WorldWideScience

Sample records for electron density dependent

  1. Density-dependent electron scattering in photoexcited GaAs

    DEFF Research Database (Denmark)

    Mics, Zoltán; D'’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    —In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...

  2. Temperature dependence of electron density and electron-electron interactions in monolayer epitaxial graphene grown on SiC

    Science.gov (United States)

    Liu, Chieh-Wen; Chuang, Chiashain; Yang, Yanfei; Elmquist, Randolph E.; Ho, Yi-Ju; Lee, Hsin-Yen; Liang, Chi-Te

    2017-06-01

    We report carrier density measurements and electron-electron (e-e) interactions in monolayer epitaxial graphene grown on SiC. The temperature (T)-independent carrier density determined from the Shubnikov-de Haas (SdH) oscillations clearly demonstrates that the observed logarithmic temperature dependence of the Hall slope in our system must be due to e-e interactions. Since the electron density determined from conventional SdH measurements does not depend on e-e interactions based on Kohn’s theorem, SdH experiments appear to be more reliable compared with the classical Hall effect when one studies the T dependence of the carrier density in the low T regime. On the other hand, the logarithmic T dependence of the Hall slope δR xy /δB can be used to probe e-e interactions even when the conventional conductivity method is not applicable due to strong electron-phonon scattering.

  3. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  4. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...

  5. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  6. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  7. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  8. Two-electron Rabi oscillations in real-time time-dependent density-functional theory.

    Science.gov (United States)

    Habenicht, Bradley F; Tani, Noriyuki P; Provorse, Makenzie R; Isborn, Christine M

    2014-11-14

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S0 state and the doubly-excited S2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation.

  9. Time-dependent density functional theory study on direction-dependent electron and hole transfer processes in molecular systems.

    Science.gov (United States)

    Partovi-Azar, Pouya; Kaghazchi, Payam

    2017-04-15

    We report on real-time time-dependent density functional theory calculations on direction-dependent electron and hole transfer processes in molecular systems. As a model system, we focus on α-sulfur. It is shown that time scale of the electron transfer process from a negatively charged S8 molecule to a neighboring neutral monomer is comparable to that of a strong infrared-active molecular vibrations of the dimer with one negatively charged monomer. This results in a strong coupling between the electrons and the nuclei motion which eventually leads to S8 ring opening before the electron transfer process is completed. The open-ring structure is found to be stable. The similar infrared-active peak in the case of hole transfer, however, is shown to be very weak and hence no significant scattering by the nuclei is possible. The presented approach to study the charge transfer processes in sulfur has direct applications in the increasingly growing research field of charge transport in molecular systems. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Appel, H.

    2007-05-15

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the

  11. Quantum electrodynamical time-dependent density-functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, M.; Tokatly, I. V.

    2014-11-01

    We present a rigorous formulation of the time-dependent density-functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v representable.

  12. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  13. Approximating the nonlinear density dependence of electron transport coefficients and scattering rates across the gas–liquid interface

    Science.gov (United States)

    Garland, N. A.; Boyle, G. J.; Cocks, D. G.; White, R. D.

    2018-02-01

    This study reviews the neutral density dependence of electron transport in gases and liquids and develops a method to determine the nonlinear medium density dependence of electron transport coefficients and scattering rates required for modeling transport in the vicinity of gas–liquid interfaces. The method has its foundations in Blanc’s law for gas-mixtures and adapts the theory of Garland et al (2017 Plasma Sources Sci. Technol. 26) to extract electron transport data across the gas–liquid transition region using known data from the gas and liquid phases only. The method is systematically benchmarked against multi-term Boltzmann equation solutions for Percus–Yevick model liquids. Application to atomic liquids highlights the utility and accuracy of the derived method.

  14. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    Science.gov (United States)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  15. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    Science.gov (United States)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2017-11-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  16. Time-dependent density-functional theory simulation for electron-ion dynamics in molecules under intense laser pulses.

    Science.gov (United States)

    Kawashita, Y; Nakatsukasa, T; Yabana, K

    2009-02-11

    We have developed a simulation method to describe three-dimensional dynamics of electrons and ions in a molecule based on the time-dependent density-functional theory. We solve the time-dependent Kohn-Sham equation for electrons employing the real-space and real-time method, while the ion dynamics are described in classical mechanics by the Ehrenfest method. For an efficient calculation in massively parallel computers, the code is parallelized dividing the spatial grid points. We apply the method to the Coulomb explosion of the H(2)S molecule under an intense and ultrashort laser pulse and investigate the mechanism of the process.

  17. On the calculation of Δ for electronic excitations in time-dependent density-functional theory

    Science.gov (United States)

    Myneni, Hemanadhan; Casida, Mark E.

    2017-04-01

    Excited states are often treated within the context of time-dependent (TD) density-functional theory (DFT), making it important to be able to assign the excited spin-state symmetry. While there is universal agreement on how Δ , the difference between for ground and excited states, should be calculated in a wave-function-like formalism such as the Tamm-Dancoff approximation (TDA), confusion persists as to how to determine the spin-state symmetry of excited states in TD-DFT. We try to clarify the origins of this confusion by examining various possibilities for the parameters (σ1 ,σ2) in the formula

  18. Density dependence of electron-spin polarization and relaxation in intrinsic GaAs at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Teng, L H; Chen, K; Wen, J H; Lin, W Z; Lai, T S, E-mail: stslts@mail.sysu.edu.c [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Zhongshan (Sen Yat-Sen) University, Guangzhou, Guangdong 510275 (China)

    2009-07-07

    Time-resolved circularly polarized pump-probe spectroscopy is used to study the carrier-density dependence of the electron-spin polarization and spin relaxation dynamics in bulk intrinsic GaAs near the bottom of the conduction band. The experimental result shows that the initial degree of the electron-spin polarization is less than 0.5, and both the initial degree of spin polarization and the spin relaxation time decrease with increasing carrier densities. The simulation calculation shows that the band-gap renormalization effect has a significant influence on the initial degree of spin polarization, but it is not the physical origin of the decrease in the electron-spin polarization. Contrarily, the initial degree of spin polarization can be greatly enhanced by the band-gap renormalization effect for carrier densities above 3.5 x 10{sup 17} cm{sup -3}. In intrinsic GaAs, both the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms play an important role. The Bir-Aronov-Pikus mechanism becomes stronger with the increase in the carrier density, and becomes dominant at high carrier density.

  19. Density dependence of electron-spin polarization and relaxation in intrinsic GaAs at room temperature

    Science.gov (United States)

    Teng, L. H.; Chen, K.; Wen, J. H.; Lin, W. Z.; Lai, T. S.

    2009-07-01

    Time-resolved circularly polarized pump-probe spectroscopy is used to study the carrier-density dependence of the electron-spin polarization and spin relaxation dynamics in bulk intrinsic GaAs near the bottom of the conduction band. The experimental result shows that the initial degree of the electron-spin polarization is less than 0.5, and both the initial degree of spin polarization and the spin relaxation time decrease with increasing carrier densities. The simulation calculation shows that the band-gap renormalization effect has a significant influence on the initial degree of spin polarization, but it is not the physical origin of the decrease in the electron-spin polarization. Contrarily, the initial degree of spin polarization can be greatly enhanced by the band-gap renormalization effect for carrier densities above 3.5 × 1017 cm-3. In intrinsic GaAs, both the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms play an important role. The Bir-Aronov-Pikus mechanism becomes stronger with the increase in the carrier density, and becomes dominant at high carrier density.

  20. A Quantitative Analysis of Light-Driven Charge Transfer Processes Using Voronoi Partitioning of Time Dependent DFT-Derived Electron Densities

    NARCIS (Netherlands)

    Rombouts, J.A.; Ehlers, A.W.; Lammertsma, K.

    2017-01-01

    An analytical method is presented that provides quantitative insight into light-driven electron density rearrangement using the output of standard time-dependent density functional theory (TD-DFT) computations on molecular compounds. Using final and initial electron densities for photochemical

  1. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  2. Size dependent electronic properties of silicon quantum dots-An analysis with hybrid, screened hybrid and local density functional theory

    Science.gov (United States)

    Gabay, D.; Wang, X.; Lomakin, V.; Boag, A.; Jain, M.; Natan, A.

    2017-12-01

    We use an efficient projection scheme for the Fock operator to analyze the size dependence of silicon quantum dots (QDs) electronic properties. We compare the behavior of hybrid, screened hybrid and local density functionals as a function of the dot size up to ∼800 silicon atoms and volume of up to ∼20 nm3. This allows comparing the calculations of hybrid and screened hybrid functionals to experimental results over a wide range of QD sizes. We demonstrate the size dependent behavior of the band gap, density of states, ionization potential and HOMO level shift after ionization. We also demonstrate how the use of Graphical Processing Units (GPUs) can further accelerate such calculations.

  3. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power

    Science.gov (United States)

    Yost, Dillon C.; Yao, Yi; Kanai, Yosuke

    2017-09-01

    In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.

  4. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, Neepa [Hunter College City University of New York, New York, NY (United States)

    2016-07-14

    This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.

  5. Density dependent neurodynamics.

    Science.gov (United States)

    Halnes, Geir; Liljenström, Hans; Arhem, Peter

    2007-01-01

    The dynamics of a neural network depends on density parameters at (at least) two different levels: the subcellular density of ion channels in single neurons, and the density of cells and synapses at a network level. For the Frankenhaeuser-Huxley (FH) neural model, the density of sodium (Na) and potassium (K) channels determines the behaviour of a single neuron when exposed to an external stimulus. The features of the onset of single neuron oscillations vary qualitatively among different regions in the channel density plane. At a network level, the density of neurons is reflected in the global connectivity. We study the relation between the two density levels in a network of oscillatory FH neurons, by qualitatively distinguishing between three regions, where the mean network activity is (1) spiking, (2) oscillating with enveloped frequencies, and (3) bursting, respectively. We demonstrate that the global activity can be shifted between regions by changing either the density of ion channels at the subcellular level, or the connectivity at the network level, suggesting that different underlying mechanisms can explain similar global phenomena. Finally, we model a possible effect of anaesthesia by blocking specific inhibitory ion channels.

  6. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    Science.gov (United States)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  7. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework

    Energy Technology Data Exchange (ETDEWEB)

    Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Belén; Sánchez, Cristián G. [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Lebrero, Mariano C. González, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)

    2014-04-28

    This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.

  8. Electronic and Optical Properties of Small Hydrogenated Silicon Quantum Dots Using Time-Dependent Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Muhammad Mus-’ab Anas

    2015-01-01

    Full Text Available This paper presents a systematic study of the absorption spectrum of various sizes of small hydrogenated silicon quantum dots of quasi-spherical symmetry using the time-dependent density functional theory (TDDFT. In this study, real-time and real-space implementation of TDDFT involving full propagation of the time-dependent Kohn-Sham equations were used. The experimental results for SiH4 and Si5H12 showed good agreement with other earlier calculations and experimental data. Then these calculations were extended to study larger hydrogenated silicon quantum dots with diameter up to 1.6 nm. It was found that, for small quantum dots, the absorption spectrum is atomic-like while, for relatively larger (1.6 nm structure, it shows bulk-like behavior with continuous plateau with noticeable peak. This paper also studied the absorption coefficient of silicon quantum dots as a function of their size. Precisely, the dependence of dot size on the absorption threshold is elucidated. It was found that the silicon quantum dots exhibit direct transition of electron from HOMO to LUMO states; hence this theoretical contribution can be very valuable in discerning the microscopic processes for the future realization of optoelectronic devices.

  9. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra.

    Science.gov (United States)

    Goings, Joshua J; Li, Xiaosong

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  10. Seasonal dependence of the longitudinal variations of nighttime ionospheric electron density and equivalent winds at southern midlatitudes

    Directory of Open Access Journals (Sweden)

    X. Luan

    2013-10-01

    Full Text Available It has been indicated that the observed Weddell Sea anomaly (WSA appeared to be an extreme manifestation of the longitudinal variations in the Southern Hemisphere, since the WSA is characterized by greater evening electron density than the daytime density in the region near the Weddell Sea. In the present study, the longitudinal variations of the nighttime F2-layer peak electron density at southern midlatitudes are analyzed using the observations of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC satellites between 2006 and 2008. It is found that significant longitudinal difference (> 150% relative to the minimum density at each local time prevails in all seasons, although the WSA phenomenon is only evident in summer under this solar minimum condition. Another interesting feature is that in summer, the maximum longitudinal differences occur around midnight (~ 23:00–00:00 LT rather than in the evening (19:00–21:00 LT in the evening, when the most prominent electron density enhancement occurs for the WSA phenomenon. Thus the seasonal–local time patterns of the electron density longitudinal variations during nighttime at southern midlatitudes cannot be simply explained in terms of the WSA. Meanwhile, the variations of the geomagnetic configuration and the equivalent magnetic meridional winds/upward plasma drifts are analyzed to explore their contributions to the longitudinal variations of the nighttime electron density. The maximum longitudinal differences are associated with the strongest wind-induced vertical plasma drifts after 21:00 LT in the Western Hemisphere. Besides the magnetic declination–zonal wind effects, the geographic meridional winds and the magnetic inclination also have significant effects on the upward plasma drifts and the resultant electron density.

  11. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory

    Science.gov (United States)

    Wopperer, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C60. A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the simplest

  12. Support for the existence of invertible maps between electronic densities and non-analytic 1-body external potentials in non-relativistic time-dependent quantum mechanics

    Science.gov (United States)

    Mosquera, Martín A.

    2017-10-01

    Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.

  13. Temperature dependence of persistent spin currents in a spin-orbit-coupled electron gas: A density-matrix approach

    Science.gov (United States)

    Bencheikh, K.; Vignale, G.

    2008-04-01

    We present a simple analytical method, based on the canonical density matrix, for the calculation of the equilibrium spin current as a function of temperature in a two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit coupling terms. We find that the persistent spin current is extremely robust against thermal disorder: its variation with temperature is exponentially small (∝e-TF/T) at temperatures much smaller than the Fermi temperature TF and changes to a power law TF/T for T≫TF .

  14. Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.

    2017-12-01

    Negatively charged nitrogen-vacancy (NV‑) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV‑ center ensemble on a large scale with a long coherence lifetime. In this work, the NV‑ center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV‑ centers along three directions to improve fluorescence signal contrast. Finally, NV‑ center ensembles with a high concentration of roughly 1015 mm‑3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV‑ center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.

  15. Quasi-Low-Dimensional Electron Gas with One Populated Band as a Testing Ground for Time-Dependent Density-Functional Theory of Mesoscopic Systems

    Science.gov (United States)

    Nazarov, Vladimir U.

    2017-06-01

    We find an exact analytical solution to the exchange-only time-dependent density-functional theory (TDDFT) problem for a significant class of quasi-low-dimensional (QLD) materials: QLD electron gas with only one band filled in the direction perpendicular to the layer or wire. The theory yields the TD exchange potential as an explicit nonlocal operator of the TD spin density. The dressed interband (image states) excitation spectra of quasi-two-dimensional electron gas are obtained, while the comparison with the Kohn-Sham transitions provides insights into the qualitative and quantitative role of the many-body interactions. Important cancellations between the Hartree fH and the exchange fx kernels of TDDFT are found in the low-density regime, elucidating the interrelations between the Kohn-Sham and the many-body dynamics in mesoscopic systems.

  16. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  17. Electronic characteristics of doped InAs/GaAs quantum dot photodetector: temperature dependent dark current and noise density

    Science.gov (United States)

    Liao, Chung-Chi; Tang, Shiang-Feng; Chen, Tzu-Chiang; Chiang, Cheng-Der; Yang, San-Te; Su, Wen-Kuan

    2006-02-01

    The noise characteristics associated with dark current, photoconductive gain (PC), capture probability in doped InAs dots embedded in In 0.1Ga 0.9As/GaAs spacer layer have been proposed. The photoconductive and photovoltaic behaviors of the InAs/GaAs quantum dot infrared photodetector (QDIP) from the intersubband transition measurements are also clearly observed. Through noise measurement in dynamic signal analyzer (HP35670A) 1, the electronic bandpass filter frequencies are set up ranging from 3 to 10 KHz in a low noise current preamplifier (SR570) 2. The lock-in amplifier (SR830) 3 can be also used to measure and calibrate the noise density by means of the mean average deviation (MAD) contrast with noise spectra from HP35670A. The InAs/GaAs QDIP studied in this work belongs to n +-n-n + structure with the top and free blocking barrier layers. It is observed that the owing blocking layer of QDIP not only suppress dark current successfully but also probably reduce the photocurrent 4-6. By systematically optoelectronic measurements and simulations, the modified model of noise current, photoconductive gain, and capture probability in the quantum devices have been proposed. It is shown that photoconductive gain is almost independent of bias under the lower bias, then increasing exponentially under higher bias and below the temperature of 80K. In contrast to quantum well infrared photodetector (QWIP), a higher photoconductive gain of the quantum dot infrared photodetector has been demonstrated and attributed to the longer lifetimes of excited carriers in quantum dots 7-10. At 80K, a photoconductive gain of tens of thousand is shown in the regions of higher biases. It is clear to note that the highest detectivity of the QDIP surprisingly approach to 3.0×10 12 cmHz 1/2/W at -0.6V under measured temperature 20 K. Under 80K, the average D* is obtained ~10 10 cmHz 1/2/W. To our knowledge, this is the one of highest D* data in the world.

  18. N-representability-driven reconstruction of the two-electron reduced-density matrix for a real-time time-dependent electronic structure method

    Energy Technology Data Exchange (ETDEWEB)

    Jeffcoat, David B.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 (United States)

    2014-12-07

    Propagating the equations of motion (EOM) for the one-electron reduced-density matrix (1-RDM) requires knowledge of the corresponding two-electron RDM (2-RDM). We show that the indeterminacy of this expression can be removed through a constrained optimization that resembles the variational optimization of the ground-state 2-RDM subject to a set of known N-representability conditions. Electronic excitation energies can then be obtained by propagating the EOM for the 1-RDM and following the dipole moment after the system interacts with an oscillating external electric field. For simple systems with well-separated excited states whose symmetry differs from that of the ground state, excitation energies obtained from this method are comparable to those obtained from full configuration interaction computations. Although the optimized 2-RDM satisfies necessary N-representability conditions, the procedure cannot guarantee a unique mapping from the 1-RDM to the 2-RDM. This deficiency is evident in the mean-field-quality description of transitions to states of the same symmetry as the ground state, as well as in the inability of the method to describe Rabi oscillations.

  19. Electron dynamics and optical properties modulation of monolayer MoS{sub 2} by femtosecond laser pulse: a simulation using time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiaoxing; Jiang, Lan [Beijing Institute of Technology, Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing (China); Wang, Feng [Beijing Institute of Technology, School of Physics, Beijing (China); Su, Gaoshi [Beijing Institute of Technology, School of Mechatronical Engineering, Beijing (China); Qu, Liangti [Beijing Institute of Technology, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing (China); Lu, Yongfeng [University of Nebraska-Lincoln, Department of Electrical Engineering, Lincoln, NE (United States)

    2017-07-15

    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS{sub 2} and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS{sub 2} under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS{sub 2} because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS{sub 2} and has potential applications in direction-dependent optoelectronic devices. (orig.)

  20. Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory

    Science.gov (United States)

    Su, Xiaoxing; Jiang, Lan; Wang, Feng; Su, Gaoshi; Qu, Liangti; Lu, Yongfeng

    2017-07-01

    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS2 and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS2 under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS2 because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS2 and has potential applications in direction-dependent optoelectronic devices.

  1. Phase composition in NiTi near-surface layers after electron beam treatment and its variation depending on beam energy density

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, Marina G., E-mail: artifakt@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Meisner, Ludmila L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Lotkov, Aleksandr I., E-mail: lotkov@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Gudimova, Ekaterina Y., E-mail: lotkov@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    In the work, we study the mechanisms of structural phase state formation in NiTi surface layers after low-energy pulsed electron beam irradiation depending on the electron beam energy density. It is revealed that after electron beam treatment of the NiTi specimens at energy densities E{sub 1} = 15 J/cm{sup 2}, E{sub 2} = 20 J/cm{sup 2}, and E{sub 3} = 30 J/cm{sup 2}, a series of effects is observed: the absence of the Ti2Ni phase and the presence of new peaks correspond to the B19′ martensite phase with monoclinic structure. Estimation of the relative volume content of the B2 and B19′ phases from the total intensity of their peaks shows that the percentage of the martensite phase increases from ∼5 vol.% in the NiTi specimen irradiated at E{sub 1} = 15 J/cm{sup 2} to ∼80 vol.% in the NiTi specimen irradiated at E{sub 3} = 30 J/cm{sup 2}. It is found that in the NiTi specimens irradiated at E ≤ 20 J/cm{sup 2}, the layer that contains a martensite phase resides not on the surface but at some depth from it.

  2. COMMENT: Comment on 'Density dependence of electron-spin polarization and relaxation in intrinsic GaAs at room temperature'

    Science.gov (United States)

    Jiang, J. H.; Wu, M. W.

    2009-12-01

    We comment on the conclusion by Teng et al (2009 J. Phys. D: Appl. Phys. 42 135111) that the Bir-Aronov-Pikus mechanism is more important than the D'yakonov-Perel' mechanism at a high carrier density in intrinsic bulk GaAs. We point out that the spin relaxation is solely from the D'yakonov-Perel' mechanism.

  3. An experimental electron density investigation

    Indian Academy of Sciences (India)

    Unknown

    based on X-ray diffraction measurements at 130 K. The electron density and its associated properties have been evaluated at the bond and the ring critical points for the naphthalene residues as well as for the central ring. The variation of the Laplacian along the axis, above and below the ring plane, is found to be symmetric ...

  4. Electronically Excited States of Vitamin B12: Benchmark Calculations Including Time-Dependent Density Functional Theory and Correlated Ab Initio Methods

    CERN Document Server

    Kornobis, Karina; Wong, Bryan M; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M; 10.1021/jp110914y

    2011-01-01

    Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B12 was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e. B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of relative contributions of DFT and HF to the exchange-correlation functional ...

  5. Electron Density and Temperature Measurements, and Abundance ...

    Indian Academy of Sciences (India)

    Using spectra obtained from the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) spectrograph on the spacecraft SOHO (Solar and Heliospheric Observatory), we investigate the height dependence of electron density, temperature and abundance anomalies in the solar atmosphere. In particular, we present ...

  6. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

    Science.gov (United States)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2016-01-01

    We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

  7. Time-dependent quantum transport: an efficient method based on Liouville-von-Neumann equation for single-electron density matrix.

    Science.gov (United States)

    Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua

    2012-07-28

    Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010)], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.

  8. Parametric dependence of ion temperature and electron density in the SUMMA hot-ion plasma using laser light scattering and emission spectroscopy

    Science.gov (United States)

    Snyder, A.; Patch, R. W.; Lauver, M. R.

    1980-01-01

    Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.

  9. Analytical Schwartz density applied to heavy two-electron ions

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E.; Dehesa, J.S. [Universidad de Granada (Spain); Koga, Toshikatsu [Muroran Institute of Technology (Japan)

    1997-01-20

    An analytical expression of the electron density function p(r) due to Schwartz for two-electron atomic systems is applied to a detailed study of density-dependent properties of relatively heavy two-electron ions. Comparison of the Schwartz results with those from accurate Hartree-Fock and Hylleraas wave functions shows that despite its simple yet analytical form, the Schwartz density has a quantitative applicability in the density study of two-electron atoms within the nonrelativistic framework. 13 refs., 4 tabs.

  10. Determination of electron temperature and electron density in ...

    African Journals Online (AJOL)

    The electron temperatures and electron densities of air and argon have been measured at various pds (pressure times distance). The electron temperatures have been computed using the Johnson-Malter double-probe method. The electron densities have been computed using the total positive ion current and the ...

  11. The electronic and optical properties of the sulvanite compounds: a many-body perturbation and time-dependent density functional theory study.

    Science.gov (United States)

    Espinosa, William Fernando; Perez-Walton, Santiago; Osorio-Guillén, Jorge M; Araujo, Carlos Moyses Graca

    2017-11-28

    We have studied by means of first-principles calculations the electronic and optical properties of the sulvanite family: Cu$_3$MX$_4$ (M = V, Nb, Ta and X = S, Se), that due to its broad range of gaps and chemical stability have emerged as promising materials for technological applications such as photovoltaics and transparent conductivity. To address the reliably of those properties we have used semi-local and hybrid functionals (PBEsol, HSE06), many-body perturbation theory (G$_0$W$_0$ approximation and Bethe-Salpeter equation), and time-dependent density functional theory (revised bootstrap kernel) to calculate the quasi-particle dispersion relation, band gaps, the imaginary part of the macroscopic dielectric function and the absorption coefficient. The calculated valence band maximum and the conduction band minimum are located at the $R$ and $X$-points, respectively. The calculated gaps using PBEsol are between 0.81 and 1.88 eV, with HSE06 are into 1.73 and 2.94 eV, whereas the G$_0$W$_0$ values fall into the 1.91--3.19 eV range. The calculated dielectric functions and absorption coefficients show that all these compounds present continuous excitonic features when the Bethe-Salpeter equation is used. Contrarily, the revised bootstrap kernel is incapable to describe the excitonic spectra. The calculated optical spectra show that Cu$_3$VS$_4$ and Cu$_3$MSe$_4$ have good absorption in the visible, whereas Cu$_3$NbS$_4$ and Cu$_3$TaS$_4$ have it on the near ultraviolet. © 2017 IOP Publishing Ltd.

  12. Investigation of the Electronic Excited States of Small Gold Clusters in Rare Gas Matrices: Spin-Orbit Time-Dependent Density Functional Theory Calculation.

    Science.gov (United States)

    Jamshidi, Zahra; Kaveei, Elham; Mohammadpour, Mozhdeh

    2015-08-13

    The effects of the weak interactions of rare gas atoms on the UV-visible absorption spectra of gold dimer and tetramer clusters are investigated. The time-dependent density functional theory based on the two-component relativistic zeroth-order regular approximation that considered spin-orbit coupling is performed to estimate the absorption spectra of Au2,4-Rgn (Rg = Ne-Xe, and n = 1-6) complexes. Using spin-orbit, including the appropriate functional, shows a close correlation between experiment and our calculations. It is also demonstrated that the weak interactions between rare gas atoms and gold clusters affect the UV-vis spectra of Au2,4 clusters by shifting the electronic transition toward the blue. Moreover, we find that the order of change in peak position, Δν̃, is proportional to the strength of interactions: Δν̃Au2,4-Xe > Δν̃Au2,4-Kr > Δν̃Au2,4-Ar > Δν̃Au2,4-Ne. In addition, comparing the UV-visible spectra of Au2,4-Rgn complexes with those of isolated Au2 and Au4 clusters shows that for Au2,4-Rg2,4,6 complexes in which Rg atoms interacted symmetrically with gold clusters no additional peaks are observed compared to isolated clusters; however, for Au2,4-Rg1,3,5 complexes, extra peaks appear because of the decrease in symmetry.

  13. Density dependence of the yield of hydrated electrons in the low-LET radiolysis of supercritical water at 400 °C: influence of the geminate recombination of subexcitation-energy electrons prior to thermalization.

    Science.gov (United States)

    Meesungnoen, Jintana; Sanguanmith, Sunuchakan; Jay-Gerin, Jean-Paul

    2013-10-21

    Monte Carlo simulations were used to calculate the yield of hydrated electrons (eaq(-)) in the low-linear energy transfer radiolysis of supercritical water at 400 °C as a function of water density over the range of ~0.15 to 0.6 g cm(-3). Very good agreement was found between our calculations and picosecond pulse radiolysis experimental data at ~60 ps and 1 ns at high density (>0.35 g cm(-3)). At densities lower than ~0.35 g cm(-3), our eaq(-) yields were lower than the experimental data, especially at ~60 ps. However, if we incorporated into the simulations a prompt geminate electron-cation (H2O˙(+)) recombination (prior thermalization of the electron) that decreased as the density decreased, our computed eaq(-) yields at ~60 ps and 1 ns compared fairly well with the experimental data for the entire density range studied.

  14. Analyticity of the density of electronic wavefunctions

    DEFF Research Database (Denmark)

    Sørensen, Thomas Østergaard; Fournais, S.; Hoffmann-Ostenhof, M.

    2004-01-01

    We prove that the electronic densities of atomic and molecular eigenfunctions are real analytic in R^3 away from the nuclei.......We prove that the electronic densities of atomic and molecular eigenfunctions are real analytic in R^3 away from the nuclei....

  15. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    CERN Document Server

    Slutskin, A A; Pepper, M

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...

  16. Energy dependence with the number of particles: Density and reduced density matrices functionals

    Science.gov (United States)

    Miranda-Quintana, Ramón A.; Bochicchio, Roberto C.

    2014-02-01

    The energy of a physical domain within a molecular system considered as a quantum open system is analyzed as a functional of the electron distribution dependence with the number of particles. Our attention is focused upon the constrained-search functionals of the electron density, the 1- and 2-reduced density matrices (1-, 2-RDMs) for grand-canonical states. It is shown that functionals of the 2-RDM depend on the number of particles if the ground state energy is not a convex function of them.

  17. Density dependence in North American ducks

    Directory of Open Access Journals (Sweden)

    Jamieson, L. E.

