monomers were well known units, and the novelty lies in using the monomer units with the click methodology. An insoluble alternating copolymer consisting of 2,7-diazido-9,9-dioctyl-9Hflourene and 1...

  13. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  14. Aggregation-Induced Emission Enhancement from Disilane-Bridged Donor-Acceptor-Donor Luminogens Based on the Triarylamine Functionality.

    Science.gov (United States)

    Usuki, Tsukasa; Shimada, Masaki; Yamanoi, Yoshinori; Ohto, Tatsuhiko; Tada, Hirokazu; Kasai, Hidetaka; Nishibori, Eiji; Nishihara, Hiroshi

    2018-04-18

    Six novel donor-acceptor-donor organic dyes containing a Si-Si moiety based on triarylamine functionalities as donor units were prepared by Pd-catalyzed arylation of hydrosilanes. Their photophysical, electrochemical, and structural properties were studied in detail. Most of the compounds showed attractive photoluminescence (PL) and electrochemical properties both in solution and in the solid state because of intramolecular charge transfer (ICT), suggesting these compounds could be useful for electroluminescence (EL) applications. The aggregation-induced emission enhancement (AIEE) characteristics of 1 and 3 were examined in mixed water/THF solutions. The fluorescence intensity in THF/water was stronger in the solution with the highest ratio of water because of the suppression of molecular vibration and rotation in the aggregated state. Single-crystal X-ray diffraction of 4 showed that the reduction of intermolecular π-π interaction led to intense emission in the solid state and restricted intramolecular rotation of the donor and acceptor moieties, thereby indicating that the intense emission in the solid state is due to AIEE. An electroluminescence device employing 1 as an emitter exhibited an external quantum efficiency of up to 0.65% with green light emission. The emission comes solely from 1 because the EL spectrum is identical to that of the PL of 1. The observed luminescence was sufficiently bright for application in practical devices. Theoretical calculations and electrochemical measurements were carried out to aid in understanding the optical and electrochemical properties of these molecules.

  15. Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited.

    Science.gov (United States)

    Collado-Fregoso, Elisa; Hood, Samantha N; Shoaee, Safa; Schroeder, Bob C; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R

    2017-09-07

    In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC 70 BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC 70 BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination.

  16. Donor-acceptor systems of Pt(II) and redox-induced reactivity towards small molecules

    Czech Academy of Sciences Publication Activity Database

    Deibel, N.; Schweinfurth, D.; Hohloch, S.; Fiedler, Jan; Sarkar, B.

    2012-01-01

    Roč. 48, č. 18 (2012), s. 2388-2390 ISSN 1359-7345 R&D Projects: GA ČR GA203/09/1607 Institutional research plan: CEZ:AV0Z40400503 Keywords : transition metal complexes * radical ligands * excited state Subject RIV: CG - Electrochemistry Impact factor: 6.378, year: 2012

  17. Spectroscopic studies on novel donor-acceptor and low band-gap polymeric semiconductors

    International Nuclear Information System (INIS)

    Cravino, A.

    2002-11-01

    Novel low band-gap conjugated polymeric semiconductors as well as conjugated electron donor chains carrying electron acceptor substituents were electrochemically prepared and investigated by means of different spectroscopic techniques. Using in situ FTIR and ESR spectroelectrochemistry, the spectroscopic features of injected positive charges are found to be different as opposed to the negative charge carriers on the same conjugated polymer. These results, for which the theoretical models so far developed do not account, demonstrate the different structure and delocalization of charge carriers with opposite signs. In addition, vibrational spectroscopy results proof the enhanced 'quinoid' character of low band-gap conjugated chains. Excited state spectroscopy was applied to study photoexcitations in conjugated polymers carrying tetracyanoanthraquinone type or fullerene moieties. This novel class of materials, hereafter called double-cable polymers, was found promising as alternative to the conjugated polymer:fullerene mixtures currently used for the preparation of 'bulk-heterojunction' polymeric solar cells. (author)

  18. Ultrasmall magnetic field-effect and sign reversal in transistors based on donor/acceptor systems

    Directory of Open Access Journals (Sweden)

    Thomas Reichert

    2017-05-01

    Full Text Available We present magnetoresistive organic field-effect transistors featuring ultrasmall magnetic field-effects as well as a sign reversal. The employed material systems are coevaporated thin films with different compositions consisting of the electron donor 2,2',7,7'-tetrakis-(N,N-di-p-methylphenylamino-9,9'-spirobifluorene (Spiro-TTB and the electron acceptor 1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile (HAT-CN. Intermolecular charge transfer between Spiro-TTB and HAT-CN results in a high intrinsic charge carrier density in the coevaporated films. This enhances the probability of bipolaron formation, which is the process responsible for magnetoresistance effects in our system. Thereby even ultrasmall magnetic fields as low as 0.7 mT can influence the resistance of the charge transport channel. Moreover, the magnetoresistance is drastically influenced by the drain voltage, resulting in a sign reversal. An average B0 value of ≈2.1 mT is obtained for all mixing compositions, indicating that only one specific quasiparticle is responsible for the magnetoresistance effects. All magnetoresistance effects can be thoroughly clarified within the framework of the bipolaron model.

  19. Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.

    Science.gov (United States)

    Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L

    2017-06-16

    A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.

  20. Structural Defects in Donor-Acceptor Blends: Influence on the Performance of Organic Solar Cells

    Science.gov (United States)

    Sergeeva, Natalia; Ullbrich, Sascha; Hofacker, Andreas; Koerner, Christian; Leo, Karl

    2018-02-01

    Defects play an important role in the performance of organic solar cells. The investigation of trap states and their origin can provide ways to further improve their performance. Here, we investigate defects in a system composed of the small-molecule oligothiophene derivative DCV5T-Me blended with C60 , which shows power conversion efficiencies above 8% when used in a solar cell. From a reconstruction of the density of trap states by impedance spectroscopy, we obtain a Gaussian distribution of trap states with Et=470 meV below the electron transport level, Nt=8 ×1014 cm-3 , and σt=41 meV . From Voc vs illumination intensity and open-circuit corrected charge carrier extraction measurements, we find that these defects lead to trap-assisted recombination. Moreover, drift-diffusion simulations show that the trap states decrease the fill factor by 10%. By conducting degradation measurements and varying the blend ratio, we find that the observed trap states are structural defects in the C60 phase due to the distortion of the natural morphology induced by the mixing.

  1. Donor-acceptor interaction between non-aqueous solvents and I{sub 2} to generate I{sup -}{sub 3}, and its implication in dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Zerihun [Department of Chemistry, Kotebe College of Teacher Education, P.O. Box 31248, Addis Ababa (Ethiopia); Lindquist, Sten-Eric [Department of Physical Chemistry, Uppsala University, P.O. Box 532, S-751 21 Uppsala (Sweden)

    1999-03-16

    The spectrophotometric properties of I{sup -}, I{sub 2} and the I{sup -}/I{sub 2} mixture were studied in 1,2-dichloroethane (DCE), acetone (AC), acetonitrile (ACN), ethanol (EtOH), methanol (MeOH), tertiary-butanol (t-BuOH), dimethylformamide (DMF), propylenecarbonate (PC), 3-methoxypropionitrile (MePN), dimethylsulfoxide (DMSO), dioxane (DIO) and pyridine (PY) solutions. From the investigation it has been realized that in DCE, I{sup -}, I{sub 2} and I{sup -}/I{sub 2} mixture have the same absorption peak at 500 nm. I{sup -} gives rise to the absorption spectra at about 220, 290 and 360 nm in t-BuOH and in PY solutions. However, in all other solvents the I{sup -} generates peaks only around 220 nm. Similarly I{sub 2} and the I{sup -}/I{sub 2} mixture in all solvents except DCE have indicated similar absorption peaks around 220, 290 and 360 nm. On the other hand, except in PC and DMF, I{sub 2} shows the additional peaks in the range of 380-500 nm which are assigned to the formation of a I{sub 2}-solvent complex. The peaks around 290 and 360 nm indicate the presence of I{sup -}{sub 3} and around 220 nm is the peak of I{sup -}. The spectral shift of the I{sub 2} solutions in the visible region is interesting and is the core of this report. It points to the importance of donor-acceptor interaction between solvents and iodine. The data obtained in these solvents were well correlated to the donor number (DN) of the solvents. From this correlation the DN of MePN was estimated to 14.6. The absorption peak of I{sub 2} in DCE(DN=0.0) is 500 nm and in PY(DN=33.1) is 378 nm. This peak shift due to solvent effects corresponds to an energy difference close to 0.8 eV. The absorption peak shift due to addition of the 0.0080 vol%. PY(1 mM) in 1 mM I{sub 2}-ACN solutions corresponds to ca. 0.6 eV. The blue shift of I{sub 2} absorption in basic solvents indicates the tendency to form a complex. The increase of the efficiency of the dye-sensitized solar cell by addition of PY to I

  2. Straightforward Entry toward Highly Substituted 2,3-Dihydrobenz[ b]oxepines by Ring Expansion of Benzopyryliums with Donor-Acceptor Diazo Compounds.

    Science.gov (United States)

    Courant, Thibaut; Pasco, Morgane; Lecourt, Thomas

    2018-05-04

    Ylide-type reactivity of diazo compounds is exploited in a new way to prepare benzo[ b]oxepines thanks to the formation of three chemical bonds and two contiguous and highly substituted stereocenters in a single pot. This cationic reaction cascade first involves addition of a donor-acceptor-substituted diazo compound to a benzopyrylium. Selective 1,2 migration of the endocyclic C-C bond then results in a ring-expansion and generates a second oxocarbenium that is trapped by a nucleophile added sequentially.

  3. Impact of electron delocalization on the nature of the charge-transfer states in model pentacene/C60 Interfaces: A density functional theory study

    KAUST Repository

    Yang, Bing

    2014-12-04

    Electronic delocalization effects have been proposed to play a key role in photocurrent generation in organic photovoltaic devices. Here, we study the role of charge delocalization on the nature of the charge-transfer (CT) states in the case of model complexes consisting of several pentacene molecules and one fullerene (C60) molecule, which are representative of donor/acceptor heterojunctions. The energies of the CT states are examined by means of time-dependent density functional theory (TD-DFT) using the long-range-corrected functional, ωB97X, with an optimized range-separation parameter, ω. We provide a general description of how the nature of the CT states is impacted by molecular packing (i.e., interfacial donor/acceptor orientations), system size, and intermolecular interactions, features of importance in the understanding of the charge-separation mechanism.

  4. Control of charge transfer by conformational and electronic effects: Donor-donor and donor-acceptor phenyl pyrroles

    International Nuclear Information System (INIS)

    Neubauer, Antje; Bendig, Juergen; Rettig, Wolfgang

    2009-01-01

    Derivatives of N-pyrrolobenzene with a para-donor and a para-acceptor substituent on the benzene ring are compared. It is shown that by a suitable increase of the donor strength of the pyrrolo group, CT fluorescence can be achieved even for donor-donor-substituted benzenes. The ICT emission for sterically hindered compounds is more forbidden than that of unhindered phenyl pyrroles. This suggests conformational effects which induce a narrower twist angle distribution around a perpendicular minimum in the excited state.

  5. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  6. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  7. An isoindigo containing donor-acceptor polymer: synthesis and photovoltaic properties of all-solution-processed ITO- and vacuum-free large area roll-coated single junction and tandem solar cells

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yue, Wei; Andersen, Thomas Rieks

    2015-01-01

    In this work, the design, synthesis, and characterization of a donor-acceptor polymer from dithieno[3,2-b:2',3'-d]pyrrole and isoindigo (i-ID) are presented. The synthesized polymer has been applied in large area ITO-free organic photovoltaics, both as spin coated and roll coated devices; the lat......In this work, the design, synthesis, and characterization of a donor-acceptor polymer from dithieno[3,2-b:2',3'-d]pyrrole and isoindigo (i-ID) are presented. The synthesized polymer has been applied in large area ITO-free organic photovoltaics, both as spin coated and roll coated devices...

  8. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, Lucas A.; Mulder, Fokko M. [Reactor Institute Delft, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Zbiri, Mohamed, E-mail: zbiri@ill.fr; Johnson, Mark R. [Institut Laue Langevin, 38042 Grenoble Cedex 9 (France); Carter, Elizabeth [Vibrational Spectroscopy Facility, School of Chemistry, The University of Sydney, NSW 2008 (Australia); Kotlewski, Arek; Picken, S. [ChemE-NSM, Faculty of Chemistry, Delft University of Technology, 2628BL/136 Delft (Netherlands); Kearley, Gordon J. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234 (Australia)

    2014-01-07

    Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10{sup −2} electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

  9. Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers

    DEFF Research Database (Denmark)

    Yue, Wei; Larsen-Olsen, Thue Trofod; Hu, Xiaolian

    2013-01-01

    A series of donor-acceptor low band gap polymers composed of alternating dithienopyrrole or its derivative as donors and phthalimide or thieno[3,4-c]pyrrole-4,6-dione as acceptors (P1-P4) are synthesized by Stille coupling polymerization. All polymers show strong absorption in the visible region......, for P2 and P4 possessing thieno[3,4-c]pyrrole-4,6-dione as an acceptor, their film absorption covers the region of 500-800 nm and 500-750 nm respectively, which makes them attractive as low band gap polymer solar cell (PSC) materials. With the incorporation of thiophene bridges, P3 and P4 have 0...

  10. Mulliken-Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    International Nuclear Information System (INIS)

    Rosokha, S.V.; Newton, M.D.; Head-Gordon, M.; Kochi, J.K.

    2006-01-01

    The paramagnetic [1:1] encounter complex (TCNE) 2 -dot is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor (TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE) 2 -dot by its intervalence absorption band at the solvent-dependent wavelength of λ IV ∼1500nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of H DA =1000cm -1 . The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of H DA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy (λ) and the electronic coupling element (H DA ) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes

  11. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    Science.gov (United States)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  12. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman; Risko, Chad; Norton, Joseph E.; Bré das, Jean-Luc

    2012-01-01

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical

  13. A double-leg donor-acceptor molecular elevator: new insight into controlling the distance of two platforms.

    Science.gov (United States)

    Zhang, Zhi-Jun; Han, Min; Zhang, Heng-Yi; Liu, Yu

    2013-04-05

    A double-leg elevator with an electron-rich anthracene moiety at the platformlike component and an electron-deficient naphthalenediimide unit in the middle of a double-leg riglike component was prepared through "click chemistry", in which the reversible elevator movement between different levels could be controlled upon the addition of base and acid.

  14. Charge transfer complex of some nervous and brain drugs - Part 1: Synthesis, spectroscopic, analytical and biological studies on the reaction between haloperidol antipsychotic drugs with π-acceptors

    Science.gov (United States)

    El-Habeeb, Abeer A.; Al-Saif, Foziah A.; Refat, Moamen S.

    2013-02-01

    Donor-acceptor interactions between the electron donor haloperidol (HPL) and π-acceptors like 7,7,8,8-tetracyanoquinodimethane (TCNQ) and picric acid (PA) have been studied spectrophotometrically in CH3OH solvent. The donor-acceptor (charge transfer complexes) were discussed in terms of formation constant (KCT), molar extinction coefficient (ɛCT), standard free energy (ΔGo), oscillator strength (ƒ), transition dipole moment (μ), resonance energy (RN) and ionization potential (ID). The stoichiometry of these complexes was found to be 1:1 M ratio and having the formulas [(HPL)(TCNQ)] and [(HPL)(PA)], respectively. The charge transfer interaction was successfully applied to determine of HPL drug using mentioned common π-acceptors also, the results obtained herein are satisfactory for estimation of HPL compound in the pharmaceutical form. The formed solid charge-transfer complexes were also isolated and characterized using elemental analysis, conductivity, (infrared, Raman, and 1H NMR) spectra and X-ray powder diffraction (XRD). The experimental data of elemental analyses are in agreement with calculated data. The infrared spectra of both HPL complexes are confirming the participation of sbnd OH of 4-hydroxy-1-piperidyl moiety in the donor-acceptor chelation. The morphological surface of the resulted charge transfer complexes were investigated using scanning electron microscopy (SEM). The thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about the thermal stability behavior of the synthesized charge transfer complexes. Thermodynamic parameters were computed from the thermal decomposition data. These complexes were also tested for their antimicrobial activity against six different microorganisms, and the results were compared with the parent drug.

  15. A comprehensive study of the optoelectronic properties of donor-acceptor based derivatives of 1,3,4-oxadiazole

    Science.gov (United States)

    Joshi, Ankita; Ramachandran, C. N.

    2017-07-01

    A variety of 1,3,4-oxadiazole derivatives based on electron- donor pyrrole and -acceptor nitro groups are modelled. Various isomers of pyrole-oxadiazole-nitro unit and its dimer linked to substituted and unsubstituted phenyl group are studied using the dispersion corrected density functional theoretical method. The electron density distribution in frontier orbitals of the phenyl-spacer compounds bearing amino and phenylamino groups indicates the possibility of intramolecular charge transfer. The isomers of phenyl-spacer compounds absorb in visible region of electromagnetic spectrum. The compounds show high values of light harvesting efficiency, despite the weak anchoring nature of nitro groups.

  16. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa

    2017-08-04

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  17. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa; Hood, Samantha N.; Shoaee, Safa; Schroeder, Bob C.; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R.

    2017-01-01

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  18. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.

    Directory of Open Access Journals (Sweden)

    Gerard N M van der Krogt

    Full Text Available We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors.

  19. Vacuum energy referred Ti3+/4+ donor/acceptor states in insulating and semiconducting inorganic compounds

    International Nuclear Information System (INIS)

    Rogers, E.G.; Dorenbos, P.

    2014-01-01

    Optical spectroscopy data has been collected on the energy needed for electron transfer from the valence band to Ti 4+ in about 40 different insulating and II–VI and III–V semiconducting compounds. It provides a measure for the location of the Ti 3+ 3d 1 ground state level above the valence band. This is combined with the vacuum referred binding energy (VRBE) of valence band electrons as obtained with the chemical shift model based on lanthanide impurity spectroscopy. It provides the VRBE of an electron in the Ti 3+ ground state level. This work will first show that the energy of electron transfer to Ti 4+ is about the same as that to Eu 3+ irrespective of the type of compound. Next it will be shown that the VRBE of the Ti 3+ 3d 1 ground state is always near −4 eV. An approximately ±1 eV spread around that value is attributed to the crystal field splitting of the Ti 3+ 3d-levels. - Highlights: • Data on the energy of charge transfer (CT) to Ti 4+ in 38 compounds was collected. • A correlation between the Ti 4+ and Eu 3+ CT energies has been established. • The chemical shift model has been applied to Ti impurity states. • The Ti 3+ ground state binding energy is always around −4±1 eV

  20. A p-type quantum dot/organic donor: Acceptor solar-cell structure for extended spectral response

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiang-Yu; Dayal, Smita; Kopidakis, Nikos; Beard, Matthew C.; Luther, Joseph M. [National Renewable Energy Laboratory, 1617 Cole Blvd, Golden CO 80401 (United States); Hou, Jianhui; Huo, Lijun [Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2011-07-15

    A coupled PbS quantum dot film and a PSBTBT:PCBM bulk heterojunction layer contribute comparable photocurrent in a new stacked solar-cell architecture with sensitivity in the near infrared and an efficiency >4%. With a focus on the energy level alignment between components, time-resolved microwave photoconductivity is used to elucidate the charge transport pathways for electrons and holes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient liposomal system promotes extended anesthesia time.

    Directory of Open Access Journals (Sweden)

    Camila Morais Gonçalves da Silva

    Full Text Available Ropivacaine is a local anesthetic with similar potency but lower systemic toxicity than bupivacaine, the most commonly used spinal anesthetic. The present study concerns the development of a combined drug delivery system for ropivacaine, comprised of two types of liposomes: donor multivesicular vesicles containing 250 mM (NH42SO4 plus the anesthetic, and acceptor large unilamellar vesicles with internal pH of 5.5. Both kinds of liposomes were composed of hydrogenated soy-phosphatidylcholine:cholesterol (2:1 mol% and were prepared at pH 7.4. Dynamic light scattering, transmission electron microscopy and electron paramagnetic resonance techniques were used to characterize the average particle size, polydispersity, zeta potential, morphology and fluidity of the liposomes. In vitro dialysis experiments showed that the combined liposomal system provided significantly longer (72 h release of ropivacaine, compared to conventional liposomes (~45 h, or plain ropivacaine (~4 h (p <0.05. The pre-formulations tested were significantly less toxic to 3T3 cells, with toxicity increasing in the order: combined system < ropivacaine in donor or acceptor liposomes < ropivacaine in conventional liposomes < plain ropivacaine. The combined formulation, containing 2% ropivacaine, increased the anesthesia duration up to 9 h after subcutaneous infiltration in mice. In conclusion, a promising drug delivery system for ropivacaine was described, which can be loaded with large amounts of the anesthetic (2%, with reduced in vitro cytotoxicity and extended anesthesia time.

  2. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Fatma Baycan, E-mail: fatmabaycan@hotmail.co [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey); Koyuncu, Sermet [Can Vocational School, Canakkale Onsekiz Mart University, 17400 Canakkale (Turkey); Ozdemir, Eyup, E-mail: eozdemir@comu.edu.t [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey)

    2010-07-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E{sub g} was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  3. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    International Nuclear Information System (INIS)

    Koyuncu, Fatma Baycan; Koyuncu, Sermet; Ozdemir, Eyup

    2010-01-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E g was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  4. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    Science.gov (United States)

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  5. Uniaxially oriented polycrystalline thin films and air-stable n-type transistors based on donor-acceptor semiconductor (diC8BTBT)(FnTCNQ) [n = 0, 2, 4

    Science.gov (United States)

    Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo

    2015-04-01

    We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.

  6. 35,37Cl, and 79,81Br, and 69,71Ga nuclear quadrupole resonance of complexes of gallium trichloride and aluminum bromide with nitriles and amines

    International Nuclear Information System (INIS)

    Popkova, L.A.; Gur'yanova, E.N.; Muromtsev, V.I.; Zhukov, A.P.

    1989-01-01

    The formation of an intermolecular bond in complexes of the electron donor-acceptor (DA) type is accompanied by a redistribution of electron density in both components of the complex. Valuable information on the character of the changes undergone by the donor and acceptor molecules in complexation can be obtained from NQR spectrometry. The present work is aimed at correlating NQR frequencies and multiplicity of spectra with the redistribution of electron density among orbitals of the central atom and the transfer of electron density to the halogen atoms upon complexation. The authors have investigated the 35,37 Cl, 69,71 Ga, and 79,81 Br NQR spectra of complexes of gallium trichloride and aluminum bromide with nitriles and amines

  7. Platinum(II) Complexes of 2-(Dimethylamino)ethylselenolate-Donor-Acceptor Inter-Ligand Interactions as Evident from Experimental and TD-DFT Computational Analysis

    Czech Academy of Sciences Publication Activity Database

    Dey, S.; Jain, V. K.; Knoedler, A.; Kaim, W.; Záliš, Stanislav

    č. 11 (2001), s. 2965-2973 ISSN 1434-1948 R&D Projects: GA MŠk ME 439 Institutional research plan: CEZ:AV0Z4040901 Keywords : platinum * selenium * NMR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.475, year: 2001

  8. On the electronic structure of Barrelene-based rigid organic donor-acceptor systems. An INDO model study including solvent effects

    International Nuclear Information System (INIS)

    Fox, T.; Kotzian, M.; Roesch, N.

    1992-01-01

    The authors present an INDO/S Molecular-orbital investigation of organic molecules containing a barrelene moiety that provides a rigid link between an aromatic donor and a maleic ester acceptor group. Molecules of this type have recently been synthesized and characterized spectroscopically. The authors discuss the ground state and various excited states both in vacuo and in solution. Solvent effects are incorporated by use of an electrostatic cavity model which is not restricted to a spherical cavity, but allows for a cavity shape that is adapted to the solute molecule. The calculations indicate low-lying charge-transfer (CT) excitations in the region of the first aromatic transitions, even in the gas phase

  9. Ab Initio Analysis of Auger-Assisted Electron Transfer.

    Science.gov (United States)

    Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V

    2015-01-15

    Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.

  10. Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex

    KAUST Repository

    Aly, Shawkat Mohammede; Goswami, Subhadip; Alsulami, Qana; Schanze, Kirk S.; Mohammed, Omar F.

    2014-01-01

    Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR

  11. The chemistry of polypyridine complexes of ruthenium. Communication 5. Electronic structure of mixed-ligand bipyridyl-diphosphine complexes of ruthenium(2)

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ivanova, N.V.; Ershov, A.Yu.

    2001-01-01

    Comparative analysis of donor-acceptor abilities of diphosphine ligands for two series of complex compounds: cis-[Ru(bpy) 2 (LL) q+ [LL=2,2'-bipyridyl(bpy), o-benzoquinonediimine (bqdi), cis-1,2-bis(diphenylphosphino)ethane, cis-1,2-bis(diphenylphosphino)ethylene (dppen), (NH 3 ) 2 and (CO) 2 ] and [Ru(NH 3 ) 4 (LL)] 2+ (LL = bpy, dppen and bqdi) was carried out on the basis of results of quantum chemical calculations. It is shown that diphosphines are the strongest σ-donors; their π-acceptor abilities stemming from d-orbitals of phosphorus are comparable in value with π-acceptor abilities of 2,2'-bipyridyl, being essentially lower than those of o-benzoquinonediimine and carbonyl [ru

  12. An overview of the first half-century of molecular electronics.

    Science.gov (United States)

    Hush, Noel S

    2003-12-01

    The seminal ideas from which molecular electronics has developed were the theories of molecular conduction advanced in the late 1940s by Robert S. Mulliken and Albert Szent-Gyorgi. These were, respectively, the concept of donor-acceptor charge transfer complexes and the possibility that proteins might in fact not be insulators The next two decades saw a burgeoning of experimental and theoretical work on electron transfer systems, together with a lone effort by D.D. Eley on conduction in proteins. The call by Feynman in his famous 1959 lecture There's Plenty of Room at the Bottom for chemists, engineers and physicists to combine to build up structures from the molecular level was influential in turning attention to the possibility of engineering single molecules to function as elements in information-processing systems. This was made tangible by the proposal of Aviram and Ratner in 1974 to use a Mulliken-like electron donor-acceptor molecule as a molecular diode, generalizing molecular conduction into molecular electronics. In the early 1970s the remarkably visionary work of Forrest L. Carter of the U.S. Naval Research Laboratories began to appear: designs for molecular wires, switches, complex molecular logic elements, and a host of related ideas were advanced. Shortly after that, conferences on molecular electronics began to be held, and the interdisciplinary programs that Feynman envisaged. There was a surge in both experimental and theoretical work in molecular electronics, and the establishment of many research centres. The past five years or so have seen extraordinarily rapid progress in fabrication and theoretical understanding. The history of how separate lines of research emanating from fundamental insights of about 50 years ago have coalesced into a thriving international research program in what might be called the ultimate nanotechnology is the subject of this review; it concentrates on the lesser-appreciated early developments in the field.

  13. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.

    Science.gov (United States)

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Liu, Guiyang; Wang, Shuo

    2016-03-15

    A novel strategy is reported for the fabrication of bis-aniline-crosslinked Au nanoparticles (NPs)-CdSe/ZnS quantum dots (QDs) array composite by facil one-step co-electropolymerization of thioaniline-functionalized AuNPs and thioaniline-functionalized CdSe/ZnS QDs onto thioaniline-functionalized Au elctrodes (AuE). Stable and enhanced cathodic electrochemiluminescence (ECL) of CdSe/ZnS QDs is observed on the modified electrode in neutral solution, suggesting promising applications in ECL sensing. An advanced ECL sensor is explored for detection of 2-methyl-4-chlorophenoxyacetic acid (MCPA) which quenches the ECL signal through electron-transfer pathway. The sensitive determination of MCPA with limit of detection (LOD) of 2.2 nmolL(-1) (S/N=3) is achieved by π-donor-acceptor interactions between MCPA and the bis-aniline bridging units. Impressively, the imprinting of molecular recognition sites into the bis-aniline-crosslinked AuNPs-CdSe/ZnS QDs array yields a functionalized electrode with an extremely sensitive response to MCPA in a linear range of 10 pmolL(-1)-50 μmolL(-1) with a LOD of 4.3 pmolL(-1 ()S/N=3). The proposed ECL sensor with high sensitivity, good selectivity, reproducibility and stability has been successfully applied for the determination of MCPA in real samples with satisfactory recoveries. In this study, ECL sensor combined the merits of QDs-ECL and molecularly imprinting technology is reported for the first time. The developed ECL sensor holds great promise for the fabrication of QDs-based ECL sensors with improved sensitivity and furthermore opens the door to wide applications of QDs-based ECL in food safety and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

    KAUST Repository

    Parida, Manas R.

    2015-04-28

    Controlling the electron transfer process at donor- acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β -Cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120% . The detailed reaction mechanism is also discussed.

  15. Influence of push-pull group substitution patterns on excited state properties of donor-acceptor co-monomers and their trimers

    NARCIS (Netherlands)

    de Gier, Hilde D.; Rietberg, Bernd J.; Broer, Ria; Havenith, Remco W. A.

    2014-01-01

    Organic electronics form a very promising new generation of cheap, lightweight and flexible devices. Of special interest is the ability to engineer photo-physical properties of organic molecules by chemical modification. In this regard, the purpose of this research is to understand the influence of

  16. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

    KAUST Repository

    Hinkel, Felix

    2018-01-26

    The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps–μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes’ excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

  17. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells

    KAUST Repository

    Hinkel, Felix; Kim, Yoojin M.; Zagraniarsky, Yulian; Schlü tter, Florian; Andrienko, Denis; Mü llen, Klaus; Laquai, Fré dé ric

    2018-01-01

    The charge generation and recombination processes in three novel push-pull photosensitizers for dye-sensitized solar cells (DSSCs) are studied by ps–μs transient absorption (TA) and quasi-steady-state photoinduced absorption (PIA) spectroscopy. The three cyclopentadithiophene-based photosensitizer dye molecules exhibit comparably low power conversion efficiencies ranging from 0.8% to 1.7% in solid-state DSSCs. We find that the photocurrents increase in the presence of Li-salt additives. Both TA and PIA measurements observe long-lived dye cations created by electron injection from the dyes’ excited state for two dyes from the series. However, the third dye shows significantly lower performance as a consequence of the less efficient electron injection even after the addition of Li-salts and faster electron-hole recombination on the ns-μs time scale. In essence, the prerequisites for this class of donor-π bridge-acceptor photosensitizers to reach higher charge generation efficiencies are a combination of strong dipole moments and fine tuning of the electronic landscape at the titania-dye interface by Li-salt addition.