    2004-06-01

    Full Text Available The existence or otherwise of density dependence within a population can have important implications for the management of that population. Here, we use estimates of abundance obtained from annual aerial counts on the major breeding grounds of a variety of North American duck species and use a state space model to separate the observation and ecological system processes. This state space approach allows us to impose a density dependence structure upon the true underlying population rather than on the estimates and we demonstrate the improved robustness of this procedure for detecting density dependence in the population. We adopt a Bayesian approach to model fitting, using Markov chain Monte Carlo (MCMC methods and use a reversible jump MCMC scheme to calculate posterior model probabilities which assign probabilities to the presence of density dependence within the population, for example. We show how these probabilities can be used either to discriminate between models or to provide model-averaged predictions which fully account for both parameter and model uncertainty.

  18. and density-dependent quark mass model

    Indian Academy of Sciences (India)

    659–668. Radial oscillations of magnetized proto strange stars in temperature- and density-dependent quark mass model. V K GUPTA£, ASHA GUPTA, ..... D58, 083001 (1998). [13] O G Benvenuto and G Lugones, Mon. Not. R. Astron. Soc. 304, L25 (1999). [14] V K Gupta, Asha Gupta, S Singh and J D Anand, Int. J. Mod.

  19. Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms.

    Science.gov (United States)

    Xu, Xuefei; Yang, Ke R; Truhlar, Donald G

    2014-05-13

    Conventional time-dependent density functional theory (TDDFT) is based on a closed-shell Kohn-Sham (KS) singlet ground state with the adiabatic approximation, using either linear response (KS-LR) or the Tamm-Dancoff approximation (KS-TDA); these methods can only directly predict singly excited states. This deficiency can be overcome by using a triplet state as the reference in the KS-TDA approximation and "exciting" the singlet by a spin flip (SF) from the triplet; this is the method suggested by Krylov and co-workers, and we abbreviate this procedure as SF-KS-TDA. SF-KS-TDA can be applied either with the original collinear kernel of Krylov and co-workers or with a noncollinear kernel, as suggested by Wang and Ziegler. The SF-KS-TDA method does bring some new practical difficulties into play, but it can at least formally model doubly excited states and states with double-excitation character, so it might be more useful than conventional TDDFT (both KS-LR and KS-TDA) for photochemistry if these additional difficulties can be surmounted and if it is accurate with existing approximate exchange-correlation functionals. In the present work, we carried out calculations specifically designed to understand better the accuracy and limitations of the conventional TDDFT and SF-KS-TDA methods; we did this by studying closed-shell atoms and closed-shell monatomic cations because they provide a simple but challenging testing ground for what we might expect in studying the photochemistry of molecules with closed-shell ground states. To test their accuracy, we applied conventional KS-LR and KS-TDA and 18 versions of SF-KS-TDA (nine collinear and nine noncollinear) to the same set of vertical excitation energies (including both Rydberg and valence excitations) of Be, B(+), Ne, Na(+), Mg, and Al(+). We did this for 10 exchange-correlation functionals of various types, both local and nonlocal. We found that the GVWN5 and M06 functionals with nonlocal kernels in spin-flip calculations

  20. Implications of density-dependent population growth for frequency and density-dependent selection

    Energy Technology Data Exchange (ETDEWEB)

    Smouse, P.E.

    1976-01-01

    The relationship between density-dependent population growth and frequency- and density-dependent selection was investigated. For the haploid asexual case, Malthusian growth leads to constant birth and death rates and constant fitness values. A more general Lotka-Volterrra formulation leads to both density- and frequency-dependent selection. The more general formulation is necessary but not sufficient for polymorphic coexistence in asexual forms. For the diploid sexual case, Malthusian growth leads to frequency-dependent population trajectories, but the basic birth and death rates are constant. A density-dependent model, analogous to the Lotka-Volterra model of the asexual case, leads to both frequency- and density-dependent fitness values and selection differentials. If selective differentials are solely reproductive in origin, whether density dependent or independent, Hardy-Weinberg frequencies characterize the polymorphic equilibrium, when it exists. This is not the case when selection differentials involve survival components, whether density dependent or independent. It is shown that heterosis is not necessary to achieve stable polymorphism and that the polymorphic condition can be maintained by certain types of intergenotypic competition as well.

  1. Time-dependent density functional theory for quantum transport.

    Science.gov (United States)

    Zheng, Xiao; Chen, GuanHua; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing

    2010-09-21

    Based on our earlier works [X. Zheng et al., Phys. Rev. B 75, 195127 (2007); J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.

  2. Precision Electron Density Measurements in the SSX MHD Wind Tunnel

    Science.gov (United States)

    Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.

    2017-10-01

    We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.

  3. Comment on 'Density dependence of electron-spin polarization and relaxation in intrinsic GaAs at room temperature'

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J H; Wu, M W, E-mail: mwwu@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 (China)

    2009-12-07

    We comment on the conclusion by Teng et al (2009 J. Phys. D: Appl. Phys. 42 135111) that the Bir-Aronov-Pikus mechanism is more important than the D'yakonov-Perel' mechanism at a high carrier density in intrinsic bulk GaAs. We point out that the spin relaxation is solely from the D'yakonov-Perel' mechanism. (comment)

  4. Density dependence of clutch size: habitat heterogeneity or individual adjustment?

    NARCIS (Netherlands)

    Both, C.

    1998-01-01

    1. Two hypotheses have been proposed to explain density- dependent patterns in reproduction. The habitat heterogeneity hypothesis (HHH) explains density-dependent reproduction at the population level from poorer quality territories in heterogeneous environments only being occupied at high densities.

  5. Electron-beam guiding by a reduced-density channel

    Science.gov (United States)

    Welch, D. R.; Bieniosek, F. M.; Godfrey, B. B.

    1990-12-01

    A new regime of density-channel guiding of a relativistic electron beam in air has been found using a three-dimensional charged-particle simulation code, and confirmed in a double-pulse electron-beam experiment. The guiding results from the temperature dependence of the electron-neutral momentum-transfer frequency nu(m). The mechanism does not require a deep channel to obtain a significant guiding force. For the 13-kA MEDEA II (and beams of similar parameters), guiding persists 10 nsec into the beam pulse, with the force per channel displacement as high as 4 G/cm.

  6. Valence electronic state density in thorium dioxide

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2008-01-01

    Full Text Available This work analyses the fine low energy (0-40 eV X-ray photoelectron spectra of ThO2, taking into account relativistic Xα-discrete variation electronic structure calculations for the ThO8 (D4h cluster reflecting thorium's close environment in ThO2. As a result, it was theoretically shown and experimentally confirmed that Th5f electrons in ThO2 can participate directly (~0.6 Th5f electrons in chemical bond formation.Th6p electrons were shown to be a significant part (~0.44 Th6p electrons not only of inner valence molecular orbitals, but to play a significant role in outer valence molecular orbitals formation, as well. Inner valence molecular orbitals composition and sequent order were established to belong to the binding energy range of 13 eV to 40 eV. The valence electronic state density in the range of 0-40 eV in ThO2 was also calculated. For the first time, these data allowed an interpretation of the fine X-ray photoelectron spectra (0-40 eV and high resolution O4,5(Th X-ray emition spectral structure (~60 - ~85 eV of ThO2.

  7. Anomalous non-equilibrium electron transport in one-dimensional quantum nano wire at half-filling: time dependent density renormalization group study

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M; Onishi, H; Yamada, S; Machida, M, E-mail: okumura@riken.j

    2010-11-01

    We study non-equilibrium properties of one-dimensional Hubbard model by the density-matrix renormalization-group method. First, we demonstrate stability of 'doublon', which characterized by double occupation on a site due to the integrability of the model. Next, we present a kind of anomalous transport caused by the doublons created under strong non-equilibrium conditions in an optical lattice system regarded as an ideal testbed to investigate fundamental properties of the Hubbard model. Finally, we give a result on development of the pair correlation function in a strong non-equilibrium condition. This can be understood as a development of coherence among many excited doublons.

  8. Progress in Time-Dependent Density-Functional Theory

    CERN Document Server

    Casida, M E

    2011-01-01

    The classic density-functional theory (DFT) formalism introduced by Hohenberg, Kohn, and Sham in the mid-1960s, is based upon the idea that the complicated N-electron wavefunction can be replaced with the mathematically simpler 1-electron charge density in electronic struc- ture calculations of the ground stationary state. As such, ordinary DFT is neither able to treat time-dependent (TD) problems nor describe excited electronic states. In 1984, Runge and Gross proved a theorem making TD-DFT formally exact. Information about electronic excited states may be obtained from this theory through the linear response (LR) theory formalism. Begin- ning in the mid-1990s, LR-TD-DFT became increasingly popular for calculating absorption and other spectra of medium- and large-sized molecules. Its ease of use and relatively good accuracy has now brought LR-TD-DFT to the forefront for this type of application. As the number and the diversity of applications of TD-DFT has grown, so too has grown our understanding of the str...

  9. Wildlife disease elimination and density dependence

    KAUST Repository

    Potapov, A.

    2012-05-16

    Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent (DD) transmission, is ineffective for controlling diseases that are subject to frequency-dependent (FD) transmission. We investigate control for horizontally transmitted diseases with FD transmission where the control is via culling or harvest that is non-selective with respect to infection and the population can compensate through DD recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are FD. Eradication can be achieved under FD transmission when DD birth or recruitment induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination, and there is high enough transmission coefficient, application of both controls may be less efficient than vaccination alone. We illustrate the effects of these control approaches on disease prevalence for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment.

  10. Experimental charge density from electron microscopic maps.

    Science.gov (United States)

    Wang, Jimin

    2017-08-01

    The charge density (CD) distribution of an atom is the difference per unit volume between the positive charge of its nucleus and the distribution of the negative charges carried by the electrons that are associated with it. The CDs of the atoms in macromolecules are responsible for their electrostatic potential (ESP) distributions, which can now be visualized using cryo-electron microscopy at high resolution. CD maps can be recovered from experimental ESP density maps using the negative Laplacian operation. CD maps are easier to interpret than ESP maps because they are less sensitive to long-range electrostatic effects. An ESP-to-CD conversion involves multiplication of amplitudes of structure factors as Fourier transforms of these maps in reciprocal space by 1/d2 , where d is the resolution of reflections. In principle, it should be possible to determine the charges carried by the individual atoms in macromolecules by comparing experimental CD maps with experimental ESP maps. © 2017 The Protein Society.

  11. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  12. Maps for electron cloud density in Large Hadron Collider dipoles

    Directory of Open Access Journals (Sweden)

    T. Demma

    2007-11-01

    Full Text Available The generation of a quasistationary electron cloud inside the beam pipe through beam-induced multipacting processes has become an area of intensive study. The analyses performed so far have been based on heavy computer simulations taking into account photoelectron production, secondary emission, electron dynamics, and space charge effects, providing a detailed description of the electron-cloud evolution. Iriso and Peggs [U. Iriso and S. Peggs, Phys. Rev. ST Accel. Beams 8, 024403 (2005PRABFM1098-440210.1103/PhysRevSTAB.8.024403] have shown that, for the typical parameters of RHIC, the bunch-to-bunch evolution of the average electron-cloud density at a point can be represented by a cubic map. Simulations based on this map formalism are orders of magnitude faster compared to those based on standard particle tracking codes. In this communication we show that the map formalism is also applicable to the case of the Large Hadron Collider (LHC, and that, in particular, it reproduces the average electron-cloud densities computed using a reference code to within ∼15% for general LHC bunch filling patterns. We also illustrate the dependence of the polynomial map coefficients on the physical parameters affecting the electron cloud (secondary emission yield, bunch charge, bunch spacing, etc..

  13. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  14. Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional

    OpenAIRE

    Joubert, Daniel P.

    2011-01-01

    The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.

  15. A mechanistic analysis of density dependence in algal population dynamics

    Directory of Open Access Journals (Sweden)

    Adrian eBorlestean

    2015-04-01

    Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.

  16. The electron density of Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    M. W. Morooka

    2009-07-01

    Full Text Available We have investigated statistically the electron density below 5 cm−3 in the magnetosphere of Saturn (7–80 RS, Saturn radii using 44 orbits of the floating potential data from the RPWS Langmuir probe (LP onboard Cassini. The density distribution shows a clear dependence on the distance from the Saturnian rotation axis (√X2+Y2 as well as on the distance from the equatorial plane (|Z|, indicating a disc-like structure. From the characteristics of the density distribution, we have identified three regions: the extension of the plasma disc, the magnetodisc region, and the lobe regions. The plasma disc region is at L<15, where L is the radial distance to the equatorial crossing of the dipole magnetic field line, and confined to |Z|<5 RS. The magnetodisc is located beyond L=15, and its density has a large variability. The variability has quasi-periodic characteristics with a periodicity corresponding to the planetary rotation. For Z>15 RS, the magnetospheric density distribution becomes constant in Z. However, the density still varies quasi-periodically with the planetary rotation also in this region. In fact, the quasi-periodic variation has been observed all over the magnetosphere beyond L=15. The region above Z=15 RS is identified as the lobe region. We also found that the magnetosphere can occasionally move latitudinally under the control of the density in the magnetosphere and the solar wind. From the empirical distributions of the electron densities obtained in this study, we have constructed an electron density model of the Saturnian nightside magnetosphere beyond 7 RS. The obtained model can well reproduce the observed density distribution, and can thus be useful for magnetospheric modelling studies.

  17. Electron-density topology in molecular systems: Paired and unpaired densities

    Science.gov (United States)

    Lobayan, Rosana M.; Bochicchio, Roberto C.; Lain, Luis; Torre, Alicia

    2005-10-01

    This work studies the partitioning of the electron density into two contributions which are interpreted as the paired and the effectively unpaired electron densities. The topological features of each density field as well as of the total density are described localizing the corresponding critical points in simple selected molecules (local formalism). The results show that unpaired electron-density concentrations occur out of the topological bonding regions whereas the paired electron densities present accumulations inside those regions. A comparison of these results with those arising from population analysis techniques (nonlocal or integrated formalisms) is reported.

  18. Inversion of Ionospheric Electron Density from GPS Beacon Observations

    Institute of Scientific and Technical Information of China (English)

    Zou Yu-hua; Xu Ji-sheng

    2003-01-01

    This paper studies the mathematical foundation of time-dependent three-dimensional (3-D) computerized ionospheric tomography (CIT) for reconstructing ionospheric electron density, Ne, from ground-based GPS beacon observations. After simplifying the relation between Ne and time,the time-dependent 3-D inversion in consideration is reduced to a 3-D tomography with incomplete projections.To see clearly the effects of the incompleteness on the quality of reconstruction under 3-D condition, the formula of 3-D parallel-beam tomography is deduced theoretically. After establishing the mathematical foundation, simulations based on actual GPS ray paths with the help of the IRI-90 model are performed,and reasonable time-dependent 3-D distribution images of Neare obtained when taking proper layout of the network and allowing variable resolutions. The quality of the reconstruction is rather good when compared with the images from the IRI-90 model directly. Therefore, results in this paper demon-strate that imaging of the ionospheric electron density distri-bution from GPS beacon observations is reasonable in theory and feasible in practice.

  19. Inversion of Ionospheric Electron Density from GPS Beacon Observations

    Institute of Scientific and Technical Information of China (English)

    ZouYu-hua; XuJi-sheng

    2003-01-01

    This paper studies the mathematical foundation of time-dependent three-dimensional (3-D) computerized ionospheric tomography (CIT) for reconstructing ionospheric electron density, N~, from ground-based GPS beacon observations. After simplifying the relation between N. and time,the time-dependent 3-D inversion in consideration is reduced to a 3-D tomography with incomplete projections. To see clearly the effects of the incompleteness on the quality of reconstruction under 3-D condition, the formula of 3-D parallelbeam tomogtTaphy is deduced theoretically. After establishing the mathematical foundation, simulations based on actual GPS ray paths with the help of the IRI-90 model are performed,and reasonable time-dependent 3-D distribution images of Ne are obtained when taking proper layout of the network and allowing variable resolutions. The quality of the reconstruction is rather good when compared with the images from the IRI-90 model directly. Therefore, results in this paper demonstrate that imaging of the ionospheric electron density distribution from GPS beacon observations is reasonable in theor yand feasible in practice.

  20. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K.; Riedel, K. [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  1. Density-dependent growth in invasive Lionfish (Pterois volitans.

    Directory of Open Access Journals (Sweden)

    Cassandra E Benkwitt

    Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  2. Density dependence in demography and dispersal generates fluctuating invasion speeds.

    Science.gov (United States)

    Sullivan, Lauren L; Li, Bingtuan; Miller, Tom E X; Neubert, Michael G; Shaw, Allison K

    2017-05-09

    Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities-i.e., an Allee effect-combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting.

  3. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  4. Density-dependent feedbacks can mask environmental drivers of populations

    DEFF Research Database (Denmark)

    Dahlgren, Johan Petter

    I present some results from studies identifying environmental drivers of vital rates and population dynamics when controlling for intraspecific density statistically or experimentally, show that density dependence can be strong even in populations of slow-growing species in stressful habitats......, and argue that controlling for density will often be necessary for identifying spatial variation in environmental drivers of demographic patterns in plants....

  5. Prevalence and strength of density-dependent tree recruitment

    Science.gov (United States)

    Kai Zhu; Christopher W. Woodall; Joao V.D. Monteiro; James S. Clark

    2015-01-01

    Density dependence could maintain diversity in forests, but studies continue to disagree on its role. Part of the disagreement results from the fact that different studies have evaluated different responses (survival, recruitment, or growth) of different stages (seeds, seedlings, or adults) to different inputs (density of seedlings, density or distance to adults). Most...

  6. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.  Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  7. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, C.

    1998-01-01

    1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  8. Density dependence of clutch size : habitat heterogeneity or individual adjustment?

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.   Two hypotheses have been proposed to explain density-dependent patterns in reproduction. The habitat heterogeneity hypothesis (HHH) explains density-dependent reproduction at the population level from poorer quality territories in hetero geneous environments only being occupied at high

  9. Polar cap electron densities from DE 1 plasma wave observations

    Science.gov (United States)

    Persoon, A. M.; Gurnett, D. A.; Shawhan, S. D.

    1983-01-01

    Electric-field-spectum measurements from the plasma-wave instrument on the Dynamics Explorer 1 spacecraft are used to study the local electron density at high altitudes in the northern polar-cap region. The electron density is determined from the upper cutoff of whistler-mode radiation at the electron plasma frequency. Median density values over the polar cap at L greater than 10 are found to vary from 35.2 + or - 8.5 cu cm at 2.1 earth radii to 0.99 + or - 0.51 cu cm at 4.66 earth radii. The steady-state radial-outflow model is examined for consistency with the observed density profile. A power-law fit to the radial variation of the electron density yields an exponent of - 3.85 + or - 0.32, which for the radial-outflow model implies a flow velocity increasing nearly linearly with incresing radial distance. Comparison of the observed electron densities with theoretical polar-wind densities yields consistent results up to 2.8 earth radii. A comparison of the observed electron densities with low-altitude density profiles from the Alouette II and ISIS 1 spacecraft illustrates transitions in the slope of the profile at 1.16 earth radii and between 1.55 and 2.0 earth radii. The changes in the density profile suggest that changes occur in the basic radial-transport processes at these altitudes.

  10. Electron localization in low-density quantum rings

    Science.gov (United States)

    Pederiva, F.; Emperador, A.; Lipparini, E.

    2002-10-01

    We present a systematic study of ground and excited states of the six-electron nanoscopic ring by fixed-node diffusion Monte Carlo calculations for a wide range of ring diameters and strengths of the harmonic confinement. We compare the density and correlation energies to the predictions of local spin density approximation theory, Hartree-Fock theory, and a model in which electrons are localized along the vertices of an hexagon, and analyze the electron-electron pair-correlation functions. We find evidence for a Wigner crystallization transition as the density is lowered. Conversely, evidence for a spin polarization transition is not found.

  11. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.

    Science.gov (United States)

    Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan

    2017-12-15

    The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Density dependence of spin relaxation in GaAs quantum well at room temperature

    Science.gov (United States)

    Teng, L. H.; Zhang, P.; Lai, T. S.; Wu, M. W.

    2008-10-01

    Carrier density dependence of electron spin relaxation in an intrinsic GaAs quantum well is investigated at room temperature using time-resolved circularly polarized pump-probe spectroscopy. It is revealed that the spin relaxation time first increases with density in the relatively low-density regime where the linear D'yakonov-Perel' spin-orbit coupling terms are dominant, and then tends to decrease when the density is large and the cubic D'yakonov-Perel' spin-orbit coupling terms become important. These features are in good agreement with theoretical predictions on density dependence of spin relaxation by Lüet al. (Phys. Rev. B, 73 (2006) 125314). A fully microscopic calculation based on numerically solving the kinetic spin Bloch equations with both the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms included, reproduces the density dependence of spin relaxation very well.

  13. Density-dependent growth in invasive Lionfish (Pterois volitans)

    National Research Council Canada - National Science Library

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans...

  14. Evolution of complex density-dependent dispersal strategies.

    Science.gov (United States)

    Parvinen, Kalle; Seppänen, Anne; Nagy, John D

    2012-11-01

    The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, "triple-threshold" strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.

  15. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  16. Overpotential-induced lability of the electronic overlap factor in long-range electrochemical electron transfer: charge and distance dependence

    DEFF Research Database (Denmark)

    Kornyshev, A. A.; Kuznetsov, A. M.; Nielsen, Jens Ulrik

    2000-01-01

    Long-distance electrochemical electron transfer exhibits approximately exponential dependence on the electron transfer distance. On the basis of a jellium model of the metal surface we show that the slope of the logarithm of the current vs. the transfer distance also depends strongly...... on the electrode charge. The slope is smaller the more negative the charge density due to enhanced extension of the surface electronic density profile on the solution side, and thereby better electronic overlap with the reacting molecule. The effect is sensitive to the bulk electron density of the metal...... and the localization of the electronic state at the molecular reactant site. Effects similar to these have been observed experimentally and could be common for electronically light metals....

  17. MGS RS: IONOSPHERIC ELECTRON DENSITY PROFILES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains 5600 ionospheric electron density profiles (EDS files) derived from Mars Global Surveyor (MGS) radio occultation data. The profiles were...

  18. QTAIM electron density study of natural chalcones

    Science.gov (United States)

    González Moa, María J.; Mandado, Marcos; Cordeiro, M. Natália D. S.; Mosquera, Ricardo A.

    2007-09-01

    QTAIM atomic and bond properties, ionization potential, and O-H bond dissociation energies calculated at the B3LYP/6-311++G(2d,2p) level indicate the natural chalcones bear a significant radical scavenging activity. However, their ionization potentials indicate they decrease the electron-transfer rate between antioxidant and oxygen that yields the pro-oxidative cations less than other natural antioxidants. Rings A and B display slight and similar positive charges, whereas ring B is involved in exocycle delocalization at a larger extension.

  19. Field dependence of critical current density in flat superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Ryuji [Faculty of Engineering, Oita University, 700 Dannoharu Oita (Japan); Fukami, Takeshi [Department of Materials Science and Engineering, Himeji Institute of Technology, Himeji (Japan); Tamegai, Tsuyoshi, E-mail: ryuji-kondo@susi.oita-u.ac.j [Department of Applied Physics, University of Tokyo, Tokyo (Japan)

    2009-03-01

    Surface field of a thin superconductor YBa{sub 2}Cu{sub 3}O{sub 7-delta} in mixed state is measured by a Hall probe array. To reproduce the measured field profiles, shielding current distributions are determined by numerical iterative calculations without supposing any models for field dependence of critical current density J{sub c} (B). Utilizing the estimated local current density and local magnetic field for x - y coordinates, a field variation of current density is plotted. Though any model for J{sub c} (B) is not used for numerical calculations, the field variation roughly shows a dependence like Kim model.

  20. Strain-confined electron-hole liquid in Ge: Density variations and compressibility

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, S.M.

    1982-07-15

    We present a detailed theoretical and experimental investigation of a spatial variation in the electron-hole--pair density in the strain-confined electron-hole liquid in Ge. The density variation can be dramatic: We observed a compression of the central density by a factor of 3 for our largest drop radius, Rroughly-equal0.7 mm. Our experimental density profiles, obtained using Abel transforms of spatial luminescence profiles, are in good agreement with the theoretical predictions of approximately parabolic profiles with densities larger than the equilibrium value at the center of the drop. Our previous first-order theory has been extended to include the full density dependence of the pair free energy at finite stress and temperature. We discuss the shape and power dependence of spatial luminescence profiles and luminescence spectra, since the spatial density variation increases with drop size. We use the central densities for drop sizes ranging over an order of magnitude to measure the density dependence of the electron-hole--liquid chemical potential, providing a sensitive test of many-body theories for the correlation energy. We obtain an improved value for the isothermal compressibility of the strain-confined liquid: K/sub T/ = 0.067 +- 0.017 cm/sup 2//dyn for n = 0.47 x 10/sup 17/ cm/sup -3/, T = 1.9 K, and -sigma = 5.5 kgf/mm/sup 2/, where kgf represents kilogram force.

  1. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  2. Time-Dependent (Current) Density Functional Theory for Periodic Systems

    NARCIS (Netherlands)

    Kootstra, F.; Boeij, P.L. de; Leeuwen, R. van; Snijders, J.G.

    2002-01-01

    In this article we review time-dependent density functional theory for calculating the static and frequency-dependent dielectric function ε(ω) of nonmetallic crystals. We show that a real-space description becomes feasible for solids by using a combination of a lattice-periodic (microscopic) scalar

  3. Impact of density-dependent symmetry energy and Coulomb ...

    Indian Academy of Sciences (India)

    Research Articles Volume 82 Issue 3 March 2014 pp 515-527 ... In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry ... School of Physics and Material Science, Thapar University, Patiala 147 004, India ...

  4. Dependence of various SOL widths on plasma current and density in NSTX H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, J; Maingi, R; Boedo, J; Soukhanovskii, V A

    2009-02-12

    The dependence of various SOL widths on the line-averaged density ({ovr n}{sub e}) and plasma current (l{sub p}) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ({lambda}{sub q}), measured by the IR camera, is virtually insensitive to {ovr n}{sub e} and has a strong negative dependence on l{sub p}. This insensitivity of {lambda}{sub q} to {ovr n}{sub e} is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ({lambda}{sub Te}, {lambda}{sub jsat}, {lambda}{sub ne}, and {lambda}{sub pe}, respectively) measured by the probe showed that {lambda}{sub Te} and {lambda}{sub jsat} have strong negative dependence on l{sub p}, whereas {lambda}{sub ne} and {lambda}{sub pe} revealed only a little or no dependence. The dependence of {lambda}{sub Te} on l{sub p} is consistent with the scaling law in the literature while {lambda}{sub ne} and {lambda}{sub pe} dependence shows a different trend.

  5. Measurement of electron density profile by microwave reflectometry on tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, F.

    1985-05-01

    A new method for measuring the electron density spatial profile has been successfully tested on the tokamak of Fontenay aux Roses (TFR). This method is based on the total reflection experienced by a wave of frequency F on the layer where F = F/sub p/e(r). The experimental results show that the maximum electron density in the discharge is also easily measured and that accurate determination of a density profile can be obtained with a time resolution of 5 ms. This diagnostic is well adapted to all fusion devices where access to the total plasma cross section is limited, particularly for large tokamaks.

  6. Charge transfer in time-dependent density functional theory

    Science.gov (United States)

    Maitra, Neepa T.

    2017-10-01

    Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.

  7. Tomography of the ionospheric electron density with geostatistical inversion

    Directory of Open Access Journals (Sweden)

    D. Minkwitz

    2015-08-01

    Full Text Available In relation to satellite applications like global navigation satellite systems (GNSS and remote sensing, the electron density distribution of the ionosphere has significant influence on trans-ionospheric radio signal propagation. In this paper, we develop a novel ionospheric tomography approach providing the estimation of the electron density's spatial covariance and based on a best linear unbiased estimator of the 3-D electron density. Therefore a non-stationary and anisotropic covariance model is set up and its parameters are determined within a maximum-likelihood approach incorporating GNSS total electron content measurements and the NeQuick model as background. As a first assessment this 3-D simple kriging approach is applied to a part of Europe. We illustrate the estimated covariance model revealing the different correlation lengths in latitude and longitude direction and its non-stationarity. Furthermore, we show promising improvements of the reconstructed electron densities compared to the background model through the validation of the ionosondes Rome, Italy (RO041, and Dourbes, Belgium (DB049, with electron density profiles for 1 day.

  8. Ionospheric topside models compared with experimental electron density profiles

    Directory of Open Access Journals (Sweden)

    S. M. Radicella

    2005-06-01

    Full Text Available Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC.

  9. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  10. A simple and straightforward expression for curling probe electron density diagnosis in reactive plasmas

    Science.gov (United States)

    Arshadi, Ali; Brinkmann, Ralf Peter; Hotta, Masaya; Nakamura, Keiji

    2017-04-01

    Active plasma resonance spectroscopy (APRS) refers to the family of plasma diagnostic methods which utilize the ability of plasmas to resonate at frequencies close to the plasma frequency. APRS operates by exciting the plasma with a weak RF signal by means of a small electric probe. The response of the plasma is recorded by a network analyzer (NA). A mathematical model is applied to derive characteristics like the electron density and the electron temperature. The curling probe is a promising realization of APRS. The curling probe is well-qualified for the local measurement of the electron density in reactive plasmas. This spiral probe resonates in plasma at a larger density dependent frequency than the plasma frequency. This manuscript represents a simple and straightforward expression relating this resonance frequency to the electron density of the plasma. A good agreement is observed between the proposed expression and the results obtained from previous studies and numerical simulations.

  11. Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations

    Science.gov (United States)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Modolo, R.; Nagy, A. F.; Najib, D.

    2008-07-01

    In addition to remote radio sounding of the ionosphere of Mars, the MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) instrument on the Mars Express spacecraft is also able to measure the in situ electron density from the excitation of local electron plasma oscillations. This paper presents an investigation of the electron density in the upper ionosphere of Mars based on the frequency of these oscillations. The advantage of this method is that electron densities can be measured at much higher altitudes than can be determined from remote radio soundings. Using this technique electron densities from 503 orbits have been analyzed over the period from 4 August 2005 to 31 July 2007 for altitudes ranging from about 275 to 1300 km. Although there is considerable variability from orbit to orbit, the median electron density at a given solar zenith angle (SZA) on the dayside of Mars decreases systematically with increasing altitude with a characteristic plasma scale height varying from about 80 to 145 km. At a fixed altitude, the electron density remains almost constant for SZAs less than about 80°. For SZAs greater than about 80° the electron density decreases rapidly with increasing SZA, approaching very low values on the nightside. Simulations performed using both magnetohydrodynamic and hybrid codes show that the nearly constant density at a given altitude is caused by the horizontal transport of plasma from the dayside toward the nightside due to interaction with the solar wind.

  12. Density-dependent nest predation in waterfowl: the relative importance of nest density versus nest dispersion.

    Science.gov (United States)

    Ringelman, Kevin M; Eadie, John M; Ackerman, Joshua T

    2012-07-01

    When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for "dispersion-dependent" predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.

  13. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M. [Departament d' Estructura i Conastituents de la Materia and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Marti i Franques 1, 08028, Barcelona (Spain); Instituto Nazionale di Fisica Nucleare, Sezione di Milano , Via Celoria 16, I-20133 Milano (Italy); Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skodowskiej ul. Radziszewskiego 10, 20-031 Lublin (Poland)

    2012-10-20

    The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in {sup 208}Pb.

  14. Auroral E-region electron density gradients measured

    Directory of Open Access Journals (Sweden)

    C. Haldoupis

    2000-09-01

    Full Text Available In the theory of E-region plasma instabilities, the ambient electric field and electron density gradient are both included in the same dispersion relation as the key parameters that provide the energy for the generation and growth of electrostatic plasma waves. While there exist numerous measurements of ionospheric electric fields, there are very few measurements and limited knowledge about the ambient electron density gradients, ∇Ne, in the E-region plasma. In this work, we took advantage of the EISCAT CP1 data base and studied statistically the vertical electron density gradient length, Lz=Ne/(dNe/dz, at auroral E-region heights during both eastward and westward electrojet conditions and different ambient electric field levels. Overall, the prevailing electron density gradients, with Lz ranging from 4 to 7 km, are found to be located below 100 km, but to move steadily up in altitude as the electric field level increases. The steepest density gradients, with Lz possibly less than 3 km, occur near 110 km mostly in the eastward electrojet during times of strong electric fields. The results and their implications are examined and discussed in the frame of the linear gradient drift instability theory. Finally, it would be interesting to test the implications of the present results with a vertical radar interferometer.Key words: Ionosphere (auroral ionosphere; ionospheric irregularities; plasma waves and instabilities  

  15. Auroral E-region electron density gradients measured

    Directory of Open Access Journals (Sweden)

    G. Hussey

    Full Text Available In the theory of E-region plasma instabilities, the ambient electric field and electron density gradient are both included in the same dispersion relation as the key parameters that provide the energy for the generation and growth of electrostatic plasma waves. While there exist numerous measurements of ionospheric electric fields, there are very few measurements and limited knowledge about the ambient electron density gradients, ∇Ne, in the E-region plasma. In this work, we took advantage of the EISCAT CP1 data base and studied statistically the vertical electron density gradient length, Lz=Ne/(dNe/dz, at auroral E-region heights during both eastward and westward electrojet conditions and different ambient electric field levels. Overall, the prevailing electron density gradients, with Lz ranging from 4 to 7 km, are found to be located below 100 km, but to move steadily up in altitude as the electric field level increases. The steepest density gradients, with Lz possibly less than 3 km, occur near 110 km mostly in the eastward electrojet during times of strong electric fields. The results and their implications are examined and discussed in the frame of the linear gradient drift instability theory. Finally, it would be interesting to test the implications of the present results with a vertical radar interferometer.Key words: Ionosphere (auroral ionosphere; ionospheric irregularities; plasma waves and instabilities  

  16. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  17. Electronic Structure of Matter Wave Functions and Density Functionals.

    CERN Document Server

    Kohn, W

    1999-01-01

    Since the 1920's Schroedinger wave functions have been the principal theoretical concept for understanding and computing the electronic structure of matter. More recently, Density Functional Theory (DFT), couched in terms of the electronic density distribution, n(r), has provided a new perspective and new computational possibilities, especially for systems consisting of very many (up to ~1000) atoms. In this talk some fundamental limitations of wave function methods for very-many-atom-systems will be discussed. The DFT approach will be explained together with some physical/chemical applications and a discussion of its strenghts and weaknesses.

  18. Comment on "Conspecific negative density dependence and forest diversity".

    Science.gov (United States)

    Dickie, Ian A; Hurst, Jennifer M; Bellingham, Peter J

    2012-10-26

    Johnson and colleagues (Reports, 18 May 2012, p. 904) claim that conspecific negative density dependence is a pervasive mechanism driving forest diversity, especially for rare tree species. We show that their results are due to a statistical bias in their analysis caused by the exclusion of joint absences.

  19. Bulk viscosity of strange quark matter in density dependent quark ...

    Indian Academy of Sciences (India)

    Abstract. We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where u, d masses were neglected and first order interactions were taken into account. We find that at low temperatures and ...

  20. Impact of density-dependent symmetry energy and Coulomb ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... exhausted by the pygmy dipole resonance in 68Ni+132Sn, are useful for the investigation of neutron radii and the observables which can shed light on the density dependence of symmetry energy [10,11]. The collective flow [9], pygmy dipole resonance, and neutron skin thickness [4,11] are suggested to ...

  1. Evolution of density-dependent movement during experimental range expansions.

    Science.gov (United States)

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  2. Density-dependent changes in reproductive parameters and ...

    African Journals Online (AJOL)

    Biological parameters did not vary in or out of phase with time-series of sea surface temperature in the southern Benguela, weakening the hypothesis of environmentally mediated changes in these parameters and hence providing support for the hypothesis of a direct density-dependent response by sardine. Keywords: ...

  3. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  4. Energy and centrality dependence of rapidity densities at RHIC energies.

    Science.gov (United States)

    Wang, X N; Gyulassy, M

    2001-04-16

    The energy and centrality dependence of the charged multiplicity per participant nucleon is shown to be able to differentiate between final state saturation and fixed scale perturbative QCD models of initial entropy production in high-energy heavy-ion collisions. The energy dependence is shown to test the nuclear enhancement of the minijet component of the initial conditions, while the centrality dependence provides a key test of whether gluon saturation is reached at RHIC energies. The HIJING model predicts that the rapidity density per participant increases with centrality, while the saturation model prediction is essentially independent of centrality.

  5. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    Science.gov (United States)

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  6. Spin dependent electron transport in nanostructures

    Science.gov (United States)

    Yanik, Ahmet Ali

    2007-12-01

    with experimental data. For MTJs with embedded magnetic impurity layers, this model is able to capture and explain three distinctive experimental features reported in the literature regarding the dependence of the junction magneto-resistances (JMRs) on (1) barrier thickness, (2) barrier heights and (3) the concentrations of magnetic impurities [5,6,29,46]. Although in this dissertation our treatment was restricted to the electron-impurity spin exchange interactions, the NEGF model presented here allows one to incorporate other spin exchange scattering processes involving nuclear hyperfine, Bir-Aranov-Pikus (electron-hole) and electron-magnon interactions. This model is general and can be used to analyze and design a variety of spintronic devices beyond the large cross-section multilayer devices explored in this work.

  7. Stochasticity and determinism: how density-independent and density-dependent processes affect population variability.

    Science.gov (United States)

    Ohlberger, Jan; Rogers, Lauren A; Stenseth, Nils Chr

    2014-01-01

    A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength of the processes, the timing of density regulation may affect how stochastic variation, for instance through climate, translates into changes in adult abundance. In this study, we develop a life-cycle model for the population dynamics of a large marine fish population, Northeast Arctic cod, to disentangle the effects of density-independent and density-dependent processes on early life-stages, and to quantify the strength of compensatory density dependence in the population. The model incorporates information from scientific surveys and commercial harvest, and dynamically links multiple effects of intrinsic and extrinsic factors on all life-stages, from eggs to spawners. Using a state-space approach we account for observation error and stochasticity in the population dynamics. Our findings highlight the importance of density-dependent survival in juveniles, indicating that this period of the life cycle largely determines the compensatory capacity of the population. Density regulation at the juvenile life-stage dampens the impact of stochastic processes operating earlier in life such as environmental impacts on the production of eggs and climate-dependent survival of larvae. The timing of stochastic versus regulatory processes thus plays a crucial role in determining variability in adult abundance. Quantifying the contribution of environmental stochasticity and compensatory mechanisms in determining population abundance is essential for assessing population responses to climate change and exploitation by humans.

  8. Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling

    Science.gov (United States)

    Gerzen, T.; Feltens, J.; Jakowski, N.; Galkin, I.; Reinisch, B.; Zandbergen, R.

    2016-09-01

    The electron density of the topside ionosphere and the plasmasphere contributes essentially to the overall Total Electron Content (TEC) budget affecting Global Navigation Satellite Systems (GNSS) signals. The plasmasphere can cause half or even more of the GNSS range error budget due to ionospheric propagation errors. This paper presents a comparative study of different plasmasphere and topside ionosphere data aiming at establishing an appropriate database for plasmasphere modelling. We analyze electron density profiles along the geomagnetic field lines derived from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite/Radio Plasma Imager (RPI) records of remote plasma sounding with radio waves. We compare these RPI profiles with 2D reconstructions of the topside ionosphere and plasmasphere electron density derived from GNSS based TEC measurements onboard the Challenging Minisatellite Payload (CHAMP) satellite. Most of the coincidences between IMAGE profiles and CHAMP reconstructions are detected in the region with L-shell between 2 and 5. In general the CHAMP reconstructed electron densities are below the IMAGE profile densities, with median of the CHAMP minus IMAGE residuals around -588 cm-3. Additionally, a comparison is made with electron densities derived from passive radio wave RPI measurements onboard the IMAGE satellite. Over the available 2001-2005 period of IMAGE measurements, the considered combined data from the active and passive RPI operations cover the region within a latitude range of ±60°N, all longitudes, and an L-shell ranging from 1.2 to 15. In the coincidence regions (mainly 2 ⩽ L ⩽ 4), we check the agreement between available active and passive RPI data. The comparison shows that the measurements are well correlated, with a median residual of ∼52 cm-3. The RMS and STD values of the relative residuals are around 22% and 21% respectively. In summary, the results encourage the application of IMAGE RPI data for

  9. Saturating interactions in /sup 4/He with density dependence

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, S.D.; Resler, D.A.; Moszkowski, S.A.

    1989-05-03

    With the advent of larger and faster computers, as well as modern shell model codes, nuclear structure calculations for the light nuclei (A<16) which include full 2/bar h/..omega.. model spaces are quite feasible. However, there can be serious problems in the mixing of 2/bar h/..omega.. and higher excitations into the low-lying spectra if the effective interaction is non-saturating. Furthermore, effective interactions which are both saturating and density dependent have not generally been used in previous nuclear structure calculations. Therefore, we have undertaken studies of /sup 4/He using two-body potential interactions which incorporate both saturation and density-dependence. Encouraging initial results in remedying the mixing of 0 and 2/bar h/..omega.. excitations have been obtained. We have also considered the effects of our interaction on the /sup 4/He compressibility and the centroid of the breathing mode strength. First indications are that a saturating effective interaction, with a short-range density dependent part and a long-range density independent part, comes close to matching crude predictions for the compressibility of /sup 4/He. 11 refs., 6 tabs.

  10. Electron density distribution in Si and Ge using multipole, maximum ...

    Indian Academy of Sciences (India)

    In this work, the local structural information has also been obtained by analyzing the atomic pair distribution function. An attempt has been made in the present work to utilize the X-ray powder data sets to refine the structure and electron density distribution using the currently available versatile methods, MEM, multipole ...

  11. Effective atomic number, electron density and kerma of gamma ...

    Indian Academy of Sciences (India)

    Abstract. An attempt has been made to estimate the effective atomic number, electron density. (0.001 to 105 MeV) and kerma (0.001 to 20 MeV) of gamma radiation for a wide range of oxides of lanthanides using mass attenuation coefficient from WinXCom and mass energy absorption coef- ficient from Hubbell and Seltzer.

  12. Monitoring the three-dimensional ionospheric electron density ...

    Indian Academy of Sciences (India)

    In this paper, an IRI model assisted GPS-based Computerized Ionospheric Tomography (CIT) technique is developed to inverse the ionospheric electron density (IED) distribution over China. Essentially, an improved algebraic reconstruction technique (IART) is first proposed to reconstruct the ionospheric images with high ...

  13. The electron-propagator approach to conceptual density-functional ...

    Indian Academy of Sciences (India)

    Both electron propagator theory and density-functional theory provide conceptually useful information about chemical reactivity and, most especially, charge transfer. This paper elucidates thequalitative and quantitative links between the two theories, with emphasis on how the reactivity indicators of conceptual ...

  14. Measurements of plasma temperature and electron density in laser ...

    Indian Academy of Sciences (India)

    Abstract. Plasma produced by a 355 nm pulsed Nd:YAG laser with a pulse duration of 6 ns focussed onto a copper solid sample in air at atmospheric pressure is studied spectroscopically. The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion ...

  15. Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals

    Science.gov (United States)

    Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.

    2016-12-01

    The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.

  16. Electron Densities in the Upper Ionosphere of Mars from the Excitation of Local Electron Plasma Oscillations

    Science.gov (United States)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Modolo, R.; Nagy, A. F.; Najib, D.; Plaut, J. J.; Picardi, G.

    2007-12-01

    In addition to the remote sounding of the ionosphere, the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on the Mars Express spacecraft, also excites local electron plasma oscillations. This paper summarizes the investigation of the local electron density using measurements of the locally excited electron plasma oscillation frequency. One of the advantages of this method is that the electron densities can be measured at very high altitudes, where remote ionospheric echoes cannot be detected. Measurements from 503 orbits over the period from August 4, 2005 to July 31, 2007 show that the average electron densities at a given solar zenith angle (SZA) decrease exponentially with increasing altitude. There is considerable variability at a given altitude due to the fact that the data at a specific altitude are obtained from different orbits. On the dayside of Mars, this exponential behavior continues up to altitudes of around 750 km. The scale height, in this altitude region, ranges between 130 km and 190 km. The average electron density is almost constant throughout the dayside in a given altitude range, but decreases rapidly as the spacecraft goes into the nightside. Simulations performed using different methods, show that the nearly constant density at a given altitude is due to transport effects. Investigation of individual orbits shows that the electron density throughout a pass often has large fluctuations, sometimes as much as ne/ne ~ 50 %, on time scales as small as 8 s.

  17. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, X.; Centelles, M. [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Facultat de Fisica, Barcelona (Spain); Roca-Maza, X. [Universita degli Studi di Milano (Italy); INFN, Dipartamento di Fisica, Milano (Italy); Warda, M. [Uniwersytet Marii Curie-Sklodowskiej ul. Radziszewskiego 10, Katedra Fizyki Teoretycznej, Lublin (Poland)

    2014-02-15

    The density dependence of the symmetry energy around saturation density, characterized by the slope parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate for L is obtained from experimental data on neutron skins extracted from antiprotonic atoms. We also discuss the ability of parity-violating elastic electron scattering to obtain information on the neutron skin thickness in {sup 208}Pb and to constrain the density dependence of the nuclear symmetry energy. The size and shape of the neutron density distribution of {sup 208}Pb predicted by mean-field models is briefly addressed. We conclude with a comparative overview of the L values predicted by several existing determinations. (orig.)

  18. Fast electronic resistance switching involving hidden charge density wave states

    Science.gov (United States)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  19. Secondary-electron-emission spectroscopy of tungsten: Angular dependence and phenomenology

    DEFF Research Database (Denmark)

    Willis, Roy F.; Christensen, Niels Egede

    1978-01-01

    Angle-resolved energy-distribution measurements of secondary-electron emission (SEE) from metals reveal spectral fine structure that relates directly to the density distribution of the one-electron states throughout E-K→ space located above the vacuum level Ev. The angular dependence of the SEE s...... to electron emission phenomenology of metal surfaces, thereby establishing a relationship with recently developed low-energy electron diffraction, photoemission, and field-emission formalism....

  20. Modelling interactions of toxicants and density dependence in wildlife populations

    Science.gov (United States)

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  1. Electron Density Determination, Bonding and Properties of Tetragonal Ferromagnetic Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Wiezorek, Jorg [Univ. of Pittsburgh, PA (United States)

    2016-09-01

    The project developed quantitative convergent-beam electron diffraction (QCBED) methods by energy-filtered transmission electron microscopy (EFTEM) and used them in combination with density functional theory (DFT) calculations to study the electron density distribution in metallic and intermetallic phases with different cubic and non-cubic crystal structures that comprise elements with d-electron shells. The experimental methods developed here focus on the bonding charge distribution as one of the quantum mechanical characteristics central for understanding of intrinsic properties and validation of DFT calculations. Multiple structure and temperature factors have been measured simultaneously from nano-scale volumes of high-quality crystal with sufficient accuracy and precision for comparison with electron density distribution calculations by DFT. The often anisotropic temperature factors for the different atoms and atom sites in chemically ordered phases can differ significantly from those known for relevant pure element crystals due to bonding effects. Thus they have been measured from the same crystal volumes from which the structure factors have been determined. The ferromagnetic ordered intermetallic phases FePd and FePt are selected as model systems for 3d-4d and 3d-5d electron interactions, while the intermetallic phases NiAl and TiAl are used to probe 3d-3p electron interactions. Additionally, pure transition metal elements with d-electrons have been studied. FCC metals exhibit well defined delocalized bonding charge in tetrahedral sites, while less directional, more distributed bonding charge attains in BCC metals. Agreement between DFT calculated and QCBED results degrades as d-electron levels fill in the elements, and for intermetallics as d-d interactions become prominent over p-d interactions. Utilizing the LDA+U approach enabled inclusion of onsite Coulomb-repulsion effects in DFT calculations, which can afford improved agreements with QCBED results

  2. Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview

    Directory of Open Access Journals (Sweden)

    Hojun Song

    2011-01-01

    Full Text Available Although the specific mechanisms of locust phase transformation are wellunderstood for model locust species such as the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, the expressions of density-dependent phase polyphenism in other nonmodel locust species are not wellknown. The present paper is an attempt to review and synthesize what we know about these nonmodel locusts. Based on all available data, I find that locust phase polyphenism is expressed in many different ways in different locust species and identify a pattern that locust species often belong to large taxonomic groups which contain mostly nonswarming grasshopper species. Although locust phase polyphenism has evolved multiple times within Acrididae, I argue that its evolution should be studied from a phylogenetic perspective because I find similar density-dependent phenotypic plasticity among closely related species. Finally, I emphasize the importance of comparative analyses in understanding the evolution of locust phase and propose a phylogeny-based research framework.

  3. Angular momentum dependence of the nuclear level density parameter

    Directory of Open Access Journals (Sweden)

    Gohil M.

    2014-03-01

    Full Text Available Neutron evaporation spectra alongwith γ-multiplicity has been measured from the 185Re* compound nucleus at the excitation energies ~27 and 37 MeV. Statistical model analysis of the experimental data has been carried out to extract the value of the inverse level density parameter k at different angular momentum regions (J corresponding to different γ-multiplicity. It is observed that, for the present system the value of k remains almost constant for different J. The present results on the angular momentum dependence of the nuclear level density (NLD parameter ã (=A/k, for nuclei with A ~180 is quite different from our earlier measurements in case of light and medium mass systems. The present analysis provides useful information to understand the angular momentum dependence of NLD at different nuclear mass regions.

  4. Time dependent density matrix theory and effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)

  5. Electronic density of states of amorphous Si and Ge: Application of a molecular-liquid model

    Science.gov (United States)

    Halder, N. C.

    1980-01-01

    The electronic structures of a-Si and a-Ge have been investigated by introducing the molecular-liquid model (MLM). The theoretical structure factors have been expressed in terms of three simple parameters-nearest-neighbor distance, packing density, and coordination number. For the electronic density of states (EDS), nonlocal energy-dependent pseudopotentials have been considered to second order in perturbation theory. When compared with the experimental structure factors, the MLM structure factors agree well for the momentum transfer in the region of 0agreement with recent theoretical and experimental results.

  6. Nearly degenerate electron distributions and superluminal radiation densities

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman, E-mail: tom@geminga.or [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2010-02-01

    Polylogarithmic fugacity expansions of the partition function, the caloric and thermal equations of state, and the specific heat of fermionic power-law distributions are derived in the nearly degenerate low-temperature/high-density quantum regime. The spectral functions of an ultra-relativistic electron plasma are obtained by averaging the tachyonic radiation densities of inertial electrons with Fermi power-laws, whose entropy is shown to be extensive and stable. The averaged radiation densities are put to test by performing tachyonic cascade fits to the gamma-ray spectrum of the TeV blazar Markarian 421 in a low and high emission state. Estimates of the thermal electron plasma in this active galactic nucleus are extracted from the spectral fits, such as temperature, number count, and internal energy. The tachyonic cascades reproduce the quiescent as well as a burst spectrum of the blazar obtained with imaging atmospheric Cherenkov detectors. Double-logarithmic plots of the differential tachyon flux exhibit intrinsic spectral curvature, caused by the Boltzmann factor of the electron gas.

  7. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    Science.gov (United States)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-11-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.

  8. Applications of electron density studies in molecular and solid state science

    DEFF Research Database (Denmark)

    Overgaard, Jacob

    2015-01-01

    the research in the area is directed. The method of electron density determination itself, as we shall see later, is strongly dependent on the access to very accurate X-ray structure factors collected to a high scattering angle. Data that fulfill these criteria are now becoming increasingly available due......The present dissertation contains the distillate of my scientific output in the field of experimental and theoretical electron density studies roughly over the last decade and a little more, since earning my PhD-degree in 2001. There are several reasons that I have chosen to write my dissertation...... of electron density studies in connection with the UN declared International Year of Crystallography in 2014. In addition, a number of reviews on the method have very recently appeared showing that the time is ripe to look back on the achievements of the last 10 years and also to look ahead to see where...

  9. Electron density increases due to Lightning activity as deduced from LWPC code and VLF signal perturbations.

    Science.gov (United States)

    Samir, Nait Amor; Bouderba, Yasmina

    VLF signal perturbations in association with thunderstorm activity appear as changes in the signal amplitude and phase. Several papers reported on the characteristics of thus perturbations and their connection to the lightning strokes amplitude and polarity. In this contribution, we quantified the electrons density increases due to lightning activity by the use of the LWPC code and VLF signal perturbations parameters. The method is similar to what people did in studying the solar eruptions effect. the results showed that the reference height (h') decreased to lower altitudes (between 70 and 80 km). From the LWPC code results the maximum of the electron density was then deduced. Therefore, a numerical simulation of the atmospheric species times dependences was performed to study the recovery times of the electrons density at different heights. The results showed that the recovery time last for several minutes and explain the observation of long recovery Early signal perturbations.

  10. Applications of electron density studies in molecular and solid state science

    DEFF Research Database (Denmark)

    Overgaard, Jacob

    2015-01-01

    The present dissertation contains the distillate of my scientific output in the field of experimental and theoretical electron density studies roughly over the last decade and a little more, since earning my PhD-degree in 2001. There are several reasons that I have chosen to write my dissertation...... of electron density studies in connection with the UN declared International Year of Crystallography in 2014. In addition, a number of reviews on the method have very recently appeared showing that the time is ripe to look back on the achievements of the last 10 years and also to look ahead to see where...... the research in the area is directed. The method of electron density determination itself, as we shall see later, is strongly dependent on the access to very accurate X-ray structure factors collected to a high scattering angle. Data that fulfill these criteria are now becoming increasingly available due...

  11. Maps for electron cloud density in Large Hadron Collider dipoles

    CERN Document Server

    Demma, T; Ruggiero, F; Rumolo, G; Zimmermann, F

    2007-01-01

    The generation of a quasistationary electron cloud inside the beam pipe through beam-induced multipacting processes has become an area of intensive study. The analyses performed so far have been based on heavy computer simulations taking into account photoelectron production, secondary emission, electron dynamics, and space charge effects, providing a detailed description of the electron-cloud evolution. Iriso and Peggs [U. Iriso and S. Peggs, Phys. Rev. ST Accel. Beams 8, 024403 (2005)] have shown that, for the typical parameters of RHIC, the bunch-to-bunch evolution of the average electron-cloud density at a point can be represented by a cubic map. Simulations based on this map formalism are orders of magnitude faster compared to those based on standard particle tracking codes. In this communication we show that the map formalism is also applicable to the case of the Large Hadron Collider (LHC), and that, in particular, it reproduces the average electron-cloud densities computed using a reference code to wi...

  12. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    Science.gov (United States)

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-01-30

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  13. Excess electrons in ice: a density functional theory study.

    Science.gov (United States)

    Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro

    2014-02-21

    We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.

  14. A simple image based method for obtaining electron density and atomic number in dual energy CT

    Science.gov (United States)

    Szczykutowicz, Timothy P.; Qi, Zhihua; Chen, Guang-Hong

    2011-03-01

    The extraction of electron density and atomic number information in computed tomography is possible when image values can be sampled using two different effective energies. The foundation for this extraction lies in the ability to express the linear attenuation coefficient using two basis functions that are dependent on electron density and atomic number over the diagnostic energy range used in CT. Material basis functions separate images into clinically familiar quantities such as 'bone' images and 'soft tissue' images. Physically, all basis function choices represent the expression of the linear attenuation coefficient in terms of a photoelectric and a Compton scattering term. The purpose of this work is to develop a simple dual energy decomposition method that requires no a priori knowledge about the energy characteristics of the imaging system. It is shown that the weighted sum of two basis images yields an electron density image where the weights for each basis image are the electron density of that basis image's basis material. Using the electron density image, effective atomic number information can also be obtained. These methods are performed solely in the image domain and require no spectrum or detector energy response information as required by some other dual energy decomposition methods.

  15. Electron momentum spectroscopy study of amantadine: binding energy spectra and valence orbital electron density distributions

    Science.gov (United States)

    Litvinyuk, I. V.; Zheng, Y.; Brion, C. E.

    2000-11-01

    The electron binding energy spectrum and valence orbital electron momentum density distributions of amantadine (1-aminoadamantane), an important anti-viral and anti-Parkinsonian drug, have been measured by electron momentum spectroscopy. Theoretical momentum distributions, calculated at the 6-311++G** and AUG-CC-PVTZ levels within the target Hartree-Fock and also the target Kohn-Sham density functional theory approximations, show good agreement with the experimental results. The results for amantadine are also compared with those for the parent molecule, adamantane, reported earlier (Chem. Phys. 253 (2000) 41). Based on the comparison tentative assignments of the valence region ionization bands of amantadine have been made.

  16. Application of the maximum entropy method to electron density determination

    Energy Technology Data Exchange (ETDEWEB)

    Wei Wendo

    1985-12-01

    The principle of maximum entropy is adopted to derive a procedure for obtaining the electron density distribution in crystals from incomplete X-ray diffraction data. This method was applied to cementite and the result proved to be better than the conventional Fourier inversion in resolution as well as in the absence of ripples. The potential advantages of this method are: (1) the amount of subjective judgment imposed on unavailable data is significantly limited, and (2) the result of this method is consistent with the known information and maximally noncommittal with regard to the unknowns. It is shown that the method is especially well suited to the problem of the determination of a high-resolution electron density map from insufficient experimental data. (orig.).

  17. Modelling density-dependent resistance in insect-pathogen interactions.

    Science.gov (United States)

    White, K A; Wilson, K

    1999-10-01

    We consider a mathematical model for a host-pathogen interaction where the host population is split into two categories: those susceptible to disease and those resistant to disease. Since the model was motivated by studies on insect populations, we consider a discrete-time model to reflect the discrete generations which are common among insect species. Whether an individual is born susceptible or resistant to disease depends on the local population levels at the start of each generation. In particular, we are interested in the case where the fraction of resistant individuals in the population increases as the total population increases. This may be seen as a positive feedback mechanism since disease is the only population control imposed upon the system. Moreover, it reflects recent experimental observations from noctuid moth-baculovirus interactions that pathogen resistance may increase with larval density. We find that the inclusion of a resistant class can stabilise unstable host-pathogen interactions but there is greatest regulation when the fraction born resistant is density independent. Nonetheless, inclusion of density dependence can still allow intrinsically unstable host-pathogen dynamics to be stabilised provided that this effect is sufficiently small. Moreover, inclusion of density-dependent resistance to disease allows the system to give rise to bistable dynamics in which the final outcome is dictated by the initial conditions for the model system. This has implications for the management of agricultural pests using biocontrol agents-in particular, it is suggested that the propensity for density-dependent resistance be determined prior to such a biocontrol attempt in order to be sure that this will result in the prevention of pest outbreaks, rather than their facilitation. Finally we consider how the cost of resistance to disease affects model outcomes and discover that when there is no cost to resistance, the model predicts stable periodic outbreaks of

  18. Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy.