  18. Required Equipment for Photo-Switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    Science.gov (United States)

    2014-01-24

    Interfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk- Heterojunction Organic Photovoltaic Cells...devices Figure 3 shows the compounds we prepared to assemble on gold (Au) surfaces. Results of TPA-C60 dyads (1 and 2) self-assembled on Au electrodes...surface hydroxyl groups, respectively, we decided to prepare compounds 5-7 to attach as SAMs, see Figure 5. Difficulties and unexpected problems

  19. Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-10-02

    Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR are desirable for optimal device performance. In this Letter, the ultrafast excited-state CT between platinum oligomer (DPP-Pt(acac)) as a new electron donor and porphyrin as an electron acceptor is monitored for the first time using femtosecond (fs) transient absorption (TA) spectroscopy with broad-band capability and 120 fs temporal resolution. Turning the CT on/off has been shown to be possible either by switching from an organometallic oligomer to a metal-free oligomer or by controlling the charge density on the nitrogen atom of the porphyrin meso unit. Our time-resolved data show that the CT and CS between DPP-Pt(acac) and cationic porphyrin are ultrafast (approximately 1.5 ps), and the CR is slow (ns time scale), as inferred from the formation and the decay of the cationic and anionic species. We also found that the metallic center in the DPP-Pt(acac) oligomer and the positive charge on the porphyrin are the keys to switching on/off the ultrafast CT process.

  20. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    Science.gov (United States)

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  2. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  3. Dynamics in electron transfer protein complexes

    OpenAIRE

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...

  4. The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics

    Science.gov (United States)

    Causa', Martina; de Jonghe-Risse, Jelissa; Scarongella, Mariateresa; Brauer, Jan C.; Buchaca-Domingo, Ester; Moser, Jacques-E.; Stingelin, Natalie; Banerji, Natalie

    2016-09-01

    There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron-hole pairs--whether they will dissociate to free charges or geminately recombine--is determined at ultrafast times, despite the fact that their actual spatial separation can be much slower. Our insights are important to further develop rational approaches towards material design and processing of organic solar cells, assisting to realize their purported promise as lead-free, third-generation energy technology that can reach efficiencies over 10%.

  5. Donor-acceptor random copolyesters containing perylenebisimide (PBI) and oligo(p-phenylene vinylene) (OPV) by melt condensation polymerization: energy transfer studies.

    Science.gov (United States)

    Nisha, S Kumari; Asha, S K

    2013-10-31

    Novel copolyesters consisting of oligo(p-phenylene vinylene) (OPV) as donor (D) and perylenebisimide (PBI) as acceptor (A) were synthesized by melt polycondensation. Photoinduced energy transfer and photoinduced charge separation in these polyesters were studied in solution as well as in the solid state. Selective excitation of OPV moiety resulted in the energy transfer with >90% efficiency from OPV to PBI chromophore in the solution state. The direct excitation of PBI in the D-A copolyester resulted in reduced fluorescence emission of acceptor, indicating electron transfer between the D and A moieties. The effect of distance between donor and acceptor on the energy transfer efficiency from donor to acceptor was studied. Compared to a physical mixture of D and A polyesters alone, the energy transfer was 4 times more efficient in the D-A copolyester, highlighting the influence of covalently linking D and A in a single polymer chain. A strong fluorescence quenching (∼ 100%) of both chromophores in solid state indicated an efficient photoinduced charge transfer after photoexcitation of either D or A. Thus, OPV-PBI main chain copolyester is an excellent system for the study of energy- and electron-transfer processes in organic semiconductor. Reactive blend of D/A copolyester was also prepared by the transesterification reaction between D and A alone copolyesters. The energy transfer efficiency from D to A moiety upon selective excitation of D chromophore in the D/A copolyester blend was ∼4 times higher compared to a physical mixture of D and A alone copolyesters, which gave direct proof for the transesterification reaction in polyester/polyester reactive blending.

  6. Ultrafast Charge Photogeneration in MEH-PPV Charge-Transfer Complexes

    NARCIS (Netherlands)

    Bakulin, Artem A.; Paraschuk, Dmitry Yu; Pshenichnikov, Maxim S.; van Loosdrecht, Paul H. M.; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E; Schoenlein, RW

    2009-01-01

    Visible-pump - IR-probe spectroscopy is used to study the ultrafast charge dynamics in MEH-PPV based charge-transfer complexes and donor-acceptor blends. Transient anisotropy of the polymer polaron band provides invaluable insights into excitation localisation and charge-transfer pathways.

  7. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping

    2011-01-01

    The exciton-dissociation and charge-recombination processes in donor-acceptor complexes found in α-sexithienyl/C60 and α-sexithienyl/perylenetetracarboxydiimide (PDI) solar cells are investigated by means of quantum-chemical methods. The electronic couplings and exciton-dissociation and charge-recombination rates have been evaluated for various configurations of the complexes. The results suggest that the decay of the lowest charge-transfer state to the ground state in the PDI-based devices: (i) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed experimentally for the devices using PDI derivatives as the acceptor. © 2011 The Royal Society of Chemistry.

  8. Influence of doped-charge transport layers on the photovoltaic performance of donor-acceptor blend p-i-n type organic solar cells

    Directory of Open Access Journals (Sweden)

    D. Gebeyehu

    2004-06-01

    Full Text Available This report demonstrates external power conversion efficiencies of 2% under 100 mW/cm2 simulated AM1.5 illumination for organic thin-film photovoltaic cells using a phthalocyanine-fullerene (ZnPc/C60 bulk heterojunction as an active layer, embedded into a p-i-n type architecture with doped wide-gap charge transport layers. For an optically optimized device, we found internal quantum efficiency (IQE of above 80% under short circuit conditions. Such optically thin cells with high internal quantum efficiency are an important step towards high efficiency tandem cells. The p-i-n architecture allows for the design of solar cells with high internal quantum efficiency where only the photoactive region absorbs visible light and recombination losses at contacts are avoided. The I-V characteristics, power conversion efficiencies, the dependence of short circuit current on incident white light intensity, incident photon to collected electron efficiency (IPCE and absorption spectra of the active layer system are discussed.

  9. X-ray spectral and quantum-chemical investigation of electronic structure of 6,9-bis-(ammonia)-nido-decarborane(12)

    International Nuclear Information System (INIS)

    Yumatov, V.D.; Il'inchik, E.A.; Murakhtanov, V.V.; Dunaev, S.T.; Volkov, V.V.

    1993-01-01

    Electron structure of 6.9-bis-(ammonia)-nide-decarborane(12), that is, B 10 H 12 (NH 3 ) 2 , is studied by means of ultrasoft X-ray spectroscopy using nitrogen and boron atoms. Calculations of MNDO and ab initio are conducted. Electron structure of ammonia and of /B 10 H 12 / cluster is studied and its variation at complex formation is investigated, as well. On the basis of calculations one shows, that some vacant orbitals belonging to borane cluster participate into chemical bond of donor-acceptor type among the fragments. Presence of π-component of bond between NH 3 and /B 10 H 12 / and occurrence of four-central bound in borane cluster are detected

  10. Theory of electronic excitations: a complex story

    International Nuclear Information System (INIS)

    Reinig, L.

    2014-01-01

    The interaction of radiation with matter is a challenge for condensed matter physics. Indeed, it consists in understanding how a collective system of about 10 23 electrons reacts to a perturbation. The difficulty lays in the fact that the electrons are not independent and the correlations between electrons appear for instance in the complexity of the energy spectra of the electrons released in the photon-induced emission process. It is unrealistic to solve the multi-particle Schroedinger equation that describes the behaviour of 10 23 electrons, the challenge is to find adequate mathematical models and approximations that contains the physics we want to study. Feynman diagrams are used to interpret the equations more easily

  11. Engineering complex oxide interfaces for oxide electronics

    NARCIS (Netherlands)

    Roy, Saurabh

    2015-01-01

    A complex interplay of physics and chemistry in transition metal oxides determines their electronic, magnetic, and ferroic properties enabling a wide range of applications of these materials. BiFeO_3, a canonical multiferroic system exhibits the interesting feature of enhanced conductivity on

  12. Complexity in electronic negotiation support systems.

    Science.gov (United States)

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  13. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    Science.gov (United States)

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  14. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1993-01-01

    Advances in Electron Transfer Chemistry, Volume 3 presents studies that discuss findings in the various aspects of electron chemistry. The book is comprised of four chapters; each chapter reviews a work that tackles an issue in electron transfer chemistry. Chapter 1 discusses the photoinduced electron transfer in flexible biaryl donor-acceptor molecules. Chapter 2 tackles light-induced electron transfer in inorganic systems in homogeneous and heterogeneous phases. The book also covers internal geometry relaxation effects on electron transfer rates of amino-centered systems. The sequential elec

  15. First Principles Calculations of Charge Transfer Excitations in Polymer-Fullerene Complexes: Influence of Excess Energy

    OpenAIRE

    Niedzialek , Dorota; Duchemin , Ivan; Queiroz , Thiago Branquinho ,; Osella , Silvio; Rao , Akshay; Friend , Richard; Blase , Xavier; Kuemmel , Stephan; Beljonne , David

    2015-01-01

    International audience; The ability of quantum simulations to predict the electronic structure at donor/acceptor interfaces and correlate it with the quantum efficiency of organic solar cells remains a major challenge. The need to describe with increased accuracy electron-electron and electron-hole interactions, while better accounting for disorder and environmental screening in realistic interfaces, requires significant progress to improve both the accuracy and computational efficiency of av...

  16. Synthesis and spectral properties of europium phthalocyanine complexes

    International Nuclear Information System (INIS)

    Maksimova, K.N.; Bazyakina, N.L.; Kutyreva, V.V.; Suvorova, O.N.; Domrachev, G.A.

    2008-01-01

    Synthesis of europium monophthalocyanic complexes with thenoyltrifluroacetonate (tta) and ferrocenoyltrifluoroacetate (fta) ligands has been considered. Spectral characteristics of complexes PcEu(tta)(ttaH) and PcEu(fta)(ftaH) (Pc - phthalocyanine ligand) have been investigated. One of β-diketonate ligand is proposed to bind with europium ion covalently, and the second ligand saturates coordination sphere of europium due to donor-acceptor binding [ru

  17. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  18. Theoretical insights into multiscale electronic processes in organic photovoltaics

    Science.gov (United States)

    Tretiak, Sergei

    Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.

  19. Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3 and Ammonia (NH3 Donor-Acceptor Complex

    Directory of Open Access Journals (Sweden)

    Dulal C. Ghosh

    2004-09-01

    Full Text Available The formation of the F3B–NH3 supermolecule by chemical interaction of its fragment parts, BF3 and NH3, and the dynamics of internal rotation about the ‘B–N’ bond have been studied in terms of parameters provided by the molecular orbital and density functional theories. It is found that the pairs of frontier orbitals of the interacting fragments have matching symmetry and are involved in the charge transfer interaction. The donation process stems from the HOMO of the donor into the LUMO of the acceptor and simultaneously, back donation stems from the HOMO of acceptor into the LUMO of the donor. The density functional computation of chemical activation in the donor and acceptor fragments, associated with the physical process of structural reorganization just prior to the event of chemical reaction, indicates that BF3 becomes more acidic and NH3 becomes more basic, compared to their separate equilibrium states. Theoretically it is observed that the chemical reaction event of the formation of the supermolecule from its fragment parts is in accordance with the chemical potential equalization principle of the density functional theory and the electronegativity equalization principle of Sanderson. The energetics of the chemical reaction, the magnitude of the net charge transfer and the energy of the newly formed bond are quite consistent, both internally and with the principle of maximum hardness, PMH. The dynamics of the internal rotation of one part with respect to the other part of the supermolecule about the ‘B–N’ bond mimics the pattern of the conformational isomerism of the isostructural ethane molecule. It is also observed that the dynamics and evolution of molecular conformations as a function of dihedral angles is also in accordance with the principle of maximum hardness, PMH. Quite consistent with spectroscopic predictions, the height of the molecule’s barrier to internal rotation is very small. A rationale for the low height of the barrier has been put forward in terms of the energy partitioning analysis. On the question of origin of the barrier to internal rotation, we conclude that the conformational barrier to internal rotation does not originate from a particular region of the molecule, but rather it is a result of the subtle conjoint interplay of a number of opposing effects of one- and two-center bonded and nonbonded energy terms involving the entire skeleton of the molecule.

  20. Dynamics in electron transfer protein complexes

    NARCIS (Netherlands)

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize

  1. α,β-Unsubstituted meso-Positioning Thienyl BODIPY: A Promising Electron Deficient Building Block for the Development of Near Infrared (NIR) p-type Donor-Acceptor (D-A) Conjugated Polymers

    KAUST Repository

    Squeo, Benedetta; Gregoriou, Vasilis G.; Han, Yang; Palma-Cando, Alex; Allard, Sybille; Serpetzoglou, Efthymis; Konidakis, Ioannis; Stratakis, Emmanuel; Avgeropoulos, Apostolos; Anthopoulos, Thomas D.; Heeney, Martin; Scherf, Ullrich; Chochos, Christos L.

    2018-01-01

    of the alkyl side chains at the two central thiophenes of the quaterthiophene segment results to lower Egopt, higher energy levels and increased hole mobility as compared to head-to-head (HH) positioning. Finally, even though the synthesized polymers exhibit

  2. Complex band structure and electronic transmission eigenchannels

    DEFF Research Database (Denmark)

    Jensen, Anders; Strange, Mikkel; Smidstrup, Soren

    2017-01-01

    and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...

  3. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman

    2012-08-28

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical properties. We consider the combination of two distinct donors, where a central five-membered ring is fused on both sides by either a thiophene or a benzene ring, with 12 different acceptors linked to the donor either directly or through thienyl linkages. The interplay between the electron richness/deficiency of the subunits as well as the evolution of the frontier electronic levels of the isolated donors/acceptors plays a significant role in determining the electronic and optical properties of the copolymers. © 2012 American Chemical Society.

  4. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney

    2011-12-01

    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  5. Absorption spectrometric and thermodynamic study of charge transfer complexes of menadione (Vitamin K3) with a series of phenols.

    Science.gov (United States)

    Pal, Purnendu; Bhattacharya, Sumanta; Mukherjee, Asok K; Mukherjee, Dulal C

    2005-03-01

    The electron donor-acceptor (EDA) interactions between menadione (i.e., 2-methyl-1,4-naphthoquinone, which is also called 'Vitamin K3') and a series of phenols (viz., phenol, resorcinol and p-quinol) have been studied in CCl4 medium. In all the cases, charge transfer (CT) bands have been located. The CT transition energies (h nu(CT)) of the complexes are found to change systematically with change in the number and position of the -OH groups in the aromatic ring of the phenol moiety. From the trends in the h nu(CT) values, the Hückel parameters (h(O) and k(C-O)) for the -OH group have been obtained. The CT transition energies are well correlated with the ionisation potentials of the phenols. From an analysis of this variation the electron affinity of Vitamin K3 has been found to be 2.28 eV. The stoichiometry of the complexes in each case has been found to be 1(menadione):2 (phenol). Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been estimated.

  6. Absorption spectrometric and thermodynamic study of charge transfer complexes of menadione (Vitamin K 3) with a series of phenols

    Science.gov (United States)

    Pal, Purnendu; Bhattacharya, Sumanta; Mukherjee, Asok K.; Mukherjee, Dulal C.

    2005-03-01

    The electron donor-acceptor (EDA) interactions between menadione (i.e., 2-methyl-1,4-naphthoquinone, which is also called 'Vitamin K 3') and a series of phenols (viz., phenol, resorcinol and p-quinol) have been studied in CCl 4 medium. In all the cases, charge transfer (CT) bands have been located. The CT transition energies ( hνCT) of the complexes are found to change systematically with change in the number and position of the -OH groups in the aromatic ring of the phenol moiety. From the trends in the hνCT values, the Hückel parameters ( hÖ and kC-Ö) for the -OH group have been obtained. The CT transition energies are well correlated with the ionisation potentials of the phenols. From an analysis of this variation the electron affinity of Vitamin K 3 has been found to be 2.28 eV. The stoichiometry of the complexes in each case has been found to be 1(menadione):2 (phenol). Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been estimated.

  7. Intersystem crossing in complex molecules

    International Nuclear Information System (INIS)

    Pappalardo, R.G.

    1980-01-01

    The general question of singlet-triplet intersystem crossing is addressed in the context of large organic molecules, i.e., ''complex'' molecules capable of self-relaxation in the absence of collisions. Examples of spectral properties of such molecules in the vapor phase are discussed, relying on extensive Russian literature in this area. Formal expressions for the relaxation rate in the electronic excited states are derived on the basis of the formalism of collision theory, and are applied to the specific case of intersystem crossing. The derivation of the ''energy-gap'' law for triplet-singlet conversion in aromatic hydrocarbons is briefly outlined. The steep rise of internal conversion rates as a function of excess excitation energy, and its competition with the intersystem crossing process, are reviewed for the case of naphthalene vapor. A general expression for the spin-orbit interaction Hamiltonian in molecular systems is outlined. Experimental observations on singlet-triplet conversion rates and the factors that can drastically affect such rates are discussed, with emphasis on the ''in- ternal'' and ''external'' heavy-atom effects. Basic relations of ESR spectroscopy and magnetophotoselection are reviewed. Technological implications of the singlet-triplet crossing in complex molecules are discussed in the context of chelate lasers, dye lasers and luminescent displays. Effects related to singlet-triplet crossing, and generally to excited-state energy-transfer in biological systems, are exemplified by the role of aromatic amino-acids in the phosphorescence of proteins, by some recent studies of energy-transfer in models of biomembranes, and by the clustering of triplet-energy donor-acceptor pairs in micelles

  8. Chemical approach to neutral-ionic valence instability, quantum phase transition, and relaxor ferroelectricity in organic charge-transfer complexes

    International Nuclear Information System (INIS)

    Horiuchi, Sachio; Kumai, Reiji; Okimoto, Yoichi; Tokura, Yoshinori

    2006-01-01

    Neutral-ionic (NI) phase transition is a reversible switching of organic charge-transfer complexes between distinct valence states by external stimuli. This phase transformation in the low-dimensional system is demonstrated to provide a variety of novel dielectric, structural, and electronic properties. Importantly, ionization of the electron donor-acceptor pairs is usually accompanied by a ferroelectric or antiferroelectric order of the molecular lattice, leading to huge dielectric response near the transition point. Although these characteristics are potentially useful for future electronic and optical applications, the thermally accessible NI transition (TINIT) is still an extremely rare case. The TINIT compounds including some new materials are overviewed in order to provide convenient guides to their design and experimental identifications. The phase transition and dielectric properties can be closely controlled in various ways depending on chemical and physical modifications of the crystals. Among them, a quantum phase transition and relaxor ferroelectricity, both of which are currently attracting subjects from both scientific and practical perspectives, are highlighted as the first achievements in organic charge-transfer complexes

  9. Electron transfer reactions of metal complexes in solution

    International Nuclear Information System (INIS)

    Sutin, N.

    1977-01-01

    A few representative electron-transfer reactions are selected and their kinetic parameters compared with the predictions of activated complex models. Since Taube has presented an elegant treatment of intramolecular electron-transfer reactions, emphasis is on bimolecular reactions. The latter electron-transfer reactions are more complicated to treat theoretically since the geometries of their activated complexes are not as well known as for the intramolecular case. In addition in biomolecular reactions, the work required to bring the two reactants together needs to be calculated. Since both reactants generally carry charges this presents a non-trivial problem at the ionic strengths usually used to study bimolecular electron transfer

  10. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    Science.gov (United States)

    Liu, Yi; He, Bo; Pun, Andrew

    2015-11-24

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  11. High pressure study of viscosity effects on the luminescence of tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-03-01

    High pressure fluorescence studies fron 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used, 2,2,4,4,6,8,8 heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14 tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 poise was covered at constant temperature. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB as well as one mesitylene complex yielded the two radiative rates (kEQ and kFC) as well as the rate of internal conversion from FC to the EQ excited state to (kIC). The results are discussed in terms of the rate of relaxation of the solvent compared with the rate kFC. It was found that kIC correlated very well with the solvent viscosity.

  12. On the length dependence of bridge-mediated electron transfer reactions

    International Nuclear Information System (INIS)

    Petrov, E.G.; Shevchenko, Ye.V.; May, V.

    2003-01-01

    Bridge-mediated nonadiabatic donor-acceptor (D-A) electron transfer (ET) is studied for the case of a regular molecular bridge of N identical units. It is shown that the multi-exponential ET kinetics reduces to a single-exponential transfer if, and only if, the integral population of the bridge remains small (less than 10 -2 ). An analytical expression for the overall D-A ET rate is derived and the necessary and sufficient conditions are formulated at which the rate is given as a sum of a superexchange and a sequential contribution. To describe experimental data on the N-dependence of ET reactions an approximate form of the overall transfer rate is derived. This expression is used to reproduce experimental data on distant ET through polyproline chains. Finally it is noted that the obtained analytical results can also be used for the description of more complex two-electron transfer reactions if the latter comprises separate single-electron pathways

  13. Molecular complexes of L-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: Spectral and theoretical investigations

    Science.gov (United States)

    Ganesh, K.; El-Mossalamy, E. H.; Satheshkumar, A.; Balraj, C.; Elango, K. P.

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ1-4). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH = 7). The interaction of MQ1-4 with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.

  14. Electron cloud in the CERN accelerator complex

    CERN Document Server

    AUTHOR|(CDS)2069325; Bartosik, Hannes; Belli, Eleonora; Iadarola, Giovanni; Li, Kevin Shing Bruce; Mether, Lotta Maria; Romano, Annalisa; Schenk, Michael

    2016-01-01

    Operation with closely spaced bunched beams causes the build-up of an Electron Cloud (EC) in both the LHC and the two last synchrotrons of its injector chain (PS and SPS). Pressure rise and beam instabilities are observed at the PS during the last stage of preparation of the LHC beams. The SPS was affected by coherent and incoherent emittance growth along the LHC bunch train over many years, before scrubbing has finally suppressed the EC in a large fraction of the machine. When the LHC started regular operation with 50 ns beams in 2011, EC phenomena appeared in the arcs during the early phases, and in the interaction regions with two beams all along the run. Operation with 25 ns beams (late 2012 and 2015), which is nominal for LHC, has been hampered by EC induced high heat load in the cold arcs, bunch dependent emittance growth and degraded beam lifetime. Dedicated and parasitic machine scrubbing is presently the weapon used at the LHC to combat EC in this mode of operation. This talk summarises the EC experi...

  15. Mixed-Stack Architecture and Solvatomorphism of Trimeric Perfluoro-ortho-Phenylene Mercury complexes with Dithieno[3,2-b:2',3'-d]thiophene

    KAUST Repository

    Castañeda, Raúl

    2015-08-01

    The formation of the mixed-stack donor-acceptor complex of dithieno[3,2-b:2\\',3\\'-d]thiophene (1) and trimeric perfluoro-ortho-phenylene mercury (I) has been investigated under different conditions. Two solvatomorphs – mixed-stack complexes with a 1:1 donor-acceptor ratio and different solvent molecules in the solid state (dichloromethane (2) and dichloroethane (3)) have been obtained and characterized by experimental methods (FT-IR spectroscopy, differential thermogravimetric analysis, and X-ray crystallography) and quantum-chemical calculations at the density functional theory level. The differences in the solid state packing, thermal stability and potential charge-transfer properties of 2 and 3 are discussed.

  16. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  17. Quantum Calculations of Electron Tunneling in Respiratory Complex III.

    Science.gov (United States)

    Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2015-11-19

    The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.

  18. Quantum Electron Tunneling in Respiratory Complex I1

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666

  19. High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-12-01

    High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.

  20. Quantitative analysis of complexes in electron irradiated CZ silicon

    International Nuclear Information System (INIS)

    Inoue, N.; Ohyama, H.; Goto, Y.; Sugiyama, T.

    2007-01-01

    Complexes in helium or electron irradiated silicon are quantitatively analyzed by highly sensitive and accurate infrared (IR) absorption spectroscopy. Carbon concentration (1x10 15 -1x10 17 cm -3 ) and helium dose (5x10 12 -5x10 13 cm -2 ) or electron dose (1x10 15 -1x10 17 cm -2 ) are changed by two orders of magnitude in relatively low regime compared to the previous works. It is demonstrated that the carbon-related complex in low carbon concentration silicon of commercial grade with low electron dose can be detected clearly. Concentration of these complexes is estimated. It is clarified that the complex configuration and thermal behavior in low carbon and low dose samples is simple and almost confined within the individual complex family compared to those in high concentration and high dose samples. Well-established complex behavior in electron-irradiated sample is compared to that in He-irradiated samples, obtained by deep level transient spectroscopy (DLTS) or cathodoluminescence (CL), which had close relation to the Si power device performance

  1. The impact of long-range electron-hole interaction on the charge separation yield of molecular photocells

    Science.gov (United States)

    Nemati Aram, Tahereh; Ernzerhof, Matthias; Asgari, Asghar; Mayou, Didier

    2017-01-01

    We discuss the effects of charge carrier interaction and recombination on the operation of molecular photocells. Molecular photocells are devices where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes. Our investigation is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this study, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron-hole interaction and the non-radiative recombination rate. Our analysis helps to optimize the charge separation process and the energy transfer in organic solar cells and in molecular photocells.

  2. Solving complex and disordered surface structures with electron diffraction

    International Nuclear Information System (INIS)

    Van Hove, M.A.

    1987-10-01

    The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab

  3. Electron-impact excitation of complex atoms and ions

    International Nuclear Information System (INIS)

    Burke, P.G.; Burke, V.M.; Dunseath, K.M.

    1994-01-01

    A new R-matrix approach for calculating cross sections and rate coefficients for electron-impact excitation of complex atoms and ions is described. This approach, based on an expansion of the total wavefunction in target configurations rather than in individual target states and taking advantage of the special status of the scattered electron in the collisional wavefunction, enables the angular integrals to be performed very much more efficiently than hitherto. It also enables electron correlation effects in the target and in the electron-target collision complex to be treated consistently, eliminating pseudo-resonances which have caused serious difficulties in some earlier work. A major new program package RMATRIX II has been written that implements this approach and, as an example, electron-impact excitation of Fe 2+ is considered where the four target configurations 3d 6 , 3d 5 4s, 3d 5 4p and 3d 5 4d are retained in the expansion of the total wavefunction. RMATRIX II is compared with the standard R-matrix program package and is found to be much more efficient showing that accurate electron scattering calculations involving complex targets, such as the astrophysically important low ionization stages of iron-peak elements, are now possible. (author)

  4. Multiple purpose research complex on the basis of electron accelerators and terahertz free electron laser

    International Nuclear Information System (INIS)

    Kulipanov, G.N.

    2009-01-01

    In this report the basic positioning parameters of multiple purpose research complex are presented, the list of potential experiments and technological uses on the example of results received in the multiuser center of G.I. Budker Institut of nuclear physics Siberian department of the Russian Academy of Sciences is discussed. This research complex is directed on work in the big universities and nano technology centers. Electron accelerators is intended for development of electron-beam technologies different material modification, for production of nano powder, nano materials and solution of ecological tasks. In this work the project of multiple purpose research complex on the basis of new generation electron accelerator Il-14 and workable terahertz free electron laser is suggested. Terahertz free electron laser will be used for researches in the sphere of physics and chemistry, biology and medicine, nanotechnology engineering and different methods of nanodiagnostics.

  5. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  6. Spectral investigations, DFT based global reactivity descriptors, Inhibition efficiency and analysis of 5-chloro-2-nitroanisole as π-spacer with donor-acceptor variations effect for DSSCs performance

    Science.gov (United States)

    Meenakshi, R.

    2017-01-01

    FTIR, FT-Raman, UV, NMR and quantum chemical calculation studies are performed on 5-chloro-2-nitroanisole, in order to gain the insights of its structural, spectroscopic and electronic properties (Fukui indices, HOMO and LUMO energy gap, MESP and Global reactivity descriptors). A complete vibrational analysis of 5-chloro-2-nitroanisole is performed by HF/B3LYP methods using 6-31G(d,p) basis set. To estimate the electronic transitions, the UV spectra of title compound are predicted in gas phase and ethanol. The obtained absorption maxima at 389.94 nm (in ethanol) is predicted possibly due to HOMO→LUMO transition with 85% contribution and assigned as π-π*. The MESP map shows that the negative potential sites are localized on oxygen atom (O10) as well as the positive potential sites are identified around the hydrogen and ring carbon atoms. The analysis of Fukui indices is also carried out to distinguish the nucleophilic and electrophiic centers. The prediction of reactive sites by MESP is well supported by this Fukui indices analysis. The correlations between the statistical thermodynamics and temperature are also obtained. It is seen that the heat capacities, entropies and enthalpies increase with increasing the intensities of the molecular vibrations. Furthermore, the first hyperpolarizability of 5-chloro-2-nitroanisole is calculated and the results are discussed. This result indicates that 5-chloro-2-nitroanisole is a good candidate of nonlinear optical materials.

  7. Organic structures design applications in optical and electronic devices

    CERN Document Server

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  8. Quantum simulations of small electron-hole complexes

    International Nuclear Information System (INIS)

    Lee, M.A.; Kalia, R.K.; Vashishta, P.D.

    1984-09-01

    The Green's Function Monte Carlo method is applied to the calculation of the binding energies of electron-hole complexes in semiconductors. The quantum simulation method allows the unambiguous determination of the ground state energy and the effects of band anisotropy on the binding energy. 22 refs., 1 fig

  9. Patterning of high mobility electron gases at complex oxide interfaces

    DEFF Research Database (Denmark)

    Trier, Felix; Prawiroatmodjo, G. E. D. K.; von Soosten, Merlin

    2015-01-01

    Oxide interfaces provide an opportunity for electronics. However, patterning of electron gases at complex oxide interfaces is challenging. In particular, patterning of complex oxides while preserving a high electron mobility remains underexplored and inhibits the study of quantum mechanical effects...... of amorphous-LSM (a-LSM) thin films, which acts as a hard mask during subsequent depositions. Strikingly, the patterned modulation-doped interface shows electron mobilities up to ∼8 700 cm2/V s at 2 K, which is among the highest reported values for patterned conducting complex oxide interfaces that usually...... where extended electron mean free paths are paramount. This letter presents an effective patterning strategy of both the amorphous-LaAlO3/SrTiO3 (a-LAO/STO) and modulation-doped amorphous-LaAlO3/La7/8Sr1/8MnO3/SrTiO3 (a-LAO/LSM/STO) oxide interfaces. Our patterning is based on selective wet etching...

  10. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  11. Electron localization in a mixed-valence diniobium benzene complex.

    Science.gov (United States)

    Gianetti, Thomas L; Nocton, Grégory; Minasian, Stefan G; Kaltsoyannis, Nikolas; Kilcoyne, A L David; Kozimor, Stosh A; Shuh, David K; Tyliszczak, Tolek; Bergman, Robert G; Arnold, John

    2015-02-01

    Reaction of the neutral diniobium benzene complex {[Nb(BDI)N t Bu] 2 (μ-C 6 H 6 )} (BDI = N , N '-diisopropylbenzene-β-diketiminate) with Ag[B(C 6 F 5 ) 4 ] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)N t Bu] 2 (μ-C 6 H 6 )}{B(C 6 F 5 ) 4 }. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L 3,2 -edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment of a diniobium complex, in which one Nb atom carries a single unpaired electron that is not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the δ-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.