    Science.gov (United States)

    Vuckovic, Stefan; Gori-Giorgi, Paola

    2017-07-06

    From a simplified version of the mathematical structure of the strong coupling limit of the exact exchange-correlation functional, we construct an approximation for the electronic repulsion energy at physical coupling strength, which is fully nonlocal. This functional is self-interaction free and yields energy densities within the definition of the electrostatic potential of the exchange-correlation hole that are locally accurate and have the correct asymptotic behavior. The model is able to capture strong correlation effects that arise from chemical bond dissociation, without relying on error cancellation. These features, which are usually missed by standard density functional theory (DFT) functionals, are captured by the highly nonlocal structure, which goes beyond the "Jacob's ladder" framework for functional construction, by using integrals of the density as the key ingredient. Possible routes for obtaining the full exchange-correlation functional by recovering the missing kinetic component of the correlation energy are also implemented and discussed.

  19. Structural, electronic, mechanical and quantum transport of ultrathin gold nanowire: A density functional approach

    Science.gov (United States)

    Jariwala, P. H.; Gupta, Sanjeev K.; Sonvane, Y. A.; Thakor, P. B.

    2017-06-01

    We have scrutinized the gold (Au) nanowires with distinct cross-section with 1-10 Au atoms for each unit cell by density-functional approach and performed first-principles computation. Here, we have investigated structural, electronic, transport and mechanical characteristic of Au nanowires. The structural characteristic of cubic bulk and nanowires of Au are very diverse from each other. The electronic density of state (DOS) and band structures of different formations express that all the nanowires are very good conductor in nature. The figure of conduction channels leans on number of atoms for each unit cell, diameter and structure of nanowires. We also inspect that the electronic thermal conductivities dependency on the temperature and we found that all the considered AuNWs have low conductivity than that of the bulk Au. Our results show that AuNWs have potential application in electronic devices like nanoelectro-mechanical systems (NEMS).

  20. Formation of collective excitations in quasi-one dimensional metallic nanostructures: size and density dependance

    OpenAIRE

    Cassidy, Amy; Grigorenko, Ilya; Haas, Stephan

    2008-01-01

    We investigate theoretically the formation of collective excitations in atomic scale quasi-one dimensional metallic nanostructures. The response of the system is calculated within the linear response theory and random phase approximation. For uniform nanostructures a transition from quantum single particle excitations to classical plasmon scaling is observed, depending on the system length and electron density. We find crucial differences in the scaling behavior for quasi-one dimensional and ...

  1. A density-temperature description of the outer electron radiation belt during geomagnetic storms

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Cayton, Thomas E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2009-01-01

    Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before the storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.

  2. The electron-propagator approach to conceptual density-functional ...

    Indian Academy of Sciences (India)

    Unknown

    theory) to evaluate the quantities appearing in (16). In fact, the terms in (16) are often discussed using vocabulary more often associated with molecular- orbital theory. Using Klopman's classification of different chemical reaction types,32 the terms on the second line, which depend on the change in the number of electrons ...

  3. Limits for density dependent time inhomogeneous Markov processes.

    Science.gov (United States)

    Smith, Andrew G

    2015-10-01

    A new functional law of large numbers to approximate a time inhomogeneous Markov process that is only density dependent in the limit as an index parameter goes to infinity is developed. This extends previous results by other authors to a broader class of Markov processes while relaxing some of the conditions required for those results to hold. This result is applied to a stochastic metapopulation model that accounts for spatial structure as well as within patch dynamics with the novel addition of time dependent dynamics. The resulting nonautonomous differential equation is analysed to provide conditions for extinction and persistence for a number of examples. This condition shows that the migration of a species will positively impact the reproduction in less populated areas while negatively impacting densely populated areas. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  4. Accurate high-harmonic spectra from time-dependent two-particle reduced density matrix theory

    CERN Document Server

    Lackner, Fabian; Sato, Takeshi; Ishikawa, Kenichi L; Burgdörfer, Joachim

    2016-01-01

    The accurate description of the non-linear response of many-electron systems to strong-laser fields remains a major challenge. Methods that bypass the unfavorable exponential scaling with particle number are required to address larger systems. In this paper we present a fully three-dimensional implementation of the time-dependent two-particle reduced density matrix (TD-2RDM) method for many-electron atoms. We benchmark this approach by a comparison with multi-configurational time-dependent Hartree-Fock (MCTDHF) results for the harmonic spectra of beryllium and neon. We show that the TD-2RDM is very well-suited to describe the non-linear atomic response and to reveal the influence of electron-correlation effects.

  5. Latitudinal Density Dependence of Magnetic Field Lines Inferred from Polar Plasma Wave Data

    Science.gov (United States)

    Goldstein, J.; Denton, R. E.; Hudson, M. K.; Miftakhova, E. G.; Menietti, J. D.; Gallagher, D. L.

    2000-01-01

    Using observations of the electron density, n(sub e), based on measurement of the upper hybrid resonance frequency by the Polar spacecraft Plasma Wave Instrument, we have examined the radial density dependence along field lines in the outer plasmasphere and the near plasmatrough. Sampled L values range from 2.5 to 6.6. Our technique depends on the fact that Polar crosses particular L values at two different points with different radial distance R. In our plasmaspheric data set (n(sub e) > 100/cm3), we find that on average n(sub e) is flat along field lines from the equator up to the latitudes sampled by Polar (R approximately equal to or > 2.0). In the plasmatrough data set (n(sub e) < 100/cm-3), there is on average a mild radial dependence n(sub e) varies as R(exp -1.7).

  6. Spin-orbit interaction in a two-dimensional electron gas in a InAs/AlSb quantum well with gate-controlled electron density

    NARCIS (Netherlands)

    Heida, J.P.; Wees, B.J. van; Kuipers, J.J.; Klapwijk, T.M.; Borghs, G.

    1998-01-01

    We present experiments on the tuning of the spin-orbit interaction in a two-dimensional electron gas in an asymmetric InAs/AlSb quantum well using a gate. The observed dependence of the spin splitting energy on the electron density can be attributed solely to the change in the Fermi wave vector. The

  7. Density of one-particle states for 2-D electron gas in magnetic field

    Directory of Open Access Journals (Sweden)

    Dubrovskyi

    2013-03-01

    Full Text Available The density of states of a particle in a 2-D area is independent both of the energy and form of the area only at the region of large values of energy. If energy is small, the density of states in the rectangular potential well essentially depends on the form of the area. If the bottom of the potential well has a potential relief, it can define the small eigenvalues as the discrete levels. In this case, dimensions and form of the area would not have any importance. If the conservation of zero value of the angular momentum is taken into account, the effective one-particle Hamiltonian for the 2-D electron gas in the magnetic field in the circle is the Hamiltonian with the parabolic potential and the reflecting bounds. It is supposed that in the square, the Hamiltonian has the same view. The 2-D density of states in the square can be computed as the convolution of 1-D densities. The density of one-particle states for 2-D electron gas in the magnetic field is obtained. It consists of three regions. There is a discrete spectrum at the smallest energy. In the intervening region the density of states is the sum of the piecewise continuous function and the density of the discrete spectrum. At great energies, the density of states is a continuous function. The Fermi energy dependence on the magnetic field is obtained when the field is small and the Fermi energy is located in the region of continuous spectrum. The Fermi energy oscillates and in the average it increases proportionally to the square of the magnetic induction. Total energy of electron gas in magnetic field also oscillates and increases when the magnetic field increases monotonously.

  8. Development and application of a density dependent matrix ...

    Science.gov (United States)

    Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Matrix population models are useful tools for ecological risk assessment because they integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for many generations in the future. We developed a density dependent matrix population model for Atlantic killifish by modifying a model developed for fathead minnow (Pimephales promelas) that has proved to be extremely useful, e.g. to incorporate data from laboratory studies and project effects of endocrine disrupting chemicals. We developed a size-structured model (as opposed to one that is based upon developmental stages or age class structure) so that we could readily incorporate output from a Dynamic Energy Budget (DEB) model, currently under development. Due to a lack of sufficient data to accurately define killifish responses to density dependence, we tested a number of scenarios realistic for other fish species in order to demonstrate the outcome of including this ecologically important factor. We applied the model using published data for killifish exposed to dioxin-like compounds, and compared our results to those using

  9. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions

    Science.gov (United States)

    Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar

    2017-11-01

    Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below

  10. The effective density of randomly moving electrons and related characteristics of materials with degenerate electron gas

    Directory of Open Access Journals (Sweden)

    V. Palenskis

    2014-04-01

    Full Text Available Interpretation of the conductivity of metals, of superconductors in the normal state and of semiconductors with highly degenerate electron gas remains a significant issue if consideration is based on the classical statistics. This study is addressed to the characterization of the effective density of randomly moving electrons and to the evaluation of carrier diffusion coefficient, mobility, and other parameters by generalization of the widely published experimental results. The generalized expressions have been derived for various kinetic parameters attributed to the non-degenerate and degenerate electron gas, by analyzing a random motion of the single type carriers in homogeneous materials. The values of the most important kinetic parameters for different metals are also systematized and discussed. It has been proved that Einstein's relation between the diffusion coefficient and the drift mobility of electrons is held for any level of degeneracy if the effective density of randomly moving carriers is properly taken into account.

  11. Influence of the electron density on the characteristics of terahertz waves generated under laser–cluster interaction

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable with the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.

  12. One-electron reduced density matrices of strongly correlated harmonium atoms.

    Science.gov (United States)

    Cioslowski, Jerzy

    2015-03-21

    Explicit asymptotic expressions are derived for the reduced one-electron density matrices (the 1-matrices) of strongly correlated two- and three-electron harmonium atoms in the ground and first excited states. These expressions, which are valid at the limit of small confinement strength ω, yield electron densities and kinetic energies in agreement with the published values. In addition, they reveal the ω(5/6) asymptotic scaling of the exchange components of the electron-electron repulsion energies that differs from the ω(2/3) scaling of their Coulomb and correlation counterparts. The natural orbitals of the totally symmetric ground state of the two-electron harmonium atom are found to possess collective occupancies that follow a mixed power/Gaussian dependence on the angular momentum in variance with the simple power-law prediction of Hill's asymptotics. Providing rigorous constraints on energies as functionals of 1-matrices, these results are expected to facilitate development of approximate implementations of the density matrix functional theory and ensure their proper description of strongly correlated systems.

  13. Automated segmentation of molecular subunits in electron cryomicroscopy density maps.

    Science.gov (United States)

    Baker, Matthew L; Yu, Zeyun; Chiu, Wah; Bajaj, Chandrajit

    2006-12-01

    Electron cryomicroscopy (cryoEM) is capable of imaging large macromolecular machines composed of multiple components. However, it is currently only possible to achieve moderate resolution at which it may be possible to computationally extract the individual components in the machine. In this work, we present application details of an automated method for detecting and segmenting the components of a large machine in an experimentally determined density map. This method is applicable to object with and without symmetry and takes advantage of global and local symmetry axes if present. We have applied this segmentation algorithm to several cryoEM data sets already deposited in EMDB with various complexities, symmetries and resolutions and validated the results using manually segmented density and available structures of the components in the PDB. As such, automated segmentation could become a useful tool for the analysis of the ever-increasing number of structures of macromolecular machines derived from cryoEM.

  14. Density-functional method for nonequilibrium electron transport

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Mozos, J.L.; Ordejon, P.

    2002-01-01

    We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density-functional theory (DFT) as implemented...... the contact and the electrodes on the same footing. The effect of the finite bias (including self-consistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme...... wires connected to aluminum electrodes with extended or finite cross section, (ii) single atom gold wires, and finally (iii) large carbon nanotube systems with point defects....

  15. Laser-wakefield acceleration of electron beams in a low density plasma channel

    Directory of Open Access Journals (Sweden)

    T. P. A. Ibbotson

    2010-03-01

    Full Text Available The generation of quasimonoenergetic electron beams, with energies greater than 500 MeV, in a laser-plasma accelerator driven by 2.5 J, 80 fs laser pulses guided in a low density plasma channel, is investigated. The laser energy required to achieve electron injection is found to depend strongly on the quality of the input laser focal spot. Simulations show that, although the matched spot size of the plasma channel is greater than the self-focused spot size, the channel assists relativistic self-focusing and enables electron injection to occur at lower plasma densities and laser powers than would be possible without a waveguide.

  16. Time-Dependent Density Functional Theory for Open Systems and Its Applications.

    Science.gov (United States)

    Chen, Shuguang; Kwok, YanHo; Chen, GuanHua

    2018-02-20

    Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent

  17. Spatial and temporal variations of electron temperatures and densities from EUV-emitting lithium plasmas.

    Science.gov (United States)

    Coons, R W; Harilal, S S; Polek, M; Hassanein, A

    2011-07-01

    Planar slabs of pure Li were irradiated with 1.064 nm, 6 ns Nd:YAG laser pulses. Determination of plasma densities at both the earliest times of plasma formation and near the target surface was performed using Nomarski interferometry. The plasma parameters at later times were evaluated using optical emission spectroscopy. The space- and time-dependent electron densities and temperatures of the plasma were determined from their Stark broadening and the relative intensities of the spectral lines, respectively. The advantages and disadvantages of both of these techniques are evaluated and discussed.

  18. Effect of Electronic Monitoring on Social Welfare Dependence

    DEFF Research Database (Denmark)

    Andersen, Lars Højsgaard; Andersen, Signe Hald

    2014-01-01

    Research Summary We studied the effect on unemployment social welfare dependence of serving a sentence under elec-tronic monitoring rather than in prison, using Danish registry data and two policy shifts that extended the use of electronic monitoring in Denmark. We found electronic monitoring...

  19. Density dependence triggers runaway selection of reduced senescence.

    Directory of Open Access Journals (Sweden)

    Robert M Seymour

    2007-12-01

    Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.

  20. Density-functional perturbation theory goes time-dependent

    Directory of Open Access Journals (Sweden)

    Gebauer, Ralph

    2008-05-01

    Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.

  1. Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains

    Science.gov (United States)

    Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.

    2016-09-01

    The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.

  2. Effective atomic numbers and electron density of dosimetric material

    Directory of Open Access Journals (Sweden)

    Kaginelli S

    2009-01-01

    Full Text Available A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, m/r, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates. The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes.

  3. Structure of the electron momentum density of atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E.; Dehesa, J.S. [Granada Univ. (Spain). Dept. de Fisica Moderna; Koga, T. [Department of Applied Chemistry, Muroran Institute of Technology, Muroran, Hokkaido 050 (Japan)

    1997-12-01

    The present paper addresses the controversial problem on the nonmonotonic behavior of the spherically-averaged momentum density {gamma}(p) observed previously for some ground-state atoms based on the Roothaan-Hartree-Fock (RHF) wave functions of Clementi and Roetti. Highly accurate RHF wave functions of Koga et al. are used to study the existence of extrema in the momentum density {gamma}(p) of all the neutral atoms from hydrogen to xenon. Three groups of atoms are clearly identified according to the nonmonotonicity parameter {mu}, whose value is either equal to, larger, or smaller than unity. Additionally, it is found that the function p{sup -{alpha}} {gamma}(p) is (i) monotonically decreasing from the origin for {alpha}{>=}0.75, (ii) convex for {alpha}{>=}1.35, and (iii) logarithmically convex for {alpha}{>=}3.64 for all the neutral atoms with nuclear charges Z = 1-54. Finally, these monotonicity properties are applied to derive simple yet general inequalities which involve three momentum moments left angle p{sup t} right angle. These inequalities not only generalize similar inequalities reported so far but also allow us to correlate some fundamental atomic quantities, such as the electron-electron repulsion energy and the peak height of Compton profile, in a simple manner. (orig.) 40 refs.

  4. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. I. Structural properties.

    Science.gov (United States)

    Bhambure, Rahul; Gillespie, Christopher M; Phillips, Michael; Graalfs, Heiner; Lenhoff, Abraham M

    2016-09-09

    The ligand density critically affects the performance of ion-exchange resins in such measures as the adsorption capacity and transport characteristics. However, for tentacular and other polymer-modified exchangers, the mechanistic basis of the effect of ligand density on performance is not yet fully understood. In this study we map the ionic strength-dependent structural changes in tentacular cation exchangers with variable ligand densities as the basis for subsequent investigation of effects on functional properties. Inverse size-exclusion chromatography (ISEC), scanning electron microscopy (SEM) and small-angle x-ray scattering (SAXS) were used to assess the effect of ionic strength on the pore size and intraparticle architecture of resin variants with different ligand densities. Comparison of ISEC and cryo-SEM results shows a considerable reduction in average pore size with increasing ligand density; these methods also confirm an increase of average pore size at higher ionic strengths. SAXS analysis of ionic strength-dependent conformational changes in the grafted polyelectrolyte layer shows a characteristic ionomer peak at values of the scattering vector q (0.1-0.2Å(-1)) that depend on the ligand density and the ionic strength of the solution. This peak attribution reflects nanoscale changes in the structure of the grafted polyelectrolyte chains that can in turn be responsible for observed pore-size changes in the resins. Finally, salt breakthrough experiments confirm a stronger Donnan exclusion effect on pore accessibility for small ions in the high ligand density variant. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electron and Negative Ion Densities in C(2)F(6) and CHF(3) Containing Inductively Coupled Discharges

    Energy Technology Data Exchange (ETDEWEB)

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Electron and negative ion densities have been measured in inductively coupled discharges containing C{sub 2}F{sub 6} and CHF{sub 3}. Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10{sup 12} cm{sup -2} (line-integrated) or approximately 9 x 10{sup 11} cm{sup -3}. The negative ion density peaked at approximately 1.3 x 10{sup 11} cm{sup -3}. A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F{sup -}. Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF{sub 4}, C{sub 2}F{sub 6} and CHF{sub 3} discharges.

  6. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. Density profiles

    Directory of Open Access Journals (Sweden)

    H. Laakso

    Full Text Available Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the

  7. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. Density profiles

    Directory of Open Access Journals (Sweden)

    H. Laakso

    2002-11-01

    Full Text Available Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the plasmapause can expand anti-earthward at the same speed. For the trough region, it is found

  8. Density dependence of SOL power width in ASDEX upgrade L-Mode

    Directory of Open Access Journals (Sweden)

    B. Sieglin

    2017-08-01

    A recent study [4] with an open divertor configuration found an asymmetry of the power fall-off length between inner and outer target with a smaller power fall-off length λq,i on the inner divertor target. Measurements with a closed divertor configuration find a similar asymmetry for low recycling divertor conditions. It is found, in the experiment, that the in/out asymmetry λq,i/λq,o is strongly increasing with increasing density. Most notably the heat flux density at the inner divertor target is reducing with increasing λq,i whilst the total power onto each divertor target stays constant. It is found that λq,o exhibits no significant density dependence for hydrogen and deuterium but increases with about the square root of the electron density for helium. The difference between H,D and He could be due to the different recycling behaviour in the divertor. These findings may help current modelling attempts to parametrize the density dependence of the widening of the power channel and thus allow for detailed comparison to both divertor effects like recycling or increased upstream SOL cross field transport.

  9. Time-dependent probability density function in cubic stochastic processes

    Science.gov (United States)

    Kim, Eun-jin; Hollerbach, Rainer

    2016-11-01

    We report time-dependent probability density functions (PDFs) for a nonlinear stochastic process with a cubic force using analytical and computational studies. Analytically, a transition probability is formulated by using a path integral and is computed by the saddle-point solution (instanton method) and a new nonlinear transformation of time. The predicted PDF p (x ,t ) in general involves a time integral, and useful PDFs with explicit dependence on x and t are presented in certain limits (e.g., in the short and long time limits). Numerical simulations of the Fokker-Planck equation provide exact time evolution of the PDFs and confirm analytical predictions in the limit of weak noise. In particular, we show that transient PDFs behave drastically differently from the stationary PDFs in regard to the asymmetry (skewness) and kurtosis. Specifically, while stationary PDFs are symmetric with the kurtosis smaller than 3, transient PDFs are skewed with the kurtosis larger than 3; transient PDFs are much broader than stationary PDFs. We elucidate the effect of nonlinear interaction on the strong fluctuations and intermittency in the relaxation process.

  10. Mechanisms of the electron density depletion in the SAR arc region

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    1996-02-01

    Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth\\'s ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields. Within this model framework the effect of the

  11. Mechanisms of the electron density depletion in the SAR arc region

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth's ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields

  12. Experimental evidence for density-dependent reproduction in a cooperatively breeding passerine

    NARCIS (Netherlands)

    Brouwer, Lyanne; Tinbergen, Joost M.; Both, Christiaan; Bristol, Rachel; Richardson, David S.; Komdeur, Jan; Sauer, J.R.

    Temporal variation in survival, fecundity, and dispersal rates is associated with density-dependent and density-independent processes. Stable natural populations are expected to be regulated by density-dependent factors. However, detecting this by investigating natural variation in density is

  13. Surface properties of liquid mercury: a comparison of density-dependent and density-independent force fields

    OpenAIRE

    Iakovlev, A.; Bedrov, D; Müller, M

    2014-01-01

    Motivated by an experimental interest we investigate by the means of atomistic Molecular Dynamics simulation the ability of density-independent, empiric density-dependent, and recently proposed embedded-atom force fields for liquid mercury to predict the surface tension of the free surface of liquid mercury at the temperature of 293~K. The effect of the density dependence of the studied models on the liquid-vapor coexistence and surface tension is discussed in detail. In view of computational...

  14. Transmission of electrons through insulating PET foils: Dependence on charge deposition, tilt angle and incident energy

    Energy Technology Data Exchange (ETDEWEB)

    Keerthisinghe, D., E-mail: darshika.keerthisinghe@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Dassanayake, B.S. [Department of Physics, University of Peradeniya, Peradeniya (Sri Lanka); Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Stolterfoht, N. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin (Germany); Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2016-09-01

    Transmission of electrons through insulating polyethylene terephthalate (PET) nanocapillaries was observed as a function of charge deposition, angular and energy dependence. Two samples with capillary diameters 100 and 200 nm and pore densities 5 × 10{sup 8}/cm{sup 2} and 5 × 10{sup 7}/cm{sup 2}, respectively, were studied for incident electron energies of 300, 500 and 800 eV. Transmission and steady state of the electrons were attained after a time delay during which only a few electron counts were observed. The transmission through the capillaries depended on the tilt angle with both elastic and inelastic electrons going through. The guiding ability of electrons was found to increase with the incident energy in contrast to previous measurements in our laboratory for a similar PET foil.

  15. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  16. Electron correlation in solids via density embedding theory

    Energy Technology Data Exchange (ETDEWEB)

    Bulik, Ireneusz W.; Chen, Weibing [Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Scuseria, Gustavo E. [Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2014-08-07

    Density matrix embedding theory [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)] and density embedding theory [I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89, 035140 (2014)] have recently been introduced for model lattice Hamiltonians and molecular systems. In the present work, the formalism is extended to the ab initio description of infinite systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and demonstrated in cases of 1, 2, and 3 dimensions, using coupled cluster theory as the impurity solver. Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The current approach yields results comparable to coupled cluster calculations of infinite systems even when using a single unit cell as the fragment. The theory is formulated in the basis of Wannier functions but it does not require separate localization of unoccupied bands. The embedding scheme presented here is a promising way of employing highly accurate electronic structure methods for extended systems at a fraction of their original computational cost.

  17. Interaction of the electron density fluctuations with electron cyclotron waves from the equatorial launcher in ITER

    Science.gov (United States)

    Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G. D.; Henderson, M.; Saibene, G.

    2018-01-01

    We present a numerical investigation of electron cyclotron beams interacting with electron density fluctuations in the ITER 15 MA H-mode scenario. In particular, here we study how the beam from the equatorial launcher, which shall be utilized to influence the sawtooth instability, is affected by the fluctuations. Moreover, we present the theory and first estimates of the power that is scattered from the injected O-mode to a secondary X-mode in the presence of the fluctuations. It is shown that for ITER parameters the scattered power stays within acceptable limits and broadening of the equatorial beams is less than those from the upper launcher.

  18. Bracket bond strength dependence on light power density.

    Science.gov (United States)

    Staudt, Christine Bettina; Krejci, Ivo; Mavropoulos, Anestis

    2006-08-01

    In order to reduce curing time for bracket bonding with light-cured composites, manufacturers increase the power density (PD) of light sources. The present study aims at investigating the relationship between PD and shear bond strength (SBS) at short exposure time. Stainless steel brackets were bonded to bovine incisors using light-cured adhesive. Six groups of 20 incisors each were exposed to 4s of halogen light with different PD increasing from 500 to 3000 mW/cm(2) in steps of 500 mW/cm(2). Two more groups were exposed to a PD of 3000 mW/cm(2) for 6s (n=15) and 8s (n=19), thus simulating non-available PD of 4500 and 6000 mW/cm(2) for 4s. A halogen lamp with a PD of 1000 mW/cm(2) was used for 40s in the control group (n=15). After storage for 24h at 37 degrees C in water, SBS and adhesive remnant index (ARI) were recorded. SBS was significantly different among groups (ANOVA, pbracket/adhesive interface. Our findings show the SBS dependence on PD, and thus provide a valuable tool for the development of light-curing systems. An exponential model suggests that SBS enters a region of saturation and cannot be improved significantly by further increasing PD.

  19. Effect of current density on electron beam induced charging in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Boughariou, Aicha [LaMaCoP, Universite de Sfax, Faculte des Sciences, 3038 Sfax (Tunisia)]. E-mail: aicha_boughariou@yahoo.fr; Hachicha, Olfa [LaMaCoP, Universite de Sfax, Faculte des Sciences, 3038 Sfax (Tunisia); Kallel, Ali [LaMaCoP, Universite de Sfax, Faculte des Sciences, 3038 Sfax (Tunisia); Blaise, Guy [LPS, Universite Paris-Sud XI, Batiment 510, Orsay 91405 (France)

    2005-11-15

    It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) {sigma} during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime ({sigma} = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.

  20. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  1. Pressure dependence of the charge-density-wave gap in rare-earth tritellurides.

    Science.gov (United States)

    Sacchetti, A; Arcangeletti, E; Perucchi, A; Baldassarre, L; Postorino, P; Lupi, S; Ru, N; Fisher, I R; Degiorgi, L

    2007-01-12

    We investigate the pressure dependence of the optical properties of CeTe3, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the midinfrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe3.

  2. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH

    2009-12-14

    We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.

  3. Reduced density matrix hybrid approach: Application to electronic energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)

    2012-02-28

    Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

  4. Are populations of European earwigs, Forficula auricularia, density dependent?

    DEFF Research Database (Denmark)

    Moerkens, R.; Leirs, H; Peusens, G.

    2009-01-01

    and various apple aphid species. Earwigs therefore play an important role in integrated pest management in fruit orchards and are essential in organic top fruit cultures. However, earwig populations are very unstable, showing large between-year variation in densities, which limits their practical use...... also observed a yearly population crash at the time of moulting into adults. This population decrease was correlated with earwig numbers at peak density. The crash occurred at lower earwig densities in apple orchards than in pear orchards. Six possible regulating mechanisms for this density......, hereby increasing population densities in the orchards....

  5. Size-dependent electronic properties of metal nanostructures

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Size-dependent electronic properties of metal nanostructures. G.U. Kulkarni. Chemistry and Physics of Materials Unit. Jawaharlal Nehru Centre for Advanced Scientific Research. Bangalore, India. kulkarni@jncasr.ac.in.

  6. Energy Dependence of Near-relativistic Electron Spectrum at ...

    Indian Academy of Sciences (India)

    discussed the radiation belt electron drop outs with respect to their local time, radial and particle-energy dependence. In this paper we present the energy dependence of REDs and REEs at geostationary orbit for electrons at energies 2 MeV, 0.9 MeV, 0.6 MeV with respect to the solar wind and Interplanetary Magnetic Field ...

  7. Current densities due to electron-hole puddles in graphene flakes at the charge neutrality point

    Science.gov (United States)

    Lima, Leandro; Lewenkopf, Caio

    2014-03-01

    Graphene flakes show a typical conductivity minimum of about e2 / h , almost independent of sample mobility, at the charge neutrality point. This is at odds with the notion that as the mobility increases, and graphene becomes more ballistic, its density of states (DOS) and conductivity at the charge neutrality point should vanish. The observed conductivity minimum is often attributed to the presence of electron-hole charge puddles, that give rise to an effective local-dependent chemical potential. In this way, the local chemical potential fluctuates creating p and n-doped regions and the electronic transport is facilitated by Klein tunneling through the p and n-doped domains. Although very attractive, there is little quantitative support for this this picture. We revisit this problem and analyze the transport properties using a self-consistent recursive Green's functions technique with spin resolution that includes the electronic interaction modeled by a mean field Hubbard term. We calculate electronic current densities between neighboring carbon sites near the p-n interface and relate the electronic propagation to the puddles charge, size and shapes.

  8. Density-dependent growth of the polychaete Diopatra aciculata

    Directory of Open Access Journals (Sweden)

    Milada Safarik

    2006-12-01

    Full Text Available Effects of intraspecific density on growth of the tube-building polychaete Diopatra aciculata (Onuphidae were examined over a three-month period within a marine worm aquaculture facility. Three polychaete densities (500, 1000 and 2000 worms/m2 were represented within triplicate 0.30 m2 boxes containing late juvenile D. aciculata, sandy sediment and recirculating seawater. Daily food ration per worm was held constant across all density levels. Total length, weight and number of segments were recorded for 20 polychaetes randomly removed from each of nine treatment boxes at weeks 1, 7 and 14. Mean daily growth was higher during weeks 1-7 than during weeks 7-14 for all growth variables at each density level. Polychaetes at the highest density level exhibited lower rates of growth and more broken and/or regenerating posterior segments than those at low density. High D. aciculata density was also associated with reduced dissolved oxygen concentrations and high polychaete mortality (20%. At medium polychaete density (1000/m2, D. aciculata exhibited low levels of apparent stress and high biomass return per unit area, both of which are important considerations in the aquaculture rearing of this species. We suggest that further studies focus on age- and size-related factors contributing to density effects on polychaete growth.