  12. Electronic structure of divacancy-hydrogen complexes in silicon

    International Nuclear Information System (INIS)

    Coutinho, J; Torres, V J B; Jones, R; Oeberg, S; Briddon, P R

    2003-01-01

    Divacancy-hydrogen complexes (V 2 H and V 2 H 2 ) in Si are studied by ab initio modelling using large supercells. Here we pay special attention to their electronic structure, showing that these defects produce deep carrier traps. Calculated electrical gap levels indicate that V 2 H 2 is an acceptor, whereas V 2 H is amphoteric, with levels close to those of the well known divacancy. Finally our results are compared with the available data from deep level transient spectroscopy and electron paramagnetic resonance experiments

  13. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    International Nuclear Information System (INIS)

    Hoffman, M.Z.

    1985-01-01

    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H 2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV 2+ , the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV + ; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV 2+ with rate constants of 2.8 x 10 9 , 7.6 x 10 9 , and 8.5 x 10 6 M -1 s -1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV + to be severely diminished

  14. Light induced electron transfer reactions of metal complexes

    International Nuclear Information System (INIS)

    Sutin, N.; Creutz, C.

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  15. Allenylidene Complexes of Ruthenium: Synthesis, Spectroscopy and Electron Transfer Properties

    Czech Academy of Sciences Publication Activity Database

    Winter, R. F.; Záliš, Stanislav

    2004-01-01

    Roč. 248, 15/16 (2004), s. 1565-1583 ISSN 0010-8545 R&D Projects: GA ČR GA203/03/0821; GA MŠk OC D14.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : spectroscopy * allenylidine complexes of ruthenium * electron transfer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.446, year: 2004

  16. Theoretical aspects of electron transfer reactions of complex molecules

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    2001-01-01

    Features of electron transfer involving complex molecules are discussed. This notion presently refers to molecular reactants where charge transfer is accompanied by large molecular reorganization, and commonly used displaced harmonic oscillator models do not apply. It is shown that comprehensive...... theory of charge transfer in polar media offers convenient tools for the treatment of experimental data for such systems, with due account of large-amplitude strongly anharmonic intramolecular reorganization. Equations for the activation barrier and free energy relationships are provided, incorporating...

  17. Electron capture Auger aftereffect of ammine cobalt complex

    International Nuclear Information System (INIS)

    Harada, Masayuki; Sano, Hirotoshi

    1976-01-01

    The study of ammine cobalt complex by luminescent Moessbauer spectrometry method was performed. The method was compared with hot atom chemistry method. The electron states in atoms are changed by the aftereffect on Auger emission following the electron capture process. The state of oxidation of disintegration products is usually higher than that of parent nuclei. However, sometimes, lower oxidation is seen in Fe-57, the daughter nuclei of Co-57. This phenomenon may be due to radiation chemistry process, and this effect can be observed by the luminescent Moessbauer spectrometry method. However, the range of the effect can not be seen by the Moessbauer method. Estimation showed that the Auger electrons stay within the surrounding area of the disintegration atom, and the effect does not reach to distant places. The yield of Fe-57 in the electron capture process of Co-57 in cobalt complex, the G-value, and the hot atom chemical yield were obtained. It is concluded that the aftereffect of the Auger process is the localized radiation chemistry effect. Good correlation was seen between the present method and the hot atom chemistry method. (Kato, T.)

  18. Transparent conducting polymer electrolyte by addition of lithium to the molecular complex chitosane-poly(aminopropyl siloxane)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S.; Retuert, P.J.; Gonzalez, Guillermo

    2003-06-30

    Transparent lithium-ion conducting films were prepared by adding lithium perchlorate to a mixture of chitosane (CHI) and poly(aminopropylsiloxane) (pAPS) in a molar ratio 0.6:1 by sol-gel methods. The morphological and molecular properties, determined by scanning electron microscopy and FT-IR, respectively, depend on the lithium salt concentration. The same techniques were also used for performing a 'titration' of the capacity of the film for incorporating lithium salt. Results show that about 0.8 mol lithium salt per mol chitosane can be added before the product losses the transparence and molecular compatibility characteristic of the pristine CHI/pAPS polymer complex. When lithium salt addition reaches the tolerance limit, anisotropically oriented patterns are observed in the hybrid films. Both transparence and ionic conductivity of the product appear to be related to the layered nature of formed nanocomposites. The properties of obtained films may be furthermore rationalized considering the chemical functionality and the Lewis donor-acceptor affinity of the components.

  19. donor-acceptor reactions: good bye to the laboratory jargon

    African Journals Online (AJOL)

    Temechegn

    appearance of silvery molten metals during the heating of ore-coal mixtures, Stahl concluded the. “transfer of .... Hydrogen chloride dissociates into ions to .... corrosion. Iron corrodes in moist air forming iron hydroxide,. Iron is thereby being.

  20. Donor-Acceptor Chromophores based on Acetylenic Scaffolds and Indenofluorenes

    DEFF Research Database (Denmark)

    Christensen, Mikkel Andreas

    -valence salt). [BILLEDE UDELADT] In the third chapter the reactivity of chloroalkynes is explored. A number of chloroalkynes is prepared and subjected to palladium-catalyzed cross coupling with a terminal alkyne. The chloroalkynes turned out to couple very well using the same conditions as for the Sonogashira...... cross-coupling. The reactivity of chloroalkynes was compared to that of Sonogashira substrates and the chloroalkynes turned out to react as fast as an aryl iodide. Some of the couplings gave reductive homo-coupling of the chloroalkyne as a byproducts. This was avoided by using a large copper...

  1. Device physics of donor/acceptor-blend solar cells

    NARCIS (Netherlands)

    Koster, Lambert Jan Anton

    2007-01-01

    Harvesting energy directly from the Sun is a very attractive, but not an easy way of providing mankind with energy. Efficient, cheap, lightweight, flexible, and environmentally friendly solar panels are very desirable. Conjugated polymers bear the potential of fulfilling these requisites. Due to

  2. Photoexcitation dynamics in organic solar cell donor/acceptor system

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, H.

    2012-07-01

    In this work, photoinduced absorption techniques have been used in a number of ways to clarify the charge generation and recombination processes in two polymers used in organic solar cells, namely APFO3 and P3HT. Emphasis has been on identifying photoexcitations, modeling their dynamics and determining their lifetimes.

  3. Self-Assembly Characteristics of a Multipolar Donor-Acceptor ...

    Indian Academy of Sciences (India)

    PC

    Integrated Molecular Tweezer. Deepak Asthana, Geeta Hundal and Pritam Mukhopadhyay*. Supramolecular & Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi. 110067, India. e-mail: m_pritam@ jnu.ac.in. Contents. S. No. Topic. Page No. 1. Synthesis and characterization of 1.

  4. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  5. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon.

    Science.gov (United States)

    Hützler, Wilhelm Maximilian; Egert, Ernst

    2015-03-01

    The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).

  6. Electron Capture Dissociation of Weakly Bound Polypeptide Polycationic Complexes

    DEFF Research Database (Denmark)

    Haselmann, Kim F; Jørgensen, Thomas J D; Budnik, Bogdan A

    2002-01-01

    as well as specific complexes of modified glycopeptide antibiotics with their target peptide. The weak nature of bonding is substantiated by blackbody infrared dissociation, low-energy collisional excitation and force-field simulations. The results are consistent with a non-ergodic ECD cleavage mechanism.......We have previously reported that, in electron capture dissociation (ECD), rupture of strong intramolecular bonds in weakly bound supramolecular aggregates can proceed without dissociation of weak intermolecular bonds. This is now illustrated on a series of non-specific peptide-peptide dimers...

  7. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  8. Role of 4 f electrons in crystallographic and magnetic complexity

    Science.gov (United States)

    Pathak, Arjun K.; Paudyal, Durga; Mudryk, Yaroslav; Pecharsky, Vitalij K.

    2017-08-01

    The functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4 f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4 f -electron energy landscapes of Dy (4 f9 ) and Er (4 f11 ) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in E r1 -xD yxC o2 , and likely many other mixed lanthanide systems. Unlike the parent binaries—DyC o2 and ErC o2 —E r1 -xD yxC o2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4 f electrons in controlling the magnetism and structure of lanthanide intermetallics.

  9. Electron density in non-ideal metal complexes. Pt. 1

    International Nuclear Information System (INIS)

    Varghese, J.N.; Maslen, E.N.

    1985-01-01

    The structure of copper sulphate pentahydrate was refined using an accurate set of X-ray data: Msub(r)=249.68, triclinic, Panti 1, a=6.1224(4), b=10.7223(4), c=5.9681(4) A, α=82.35(2), β=107.33(2), γ=102.60(4) 0 , V=364.02(3) A 3 , Z=2, Dsub(x)=2.278 Mg m -3 , Mo Kα, lambda=0.71069 A, μ=3.419 mm -1 , F(000)=254.0, T=298 K, R=0.039 for 7667 reflections. The structural parameters are compared with those obtained by neutron diffraction. The differences between X-ray and neutron positions are related to the hydrogen bonding in the structure. The dominant features in the residual density near the two crystallographically independent Cu atoms result from the redistribution of 3d electrons due to bonding. The density is anisotropic, as expected in view of the Jahn-Teller distortion in the structure. Marked differences in the d-electron distributions for the two Cu atoms correlate with small variations in molecular geometry. Second-nearest-neighbour effects, such as those arising from differently oriented ligating waters, are significant in this structure. Sharp features in the difference density close to the Cu nuclei are similar to those in other Cu 2+ complexes, indicating that the electron density in this region is more reliable than previously believed. (orig.)

  10. Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer

    International Nuclear Information System (INIS)

    Auer, Benjamin; Fernandez, Laura; Hammes-Schiffer, Sharon

    2011-01-01

    The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites in a proton-coupled electron transfer (PCET) system was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wavefunctions and incorporation of multiple proton donor-acceptor motions. The calculated KIEs and relative standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wavefunctions for this system, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in proton relay systems. The theory suggests that the PCET rate constant may be increased by decreasing the equilibrium proton donor-acceptor distances or modifying the thermal motions of the molecule to facilitate the concurrent decrease of these distances. The submission of this journal article in ERIA is a requirement of the EFRC subcontract with Pennsylvania State University collaborators to get publications to OSTI.

  11. Electronically Strongly Coupled Divinylheterocyclic-Bridged Diruthenium Complexes.

    Science.gov (United States)

    Pfaff, Ulrike; Hildebrandt, Alexander; Korb, Marcus; Oßwald, Steffen; Linseis, Michael; Schreiter, Katja; Spange, Stefan; Winter, Rainer F; Lang, Heinrich

    2016-01-11

    Complexes [{Ru(CO)Cl(PiPr3 )2 }2 (μ-2,5-(CH-CH)2 -(c) C4 H2 E] (E=NR; R=C6 H4 -4-NMe2 (10 a), C6 H4 -4-OMe (10 b), C6 H4 -4-Me (10 c), C6 H5 (10 d), C6 H4 -4-CO2 Et (10 e), C6 H4 -4-NO2 (10 f), C6 H3 -3,5-(CF3 )2 (10 g), CH3 (11); E=O (12), S (13)) are discussed. The solid state structures of four alkynes and two complexes are reported. (Spectro)electrochemical studies show a moderate influence of the nature of the heteroatom and the electron-donating or -withdrawing substituents R in 10 a-g on the electrochemical and spectroscopic properties. The CVs display two consecutive one-electron redox events with ΔE°'=350-495 mV. A linear relationship between ΔE°' and the σp Hammett constant for 10 a-f was found. IR, UV/Vis/NIR and EPR studies for 10(+) -13(+) confirm full charge delocalization over the {Ru}CH-CH-heterocycle-CH-CH{Ru} backbone, classifying them as Class III systems according to the Robin and Day classification. DFT-optimized structures of the neutral complexes agree well with the experimental ones and provide insight into the structural consequences of stepwise oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.

    Science.gov (United States)

    Brown, Katherine A; Song, Qing; Mulder, David W; King, Paul W

    2014-10-28

    Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (kET) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to k(ET) values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (ΔGET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that k(ET) and H2 production for CdTe-CaI complexes are not strictly controlled by ΔG(ET) and that other factors must be considered.

  13. Host-guest complex of N-(2-chloroethyl), N-nitroso, N‧, N‧ -dicyclohexylsulfamid with β-cyclodextrin: Fluorescence, QTAIM analysis and structure-chemical reactivity

    Science.gov (United States)

    Bensouilah, Nadjia; Fisli, Hassina; Bensouilah, Hamza; Zaater, Sihem; Abdaoui, Mohamed; Boutemeur-Kheddis, Baya

    2017-10-01

    In this work, the inclusion complex of DCY/CENS: N-(2-chloroethyl), N-nitroso, N‧, N‧-dicyclohexylsulfamid and β-cyclodextrin (β-CD) is investigated using the fluorescence spectroscopy, PM3, ONIOM2 and DFT methods. The experimental part reveals that DCY/CENS forms a 1:1 stoichiometric ratio inclusion complex with β-CD. The constant of stability is evaluated using the Benesi-Hildebrand equation. The results of the theoretical optimization showed that the lipophilic fraction of molecule (cyclohexyl group) is inside of β-CD. Accordingly, the Nitroso-Chloroethyl moiety is situated outside the cavity of the macromolecule host. The favorable structure of the optimized complex indicates the existence of weak intermolecular hydrogen bonds and the most important van der Waals (vdW) interactions which are studied on the basis of Natural Bonding Orbital (NBO) analysis. The NBO is employed to compute the electronic donor-acceptor exchanges between drug and β-CD. Furthermore, a detailed topological charge density analysis based on the quantum theory of atoms in molecules (QTAIM), has been accomplished on the most favorable complex using B3LYP/6-31G(d) method. The presence of stabilizing intermolecular hydrogen bonds and van der Waals interactions in the most favorable complex is predicted. Also, the energies of these interactions are estimated with Espinosa's formula. The findings of this investigation reveal that the correlation between the structural parameters and the electronic density is good. Finally, and based on DFT calculations, the reactivity of the interesting molecule in free state was studied and compared with that in the complexed state using chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors.

  14. Synthesis and spectroscopic characterization of a fluorescent pyrrole derivative containing electron acceptor and donor groups

    Science.gov (United States)

    Almeida, A. K. A.; Monteiro, M. P.; Dias, J. M. M.; Omena, L.; da Silva, A. J. C.; Tonholo, J.; Mortimer, R. J.; Navarro, M.; Jacinto, C.; Ribeiro, A. S.; de Oliveira, I. N.

    2014-07-01

    The synthesis and fluorescence characterization of a new pyrrole derivative (PyPDG) containing the electron donor-acceptor dansyl substituent is reported. The effects of temperature and solvent polarity on the steady-state fluorescence of this compound are investigated. Our results show that PyPDG exhibits desirable fluorescent properties which makes it a promising candidate to be used as the photoactive material in optical thermometry and thermography applications. Further, the electrochemical and emission properties of polymeric films obtained from the oxidation polymerization of PyPDG are also analyzed.

  15. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    complexity can be realized by small amounts of Li replacing Zn atoms in the parent binary compounds CaZn 2 , CaZn 3 , and CaZn 5 ; their phase formation and bonding schemes can be rationalized by Fermi surface-Brillouin zone interactions between nearly free-electron states. "Cation-rich", electron-poor polar intermetallics have emerged using rare earth metals as the electropositive ("cationic") component together metal/metalloid clusters that mimic the backbones of aromatic hydrocarbon molecules, which give evidence of extensive electronic delocalization and multicenter bonding. Thus, we can identify three distinct, valence electron-poor, polar intermetallic systems that have yielded unprecedented phases adopting novel structures containing complex clusters and intriguing bonding characteristics. In this Account, we summarize our recent specific progress in the developments of novel Au-rich BaAl 4 -type related structures, shown in the "gold-rich grid", lithiation-modulated Ca-Li-Zn phases stabilized by different bonding characteristics, and rare earth-rich polar intermetallics containing unprecedented hydrocarbon-like planar Co-Ge metal clusters and pronounced delocalized multicenter bonding. We will focus mainly on novel structural motifs, bonding analyses, and the role of valence electrons for phase stability.

  16. Complex dynamics in planar two-electron quantum dots

    International Nuclear Information System (INIS)

    Schroeter, Sebastian Josef Arthur

    2013-01-01

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron quantum dots an

  17. Complex dynamics in planar two-electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, Sebastian Josef Arthur

    2013-06-25

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron

  18. 77 FR 50726 - Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in...

    Science.gov (United States)

    2012-08-22

    ... Computer Software and Complex Electronics Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear...-1209, ``Software Requirement Specifications for Digital Computer Software and Complex Electronics used... Electronics Engineers (ANSI/IEEE) Standard 830-1998, ``IEEE Recommended Practice for Software Requirements...

  19. Structural Ordering of Semiconducting Polymers and Small-Molecules for Organic Electronics

    Science.gov (United States)

    O'Hara, Kathryn Allison

    Semiconducting polymers and small-molecules can be readily incorporated into electronic devices such as organic photovoltaics (OPVs), thermoelectrics (OTEs), organic light emitting diodes (OLEDs), and organic thin film transistors (OTFTs). Organic materials offer the advantage of being processable from solution to form flexible and lightweight thin films. The molecular design, processing, and resulting thin film morphology of semiconducting polymers drastically affect the optical and electronic properties. Charge transport within films of semiconducting polymers relies on the nanoscale organization to ensure electronic coupling through overlap of molecular orbitals and to provide continuous transport pathways. While the angstrom-scale packing details can be studied using X-ray scattering methods, an understanding of the mesoscale, or the length scale over which smaller ordered regions connect, is much harder to achieve. Grain boundaries play an important role in semiconducting polymer thin films where the average grain size is much smaller than the total distance which charges must traverse in order to reach the electrodes in a device. The majority of semiconducting polymers adopt a lamellar packing structure in which the conjugated backbones align in parallel pi-stacks separated by the alkyl side-chains. Only two directions of transport are possible--along the conjugated backbone and in the pi-stacking direction. Currently, the discussion of transport between crystallites is centered around the idea of tie-chains, or "bridging" polymer chains connecting two ordered regions. However, as molecular structures become increasingly complex with the development of new donor-acceptor copolymers, additional forms of connectivity between ordered domains should be considered. High resolution transmission electron microscopy (HRTEM) is a powerful tool for directly imaging the crystalline grain boundaries in polymer and small-molecule thin films. Recently, structures

  20. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    International Nuclear Information System (INIS)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  1. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  2. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters.

    Science.gov (United States)

    Li, Haiyin; Chang, Jiafu; Hou, Ting; Ge, Lei; Li, Feng

    2016-11-01

    Reliable, selective and sensitive approaches for trinitrophenol (TNP) detection are highly desirable with respect to national security and environmental protection. Herein, a simple and novel fluorescent strategy for highly sensitive and specific TNP assay has been successfully developed, which is based on the quenching of the fluorescent poly(thymine)-templated copper nanoclusters (DNA-CuNCs), through the synergetic effects of acid induction and electron transfer. Upon the addition of TNP, donor-acceptor complexes between the electron-deficient nitro-groups in TNP and the electron-donating DNA templates are formed, resulting in the close proximity between TNP and CuNCs. Moreover, the acidity of TNP contributes to the pH decrease of the system. These factors combine to dramatically quench the fluorescence of DNA-CuNCs, providing a "signal-off" strategy for TNP sensing. The as-proposed strategy demonstrates high sensitivity for TNP assay, and a detection limit of 0.03μM is obtained, which is lower than those reported by using organic fluorescent materials. More significantly, this approach shows outstanding selectivity over a number of TNP analogues, such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitrophenol (DNP), 3-nitrophenol (NP), nitrobenzene (NB), phenol (BP), and toluene (BT). Compared with previous studies, this method does not need complex DNA sequence design, fluorescent dye labeling, or sophisticated organic reactions, rendering the strategy with additional advantages of simplicity and cost-effectiveness. In addition, the as-proposed strategy has been adopted for the detection of TNP in natural water samples, indicating its great potential to be applied in the fields of public safety and environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Electron spin resonance of vanadium(4)-thallium(1) dithiocarbamate complexes

    International Nuclear Information System (INIS)

    Ivanov, A.V.; Solozhenkin, P.M.; Baratova, Z.R.; Klyashtornyj, V.B.; Uskov, V.Yu.

    1990-01-01

    Heteronuclear vanadium(4), thallium(1) dithiocarbanate complexes of the composition TlVO(Dtc) 3 and Tl 2 VO(Dtc) 4 under conditions of magnetic dilution were studied by ESR spectroscopy. Magnetically diluted complexes were prepared by coprecipitation from aqueous solutions of thallium(1) and oxovanadium(2) by solutions of sodium diethyldithiocarbamate, dibutyldithiocarbamate, hexamethylenedithiocarbamate, taken in superstoichiometric excess. Analysis of parameters of ESR spectra of the complexes synthesized shows that thallium atoms are not included in the first coordination sphere of oxovanadium(2), and chelate node VS 4 in thallium(1) complex lattice practically preserves its plane quadratic structure

  4. Synthesis, EPR, Electronic and Magnetic Studies on Cobalt (II) Complexes of Semicarbazone and Thiosemicarbazone

    International Nuclear Information System (INIS)

    Chandra, S.; Gupta, L.K.; Sharma, K.K.

    2005-01-01

    Cobalt (II) complexes having the general composition Co(L2) X2 [where Lisopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and4-aminoacetophenone thiosemicarbazone (LLD) and X=Cl] have been synthesized. All the Co(II) complexes reported here have been characterized by elemental analyses, magnetic moments, IR, electronic and EPR spectral studies. All the complexes were found to have magnetic moments corresponding to three unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic infrared and EPR spectral studies. (author) = = = = = = = = = = = = = = =

  5. Positronium Inhibition and Quenching by Organic Electron Acceptors and Charge Transfer Complexes

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Jensen, Bror Skytte

    1975-01-01

    Positron lifetime measurements were performed on a series of organic electron acceptors and charge-transfer complexes in solution. The acceptors cause both positronium (Ps) inhibition (with maybe one exception) and quenching, but when an acceptor takes part in a charge-transfer complex...... in terms of the spur reaction model of Ps formation. Correlation was also made to gas phase reaction between electron acceptors and free electron, as well as to pulse radiolysis data....

  6. Electronic structure and driving forces in {beta}-cyclodextrin: Diclofenac inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, Diana [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania); Morari, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath street 71-103, 400293 Cluj-Napoca (Romania)]. E-mail: cristim@s3.itim-cj.ro

    2007-07-02

    We investigate the geometry and electronic structure for complexes of {beta}-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries.

  7. Electronic structure and driving forces in β-cyclodextrin: Diclofenac inclusion complexes

    International Nuclear Information System (INIS)

    Bogdan, Diana; Morari, C.

    2007-01-01

    We investigate the geometry and electronic structure for complexes of β-cyclodextrin with diclofenac using DFT calculations. The effect of solvent is explicitly taken into account. This investigation allows us to draw meaningful conclusions upon the stability of the complex and the nature of the driving forces leading to the complexation process. In particular we emphasize the role of the water, by pointing out the changes in the solvent's electronic structure for different docking geometries

  8. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  9. Electronic structures and photophysics of d8-d8 complexes

    Czech Academy of Sciences Publication Activity Database

    Gray, H. B.; Záliš, Stanislav; Vlček, Antonín

    2017-01-01

    Roč. 345, AUG 2017 (2017), s. 297-317 ISSN 0010-8545 R&D Projects: GA MŠk LH13015 Grant - others:COST(XE) CM1405 Institutional support: RVO:61388955 Keywords : excitation * electronic structures * photophysics Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 13.324, year: 2016

  10. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    Science.gov (United States)

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  11. Electron beam accelerator at BARC-BRIT complex - electron beam processing of materials and industrial utilization

    International Nuclear Information System (INIS)

    Khader, S.A.; Patkari, R.K.; Sharma, K.S.S.

    2013-01-01

    During the last decade, the 2MeV/20kW electron beam (EB) accelerator located at BARC-BRIT complex, Vashi has been successfully utilised for non-thermal applications to develop speciality products useful for the industry. Polymer materials are exposed to high energy electrons to induce crosslinking and degradation reactions in a number of industrial products without the use of external chemicals and additives. Various EB crosslinked products viz. PE O-rings, automotive components, automobile tyres, electrical insulations, etc have been found to be much superior in quality compared to those produced conventionally. A process has been developed to enhance colours in the polished diamonds and gem stones using EB irradiation at the facility which has attracted much attention in the Indian diamond industry as a value-addition process. Recycling of polymer waste processed under EB to produce microfine PTFE powder, to reuse in automobile industry etc. has shown good potential for the industrial use. The process feasibility both in terms of economics and technology have been amply demonstrated on a technological scale by installing special conveyors at our facility for irradiating various industrial products. Around 100 km cable insulations, 1.5 million PE O-rings and more than 40000 carats of polished diamonds have been processed in our facility over a period of time on commercial scale. Encouraged with the results, Indian private entrepreneurs have set up dedicated EB machines in some of the most significant industries producing wire and cables, electrical gadgets based on polymer composites, automobile tyres and diamonds. The products are unique in properties and are in some cases, became import substitutes. The industry is now fully geared up to adapt the technology by realising the advantages viz ease in adaptability, convenient, safe and environmental-friendly nature. Encouraged by the process demonstrations, while five EB accelerators were setup and are in operation

  12. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We have made continuum radio observations of these HII regions of the W51 complex at 240, 610, 1060 and 1400 MHz using GMRT with lower resolution (20'' × 15'') at the lowest frequency. The observed spectra of the prominent thermal subcomponents of W51 have been fitted to a free-free emission ...

  13. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2001-03-09

    Mar 9, 2001 ... kinematics and local thermodynamic equilibrium (LTE) electron temperature (Te) of this region. H109α RRL observations by Wilsonet al.(1970) with a resolution of 4 and by Pankonin et al. (1979) with a resolution of 2.6 show that Te ∼ 6000 K in G49.5-0.4. Lower frequency observations for H137β and ...

  14. Benchmark Calculations for Electron Collisions with Complex Atoms

    International Nuclear Information System (INIS)

    Zatsarinny, Oleg; Bartschat, Klaus

    2014-01-01

    The B-spline R-matrix (BSR) approach [1,2] is based on the non-perturbative close-coupling method. As such it is, in principle, based on an exact expansion of the solution of the time-independent Schrödinger equation, as an infinite sum/integral of N-electron target states coupled to the wave function of the scattering projectile. The N-electron target states, again, can in principle be calculated with almost arbitrary accuracy using sufficiently large configuration-interaction expansions and the correct interaction hamiltonian. In practice, of course, the infinite expansions have to be cut off in some way and the exact hamiltonian may not be available. In the collision part of the BSR method, the integral over the ionization continuum and the infinite sum over high-lying Rydberg states are replaced by a finite sum over square-integrable pseudo-states. Also, a number of inner shells are treated as (partially) inert, i.e., a minimum number of electrons are required in those subshells.

  15. A study of core electron binding energies in technetium-99m complexes by internal conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Burke, J.F.; Archer, C.M.; Wei Chiu, K.; Latham, I.A.; Egdell, R.G.

    1991-01-01

    Core electron binding energies in a series of 99m Tc complexes have been studied by internal conversion electron spectroscopy (ICES) in a conventional x-ray photoelectron spectrometer. In both 3d and 3p regions, a chemical shift of about 1 eV is observed per unit increase in oxidation state. The role of ICES in characterizing radiopharmaceutical agents is illustrated with studies of some novel 99m Tc-phosphine complexes that have been developed for myocardial perfusion imaging. (author)

  16. Tuning electronic structure and optical properties of SrTiO{sub 3} by site-specific doping by Nb with N/B from hybrid functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanyu; Zhou, Wei; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2017-07-01

    In this study, the extensive density functional theory calculations are performed to modify the electronic structure of perovskite SrTiO{sub 3} by doping with Nb and N/B. The unoccupied states induced by the Nb monodoping at the Sr or Ti site, which were passivated in the codoped systems (the substitution of Nb at Ti site with the replacement of N at O site: Nb@Ti/N@O and the substitution of Nb at Sr site with the replacement of B at O site: Nb@Sr/B@O). The charge-compensated donor-acceptor pair codoping creates the new occupied states within the band gap, which yields the absorption edge extend to visible light. And the calculated defect formation energy implies that the codoped systems are energetically favorable under the O-rich condition. Moreover, the band-edge alignment confirmed that the Nb@Ti/N@O system is desirable for the spontaneous water splitting under visible light and the Nb@Sr/B@O system can split water into hydrogen in presence of sacrificial agent. - Highlights: • A systematical study has been employed on SrTiO{sub 3} with the donor-acceptor codoping. • The donor-acceptor pair codoping yields the absorption edge extend to visible light. • The formation energy implies that the codoped systems are favorable under the O-rich condition. • The Nb@Ti/N@O system is desirable for the spontaneous water splitting under visible light. • The Nb@Sr/B@O system can split water into hydrogen in presence of sacrificial agent.

  17. Features of transformation of impurity-defect complexes in СdTe:Сl under the influence of microwave radiation

    Directory of Open Access Journals (Sweden)

    Budzulyak S. I.

    2014-08-01

    Full Text Available High-resistance cadmium telluride single crystals are promising material for production of ionizing radiation detectors. To increase crystal resistance, they are doped with chlorine. The detector quality depends on uniformity of chlorine impurity distribution over crystal. It is known that low-dose microwave irradiation can homogenize impurity distribution in a specimen. In the present work, we made an attempt to improve the detector material quality by using such post-technological treatment, as well as to study state variation for impurity-defect complexes. To this end, the effect of microwave irradiation on transformation of impurity-defect complexes in CdTe:Cl single crystals was investigated using low-temperature photoluminescence. It is shown that activation of ClTe donor centers by microwave irradiation for 10 s and presence of VCd acceptor centers in the specimens under investigation effectively facilitate formation of (VNd–ClTe defect centers at which excitons are bound. Detailed investigations of the band form for donor-acceptor pairs (DAPs in CdTe:Cl single crystals made it possible to determine the Huang—Rhys factor (that characterizes electron-phonon interaction in CdTe:Cl DAPs as a function of microwave treatment duration. It is shown for single crystals with NCl = 5·1017 cm–3 and 5·1019 cm–3 that the Huang—Rhys factor grows with microwave irradiation dose. This is related to both homogenization of donor and acceptor centers distribution and increase of donor—acceptor spacing. It is shown that microwave irradiation of CdTe:Cl single crystals results in concentration reduction for separate cadmium vacancies VCd because of formation of (VNd—ClTe defect centers at which excitons are bound.

  18. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  19. Electron spin resonance of radicals and metal complexes

    International Nuclear Information System (INIS)

    1993-01-01

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  20. Application of models for exchange of electronic documents in complex administrative services

    International Nuclear Information System (INIS)

    Glavev, Victor

    2015-01-01

    The report presents application of models for exchange of electronic documents between different administrations in government and business sectors. It shows the benefits of implementing electronic exchange of documents between different local offices of one administration in government sector such as a municipality and the way it is useful for implementing complex administrative services

  1. Application of models for exchange of electronic documents in complex administrative services

    Energy Technology Data Exchange (ETDEWEB)

    Glavev, Victor

    2015-11-30

    The report presents application of models for exchange of electronic documents between different administrations in government and business sectors. It shows the benefits of implementing electronic exchange of documents between different local offices of one administration in government sector such as a municipality and the way it is useful for implementing complex administrative services.

  2. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  3. Study of electron spectra of lanthanide complexes with carbonyl-containing reagents

    International Nuclear Information System (INIS)

    Tishchenko, M.A.; Gerasimenko, G.I.; Markina, A.I.; Tishchenko, V.V.; Rybalka, V.B.; Tsitko, A.S.

    1990-01-01

    Interaction of lanthanide complexes (Ln=Er, Nd, Ho) of 2-acetylindandione-1,3 with polyphenols was investigated by the methods of electron spectroscopy. Position, intensity, oscillator strengths of supersensitive transitions, formed in the system of different-ligand complexes were determined. 10 refs.; 4 figs.; 3 tabs

  4. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  5. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers.

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  6. Study of chemical shifts of the chloroform complexes with cyclic donors of electrons

    International Nuclear Information System (INIS)

    Blaszkiewicz, B.; Pajak, Z.

    1973-01-01

    Chemical shifts of chloroform complexes with the heterocyclic electron donors: pyridine, piperidine, alpha-picoline and gamma-picoline have been studied using the high resolution (5.10 -9 ) spectrometer operating at 80 MHz. An attempt has also been made to study the three - component solutions of : chloroform, a heterocyclic donor of electrons and carbon tetrachloride. The results, which have been obtained, indicate that the complex-forming power of pyridine and other electron donors is greater in carbon tetrachloride than in other solvents. (S.B.)

  7. Electron transfer reactions of ruthenium(II) complexes with polyphenolic acids in micelles

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, Angusamy [School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India); Department of Chemistry, Fatima College, Madurai 625 018 (India); Ramdass, Arumugam [School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India); Research Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur 628 216 (India); Muthu Mareeswaran, Paulpandian [School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India); Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Rajagopal, Seenivasan, E-mail: rajagopalseenivasan@yahoo.com [School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India)

    2016-02-15

    The electron transfer in a microhetrogeneous system is a perfect mimic of biological electron transfer. The electron transfer between biologically important phenolic acids and ruthenium (II) complexes is systematically studied in the presence of anionic and cationic micelles. The photophysical properties of these ruthenium (II) complexes with anionic and cationic micelles and their binding abilities with these two type of micelles are also studies using absorption, emission and excited state lifetime spectral techniques. Pseudophase Ion Exchange (PIE) Model is applied to derive mechanism of electron transfer in two types of micelles. - Highlights: • Effect of microhetrogeneous system is studied using ruthenium (II) complexes and gallic acid is studied. • Pseudophase Ion exchange model is applied to derive the mechanism. • Binding constants are in the range of 10{sup 2}–10{sup 4} M{sup −1}.

  8. System Testability Analysis for Complex Electronic Devices Based on Multisignal Model

    International Nuclear Information System (INIS)

    Long, B; Tian, S L; Huang, J G

    2006-01-01

    It is necessary to consider the system testability problems for electronic devices during their early design phase because modern electronic devices become smaller and more compositive while their function and structure are more complex. Multisignal model, combining advantage of structure model and dependency model, is used to describe the fault dependency relationship for the complex electronic devices, and the main testability indexes (including optimal test program, fault detection rate, fault isolation rate, etc.) to evaluate testability and corresponding algorithms are given. The system testability analysis process is illustrated for USB-GPIB interface circuit with TEAMS toolbox. The experiment results show that the modelling method is simple, the computation speed is rapid and this method has important significance to improve diagnostic capability for complex electronic devices

  9. Molecular Understanding of Fullerene - Electron Donor Interactions in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-09-13

    Organic solar cells hold promise of providing low-cost, renewable power generation, with current devices providing up to 13% power conversion efficiency. The rational design of more performant systems requires an in-depth understanding of the interactions between the electron donating and electron accepting materials within the active layers of these devices. Here, we explore works that give insight into the intermolecular interactions between electron donors and electron acceptors, and the impact of molecular orientations and environment on these interactions. We highlight, from a theoretical standpoint, the effects of intermolecular interactions on the stability of charge carriers at the donor/acceptor interface and in the bulk and how these interactions influence the nature of the charge transfer states as wells as the charge separation and charge transport processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electron transfer reactions in some complexes of V+2, Co+3 and Eu+3

    International Nuclear Information System (INIS)

    Lellis, F.T.P.

    1983-01-01

    The stability constants β 1 , β 2 , β 3 for the mono-,bis-and tris-substituted complexes from vanadium (III) ions with the pyridine-2-carboxilate liquid are determined potentiometrically. The tris-substituted complex in aqueous solutions by electronic spectra and reversible cyclic voltammetry using gold electrodes is extensively characterized. In the investigation of electron tranfer kinetics involving mild oxidizing complexes, such as Co(NH 3 ) 3+ 6 , Co(en) 3+ 3 , Co(en) 2 gly 2+ , Co (histidinate) + 2 , Ru(NH 3 ) 3+ 6 and Eu 3+ ions, the tris (picolinate) vanadate (III) complex is used. Electron transfer kinetics for the Eu 3+ / 2+ couple in terms of a pseudo-first order process is analysed. The results, in terms of a tunneling mechanism, involving a set of similar, nuclear coordinates for the reactants and products, are explained. (M.J.C.) [pt

  11. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    Science.gov (United States)

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-07-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.

  12. MOLECULAR COMPLEXES OF SULPHUR DIOXIDE WITH N,O-CONTAINING ORGANIC BASES (REVIEW

    Directory of Open Access Journals (Sweden)

    R. E. Khoma

    2016-10-01

    Full Text Available The literature data on the synthesis, stoichiometry, structure and relative stability of molecular  complexes of sulphur dioxide with N,O-containing organic bases have been systematized and  generalized. It was shown that the yield of the reaction product of sulfur dioxide with organic  bases (such as amines are strongly influenced by the conditions of synthesis: the nature of  the solvent (basicity, polarity, the temperature and SO2:L ratio in the reaction medium. The stoichiometry of SO2*nL molecular complexes depends on ligand denticity, as well as its  ability to H-bonding. The reaction of the sulfur oxide (IV with organic bases can give S←N and S←O complexes. With the increase of the value of base proton affinity the decrease ΔrSN values has been marked. Characteristic parameter Δr SN = r SN – a1(rS+ rN (where rSNis the S←N donor-acceptor bond length has been determined by microwave spectroscopy and X-ray analysis, rSand rNwere the tabulated values of the homopolar covalent radii of sulphur and nitrogen heteroatoms. The dependence of formation enthalpy of molecular complexes of basic amines and spectral characteristics has been noted; enthalpy-entropy compensation for S←N and S←O complex-es has been stated. Despite the limited experimental data on the thermodynamics of complex formation and the lengths of donor-acceptor bonds for the same compounds it has been found bond S←N strength in SO2 molecular complexes to depend on the intrinsic value of ΔrSN. The contribution of van der Waals forces and charge transfer forces to the formation of molecular complexes of sulphur dioxide has been stated.

  13. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model

    KAUST Repository

    Zheng, Zilong; Bredas, Jean-Luc; Coropceanu, Veaceslav

    2016-01-01

    are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals

  14. Escherichia coli pyruvate dehydrogenase complex: particle masses of the complex and component enzymes measured by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    CaJacob, C.A.; Frey, P.A.; Hainfeld, J.F.; Wall, J.S.; Yang, H.

    1985-01-01

    Particle masses of the Escherichia coli pyruvate dehydrogenase (PDH) complex and its component enzymes have been measured by scanning transmission electron microscopy (STEM). The particle mass of PDH complex measured by STEM is 5.28 X 10(6) with a standard deviation of 0.40 X 10(6). The masses of the component enzymes are 2.06 X 10(5) for the dimeric pyruvate dehydrogenase (E1), 1.15 X 10(5) for dimeric dihydrolipoyl dehydrogenase (E3), and 2.20 X 10(6) for dihydrolipoyl transacetylase (E2), the 24-subunit core enzyme. STEM measurements on PDH complex incubated with excess E3 or E1 failed to detect any additional binding of E3 but showed that the complex would bind additional E1 under forcing conditions. The additional E1 subunits were bound too weakly to represent binding sites in an isolated or isolable complex. The mass measurements by STEM are consistent with the subunit composition 24:24:12 when interpreted in the light of the flavin content of the complex and assuming 24 subunits in the core enzyme (E2)

  15. New trends in the optical and electronic applications of polymers containing transition-metal complexes.

    Science.gov (United States)

    Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei

    2012-04-13

    Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    Science.gov (United States)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  17. Novel multi-chromophor light absorber concepts for DSSCs for efficient electron injection

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Robert; Strothkaemper, Christian; Bartelt, Andreas; Hannappel, Thomas; Eichberger, Rainer [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fasting, Carlo [Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany); Thomas, Inara [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany)

    2011-07-01

    Dye sensitized solar cells (DSSCs) operate by injecting electrons from the excited state of a light-harvesting dye into the continuum of conduction band states of a wide bandgap semiconductor. The light harvesting efficiency of pure organic dyes is limited by a narrow spectral electronic transition. A beneficial broad ground state absorption in the VIS region can be achieved by applying a single molecular dye system with multiple chromophors involving a Foerster resonance energy transfer (FRET) mechanism for an efficient electron injection. A model donor acceptor dye system capable for FRET chemically linked to colloidal TiO{sub 2} and ZnO nanorod surfaces was investigated in UHV environment. We used VIS/NIR femtosecond transient absorption spectroscopy and optical pump terahertz probe spectroscopy to study the charge injection dynamics of the antenna system. Different chromophors attached to a novel scaffold/anchor system connecting the organic absorber unit to the metal oxide semiconductor were probed.

  18. Electronic structure of gadolinium complexes in ZnO in the GW approximation

    Science.gov (United States)

    Rosa, A. L.; Frauenheim, Th.

    2018-04-01

    The role of intrinsic defects has been investigated to determine binding energies and the electronic structure of Gd complexes in ZnO. We use density-functional theory and the GW method to show that the presence of vacancies and interstitials affect the electronic structure of Gd doped ZnO. However, the strong localization of the Gd-f and d states suggest that carrier mediated ferromagnetism in this material may be difficult to achieve.

  19. Studies on electronic spectrum and electron spin resonance of vanadium (IV) complexes with organophosphorus compounds and high molecular weight amines

    International Nuclear Information System (INIS)

    Sato, Taichi; Nakamura, Takato

    1981-01-01

    In the extraction of vanadium (IV) from aqueous solutions containing hydrochloric acid and/or a mixture of hydrochloric acid and lithium chloride by bis(2-ethylhexyl) hydrogenphosphate (DEHPA; HX), trioctylmethylammonium chloride (Aliquat-336), trioctylamine (TOA), trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), the complexes formed in the organic phases have been examined by spectrophotometry and electron spin resonance spectroscopy. It is found that in the extraction by DEHPA, the vanadium in the organic phase exists as the monomeric species, VO(X 2 H) 2 , or the polymeric one, (VOX 2 )sub(n), and that in the extractions by Aliquat-336, TOA, TOPO, and TBP, tetravalent vanadium complexes are stable in the organic phases extracted from a mixed solution of hydrochloric acid and lithium chloride, while complexes containing pentavalent vanadium and VOV 4+ ions are formed in the organic phases extracted from hydrochloric acid solutions. (author)

  20. Complex-valued derivative propagation method with approximate Bohmian trajectories: Application to electronic nonadiabatic dynamics

    Science.gov (United States)

    Wang, Yu; Chou, Chia-Chun

    2018-05-01

    The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.

  1. A general exit strategy of monoheme cytochromes c and c2 in electron transfer complexes?

    Science.gov (United States)

    De March, Matteo; Brancatelli, Giovanna; Demitri, Nicola; De Zorzi, Rita; Hickey, Neal; Geremia, Silvano

    2015-09-01

    Using our previously reported maps of the electrostatic surface of horse heart ferri- and ferro-cyt c, comparisons were made between the complementary electrostatic surfaces of three cyt c peroxidase-cyt c complexes and the photosynthetic reaction center-cyt c complex, considering both iron oxidation states. The results obtained were consistent with a sliding mechanism for the electron shuttle on the surface of the protein complexes, promoted by the change in iron oxidation state. This mechanism was found to be in agreement with theoretical and NMR studies reported in the literature. Importantly, the analysis also provided a rationale for recognition of nonproductive associations. As we have previously reported the same conclusion on examination of redox partners of cyt c in the mitochondrial respiratory pathway, our hypothesis is that the proposed mechanism could represent a general exit strategy of monoheme cyts c and c2 in electron transfer complexes. © 2015 International Union of Biochemistry and Molecular Biology.

  2. Preparation of Conductive Organometallic Complexes and Their Pastes or Inks Using the Electron Beam Apparatus

    International Nuclear Information System (INIS)

    Gu, Ja Min; Lee, Hyosun; Lee, Byung Cheol; Park, Ji Hyun

    2011-01-01

    We have synthesized the silver and copper complexes using the ligands, amine derivatives Ν-methylhydantoin amine, Ν-triethanol amine, the copper complexes are prepared depending on the equivalents of starting materials, however the silver complexes failed. In case of terephthalic acid, glutaric acid, we have synthesized silver and copper complexes successfully. We have measured conductivity of silver and copper complexes paste and ink themselves by thermal reduction using PULSE UV method. A couple of synthesized copper complex's paste have shown some resistance which is not enough for the conductive materials. Commercially silver pastes composed of silver oxide and silver salt of carboxylic acid, applied to the printed transistor circuits with suitable process, i. e. thermal reduction. This process substituted for electron beam brings a simplification of process, economical, environmental friendly process and a development of in the application of flexible substrate

  3. Electron capture cross-section of Au-Fe complex in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Shafi, M; Majid, Abdul

    2006-01-01

    A deep level transient spectroscopy technique is applied to study the capture cross-section of an iron-gold complex. The thermal ionization energy obtained from emission rate data is found to be E c -0.36 eV. The Au-Fe complex is a single defect having a capture cross-section of 2.48x10 -16 cm 2 for electrons which is independent of temperature

  4. Electron capture cross-section of Au-Fe complex in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Akbar; Shafi, M; Majid, Abdul [Advance Materials Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan)

    2006-10-15

    A deep level transient spectroscopy technique is applied to study the capture cross-section of an iron-gold complex. The thermal ionization energy obtained from emission rate data is found to be E{sub c} -0.36 eV. The Au-Fe complex is a single defect having a capture cross-section of 2.48x10{sup -16} cm{sup 2} for electrons which is independent of temperature.

  5. Electron Transfer Pathways Facilitating U(VI) Reduction by Fe(II) on Al- vs Fe-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S. D. [Pacific Northwest National Laboratory, Physical Sciences Division, P.O. Box; Becker, U. [The University of Michigan, Department of Earth; Rosso, K. M. [Pacific Northwest National Laboratory, Physical Sciences Division, P.O. Box

    2017-09-06

    This study continues mechanistic development of heterogeneous electron transfer (ET) pathways at mineral surfaces in aquatic environments that enable the reduction U(VI) by surface-associated Fe(II). Using computational molecular simulation within the framework of Marcus Theory, our findings highlight the importance of the configurations and interaction of the electron donor and acceptor species with the substrate, with respect to influencing its electronic structure and thereby the ability of semiconducting minerals to facilitate ET. U(VI) reduction by surface-associated Fe(II) (adsorbed or structurally incorporated into the lattice) on an insulating, corundum (001) surface (α-Al2O3) occurs when proximal inner-sphere (IS) surface complexes are formed, such that ET occurs through a combination of direct exchange (i.e., Fe d- and U f-orbitals overlap through space) and superexchange via intervening surface oxygen atoms. U(VI) reduction by coadsorbed Fe(II) on the isostructural semiconducting hematite (α-Fe2O3) basal surface requires either their direct electronic interaction (e.g., IS complexation) or mediation of this interaction indirectly through the surface via an intrasurface pathway. Conceptually possible longer-range ET by charge-hopping through surface Fe atoms was investigated to determine whether this indirect pathway is competitive with direct ET. The calculations show that energy barriers are large for this conduction-based pathway; interfacial ET into the hematite surface is endothermic (+80.1 kJ/mol) and comprises the rate-limiting step (10–6 s–1). The presence of the IS adsorbates appears to weaken the electronic coupling between underlying Fe ions within the surface, resulting in slower intra-surface ET (10–5 s–1) than expected in the bulk basal plane. Our findings lay out first insights into donor-acceptor communication via a charge-hopping pathway through the surface for heterogeneous reduction of U(VI) by Fe(II) and help provide a basis

  6. Jean’s instability in a complex plasma in presence of secondary electrons and nonthermal ions

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Maity Saumyen

    2013-01-01

    In this paper we have investigated the effect of secondary electron emission and nonthermality of ion velocity distribution simultaneously on Jean’s instability in a complex plasma in presence of negatively charged dust grains. Primary and secondary electron temperatures are assumed to be equal. Thus plasma under consideration consists of Boltzmann distributed electrons, nonthermal ions and negatively charged dust grains. The dust grain component is modeled by continuity and momentum equations. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically it is found that for lower values of the nonthermal parameter Jean’s instability is higher for higher secondary electron emission whereas the effect of secondary electron emission on Jean’s instability becomes insignificant for higher values of the nonthermal parameter. (author)

  7. Electronic structure of the [MNH2]+ (M = Sc-Cu) complexes.

    Science.gov (United States)

    Hendrickx, Marc F A; Clima, Sergiu

    2006-11-23

    B3LYP geometry optimizations for the [MNH2]+ complexes of the first-row transition metal cations (Sc+-Cu+) were performed. Without any exception the ground states of these unsaturated amide complexes were calculated to possess planar geometries. CASPT2 binding energies that were corrected for zero-point energies and including relativistic effects show a qualitative trend across the series that closely resembles the experimental observations. The electronic structures for the complexes of the early and middle transition metal cations (Sc+-Co+) differ from the electronic structures derived for the complexes of the late transition metal cations (Ni+ and Cu+). For the former complexes the relative higher position of the 3d orbitals above the singly occupied 2p(pi) HOMO of the uncoordinated NH2 induces an electron transfer from the 3d shell to 2p(pi). The stabilization of the 3d orbitals from the left to the right along the first-row transition metal series causes these orbitals to become situated below the HOMO of the NH2 ligand for Ni+ and Cu+, preventing a transfer from occurring in the [MNH2]+ complexes of these metal cations. Analysis of the low-lying states of the amide complexes revealed a rather unique characteristic of their electronic structures that was found across the entire series. Rather exceptionally for the whole of chemistry, pi-type interactions were calculated to be stronger than the corresponding sigma-type interactions. The origin of this extraordinary behavior can be ascribed to the low-lying sp2 lone pair orbital of the NH2 ligand with respect to the 3d level.

  8. Molecular and electronic structure of chromium(V) nitrido complexes with azide and isothiocyanate ligands

    DEFF Research Database (Denmark)

    Bendix, Jesper; Birk, Torben; Weyhermüller, Thomas

    2005-01-01

    . This absorption provides the spectrochemical series for the equatorial ligands, which is found to be numerically almost identical to that determined for chromium(III). DFT calculations reproduce the observed structures and corroborate the ligand field picture of the electronic structure of these complexes....

  9. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  10. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex

    Science.gov (United States)

    Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra

    2017-01-01

    A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.

  12. Complexities of the storm-time characteristics of ionospheric total electron content

    International Nuclear Information System (INIS)

    Kane, R.P.

    1982-01-01

    The complexities of the storm-time variations of the ionospheric total electron content are briefly reviewed. It is suggested that large variations from storm to storm may be due to irregular flows from the auroral region towards equator. A proper study of such flows needs an elaborate network of TEC measuring instruments. The need of planning and organizing such a network is emphasized

  13. Retrieving of the complex degree of spatial coherence of electron beams

    International Nuclear Information System (INIS)

    Carrasquilla-Alvarez, J.; Castaneda, R.; Garcia-Sucerquia, J.; Schofield, M.; Blegiia, M.; Matteucci, G.

    2005-10-01

    We discuss the applicability of a recently developed method for two-dimensionally retrieving the complex degree of spatial coherence of laser beams, in both amplitude and phase, to the case of the electron beam provided by the source of an electron microscope. Obtaining an electron beam with the highest possible coherence is critical for successful holography experiments. Therefore, the accurate measurement of the complex degree of spatial coherence is highly desirable. The method consists of the following three steps: recording of the beam spot, determining its centered-reduced moments and inserting them as coefficients of a series. This procedure is simple, fast and of higher performance than conventional procedures such Fourier analysis or Young interferometry. Experimental results are presented. (author)

  14. Non-electronic communication aids for people with complex communication needs.

    Science.gov (United States)

    Iacono, Teresa; Lyon, Katie; West, Denise

    2011-10-01

    Non-electronic communication aids provide one form of augmentative and alternative communication (AAC) for people with complex communication needs. The aim here was to explore non-electronic communication aids as one AAC option and research challenges. This aim was addressed by reviewing funding for the provision of AAC systems, data from an Australian pilot project providing non-electronic communication aids, an audit of aided AAC published studies (2000-2009), and discussion of the review literature. Combined, these sources indicate that although there is great demand for non-electronic communication aids, funding schemes, both in Australia and internationally, have focused on electronic communication aids. Such funding has usually failed to meet the total device costs and has not provided for adequate speech-language pathology support. Data from the pilot indicated the demand for non-electronic communication aids, and patterns suggest potential factors that govern the types selected. Despite the high demand for non-electronic aids, the research literature has tended to focus on electronic communication aids, including within intervention studies and addressing design features and long-term outcomes. Concerns about ensuring that AAC systems are chosen according to the assessed needs of individuals are discussed within the context of limitations in outcomes research and appropriate outcome measures.

  15. Managing complex research datasets using electronic tools: A meta-analysis exemplar

    Science.gov (United States)

    Brown, Sharon A.; Martin, Ellen E.; Garcia, Theresa J.; Winter, Mary A.; García, Alexandra A.; Brown, Adama; Cuevas, Heather E.; Sumlin, Lisa L.

    2013-01-01

    Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, e.g., EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process, as well as enhancing communication among research team members. The purpose of this paper is to describe the electronic processes we designed, using commercially available software, for an extensive quantitative model-testing meta-analysis we are conducting. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to: decide on which electronic tools to use, determine how these tools would be employed, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members. PMID:23681256

  16. Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation

    KAUST Repository

    Ayzner, Alexander L.

    2015-01-02

    © 2014 American Chemical Society. Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.

  17. Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation

    KAUST Repository

    Ayzner, Alexander L.; Nordlund, Dennis; Kim, Do-Hwan; Bao, Zhenan; Toney, Michael F.

    2015-01-01

    © 2014 American Chemical Society. Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.

  18. Long-Range Intramolecular Electronic Communication in a Trinuclear Ruthenium Tropolonate Complex.

    Science.gov (United States)

    Yoshida, Jun; Kuwahara, Kyohei; Suzuki, Kota; Yuge, Hidetaka

    2017-02-20

    Dinuclear and trinuclear ruthenium complexes, [Ru(trop) 2 (C 2 trop)Ru(dppe)Cp] [2b; trop = tropolonato, C 2 trop = ethynyltropolonato, dppe = 1,2-bis(diphenylphosphino)ethane] and [Ru(trop){(C 2 trop)Ru(dppe)Cp} 2 ] (3), were synthesized, and their electronic and electrochemical properties were investigated in comparison with our previously reported complex [Ru(acac) 2 (C 2 trop)Ru(dppe)Cp] (2a). The electron-donating Ru II (dppe)Cp unit and electron-accepting Ru III O 6 unit are connected by C 2 trop in these complexes. 2a incorporates acetylacetonate as an ancillary ligand, while 2b and 3 incorporate tropolonate as an ancillary ligand. Every complex, 2a, 2b, and 3, exhibits similar UV-vis-near-IR (NIR) absorption spectra, demonstrating the lack of explicit intramolecular electronic communication between the units at least in the neutral state. The weak NIR absorption in 2a further diminished upon electrochemical oxidation, indicating almost no electronic communication between the units. In contrast, 2b and 3 exhibit broad NIR absorptions upon oxidation. Additionally, 3 exhibits four stepwise redox couples in the electrochemical study, which are formally attributed to [Ru II (trop) 3 ] - /[Ru III (trop) 3 ], two [Ru II (dppe)Cp]/[Ru III (dppe)Cp] + , and [Ru III (trop) 3 ]/[Ru IV (trop) 3 ] + couples. Clear separation of the redox couples attributed to the two terminal [Ru(dppe)Cp] units demonstrates the thermodynamic stability of the intermediate oxidation states with respect to disproportionation. Further electrochemical studies using an electrolyte including perfluorinated weakly coordinating anions and density functional theory/time-dependent density functional theory calculations confirmed the effect of ancillary ligands, acetylacetonate and tropolonate. In the case of 2a, electronic delocalization over the whole complex, especially over the [Ru(acac) 2 (trop)] unit, appears to be small. In contrast, the electronic communication between [Ru(dppe)Cp] and [Ru

  19. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  20. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  1. Dynamics of electronic dephasing in the Fenna-Matthews-Olson complex

    International Nuclear Information System (INIS)

    Hayes, Dugan; Panitchayangkoon, Gitt; Fransted, Kelly A; Caram, Justin R; Freed, Karl F; Engel, Gregory S; Wen Jianzhong

    2010-01-01

    Electronic coherence has been shown to persist in the Fenna-Matthews-Olson (FMO) antenna complex from green sulfur bacteria at 77 K for at least 660 fs, several times longer than the typical lifetime of a coherence in a dynamic environment at this temperature. Such long-lived coherence was proposed to improve energy transfer efficiency in photosynthetic systems by allowing an excitation to follow a quantum random walk as it approaches the reaction centre. Here we present a model for bath-induced electronic transitions, demonstrating that the protein matrix protects coherences by globally correlating fluctuations in transition energies. We also quantify the dephasing rates for two particular electronic coherences in the FMO complex at 77 K using two-dimensional Fourier transform electronic spectroscopy and find that the lifetimes of individual coherences are distinct. Within the framework of noise-assisted transport, this result suggests that the FMO complex has been locally tuned by natural selection to optimize transfer efficiency by exploiting quantum coherence.

  2. Characterization of some Pr(III) complexes in terms of electronic spectral parameters

    International Nuclear Information System (INIS)

    Bhati, P.R.; Soni, K.P.; Joshi, G.K.; Swami, S.N.

    1992-01-01

    Pr(III) complexes from the ligands derived from methyl acetoacetate, ethyl acetoacetate, veratraldehyde, ethyl vanillin and 2,5 dimethoxy benzaldehyde forming Schiff-bases with ortho, meta and para phenylene diamines have been synthesized. The complexes have been characterized in terms of various Slater-Condon Lande and Judd-Ofelt parameters. The various trends in the parametric values have also been described. The involvement of 4f-orbital in the Pr(III) complexes including deviation in the symmetry have been discussed on the basis of electronic spectral parameters. The validity of the theories used has been established while comparing observed and calculated energies and intensities of the various bands in the present complexes on the basis of r.m.s deviation. The trends of the curves observed in the solution spectra have also been discussed. (author). 21 refs., 5 tabs., 2 figs

  3. Shielding considerations for an electron linear accelerator complex for high energy physics and photonics research

    International Nuclear Information System (INIS)

    Holmes, J.A.; Huntzinger, C.J.

    1987-01-01

    Radiation shielding considerations for a major high-energy physics and photonics research complex which comprise a 50 MeV electron linear accelerator injector, a 1.0 GeV electron linear accelerator and a 1.3 GeV storage ring are discussed. The facilities will be unique because of the close proximity of personnel to the accelerator beam lines, the need to adapt existing facilities and shielding materials and the application of strict ALARA dose guidelines while providing maximum access and flexibility during a phased construction program

  4. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    International Nuclear Information System (INIS)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-01-01

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD

  5. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, Stefan [CERN (Switzerland)], E-mail: koestner@mpi-halle.mpg.de

    2009-09-11

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  6. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of); Shin, Ki Soon [Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kang, Shin Jung, E-mail: sjkang@sejong.ac.kr [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  7. Electron paramagnetic resonance and density-functional theory studies of Cu(II)-bis(oxamato) complexes.

    Science.gov (United States)

    Bräuer, Björn; Weigend, Florian; Fittipaldi, Maria; Gatteschi, Dante; Reijerse, Edward J; Guerri, Annalisa; Ciattini, Samuele; Salvan, Georgeta; Rüffer, Tobias

    2008-08-04

    In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.

  8. Enhanced electron-lattice coupling under uniaxial stress in layered double hydroxides intercalated with samarium complexes

    International Nuclear Information System (INIS)

    Park, Ta-Ryeong

    2004-01-01

    We have applied uniaxial stress to samarium complexes by intercalating them into the gallery of a layered material and by using a diamond-anvil cell at 28 K. Although uniaxial stress reduces symmetry and removes degeneracy, the overall number of photoluminescence (PL) peaks evidently decreased with the application of uniaxial stress. This contradictory observation is explained by an increased electron-lattice coupling strength under uniaxial stress. This behavior is also confirmed by time-resolved PL data.

  9. Conservation of vibrational coherence in ultrafast electronic relaxation: The case of diplatinum complexes in solution

    Czech Academy of Sciences Publication Activity Database

    Monni, R.; Auböck, G.; Kinschel, D.; Aziz-Lange, K. M.; Gray, H. B.; Vlček, Antonín; Chergui, M.

    2017-01-01

    Roč. 683, SEP 2017 (2017), s. 112-120 ISSN 0009-2614 R&D Projects: GA MŠk LD14129; GA ČR GA17-01137S Grant - others:COST(XE) CM1201 Institutional support: RVO:61388955 Keywords : vibrational energy * electronic energy * diplatinum complexes Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.815, year: 2016

  10. Electronic Structures of Reduced and Superreduced Ir2(1,8-diisocyanomenthane)4 n+ Complexes

    Czech Academy of Sciences Publication Activity Database

    Záliš, Stanislav; Hunter, B. M.; Gray, H. B.; Vlček, Antonín

    2017-01-01

    Roč. 56, č. 5 (2017), s. 2874-2883 ISSN 0020-1669 R&D Projects: GA MŠk LD14129 Grant - others:COST(XE) CM1405; COST(XE) CM1202 Institutional support: RVO:61388955 Keywords : electronic structure * electrochemistry * Ir2(1,8-diisocyanomenthane)4 n+ Complexes Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 4.857, year: 2016

  11. Use of complex electronic equipment within radiative areas of PWR power plants: feability study

    International Nuclear Information System (INIS)

    Fremont, P.; Carquet, M.