  9. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L. [Department of Applied Physics, E.T.S.I. Aeronáutica y del Espacio. Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-01-15

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  10. Density-dependent growth and metamorphosis in the larval bronze ...

    Indian Academy of Sciences (India)

    The tadpoles were raised as siblings or in groups of non-siblings at increasing density levels, viz. 15, 30, 60 and 120/5 l water. With an increase in density level from 15 to 120 tadpoles/5 l water, duration of the larval stage increased and fewer individuals metamorphosed irrespective of whether they belonged to sibling or ...

  11. High velocity proton collision with liquid lithium: a time dependent density functional theory study.

    Science.gov (United States)

    Bi, Gang; Kang, Jun; Wang, Lin-Wang

    2017-03-29

    Liquid lithium is often used as a coating material in fusion reaction chambers, where it is under constant bombardment from high speed neutrons and protons. However, numerous fundamental questions are unanswered, for example whether a single proton impact can cause Li atom sputtering, and what is the electron excitation energy profile after a collision particularly for extremely high energy projectiles. Herein, we use a real-time dependent density functional method to study these questions for proton energies in the range of 30 eV to 1 MeV. The calculated stopping power agrees well with experiment, and it is found that the stopping power cannot be described by the single electron exciting spectrum based on the adiabatic eigen energies, and Li atom sputtering is not observed within our simulation time.

  12. Time-dependent spin-density-functional-theory description of He+-He collisions

    Science.gov (United States)

    Baxter, Matthew; Kirchner, Tom; Engel, Eberhard

    2017-09-01

    Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system are presented in the approximate impact energy range of 10-1000 keV/amu. Calculations were performed within the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models, one where electron translation factors in the orbitals used to calculate the potential are ignored and another where partial electron translation factors are included, are compared with available experimental data as well as a selection of previous theoretical calculations.

  13. Density-dependent diffusion in the periodic Lorentz gas

    CERN Document Server

    Klages, R; Dellago, Chr.

    1999-01-01

    We study the deterministic diffusion coefficient of the two-dimensional periodic Lorentz gas as a function of the density of scatterers. Results obtained from computer simulations are compared to the analytical approximation of Machta and Zwanzig [Phys.Rev.Lett. 50, 1959 (1983)] showing that their argument is only correct in the limit of high densities. We discuss how the Machta-Zwanzig argument, which is based on treating diffusion as a Markovian hopping process on a lattice, can be corrected systematically by including microscopic correlations. We furthermore show that, on a fine scale, the diffusion coefficient is a non-trivial function of the density. We finally argue that, on a coarse scale and for lower densities, the diffusion coefficient exhibits a Boltzmann-like behavior, whereas for very high densities it crosses over to a regime which can be understood qualitatively by the Machta-Zwanzig approximation.

  14. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source

    Science.gov (United States)

    Mason, Jonathan H.; Perelli, Alessandro; Nailon, William H.; Davies, Mike E.

    2017-11-01

    Quantifying material mass and electron density from computed tomography (CT) reconstructions can be highly valuable in certain medical practices, such as radiation therapy planning. However, uniquely parameterising the x-ray attenuation in terms of mass or electron density is an ill-posed problem when a single polyenergetic source is used with a spectrally indiscriminate detector. Existing approaches to single source polyenergetic modelling often impose consistency with a physical model, such as water-bone or photoelectric-Compton decompositions, which will either require detailed prior segmentation or restrictive energy dependencies, and may require further calibration to the quantity of interest. In this work, we introduce a data centric approach to fitting the attenuation with piecewise-linear functions directly to mass or electron density, and present a segmentation-free statistical reconstruction algorithm for exploiting it, with the same order of complexity as other iterative methods. We show how this allows both higher accuracy in attenuation modelling, and demonstrate its superior quantitative imaging, with numerical chest and metal implant data, and validate it with real cone-beam CT measurements.

  15. Estimation of dislocation density from precession electron diffraction data using the Nye tensor.

    Science.gov (United States)

    Leff, A C; Weinberger, C R; Taheri, M L

    2015-06-01

    The Nye tensor offers a means to estimate the geometrically necessary dislocation density of a crystalline sample based on measurements of the orientation changes within individual crystal grains. In this paper, the Nye tensor theory is applied to precession electron diffraction automated crystallographic orientation mapping (PED-ACOM) data acquired using a transmission electron microscope (TEM). The resulting dislocation density values are mapped in order to visualize the dislocation structures present in a quantitative manner. These density maps are compared with other related methods of approximating local strain dependencies in dislocation-based microstructural transitions from orientation data. The effect of acquisition parameters on density measurements is examined. By decreasing the step size and spot size during data acquisition, an increasing fraction of the dislocation content becomes accessible. Finally, the method described herein is applied to the measurement of dislocation emission during in situ annealing of Cu in TEM in order to demonstrate the utility of the technique for characterizing microstructural dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Efficient Density Functional Approximation for Electronic Properties of Conjugated Systems

    Science.gov (United States)

    Caldas, Marília J.; Pinheiro, José Maximiano, Jr.; Blum, Volker; Rinke, Patrick

    2014-03-01

    There is on-going discussion about reliable prediction of electronic properties of conjugated oligomers and polymers, such as ionization potential IP and energy gap. Several exchange-correlation (XC) functionals are being used by the density functional theory community, with different success for different properties. In this work we follow a recent proposal: a fraction α of exact exchange is added to the semi-local PBE XC aiming consistency, for a given property, with the results obtained by many-body perturbation theory within the G0W0 approximation. We focus the IP, taken as the negative of the highest occupied molecular orbital energy. We choose α from a study of the prototype family trans-acetylene, and apply this same α to a set of oligomers for which there is experimental data available (acenes, phenylenes and others). Our results indicate we can have excellent estimates, within 0,2eV mean ave. dev. from the experimental values, better than through complete EN - 1 -EN calculations from the starting PBE functional. We also obtain good estimates for the electrical gap and orbital energies close to the band edge. Work supported by FAPESP, CNPq, and CAPES, Brazil, and DAAD, Germany.

  17. Density-dependent vulnerability of forest ecosystems to drought

    Science.gov (United States)

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.

    2017-01-01

    1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades

  18. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in three- dimensional space. In continuation of the work reported previously, the GNLSE is applied to provide addi-.

  19. Age-specific density-dependent survival in Mediterranean Gulls Larus melanocephalus

    NARCIS (Netherlands)

    te Marvelde, Luc; Meininger, Peter L.; Flamant, Renaud; Dingemanse, Niels J.

    2009-01-01

    Survival and reproductive rates often decrease with increasing population density. Such negative density dependence reflects a changing net balance between the benefits and costs of presence of others with increasing density. When densities are low, however, survival and reproductive rates might

  20. Charge and current density profiles of a degenerate magnetized free-electron gas near a hard wall

    NARCIS (Netherlands)

    Kettenis, M.M.; Suttorp, L.G.

    1998-01-01

    The charge and current densities of a completely degenerate free-electron gas in a uniform magnetic field are found to have a damped oscillatory spatial dependence near a wall that is parallel to the magnetic field. For large distances from the wall the behaviour of the associated profile functions

  1. Time-dependent tunneling of spin-polarized electrons in coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, H; Luis, D [Departamento de Fisica Basica, Universidad de La Laguna, 38204 La Laguna, Tenerife (Spain)], E-mail: hcruz@ull.es

    2008-02-15

    We have solved the in-plane momentum-dependent effective-mass nonlinear Schroedinger equation for a spin-polarized electron wave packet in a InAs double quantum well system with an interlayer voltage. Considering a time-dependent Hartree potential, we have calculated the spin-polarized nonlinear electron dynamics between both quantum wells at different in-plane momentum values and applied bias. The spin-splitting caused by the Rashba effect is combined with the level matching between the spin dependent resonant tunneling levels making possible the observed local spin density oscillations which depend on the applied bias value. The filtering efficiency has been studied using time-dependent calculations.

  2. Long-term persistence, density dependence and effects of climate change on rosyside dace (Cyprinidae)

    Science.gov (United States)

    Gary D. Grossman; Gary Sundin; Robert E. Ratajczak

    2016-01-01

    SummaryWe used long-term population data for rosyside dace (Clinostomus funduloides), a numerically dominant member of a stochastically organised fish assemblage, to evaluate the relative importance of density-dependent and density-independent processes to population...

  3. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data

    Science.gov (United States)

    Cherniak, Iurii; Zakharenkova, Irina

    majority of the ionospheric parameters -density and kinetic temperature of electron and main ions, the plasma drift velocity and others. The comparison of RO reveals that usually COSMIC RO profiles are in a rather good agreement with ISR profiles both in the F2 layer peak electron density (NmF2) and the form of profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ISR location. It is necessary to note that retrieved electron density profiles should not be interpreted as actual vertical profiles. The geographical location of the ray path tangent points at the top and at the bottom of a profile may differ by several hundred kilometers. So the spatial smearing of data takes place and RO technique represents an image of vertical and horizontal ionospheric structure. That is why the comparison with ground-based data has rather relative character. We derived quantitative parameters to char-acterize the differences of the compared profiles: the peak height difference, the relative peak density difference. Most of the compared profiles agree within error limits, depending on the accuracy of the occultation-and the radar-derived profiles. In general COSMIC RO profiles are in a good agreement with incoherent radar profiles both in the F2 layer peak electron density (NmF2) and the form of the profiles. The coincidence of COSMIC and incoherent radar pro-files is better in the cases when projection of the ray path tangent points is closer to the radar location. COSMIC measurements can be efficiently used to study the topside part of the iono-spheric electron density. To validate the reliability of the COSMIC ionospheric observations it must be done the big work on the analysis and statistical generalization of the huge data array (today the total number of ionospheric occultation is more than 2.300.000), but this technique is a very promising one to retrieve accurate profiles of the ionospheric electron density

  4. Density variation in the electron-hole liquid in stressed germanium and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, S.M.

    1979-08-01

    A detailed study is presented of the variation in electron-hole pair density in the electron-hole liquid (EHL) in stressed Ge and Si. First, the variation of the density and other properties of the EHL is studied theoretically as a function of uniaxial stress in both Ge and Si. Second, the variation of the density with position is studied both theoretically and experimentally in the strain-confined electron-hole liquid (SCEHL) in Ge.

  5. Quark mass density- and temperature- dependent model for bulk strange quark matter

    OpenAIRE

    al, Yun Zhang et.

    2002-01-01

    It is shown that the quark mass density-dependent model can not be used to explain the process of the quark deconfinement phase transition because the quark confinement is permanent in this model. A quark mass density- and temperature-dependent model in which the quark confinement is impermanent has been suggested. We argue that the vacuum energy density B is a function of temperature. The dynamical and thermodynamical properties of bulk strange quark matter for quark mass density- and temper...

  6. Time-dependent density-functional-theory investigation of the collisions of protons and α particles with uracil and adenine

    Science.gov (United States)

    Covington, Cody; Hartig, Kara; Russakoff, Arthur; Kulpins, Ryan; Varga, Kálmán

    2017-05-01

    Time-dependent density-functional theory was employed to study the effects of proton and α -particle radiation on uracil and adenine. This method has the advantage of treating nuclear motion and electronic motion simultaneously, allowing for the study of electronic excitation, charge transfer, ionization, and nuclear motion. Particle energies were surveyed in the range of 15-500 keV for protons and 100-2000 keV for α particles in conjunction with impact points both on and off carbon bonds in order to investigate the electron and nuclear dynamics of irradiated molecules and the form and quantity of transferred energy. The stopping power, energy transferred, and ionization were found, and the relationship between incident particle energy and electron density of the target molecule was characterized for proton and α -particle radiation incident on adenine and uracil.

  7. Density dependence, whitebark pine, and vital rates of grizzly bears

    Science.gov (United States)

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  8. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  9. Temporal and spatial variations in ionospheric electron density profiles over South Africa during strong magnetic storms

    National Research Council Canada - National Science Library

    Yao, Y. B; Chen, P; Zhang, S; Chen, J. J

    2013-01-01

    ...) and vertical total electron content (VTEC) data from the Jason-1 satellite were used to analyze the variations in ionospheric electron density profiles over South Africa before and after the severe geomagnetic storms on 15 May 2005...

  10. Chemical Interface Damping Depends on Electrons Reaching the Surface.

    Science.gov (United States)

    Foerster, Benjamin; Joplin, Anneli; Kaefer, Katharina; Celiksoy, Sirin; Link, Stephan; Sönnichsen, Carsten

    2017-03-28

    Metallic nanoparticles show extraordinary strong light absorption near their plasmon resonance, orders of magnitude larger compared to nonmetallic nanoparticles. This "antenna" effect has recently been exploited to transfer electrons into empty states of an attached material, for example to create electric currents in photovoltaic devices or to induce chemical reactions. It is generally assumed that plasmons decay into hot electrons, which then transfer to the attached material. Ultrafast electron-electron scattering reduces the lifetime of hot electrons drastically in metals and therefore strongly limits the efficiency of plasmon induced hot electron transfer. However, recent work has revived the concept of plasmons decaying directly into an interfacial charge transfer state, thus avoiding the intermediate creation of hot electrons. This direct decay mechanism has mostly been neglected, and has been termed chemical interface damping (CID). CID manifests itself as an additional damping contribution to the homogeneous plasmon line width. In this study, we investigate the size dependence of CID by following the plasmon line width of gold nanorods during the adsorption process of thiols on the gold surface with single particle spectroscopy. We show that CID scales inversely with the effective path length of electrons, i.e., the average distance of electrons to the surface. Moreover, we compare the contribution of CID to other competing plasmon decay channels and predict that CID becomes the dominating plasmon energy decay mechanism for very small gold nanorods.

  11. Density dependence of relaxation dynamics in glass formers, and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7 ... We employ density-temperature scaling, analyzed in recent studies, to address the question. ... Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560 064, India; TIFR Center for Interdisciplinary Sciences, 21 Brundavan Colony, ...

  12. Density dependence of relaxation dynamics in glass formers, and ...

    Indian Academy of Sciences (India)

    Anshul D S Parmar

    Within the framework of the Adam-Gibbs relation, by employing density temperature scaling for the analysis, we find that softer particles make more fragile glasses, as deduced from dynamical quantities, which is found to be consistent with the Adam-Gibbs fragility. Keywords. Glass; fragility; supercooled liquids etc. 1.

  13. Bracket bond strength dependence on light power density

    OpenAIRE

    Staudt, Christine Bettina; Krejci, Ivo; Mavropoulos, Anestis

    2006-01-01

    In order to reduce curing time for bracket bonding with light-cured composites, manufacturers increase the power density (PD) of light sources. The present study aims at investigating the relationship between PD and shear bond strength (SBS) at short exposure time.

  14. Computed tomography as a source of electron density information for radiation treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Skrzynski, Witold; Slusarczyk-Kacprzyk, Wioletta; Bulski, Wojciech [Medical Physics Dept., Center of Oncology, Warsaw (Poland); Zielinska-Dabrowska, Sylwia; Wachowicz, Marta; Kukolowicz, Pawel F. [Medical Physics Dept., Holycross Cancer Center, Kielce (Poland)

    2010-06-15

    Purpose: to evaluate the performance of computed tomography (CT) systems of various designs as a source of electron density ({rho}{sub el}) data for treatment planning of radiation therapy. Material and methods: dependence of CT numbers on relative electron density of tissue-equivalent materials (HU-{rho}{sub el} relationship) was measured for several general-purpose CT systems (single-slice, multislice, wide-bore multislice), for radiotherapy simulators with a single-slice CT and kV CBCT (cone-beam CT) options, as well as for linear accelerators with kV and MV CBCT systems. Electron density phantoms of four sizes were used. Measurement data were compared with the standard HU-{rho}{sub el} relationships predefined in two commercial treatment-planning systems (TPS). Results: the HU-{rho}{sub el} relationships obtained with all of the general-purpose CT scanners operating at voltages close to 120 kV were very similar to each other and close to those predefined in TPS. Some dependency of HU values on tube voltage was observed for bone-equivalent materials. For a given tube voltage, differences in results obtained for different phantoms were larger than those obtained for different CT scanners. For radiotherapy simulators and for kV CBCT systems, the information on {rho}{sub el} was much less precise because of poor uniformity of images. For MV CBCT, the results were significantly different than for kV systems due to the differing energy spectrum of the beam. Conclusion: the HU-{rho}{sub el} relationships predefined in TPS can be used for general-purpose CT systems operating at voltages close to 120 kV. For nontypical imaging systems (e.g., CBCT), the relationship can be significantly different and, therefore, it should always be measured and carefully analyzed before using CT data for treatment planning. (orig.)

  15. Electron Cyclotron Resonance Heating of a High-Density Plasma

    DEFF Research Database (Denmark)

    Hansen, F. Ramskov

    1986-01-01

    Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...

  16. Grand-canonical-ensemble representability problem for the one-electron reduced density matrix

    Science.gov (United States)

    Alcoba, D. R.; Bochicchio, R. C.; Massacessi, G. E.; Lain, L.; Torre, A.

    2007-01-01

    We deal with many-electron systems having a noninteger number of electrons, which cannot be described properly by means of pure states or by canonical statistical ensemble states. The study of the one-electron reduced density matrix for these systems raises the problem of its representability in statistical ensembles of grand canonical type. We derive the necessary and sufficient conditions for the representability of the one-electron reduced density matrix of grand-canonical statistical ensembles.

  17. Experimental core electron density of cubic boron nitride

    DEFF Research Database (Denmark)

    Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse

    candidate because of its many similarities with diamond: bonding pattern in the extended network structure, hardness, and the quality of the crystallites.3 However, some degree ionic interaction is a part of the bonding in boron nitride, which is not present in diamond. By investigating the core density...... beyond multipolar modeling of the valence density. As was recently shown in a benchmark study of diamond by Bindzus et al.1 The next step is to investigate more complicated chemical bonding motives, to determine the effect of bonding on the core density. Cubic boron nitride2 lends itself as a perfect...... in boron nitride we may obtain a deeper understanding of the effect of bonding on the total density. We report here a thorough investigation of the charge density of cubic boron nitride with a detailed modelling of the inner atom charge density. By combining high resolution powder X-ray diffraction data...

  18. The nest site lottery: how selectively neutral density dependent growth suppression induces frequency dependent selection.

    Science.gov (United States)

    Argasinski, K; Broom, M

    2013-12-01

    Modern developments in population dynamics emphasize the role of the turnover of individuals. In the new approaches stable population size is a dynamic equilibrium between different mortality and fecundity factors instead of an arbitrary fixed carrying capacity. The latest replicator dynamics models assume that regulation of the population size acts through feedback driven by density dependent juvenile mortality. Here, we consider a simplified model to extract the properties of this approach. We show that at the stable population size, the structure of the frequency dependent evolutionary game emerges. Turnover of individuals induces a lottery mechanism where for each nest site released by a dead adult individual a single newborn is drawn from the pool of newborn candidates. This frequency dependent selection leads towards the strategy maximizing the number of newborns per adult death. However, multiple strategies can maximize this value. Among them, the strategy with the greatest mortality (which implies the greatest instantaneous growth rate) is selected. This result is important for the discussion about universal fitness measures and which parameters are maximized by natural selection. This is related to the fitness measures R0 and r, because the number of newborns per single dead individual equals the lifetime production of newborn R0 in models without aging. We thus have a two-stage procedure, instead of a single fitness measure, which is a combination of R0 and r. According to the nest site lottery mechanism, at stable population size, selection favors strategies with the greatest r, i.e. those with the highest turnover, from those with the greatest R0. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.

    Science.gov (United States)

    Kananenka, Alexei A; Zgid, Dominika

    2017-11-14

    We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.

  20. The effect of density fluctuations on electron cyclotron beam broadening and implications for ITER

    Science.gov (United States)

    Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G.; Henderson, M.; Saibene, G.

    2018-01-01

    We present state-of-the-art computations of propagation and absorption of electron cyclotron waves, retaining the effects of scattering due to electron density fluctuations. In ITER, injected microwaves are foreseen to suppress neoclassical tearing modes (NTMs) by driving current at the q=2 and q=3/2 resonant surfaces. Scattering of the beam can spoil the good localization of the absorption and thus impair NTM control capabilities. A novel tool, the WKBeam code, has been employed here in order to investigate this issue. The code is a Monte Carlo solver for the wave kinetic equation and retains diffraction, full axisymmetric tokamak geometry, determination of the absorption profile and an integral form of the scattering operator which describes the effects of turbulent density fluctuations within the limits of the Born scattering approximation. The approach has been benchmarked against the paraxial WKB code TORBEAM and the full-wave code IPF-FDMC. In particular, the Born approximation is found to be valid for ITER parameters. In this paper, we show that the radiative transport of EC beams due to wave scattering in ITER is diffusive unlike in present experiments, thus causing up to a factor of 2–4 broadening in the absorption profile. However, the broadening depends strongly on the turbulence model assumed for the density fluctuations, which still has large uncertainties.

  1. Electron momentum density and the momentum density of positron annihilation pairs in alkali metals: high-momentum components

    Energy Technology Data Exchange (ETDEWEB)

    Sob, M.

    1985-08-01

    The valence electron momentum density (EMD) and the momentum density of positron annihilation pairs (MDAP) are calculated ab initio for alkali metals from Li to Cs. It is shown that the proportion of valence electrons having their momenta within the central Fermi surface ranges from 75% (Cs) to 93% (Na); the momenta of the remaining valence electrons lie in the Umklapp Fermi surfaces centred at the surrounding reciprocal lattice points. In the calculation of the MDAP, various enhancement factors describing the effect of the many-body electron-positron interaction are examined; it seems that the recent model of enhancement of Umklapp terms presented by Sormann et al is not fully adequate. A relation between the EMD and MDAP is briefly discussed and the connection between the occupation of the central Fermi surface and other parameters of the electronic structure is pointed out.

  2. Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions.

    Science.gov (United States)

    Oberhofer, Harald; Blumberger, Jochen

    2009-08-14

    We present a plane-wave basis set implementation of charge constrained density functional molecular dynamics (CDFT-MD) for simulation of electron transfer reactions in condensed phase systems. Following the earlier work of Wu and Van Voorhis [Phys. Rev. A 72, 024502 (2005)], the density functional is minimized under the constraint that the charge difference between donor and acceptor is equal to a given value. The classical ion dynamics is propagated on the Born-Oppenheimer surface of the charge constrained state. We investigate the dependence of the constrained energy and of the energy gap on the definition of the charge and present expressions for the constraint forces. The method is applied to the Ru2+-Ru3+ electron self-exchange reaction in aqueous solution. Sampling the vertical energy gap along CDFT-MD trajectories and correcting for finite size effects, a reorganization free energy of 1.6 eV is obtained. This is 0.1-0.2 eV lower than a previous estimate based on a continuum model for solvation. The smaller value for the reorganization free energy can be explained by the fact that the Ru-O distances of the divalent and trivalent Ru hexahydrates are predicted to be more similar in the electron transfer complex than for the separated aqua ions.

  3. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry.

    Science.gov (United States)

    Looe, Hui Khee; Harder, Dietrich; Poppe, Björn

    2017-02-07

    The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector's size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector's electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.

  4. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    CERN Document Server

    Niez, J J

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  5. Energy Dependence of Near-relativistic Electron Spectrum at ...

    Indian Academy of Sciences (India)

    This may give us some insight into how we can safeguard geostationary satellites from functional anomalies of the deep dielectric charging type, which are caused by charge accumulation and subsequent discharge of relativistic electrons. In this study we examine whether there is any energy dependence in relativistic ...

  6. The effects of incident electron current density and temperature on the total electron emission yield of polycrystalline CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Belhaj, M; Tondu, T; Inguimbert, V [ONERA/DESP 2, Avenue Edouard Belin, 31400 Toulouse Cedex (France); Barroy, Pierre; Silva, Francois; Gicquel, Alix, E-mail: Mohamed.Belhaj@onera.f [LIMHP, Universite Paris 13, CNRS Institut Galilee, 99 Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France)

    2010-04-07

    The effects of temperature and incident electron current density on the total electron emission yield (TEEY) of polycrystalline diamond deposited by the chemical vapour deposition technique (CVD) were investigated at low electron beam fluence. It was found that the TEEY reversibly increases with the temperature and reversibly decreases with the current density. This behaviour is explained on the basis of a dynamic competition between the accumulation of holes (positive space charge), which internally reduces the secondary electron emission, and the thermally activated conductivity that tends to reduce the space charge formation.

  7. High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma

    Directory of Open Access Journals (Sweden)

    J. W. Wang

    2016-02-01

    Full Text Available It is shown by particle-in-cell simulations that a narrow electron beam with high energy and charge density can be generated in a subcritical-density plasma by two consecutive laser pulses. Although the first laser pulse dissipates rapidly, the second pulse can propagate for a long distance in the thin wake channel created by the first pulse and can further accelerate the preaccelerated electrons therein. Given that the second pulse also self-focuses, the resulting electron beam has a narrow waist and high charge and energy densities. Such beams are useful for enhancing the target-back space-charge field in target normal sheath acceleration of ions and bremsstrahlung sources, among others.

  8. Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points

    Energy Technology Data Exchange (ETDEWEB)

    Bučinský, Lukáš, E-mail: lukas.bucinsky@stuba.sk [Slovak University of Technology, FCHPT, Institute of Physical Chemistry and Chemical Physics, Radlinskeho 9, Bratislava SK-812 37 (Slovakia); Kucková, Lenka; Malček, Michal; Kožíšek, Jozef; Biskupič, Stanislav [Slovak University of Technology, FCHPT, Institute of Physical Chemistry and Chemical Physics, Radlinskeho 9, Bratislava SK-812 37 (Slovakia); Jayatilaka, Dylan [University of Western Australia, Department of Chemistry, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Büchel, Gabriel E. [University of Vienna, Institute of Inorganic Chemistry, Währinger Str. 42, A-1090 Vienna (Austria); King Abdullah University of Science and Technology, Division for Physical Sciences and Engineering and KAUST Catalysis Center, Thuwal (Saudi Arabia); Arion, Vladimir B. [University of Vienna, Institute of Inorganic Chemistry, Währinger Str. 42, A-1090 Vienna (Austria)

    2014-06-25

    Highlights: • Quasirelativistic study of electron density topology of Os and Ru complexes. • Electron/spin densities and negative Laplacian of electron density presented. • Analytic correction of picture change error at IOTC level. • Relativistic and spin–orbit effects are considered, IOTC vs. DKH2 compared. - Abstract: The change of picture of the quasirelativistic Hartree–Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl{sub 5}(Hpz)]{sup −} and [RuCl{sub 5}(NO)]{sup 2−} transition metal complexes are considered. Both, scalar relativistic and spin–orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.

  9. Four ways to determine the electron density in low-temperature plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Steenbakkers, M.F.M.; Qing, Z.; van de Sanden, M.C.M.; Schram, D.C.

    Four ways to measure the electron density in low-temperature plasmas are presented: Thomson scattering, Langmuir probe, optical-emission spectroscopy, and continuum-radiation analysis. The results of the four methods are compared to each other and discussed. For the electron-density range of

  10. Electron density distribution and bonding in ZnSe and PbSe using ...

    Indian Academy of Sciences (India)

    Unknown

    directions are relatively low in conformity with the loosely packed structure of ZnSe. (The interaction of atomic charges will be less and hence the electron densities along directions other than bonding are expected to be minimum). Figure 8(b) of PbSe shows unequal electron densities along the three directions. This is due ...

  11. Density-dependence of functional spiking networks in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS

    2008-01-01

    During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.

  12. Electronic structure of oxygen-terminated zigzag graphene nanoribbons: A hybrid density functional theory study

    Science.gov (United States)

    Ramasubramaniam, Ashwin

    2010-06-01

    The size-dependent electronic structure of oxygen-terminated zigzag graphene nanoribbons is investigated using standard density functional theory (DFT) with an exchange-correlation functional of the generalized gradient approximation form as well as hybrid DFT calculations with two different exchange-correlation functionals. Hybrid DFT calculations, which typically provide more accurate band gaps than standard DFT, are found to predict semiconducting behavior in oxygen-terminated zigzag graphene nanoribbons; this is in distinct contrast to standard DFT with (semi)local exchange-correlation functionals, which have been widely employed in previous studies and shown to predict metallic behavior. (Semi)local exchange-correlation functionals employed in standard DFT calculations cause unphysical delocalization of lone pairs from the oxygen atoms due to self-interaction errors and lead to metallic behavior. Hybrid DFT calculations do not suffer from this spurious effect and produce a clear size-dependent band gap. Appreciable fundamental band gaps (˜1eV) are found for the smallest ribbons (two zigzag rows); the band gap decreases rapidly with increasing ribbon width, resulting eventually in a zero band-gap semiconductor at about 4-5 zigzag rows. This finding could have useful implications for molecular electronics, in particular, since oxygen-terminated zigzag graphene nanoribbons are thermodynamically stable unlike their hydrogenated counterparts. More generally, through a concrete example, this study suggests caution when employing (semi)local functionals in DFT studies of functionalized graphene/graphene derivatives when the functional groups contain electron lone pairs.