    1988-01-01

    EDF has undertaken a study in order to evaluate the technical and economical feasibility of using complex electronic equipment within radiative areas of PWR power plants. This study lies on tests of VLSI components (Random Access Memories) under gamma rays irradiations, which aims are to evaluate the radiation dose that they can withstand and to develop a selection method. 125 rad/h and 16 rad/h tests results are given [fr

  12. Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends: Implications for organic solar cell efficiency

    Science.gov (United States)

    Moghe, D.; Yu, P.; Kanimozhi, C.; Patil, S.; Guha, S.

    2011-12-01

    The spectral photocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT:PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT:PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

  13. Exploring the Interaction Natures in Plutonyl (VI Complexes with Topological Analyses of Electron Density

    Directory of Open Access Journals (Sweden)

    Jiguang Du

    2016-04-01

    Full Text Available The interaction natures between Pu and different ligands in several plutonyl (VI complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC basis set. The Pu– O y l bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI approach it has been found that some weak and repulsion interactions existed in plutonyl(VI complexes, which can not be distinguished by QTAIM, can be successfully identified.

  14. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    Science.gov (United States)

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the

  15. Simple and universal model for electron-impact ionization of complex biomolecules

    Science.gov (United States)

    Tan, Hong Qi; Mi, Zhaohong; Bettiol, Andrew A.

    2018-03-01

    We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.

  16. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    Directory of Open Access Journals (Sweden)

    Thomas Kowoll

    2017-01-01

    Full Text Available This study is concerned with backscattered electron scanning electron microscopy (BSE SEM contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC- simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  17. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    Science.gov (United States)

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  18. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  19. Electronic properties and reactivity of vanadium complexes of bipyridine and cyanometallates

    International Nuclear Information System (INIS)

    Lellis, F.T.P.

    1988-01-01

    This work deals with the chemistry of two types of vanadium compounds. The first one consists of polymeric pigments containing vanadium (III) ions and hexacyanoferrate (II) or substituted pentacyanoferrate (II) complexes. A series of 14 complexes were isolated in solid state, exhibiting the following composition V sub(4) [ Fe (CN) sub(4) ]. 16H sub(2)O or V [ Fe (CN) sub(5) L ]. 4H sub(2)O (L imidazole, pyridine and pyrazine derivatives). These complexes exhibit strong absorption bands in the visible-uv region, ascribed to intervalence transfer transitions. The infrared spectra were assigned, showing a linear correlation of the CN stretching frequencies with the sup(13)C NMR chemical shifts of the cyanide ligands in the complexes. The second system which has been investigated consists of a series of substituted species with vanadium (II) and (III) ions with 2,2 bypyridine ligands, formulated as [V (bipy) 3 - n (H sub(2)O) 6-2n ] sup(2+) and [ Cl (bipy)nVOV(bipy)nCl] sup(4)+ (n= 1-3) respectively. The electronic spectra of these complexes were assigned in parallel with magnetic and vibrational studies. Resonance Raman spectra of the vanadium (II) complexes exhibited strong enhancement of the bipyridine vibrational modes. In contrast, the vibrational modes of the V (III)-O-V(III) chromophore were preferentialy enhanced in the dimeric species. (author)

  20. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    International Nuclear Information System (INIS)

    Comes, Ryan; Liu Hongxue; Lu Jiwei; Gu, Man; Khokhlov, Mikhail; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  1. Interpretation of electronic spectra of ruthenium nitroso complexes with N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ivanova, N.V.; Lyubimova, O.O.; Nikol'skij, A.B.

    2004-01-01

    Relaying on ab initio and semiempirical CINDO/CI calculations of free ligands L and complexes trans-[Ru(NO)(NH 3 ) 4 (L)] 3+ (L=pyridine, pyrazine, nicotinamide, l-histidine, imidazole), electronic absorption spectra of nitroso complexes with nitrogen-containing heterocyclic ligands L have been analyzed. Spectral manifestations of strong covalent bond Ru-NO was pointed out and the conclusion was made about advisability of presentation of Ru and NO oxidation states in grouping RuNO 3+ as Ru(III) and NO 0 . Introduction of nitroso group into inner coordination sphere of Ru(II) complexes with nitrogen-containing heterocyclic ligands results in essential rearrangement of the entire structure and deprives ligands L of their ability to manifest chromophore properties [ru

  2. Direct Observation of Energy Detrapping in LH1-RC Complex by Two-Dimensional Electronic Spectroscopy.

    Science.gov (United States)

    Ma, Fei; Yu, Long-Jiang; Hendrikx, Ruud; Wang-Otomo, Zheng-Yu; van Grondelle, Rienk

    2017-01-18

    The purple bacterial core light harvesting antenna-reaction center (LH1-RC) complex is the simplest system able to achieve the entire primary function of photosynthesis. During the past decade, a variety of photosynthetic proteins were studied by a powerful technique, two-dimensional electronic spectroscopy (2DES). However, little attention has been paid to LH1-RC, although its reversible uphill energy transfer, trapping, and backward detrapping processes, represent a crucial step in the early photosynthetic reaction dynamics. Thus, in this work, we employed 2DES to study two LH1-RC complexes of Thermochromatium (Tch.) tepidum. By direct observation of detrapping, the complex reversible process was clearly identified and an overall scheme of the excitation evolution in LH1-RC was obtained.

  3. Proton and Electron Additions to Iron (II) Dinitrogen Complexes Containing Pendant Amines

    Energy Technology Data Exchange (ETDEWEB)

    Heiden, Zachariah M.; Chen, Shentan; Labios, Liezel AN; Bullock, R. Morris; Walter, Eric D.; Tyson, Elizabeth L.; Mock, Michael T.

    2014-03-10

    We describe a single site cis-(H)FeII-N2 complex, generated by the protonation of an iron-carbon bond of a "reduced" iron complex, that models key aspects of proposed protonated intermediates of the E4 state of nitrogenase. The influence on N2 binding from the addition of protons to the pendant amine sites in the second coordination sphere is described. Furthermore, the addition of electrons to the protonated complexes results in H2 loss. The mechanism of H2 loss is explored to draw a parallel to the origin of H2 loss (homolytic or heterolytic) and the nature of N2 coordination in intermediates of the E4 state of nitrogenase.

  4. Changes in the surface electronic states of semiconductor fine particles induced by high energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya; Asai, Keisuke; Ishigure, Kenkichi [Tokyo Univ. (Japan); Shibata, Hiromi

    1997-03-01

    The changes in the surface electronic states of Q-sized semiconductor particles in Langmuir-Blodgett (LB) films, induced by high energy ion irradiation, were examined by observation of ion induced emission and photoluminescence (PL). Various emission bands attributed to different defect sites in the band gap were observed at the initial irradiation stage. As the dose increased, the emissions via the trapping sites decreased in intensity while the band-edge emission developed. This suggests that the ion irradiation would remove almost all the trapping sites in the band gap. The low energy emissions, which show a multiexponential decay, were due to a donor-acceptor recombination between the deeply trapped carriers. It was found that the processes of formation, reaction, and stabilization of the trapping sites would predominantly occur under the photooxidizing conditions. (author)

  5. Investigation of electron-atom/molecule scattering resonances: Two complex multiconfigurational self-consistent field approaches

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Kousik [Department of Chemistry, Rice University, Houston, TX 77005 (United States); Yeager, Danny L. [Department of Chemistry, Texas A and M University, College Station, TX 77843 (United States)

    2015-01-22

    Resonances are temporarily bound states which lie in the continuum part of the Hamiltonian. If the electronic coordinates of the Hamiltonian are scaled (“dilated”) by a complex parameter, η = αe{sup iθ} (α, θ real), then its complex eigenvalues represent the scattering states (resonant and non-resonant) while the eigenvalues corresponding to the bound states and the ionization and the excitation thresholds remain real and unmodified. These make the study of these transient species amenable to the bound state methods. We developed a quadratically convergent multiconfigurational self-consistent field method (MCSCF), a well-established bound-state technique, combined with a dilated Hamiltonian to investigate resonances. This is made possible by the adoption of a second quantization algebra suitable for a set of “complex conjugate biorthonormal” spin orbitals and a modified step-length constraining algorithm to control the walk on the complex energy hypersurface while searching for the stationary point using a multidimensional Newton-Raphson scheme. We present our computational results for the {sup 2}PBe{sup −} shape resonances using two different computationally efficient methods that utilize complex scaled MCSCF (i.e., CMCSCF). These two methods are to straightforwardly use CMCSCF energy differences and to obtain energy differences using an approximation to the complex multiconfigurational electron propagator. It is found that, differing from previous computational studies by others, there are actually two {sup 2}PBe{sup −} shape resonances very close in energy. In addition, N{sub 2} resonances are examined using one of these methods.

  6. Structural effects on the electronic characteristics of intramolecularly intercalated alkali-rubrene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tsung-Lung, E-mail: quantum@mail.ncyu.edu.tw [Department of Electrophysics, National Chia-Yi University, 300 Hsueh-Fu Road, Chiayi, 60004, Taiwan, ROC (China); Lu, Wen-Cai, E-mail: wencailu@jlu.edu.cn [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Physics, Qingdao University, Qingdao, Shandong 266071 (China); State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021 (China)

    2016-11-01

    The geometric and electronic structures of neutral monolithium- and monosodium-rubrene (Li{sub 1} Rub and Na{sub 1} Rub) isomers are investigated and compared with monopotassium-rubrene (K{sub 1} Rub). Based on the alkali binding site, all isomers of these alkali-rubrene complexes can be subdivided into two types: intramolecularly intercalated and extramolecularly adsorbed. The minimum-energy Li{sub 1} Rub and Na{sub 1} Rub are intercalated structures, whereas the minimum-energy K{sub 1} Rub is adsorbed. The fact that the intercalated Li{sub 1} Rub and Na{sub 1} Rub structures are energetically favorable over the adsorbed ones can be explained by two energy rules. First, “double” proximity of the intercalating alkali element to a pair of phenyl side groups enormously reduces the total energy. Second, accommodation of a minuscule intercalant does not significantly deform the carbon frame and, thus, increases the energy only by a small amount. Additionally, the peculiar effects of intramolecular intercalation on the electronic structures of molecules are also studied in this simulation of monoalkali intercalation. In the monoalkali-intercalated rubrene complex, only one of the two pairs of phenyl groups of rubrene is intercalated, intentionally leaving another pair pristine, which facilitates the comparison of electronic structures between the intercalated and pristine pairs of phenyl side groups in a single molecule. The uniformity of chemical environments of the phenyl groups of the intercalated Li{sub 1} Rub/Na{sub 1} Rub is deteriorated by the incorporation of the intercalant, and leads to their spectral characteristics in contrast to K{sub 1} Rub. In particular, the introduction of the intercalant promotes the carbon 2p orbitals of the intercalated phenyl pair to take part in the electronic structures of the HOMO and LUMO peaks of Li{sub 1} Rub/Na{sub 1} Rub. The unpaired electron in the HOMO is delocalized over the backbone with higher probability of

  7. Structural effects on the electronic characteristics of intramolecularly intercalated alkali-rubrene complexes

    International Nuclear Information System (INIS)

    Li, Tsung-Lung; Lu, Wen-Cai

    2016-01-01

    The geometric and electronic structures of neutral monolithium- and monosodium-rubrene (Li 1 Rub and Na 1 Rub) isomers are investigated and compared with monopotassium-rubrene (K 1 Rub). Based on the alkali binding site, all isomers of these alkali-rubrene complexes can be subdivided into two types: intramolecularly intercalated and extramolecularly adsorbed. The minimum-energy Li 1 Rub and Na 1 Rub are intercalated structures, whereas the minimum-energy K 1 Rub is adsorbed. The fact that the intercalated Li 1 Rub and Na 1 Rub structures are energetically favorable over the adsorbed ones can be explained by two energy rules. First, “double” proximity of the intercalating alkali element to a pair of phenyl side groups enormously reduces the total energy. Second, accommodation of a minuscule intercalant does not significantly deform the carbon frame and, thus, increases the energy only by a small amount. Additionally, the peculiar effects of intramolecular intercalation on the electronic structures of molecules are also studied in this simulation of monoalkali intercalation. In the monoalkali-intercalated rubrene complex, only one of the two pairs of phenyl groups of rubrene is intercalated, intentionally leaving another pair pristine, which facilitates the comparison of electronic structures between the intercalated and pristine pairs of phenyl side groups in a single molecule. The uniformity of chemical environments of the phenyl groups of the intercalated Li 1 Rub/Na 1 Rub is deteriorated by the incorporation of the intercalant, and leads to their spectral characteristics in contrast to K 1 Rub. In particular, the introduction of the intercalant promotes the carbon 2p orbitals of the intercalated phenyl pair to take part in the electronic structures of the HOMO and LUMO peaks of Li 1 Rub/Na 1 Rub. The unpaired electron in the HOMO is delocalized over the backbone with higher probability of distributing over the central two fused rings than over the outer two

  8. Probing the chemistry, electronic structure and redox energetics in pentavalent organometallic actinide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Vaughn, Anthony E [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Complexes of the early actinides (Th-Pu) have gained considerable prominence in organometallic chemistry as they have been shown to undergo chemistries not observed with their transition- or lanthanide metal counterparts. Further, while bonding in f-element complexes has historically been considered to be ionic, the issue of covalence remains a subject of debate in the area of actinide science, and studies aimed at elucidating key bonding interactions with 5f-orbitals continue to garner attention. Towards this end, our interests have focused on the role that metal oxidation state plays in the structure, reactivity and spectral properties of organouranium complexes. We report our progress in the synthesis of substituted U{sup V}-imido complexes using various routes: (1) Direct oxidation of U{sup IV}-imido complexes with copper(I) salts; (2) Salt metathesis with U{sup V}-imido halides; (3) Protonolysis and insertion of an U{sup V}-imido alkyl or aryl complex with H-N{double_bond}CPh{sub 2} or N{triple_bond}C-Ph, respectively, to form a U{sup V}-imido ketimide complex. Further, we report and compare the crystallographic, electrochemical, spectroscopic and magnetic characterization of the pentavalent uranium (C{sub 5}Me{sub 5}){sub 2}U({double_bond}N-Ar)(Y) series (Y = OTf, SPh, C{triple_bond}C-Ph, NPh{sub 2}, OPh, N{double_bond}CPh{sub 2}) to further interrogate the molecular, electronic, and magnetic structures of this new class of uranium complexes.

  9. Quantum chemical studies on electronic structure and photodynamics of ruthenium complexes

    International Nuclear Information System (INIS)

    Freitag, L.

    2015-01-01

    Ruthenium complexes have found their way into many applications in the last decades. Among those, ruthenium polypyridyl compounds have been employed as light harvesting devices and photosensitisers in artificial photosynthesis and molecular photocatalysis. Ruthenium nitrosyl complexes are rapidly emerging as NO delivery agents to biological tissues with promising applications in anticancer photodynamic therapy, thanks to their ability to photorelease nitric oxide (NO). This thesis encompasses computational studies on reactivity, electronic structure, excited states and photodynamics of several ruthenium nitrosyl and polypyridyl complexes. The first part of the thesis deals with ruthenium nitrosyls. The cis-trans isomerisation mechanism of RuHIndNO, a ruthenium nitrosyl derivate of the prominent anti-cancer drug candidate KP1019, is investigated with density functional theory calculations. Next, the electronic structure of the ground and the first excited triplet state of RuHIndNO is studied with multiconfigurational methods including the density-matrix renormalisation group (DMRG). The obtained multiconfigurational wavefunctions and DMRG-based orbital entanglement analysis provides theoretical insight into the non-innocence of the NO ligand in nitrosyl complexes by describing the electron correlation in the Ru--NO bond and assigning oxidation states to the metal and the NO ligand. Another study is performed on excited states of ruthenium nitrosyl complexes with quantum chemical calculations and surface-hopping dynamics to obtain insights into the photodissociation mechanism of NO. The second part of this thesis is devoted to the excited states and photophysics of ruthenium polypyridyl complexes. Accurate excitation energies of tris(2,2-bipyridine)ruthenium (II), the prototype ruthenium polypyridyl are obtained with multiconfigurational calculations assisted by an orbital entanglement analysis. Subsequently, the effect of the ligand substitution on the photophysics

  10. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  11. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  12. The Alternative complex III: properties and possible mechanisms for electron transfer and energy conservation.

    Science.gov (United States)

    Refojo, Patrícia N; Teixeira, Miguel; Pereira, Manuela M

    2012-10-01

    Alternative complexes III (ACIII) are recently identified membrane-bound enzymes that replace functionally the cytochrome bc(1/)b(6)f complexes. In general, ACIII are composed of four transmembrane proteins and three peripheral subunits that contain iron-sulfur centers and C-type hemes. ACIII are built by a combination of modules present in different enzyme families, namely the complex iron-sulfur molybdenum containing enzymes. In this article a historical perspective on the investigation of ACIII is presented, followed by an overview of the present knowledge on these enzymes. Electron transfer pathways within the protein are discussed taking into account possible different locations (cytoplasmatic or periplasmatic) of the iron-sulfur containing protein and their contribution to energy conservation. In this way several hypotheses for energy conservation modes are raised including linear and bifurcating electron transfer pathways. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials

  14. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail: zack.khuzwayo@up.ac.za; Chirwa, E.M.N

    2017-01-05

    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  15. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures

    International Nuclear Information System (INIS)

    Scholl, Andreas; Ohldag, Hendrik; Nolting, Frithjof; Stohr, Joachim; Padmore, Howard A.

    2001-01-01

    X-ray Photoemission Electron Microscopy unites the chemical specificity and magnetic sensitivity of soft x-ray absorption techniques with the high spatial resolution of electron microscopy. The discussed instrument possesses a spatial resolution of better than 50 nm and is located at a bending magnet beamline at the Advanced Light Source, providing linearly and circularly polarized radiation between 250 and 1300 eV. We will present examples which demonstrate the power of this technique applied to problems in the field of thin film magnetism. The chemical and elemental specificity is of particular importance for the study of magnetic exchange coupling because it allows separating the signal of the different layers and interfaces in complex multi-layered structures

  16. 200 keV electron beam pulse source for the complex VEPP-5 preinjector

    CERN Document Server

    Akimov, V E; Korepanov, A A

    2001-01-01

    The electron beam source based on GS-34 valve cathode-grid unit with oxide cathode of 12 mm in diameter is described. Originally the high voltage DC source was used to supply the gun. The cathode emission characteristic was reduced by the vacuum breakdowns during gun operation. So the necessity of decreasing a high voltage from 200 kV to 140 kV has appeared. The use of the pulse transformer based gun supply with a pulse duration of approx 1 mcs provided the gun operation without breakdowns at a voltage of 200 kV and pulse repetition rate up to 50 Hz. At present time the electron source is operated at the complex VEPP-5 preinjector.

  17. Cp2 TiX Complexes for Sustainable Catalysis in Single-Electron Steps.

    Science.gov (United States)

    Richrath, Ruben B; Olyschläger, Theresa; Hildebrandt, Sven; Enny, Daniel G; Fianu, Godfred D; Flowers, Robert A; Gansäuer, Andreas

    2018-04-25

    We present a combined electrochemical, kinetic, and synthetic study with a novel and easily accessible class of titanocene catalysts for catalysis in single-electron steps. The tailoring of the electronic properties of our Cp 2 TiX-catalysts that are prepared in situ from readily available Cp 2 TiX 2 is achieved by varying the anionic ligand X. Of the complexes investigated, Cp 2 TiOMs proved to be either equal or substantially superior to the best catalysts developed earlier. The kinetic and thermodynamic properties pertinent to catalysis have been determined. They allow a mechanistic understanding of the subtle interplay of properties required for an efficient oxidative addition and reduction. Therefore, our study highlights that efficient catalysts do not require the elaborate covalent modification of the cyclopentadienyl ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Positron annihilation in liquids and in solutions containing electron acceptors and charge-transfer complexes

    International Nuclear Information System (INIS)

    Jansen, P.

    1976-05-01

    Positron lifetime measurements and angular correlation measurements were performed in several organic liquids. The results strongly indicate that positronium is contained in a 'bubble' in the liquids. The radius of the bubble can be estimated by using broadness of the narrow component in the angular correlation distribution, and by using the surface tension of the liquids. Both methods give bubble radii from 4-7 A in the solvents investigated. The bubble influences the reaction mechanism between Ps and weak electron acceptors in such a way that the presence of the bubble decreases the reactivity of Ps. Positron lifetime measurements were also performed on a series of mixtures of organic liquids and on electron acceptors and charge-transfer complexes in solution. The results were is agreement with the spur model of Ps formation. (Auth.)

  19. Complex immunological monitoring of breast cancer patients treated postoperatively by electron beam irradiation

    International Nuclear Information System (INIS)

    Horvath, M.; Horvath, A.; Fekete, B.; Toth, J.

    1986-01-01

    To monitor the electron beam therapy some immunological parameters of breast cancer patients previously undergone surgery were tested before, during and after irradiation. Immune complex levels measured by complement consumption technique were not altered by irradiation. Killer cell activity tested in so-called antibody dependent cellular cytotoxicity (ADCC) capacity assay showed a marked decrease in some cases. Based on the phagocytic capacity of the granulocytes the patients could be divided into two groups: one with declining activity and another with rising activity: The majority of the patients (22/45) were humoral leukocyte adherence inhibition (H-LAI) negative before and during irradiation. Those showed positive H-LAI indices before electron therapy had unchanged (7/45) or decreasing (9/45) tendencies during the observation period. Further study is needed to establish the clinical relevance of these in vitro assays used by us. (orig.) [de

  20. Complex (Nonstandard) Six-Layer Polytypes of Lizardite Revealed from Oblique-Texture Electron Diffraction Patterns

    International Nuclear Information System (INIS)

    Zhukhlistov, A.P.; Zinchuk, N.N.; Kotel'nikov, D.D.

    2004-01-01

    Association of simple (1T and 3R) and two complex (nonstandard) orthogonal polytypes of the serpentine mineral lizardite from the Catoca kimberlite pipe (West Africa) association is revealed from oblique-texture electron diffraction patterns. A six-layer polytype with an ordered superposition of equally oriented layers (notation 3 2 3 2 3 4 3 4 3 6 3 6 or ++ - -00) belonging to the structural group A and a three-layer (336 or I,I,II) or a six-layer (336366 or I,I,II,I,II,II) polytype with alternating oppositely oriented layers and semi-disordered structure are identified using polytype analysis

  1. Electron-helium scattering in the S-wave model using exterior complex scaling

    International Nuclear Information System (INIS)

    Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N.

    2004-01-01

    Electron-impact excitation and ionization of helium is studied in the S-wave model. The problem is treated in full dimensionality using a time-dependent formulation of the exterior complex scaling method that does not involve the solution of large linear systems of equations. We discuss the steps that must be taken to compute stable ionization amplitudes. We present total excitation, total ionization and single differential cross sections from the ground and n=2 excited states and compare our results with those obtained by others using a frozen-core model

  2. Electron Transfer Mediators for Photoelectrochemical Cells Based on Cu(I Metal Complexes

    Directory of Open Access Journals (Sweden)

    Michele Brugnati

    2007-01-01

    Full Text Available The preparation and the photoelectrochemical characterization of a series of bipyridine and pyridyl-quinoline Cu(I complexes, used as electron transfer mediators in regenerative photoelectrochemical cells, are reported. The best performing mediators produced maximum IPCEs of the order of 35–40%. The J-V curves recorded under monochromatic light showed that the selected Cu(I/(II couples generated higher Vocs and fill factors compared to an equivalent I-/I3- cell, due to a decreased dark current.

  3. Application of stochastic Liouville–von Neumann equation to electronic energy transfer in FMO complex

    International Nuclear Information System (INIS)

    Imai, Hajime; Ohtsuki, Yukiyoshi; Kono, Hirohiko

    2015-01-01

    Highlights: • Stochastic Liouville–von Neumann equation is applied to energy transfer dynamics. • Noise generation methods for dealing with exciton in FMO complexes are proposed. • Structured spectral densities could better support coherent population dynamics. - Abstract: A stochastic Liouville–von Neumann approach to solving a spin-boson model is applied to electronic energy transfer in Fenna–Matthews–Olson (FMO) complexes as a case study of the dynamics in biological systems. We modify a noise generation method to treat an experimentally obtained highly structured spectral density. By considering the population dynamics in a two-site system with a model structured spectral density, we numerically observe two kinds of coherent motions associated with inter-site coupling and system–bath coupling, the latter of which is mainly attributed to the peak structure of the spectral density

  4. Electron spectra and mechanism of complexing of uranyl nitrate in water-acetone solutions

    International Nuclear Information System (INIS)

    Zazhogin, A.A.; Zazhogin, A.P.; Komyak, A.I.; Serafimovich, A.I.

    2003-01-01

    Based on the analysis of the luminescence and electronic absorption spectra, the processes of complexing in an aqueous solution of UO 2 (NO 3 ) 2 ·6H 2 O with small additions of acetone have been studied. In a pure aqueous solution, uranyl exists as the complex UO 2 ·5H 2 O. It is shown that the addition of acetone to the solution leads to the displacement of some water molecules out of the first coordination sphere of uranyl and the formation of the uranyl nitrate dihydrate complexes UO 2 (NO 3 ) 2 ·2H 2 O. It has been established that the stability of these complexes is determined by the decrease in the water activity and in the degree of hydration of uranyl and nitrate, which is the result of the local increase in the concentration of acetone molecules (due to their hydrophobicity) in the regions of the solution where uranyl and nitrate ions are found. The experimental facts supported the mechanism proposed are presented. (authors)

  5. Electronic properties of Fe charge transfer complexes – A combined experimental and theoretical approach

    International Nuclear Information System (INIS)

    Ferreira, Hendrik; Eschwege, Karel G. von; Conradie, Jeanet

    2016-01-01

    Highlights: • Experimental and computational study of Fe II -phen, -bpy & -tpy compleesx. • Close correlations between experimental redox and spectral, and computational data. • Computational methods fast-track DSSC research. - Abstract: Dye-sensitized solar cell technology holds huge potential in renewable electricity generation of the future. Due to demand urgency, ways need to be explored to reduce research time and cost. Against this background, quantum computational chemistry is illustrated to be a reliable tool at the onset of studies in this field, simulating charge transfer, spectral (solar energy absorbed) and electrochemical (ease by which electrons may be liberated) tuning of related photo-responsive dyes. Comparative experimental and theoretical DFT studies were done under similar conditions, involving an extended series of electrochemically altered phenanthrolines, bipyridyl and terpyridyl complexes of Fe II . Fe II/III oxidation waves vary from 0.363 V for tris(3,6-dimethoxybipyridyl)Fe II to 0.894 V (versus Fc/Fc + ) for the 5-nitrophenanthroline complex. Theoretical DFT computed ionization potentials in the bipyridyl sub-series achieved an almost 100% linear correlation with experimental electrochemical oxidation potentials, while the phenanthroline sub-series gave R 2 = 0.95. Apart from the terpyridyl complex which accorded an almost perfect match, in general, TDDFT oscillators were computed at slightly lower energies than what was observed experimentally, while molecular HOMO and LUMO renderings reveal desired complexes with directional charge transfer propensities.

  6. Intermolecular electron transfer between coumarin dyes and aromatic amines in Triton-X-100 micellar solutions: Evidence for Marcus inverted region

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2004-02-01

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (ΔG0) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-ΔG0) of ~0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (Vel) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor-acceptor separation in the micellar ET reactions is substantially larger than for the donor-acceptor contact distance. Comparison of the Vel values in the micellar solution and in the donor-acceptor close

  7. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2017-01-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible

  8. Electronic Properties and Photovoltaic Performances of a Series of Oligothiophene Copolymers Incorporating Both Thieno[3,2-b]thiophene and 2,1,3-Benzothiadiazole Moieties.

    Science.gov (United States)

    Biniek, Laure; Chochos, Christos L; Hadziioannou, Georges; Leclerc, Nicolas; Lévêque, Patrick; Heiser, Thomas

    2010-04-06

    A series of donor-acceptor alternated conjugated copolymers, composed of thiophene, bithiophene, thieno[3,2-b]thiophene, and 2,1,3-benzothiadiazole units and differing from each other by the nature and the number of 3-alkylthiophene in the backbone, have been synthesized by Stille cross-coupling polymerization. The material's optical and electrochemical properties, in solution and in thin films, have been investigated using UV-Visible absorption and cyclic voltammetry. Bulk heterojunction solar cells using blends of the newly synthesized copolymers, as electron donor, and C60-PCBM or C70-PCBM, as electron transporting material, have been elaborated. A maximum power conversion efficiency of 1.8% is achieved with a 1:4 PPBzT(2) -C12:C70-PCBM weight ratio. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Iteratively-coupled propagating exterior complex scaling method for electron-hydrogen collisions

    International Nuclear Information System (INIS)

    Bartlett, Philip L; Stelbovics, Andris T; Bray, Igor

    2004-01-01

    A newly-derived iterative coupling procedure for the propagating exterior complex scaling (PECS) method is used to efficiently calculate the electron-impact wavefunctions for atomic hydrogen. An overview of this method is given along with methods for extracting scattering cross sections. Differential scattering cross sections at 30 eV are presented for the electron-impact excitation to the n = 1, 2, 3 and 4 final states, for both PECS and convergent close coupling (CCC), which are in excellent agreement with each other and with experiment. PECS results are presented at 27.2 eV and 30 eV for symmetric and asymmetric energy-sharing triple differential cross sections, which are in excellent agreement with CCC and exterior complex scaling calculations, and with experimental data. At these intermediate energies, the efficiency of the PECS method with iterative coupling has allowed highly accurate partial-wave solutions of the full Schroedinger equation, for L ≤ 50 and a large number of coupled angular momentum states, to be obtained with minimal computing resources. (letter to the editor)

  10. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, P.T.

    1991-11-01

    The divalent lanthanide complex, (Me{sub 5}C{sub 5}){sub 2}Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me{sub 5}C{sub 5}){sub 2}YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}, displays similar chemistry to (Me{sub 5}C{sub 5}){sub 2}YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}. Copper and silver halide salts react with (Me{sub 5}C{sub 5}){sub 2}V to produce the trivalent halide derivatives, (Me{sub 5}C{sub 5}){sub 2}VX (X + F, Cl, Br, I). The chloride complex, (Me{sub 5}C{sub 5}){sub 2}VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me{sub 5}C{sub 5}){sub 2}V producing the vanadium-oxo complex, (Me{sub 5}Ce{sub 5}){sub 2}VO. The trivalent titanium species, (Me{sub 5}C{sub 5}){sub 2}TiX (X = Cl, Br, Me, BH{sub 4}), form bimetallic coordination complexes with (Me{sub 5}C{sub 5}){sub 2}Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  11. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Phillip Thomas [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The divalent lanthanide complex, (Me5C5)2Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me5C5)2YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me5C5)2YbCH(SiMe3)2, displays similar chemistry to (Me5C5)2YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me5C5)3YbCH(SiMe5)2. Copper and silver halide salts react with (Me5C5)2V to produce the trivalent halide derivatives, (Me5C5)2VX (X + F, Cl, Br, I). The chloride complex, (Me5C5)2VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me5C5)2V producing the vanadium-oxo complex, (Me5Ce5)2VO. The trivalent titanium species, (Me5C5)2TiX (X = Cl, Br, Me, BH4), form bimetallic coordination complexes with (Me5C5)2Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  12. Electronic and steric influences of pendant amine groups on the protonation of molybdenum bis (dinitrogen) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Labios, Liezel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heiden, Zachariah M. [Washington State Univ., Pullman, WA (United States); Mock, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-04

    The synthesis of a series of PEtPNRR' (PEtPNRR' = Et₂PCH₂CH₂P(CH₂NRR')₂, R = H, R' = Ph or 2,4-difluorophenyl; R = R' = Ph or iPr) diphosphine ligands containing mono- and disubstituted pendant amine groups, and the preparation of their corresponding molybdenum bis(dinitrogen) complexes trans-Mo(N₂)₂(PMePh₂)₂(PEtPNRR') is described. In situ IR and multinuclear NMR spectroscopic studies monitoring the stepwise addition of (HOTf) to trans-Mo(N₂)₂(PMePh₂)₂(PEtPNRR') complexes in THF at -40 °C show that the electronic and steric properties of the R and R' groups of the pendant amines influence whether the complexes are protonated at Mo, a pendant amine, a coordinated N2 ligand, or a combination of these sites. For example, complexes containing mono-aryl substituted pendant amines are protonated at Mo and pendant amine to generate mono- and dicationic Mo–H species. Protonation of the complex containing less basic diphenyl-substituted pendant amines exclusively generates a monocationic hydrazido (Mo(NNH₂)) product, indicating preferential protonation of an N₂ ligand. Addition of HOTf to the complex featuring more basic diisopropyl amines primarily produces a monocationic product protonated at a pendant amine site, as well as a trace amount of dicationic Mo(NNH₂) product that contain protonated pendant amines. In addition, trans-Mo(N₂)₂(PMePh₂)₂(depe) (depe = Et₂PCH₂CH₂PEt₂) without a pendant amine was synthesized and treated with HOTf, generating a monocationic Mo(NNH₂) product. Protonolysis experiments conducted on select complexes in the series afforded trace amounts of NH₄⁺. Computational analysis of the series of trans-Mo(N₂)₂(PMePh₂)₂(PEtPNRR') complexes provides further insight into the proton affinity values of the metal center, N

  13. Electronic load as part of the test complex of the power processing unit of electric and plasma propulsion

    OpenAIRE

    Chubov, S. V.; Soldatov, Aleksey Ivanovich

    2017-01-01

    This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.

  14. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics.

    Science.gov (United States)

    Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa

    2017-04-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-02-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.

  16. Steric control of the donor/acceptor interface: Implications in organic photovoltaic charge generation

    KAUST Repository

    Holcombe, Thomas W.; Norton, Joseph E.; Rivnay, Jonathan; Woo, Claire; Goris, Ludwig J.; Piliego, Claudia; Griffini, Gianmarco; Sellinger, Alan; Bré das, Jean Luc; Salleo, Alberto; Frechet, Jean

    2011-01-01

    The performance of organic photovoltaic (OPV) devices is currently limited by modest short-circuit current densities. Approaches toward improving this output parameter may provide new avenues to advance OPV technologies and the basic science of charge transfer in organic semiconductors. This work highlights how steric control of the charge separation interface can be effectively tuned in OPV devices. By introducing an octylphenyl substituent onto the investigated polymer backbones, the thermally relaxed charge-transfer state, and potentially excited charge-transfer states, can be raised in energy. This decreases the barrier to charge separation and results in increased photocurrent generation. This finding is of particular significance for nonfullerene OPVs, which have many potential advantages such as tunable energy levels and spectral breadth, but are prone to poor exciton separation efficiencies. Computational, spectroscopic, and synthetic methods were combined to develop a structure-property relationship that correlates polymer substituents with charge-transfer state energies and, ultimately, device efficiencies. © 2011 American Chemical Society.

  17. Organic Solar Cells beyond One Pair of Donor-Acceptor: Ternary Blends and More.

    Science.gov (United States)

    Yang, Liqiang; Yan, Liang; You, Wei

    2013-06-06

    Ternary solar cells enjoy both an increased light absorption width, and an easy fabrication process associated with their simple structures. Significant progress has been made for such solar cells with demonstrated efficiencies over 7%; however, their fundamental working principles are still under investigation. This Perspective is intended to offer our insights on the three major governing mechanisms in these intriguing ternary solar cells: charge transfer, energy transfer, and parallel-linkage. Through careful analysis of exemplary cases, we summarize the advantages and limitations of these three major mechanisms and suggest future research directions. For example, incorporating additional singlet fission or upconversion materials into the energy transfer dominant ternary solar cells has the potential to break the theoretical efficiency limit in single junction organic solar cells. Clearly, a feedback loop between fundamental understanding and materials selection is in urgent need to accelerate the efficiency improvement of these ternary solar cells.

  18. Random laser emission at dual wavelengths in a donor-acceptor dye mixture solution

    Directory of Open Access Journals (Sweden)

    Sunita Kedia

    Full Text Available The work was aimed to generate random laser emissions simultaneously at two wavelengths in a weakly scattering system containing mixture of binary dyes, rhodamine-B (Rh-B and oxazine-170 (O-170 dispersed with ZnO nano-particles serving as scattering centres. Random lasing performances for individual Rh-B dye were extensively studied for varying small signal gain/scatterer density and we found lasing threshold to significantly depend upon number density of dispersed nano-particles. In spite of inefficient pumping, we demonstrated possibility of random lasing in O-170 dye solution on account of resonance energy transfer from Rh-B dye which served as donor. At optimum concentrations of fluorophores and scatterer in dye mixture solution, incoherent random lasing was effectively attained simultaneously at two wavelengths centered 90 nm apart. Dual-emission intensities, lasing thresholds and rate of amplifications could be controlled and made equivalent for both donor and acceptor in dye mixture solution by appropriate choice of concentrations of dyes and scatterers. Keywords: Random lasing, Energy transfer, Rhodamine-B, Oxazine-170, Zinc oxide

  19. On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

    KAUST Repository

    Sini, Gjergji

    2018-01-22

    Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force (energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.

  20. Water Based Inkjet Material Deposition Of Donor-Acceptor Nanoparticles For Usage In Organic Photovoltaics

    Science.gov (United States)

    Penmetcha, Anirudh Raju

    Significant efficiency increases are being made for bulk heterojunction organic photovoltaic prototype devices with world records at 11%. However the chlorinated solvents most frequently used in prototype manufacture would cause local health and safety concerns or large scale environmental pollution upon expansion of these techniques for commercialization. Moreover, research to bridge prototype and large-scale production of these solar cells is still in its infancy. Most prototype devices are made in inert glove box environments using spin-coating. There is a need to develop a non-toxic ink and incorporate it into a material deposition system that can be used in mass production. In this thesis, P3HT:PCBM organic photovoltaic devices were fabricated with the help of inkjet printing. P3HT:PCBM blends were dissolved in organic solvent systems, and this solution was used as the ink for the printer. The "coffee-ring effect" as well as the effect of inkjet printing parameters on film formation were highlighted - thus the inkjet printing method was validated as a stepping stone between lab-scale production of OPVs and large-scale roll-to-roll manufacturing. To address the need of a non-toxic ink, P3HT:PCBM blends were then dispersed in water, using the miniemulsion method. The nanoparticles were characterized for their size, as well as the blending between the P3HT and PCBM within the nanoparticle. These dispersions were then converted into inks. Finally, these nanoparticle inks were inkjet-printed to fabricate OPV devices. Based on the results obtained here, tentative "next steps" have been outlined in order to improve upon this research work, in the future.

  1. Low-band gap donor-acceptor copolymers containing thienothiadiazole units for photovoltaics

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Kmínek, Ivan; Pavlačková, Petra; Výprachtický, Drahomír

    2011-01-01

    Roč. 33, č. 17 (2011), s. 119-127 ISSN 1938-5862. [ECS Meeting /218./. Las Vegas, 10.10.2010-15.10.2010] R&D Projects: GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z40500505 Keywords : fluorene * thiophene * thienothiadiazole Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Characterization of donor-acceptor-pair emission in fluorescent 6H-SiC

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Linnarsson, Margareta

    shifts with increasing emission angle in sample #d, and the FWHM starts to decrese and becomes more dramatic when the emission angle is larger than 45 degrees. Our results revealed that the optimized way to achieve intense DAP emission in B-N-doped 6H-SiC is to use low-level n-type doping with both B...

  3. Steric control of the donor/acceptor interface: Implications in organic photovoltaic charge generation

    KAUST Repository

    Holcombe, Thomas W.

    2011-08-10

    The performance of organic photovoltaic (OPV) devices is currently limited by modest short-circuit current densities. Approaches toward improving this output parameter may provide new avenues to advance OPV technologies and the basic science of charge transfer in organic semiconductors. This work highlights how steric control of the charge separation interface can be effectively tuned in OPV devices. By introducing an octylphenyl substituent onto the investigated polymer backbones, the thermally relaxed charge-transfer state, and potentially excited charge-transfer states, can be raised in energy. This decreases the barrier to charge separation and results in increased photocurrent generation. This finding is of particular significance for nonfullerene OPVs, which have many potential advantages such as tunable energy levels and spectral breadth, but are prone to poor exciton separation efficiencies. Computational, spectroscopic, and synthetic methods were combined to develop a structure-property relationship that correlates polymer substituents with charge-transfer state energies and, ultimately, device efficiencies. © 2011 American Chemical Society.

  4. Random benzotrithiophene-based donor-acceptor copolymers for efficient organic photovoltaic devices.

    Science.gov (United States)

    Nielsen, Christian B; Ashraf, Raja Shahid; Schroeder, Bob C; D'Angelo, Pasquale; Watkins, Scott E; Song, Kigook; Anthopoulos, Thomas D; McCulloch, Iain

    2012-06-14

    A series of benzotrithiophene-containing random terpolymers for polymer solar cells is reported. Through variations of the two other components in the terpolymers, the absorption profile and the frontier energy levels are optimized and maximum power conversion efficiencies are nearly doubled (5.14%) relative to the parent alternating copolymer.

  5. Intramolecular energy transfer at donor-acceptor interactions in model and biological membranes

    International Nuclear Information System (INIS)

    Umarova, Fatima T.

    2011-01-01

    Intramolecular triplet-triplet energy transfer between molecules of sensibilisator and photochrome for registration of protein interactions in the membrane preparation of Na,K-ATPase was investigated. Erythrosinithiocyanate (ERITC) was used as the triplet label of sensibilisator, and 4-acetoamido-4 -isothiocyanatostilbene-2,2 disullfonic acid (SITS) was used as the photochrome label. Na,K-ATPase preparations were covalently bound with ERITC in active centre of enzyme, and SITS molecules were covalently bound by NH2-groups. In model system, in chymotrypsinogene molecule, SITS and ERITC labels were used also. The cis-trans-isomerization of SITS was initiated by triplet-triplet energy transfer from light excited ERITC molecule to photochrome. The kinetics of isomerization was recorded by the SITS fluorescence measurements. The constant of rate of triplet-triplet energy transfer from ERITC to cis-isomers of SITS in Na,K-ATPase was determined as (3-7)x10 3 M -1 s -1 , and in model system it equals 1x 10 7 M 1 s -1 . The value of energy transfer between loos molecules of erythrosine and SITS in buffer solution equaled to 7x10 7 M -1 s -1 . This drop of R m y in the membrane preparation of Na,K-ATPase at 10 4 reflected the decrease in the frequency of label collisions caused by the increase in the media viscosity and steric hindrances. (author)

  6. Photochemical recombination of deep centers in silicon: decay of donor-acceptor pairs

    International Nuclear Information System (INIS)

    Adilov, K.A.

    1991-01-01

    Processes of photochemical recombination of deep impurity centers (DIC) in p-Si alloyed by Te, Zn and Fe occuring at 300-350 K under irradiation by super-low-energy light from δ 14 -10 17 quantum/cm 2 )Xs intensity impurity absorption range, are considered

  7. On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

    KAUST Repository

    Sini, Gjergji; Schubert, Marcel; Risko, Chad; Roland, Steffen; Lee, Olivia P.; Chen, Zhihua; Richter, Thomas V.; Dolfen, Daniel; Coropceanu, Veaceslav; Ludwigs, Sabine; Scherf, Ullrich; Facchetti, Antonio; Frechet, Jean; Neher, Dieter

    2018-01-01

    and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene

  8. .Pi.-conjugated donor and donor-acceptor metallo-polymers

    Czech Academy of Sciences Publication Activity Database

    Wild, A.; Schlütter, F.; Pavlov, G. M.; Friebe, Ch.; Festag, G.; Winter, A.; Hager, M. D.; Cimrová, Věra; Schubert, U.S.

    2010-01-01

    Roč. 31, 9-10 (2010), s. 868-874 ISSN 1022-1336 R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA4050409 Institutional research plan: CEZ:AV0Z40500505 Keywords : analytical ultracentrifugation * conducting polymers * metallo-polymers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.371, year: 2010

  9. Nano-scale control of energy transfer in the system 'donor-acceptor'

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Yefimova, S.L.; Lebedenko, A.N.; Sorokin, A.V.; Borovoy, I.A.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) in a cascade scheme between three amphiphilic dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiOC 18 (3), donor), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC 18 (3), acceptor/donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiIC 18 (5), acceptor) has been investigated at low dye concentration (10 -5 mol/l) in water-micellar solutions due to a forced assembling of dyes in nanoscale volume. The experimental data have revealed that sodium dodecyl sulfate (SDS) micelles solubilize dye molecules such that their hydrophilic heads are in contact with water, while hydrophobic tails are embedded into the hydrocarbon core of the micelle. FRET efficiency has been found to depend on the concentration of dyes in micelles and the most effective when each SDS micelle contains 1 donor (DiOC 18 (3)), 2 acceptor/donor (DiIC 18 (3)) and 4 acceptor (DiIC 18 (5)) molecules

  10. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  11. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    Science.gov (United States)

    2016-06-03

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9681 Calculation of Vibrational and Electronic Excited -State Absorption Spectra...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited -State Absorption Spectra of Arsenic-Water Complexes Using...Unclassified Unlimited Unclassified Unlimited 59 Samuel G. Lambrakos (202) 767-2601 Calculations are presented of vibrational and electronic excited -state

  12. The electronic structure of vanadium monochloride cation (VCl+): Tackling the complexities of transition metal species

    Science.gov (United States)

    DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.

    2014-11-01

    Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  13. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    Science.gov (United States)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  14. A heterogeneous electronics architecture for dealing with complexity in modular robots

    DEFF Research Database (Denmark)

    Garcia, Ricardo Franco Mendoza

    2011-01-01

    Modular robots are robots built from many similar modules that can be arranged in different configurations to suit tasks in hand. Although promising, current incarnations of this technology suffer of an important drawback: modules are usually extremely expensive. This thesis proposes...... a heterogeneous electronics architecture that addresses the price and complexity of modular robots by focusing on the good aspects of homogeneous and heterogeneous designs, such as sequential implementation and reusable components. The architecture was implemented in four robots: Odin V1, Odin V2, Thor...... and Locomorph. In all cases, development time from conception to realization took less than a year, and two of these robots were able to take part in an international robot competition soon after their implementation. We conclude that heterogeneity brings three important advantages to the current stage...

  15. Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

    Directory of Open Access Journals (Sweden)

    Yunfei Wang

    2015-06-01

    Full Text Available A class of carboxyl and carboxylate ester-substituted dithiafulvene (DTF derivatives and tetrathiafulvalene vinylogues (TTFVs has been synthesized and their electronic and electrochemical redox properties were characterized by UV–vis spectroscopic and cyclic voltammetric analyses. The carboxyl-TTFV was applied as a redox-active ligand to complex with Zn(II ions, forming a stable Zn-TTFV coordination polymer. The structural, electrochemical, and thermal properties of the coordination polymer were investigated by infrared spectroscopy, cyclic voltammetry, powder X-ray diffraction, and differential scanning calorimetric analyses. Furthermore, the microscopic porosity and surface area of the Zn-TTFV coordination polymer were measured by nitrogen gas adsorption analysis, showing a BET surface of 148.2 m2 g−1 and an average pore diameter of 10.2 nm.

  16. Complex temperature evolution of the electronic structure of CaFe2As2

    International Nuclear Information System (INIS)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran

    2014-01-01

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe 2 As 2 , which is a parent compound of high temperature superconductors—CaFe 2 As 2 exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe 2 As 2 in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature

  17. Synthesis, spectroscopic properties, and photoconductivity of black absorbers consisting of pt(bipyridine)(dithiolate) charge transfer complexes in the presence and absence of nitrofluorenone acceptors.

    Science.gov (United States)

    Browning, Charles; Hudson, Joshua M; Reinheimer, Eric W; Kuo, Fang-Ling; McDougald, Roy N; Rabaâ, Hassan; Pan, Hongjun; Bacsa, John; Wang, Xiaoping; Dunbar, Kim R; Shepherd, Nigel D; Omary, Mohammad A

    2014-11-19

    The diimine-dithiolato ambipolar complexes Pt(dbbpy)(tdt) and Pt(dmecb)(bdt) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; tdt(2-) = 3,4-toluenedithiolate; dmecb = 4,4'-dimethoxyester-2,2'-bipyridine; bdt(2-) = benzene-1,2-dithiolate) are prepared herein. Pt(dmecb)(bdt) exhibits photoconductivity that remains constant (photocurrent density of 1.6 mA/cm(2) from a 20 nm thin film) across the entire visible region of the solar spectrum in a Schottky diode device structure. Pt(dbbpy)(tdt) acts as donor when combined with the strong nitrofluorenone acceptors 2,7-dinitro-9-fluorenone (DNF), 2,4,7-trinitro-9-fluorenone (TRNF), or 2,4,5,7-tetranitro-9-fluorenone (TENF). Supramolecular charge transfer stacks form and exhibit various donor-acceptor stacking patterns. The crystalline solids are "black absorbers" that exhibit continuous absorptions spanning the entire visible region and significant ultraviolet and near-infrared wavelengths, the latter including long wavelengths that the donor or acceptor molecules alone do not absorb. Absorption spectra reveal the persistence of donor-acceptor interactions in solution, as characterized by low-energy donor/acceptor charge transfer (DACT) bands. Crystal structures show closely packed stacks with distances that underscore intermolecular DACT. (1)H NMR provides further evidence of DACT, as manifested by upfield shifts of aromatic protons in the binary adducts versus their free components, whereas 2D nuclear Overhauser effect spectroscopy (NOESY) spectra suggest coupling between dithiolate donor protons with nitrofluorenone acceptor protons, in correlation with the solid-state stacking. The NMR spectra also show significant peak broadening, indicating some paramagnetism verified by magnetic susceptibility data. Solid-state absorption spectra reveal further red shifts and increased relative intensities of DACT bands for the solid adducts vs solution, suggesting cooperativity of the DACT phenomenon in the solid state, as further

  18. Effect of secondary electron emission on Jean's instability in a complex plasma in the presence of nonthermal ions

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Maity, Saumyen; Banerjee, Soumyajyoti

    2011-01-01

    In this paper, we have investigated the role of secondary electron emission on Jean's instability in a complex plasma in the presence of nonthermal ions. The equilibrium dust surface potential has been considered negative and hence primary and secondary electron temperatures are equal. Such plasma consists of three components: Boltzman distributed electrons, nonthermal ions and negatively charged inertial dust grains. From the linear dispersion relation, we have calculated the real frequency and growth rate of Jean's instability. Numerically, we have shown that for strong ion nonthermality Jean's mode is unstable. Growth of the instability reduces and the real part of the wave frequency increases with increasing secondary electron emission from dust grains. Hence, strong secondary electron emission suppresses Jean's instability in a complex plasma even when ion nonthermality is strong and equilibrium dust charge is negative.

  19. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan Balasubramanian

    2009-07-18

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  20. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    International Nuclear Information System (INIS)

    Balasubramanian, Krishnan

    2009-01-01

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  1. Structural and electronic behavior of Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Corredor, L.T.; Velasco Zarate, J.; Landinez Tellez, D.A.; Fajardo, F.; Arbey Rodriguez M, J.; Roa-Rojas, J.

    2009-01-01

    We report experimental and theoretical study of crystallographic lattice and electronic structure of Sr 2 GdRuO 6 complex perovskite, which is used as precursor in the fabrication process of superconducting ruthenocuprate RuSr 2 GdCu 2 O 8 . Samples were produced by the standard solid state reaction. Rietveld refinement of experimental X-ray diffraction patterns shows that material crystallizes in a monoclinic structure, which belongs to the P2 1 /n (no.14) space group, with lattice parameters a=5.8019(6)A, b=5.8296(5)A, c=8.2223(7)A, and tilt angle β=90.258 deg. Calculations of electronic structure were performed by the density functional theory. The exchange and correlation potentials were included through the LDA+U approximation. Density of states (DOS) study was carried out considering the two spin polarizations. Results show Gd are majority responsible for the magnetic character in this material, but Ru contribution is also relevant because d-orbital is closer to Fermi level. Theoretical results evidence that Sr 2 GdRuO 6 material behaves as a magnetic semiconductor, with 20μ B effective magnetic moment.

  2. Traceability and Risk Analysis Strategies for Addressing Counterfeit Electronics in Supply Chains for Complex Systems.

    Science.gov (United States)

    DiMase, Daniel; Collier, Zachary A; Carlson, Jinae; Gray, Robin B; Linkov, Igor

    2016-10-01

    Within the microelectronics industry, there is a growing concern regarding the introduction of counterfeit electronic parts into the supply chain. Even though this problem is widespread, there have been limited attempts to implement risk-based approaches for testing and supply chain management. Supply chain risk management tends to focus on the highly visible disruptions of the supply chain instead of the covert entrance of counterfeits; thus counterfeit risk is difficult to mitigate. This article provides an overview of the complexities of the electronics supply chain, and highlights some gaps in risk assessment practices. In particular, this article calls for enhanced traceability capabilities to track and trace parts at risk through various stages of the supply chain. Placing the focus on risk-informed decision making through the following strategies is needed, including prioritization of high-risk parts, moving beyond certificates of conformance, incentivizing best supply chain management practices, adoption of industry standards, and design and management for supply chain resilience. © 2016 Society for Risk Analysis.

  3. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    Science.gov (United States)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  4. Effect of Weakly Nonthermal Ion Velocity Distribution on Jeans Instability in a Complex Plasma in Presence of Secondary Electrons

    International Nuclear Information System (INIS)

    Sarkar, S.; Maity, S.

    2013-01-01

    In this paper we have investigated the effect of weak nonthermality of ion velocity distribution on Jean’s instability in a complex plasma in presence of secondary electrons and negatively charged dust grains. The primary and secondary electron temperatures are assumed equal. Thus plasma under consideration consists of three components: Boltzman distributed electrons, non-thermal ions and negatively charged inertial dust grains. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically we have found that secondary electron emission destabilizes Jean’s mode when ion nonthermality is weak. (author)

  5. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Shu-Hao [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre, E-mail: kais@purdue.edu [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar)

    2014-12-21

    The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire conducting energy between the outer antenna system and the reaction center; it is an important photosynthetic system to study the transfer of excitonic energy. Recent crystallographic studies report the existence of an additional (eighth) bacteriochlorophyll a (BChl a) in some of the FMO monomers. To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways: (1) it is directly involved in the first apo form pathway (6 → 3 → 1) by passing the excitonic energy to exciton 6; and (2) it facilitates an increase in the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 → 4,5 → 2 → 1) and thus increases the possible downward sampling routes across the BChls.

  6. Absence of quantum oscillations in electronic excitation transfer in the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Eisfeld, Alexander; Ritschel, Gerhard; Roden, Jan; Strunz, Walter; Aspuru-Guzik, Alan

    2012-02-01

    Energy transfer in the photosynthetic Fenna-Matthews-Olson (FMO) complex of the Green Sulfur Bacteria is studied theoretically taking all three subunits (monomers) of the FMO trimer and the recently found eighth bacteriochlorophyll (BChl) molecule into account. For the calculations we use the efficient Non-Markovian Quantum State diffusion approach. Since it is believed that the eighth BChl is located near the main light harvesting antenna we look at the differences in transfer between the situation when BChl 8 is initially excited and the usually considered case when BChl 1 or 6 is initially excited. We find strong differences in the transfer dynamics, both qualitatively and quantitatively. When the excited state dynamics is initialized at site eight of the FMO complex, we see a slow exponential-like decay of the excitation. This is in contrast to the oscillations and a relatively fast transfer that occurs when only seven sites or initialization at sites 1 and 6 is considered. Additionally we show that differences in the values of the electronic transition energies found in the literature lead to a large difference in the transfer dynamics.

  7. Spectroscopic investigation on the mechanism of formation of molecular complexes of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

    Science.gov (United States)

    Ganesh, K.; Balraj, C.; Satheshkumar, A.; Elango, K. P.

    2012-06-01

    UV-vis, 1H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and to characterize the reaction products. The interaction of DDQ with trimethoprim (TMP) and albenadazole (ALB) were found to proceed through the formation of donor-acceptor complex, containing DDQ radical anion and its conversion to the product. Fluorescence quenching studies indicated that the interaction between the donors and the acceptor are spontaneous and the interaction of TMP-DDQ (binding constant = 2.9 × 105) is found to be stronger than that the ALB-DDQ (binding constant = 3 × 103) system. Also, the binding constant increased with an increase in polarity of the medium indicating the involvement of radical anion as intermediate.

  8. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide.

    Science.gov (United States)

    Zhang, Chao; Wu, Hua; Zhao, Yuan; Ma, Zhiqing; Zhang, Xing

    2016-01-01

    With Sitophilus zeamais as the target organism, the present study for the first time attempted to elucidate the comparative effects between allyl isothiocyanate (AITC) and calcium phosphide (Ca3P2), exposure on mitochondrial electron transport chain (ETC.) complex I & IV and their downstream effects on enzymes relevant to reactive oxygen species (ROS). In vivo, both AITC and Ca3P2 inhibited complex I and IV with similar downstream effects. In contrast with Ca3P2, the inhibition of complex I caused by AITC was dependent on time and dose. In vitro, AITC inhibited complex IV more significantly than complex I. These results indicate that mitochondrial complex IV is the primary target of AITC, and that complex I is another potential target. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Atropisomerism about aryl-Csp(3) bonds: the electronic and steric influence of ortho-substituents on conformational exchange in cannabidiol and linderatin derivatives.

    Science.gov (United States)

    Berber, Hatice; Lameiras, Pedro; Denhez, Clément; Antheaume, Cyril; Clayden, Jonathan

    2014-07-03

    Terpenylation reactions of substituted phenols were used to prepare cannabidiol and linderatin derivatives, and their structure and conformational behavior in solution were investigated by NMR and, for some representative examples, by DFT. VT-NMR spectra and DFT calculations were used to determine the activation energies of the conformational change arising from restricted rotation about the aryl-Csp(3) bond that lead to two unequally populated rotameric epimers. The NBO calculation was applied to explain the electronic stabilization of one conformer over another by donor-acceptor charge transfer interactions. Conformational control arises from a combination of stereoelectronic and steric effects between substituents in close contact with each other on the two rings of the endocyclic epoxide atropisomers. This study represents the first exploration of the stereoelectronic origins of atropisomerism around C(sp(2))-C(sp(3)) single bonds through theoretical calculations.

  10. Simulation of Electron Scattering in Complex Nanostructures: Lithography, Metrology, and Characterization.

    Science.gov (United States)

    Johnson, Sylvester, IV

    A CAE (Computer Aided Engineering) tool called SEEL (Simulation of Electron Energy Loss) is described in detail. SEEL simulates in any material the energy loss and trajectories of electrons in the complex, multilayered nanostructures typical of ULSI, at beam energies from 1 to 50 keV. Structures and materials are defined in the input file rather than in the source code of the program, for which flowcharts are included in addition to an explanation of the algorithms implemented. Satisfactory comparisons of simulated with experimental results are made of both secondary electron (SE) and backscattered electron (BSE) linescans across an array of MOS gate structures capped by rough oxide. Many other comparisons are made. The effects of varying line edge slopes on SE linescan peak shape are simulated and analyzed. A data library containing the simulated variation of the FWHM, peak height, and peak location with slope for different materials, line heights or trench depths, widths, beam energies, and nominal diameters could be used to find the edge location relative to the peak for improvement of the accuracy of linewidth measurement algorithms. An investigation indicates that the use of such a library would be complicated by the effect of surface roughness on the SE signal at the edge of a feature. SEEL can be used as the first module in a series of programs that simulate energy deposition in resist structures and correct the exposure of a circuit pattern. Pixel by pixel convolution for prediction of the proximity effect is time-consuming. Another method of proximity effect prediction based on the reciprocity of the RED is described. Such programs could be used to reduce the number of iterations in the lab required to optimize resist structures and exposure parameters. For both smooth and rough interfaces between a bottom layer of PMMA in a multilayer resist structure and a W film, the simulated exposure contrast declines from that with an oxide film beneath the structure

  11. Cooperative catalysis: electron-rich Fe-H complexes and DMAP, a successful "joint venture" for ultrafast hydrogen production.

    Science.gov (United States)

    Rommel, Susanne; Hettmanczyk, Lara; Klein, Johannes E M N; Plietker, Bernd

    2014-08-01

    A series of defined iron-hydrogen complexes was prepared in a straightforward one-pot approach. The structure and electronic properties of such complexes were investigated by means of quantum-chemical analysis. These new complexes were then applied in the dehydrogenative silylation of methanol. The complex (dppp)(CO)(NO)FeH showed a remarkable activity with a TOF of more than 600 000 h(-1) of pure hydrogen gas within seconds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations.

    Science.gov (United States)

    Li, Pengfei; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2018-02-28

    The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.

  13. Making oxidation potentials predictable: Coordination of additives applied to the electronic fine tuning of an iron(II) complex

    KAUST Repository

    Haslinger, Stefan

    2014-11-03

    This work examines the impact of axially coordinating additives on the electronic structure of a bioinspired octahedral low-spin iron(II) N-heterocyclic carbene (Fe-NHC) complex. Bearing two labile trans-acetonitrile ligands, the Fe-NHC complex, which is also an excellent oxidation catalyst, is prone to axial ligand exchange. Phosphine- and pyridine-based additives are used for substitution of the acetonitrile ligands. On the basis of the resulting defined complexes, predictability of the oxidation potentials is demonstrated, based on a correlation between cyclic voltammetry experiments and density functional theory calculated molecular orbital energies. Fundamental insights into changes of the electronic properties upon axial ligand exchange and the impact on related attributes will finally lead to target-oriented manipulation of the electronic properties and consequently to the effective tuning of the reactivity of bioinspired systems.