  13. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators

    CERN Document Server

    Brijesh, P; Phuoc, K T; Corde, S; Lambert, G; Malka, V; Mangles, S P D; Bloom, M; Kneip, S

    2012-01-01

    A density perturbation produced in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 +/- 3.6%, divergence of 4 +/- 0.8 mrad and charge of 6 +/- 1.8 pC.

  14. PMSE observations with the EISCAT VHF- and UHF-radars: Ice particles and their effect on ambient electron densities

    Science.gov (United States)

    Li, Qiang; Rapp, Markus

    2013-11-01

    It is now well understood that the occurrence of PMSE is closely connected to the presence of ice particles. These ice particles modify the ambient electron density by electron attachment which occasionally leads to large electron density depletions which have also been called ‘biteouts’. There has been some debate in the literature regarding the relative depth of such depletions which is usually expressed by the parameter Λ=|ZA|NA/ne. Here, |ZA|NA is the charge number density of ice particles and ne is the electron density. In this paper, we present, for the first time, the statistical distribution of Λ using measurements with the EISCAT VHF- and UHF-radars. Based on 25 h of simultaneous observations, we derived a total of 757 Λ values based on 15 min of data each. In each of these cases, PMSE were observed with the EISCAT VHF-radar but not with the UHF-radar and the UHF-measurement were hence used to determine the electron density profile. From these 757 cases, there are 699 cases with Λ⪡1, and only 33 cases with Λ>0.5 (21 cases with Λ>1). A correlation analysis of Λ versus PMSE volume reflectivities further reveals that there is no strong dependence between the two parameters. This is in accordance with current PMSE-theory based on turbulence in combination with a large Schmidt-number. The maxima of Λ from each profile show a negative relationship with the undisturbed electron densities deduced at the same altitudes. This reveals that the variability of Λ mainly depends on the variability of the electron densities. In addition, variations of aerosol number densities may also play a role. Although part of the observations were conducted during the HF heating experiments, the so-called overshoot effects did not significantly bias our statistical results. In order to avoid missing biteouts because of a superposition of coherent and incoherent scatter in the UHF-data, we finally calculated spectral parameters n by applying a simple fit to auto

  15. Density dependence in an age-structured population of great tits: identifying the critical age classes

    NARCIS (Netherlands)

    Gamelon, M.; Grotan, V.; Engen, S.; Bjørkvoll, E.; Visser, M.E.; Sæther, Bernt-Erik

    2016-01-01

    Classical approaches for the analyses of density dependence assume that all the individuals in a population equally respond and equally contribute to density dependence. However, in age-structured populations, individuals of different ages may differ in their responses to changes in population size

  16. Estimation of density-dependent mortality of juvenile bivalves in the Wadden Sea

    NARCIS (Netherlands)

    Andresen, H.; Strasser, M.; van der Meer, J.

    2014-01-01

    We investigated density-dependent mortality within the early months of life of the bivalves Macoma balthica (Baltic tellin) and Cerastoderma edule (common cockle) in the Wadden Sea. Mortality is thought to be density-dependent in juvenile bivalves, because there is no proportional relationship

  17. Estimation of Density-Dependent Mortality of Juvenile Bivalves in the Wadden Sea

    NARCIS (Netherlands)

    Andresen, H.; Strasser, M.; van der Meer, J.

    2014-01-01

    We investigated density-dependent mortality within the early months of life of the bivalves Macoma balthica (Baltic tellin) and Cerastoderma edule (common cockle) in the Wadden Sea. Mortality is thought to be density-dependent in juvenile bivalves, because there is no proportional relationship

  18. Seasonal variation in density dependence in age-specific survival of a long-distance migrant

    NARCIS (Netherlands)

    Lok, Tamar; Overdijk, Otto; Tinbergen, Joost M.; Piersma, Theunis; Valone, T.J.

    2013-01-01

    Density dependence in vital rates is key to population regulation. Rather than being constant, the strength of density dependence may vary throughout the year, but empirical evidence is limited. Based on 22 years of data of color-banded birds from a recovering population of Eurasian Spoonbills

  19. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    CERN Document Server

    Rebolini, Elisa

    2015-01-01

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of four small molecules: N2, CO2, H2CO, and C2H4. The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  20. Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points

    KAUST Repository

    Bučinský, Lukáš

    2014-06-01

    The change of picture of the quasirelativistic Hartree-Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl5(Hpz)]- and [RuCl5(NO)]2- transition metal complexes are considered. Both, scalar relativistic and spin-orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.©2014 Elsevier B.V. All rights reserved.

  1. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  2. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  3. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT and Time-Dependent Density Functional Theory (TD-DFT Study

    Directory of Open Access Journals (Sweden)

    Guo-Jun Kang

    2016-11-01

    Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.

  4. Density functional study of : Electronic and optical properties

    Indian Academy of Sciences (India)

    K C Bhamu

    2017-06-20

    Jun 20, 2017 ... the refractive index in zero frequency limits is 2.42. The absorption coefficient predicts the applicability of AgScO2 in solar cells and flat panel liquid crystal display as a transparent top window layer. Keywords. Density functional theory; band structure; optical properties. PACS Nos 71.15.Mb; 71.20.−b; 78.20.

  5. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation. In this thesis, the three-level neutral-point-clamped VSCs (3L-NPC-VSCs), which are classified...

  6. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    Science.gov (United States)

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  7. Disentangling density-dependent dynamics using full annual cycle models and Bayesian model weight updating

    Science.gov (United States)

    Robinson, Orin J.; McGowan, Conor P.; Devers, Patrick K.

    2017-01-01

    Density dependence regulates populations of many species across all taxonomic groups. Understanding density dependence is vital for predicting the effects of climate, habitat loss and/or management actions on wild populations. Migratory species likely experience seasonal changes in the relative influence of density dependence on population processes such as survival and recruitment throughout the annual cycle. These effects must be accounted for when characterizing migratory populations via population models.To evaluate effects of density on seasonal survival and recruitment of a migratory species, we used an existing full annual cycle model framework for American black ducks Anas rubripes, and tested different density effects (including no effects) on survival and recruitment. We then used a Bayesian model weight updating routine to determine which population model best fit observed breeding population survey data between 1990 and 2014.The models that best fit the survey data suggested that survival and recruitment were affected by density dependence and that density effects were stronger on adult survival during the breeding season than during the non-breeding season.Analysis also suggests that regulation of survival and recruitment by density varied over time. Our results showed that different characterizations of density regulations changed every 8–12 years (three times in the 25-year period) for our population.Synthesis and applications. Using a full annual cycle, modelling framework and model weighting routine will be helpful in evaluating density dependence for migratory species in both the short and long term. We used this method to disentangle the seasonal effects of density on the continental American black duck population which will allow managers to better evaluate the effects of habitat loss and potential habitat management actions throughout the annual cycle. The method here may allow researchers to hone in on the proper form and/or strength of

  8. Behavior of Parameters of Nighttime Electron Density Enhancements of the Ionospheric F2 Layer

    Science.gov (United States)

    Yakovets, Artur; Gordienko, Galina

    2017-04-01

    There is known a wide class of disturbances of the F2-layer of the ionosphere, which are superimposed on the regular diurnal variations of the electron density. Different types of disturbances are characterized by different mechanisms of their generation. Traveling ionospheric disturbances appear to be the most characteristic features of the inhomogeneous structure of the ionosphere. Another type of ionospheric disturbances presents the nighttime electron density enhancements in the ionospheric F2- layer maximum (NmF2). This type of irregularities is described in numerous papers. There is a concept that, in spite of the various mechanisms of ionospheric disturbances generation a response of F2-layer parameters exhibits similar features associated with the upward lift and the simultaneous expansion of the layer and then its subsequent downward movement, including layer compression, which results in the formation of the electron density peak in the layer maximum at the moment of greatest compression. The aim of this study is a verification of this concept on the example of disturbances related with the nighttime electron density enhancements, and the definition of precise quantitative relationships between the variations of different F2-layer parameters for such disturbances. By using the data of the ionospheric vertical sounding in Almaty, (76° 55'E, 43°15'N) during 2001-2012, analysis of the behavior the F2-layer parameters during the night electron density enhancements was carried out within framework of a single concept of effects of various types of ionospheric plasma perturbations in variations of height and half-thickness of the F2-layer, accompanied by increasing and decreasing NmF2 at moments of maximum compression and expansion of the layer. For a quantitative analysis of the parameters of nighttime enhancements we have selected 20 nights characterized by low magnetic activity (Dst> - 50 nT) and evident manifestations of the nighttime electron density

  9. Estimation of density-dependent mortality of juvenile bivalves in the Wadden Sea.

    Directory of Open Access Journals (Sweden)

    Henrike Andresen

    Full Text Available We investigated density-dependent mortality within the early months of life of the bivalves Macoma balthica (Baltic tellin and Cerastoderma edule (common cockle in the Wadden Sea. Mortality is thought to be density-dependent in juvenile bivalves, because there is no proportional relationship between the size of the reproductive adult stocks and the numbers of recruits for both species. It is not known however, when exactly density dependence in the pre-recruitment phase occurs and how prevalent it is. The magnitude of recruitment determines year class strength in bivalves. Thus, understanding pre-recruit mortality will improve the understanding of population dynamics. We analyzed count data from three years of temporal sampling during the first months after bivalve settlement at ten transects in the Sylt-Rømø-Bay in the northern German Wadden Sea. Analyses of density dependence are sensitive to bias through measurement error. Measurement error was estimated by bootstrapping, and residual deviances were adjusted by adding process error. With simulations the effect of these two types of error on the estimate of the density-dependent mortality coefficient was investigated. In three out of eight time intervals density dependence was detected for M. balthica, and in zero out of six time intervals for C. edule. Biological or environmental stochastic processes dominated over density dependence at the investigated scale.

  10. Long-term observations of D-region electron densities at high and middle northern latitudes

    Science.gov (United States)

    Singer, Werner; Keuer, Dieter; Friedrich, Martin; Strelnikova, Irina; Latteck, Ralph

    D-region electron densities are estimated using Doppler radars at frequencies around 3 MHz in Andenes, Norway (69.3°N, 16.0°E) since summer 2003 and in Juliusruh, Germany (54.6°N, 13.4°E) since summer 2006. Both experiments utilize partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles of electron density are obtained between about 55 km and 90 km with sampling times of 2-3 minutes and height resolution of 1.5 km at Andenes and 3 km at Juliusruh. The electron density profiles independently derived from DAE and DPE measurements agree remarkably well. The radar results are compared with co-located simultaneously measured electron densities by rocket-borne radio wave propagation experiments (differential absorption, Faraday rotation, and impedance probe) in Andenes with good agreement between insitu and ground-based measurements. The diurnal and seasonal variability of electron densities as observed at high and mid-latitudes under quiet ionospheric conditions is presented and compared to the corresponding electron density profiles of the International Reference Ionosphere. The response of D-region ionization to regular solar activity variation as well as to solar activity storms and geomagnetic disturbances has been studied at polar latitudes. Characteristic electron density variations are found during downwelling events of nitric oxide due to strong vertical coupling during stratospheric warming events. In addition, we discuss the inter-relation between D-region electron densities from radar observations, riometer absorption, and the empirical model IMAZ at different levels of solar activity and during particle precipitation events.

  11. Measurements of plasma temperature and electron density in laser ...

    Indian Academy of Sciences (India)

    nique to provide remote, in-situ, rapid and multi-elemental analysis of bulk and trace sample in any phase (solid, liquid and gas) with no or minimal sample prepa- ration [2–4]. The characterization of LIPs by determining their temperature and electron den- sity is essential and has gained considerable interest in recent years ...

  12. Electron-positron momentum density in TTF-TCNQ

    DEFF Research Database (Denmark)

    Ishibashi, S.; Manuel, A.A.; Hoffmann, L.

    1997-01-01

    We present measurements of the positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) in TTF-TCNQ. We report also theoretical simulations of the 2D-ACAR in which the electron wave functions were expressed as TTF or TCNQ molecular orbitals obtained from self-consistent qu...

  13. Analyzing Density Operator in Thermal State for Complicated Time-Dependent Optical Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2014-01-01

    Full Text Available Density operator of oscillatory optical systems with time-dependent parameters is analyzed. In this case, a system is described by a time-dependent Hamiltonian. Invariant operator theory is introduced in order to describe time-varying behavior of the system. Due to the time dependence of parameters, the frequency of oscillation, so-called a modified frequency of the system, is somewhat different from the natural frequency. In general, density operator of a time-dependent optical system is represented in terms of the modified frequency. We showed how to determine density operator of complicated time-dependent optical systems in thermal state. Usually, density operator description of quantum states is more general than the one described in terms of the state vector.

  14. Experimental electron density determinations on penicillins and a fullerene derivative

    OpenAIRE

    Wagner, Armin

    2010-01-01

    The number of experimental charge density studies increased during the past years. This is prior to technical developments, especially the now widely spread area detectors which allow to measure high resolution X-ray diffraction data sets in a reasonable time. With the program system XD a computer program is available which enables the user to easily handle the substantial parameters in the Hansen-Coppens multipole formalism. The combination of the area detection technique with the high...

  15. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-08-01

    Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  16. Time-Local Equation for the Exact Optimized Effective Potential in Time-Dependent Density Functional Theory

    Science.gov (United States)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.

    2017-06-01

    A long-standing challenge in the time-dependent density functional theory is to efficiently solve the exact time-dependent optimized effective potential (TDOEP) integral equation derived from orbital-dependent functionals, especially for the study of nonadiabatic dynamics in time-dependent external fields. In this Letter, we formulate a completely equivalent time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham and effective memory orbitals. The time-local formulation is numerically implemented, with the incorporation of exponential memory loss to address the unaccounted for correlation component in the exact-exchange-only functional, to enable the study of the many-electron dynamics of a one-dimensional hydrogen chain. It is shown that the long time behavior of the electric dipole converges correctly and the zero-force theorem is fulfilled in the current implementation.

  17. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estim......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  18. Exploring the Interaction Natures in Plutonyl (VI) Complexes with Topological Analyses of Electron Density.

    Science.gov (United States)

    Du, Jiguang; Sun, Xiyuan; Jiang, Gang

    2016-04-11

    The interaction natures between Pu and different ligands in several plutonyl (VI) complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC) basis set. The Pu- O y l bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM) analyses. Meanwhile, we found that some Pu-Ligand bonds, like Pu-OH(-), show weak covalent. The interactive nature of Pu-ligand bonds were revealed based on the interaction quantum atom (IQA) energy decomposition approach, and our results indicate that all Pu-Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI) approach it has been found that some weak and repulsion interactions existed in plutonyl(VI) complexes, which can not be distinguished by QTAIM, can be successfully identified.

  19. Exploring the Interaction Natures in Plutonyl (VI Complexes with Topological Analyses of Electron Density

    Directory of Open Access Journals (Sweden)

    Jiguang Du

    2016-04-01

    Full Text Available The interaction natures between Pu and different ligands in several plutonyl (VI complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC basis set. The Pu– O y l bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI approach it has been found that some weak and repulsion interactions existed in plutonyl(VI complexes, which can not be distinguished by QTAIM, can be successfully identified.

  20. Density-dependent compensatory growth in brown trout (Salmo trutta) in nature.

    Science.gov (United States)

    Sundström, L Fredrik; Kaspersson, Rasmus; Näslund, Joacim; Johnsson, Jörgen I

    2013-01-01

    Density-dependence is a major ecological mechanism that is known to limit individual growth. To examine if compensatory growth (unusually rapid growth following a period of imposed slow growth) in nature is density-dependent, one-year-old brown trout (Salmo trutta L.) were first starved in the laboratory, and then released back into their natural stream, either at natural or at experimentally increased population density. The experimental trout were captured three times over a one-year period. We found no differences in growth, within the first month after release (May-June), between the starved fish and the control group (i.e. no evidence of compensation). During the summer however (July-September), the starved fish grew more than the control group (i.e. compensation), and the starved fish released into the stream at a higher density, grew less than those released at a natural density, both in terms of weight and length (i.e. density-dependent compensation). Over the winter (October-April), there were no effects of either starvation or density on weight and length growth. After the winter, starved fish released at either density had caught up with control fish in body size, but recapture rates (proxy for survival) did not indicate any costs of compensation. Our results suggest that compensatory growth in nature can be density-dependent. Thus, this is the first study to demonstrate the presence of ecological restrictions on the compensatory growth response in free-ranging animals.

  1. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Levine, Jonathan M

    2018-01-20

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  2. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  3. Electron kinetics dependence on gas pressure in laser-induced oxygen plasma experiment: Theoretical analysis

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2017-08-01

    A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.

  4. Electron density variability of nighttime D region ionosphere in Vietnamese and Japanese sectors

    Science.gov (United States)

    Tan, Le Minh; Shiokawa, Kazuo; Thu, Nguyen Ngoc; Ha, Tran Quoc

    2017-06-01

    Recording tweek atmospherics on geomagnetically quiet days in 2014 at Tay Nguyen University (TNU) (12.65°N, 108.02°E), Vietnam, and at Kagoshima (KAG) (31.48°N, 130.72°E), Japan, we investigated the nighttime electron density variability of the D region ionosphere between the equatorial-low-latitude Vietnamese and the low- to middle-latitude Japanese sectors. We estimated the reflection height and electron density of the D region ionosphere using the first-order mode cutoff frequency of tweek atmospherics. The results observed at both stations show that the mean electron density at the reflection height during winter season was higher than that during summer and equinox seasons. The electron density observed at TNU gradually decreased from 20:15 to 4:15 LT from winter to equinox and to summer. The electron density observed at KAG increased from 20:20 to 4:20 LT during summer and winter seasons. The mean electron density during 2014 observed at TNU (25.0 cm-3) was higher by 2.1 cm-3 than that observed at KAG (22.9 cm-3). During 2014, the nighttime electron density variations show a moderate positive correlation with the sunspot number but show weak to no correlation with the galactic cosmic rays. We suggest that the seasonal variations in the nighttime electron density could be significantly caused by the enhancement of geocoronal hydrogen Lyman α intensity and seasonal variation of nitric oxide density in the lower ionosphere.

  5. A minimal model for excitons within time-dependent density-functional theory.

    Science.gov (United States)

    Yang, Zeng-hui; Li, Yonghui; Ullrich, Carsten A

    2012-07-07

    The accurate description of the optical spectra of insulators and semiconductors remains an important challenge for time-dependent density-functional theory (TDDFT). Evidence has been given in the literature that TDDFT can produce bound as well as continuum excitons for specific systems, but there are still many unresolved basic questions concerning the role of dynamical exchange and correlation (xc). In particular, the roles of the long spatial range and the frequency dependence of the xc kernel f(xc) for excitonic binding are still not very well explored. We present a minimal model for excitons in TDDFT, consisting of two bands from a one-dimensional (1D) Kronig-Penney model and simple approximate xc kernels, providing an easily accessible model system for studying excitonic effects in TDDFT. For the 1D model system, it is found that adiabatic xc kernels can produce at most two bound excitons, confirming that the long spatial range of f(xc) is not a necessary condition. It is shown how the Wannier model, featuring an effective electron-hole interaction, emerges from TDDFT. The collective, many-body nature of excitons is explicitly demonstrated.

  6. Saturable absorption of an x-ray free-electron-laser heated solid-density aluminum plasma.

    Science.gov (United States)

    Rackstraw, D S; Ciricosta, O; Vinko, S M; Barbrel, B; Burian, T; Chalupský, J; Cho, B I; Chung, H-K; Dakovski, G L; Engelhorn, K; Hájková, V; Heimann, P; Holmes, M; Juha, L; Krzywinski, J; Lee, R W; Toleikis, S; Turner, J J; Zastrau, U; Wark, J S

    2015-01-09

    High-intensity x-ray pulses from an x-ray free-electron laser are used to heat and probe a solid-density aluminum sample. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, in good agreement with atomic-kinetics simulations.

  7. Dependability in electronic systems mitigation of hardware failures, soft errors, and electro-magnetic disturbances

    CERN Document Server

    Kanekawa, Nobuyasu; Suga, Takashi; Uematsu, Yutaka

    2011-01-01

    Dependability in Electronic Systems presents practical applications for dependable electronic systems, such as train control, automotive control systems and network servers/routers. Readers will find an overview of dependability, enabling them to select the best choice for maximum results.

  8. Electron Temperature and Density in Local Helicity Injection and High betat Plasmas

    Science.gov (United States)

    Schlossberg, David J.

    Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% ramp-down. For a continued decrease in the toroidal field these plasmas disrupt near the ideal MHD

  9. Electron number density profiles derived from radio occultation on the CASSIOPE spacecraft

    Science.gov (United States)

    Shume, Esayas B.; Vergados, Panagiotis; Komjathy, Attila; Langley, Richard B.; Durgonics, Tibor

    2017-09-01

    This paper presents electron number density profiles derived from high-resolution Global Positioning System (GPS) radio occultation (RO) observations performed using the Enhanced Polar Outflow Probe payload on the high inclination CAScade, Smallsat and IOnospheric Polar Explorer (CASSIOPE) spacecraft. We have developed and applied a novel inverse Abel transform algorithm on high rate RO total electron content measurements performed along GPS to CASSIOPE radio links to recover electron density profiles. The high-resolution density profiles inferred from the CASSIOPE RO are (1) in very good agreement with density profiles estimated from ionosonde data, measured over stations nearby to the latitude and longitude of the RO tangent points; (2) in good agreement with density profiles inferred from GPS RO measured by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and (3) in general agreement with density profiles estimated using the International Reference Ionosphere climatological model. Using both CASSIOPE and COSMIC RO observations, we identify, for the first time, that there exist differences in the characteristics of the electron number density profiles retrieved over landmasses and oceans. The density profiles over oceans exhibit widespread values and scale heights compared to density profiles over landmasses. We provide an explanation for the ocean-landmass discrepancy in terms of the unique wave coupling mechanisms operating over oceans and landmasses.

  10. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    Science.gov (United States)

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Evolvement law of a macroscopic traffic model accounting for density-dependent relaxation time

    Science.gov (United States)

    Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Jia, Bin; Lin, Sen; Wu, Zi-Han; Zhu, Hua-Bing; Gao, Zi-You

    2017-11-01

    In this paper, a modified macroscopic traffic flow model is presented. The term of the density-dependent relaxation time is introduced here. The relation between the relaxation time and the density in traffic flow is presented quantitatively. Besides, a factor R depicting varied properties of traffic flow in different traffic states is also introduced in the formulation of the model. Furthermore, the evolvement law of traffic flow with distinctly initial density distribution and boundary perturbations is emphasized.

  12. Seasonal and solar activity variability of D-region electron density at 69°N

    Science.gov (United States)

    Singer, Werner; Latteck, Ralph; Friedrich, Martin; Wakabayashi, Makato; Rapp, Markus

    2011-06-01

    A narrow beam Doppler radar operating at 3.17 MHz and installed close to the Andøya Rocket Range in Andenes, Norway, (69.3°N, 16.0°E) has been providing electron densities in the lower ionosphere since summer 2003. The experiment utilizes partial reflection of ordinary and extraordinary component waves from scatterers in the altitude range 50-95 km to estimate electron densities from differential absorption and differential phase measurements. These ground-based observations are in good agreement with concurrent rocket-borne radio wave propagation measurements at Andenes. Results of the diurnal and seasonal variability of electron densities and the response of D-region electron densities to solar activity storms are presented.

  13. Plasma sheath: An equivalent nonlinear mirror between electron density and transmitted electromagnetic signal

    Science.gov (United States)

    Yao, Bo; Li, Xiaoping; Shi, Lei; Liu, Yanming; Lei, Fan; Zhu, Congying

    2017-10-01

    An experiment on the propagation of electromagnetic (EM) signals in continuous time-varying plasma is designed to establish the nonlinear mirror between electron density and transmission coefficient. The nonlinearity is confirmed from the theoretical and experimental results. The amplitude and phase can be considered nonlinear functions of electron density when the complex interaction between plasma and EM waves is ignored. Results show that amplitude and phase distributions are asymmetrical when electron density follows symmetric distribution. The skewness of amplitude is positive, whereas the skewness of phase is negative. The nonlinear degree is closely related to the ratio of plasma frequency to the incident wave frequency and the range of electron density. The conclusions are crucial to the modeling of plasma sheath channels and understanding the blackout problem.

  14. CASSINI RSS: IONOSPHERIC ELECTRON DENSITY PROFILES EDP1 V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the complete collection of the published Cassini radio occultation electron density profiles of the Titan ionosphere as of September 2008.

  15. Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory

    Science.gov (United States)

    Yu, W.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Gao, C.-Z.; Wei, B.

    2018-02-01

    Using time-dependent density-functional theory at the level of local density approximation augmented by a self-interaction correction and coupled non-adiabatically to molecular dynamics, we study, from a theoretical perspective, scattering dynamics of the proton in collisions with the N2 molecule at 30 eV. Nine different collision configurations are employed to analyze the proton energy loss spectra, electron depletion, scattering angles and self-interaction effects. Our results agree qualitatively with the experimental data and previous theoretical calculations. The discrepancies are ascribed to the limitation of the theoretical models in use. We find that self-interaction effects can significantly influence the electron capture and the excited diatomic vibrational motion, which is in consistent with other calculations. In addition, it is found that the molecular structure can be readily retrieved from the proton energy loss spectra due to a significant momentum transfer in head-on collisions.

  16. Imaging Near-Earth Electron Densities Using Thomson Scattering

    Science.gov (United States)

    2009-01-15

    telescopes (left and right squares). In these simulated images, we have assumed an input aperture diameter of 23.5 cm and a pixel plate scale of 270...diameter of 23.8 cm and a pixel plate scale of 120 km. The inner field of view begins near 320 km in altitude, which Imaging Near-Earth Electron...LFM) Global MHD Magnetospheric Simulation Code,” J. Atmos. Sol. Terres . Phys. 66, 1333. Meier, R.R., 1991. “Ultraviolet Spectroscopy and Remote

  17. Explaining density-dependent regulation in earthworm populations using life-history analysis

    NARCIS (Netherlands)

    Kammenga, J.E.; Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.

    2003-01-01

    At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based oil experimental observations and life-history modeling for

  18. Laboratory Calibration of Density-Dependent Lines in the EUV and Soft X-Ray Regions

    Energy Technology Data Exchange (ETDEWEB)

    Lepson, J K; Beiersdorfer, P; Gu, M F; Desai, P

    2010-12-09

    We analyzed spectral data of Fe XXII and Ar XIV from laboratory sources in which the electron density varies by several orders of magnitude to help benchmark density-sensitive emission lines useful for astrophysics and to test the atomic models underlying the diagnostic line ratios. We found excellent agreement for Fe XXII, but poorer agreement for Ar XIV. A number of astrophysically important emission lines are sensitive to electron density in the EUV and soft X-ray regions. Lines from Fe XXII, for example, have been used in recent years as diagnostics of stellar coronae, such as the active variable AB Dor, Capella, and EX Hya (Sanz-Forcada et al. 2003, Mewe et al. 2001, Mauche et al. 2003). Here we report spectral data of Fe XXII and Ar XIV from laboratory sources in which the electron density is known from either K-shell density diagnostics (for electron beam ion traps) or from non-spectroscopic means (tokamaks), ranging from 5 x 10{sup 10} cm{sup -3} to 5 x 10{sup 14} cm{sup -3}. These measurements were used to test the atomic data underlying the density diagnostic line ratios, complementing earlier work (Chen et al. 2004).

  19. An experimental field study of delayed density dependence in natural populations of Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Rachael K Walsh

    Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.

  20. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis).

    Science.gov (United States)

    Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A

    2018-02-09

    It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Analysis of the enhanced negative correlation between electron density and electron temperature related to earthquakes

    Directory of Open Access Journals (Sweden)

    X. H. Shen

    2015-04-01

    Full Text Available Ionospheric perturbations in plasma parameters have been observed before large earthquakes, but the correlation between different parameters has been less studied in previous research. The present study is focused on the relationship between electron density (Ne and temperature (Te observed by the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions satellite during local nighttime, in which a positive correlation has been revealed near the equator and a weak correlation at mid- and low latitudes over both hemispheres. Based on this normal background analysis, the negative correlation with the lowest percent in all Ne and Te points is studied before and after large earthquakes at mid- and low latitudes. The multiparameter observations exhibited typical synchronous disturbances before the Chile M8.8 earthquake in 2010 and the Pu'er M6.4 in 2007, and Te varied inversely with Ne over the epicentral areas. Moreover, statistical analysis has been done by selecting the orbits at a distance of 1000 km and ±7 days before and after the global earthquakes. Enhanced negative correlation coefficients lower than −0.5 between Ne and Te are found in 42% of points to be connected with earthquakes. The correlation median values at different seismic levels show a clear decrease with earthquakes larger than 7. Finally, the electric-field-coupling model is discussed; furthermore, a digital simulation has been carried out by SAMI2 (Sami2 is Another Model of the Ionosphere, which illustrates that the external electric field in the ionosphere can strengthen the negative correlation in Ne and Te at a lower latitude relative to the disturbed source due to the effects of the geomagnetic field. Although seismic activity is not the only source to cause the inverse Ne–Te variations, the present results demonstrate one possibly useful tool in seismo-electromagnetic anomaly differentiation, and a comprehensive analysis with multiple

  2. Maximum current density and beam brightness achievable by laser-driven electron sources

    Directory of Open Access Journals (Sweden)

    D. Filippetto

    2014-02-01

    Full Text Available This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  3. Maximum current density and beam brightness achievable by laser-driven electron sources

    Science.gov (United States)

    Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.

    2014-02-01

    This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  4. Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond

    DEFF Research Database (Denmark)

    Svendsen, H.; Overgaard, J.; Busselez, R.

    2010-01-01

    Accurate structure factors are extracted from synchrotron powder diffraction data measured on crystalline diamond based on a novel multipole model division of overlapping reflection intensities. The approach limits the spherical-atom bias in structure factors extracted from overlapping powder data...... parameter. This directly exposes a correlation between electron density and thermal parameters even for a light atom such as carbon, and it also underlines that in organic systems proper deconvolution of thermal motion is important for obtaining correct static electron densities....

  5. Some new features of electron density irregularities over SHAR during strong spread F

    Directory of Open Access Journals (Sweden)

    S. Raizada

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.

    Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics

  6. Some new features of electron density irregularities over SHAR during strong spread F

    Directory of Open Access Journals (Sweden)

    S. Raizada

    2000-02-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics

  7. Simulations of Nanocrystals Under Pressure: Combining Electronic Enthalpy and Linear-Scaling Density-Functional Theory

    OpenAIRE

    Corsini, NR; Greco, A.; Hine, ND; Molteni, C.; Haynes, PD

    2013-01-01

    We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simula...

  8. Advanced High Energy Density Secondary Batteries with Multi?Electron Reaction Materials

    OpenAIRE

    Chen, Renjie; Luo, Rui; Huang, Yongxin; Wu, Feng; Li, Li

    2016-01-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi?electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in?depth understanding of multi?electron chemistries i...

  9. Electron density and temperature measurements in a laser produced carbon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S.S.; Bindhu, C.V.; Issac, R.C.; Nampoori, V.P.; Vallabhan, C.P. [Laser Division, International School of Photonics, Cochin University of Science Technology, Cochin 682 022 (India)

    1997-09-01

    Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained. {copyright} {ital 1997 American Institute of Physics.}

  10. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    Science.gov (United States)

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  11. First-principle calculation of electrons charge density in the diamond ...

    African Journals Online (AJOL)

    . It has been found that in each crystal, the total electrons charge density along the [100] and [010] directions are equal, however, the charge densities at a given distance from the center of the cell along [001] and [100] directions are not exactly

  12. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2009-11-01

    Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.

  13. High energy density plasma science with an ultrarelativistic electron beam

    Science.gov (United States)

    Joshi, C.; Blue, B.; Clayton, C. E.; Dodd, E.; Huang, C.; Marsh, K. A.; Mori, W. B.; Wang, S.; Hogan, M. J.; O'Connell, C.; Siemann, R.; Watz, D.; Muggli, P.; Katsouleas, T.; Lee, S.

    2002-05-01

    An intense, high-energy electron or positron beam can have focused intensities rivaling those of today's most powerful laser beams. For example, the 5 ps (full-width, half-maximum), 50 GeV beam at the Stanford Linear Accelerator Center (SLAC) at 1 kA and focused to a 3 micron rms spot size gives intensities of >1020 W/cm-2 at a repetition rate of >10 Hz. Unlike a ps or fs laser pulse which interacts with the surface of a solid target, the particle beam can readily tunnel through tens of cm of steel. However, the same particle beam can be manipulated quite effectively by a plasma that is a million times less dense than air! This is because of the incredibly strong collective fields induced in the plasma by the Coulomb force of the beam. The collective fields in turn react back onto the beam leading to many clearly observable phenomena. The beam paraticles can be: (1) Deflected leading to focusing, defocusing, or even steering of the beam; (2) undulated causing the emission of spontaneous betatron x-ray radiation and; (3) accelerated or decelerated by the plasma fields. Using the 28.5 GeV electron beam from the SLAC linac a series of experiments have been carried out that demonstrate clearly many of the above mentioned effects. The results can be compared with theoretical predictions and with two-dimensional and three-dimensional, one-to-one, particle-in-cell code simulations. These phenomena may have practical applications in future technologies including optical elements in particle beam lines, synchrotron light sources, and ultrahigh gradient accelerators.

  14. On the exact formulation of multi-configuration density-functional theory: electron density versus orbitals occupation

    CERN Document Server

    Fromager, Emmanuel

    2014-01-01

    The exact formulation of multi-configuration density-functional theory (DFT) is discussed in this work. As an alternative to range-separated methods, where electron correlation effects are split in the coordinate space, the combination of Configuration Interaction methods with orbital occupation functionals is explored at the formal level through the separation of correlation effects in the orbital space. When applied to model Hamiltonians, this approach leads to an exact Site-Occupation Embedding Theory (SOET). An adiabatic connection expression is derived for the complementary bath functional and a comparison with Density Matrix Embedding Theory (DMET) is made. Illustrative results are given for the simple two-site Hubbard model. SOET is then applied to a quantum chemical Hamiltonian, thus leading to an exact Complete Active Space Site-Occupation Functional Theory (CASSOFT) where active electrons are correlated explicitly within the CAS and the remaining contributions to the correlation energy are described...

  15. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short......-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H, Be, and ferrocene, considering both short-range local density (srLDA) and generalized gradient...

  16. Assessment studies on the inversion of satellite to satellite electron content to obtain electron density profiles in the ionosphere

    CERN Document Server

    Hochegger, G P

    2000-01-01

    The electron content data, obtained by satellite-to-satellite occultations of radio signals can lead to height profiles of electron density by discrete inversion. Since there is no possibility to verify such profiles by means of other measurements (practically never measurements at the same time and same location) it was necessary to simulate occultation scenarios by means of an ionosphere model to obtain a large number of comparisons sufficient for investigations on a statistical basis. The obtained electron contents were inverted and compared with electron density height profiles, obtained with the same ionospheric model for the occultation point. The differences between these profiles were investigated (difference between the F2-peak maxima, the height of the maxima, the shape of the topside and bottom side ionosphere). Since simulations were done for chosen locations (250 randomly spread on the globe) for every month and every second hour and for two solar activity levels (HSA and LSA), a whole year was '...

  17. Spin and density longitudinal response of quantum dots in the time-dependent local-spin-density approximation

    Science.gov (United States)

    Serra, Ll.; Barranco, M.; Emperador, A.; Pi, M.; Lipparini, E.

    1999-06-01

    The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local-spin-density-functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (ν) related. We have found that the spin dipole mode is especially soft for even-ν values. Results for selected numbers of electrons and confining potentials are discussed.

  18. The mechanical, electronic and optical properties of KH under high pressure: a density functional theory study

    Science.gov (United States)

    Xinyou, An; Feng, Geng; Weiyi, Ren; Hui, Yang; Ziqi, He; Feiyu, Wang; Tixian, Zeng

    2017-03-01

    The mechanical, electronic and optical properties of KH under high pressure have been studied using the generalized gradient approximation and Heyd-Scuseria-Ernzerh of hybrid method within density functional theory. Based on the usual condition of equal enthalpies, high pressure phase transition of KH from B 1 to B 2 was confirmed, is about 4.1 GPa, and normalized volume collapse ΔV P /V 0 is about 11.09%. The calculated equilibrium structural parameters and elastic modulus are in excellent agreement with the experimental and other theoretical results. At ground states, B 1 KH is elastic stable, but B 2 KH is unstable. C 11 and c‧ are the main factors, which cause the structural phase transition under the pressures. The band structures and density of states of KH were calculated and analyzed in detail. Valance bands are local and conduction bands are continuous. The VBs mainly originate from K 3s, 3p and H 1s states, and the CBs consist of K 3s, 3p states, some hybridized levels are found between K 3s and 3p states. Mulliken population analysis of KH indicate that the charge populations of H 1s and K 3p states are very obvious but K 3s states are relatively weak, the charge transfers are from K to H. The linear response optical properties of KH were emphatically predicted combing with the band structures and frequency-dependent and dielectric function ε(ω).

  19. Static and Dynamic Electronic (Hyperpolarizabilities of Dimethylnaphthalene Isomers: Characterization of Spatial Contributions by Density Analysis

    Directory of Open Access Journals (Sweden)

    Andrea Alparone

    2013-01-01

    Full Text Available Static and frequency-dependent electronic (hyperpolarizabilities of the dimethylnaphthalene (DMN isomers were computed in vacuum using the Coulomb-attenuating Density Functional Theory method. The nonlinear optical Second Harmonic Generation (SHG and Electro-Optical Pockels Effect (EOPE were investigated at the characteristic Nd:YAG laser wavelength of 1064 nm. The response electric properties especially the longitudinal polarizability, polarizability anisotropy, and first-order hyperpolarizability are significantly affected by the position of the methyl groups. The SHG and EOPE techniques can be potentially useful to discriminate the ,-DMN isomers (2,6-DMN < 2,7-DMN < 2,3-DMN as well as the ,-DMN isomers (1,5-DMN < 1,4-DMN < 1,8-DMN. The (hyperpolarizability differences among the investigated DMNs were elucidated through density analysis calculations. The predicted polarizabilities exhibit good linear relationships with the experimental first-order biomass-normalized rate coefficient, a physicochemical property connected to the rates of biodegradation processes of polycyclic aromatic hydrocarbons.

  20. X-ray emission from relativistically moving electron density cusps

    Energy Technology Data Exchange (ETDEWEB)

    Kando, M.; Pirozhkov, A. S.; Nakamura, T.; Hayashi, Y.; Kotaki, H.; Kawase, K.; Esirkepov, T. Zh.; Fukuda, Y.; Kiriyama, H.; Okada, H.; Daito, I.; Kameshima, T.; Mori, M.; Koga, J. K.; Daido, H.; Faenov, A. Ya.; Pikuz, T.; Ma, J.; Chen, L.-M.; Ragozin, E. N. [Japan Atomic Energy Agency (Japan); Osaka University (Japan); Joint Institute for High Temperature of the Russian Academy of Science, Moscow (Russian Federation); Institute of Physics, Chinese Academy of Sciences, Beijing (China); P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky prospekt 53, 119991 Moscow (Russian Federation); Japan Atomic Energy Agency and Graduate School for the Creation of New Photonics Industries (Japan); Ludwig-Maximilians-University (Germany); and others

    2012-07-11

    We report on novel methods to generate ultra-short, coherent, X-rays using a laserplasma interaction. Nonlinear interaction of intense laser pulses with plasma creates stable, specific structures such as electron cusps. For example, wake waves excited in an underdense plasma by an intense, short-pulse laser become dense and propagate along with the laser pulse. This is called a relativistic flying mirror. The flying mirror can reflect a counter-propagating laser pulse and directly convert it into high-frequency radiation, with a frequency multiplication factor of {approx} 4{gamma}{sup 2} and pulse shortening with the same factor. After the proof-of-principle experiments, we observed that the photon number generated in the flying mirror is close to the theoretical estimate. We present the details of the experiment in which a 9 TW laser pulse focused into a He gas jet generated the Flying Mirror, which partly reflected a 1 TW pulse, giving up to {approx} 10{sup 10} photons, 60 nJ (1.4 Multiplication-Sign 10{sup 12} photons/sr) in the XUV spectral region (12.8-22 nm).

  1. Ion and electron sheath characteristics in a low density and low temperature plasma

    Science.gov (United States)

    Borgohain, Binita; Bailung, H.

    2017-11-01

    Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.

  2. A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning.

    Science.gov (United States)

    Gudur, Madhu Sudhan Reddy; Hara, Wendy; Le, Quynh-Thu; Wang, Lei; Xing, Lei; Li, Ruijiang

    2014-11-07

    MRI significantly improves the accuracy and reliability of target delineation in radiation therapy for certain tumors due to its superior soft tissue contrast compared to CT. A treatment planning process with MRI as the sole imaging modality will eliminate systematic CT/MRI co-registration errors, reduce cost and radiation exposure, and simplify clinical workflow. However, MRI lacks the key electron density information necessary for accurate dose calculation and generating reference images for patient setup. The purpose of this work is to develop a unifying method to derive electron density from standard T1-weighted MRI. We propose to combine both intensity and geometry information into a unifying probabilistic Bayesian framework for electron density mapping. For each voxel, we compute two conditional probability density functions (PDFs) of electron density given its: (1) T1-weighted MRI intensity, and (2) geometry in a reference anatomy, obtained by deformable image registration between the MRI of the atlas and test patient. The two conditional PDFs containing intensity and geometry information are combined into a unifying posterior PDF, whose mean value corresponds to the optimal electron density value under the mean-square error criterion. We evaluated the algorithm's accuracy of electron density mapping and its ability to detect bone in the head for eight patients, using an additional patient as the atlas or template. Mean absolute HU error between the estimated and true CT, as well as receiver operating characteristics for bone detection (HU > 200) were calculated. The performance was compared with a global intensity approach based on T1 and no density correction (set whole head to water). The proposed technique significantly reduced the errors in electron density estimation, with a mean absolute HU error of 126, compared with 139 for deformable registration (p = 2  ×  10(-4)), 283 for the intensity approach (p = 2  ×  10(-6)) and 282 without density

  3. Towards Efficient and Accurate Description of Many-Electron Problems: Developments of Static and Time-Dependent Electronic Structure Methods

    Science.gov (United States)

    Ding, Feizhi

    Understanding electronic behavior in molecular and nano-scale systems is fundamental to the development and design of novel technologies and materials for application in a variety of scientific contexts from fundamental research to energy conversion. This dissertation aims to provide insights into this goal by developing novel methods and applications of first-principle electronic structure theory. Specifically, we will present new methods and applications of excited state multi-electron dynamics based on the real-time (RT) time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) formalism, and new development of the multi-configuration self-consist field theory (MCSCF) for modeling ground-state electronic structure. The RT-TDHF/TDDFT based developments and applications can be categorized into three broad and coherently integrated research areas: (1) modeling of the interaction between moleculars and external electromagnetic perturbations. In this part we will first prove both analytically and numerically the gauge invariance of the TDHF/TDDFT formalisms, then we will present a novel, efficient method for calculating molecular nonlinear optical properties, and last we will study quantum coherent plasmon in metal namowires using RT-TDDFT; (2) modeling of excited-state charge transfer in molecules. In this part, we will investigate the mechanisms of bridge-mediated electron transfer, and then we will introduce a newly developed non-equilibrium quantum/continuum embedding method for studying charge transfer dynamics in solution; (3) developments of first-principles spin-dependent many-electron dynamics. In this part, we will present an ab initio non-relativistic spin dynamics method based on the two-component generalized Hartree-Fock approach, and then we will generalized it to the two-component TDDFT framework and combine it with the Ehrenfest molecular dynamics approach for modeling the interaction between electron spins and nuclear

  4. Density-dependent coral recruitment displays divergent responses during distinct early life-history stages.

    Science.gov (United States)

    Doropoulos, Christopher; Evensen, Nicolas R; Gómez-Lemos, Luis A; Babcock, Russell C

    2017-05-01

    Population growth involves demographic bottlenecks that regulate recruitment success during various early life-history stages. The success of each early life-history stage can vary in response to population density, interacting with intrinsic (e.g. behavioural) and environmental (e.g. competition, predation) factors. Here, we used the common reef-building coral Acropora millepora to investigate how density-dependence influences larval survival and settlement in laboratory experiments that isolated intrinsic effects, and post-settlement survival in a field experiment that examined interactions with environmental factors. Larval survival was exceptionally high (greater than 80%) and density-independent from 2.5 to 12 days following spawning. By contrast, there was a weak positive effect of larval density on settlement, driven by gregarious behaviour at the highest density. When larval supply was saturated, settlement was three times higher in crevices compared with exposed microhabitats, but a negative relationship between settler density and post-settlement survival in crevices and density-independent survival on exposed surfaces resulted in similar recruit densities just one month following settlement. Moreover, a negative relationship was found between turf algae and settler survival in crevices, whereas gregarious settlement improved settler survival on exposed surfaces. Overall, our findings reveal divergent responses by coral larvae and newly settled recruits to density-dependent regulation, mediated by intrinsic and environmental interactions.

  5. Exploring the Interaction Natures in Plutonyl (VI) Complexes with Topological Analyses of Electron Density

    OpenAIRE

    Jiguang Du; Xiyuan Sun; Gang Jiang

    2016-01-01

    The interaction natures between Pu and different ligands in several plutonyl (VI) complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC) basis set. The Pu– O y l bond orders show significant line...

  6. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    Science.gov (United States)

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  7. Exploring electron pair behaviour in chemical bonds using the extracule density.

    Science.gov (United States)

    Proud, Adam J; Mackenzie, Dalton E C K; Pearson, Jason K

    2015-08-21

    We explore explicit electron pair behaviour within the chemical bond (and lone pairs) by calculating the probability distribution for the center-of-mass (extracule) of an electron pair described by single localized orbitals. Using Edmiston-Ruedenberg localized orbitals in a series of 61 chemical systems, we demonstrate the utility of the extracule density as an interpretive tool in chemistry. By accessing localized regions of chemical space we simplify the interpretation of the extracule density and afford a quantum mechanical interpretation of "chemically intuitive" features of electronic structure. Specifically, we describe the localized effects on chemical bonds due to changes in electronegativities of bonded neighbours, bond strain, and non-covalent interactions. We show that the extracule density offers unique insight into electronic structure and allows one to readily quantify the effects of changing the chemical environment.

  8. Density-dependent seedling mortality varies with light availability and species abundance in wet and dry Hawaiian forests

    Science.gov (United States)

    Faith Inman-Narahari; Rebecca Ostertag; Stephen P. Hubbell; Christian P. Giardina; Susan Cordell; Lawren Sack; Andrew MacDougall

    2016-01-01

    Conspecific density may contribute to patterns of species assembly through negative density dependence (NDD) as predicted by the Janzen-Connell hypothesis, or through facilitation (positive density dependence; PDD). Conspecific density effects are expected to be more negative in darker and wetter environments due to higher pathogen abundance and...

  9. Diurnal and seasonal Variability of D-Region Electron Densities at 69°N

    Science.gov (United States)

    Singer, Werner; Rapp, Markus; Latteck, Ralph; Friedrich, Martin

    Electron densities of the lower ionosphere are estimated with the Saura MF Doppler radar since summer 2004. The radar is located near country-regioncountry-regionAndenes, countryregionNorway (69.3° N, 16.0° E) and operates at 3.17 MHz with a peak power of 116 kW. The narrow beam transmitting/receiving antenna consists of 29 crossed half-wave dipoles arranged as a Mills Cross resulting in a beam width of about 7° . Antenna and transceiver system provide high flexibility in beam forming as well as the capability forming beams with left and right circular polarization at alternate pulses. The experiment utilizes partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles are obtained between about 55 km and 90 km with a time resolution of 9 minutes and a height resolution of 1 km. The electron density profiles independently derived from DAE and DPE measurements are in remarkable good agreement. Electron number densities are given if the results of the DAE and DPE experiments are in agreement within a factor of two. We discuss the diurnal and seasonal variability of electron densities obtained at Andenes and the response of D-region electron densities to solar activity storms and geomagnetic disturbances. The radar results are compared with previous rocket-borne radio wave propagation measurements at Andenes as well as with recent co-located simultaneous insitu observations using radio wave propagation experiments (differential absorption and Faraday rotation) which showed good agreement between the two techniques. In addition, monthly mean electron densities obtained with the MF radar are compared the recent dedicated auroral-zone, empirical model IMAZ.

  10. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: yanzhang@sues.edu.cn [School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Hao, Huilian, E-mail: huilian.hao@sues.edu.cn [School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Wang, Linlin, E-mail: wlinlin@mail.ustc.edu.cn [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-12-30

    Highlights: • Different morphologies of ERGO on the surface of GCE were prepared via different methods. • The defect densities of ERGO were controlled by tuning the mass or concentration of GO. • A higher defect density of ERGO accelerates electron transfer rate. • ERGO with more exposed edge planes shows significantly higher electron transfer kinetics. • Both edge planes and defect density contribute to electron transfer of ERGO. - Abstract: Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k{sup 0}) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k{sup 0} values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k{sup 0} valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  11. NATO Advanced Study Institute on Electron and Magnetization Densities in Molecules and Crystals

    CERN Document Server

    1980-01-01

    The interest of describing the ground state properties of a system in terms of one electron density (or its two spin components) is obvious, in particular due to the simple physical significance of this function. Recent experimental progress in diffraction made the measurement of charge and magnetization densities in crystalline solids possible, with an accuracy at least as good as theoretical accuracy. Theoretical developments of the many-body problem have proved the extreme importance of the one electron density function and presently, accurate methods of band structure determination become available. Parallel to the diffraction techniques, other domains of research (inelastic scattering, resonance, molecular spectroscopy) deal with quantities directly related to the one particle density. But the two types of studies do not interfere enough and one should obviously gain more information by interpreting all experiments that are related to the density together. It became necessary to have an International Sch...

  12. Time dependentdensity functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat

    2017-06-19

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are utilized to study the geometry, electronic structure, electrostatic potential (ESP) and absorption spectrum, for a representative donor-π bridge-acceptor (D–π–A) dye for DSSC. The coplanar geometry of the dye (D1) facilitates strong conjugation and considerable delocalization originating the π CT interaction from donor to acceptor orbitals and the hyper-conjugative interactions involving Rydberg states. A model simulating the adsorption of the dye on the TiO surface is utilized to estimate binding energies. The effect of fluorine substituents in the π-spacer on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state lifetime, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.

  13. Time-dependent density functional theory calculations of the solvatochromism of some azo sulfonamide fluorochromes.

    Science.gov (United States)

    Krawczyk, Przemysław

    2015-05-01

    The absorption and emission spectra of three azo sulfonamide compounds in different solvents were investigated theoretically by using response functions combined with density functional theory (DFT), while the solvent effect on the structure and the electronic transitions was determined using the integral equation formalism for the polarizable continuum model (IEF-PCM). The results show that the applied different exchange-correlation functionals can reproduce the experimental values well. DFT calculations of the title compounds showed that the H-bond formed between the solute and solvent molecules is one of the major causes of the reversible solvatochromism observed in measured spectra. This is due to a better stabilization of the neutral form than the zwitterionic form in the polar protic solvents, which is characteristic of the hypsochromic shift. On the other hand, the molecules considered exhibit a monotonic behavior regarding the polarity of the low-lying excited state (Δμg-CT) as a function of the solvent polarity. This dependence occurs in the case of the positive solvatochromism and confirms the thesis regarding the H-bond solute-solvent interactions. Theoretically determined values of the two-photon cross section revealed that the (σOF(2)) shows similar trends with changes in λabs, in contrast to values. In conclusion, the results demonstrate that the investigated molecules can be used successfully as fluorochromes in bioimaging.

  14. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus).

    Science.gov (United States)

    Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim

    2014-11-01

    Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high

  15. Polarization Dependent Bulk-sensitive Valence Band Photoemission Spectroscopy and Density Functional Theory Calculations: Part I. 3d Transition Metals

    Science.gov (United States)

    Ueda, Shigenori; Hamada, Ikutaro

    2017-12-01

    The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.

  16. Periodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marana, Naiara L. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil); Albuquerque, Anderson R. [Federal Institute of Education, Science and Technology of Sertão Pernambucano, 56400-000 Floresta, PE (Brazil); La Porta, Felipe A. [Chemistry Department, Federal Technological University of Paraná, 86036-370 Londrina, PR (Brazil); Longo, Elson [São Paulo State University, Chemistry Institute, UNESP, 14801-907 Araraquara, SP (Brazil); Sambrano, Julio R. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil)

    2016-05-15

    Periodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ~4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy is negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors. - Graphical abstract: DFT/B3LYP were performed to simulate the structural and electronic properties as well as the strain and formation energies of SWZnONTs and SWCNTs with different chiralities as functions of their diameters. - Highlights: • The energies of SWZnONTs converge for chirality with diameters up 20 Å. • SWCNTs electronic properties depend on the chirality. • The properties of SWZnONTs are very similar to those of monolayer surface.

  17. Density dependence and population differentiation of genetic architecture in Impatiens capensis in natural environments.

    Science.gov (United States)

    Donohue, K; Pyle, E H; Messiqua, D; Heschel, M S; Schmitt, J

    2000-12-01

    We identified environment-dependent constraints on the evolution of plasticity to density under natural conditions in two natural populations of Impatiens capensis. We also examined the expression of population divergence in genetic variance-covariance matrices in these natural environments. Inbred lines, originally collected from a sunny site with high seedling densities and a woodland site with low seedling densities, were planted in both original sites at natural high densities and at low density. Morphological and life-history characters were measured. More genetic variation for plastic responses to density was expressed in the sun site than in the woodland site, so the evolutionary potential of plasticity was greater in the sun site. Strong genetic correlations between the same character expressed at different densities and correlations among different characters could constrain the evolution of plasticity in both sites. Genetically based trade-offs in meristem allocation to vegetative growth and reproduction were apparent only in the high-resource environment with no overhead canopy and no intraspecific competition. Therefore, genetic constraints on the evolution of plasticity depended on the site and density in which plants were grown, and correlated responses to selection on plastic characters are also expected to differ between sites and densities. Population differentiation in genetic variance-covariance matrices was detected, but matrix structural differences, as opposed to proportional differences, were detected between populations only in the sun site at natural high density. Thus, population divergence in genetic architecture can occur rapidly and on a fine spatial scale, but the expression of such divergence may depend on the environment.

  18. The density functional study of electronic structure, electronic charge density, linear and nonlinear optical properties of single crystal alpha-LiAlTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2014-04-01

    Highlights: • FP-LAPW technique is used for calculating the electronic structure. • The band structure shows that the calculated compound is semiconductor. • The complex dielectric function has been calculated. • Nonlinear optical properties has also been calculated. • This compound can be used for molecular engineering of the crystals. - Abstract: Self-consistent calculations is performed using the full potential linear augmented plane wave (FP-LAPW) technique based on density functional theory (DFT) to investigate the electronic band structure, density of states, electronic charge density, linear and non-linear optical properties of α-LiAlTe{sub 2} compound having tetragonal symmetry with space group I4{sup ¯}2d. The electronic structure are calculated using the Ceperley Alder local density approach (CA-LDA), Perdew Burke and Ernzerhof generalize gradient approach (PBE-GGA), Engel–Vosko generalize gradient approach (EVGGA) and modified Becke Johnson approach (mBJ). Band structure calculations of (α-LiAlTe{sub 2}) depict semiconducting nature with direct band gap of 2.35 eV (LDA), 2.48 eV (GGA), 3.05 eV (EVGGA) and 3.13 eV (mBJ), which is comparable to experimental value. The calculated electronic charge density show ionic interaction between Te and Li atoms and polar covalent interaction between Al and Te atoms. Some optical susceptibilities like dielectric constants, refractive index, extension co-efficient, reflectivity and energy loss function have been calculated and analyzed on the basis of electronic structure. The compound α-LiAlTe{sub 2} provides a considerable negative value of birefringence of −0.01. Any anisotropy observed in the linear optical properties which are in favor to enhance the nonlinear optical properties. The symbol χ{sub abc}{sup (2)}(ω) represents the second order nonlinear optical susceptibilities, possess six non-zero components in this symmetry (tetragonal), called: 1 2 3, 2 1 3, 2 3 1, 1 3 2, 3 1 2 and 3 2 1

  19. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    Science.gov (United States)

    Camparo, James; Fathi, Gilda

    2009-05-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., "rf-power gain") and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  20. Measurements of electron cloud density in the CERN Super Proton Synchrotron with the microwave transmission method

    CERN Document Server

    Federmann, S; Mahner, E

    2011-01-01

    The electron cloud effect can pose severe performance limitations in high-energy particle accelerators as the CERN Super Proton Synchrotron (SPS). Mitigation techniques such as vacuum chamber thin film coatings with low secondary electron yields (SEY < 1.3) aim to reduce or even suppress this effect. The microwave transmission method, developed and first applied in 2003 at the SPS, measures the integrated electron cloud density over a long section of an accelerator. This paper summarizes the theory and measurement principle and describes the new SPS microwave transmission setup used to study the electron cloud mitigation of amorphous carbon coated SPS dipole vacuum chambers. Comparative results of carbon coated and bare stainless steel dipole vacuum chambers are given for the beam with nominal LHC 25 ns bunch-to-bunch spacing in the SPS and the electron cloud density is derived.

  1. Insect herbivores, density dependence, and the performance of the perennial herb Solanum carolinense.

    Science.gov (United States)

    Underwood, Nora; Halpern, Stacey L

    2012-05-01

    How insect herbivores affect plant performance is of central importance to basic and applied ecology. A full understanding of herbivore effects on plant performance requires understanding interactions (if any) of herbivore effects with plant density and size because these interactions will be critical for determining how herbivores influence plant population size. However, few studies have considered these interactions, particularly over a wide enough range of densities to detect nonlinear effects. Here we ask whether plant density and herbivores influence plant performance linearly or nonlinearly, how plant density affects herbivore damage, and how herbivores alter density dependence in transitions between plant size classes. In a large field experiment, we manipulated the density of the herbaceous perennial plant Solanum carolinense and herbivore presence in a fully crossed design. We measured plant size, sexual reproduction, and damage to plants in two consecutive years, and asexual reproduction of new stems in the second year, allowing us to characterize both plant performance and rates of transition between plant size classes across years. We found nonlinear effects of plant density on damage. Damage by herbivores and plant density both influenced sexual and asexual reproduction of S. carolinense; these effects were mostly mediated via effects on plant size. Importantly, we found that herbivores altered the pattern of linear density dependence in some transition rates (including survival and asexual reproduction) between plant size classes. These results suggest that understanding the ecological or evolutionary effects of herbivores on plant populations requires consideration of plant density and plant size, because feedbacks between density, herbivores, and plant size may complicate longer-term dynamics.

  2. Two-resonance probe for measuring electron density in low-pressure plasmas

    Science.gov (United States)

    Kim, D. W.; You, S. J.; Kim, S. J.; Kim, J. H.; Oh, W. Y.