  14. Making oxidation potentials predictable: Coordination of additives applied to the electronic fine tuning of an iron(II) complex

    KAUST Repository

    Haslinger, Stefan; Kü ck, Jens W.; Hahn, Eva M.; Cokoja, Mirza; Pö thig, Alexander; Basset, Jean-Marie; Kü hn, Fritz

    2014-01-01

    This work examines the impact of axially coordinating additives on the electronic structure of a bioinspired octahedral low-spin iron(II) N-heterocyclic carbene (Fe-NHC) complex. Bearing two labile trans-acetonitrile ligands, the Fe-NHC complex, which is also an excellent oxidation catalyst, is prone to axial ligand exchange. Phosphine- and pyridine-based additives are used for substitution of the acetonitrile ligands. On the basis of the resulting defined complexes, predictability of the oxidation potentials is demonstrated, based on a correlation between cyclic voltammetry experiments and density functional theory calculated molecular orbital energies. Fundamental insights into changes of the electronic properties upon axial ligand exchange and the impact on related attributes will finally lead to target-oriented manipulation of the electronic properties and consequently to the effective tuning of the reactivity of bioinspired systems.

  15. Effect of proton transfer on the electronic coupling in DNA

    International Nuclear Information System (INIS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-01-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, V da , in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate V da for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the V da matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the V da matrix elements are also analyzed

  16. Nonadiabatic two-electron transfer mediated by an irregular bridge

    International Nuclear Information System (INIS)

    Petrov, E.G.; Shevchenko, Ye.V.; May, V.

    2004-01-01

    Nonadiabatic two-electron transfer (TET) mediated by a linear molecular bridge is studied theoretically. Special attention is put on the case of a irregular distribution of bridge site energies as well as on the inter-site Coulomb interaction. Based on the unified description of electron transfer reactions [J. Chem. Phys. 115 (2001) 7107] a closed set of kinetic equations describing the TET process is derived. A reduction of this set to a single exponential donor-acceptor (D-A) TET is performed together with a derivation of an overall D-A TET rate. The latter contains a contribution of the stepwise as well as of the concerted route of D-A TET. The stepwise contribution is determined by two single-electron steps each of them associated with a sequential and a superexchange pathway. A two-electron unistep superexchange transition between the D and A forms the concerted contribution to the overall rate. Both contributions are analyzed in their dependency on the bridge length. The irregular distribution of the bridge site energies as well as the influence of the Coulomb interaction facilitates the D-A TET via a modification of the stepwise and the concerted part of the overall rate. At low temperatures and for short bridges with a single or two units the concerted contribution exceeds the stepwise contribution. If the bridge contains more than two units, the stepwise contribution dominates the overall rate

  17. Magnetic properties and electronic structure of neptunyl(VI) complexes: wavefunctions, orbitals, and crystal-field models

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, Frederic; Pritchard, Ben; Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY (United States); Paez-Hernandez, Dayan; Bolvin, Helene [Laboratoire de Physique et de Chimie Quantiques, Universite Toulouse 3 (France); Notter, Francois-Paul [Laboratoire de Chimie Quantique, Universite de Strasbourg (France)

    2014-06-23

    The electronic structure and magnetic properties of neptunyl(VI), NpO{sub 2}{sup 2+}, and two neptunyl complexes, [NpO{sub 2}(NO{sub 3}){sub 3}]{sup -} and [NpO{sub 2}Cl{sub 4}]{sup 2-}, were studied with a combination of theoretical methods: ab initio relativistic wavefunction methods and density functional theory (DFT), as well as crystal-field (CF) models with parameters extracted from the ab initio calculations. Natural orbitals for electron density and spin magnetization from wavefunctions including spin-orbit coupling were employed to analyze the connection between the electronic structure and magnetic properties, and to link the results from CF models to the ab initio data. Free complex ions and systems embedded in a crystal environment were studied. Of prime interest were the electron paramagnetic resonance g-factors and their relation to the complex geometry, ligand coordination, and nature of the nonbonding 5f orbitals. The g-factors were calculated for the ground and excited states. For [NpO{sub 2}Cl{sub 4}]{sup 2-}, a strong influence of the environment of the complex on its magnetic behavior was demonstrated. Kohn-Sham DFT with standard functionals can produce reasonable g-factors as long as the calculation converges to a solution resembling the electronic state of interest. However, this is not always straightforward. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. On the electronic structure of 5g1 complexes of element 125: a quasi - relativistic MS-Xα study

    International Nuclear Information System (INIS)

    Makhyoun, M.A.

    1988-01-01

    Quasi-relativistic SCF Xα calculations are reported for the hypothetical complexes E0 2 2+ , EF 6 (E = element 125) and the 5f 1 ion Np0 2 2 + . The calculations indicate that the E complexes have a 5g 1 outer electronic configuration with good agreement with previous predictions. The ligand field energy diagram for G 1 system in 0 h symmetry in discussed in relation to the obtained X α results

  19. Time dependence, complex scaling, and the calculation of resonances in many-electron systems

    International Nuclear Information System (INIS)

    Nicolaides, C.A.; Beck, D.R.

    1978-01-01

    The theory deals with certain aspects of the formal properties of atomic and molecular highly excited nonstationary states and the problem of calculating their wave functions, energies, and widths. The conceptual framework is a decay theory based on the consistent definition and calculation of the t = 0 localized state, vertical bar psi 0 >. Given this framework, the following topics are treated: The variational calculation of psi 0 and E 0 using a previously published theory that generalized the projection operator approach to many-electron systems. The exact definition of the resonance energy. The possibility of bound states in the continuum. The relation of psi 0 to the resonance (Gamow) function psi and of the Hamiltonian to the rotated Hamiltonian H(theta) based on the notion of perturbation of boundary conditions in the asymptotic region. The variational calculation of real and complex energies employing matrix elements of H and H 2 with square-integrable and resonance functions. The mathematical structure of the time evolution of vertical bar psi 0 > and the possibility of observing nonexponential decays in certain autoionizing states that are very close to the ionization threshold. A many-body theory of atomic and molecular resonances that employs the coordinate rotation method. 107 references

  20. Studies of transfer reactions of photosensitized electrons involving complexes of transition metals in view of solar energy storage

    International Nuclear Information System (INIS)

    Takakubo, Masaaki

    1984-01-01

    This research thesis addresses electron transfer reactions occurring during photosynthesis, for example, photosensitized reaction in which chlorophyll is the sensitizer. More specifically, the author studied experimentally electron photo-transfers with type D sensitizers (riboflavin, phenoxazine and porphyrin), and various complexes of transition metals. After a presentation of these experiments, the author describes the photosensitisation process (photo-physics of riboflavin, oxygen deactivation, sensitized photo-oxidation and photo-reduction). The theoretical aspect of electron transfer is then addressed: generalities, deactivation of the riboflavin triplet, initial efficiency of electron transfer. Experimental results on three basic processes (non-radiative deactivation, energy transfer, electron transfer) are interpreted in a unified way by using the non-radiative transfer theory. Some applications are described: photo-electrochemical batteries, photo-oxidation and photo-reduction of the cobalt ion

  1. Mechanism of redox reactions induced by light and electron pulse in solutions of mixed ligand iron(II) complex cyanides

    International Nuclear Information System (INIS)

    Horvath, A.; Szoeke, J.; Wojnarovits, L.

    1991-01-01

    Redox reactions induced by light and electron pulse have been studied in aqueous solutions of mixed ligand iron(II) complex cyanides. The short lived intermediates have been identified by time resolved specroscopy, the results of detailed kinetic analysis have been discussed. (author) 6 refs.; 3 figs.; 2 tabs

  2. Two dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy

    NARCIS (Netherlands)

    Oling, Frank; Boekema, EJ; deZarate, IO; Visschers, R; vanGrondelle, R; Keegstra, W; Brisson, A; Picorel, R

    1996-01-01

    Two-dimensional crystals of LH2 (B800-850) light-harvesting complexes from Ectothiorhodospira sp, and Rhodobacter capsulatus were obtained by reconstitution of purified protein into phospholipid vesicles and characterized by electron microscopy. The size of the crystals was up to several

  3. Reduction of mitochondrial electron transport complex activity is restricted to the ischemic focus after transient focal cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Christensen, Thomas; Diemer, Nils Henrik

    2003-01-01

    Using histochemical methods offering high topographical resolution for evaluation of changes in the ischemic focus and the penumbra, the mitochondrial electron transport chain (ETC) complexes I, II, and IV were examined in rats subjected to 2 h of proximal occlusion of the middle cerebral artery...

  4. Development of educational complex on electrical engineering, electronics and microcon-trollers on modeling in TINA software

    Directory of Open Access Journals (Sweden)

    Vladimir A. Alekhin

    2017-01-01

    Full Text Available The study of electrical engineering, electronics and microcontrollers in accordance with federal state educational standards requires from students the practical mastering of experimental methods for the study of electrical circuits and electronic circuits, the formation of competences and skills in the calculation of electrical circuits and electronic circuits. The modern development of information educational technologies, the widespread use of a variety of computer facilities by students in reducing teaching hours for the study of disciplines make it necessary to create new multimedia training complexes, using computer simulation of electrical circuits, electronic circuits and microcontrollers in the lecture process and in the laboratory and practical exercises. The purpose of the research was a comparative analysis of various computer simulation programs in terms of their accessibility, ease of development and efficiency of use by lecturers and students in the educational process, and the creation and testing of a training complex for the electrical engineering, electronics and microcontrollers using the selected modeling environment.The problems associated with the need to purchase licensed software were discussed and a comparative analysis of the following computer modeling programs for electrical circuits and electronic circuits was performed: NI Multisim, Micro-Cap, Proteus VSM, OrCAD, TINA. The research method included the study of these modeling and design programs, writing of teaching aids and conducting of training sessions with students. The cost of licenses for the software application in computer classes and on students’ home computers was estimated. As a result, the conclusion was confirmed about the advisability of using the free student program of computer modeling TINA-TI and the TINACloud environment from DesignSoft for the teaching of electrical engineering and electronics.The new software product TINACloud uses cloud

  5. Phase behaviors of binary mixtures composed of electron-rich and electron-poor triphenylene discotic liquid crystals

    International Nuclear Information System (INIS)

    An Lingling; Jing Min; Xiao Bo; Bai Xiao-Yan; Zhao Ke-Qing; Zeng Qing-Dao

    2016-01-01

    Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. (special topic)

  6. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  7. Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex.

    Science.gov (United States)

    Jang, M H; Scrutton, N S; Hille, R

    2000-04-28

    The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.

  8. Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors.

    Science.gov (United States)

    Yoo, Hocheon; Ghittorelli, Matteo; Lee, Dong-Kyu; Smits, Edsger C P; Gelinck, Gerwin H; Ahn, Hyungju; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2017-07-10

    Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.

  9. Study of competitive complexing in scandium(3)-xylenol-orange-hydroxyethyliminodiacetic acid system

    International Nuclear Information System (INIS)

    Kornev, V.I.; Mukanov, I.P.; Artem'eva, O.A.

    1976-01-01

    The competitive complexing in the system scandium(3)-xylene orange (XO)-hydroxyethyliminodiacetic acid (H 3 L) has been studied. Ligands act as competitive particles. It has been established preliminarily that introduction of H 3 L into the solution containing a mixture of Sc and Xo changes considerably the absorption spectra of the coloured complex. Weakening of light absorption indicates that the coloured complex with XO is destructed and colourless hydroxyethyliminodiacetate of scandium is formed. The formation of scandium hydroxyethyliminoacetate has been studied spectrophotometrically by equilibrium between the complexes. The dependence of optical density on pH, when the concentrations of reagents are constant, as well as on concetration of H 3 L has been studied. The composition of the complex (1:1) formed at pH 3.2 has been established graphically and the constant of the complex ScHL + instability has been calculated (PKsub(H)=10.69+-0.45). It has been shown that H 3 L, when interacting with scandium, behaves as dibasic ligand. It is most probable that during complex formation the hydrogen ion of the hydroxygroup is not replaced, although the participation of hydroxygroup in coordination is possible due to a donor-acceptor bond

  10. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    Science.gov (United States)

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  11. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  12. Infrared defect dynamics—Nitrogen-vacancy complexes in float zone grown silicon introduced by electron irradiation

    Science.gov (United States)

    Inoue, Naohisa; Kawamura, Yuichi

    2018-05-01

    The interaction of nitrogen and intrinsic point defects, vacancy (V) and self-interstitial (I), was examined by infrared absorption spectroscopy on the electron irradiated and post-annealed nitrogen doped float zone (FZ) silicon crystal. Various absorption lines were observed, at 551 cm-1 in as-grown samples, at 726 and 778 cm-1 in as-irradiated samples (Ir group), at 689 cm-1 after post-annealing at 400 °C and above (400 °C group), at 762 and 951 cm-1 after annealing at 600 °C (600 °C group), and at 714 cm-1 up to 800 °C (800 °C group). By irradiation, a part of N2 was changed into the Ir group. VN2 is the candidate for the origin of the Ir group. By the post annealing at 400 and 600 °C, a part of N2 and the Ir group were changed into the 400 °C group, to less extent at 600 °C. V2N2 is the candidate for the origin of the 400 °C group. By annealing at 600 °C, most of the Ir group turned into 400 °C and 600 °C groups. By annealing at 800 °C, N2 recovered almost completely, and most other complexes were not observed. Recently, lifetime degradation has been observed in the nitrogen doped FZ Si annealed at between 450 and 800 °C. The N-V interaction in the same temperature range revealed here will help to understand the lifetime degradation mechanism. The behavior of the 689 cm-1 line corresponded well to the lifetime degradation.

  13. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2.

    Science.gov (United States)

    Zerlauskiene, O; Trinkunas, G; Gall, A; Robert, B; Urboniene, V; Valkunas, L

    2008-12-11

    A comparative analysis of the temperature dependence of the absorption spectra of the LH2 complexes from different species of photosynthetic bacteria, i.e., Rhodobacter sphaeroides, Rhodoblastus acidophilus, and Phaeospirillum molischianum, was performed in the temperature range from 4 to 300 K. Qualitatively, the temperature dependence is similar for all of the species studied. The spectral bandwidths of both B800 and B850 bands increases with temperature while the band positions shift in opposite directions: the B800 band shifts slightly to the red while the B850 band to the blue. These results were analyzed using the modified Redfield theory based on the exciton model. The main conclusion drawn from the analysis was that the spectral density function (SDF) is the main factor underlying the strength of the temperature dependence of the bandwidths for the B800 and B850 electronic transitions, while the bandwidths themselves are defined by the corresponding inhomogeneous distribution function (IDF). Slight variation of the slope of the temperature dependence of the bandwidths between species can be attributed to the changes of the values of the reorganization energies and characteristic frequencies determining the SDF. To explain the shift of the B850 band position with temperature, which is unusual for the conventional exciton model, a temperature dependence of the IDF must be postulated. This dependence can be achieved within the framework of the modified (dichotomous) exciton model. The slope of the temperature dependence of the B850 bandwidth is then defined by the value of the reorganization energy and by the difference between the transition energies of the dichotomous states of the pigment molecules. The equilibration factor between these dichotomous states mainly determines the temperature dependence of the peak shift.

  14. Interpretation of the Electron Paramagnetic Resonance Spectra of Copper(II)-Tyrosine Complex

    Science.gov (United States)

    Xu, Xiao-Hui; Kuang, Min-Quan

    2017-12-01

    The electron paramagnetic resonance (EPR) spectra of [Cu(l-tyrosine)2]n (CuA) were interpreted based on the fourth-order perturbation treatments where the contributions due to the local distortion, ligand orbit and spin-orbit coupling were included. The calculated band transitions d_{x^2} - y^2 to dxy (≈16412 cm-1) and d_{z^2} (≈14845 cm-1) agree well with the band analysis results (d_{x^2} - y^2 \\to d_{xy} ≈16410 and d_{x^2} - y^2 \\to d_{z^2} ≈14850 cm-1). The unresolved separations d_{x^2} - y^2 \\to d_{xz} and d_{x^2} - y^2 \\to d_{yz} in the absorption spectra were evaluated as 26283 and 26262 cm-1, respectively. For CuA, copper chromophores in 1,3-diaminorpropane isophtalate copper(II) complex (CuB) and N-methyl-1,2-diaminoetaane-bis copper(II) polymer (CuC), the transition d_{x^2} - y^2 \\to d_{xy} (=E1≈10Dq) suffered an increase with a decrease in R̅L which was evaluated as the mean value of the copper-ligand bond lengths. The correlations between the tetragonal elongation ratio ρ (=(Rz-R̅L)/R̅L) (or the ratio G=(gz-ge)/((gx+gy)/2-ge)) and the g isotropy gav (=(gx+gy+gz)/3) (or the covalency factor N) for CuA, CuB and CuC were acquired and all the results were discussed.

  15. Onset of turbulence induced by electron nonthermality in a complex plasma in presence of positively charged dust grains

    Directory of Open Access Journals (Sweden)

    Susmita Sarkar

    2018-03-01

    Full Text Available In this paper onset of turbulence has been detected from the study of non linear dust acoustic wave propagation in a complex plasma considering electrons nonthermal and equilibrium dust charge positive. Dust grains are charged by secondary electron emission process. Our analysis shows that increase in electron nonthermality makes the grain charging process faster by reducing the magnitude of the nonadiabaticity induced pseudo viscosity. Consequently nature of dust charge variation changes from nonadiabatic to adiabatic one. For further increase of electron nonthermality, this pseudo viscosity becomes negative and hence generates a turbulent grain charging behaviour. This turbulent grain charging phenomenon is exclusively the outcome of this nonlinear study which was not found in linear analysis.

  16. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  17. Interfacial hydration, dynamics and electron transfer: multi-scale ET modeling of the transient [myoglobin, cytochrome b5] complex.

    Science.gov (United States)

    Keinan, Shahar; Nocek, Judith M; Hoffman, Brian M; Beratan, David N

    2012-10-28

    Formation of a transient [myoglobin (Mb), cytochrome b(5) (cyt b(5))] complex is required for the reductive repair of inactive ferri-Mb to its functional ferro-Mb state. The [Mb, cyt b(5)] complex exhibits dynamic docking (DD), with its cyt b(5) partner in rapid exchange at multiple sites on the Mb surface. A triple mutant (Mb(3M)) was designed as part of efforts to shift the electron-transfer process to the simple docking (SD) regime, in which reactive binding occurs at a restricted, reactive region on the Mb surface that dominates the docked ensemble. An electrostatically-guided brownian dynamics (BD) docking protocol was used to generate an initial ensemble of reactive configurations of the complex between unrelaxed partners. This ensemble samples a broad and diverse array of heme-heme distances and orientations. These configurations seeded all-atom constrained molecular dynamics simulations (MD) to generate relaxed complexes for the calculation of electron tunneling matrix elements (T(DA)) through tunneling-pathway analysis. This procedure for generating an ensemble of relaxed complexes combines the ability of BD calculations to sample the large variety of available conformations and interprotein distances, with the ability of MD to generate the atomic level information, especially regarding the structure of water molecules at the protein-protein interface, that defines electron-tunneling pathways. We used the calculated T(DA) values to compute ET rates for the [Mb(wt), cyt b(5)] complex and for the complex with a mutant that has a binding free energy strengthened by three D/E → K charge-reversal mutations, [Mb(3M), cyt b(5)]. The calculated rate constants are in agreement with the measured values, and the mutant complex ensemble has many more geometries with higher T(DA) values than does the wild-type Mb complex. Interestingly, water plays a double role in this electron-transfer system, lowering the tunneling barrier as well as inducing protein interface

  18. Revealing electronic open quantum systems with subsystem TDDFT

    Science.gov (United States)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  19. Revealing electronic open quantum systems with subsystem TDDFT.

    Science.gov (United States)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  20. Interconversion of η3-H2SiRR' σ-complexes and 16-electron silylene complexes via reversible H-H or C-H elimination.

    Science.gov (United States)

    Lipke, Mark C; Neumeyer, Felix; Tilley, T Don

    2014-04-23

    Solid samples of η(3)-silane complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (R,R' = Et2, 1a; PhMe, 1b; Ph2, 1c, MeMes, 1d) decompose when exposed to dynamic vacuum. Gas-phase H2/D2 exchange between isolated, solid samples of 1c-d3 and 1c indicate that a reversible elimination of H2 is the first step in the irreversible decomposition. An efficient solution-phase trap for hydrogen, the 16-electron ruthenium benzyl complex [PhBP(Ph)3]Ru[η(3)-CH2(3,5-Me2C6H3)] (3) reacts quantitatively with H2 in benzene via elimination of mesitylene to form the η(5)-cyclohexadienyl complex [PhBP(Ph)3]Ru(η(5)-C6H7) (4). This H2 trapping reaction was utilized to drive forward and quantify the elimination of H2 from 1b,d in solution, which resulted in the decomposition of 1b,d to form 4 and several organosilicon products that could not be identified. Reaction of {[PhBP(Ph)3]Ru(μ-Cl)}2 (2) with (THF)2Li(SiHMes2) forms a new η(3)-H2Si species [PhBP(Ph)3]Ru[CH2(2-(η(3)-H2SiMes)-3,5-Me2C6H2)] (5) which reacts with H2 to form the η(3)-H2SiMes2 complex [PhBP(Ph)3]RuH(η(3)-H2SiMes2) (1e). Complex 1e was identified by NMR spectroscopy prior to its decomposition by elimination of Mes2SiH2 to form 4. DFT calculations indicate that an isomer of 5, the 16-electron silylene complex [PhBP(Ph)3]Ru(μ-H)(═SiMes2), is only 2 kcal/mol higher in energy than 5. Treatment of 5 with XylNC (Xyl = 2,6-dimethylphenyl) resulted in trapping of [PhBP(Ph)3]Ru(μ-H)(═SiMes2) to form the 18-electron silylene complex [PhBP(Ph)3]Ru(CNXyl)(μ-H)(═SiMes2) (6). A closely related germylene complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)](H)(═GeH(t)Bu) (8) was prepared from reaction of (t)BuGeH3 with the benzyl complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)][η(1)-CH2(3,5-Me2C6H3)] (7). Single crystal XRD analysis indicated that unlike for 6, the hydride ligand in 8 is a terminal hydride that does not engage in 3c-2e Ru-H → Ge bonding. Complex 1b is an effective precatalyst for the catalytic Ge-H dehydrocoupling

  1. Charge transfer complex studies between some non-steroidal anti-inflammatory drugs and π-electron acceptors

    Science.gov (United States)

    Duymus, Hulya; Arslan, Mustafa; Kucukislamoglu, Mustafa; Zengin, Mustafa

    2006-12-01

    Charge transfer (CT) complexes of some non-steroidal anti-inflammatory drugs, naproxen and etodolac which are electron donors with some π-acceptors, such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL), have been investigated spectrophotometrically in chloroform at 21 °C. The coloured products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptors. Beer's law is obeyed and colours were produced in non-aqueous media. All complexes were stable at least 2 h except for etodolac with DDQ stable for 5 min. The equilibrium constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters Δ H, Δ S, Δ G° were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptors were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands in all cases.

  2. Quantum Computational Studies of Electron Transfer in Respiratory Complex III and its Application for Designing New Mitocan Drugs

    Science.gov (United States)

    Hagras, Muhammad Ahmed

    Electron transfer occurs in many biological systems which are imperative to sustain life; oxidative phosphorylation in prokaryotes and eukaryotes, and photophosphorylation in photosynthetic and plant cells are well-balanced and complementary processes. Investigating electron transfer in those natural systems provides detailed knowledge of the atomistic events that lead eventually to production of ATP, or harvesting light energy. Ubiquinol:cytochrome c oxidoreductase complex (also known as bc 1 complex, or respiratory complex III) is a middle player in the electron transport proton pumping orchestra, located in the inner-mitochondrial membrane in eukaryotes or plasma membrane in prokaryotes, which converts the free energy of redox reactions to electrochemical proton gradient across the membrane, following the fundamental chemiosmotic principle discovered by Peter Mitchell 1. In humans, the malfunctioned bc1 complex plays a major role in many neurodegenerative diseases, stress-induced aging, and cancer development, because it produces most of the reactive oxygen species, which are also involved in cellular signaling 2. The mitochondrial bc1 complex has an intertwined dimeric structure comprised of 11 subunits in each monomer, but only three of them have catalytic function, and those are the only domains found in bacterial bc1 complex. The core subunits include: Rieske domain, which incorporates iron-sulfur cluster [2Fe-2S]; trans-membrane cytochrome b domain, incorporating low-potential heme group (heme b L) and high-potential heme group (heme b H); and cytochrome c1 domain, containing heme c1 group and two separate binding sites, Qo (or QP) site where the hydrophobic electron carrier ubihydroquinol QH2 is oxidized, and Qi (or QN) site where ubiquinone molecule Q is reduced 3. Electrons and protons in the bc1 complex flow according to the proton-motive Q-cycle proposed by Mitchell, which includes a unique electron flow bifurcation at the Qo site. At this site, one

  3. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Ruthenium(II) chloro-bis(bipyridyl) complexes with substituted pyridine ligands: interpretation of their electronic absorption spectra

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ershov, A.Yu.; Ivanova, N.V.; Shashko, A.D.; Kutejkina-Teplyakova, A.V.

    2003-01-01

    A number of complexes cis-[Ru(Bipy) 2 (L)(Cl)](BF 4 ), where Bipy-2,2'-bipyridine, L-pyridine, 4-aminopyridine, 4-picoline, nicotinamide, isonicotinamide, 3- and 4-cyanopyridine, 4,4'-bipyridine, trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azopyridine, pyrazine, imidazole and NH 3 , were prepared. Using the CINDO-CI semiempirical method the energies and intensities of transition in electronic absorption spectra (EAS) of the complexes were calculated. It is shown that major differences in EAS of the compounds stem from position of transitions with charge transfer d π (Ru)→π*(L) [ru

  5. Molecular orbital calculations of the unpaired electron distribution and electric field gradients in divalent paramagnetic Ir complexes

    International Nuclear Information System (INIS)

    Nogueira, S.R.; Vugman, N.V.; Guenzburger, D.

    1988-01-01

    Semi-empirical Molecular Orbital calculations were performed for the paramagnetic complex ions [Ir(CN) 5 ] 3- , [Ir(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- . Energy levels schemes and Mulliken-type populations were obtained. The distribution of the unpaired spin over the atoms in the complexes was derived, and compared to data obtained from Electron Paramagnetic Resonance spectra with the aid of a Ligand Field model. The electric field gradients at the Ir nucleus were calculated and compared to experiment. The results are discussed in terms of the chemical bonds formed by Ir and the ligands. (author) [pt

  6. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    Directory of Open Access Journals (Sweden)

    Dillon J Lieber

    Full Text Available Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis. A crosslinking-mass spectrometry (XL-MS strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr, an essential enzyme in all methane-producing archaea (methanogens. In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS, and F420-dependent methylene-H4MPT reductase (Mer. ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  7. The dependence of the electronic coupling on energy gap and bridge conformation - Towards prediction of the distance dependence of electron transfer reactions

    International Nuclear Information System (INIS)

    Eng, Mattias P.; Albinsson, Bo

    2009-01-01

    The attenuation factor, β, for the distance dependence of electron exchange reactions is a sensitive function of the donor-bridge energy gap and bridge conformation. In this work the electronic coupling for electron and triplet excitation energy transfer has been investigated for five commonly used repeating bridge structures. The investigated bridge structures are OF (oligo fluorene), OP (oligo phenylene), OPE (oligo p-phenyleneethynylene), OPV (oligo phenylenevinylene), and OTP (oligo thiophene). Firstly, the impact of the donor-bridge energy gap was investigated by performing calculations with a variety of donors appended onto bridges that were kept in a planar conformation. This resulted in, to our knowledge, the first presented sets of bridge specific parameters to be inserted into the commonly used McConnell model. Secondly, since at experimental conditions large conformational flexibility is expected, a previously developed model that takes conformational disorder of the bridge into account has been applied to the investigated systems [M.P. Eng, T. Ljungdahl, J. Martensson, B. Albinsson, J. Phys. Chem. B 110 (2006) 6483]. This model is based on Boltzmann averaging and has been shown to describe the temperature dependence of the attenuation factor through OPE-bridges. Together, the parameters describing the donor-bridge energy gap dependence, for planar bridge structures, and the Boltzmann averaging procedure, describing the impact of rotational disorder, have the potential to a priori predict attenuation factors for electron and excitation energy transfer reactions through bridged donor-acceptor systems

  8. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.

    Science.gov (United States)

    Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu

    2017-09-01

    The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0  = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

  9. Photoinduced Charge Shifts and Electron Transfer in Viologen-Tetraphenylborate Complexes: Push-Pull Character of the Exciplex.

    Science.gov (United States)

    Santos, Willy G; Budkina, Darya S; Deflon, Victor M; Tarnovsky, Alexander N; Cardoso, Daniel R; Forbes, Malcolm D E

    2017-06-14

    Viologen-tetraarylborate ion-pair complexes were prepared and investigated by steady-state and time-resolved spectroscopic techniques such as fluorescence and femtosecond transient absorption. The results highlight a charge transfer transition that leads to changes in the viologen structure in the excited singlet state. Femtosecond transient absorption reveals the formation of excited-state absorption and stimulated emission bands assigned to the planar (k obs < 10 12 s -1 ) and twisted (k obs ∼ 10 10 s -1 ) structures between two pyridinium groups in the viologen ion. An efficient photoinduced electron transfer from the tetraphenylborate anionic moiety to the viologen dication was observed less than 1 μs after excitation. This is a consequence of the push-pull character of the electron donor twisted viologen structure, which helps formation of the borate triplet state. The borate triplet state is deactivated further via a second electron transfer process, generating viologen cation radical (V •+ ).

  10. On the role of electron quantum tunneling in charging of dust grains in complex plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.O.; Vladimirov, S.V.

    2011-01-01

    The aim of this work is calculate ion additional current associated with the quantum tunneling of plasma electrons, that are classically forbidden to overcome the repulsive potential barrier, onto the negatively charged grain. We compare this additional quantum tunneling current with the classical electron current from plasma onto the grain and analyze how this additional current affects the self-consistent equilibrium grain charge for different plasma parameters and grain sizes.

  11. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    Science.gov (United States)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  12. Spectroscopic mapping and selective electronic tuning of molecular orbitals in phosphorescent organometallic complexes – a new strategy for OLED materials

    Directory of Open Access Journals (Sweden)

    Pascal R. Ewen

    2014-11-01

    Full Text Available The improvement of molecular electronic devices such as organic light-emitting diodes requires fundamental knowledge about the structural and electronic properties of the employed molecules as well as their interactions with neighboring molecules or interfaces. We show that highly resolved scanning tunneling microscopy (STM and spectroscopy (STS are powerful tools to correlate the electronic properties of phosphorescent complexes (i.e., triplet emitters with their molecular structure as well as the local environment around a single molecule. We used spectroscopic mapping to visualize several occupied and unoccupied molecular frontier orbitals of Pt(II complexes adsorbed on Au(111. The analysis showed that the molecules exhibit a peculiar localized strong hybridization that leads to partial depopulation of a dz² orbital, while the ligand orbitals are almost unchanged. We further found that substitution of functional groups at well-defined positions can alter specific molecular orbitals without influencing the others. The results open a path toward the tailored design of electronic and optical properties of triplet emitters by smart ligand substitution, which may improve the performance of future OLED devices.

  13. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge

    Energy Technology Data Exchange (ETDEWEB)

    Llave, Ezequiel de la; Herrera, Santiago E.; Adam, Catherine; Méndez De Leo, Lucila P.; Calvo, Ernesto J.; Williams, Federico J., E-mail: fwilliams@qi.fcen.uba.ar [INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA (Argentina)

    2015-11-14

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.

  14. Mixed-Stack Architecture and Solvatomorphism of Trimeric Perfluoro-ortho-Phenylene Mercury complexes with Dithieno[3,2-b:2',3'-d]thiophene

    KAUST Repository

    Castañ eda, Raú l; Khrustalev, Victor N.; Fonari, Alexandr; Bredas, Jean-Luc; Getmanenko, Yulia A.; Timofeeva, Tatiana V.

    2015-01-01

    :1 donor-acceptor ratio and different solvent molecules in the solid state (dichloromethane (2) and dichloroethane (3)) have been obtained and characterized by experimental methods (FT-IR spectroscopy, differential thermogravimetric analysis, and X

  15. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  16. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  17. Experimental evidence for the blue-shifted hydrogen-bonded complexes of CHF3 with π-electron donors.

    Science.gov (United States)

    Gopi, R; Ramanathan, N; Sundararajan, K

    2017-06-15

    Blue-shifted hydrogen-bonded complexes of fluoroform (CHF 3 ) with benzene (C 6 H 6 ) and acetylene (C 2 H 2 ) have been investigated using matrix isolation infrared spectroscopy and ab initio computations. For CHF 3 -C 6 H 6 complex, calculations performed at the B3LYP and MP2 levels of theory using 6-311++G (d,p) and aug-cc-pVDZ basis sets discerned two minima corresponding to a 1:1 hydrogen-bonded complex. The global minimum correlated to a structure, where the interaction is between the hydrogen of CHF 3 and the π-electrons of C 6 H 6 and a weak local minimum was stabilized through H…F interaction. For the CHF 3 -C 2 H 2 complex, computation performed at MP2/aug-cc-pVDZ level of theory yielded two minima, corresponding to the cyclic C-H…π complex A (global) and a linear C-H…F (n-σ) complex B (local). Experimentally a blue-shift of 32.3cm -1 and 7.7cm -1 was observed in the ν 1 C-H stretching mode of CHF 3 sub-molecule in Ar matrix for the 1:1 C-H…π complexes of CHF 3 with C 6 H 6 and C 2 H 2 respectively. Natural bond orbital (NBO), Atoms-in-molecule (AIM) and energy decomposition (EDA) analyses were carried out to explain the blue-shifting and the nature of the interaction in these complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Electronic processes in TTF-derived complexes studied by IR spectroscopy

    Science.gov (United States)

    Graja, Andrzej

    2001-09-01

    We focus our attention on the plasma-edge-like dispersion of the reflectance spectra of the selected bis(ethylenodithio)tetrathiafulvalene (BEDT-TTF)-derived organic conductors. The standard procedure to determine the electron transport parameters in low-dimensional organic conductors consists of fitting the appropriate theoretical models with the experimental reflectance data. This procedure provides us with basic information like plasma frequency, the optical effective mass of charge carriers, their number, mean free path and damping constant. Therefore, it is concluded that the spectroscopy is a powerful tool to study the electronic processes in conducting organic solids.

  19. Electron impact excitation of complex atoms and ions. Pt. 2: forbidden transitions in Ni+

    International Nuclear Information System (INIS)

    Watts, M.S.T.; Berrington, K.A.; Burke, P.G.

    1996-01-01

    This letter reports the first application of the new R-matrix program package RMATRX II to electron impact excitation of a near neutral open d-shell ion. In this calculation for Ni + , all states corresponding to the configuration 3d 9 , 3d 8 4s and 3d 8 4p have been included in the expansion of the total wavefunction. Thermally averaged collision strengths for forbidden transitions involving the even parity states are presented in tabular form for temperatures between 5000 K and 20 000 K. The importance of including accurate C1 expansions for both the target and the (N + 1)-electron terms is demonstrated. (Author)

  20. Dynamical photo-induced electronic properties of molecular junctions

    Science.gov (United States)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  1. Fully coupled opto-electronic modelling of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils A.; Haeusermann, Roger; Huber, Evelyne; Moos, Michael [ZHAW, Institute of Comp. Physics (Germany); Flatz, Thomas [Fluxim AG (Switzerland); Ruhstaller, Beat [ZHAW, Institute of Comp. Physics (Germany); Fluxim AG (Switzerland)

    2009-07-01

    Record solar power conversion efficiencies of up to 5.5 % for single junction organic solar cells (OSC) are encouraging but still inferior to values of inorganic solar cells. For further progress, a detailed analysis of the mechanisms that limit the external quantum efficiency is crucial. It is widely believed that the device physics of OSCs can be reduced to the processes, which take place at the donor/acceptor-interface. Neglecting transport, trapping and ejection of charge carriers at the electrodes raises the question of the universality of such a simplification. In this study we present a fully coupled opto-electronic simulator, which calculates the spatial and spectral photon flux density inside the OSC, the formation of the charge transfer state and its dissociation into free charge carriers. Our simulator solves the drift- diffusion equations for the generated charge carriers as well as their ejection at the electrodes. Our results are in good agreement with both steady-state and transient OSC characteristics. We address the influence of physical quantities such as the optical properties, film-thicknesses, the recombination rate and charge carrier mobilities on performance figures. For instance the short circuit current can be enhanced by 15% to 25% when using a silver instead of an aluminium cathode. Our simulations lead to rules of thumb, which help to optimise a given OSC structure.

  2. Optimization of electronic enclosure design for thermal and moisture management using calibrated models of progressive complexity

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Staliulionis, Zygimantas; Shojaee Nasirabadi, Parizad

    2016-01-01

    the development of rigorous calibrated CFD models as well as simple predictive numerical tools, the current paper tackles the optimization of critical features of a typical two-chamber electronic enclosure. The progressive optimization strategy begins the design parameter selection by initially using simpler...

  3. Electron-triggered chemistry in HNO3/H2O complexes

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Ončák, M.; Fedor, Juraj; Kočišek, Jaroslav; Pysanenko, Andriy; Beyer, M. K.; Fárník, Michal

    2017-01-01

    Roč. 19, č. 19 (2017), s. 11753-11758 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : electron-triggered chemistry * acid-water clusters * gas-phase reactions Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  4. The Size and Morphological Study of Spherical Polyelectrolyte Complex Beads Using Environmental Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Bučko, M.; Tihlaříková, Eva; Krajčovič, T.; Gemeiner, P.

    2015-01-01

    Roč. 21, S3 (2015), s. 1697-1698 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-22777S Institutional support: RVO:68081731 Keywords : PEC * ESEM * polymers * morphology Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  5. Identifying Intermediates of Sequential Electron and Hydrogen Loss from a Dicarbonylcobalt Hydride Complex

    Czech Academy of Sciences Publication Activity Database

    Krafft, M. J.; Bubrin, M.; Paretzki, A.; Lissner, F.; Fiedler, Jan; Záliš, Stanislav; Kaim, W.

    2013-01-01

    Roč. 52, č. 26 (2013), s. 6781-6784 ISSN 1433-7851 R&D Projects: GA MŠk LD11086 Institutional support: RVO:61388955 Keywords : cobalt * Electron transfer * ferrocene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.336, year: 2013

  6. Complexes of uranyl with N-oxides of heterocyclic amines. Electron-vibrational absorption spectra

    International Nuclear Information System (INIS)

    Jezowska-Trzebiatowska, B.; Wieczorek, M.

    1977-01-01

    A number of coordination compounds formed by uranyl chloride and nitrate with N-oxides of heterocyclic amines have been prepared and characterized by spectral measurements in the absorption region 20000-50000 cm -1 . The electrons and vibronic transitions have been determined and discussed. (author)

  7. Electronic structure of transition metal-isocorrole complexes: A first quantum chemical study

    NARCIS (Netherlands)

    van Oort, B; Tangen, E; Ghosh, A.

    2004-01-01

    DFT calculations indicate that the broad electronic-structural features of metalloisocorroles are rather similar to those of analogous metallocorroles. Thus, like their corrole analogues, many metalloisocorroles feature substantially non-innocent ligands. Another key point is that both corroles and

  8. Targeting the Mitochondrial Electron Transport Chain Complexes for the Induction of Apoptosis and Cancer Treatment

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Jakub; Dong, L. F.; Neužil, Jiří

    2013-01-01

    Roč. 14, č. 3 (2013), s. 377-389 ISSN 1389-2010 Institutional research plan: CEZ:AV0Z50520701 Keywords : Cancer * mitochondria * electron transport chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.511, year: 2013

  9. Electron-triggered chemistry in HNO3/H2O complexes

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Ončák, M.; Fedor, Juraj; Kočišek, Jaroslav; Pysanenko, Andriy; Beyer, M. K.; Fárník, Michal

    2017-01-01

    Roč. 19, č. 19 (2017), s. 11753-11758 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : electron-triggered chemistry * acid-water clusters * gas-phase reaction s Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  10. Complex composition film condensation in the sluice device of an electron microscope

    International Nuclear Information System (INIS)

    Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.

    1994-01-01

    Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films

  11. Infinite dwell time and group delay in resonant electron tunneling through double complex potential barrier

    Science.gov (United States)

    Opacak, Nikola; Milanović, Vitomir; Radovanović, Jelena

    2017-12-01

    Tunneling times in complex potentials are investigated. Analytical expressions for dwell time, self-interference time and group delay are obtained for the case of complex double delta potentials. It is shown that we can always find a set of parameters of the potential so that the tunneling times achieve very large values and even approach infinity for the case of resonance. The phenomenon of infinite tunneling times occurs for only one particular positive value of the imaginary part of the potential, if all other parameters are given.

  12. Local electronic and geometrical structures of hydrogen-bonded complexes studied by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Luo, Y.

    2004-01-01

    Full text: The hydrogen bond is one of the most important forms of intermolecular interactions. It occurs in all-important components of life. However, the electronic structures of hydrogen-bonded complexes in liquid phases have long been difficult to determine due to the lack of proper experimental techniques. In this talk, a recent joint theoretical and experimental effort to understand hydrogen bonding in liquid water and alcohol/water mixtures using synchrotron radiation based soft-X-ray spectroscopy will be presented. The complexity of the liquid systems has made it impossible to interpret the spectra with physical intuition alone. Theoretical simulations have thus played an essential role in understanding the spectra and providing valuable insights on the local geometrical and electronic structures of these liquids. Our study sheds light on a 40-year controversy over what kinds of molecular structures are formed in pure liquid methanol. It also suggests an explanation for the well-known puzzle of why alcohol and water do not mix completely: the system must balance nature's tendency toward greater disorder (entropy) with the molecules' tendency to form hydrogen bonds. The observation of electron sharing and broken hydrogen bonding local structures in liquid water will be presented. The possible use of X-ray spectroscopy to determinate the local arrangements of hydrogen-bonded nanostructures will also been discussed

  13. Ruthenium and iron complexes with benzotriazole and benzimidazole derivatives as simple models for proton-coupled electron transfer systems

    Directory of Open Access Journals (Sweden)

    Rocha Reginaldo C.

    2001-01-01

    Full Text Available Iron and ruthenium complexes of the type [M-LH]n (where M = RuII,III(NH35(2+,3+, RuII,III(edta2-,- [edta = ethylenedinitrilotetraacetate], or FeII,III(CN5(3-,2- and LH = benzotriazole or benzimidazole were prepared and characterized in aqueous solutions by means of electrochemical and spectroelectrochemical methods. Special emphasis was given to the pH-dependent redox processes, exhibited by all the investigated complexes. From their related Pourbaix diagrams, which displayed a typically Nernstian behavior, the pKa and formal reduction potential values were extracted. In addition, these E1/2 versus pH curves were also used to illustrate the partitioning relationship concerning the redox and acid-base species, and their interconversion equilibria. The active area in which the dependence of the M III/M II couple on the pH takes place, as delimited by pKaIII and pKaII, was taken into account in order to evaluate the usefulness of such simple complexes as models for proton-coupled electron transfer (PCET. The results were interpreted in terms of the acceptor/donor electronic character of the ligands and sigma,pi-metal-ligand interactions in both redox states of the metal ion.

  14. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  15. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    Science.gov (United States)

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  16. Electron microprobe Th-U-Pb monazite dating and metamorphic evolution of the Acaiaca Granulite Complex, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros Junior, Edgar Batista; Marques, Rodson Abreu, E-mail: edgarjr@ymail.com, E-mail: rodson.marques@ufes.br [Universidade Federal do Espirito Santo (UFES), Alegre, ES (Brazil). Departamento de Geologia; Jordt-Evangelista, Hanna; Queiroga, Glaucia Nascimento, E-mail: hanna@degeo.ufop.br, E-mail: glauciaqueiroga@yahoo.com.br [Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG (Brazil). Escola de Minas. Departamento de Geologia; Schulz, Bernhard, E-mail: bernhard.schulz@mineral.tu-freiberg.de [TU Bergakademie - Institute of Mineralogy, Freiberg - Saxony (Germany)

    2016-01-15

    The Acaiaca Complex (AC) is located in southeastern Minas Gerais state, and comprises felsic, mafic, ultramafic, and aluminous granulite as well as lower grade gneisses and mylonite. The complex is distributed over an area of ca. 36 km by 6 km, surrounded by amphibolite facies gneisses of the Mantiqueira Complex (MC). The discrepancy in the metamorphic grade between both complexes led to the present study aiming to understand the metamorphic history of the AC by means of geothermobarometry calculations and electron microprobe Th-U-Pb monazite dating. Estimates of the metamorphic conditions of the granulite based on conventional geothermobarometry and THERMOCALC resulted in temperatures around 800 deg C and pressures between of 5.0 and 9.9 kbar and a retro metamorphic path characterized by near-isobaric cooling. Part of the granulite was affected by anatexis. The melting of felsic granulite resulted in the generation of pegmatites and two aluminous lithotypes. These are: 1) garnet-sillimanite granulite with euhedral plagioclase and cordierite that show straight faces against quartz, and is the crystallization product of an anatectic melt, and 2) garnet-kyanite-cordierite granulite, which is probably the restite of anatexis, as indicated by textures and high magnesium contents. Th-U-Pb monazite geochronology of two granulite samples resulted in a metamorphic age around 2060 Ma, which is similar to the age of the MC registered in the literature. The similar Paleoproterozoic metamorphic ages of both complexes lead to the conclusion that the Acaiaca Complex may be the high grade metamorphic unit geochronological related to the lower grade Mantiqueira Complex. (author)

  17. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria.

    Science.gov (United States)

    Ortiz-Avila, Omar; Sámano-García, Carlos Alberto; Calderón-Cortés, Elizabeth; Pérez-Hernández, Ismael H; Mejía-Zepeda, Ricardo; Rodríguez-Orozco, Alain R; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian

    2013-06-01

    Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.

  18. The Effectiveness of an Electronic Security Management System in a Privately Owned Apartment Complex

    Science.gov (United States)

    Greenberg, David F.; Roush, Jeffrey B.

    2009-01-01

    Poisson and negative binomial regression methods are used to analyze the monthly time series data to determine the effects of introducing an integrated security management system including closed-circuit television (CCTV), door alarm monitoring, proximity card access, and emergency call boxes to a large privately-owned complex of apartment…

  19. Electron spin resonance of paramagnetic defects and related charge carrier traps in complex oxide scintillators

    Czech Academy of Sciences Publication Activity Database

    Laguta, Valentyn; Nikl, Martin

    2013-01-01

    Roč. 250, č. 2 (2013), s. 254-260 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805; GA AV ČR IAA100100810 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : scintillators * point defects * electron spin resonance * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.605, year: 2013

  20. A study of the structure-property relationship of azole-azine based homoleptic platinum(II) complexes and tunability of the photo-physical properties

    Science.gov (United States)

    Ranga Prabhath, Malaviarachchige Rabel

    Owing to superior energy efficiency, Light Emitting Diode (OLED) technology has become considerably commercialised over the last decade. Innovations in this field have been spurred along by the discovery of new molecules with good stability and high emission intensity, followed through by intense engineering efforts. Emissive transition metal complexes are potent molecular emitters as a result of their high quantum efficiencies related to facile intersystem crossing (ISC) between excited-state manifolds (efficient spin orbit coupling (SOC)) and resultant efficient emission from the triplet state (phosphorescence). These also allow rational tuning of the emission wavelengths. Tuning of the ground and excited state energies, and thus emission wavelength of these complexes can be achieved by subtle structural changes in the organic ligands. Pyridyl-triazole ligands have started receiving increasing attention in recent years as strong field ligands that are relatively straightforward to synthesise. In this study we explore the emission tunability of a newly synthesised series of 5-subsituted-Pyridyl-1,2,3-triazole-based ligands and their Pt(II) complexes. Studies have shown, substitution at the triazole moiety is less effective in achieving emission tunability. Alternatively we carried out the substitution at the 5th position of the pyridine ring with a wide range of electronically diverse, donor-acceptor groups (-N(CH3)2, -H, -CHO, -CHC(CN)2). The target ligands were approached through the serial application of the Sonogashira carbon-carbon coupling and the Sharpless copper-catalyzed Huisgen’s 1,3-dipolarcycloaddition procedures. As a result, coarse tunability of excimer emission was observed in thin-films, generating blue-(486 nm), green-(541 nm), orange-(601 nm) and red-(625 nm) luminescence respectively. This “turned-on” substituent effect was accounted for metallophilic Pt—Pt interaction-induced aggregates in the solid state. Excited state calculations

  1. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, Vadim, E-mail: tsytov@lpi.ru [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Gusein-zade, Namik; Ignatov, Alexander [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Medicobiologic Faculty, Pirogov Russian National Research Medical University, Moscow (Russian Federation)

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  2. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2.

    Science.gov (United States)

    Harel, Elad; Long, Phillip D; Engel, Gregory S

    2011-05-01

    Here we present two-dimensional (2D) electronic spectra of the light-harvesting complex LH2 from purple bacteria using coherent pulses with bandwidth of over 100 nm FWHM. This broadband excitation and detection has allowed the simultaneous capture of both the B800 and B850 bands using a single light source. We demonstrate that one laser pulse is sufficient to capture the entire 2D electronic spectrum with a high signal-to-noise ratio. At a waiting time of 800 fs, we observe population transfer from the B800 to B850 band as manifested by a prominent cross peak. These results will enable observation of the dynamics of biological systems across both ultrafast (1 ms) timescales simultaneously.

  3. Local 3d Electronic Structures of Co-Based Complexes with Medicinal Molecules Probed by Soft X-ray Absorption

    Science.gov (United States)

    Yamagami, Kohei; Fujiwara, Hidenori; Imada, Shin; Kadono, Toshiharu; Yamanaka, Keisuke; Muro, Takayuki; Tanaka, Arata; Itai, Takuma; Yoshinari, Nobuto; Konno, Takumi; Sekiyama, Akira

    2017-07-01

    We have examined the local 3d electronic structures of Co-Au multinuclear complexes with the medicinal molecules d-penicillaminate (d-pen) [Co{Au(PPh3)(d-pen)}2]ClO4 and [Co3{Au3(tdme)(d-pen)3}2] by Co L2,3-edge soft X-ray absorption (XAS) spectroscopy, where PPh3 denotes triphenylphosphine and tdme stands for 1,1,1-tris[(diphenylphosphino)methyl]ethane. The Co L2,3-edge XAS spectra indicate the localized ionic 3d electronic states in both materials. The experimental spectra are well explained by spectral simulation for a localized Co ion under ligand fields with the full multiplet theory, which verifies that the ions are in the low-spin Co3+ state in the former compound and in the high-spin Co2+ state in the latter.

  4. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    Science.gov (United States)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-04-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ˜0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  5. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    International Nuclear Information System (INIS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-01-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc 1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins

  6. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  7. Electronic Structural Analysis of Copper(II)–TEMPO/ABNO Complexes Provides Evidence for Copper(I)–Oxoammonium Character

    International Nuclear Information System (INIS)

    Walroth, Richard C.; Miles, Kelsey C.; Lukens, James T.; MacMillan, Samantha N.; Stahl, Shannon S.; Lancaster, Kyle M.

    2017-01-01

    Copper/aminoxyl species are proposed as key intermediates in aerobic alcohol oxidation. Several possible electronic structural descriptions of these species are possible, and here we probe this issue by examining four crystallographically characterized Cu/aminoxyl halide complexes by Cu K-edge, Cu L 2,3 - edge, and Cl K-edge X-ray absorption spectroscopy. The mixing coefficients between Cu, aminoxyl, and halide orbitals are determined via these techniques with support from density functional theory. The emergent electronic structure picture reveals that Cu coordination confers appreciable oxoammonium character to the aminoxyl ligand. The computational methodology is extended to one of the putative intermediates invoked in catalytic Cu/aminoxyl-driven alcohol oxidation reactions, with similar findings. On the whole, the results have important implications for the mechanism of alcohol oxidation and the underlying basis for cooperativity in this co- catalyst system.

  8. A monomeric copper-phosphoramide complex: synthesis, structure, and electronic properties

    Czech Academy of Sciences Publication Activity Database

    Henriques, Margarida Isabel Sousa; Gorbunov, D.I.; Ponomaryov, A.Y.; Saneei, A.; Pourayoubi, M.; Dušek, Michal; Zvyagin, S.; Uhlarz, M.; Wosnitza, J.

    2016-01-01

    Roč. 118, Nov (2016), s. 154-158 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA14-03276S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : phosphoramide * magnetization * EPR * mononuclear copper complex * crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.926, year: 2016

  9. Electron self-trapped at molybdenum complex in lead molybdate: An EPRand TSL comparative study

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Laguta, Valentyn; Fasoli, M.; Moretti, F.; Trubitsyn, M.; Volnianskii, M.; Vedda, A.; Nikl, Martin

    2017-01-01

    Roč. 192, Dec (2017), s. 767-774 ISSN 0022-2313 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GA17-09933S EU Projects: European Commission(XE) 690599 - ASCIMAT Institutional support: RVO:68378271 Keywords : EPR * wavelength resolved TSL * self-trapped electron * lead molybdate * molecular orbitals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  10. Electronic absorption bands of HoCl3 and SmCl3 complexes in alcohols

    International Nuclear Information System (INIS)

    Ramesh Babu, V.; Buddhudu, S.; Rangarajan, V.N.

    1987-01-01

    The normal absorption and second derivative spectra of ten alcoholic complexes of HoCl 3 and SmCl 3 were recorded. From the observed bands, energies and intensity values were measured. To fit in these measured values with the theoretical values, a set of spectroscopic parameters namely, Judd-Ofelt (T 2 , T 4 , T 6 ), intensity (Ω 2 , Ω 4 , Ω 6 ) had been computed. A good fit of intensities was obtained between the experimental and theoretical data. The environmental influences on the intensities of the hypersensitive transitions of Sm(III) and Ho(III) ions were found to be noteworthy. (author). 7 tables, 20 refs

  11. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  12. Structural, electronic, and optical properties of the C-C complex in bulk silicon from first principles

    Science.gov (United States)

    Timerkaeva, Dilyara; Attaccalite, Claudio; Brenet, Gilles; Caliste, Damien; Pochet, Pascal

    2018-04-01

    The structure of the CiCs complex in silicon has long been the subject of debate. Numerous theoretical and experimental studies have attempted to shed light on the properties of these defects that are at the origin of the light emitting G-center. These defects are relevant for applications in lasing, and it would be advantageous to control their formation and concentration in bulk silicon. It is therefore essential to understand their structural and electronic properties. In this paper, we present the structural, electronic, and optical properties of four possible configurations of the CiCs complex in bulk silicon, namely, the A-, B-, C-, and D-forms. The configurations were studied by density functional theory and many-body perturbation theory. Our results suggest that the C-form was misinterpreted as a B-form in some experiments. Our optical investigation also tends to exclude any contribution of A- and B-forms to light emission. Taken together, our results suggest that the C-form could play an important role in heavily carbon-doped silicon.

  13. Luminescence and Electronic Spectral Studies of Some Synthesized Lanthanide Complexes Using Benzoic Acid Derivative and o-Phenanthroline.

    Science.gov (United States)

    Wankar, Sneha; Limaye, S N

    2015-07-01

    Lanthanide complexes of p-nitrobenzoic acid(p-NBA) and o-phenanthroline(o-phen) namely [Ln2(Phen)2(p-NBA)3(NO3)2].2H2O where, Ln = Sm(III),Tb(III),Dy(III) and [Eu2(Phen)2(p-NBA)3].4H2O were synthesized and further characterized by Elemental analysis, UV spectroscopy, IR spectroscopy, (1)HNMR spectroscopy. Luminescence measurements were performed on all compounds in ethanolic solution. These complexes have showed narrow emission indicating that the organic ligands are better energy absorber and capable of transferring energy to the Ln (III) ion. Furthermore, we reported electronic spectral studies on [Eu2 (Phen)2 (p-NBA)3].4H2O in order to calculate following parameters, viz: Oscillator strength (f), Judd-Ofelt parameters Ωλ (λ = 2,4,6) and Radiative parameters. [Eu2 (o-Phen)2 (p-NBA)3].4H2O showed the strongest emission at 613 nm corresponds to (5)D0→(7)F2 hypersensitive transition, this emission is very sensitive to the environment. However, the larger value of Ω2 supports the presence of the hypersensitive transition (5)D0→(7)F2 which strictly depends on the nature of ligand. All electronic spectral parameters were calculated systemically.

  14. The influence of the electronic structure of adsorbate-substrate complexes on photoisomerization ability

    International Nuclear Information System (INIS)

    Bronner, Christopher; Schulze, Michael; Hagen, Sebastian; Tegeder, Petra

    2012-01-01

    We use time-resolved two-photon photoemission to study two molecular photoswitches at the Au(111) surface, namely azobenzene and its derivative tetra-tert-butyl-azobenzene (TBA). Electronic states located at the substrate-adsorbate interface are found to be a sensitive probe for the photoisomerization of TBA. In contrast to TBA, azobenzene loses its switching ability at the Au(111) surface. Besides the different adsorption geometries of both molecules, we partly attribute the quenching in the case of azobenzene to a shift of the highest occupied molecular orbital (HOMO) with respect to the gold d-bands, which renders the hole transfer involved in the photoisomerization mechanism of TBA inefficient. (paper)

  15. Comparative analysis of electron-density and electron-localization function for dinuclear manganese complexes with bridging boron- and carbon-centered ligands.

    Science.gov (United States)

    Götz, Kathrin; Kaupp, Martin; Braunschweig, Holger; Stalke, Dietmar

    2009-01-01

    Bonding in borylene-, carbene-, and vinylidene-bridged dinuclear manganese complexes [MnCp(CO)(2)](2)X (X = B-tBu, B = NMe(2), CH(2), C=CH(2)) has been compared by analyses based on quantum theory of atoms in molecules (QTAIM), on the electron-localization function (ELF), and by natural-population analyses. All of the density functional theory based analyses agree on the absence of a significant direct Mn-Mn bond in these complexes and confirm a dominance of delocalized bonding via the bridging ligand. Interestingly, however, the topology of both charge density and ELF related to the Mn-bridge-Mn bonding depend qualitatively on the chosen density functional (except for the methylene-bridged complex, which exhibits only one three-center-bonding attractor both in -nabla(2)rho and in ELF). While gradient-corrected functionals provide a picture with localized two-center X-Mn bonding, increasing exact-exchange admixture in hybrid functionals concentrates charge below the bridging atom and suggests a three-center bonding situation. For example, the bridging boron ligands may be described either as substituted boranes (e.g., at BLYP or BP86 levels) or as true bridging borylenes (e.g., at BHLYP level). This dependence on the theoretical level appears to derive from a bifurcation between two different bonding situations and is discussed in terms of charge transfer between X and Mn, and in the context of self-interaction errors exhibited by popular functionals.

  16. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    Science.gov (United States)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  17. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    International Nuclear Information System (INIS)

    Sugioka, Yuji; Takayanagi, Toshiyuki

    2012-01-01

    Highlights: ► Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. ► Temperature effects can be reasonably reproduced with the present model. ► All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H 2 O and CF 3 Cl, for which several previous studies are available from both the experimental and theoretical sides.

  18. Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes.

    Science.gov (United States)

    Cortez, M Lorena; Marmisollé, Waldemar; Pallarola, Diego; Pietrasanta, Lía I; Murgida, Daniel H; Ceolín, Marcelo; Azzaroni, Omar; Battaglini, Fernando

    2014-10-06

    Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox-active polyelectrolyte-surfactant complex containing [Os(bpy)2Clpy](2+) (bpy=2,2'-bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron-transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz-crystal microbalance with dissipation (QCM-D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron-transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five-fold increase in current response to glucose compared with analogous supramolecular AuNP-free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron-transfer process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ascorbate Biosynthesis in Mitochondria Is Linked to the Electron Transport Chain between Complexes III and IV1

    Science.gov (United States)

    Bartoli, Carlos G.; Pastori, Gabriela M.; Foyer, Christine H.

    2000-01-01

    Ascorbic acid is synthesized from galactono-γ-lactone (GL) in plant tissues. An improved extraction procedure involving ammonium sulfate precipitation of membrane proteins from crude leaf homogenates yielded a simple, quick method for determining tissue activities of galactono-γ-lactone dehydrogenase (GLDH). Total foliar ascorbate and GLDH activity decreased with leaf age. Subcellular fractionation experiments using marker enzymes demonstrated that 80% of the total GLDH activity was located on the inner mitochondrial membrane, and 20% in the microsomal fraction. Specific antibody raised against potato (Solanum tuberosum L.) tuber GLDH recognized a 56-kD polypeptide in extracts from the mitochondrial membranes but failed to detect the equivalent polypeptide in microsomes. We demonstrate that isolated intact mitochondria synthesize ascorbate in the presence of GL. GL stimulated mitochondrial electron transport rates. The respiration inhibitor antimycin A stimulated ascorbate biosynthesis, while cyanide inhibited both respiration and ascorbate production. GL-dependent oxygen uptake was observed in isolated intact mitochondria. This evidence suggests that GLDH delivers electrons to the mitochondrial electron transport chain between complexes III and IV. PMID:10806250

  20. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Yuji [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2012-09-11

    Highlights: Black-Right-Pointing-Pointer Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. Black-Right-Pointing-Pointer Temperature effects can be reasonably reproduced with the present model. Black-Right-Pointing-Pointer All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H{sub 2}O and CF{sub 3}Cl, for which several previous studies are available from both the experimental and theoretical sides.