    2017-04-01

    A technique for measuring double-checked electron density using two types of microwave resonance is presented. Simultaneous measurement of the resonances (plasma and quarter-wavelength resonator resonances), which were used for the cutoff probe (CP) and hairpin probe (HP), was achieved by the proposed microwave resonance probe. The developed two-resonance probe (TRP) consists of parallel separated coaxial cables exposing the radiation and detection tips. The structure resembles that of the CP, except the gapped coaxial cables operate not only as a microwave feeder for the CP but also as a U- shaped quarter-wavelength resonator for the HP. By virtue of this structure, the microwave resonances that have typically been used for measuring the electron density for the CP and HP were clearly identified on the microwave transmission spectrum of the TRP. The two types of resonances were measured experimentally under various power and pressure conditions for the plasma. A three-dimensional full-wave simulation model for the TRP is also presented and used to investigate and reproduce the resonances. The electron densities inferred from the resonances were compared and showed good agreement. Quantitative differences between the densities were attributed to the effects of the sheath width and spatial density gradient on the resonances. This accessible technique of using the TRP to obtain double-checked electron densities may be useful for comparative study and provides complementary uses for the CP and HP.

  3. Laser Thomson scattering measurements of electron temperature and density in a hall-effect plasma

    Science.gov (United States)

    Washeleski, Robert L.

    Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method

  4. Density-dependent selection on mate search and evolution of Allee effects.

    Science.gov (United States)

    Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M

    2018-01-01

    Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness

  5. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    OpenAIRE

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, Jaime E.; Kim, Juhan

    2014-01-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the Universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter $\\Omega_m$ or the dark energy equation of state $w$ are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters gover...

  6. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    DEFF Research Database (Denmark)

    Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.

    1997-01-01

    Ecology has long been troubled by the controversy over how populations are regulated(1,2). Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central(3-6). The relative importance of both processes is still hotly debated......, but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...... that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic...

  7. Density-dependent gastroretentive microparticles motion in human gastric emptying studied using computer simulation.

    Science.gov (United States)

    Hao, Shilei; Wang, Bochu; Wang, Yazhou

    2015-04-05

    Density-dependent gastroretentive drug delivery systems have been used to prolong the gastric retention time of drugs since the 1960s. The design of density-dependent gastroretentive dosage forms, however, usually focuses on specific parameters rather than combines with the fluid dynamics of dosage form in the gastric emptying. Therefore, the purpose of the present study was to develop a 2-D model of multiple-phase flows for the simulation of gastric emptying and gastroretentive microparticles motion, and the influence of microparticle density, microparticle viscosity, and gastric juice viscosity on the gastric retention were studied. The recirculating flows, formed in the gastric emptying, could mix the conventional-density microparticles and transport them to the pylorus. However, the low-density microparticles remained floating on the surface of gastric juice, while the high-density microparticles could sink and deposit in the bottom of the stomach. The remaining integral area of microparticles was higher than 90% after 18.33min of simulation when the density of microparticles was lower than 550kg/m(3) or higher than 2500kg/m(3), which was higher compared to conventional-density microparticles (67.05%). These results are in good agreement with experimental data previously reported. In addition, the viscosity of microparticle and gastric juice also influenced the remaining integral area of gastroretentive microparticles. This study shows that the multiple-phase computational fluid dynamics models could provide detailed insights into the fluid dynamics of density-dependent gastroretentive microparticles in gastric emptying, which offers a powerful tool to further understand the mechanism of gastric retention for gastroretentive dosage forms and study the influence of different parameters on their ability for gastric retention. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile.

    Directory of Open Access Journals (Sweden)

    María Zubillaga

    Full Text Available Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation.

  9. Unveiling the nature of post-linear response Z-vector method for time-dependent density functional theory

    Science.gov (United States)

    Pastore, Mariachiara; Assfeld, Xavier; Mosconi, Edoardo; Monari, Antonio; Etienne, Thibaud

    2017-07-01

    We report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals. A derivation pathway of these novel descriptors is reported, involving a numerical integration to be performed in the Euclidean space on the density functions. This topological analysis is then applied to two sets of chromophores, and the correlation between the level of theory and the behavior of our descriptors is properly rationalized. In particular, the effect of range-separation on the relaxation amplitude is discussed. The relaxation term is finally shown to be system-specific (for a given level of theory) and independent of the number of electrons (i.e., the relaxation amplitude is not simply the result of a collective phenomenon).

  10. Influence of density-dependent competition on foraging and migratory behavior of a subtropical colonial seabird.

    Science.gov (United States)

    Lamb, Juliet S; Satgé, Yvan G; Jodice, Patrick G R

    2017-08-01

    Density-dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central-place foragers has been extensively studied in seabirds; however, most studies have focused on effects of intraspecific competition during the breeding season, while little is known about whether density-dependent resource depletion influences individual migratory behavior outside the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown pelican (Pelecanus occidentalis), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico. We found evidence for density-dependent effects on foraging behavior during the breeding season, as individual foraging areas increased linearly with the number of breeding pairs per colony. Contrary to our predictions, however, nestlings from more numerous colonies with larger foraging ranges did not experience either decreased condition or increased stress. During nonbreeding, individuals from larger colonies were more likely to migrate, and traveled longer distances, than individuals from smaller colonies, indicating that the influence of density-dependent effects on distribution persists into the nonbreeding period. We also found significant effects of individual physical condition, particularly body size, on migratory behavior, which in combination with colony size suggesting that dominant individuals remain closer to breeding sites during winter. We conclude that density-dependent competition may be an important driver of both the extent of foraging ranges and the degree of migration exhibited by brown pelicans. However, the effects of density-dependent competition on breeding

  11. Evidence for density dependence in foraging and migratory behavior of a subtropical nearshore seabird

    Science.gov (United States)

    Lamb, Juliet S.; Satgé, Yvan G.; Jodice, Patrick

    2017-01-01

    Density-dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central-place foragers has been extensively studied in seabirds; however, most studies have focused on effects of intraspecific competition during the breeding season, while little is known about whether density-dependent resource depletion influences individual migratory behavior outside the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown pelican (Pelecanus occidentalis), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico. We found evidence for density-dependent effects on foraging behavior during the breeding season, as individual foraging areas increased linearly with the number of breeding pairs per colony. Contrary to our predictions, however, nestlings from more numerous colonies with larger foraging ranges did not experience either decreased condition or increased stress. During nonbreeding, individuals from larger colonies were more likely to migrate, and traveled longer distances, than individuals from smaller colonies, indicating that the influence of density-dependent effects on distribution persists into the nonbreeding period. We also found significant effects of individual physical condition, particularly body size, on migratory behavior, which in combination with colony size suggesting that dominant individuals remain closer to breeding sites during winter. We conclude that density-dependent competition may be an important driver of both the extent of foraging ranges and the degree of migration exhibited by brown pelicans. However, the effects of density-dependent competition on breeding

  12. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-28

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  13. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. II. Functional properties.

    Science.gov (United States)

    Bhambure, Rahul; Angelo, James M; Gillespie, Christopher M; Phillips, Michael; Graalfs, Heiner; Lenhoff, Abraham M

    2017-07-14

    The effect of ligand density was studied on protein adsorption and transport behavior in tentacular cation-exchange sorbents at different ionic strengths. Results were obtained for lysozyme, lactoferrin and a monoclonal antibody (mAb) in order to examine the effects of protein size and charge. The combination of ligand density and ionic strength results in extensive variability of the static and dynamic binding capacities, transport rate and binding affinity of the proteins. Uptake and elution experiments were performed to quantify the transport behavior of selected proteins, specifically to estimate intraparticle protein diffusivities. The observed trend of decreasing uptake diffusivities with an increase in ligand density was correlated to structural properties of the ligand-density variants, particularly the accessible porosity. Increasing the ionic strength of the equilibration buffer led to enhanced mass transfer during uptake, independent of the transport model used, and specifically for larger proteins like lactoferrin and mAb, the most significant effects were evident in the sorbent of the highest ligand density. For lysozyme, higher ligand density leads to higher static and dynamic binding capacities whereas for lactoferrin and the mAb, the binding capacity is a complex function of accessible porosity due to ionic strength-dependent changes. Ligand density has a less pronounced effect on the elution rate, presumably due to ionic strength-dependent changes in the pore architecture of the sorbents. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electron density and temperature diagnostics in laser-induced hydrogen plasma

    Science.gov (United States)

    Gautam, G.; Parigger, C. G.

    2017-02-01

    Laser-induced optical breakdown is achieved by using Q-switched, Nd:YAG radiation focused into ultra-high-purity (UHP) hydrogen gas at a pressure of 1.08 ± 0.03 × 105 Pa inside a cell. The plasma emission spectra are dispersed by a Czerny-Turner type spectrometer and detected with an intensified charge-coupled device (ICCD). Stark-broadened hydrogen Balmer series H α and Hβ line profiles are used as a spectroscopic tool for the determination of electron density and excitation temperature. Spatial variation of electron density and temperature at 0.40 µs are extracted from the recorded intensities of H α and Hβ lines. Temporal variations of electron density and excitation temperature are also presented for the time delay range of 0.15 µs to 1.4 µs.

  15. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  16. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    from time-dependent density functional theory 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0290 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...AFRL-AFOSR-UK-TR-2017-0030 Optical absorption in molecular crystals from time-dependent density functional theory Leeor Kronik WEIZMANN INSTITUTE OF...does not display a currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      23

  17. A metamaterial having a frequency dependent elasticity tensor and a zero effective mass density

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Graeme [Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (United States); Seppecher, Pierre [Institut de Mathematiques de Toulon, Universite du Sud Toulon-Var, BP 132, 83957 La Garde Cedex (France)

    2012-07-15

    Within the context of linear elasticity we show that a two-terminal network of springs and masses, can respond exactly the same as a normal spring, but with a frequency dependent spring constant. A network of such springs can have a frequency dependent effective elasticity tensor but zero effective mass density. The internal masses influence the elasticity tensor, but do not contribute to the effective mass density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Density Functional Theory Study on the Electronic Structures of Oxadiazole Based Dyes as Photosensitizer for Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2015-01-01

    Full Text Available The molecular structures and UV-visible absorption spectra of complex photosensitizers comprising oxadiazole isomers as the π-bridges were analyzed by density functional theory (DFT and time-dependent DFT. The ground state and excited state oxidation potentials, HOMOs and LUMOs energy levels, and electron injection from the dyes to semiconductor TiO2 have been computed in vacuum here. The results show that all of the dyes may potentially be good photosensitizers in DSSC. To justify the simulation basis, N3 dye was also simulated under the similar conditions. Simulated absorption spectrum, HOMO, LUMO, and band gap values of N3 were compared with the experimental values. We also computed the electronic structure properties and absorption spectra of dye/(TiO28 systems to elucidate the electron injection efficiency at the interface. This work is expected to give proper orientation for experimental synthesis.

  19. Plasma density transition trapping as a possible high-brightness electron beam source

    Directory of Open Access Journals (Sweden)

    M. C. Thompson

    2004-01-01

    Full Text Available Plasma density transition trapping is a recently proposed self-injection scheme for plasma wakefield accelerators. This technique uses a sharp downward plasma density transition to trap and accelerate background plasma electrons in a plasma wakefield. This paper examines the quality of electron beams captured using this scheme in terms of emittance, energy spread, and brightness. Two-dimensional particle-in-cell simulations show that these parameters can be optimized by manipulating the plasma density profile. We also develop, and support with simulations, a set of scaling laws that predicts how the brightness of transition trapping beams scales with the plasma density of the system. These scaling laws indicate that transition trapping can produce beams with brightness ≥5×10^{14}   A/(mrad^{2}. A proof-of-principle transition trapping experiment is planned for the near future. The proposed experiment is described in detail.

  20. Density-dependent light-assisted tunneling in fermionic optical lattices

    Science.gov (United States)

    Xu, Wenchao; Morong, William; Demarco, Brian

    2016-05-01

    Many recent theoretical proposals have discussed the possibility to realize density-dependent tunneling in optical lattices via external periodic driving. These methods enable the simulation of novel many-body quantum phases. Here we present experimental progress on realizing density-dependent tunneling for ultracold 40K atoms trapped in a cubic optical lattice via stimulated Raman transitions. After preparing a spin-polarized gas in the Mott insulator regime of the Hubbard model, a pair of Raman beams is applied to flip the spin of atoms. The Raman beams also introduce an effective density-dependent tunneling that can be tuned by the Raman frequency difference and Rabi rate. The Mott gap inferred from measurements of the fraction of atoms transferred between spin states as the Raman frequency difference is adjusted matches the prediction based on a tight-binding model. We also observe the interaction-dependent tunneling by measuring the fraction of doubly-occupied sites created by the Raman driving. This method allows the engineering of density-dependent tunneling and effective nearest-neighbor interactions in fermionic optical lattices. The authors acknowledge funding from the National Science Foundation (Grant No. PHY15-05468) and the Army Research Office (Grant No. W911NF-12-1-0462).

  1. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    Science.gov (United States)

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma.

  2. Applications of electron density studies in molecular and solid state science

    DEFF Research Database (Denmark)

    Overgaard, Jacob

    2015-01-01

    The present dissertation contains the distillate of my scientific output in the field of experimental and theoretical electron density studies roughly over the last decade and a little more, since earning my PhD-degree in 2001. There are several reasons that I have chosen to write my dissertation...... to the technical developments driven not least by the efforts from large commercial manufacturers such as Bruker AXS and Agilent Technologies. It is also not unwarranted to claim that the electron density community is a driving force in this technological improvement as it is essential to push these instruments...

  3. Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest.

    Directory of Open Access Journals (Sweden)

    Julien Fattebert

    Full Text Available Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the 'mate competition', 'resource competition' and 'resident fitness' hypotheses predict density-dependent dispersal patterns, while the 'inbreeding avoidance' hypothesis posits density-independent dispersal. In a leopard (Panthera pardus population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km generally dispersed further than females (2.7 ± 0.4 km, some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration. Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved

  4. Dependence of Energetic Electron Precipitation on the Geomagnetic Index Kp and Electron Energy

    Directory of Open Access Journals (Sweden)

    Mi-Young Park

    2013-12-01

    Full Text Available It has long been known that the magnetospheric particles can precipitate into the atmosphere of the Earth. In this paper we examine such precipitation of energetic electrons using the data obtained from low-altitude polar orbiting satellite observations. We analyze the precipitating electron flux data for many periods selected from a total of 84 storm events identified for 2001-2012. The analysis includes the dependence of precipitation on the Kp index and the electron energy, for which we use three energies E1 > 30 keV, E2 > 100 keV, E3 > 300 keV. We find that the precipitation is best correlated with Kp after a time delay of < 3 hours. Most importantly, the correlation with Kp is notably tighter for lower energy than for higher energy in the sense that the lower energy precipitation flux increases more rapidly with Kp than does the higher energy precipitation flux. Based on this we suggest that the Kp index reflects excitation of a wave that is responsible for scattering of preferably lower energy electrons. The role of waves of other types should become increasingly important for higher energy, for which we suggest to rely on other indicators than Kp if one can identify such an indicator.

  5. Determination of the vertical electron-density profile in ionospheric tomography: experimental results

    Directory of Open Access Journals (Sweden)

    C. N. Mitchell

    Full Text Available The reconstruction of the vertical electron-density profile is a fundamental problem in ionospheric tomography. Lack of near-horizontal ray paths limits the information available on the vertical profile, so that the resultant image of electron density is biased in a horizontal sense. The vertical profile is of great importance as it affects the authenticity of the entire tomographic image. A new method is described whereby the vertical profile is selected using relative total-electron-content measurements. The new reconstruction process has been developed from modelling studies. A range of background ionospheres, representing many possible peak heights, scale heights and electron densities are formed from a Chapman profile on the bottomside with a range of topside profiles. The iterative reconstruction process is performed on all of these background ionospheres and a numerical selection criterion employed to select the final image. The resulting tomographic images show excellent agreement in electron density when compared with independent verification provided by the EISCAT radar.

  6. Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials

    Science.gov (United States)

    Luo, Rui; Huang, Yongxin; Li, Li

    2016-01-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi‐electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in‐depth understanding of multi‐electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi‐electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi‐electron reactions are classified in this review: lithium‐ and sodium‐ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal–air batteries, and Li–S batteries. It is noted that challenges still exist in the development of multi‐electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this. PMID:27840796

  7. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials.

    Science.gov (United States)

    Chen, Renjie; Luo, Rui; Huang, Yongxin; Wu, Feng; Li, Li

    2016-10-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi-electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in-depth understanding of multi-electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi-electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi-electron reactions are classified in this review: lithium- and sodium-ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal-air batteries, and Li-S batteries. It is noted that challenges still exist in the development of multi-electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this.

  8. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Baczewski, Andrew David; Shulenburger, Luke; Desjarlais, Michael Paul; Magyar, Rudolph J.

    2014-02-01

    In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

  9. Density dependence of the "symmetry energy" in the lattice gas model

    OpenAIRE

    Su, Q. M.; Ma, Y. G.(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China); Tian, W. D.; Fang, D. Q.(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China); Cai, X.Z.; Wang, K.

    2007-01-01

    Isoscaling behavior of the statistical emission fragments from the equilibrated sources with $Z$ = 30 and $N$ = 30, 33, 36 and 39, resepectively, is investigated in the framework of isospin dependent lattice gas model. The dependences of isoscaling parameters $\\alpha$ on source isospin asymmetry, temperature and freeze-out density are studied and the "symmetry energy" is deduced from isoscaling parameters. Results show that "symmetry energy" $C_{sym}$ is insensitive to the change of temperatu...

  10. Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory

    OpenAIRE

    Bilal, M.; Jalali-Asadabadi, S.; Ahmad, Rashid; Ahmad, Iftikhar

    2015-01-01

    We present a review on the research developments on the theoretical electronic properties of the antiperovskite materials. The antiperovskite materials have perovskite type structure with the positions of cations and anions interchanged. The electronic structures are used to explain different physical properties of materials; therefore it is crucial to understand band structures and densities of states of materials for their effective use in technology. The theoretical results of ...

  11. Density dependence of avian clutch size in resident and migrant species : is there a constraint on the predictability of competitor density?

    NARCIS (Netherlands)

    Both, C

    The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One

  12. Density dependence of avian clutch size in resident and migrant species: is there a constraint on the predictability of competitor density?

    NARCIS (Netherlands)

    Both, C.

    2000-01-01

    The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One

  13. Native birds and alien insects: spatial density dependence in songbird predation of invading oak gallwasps.

    Directory of Open Access Journals (Sweden)

    Karsten Schönrogge

    Full Text Available Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource.

  14. Collective motion of self-propelled particles with density-dependent switching effect

    Science.gov (United States)

    Chen, Qiu-shi; Ma, Yu-qiang

    2016-05-01

    We study the effect of density-dependent angular response on large scale collective motion, that particles are more likely to switch their moving direction within lower local density region. We show that the presence of density-dependent angular response leads to three typical phases: polar liquid, micro-phase separation and disordered gas states. In our model, the transition between micro-phase separation and disordered gas is discontinuous. Giant number fluctuation is observed in polar liquid phase with statistically homogeneous order. In the micro-phase separation parameter space, high order and high density bands dominate the dynamics. We also compare our results with Vicsek model and show that the density-dependent directional switching response can stabilize the band state to very low noise condition. This band stripe could recruit almost all the particles in the system, which greatly enhances the coherence of the system. Our results could be helpful for understanding extremely coherent motion in nature and also would have practical implications for designing novel self-organization pattern.

  15. Development and application of diagnostic instrumentation for measurement of electron density and conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, L.E.

    1990-05-01

    The purpose of this contract was to assemble and demonstrate in the laboratory a Faraday rotation system for measurement of electron density and conductivity, with the intent to produce a system suitable for diagnostic support of the development of pulsed, space-based magnetohydrodynamic (MHD) power systems. Two system configurations were tested: (1) a rotating polarizer and (2) a beam splitting polarizer. Due to the short path length plasma produced in the laboratory flame, the long wavelength 496 {mu}m methyl fluoride laser line was used and only the more sensitive rotating polarizer configuration was used for the demonstration experiments. Electron number densities from 2 {times} 10{sup 19} to 9 {times} 10{sup 19} were measured with good agreement to statistical equilibrium (Saha) calculations using emission absorption-measured flame temperatures and neutral seed atom number seed atom nuclear densities. The electron collision frequencies were measured by transmission measurements. Combining these two measurements gave measured electron conductivities of between 4 and 12 mohs/m. These results compared reasonably well with those found with an electron collision frequency model combined with chemical equilibrium calculations and the emission absorption measurements. Ellipticity measurements of electron collision frequency were not possible due to the short path length of the laboratory plasma. 46 refs., 25 figs., 9 tabs.

  16. Density-dependent role of an invasive marsh grass, Phragmites australis, on ecosystem service provision.

    Directory of Open Access Journals (Sweden)

    Seth J Theuerkauf

    Full Text Available Invasive species can positively, neutrally, or negatively affect the provision of ecosystem services. The direction and magnitude of this effect can be a function of the invaders' density and the service(s of interest. We assessed the density-dependent effect of an invasive marsh grass, Phragmites australis, on three ecosystem services (plant diversity and community structure, shoreline stabilization, and carbon storage in two oligohaline marshes within the North Carolina Coastal Reserve and National Estuarine Research Reserve System (NCNERR, USA. Plant species richness was equivalent among low, medium and high Phragmites density plots, and overall plant community composition did not vary significantly by Phragmites density. Shoreline change was most negative (landward retreat where Phragmites density was highest (-0.40 ± 0.19 m yr-1 vs. -0.31 ± 0.10 for low density Phragmites in the high energy marsh of Kitty Hawk Woods Reserve and most positive (soundward advance where Phragmites density was highest (0.19 ± 0.05 m yr-1 vs. 0.12 ± 0.07 for low density Phragmites in the lower energy marsh of Currituck Banks Reserve, although there was no significant effect of Phragmites density on shoreline change. In Currituck Banks, mean soil carbon content was approximately equivalent in cores extracted from low and high Phragmites density plots (23.23 ± 2.0 kg C m-3 vs. 22.81 ± 3.8. In Kitty Hawk Woods, mean soil carbon content was greater in low Phragmites density plots (36.63 ± 10.22 kg C m-3 than those with medium (13.99 ± 1.23 kg C m-3 or high density (21.61 ± 4.53 kg C m-3, but differences were not significant. These findings suggest an overall neutral density-dependent effect of Phragmites on three ecosystem services within two oligohaline marshes in different environmental settings within a protected reserve system. Moreover, the conceptual framework of this study can broadly inform an ecosystem services-based approach to invasive species

  17. Probing the electron density in HiPIMS plasmas by target inserts

    Science.gov (United States)

    Hecimovic, Ante; Held, Julian; Schulz-von der Gathen, Volker; Breilmann, Wolfgang; Maszl, Christian; von Keudell, Achim

    2017-12-01

    High power impulse magnetron sputtering (HiPIMS) is a versatile technology to deposit thin films with superior properties. During HiPIMS, the power is applied in short pulses of the order of 100 μs at power densities of kW cm-2 to a magnetron target creating a torus shaped dynamic high density plasma. This plasma torus is not homogeneous, but individual ionization zones become visible, which rotate along the torus with velocities of 10 km s-1 . Up to now, however, any direct measurement of the electron density inside these rotating ionization zones is missing. Here, we probe the electron density by measuring the target current locally by using small inserts embedded in an aluminium target facing the plasma torus. By applying simple sheath theory, a plasma density of the order of 1019 m-3 at the sheath edge can be inferred. The plasma density increases with increasing target current. In addition, the dynamics of the local target current variation is consistent with the dynamics of the traveling ionization zone causing a modulation of the local current density by 25%.

  18. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.

    Science.gov (United States)

    Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta

    2018-02-22

    Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.

  19. Relationships between electron density, height and sub-peak ionospheric thickness in the night equatorial ionosphere

    Directory of Open Access Journals (Sweden)

    K. J. W. Lynn

    2006-07-01

    Full Text Available The development and decay of the southern equatorial anomaly night-time peak in electron density as seen at a number of ionosonde reflection points extending from New Guinea and Indonesia into northern Australia was examined in terms of the characteristic rise and fall in height associated with the sunset ionisation-drift vortex at the magnetic equator. The observations relate to measurements made in November 1997. Following sunset, the ionospheric profile was observed to narrow as the maximum electron density increased during a fall in height that took the peak of the layer at Vanimo and Sumedang down to some 240 km. The fall was followed by a strong rise in which the electron density sub-peak profile expanded from a slab width (as given by POLAN of 20 km to over 100km with no corresponding change in peak electron density. The post-sunset equatorial fall in height and associated changes in profile density and thickness continued to be seen with diminishing amplitude and increasing local time delay in moving from the anomaly peak at Vanimo to the southernmost site of observation at Townsville. Secondary events on a lesser scale sometimes occurred later in the night and may provide evidence of the multiple vortices suggested by Kudeki and Bhattacharyya (1999. Doppler measurements of vertical velocity as seen at Sumedang in Java are compared with the observed changes in electron density profile in the post-sunset period. The normal post-sunset variation in ionospheric parameters was disrupted on the night of 7 November, the night before a negative ionospheric storm was observed.

  20. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  1. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-01

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  2. Balancing food and density-dependence in the spatial distribution of an interference-prone forager

    NARCIS (Netherlands)

    Dokter, Adriaan M.; Loon, van E.E.; Rappoldt, Cornelis; Oosterbeek, Kees; Baptist, Martin J.; Bouten, Willem; Ens, Bruno J.

    2017-01-01

    Foraging distributions are thought to be density-dependent, because animals not only select for a high availability and quality of resources, but also avoid conspecific interference. Since these processes are confounded, their relative importance in shaping foraging distributions remains poorly

  3. Density-dependent energy use contributes to the self-thinning relationship of cohorts.

    Science.gov (United States)

    Smith, James A; Baumgartner, Lee J; Suthers, Iain M; Fielder, D Stewart; Taylor, Matthew D

    2013-03-01

    In resource-limited populations, an increase in average body size can occur only with a decline in abundance. This is known as self-thinning, and the decline in abundance in food-limited populations is considered proportional to the scaling of metabolism with body mass. This popular hypothesis may be inaccurate, because self-thinning populations can also experience density-dependent competition, which could alter their energy use beyond the predictions of metabolic scaling. This study tested whether density-dependent competition has an energetic role in self-thinning, by manipulating the abundance of the fish Macquaria novemaculeata and tank size to partition the effects of competition from metabolic scaling. We found that self-thinning can be density dependent and that changes in intraspecific competition may be more influential than metabolic scaling on self-thinning relationships. The energetic mechanism we propose is that density-dependent competition causes variation in the allocation of energy to growth, which alters the energetic efficiency of self-thinning cohorts. The implication is that food-limited cohorts and populations with competitive strategies that encourage fast-growing individuals will have less body mass at equilibrium and higher mortality rates. This finding sheds light on the processes structuring populations and can be used to explain inconsistencies in the mass-abundance scaling of assemblages and communities (the energetic-equivalence rule).

  4. The Heated Laminar Vertical Jet in a Liquid with Power-law Temperature Dependence of Density

    OpenAIRE

    Sharifulin, V. A.

    2009-01-01

    The analytical solution of heated laminar vertical jet in a liquid with power-law temperature dependence of density was obtained in the skin-layer approximation for certain values of Prandtl number. Cases of point and linear sources were considered.

  5. Time-dependent current-density-functional theory for the metallic response of solids

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL

    We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both

  6. A spatial interpretation of the density dependence model in industrial demography

    NARCIS (Netherlands)

    van Wissen, L

    2004-01-01

    In this paper the density dependence model, which was developed in organizational ecology, is compared to the economic-geographical notion of agglomeration economies. There is a basic resemblance: both involve some form of positive feedback between size of the population and growth. The paper

  7. Demonstrating the Temperature Dependence of Density via Construction of a Galilean Thermometer

    Science.gov (United States)

    Priest, Marie A.; Padgett, Lea W.; Padgett, Clifford W.

    2011-01-01

    A method for the construction of a Galilean thermometer out of common chemistry glassware is described. Students in a first-semester physical chemistry (thermodynamics) class can construct the Galilean thermometer as an investigation of the thermal expansivity of liquids and the temperature dependence of density. This is an excellent first…

  8. Gold Nanowires : A Time-Dependent Density Functional Assessment of Plasmonic Behavior

    NARCIS (Netherlands)

    Piccini, GiovanniMaria; Havenith, Remco W. A.; Broer, Ria; Stener, Mauro

    2013-01-01

    The surface plasmon resonance has been theoretically investigated in gold nanowires by means of time-dependent density functional theory. Linear chains of Au atoms and nanowires with the structure of the fcc bulk gold grown along the <110 > and <111 > directions have been considered. The effects of

  9. Nonequilibrium green functions in time-dependent current-density-functional theory

    NARCIS (Netherlands)

    Bonitz, M; Semkat, D

    2003-01-01

    We give an overview of the underlying concepts of time-dependent current-density functional theory (TDCDFT). We show how the basic equations of TDCDFT can be elegantly derived using the time contour method of nonequilibrium Green function theory. We further demonstrate how the formalism can be used

  10. Variation in the strength of inbreeding depression across environments: effects of stress and density dependence.

    Science.gov (United States)

    Yun, Li; Agrawal, Aneil F

    2014-12-01

    In what types of environments should we expect to find strong inbreeding depression? Previous studies indicate that inbreeding depression, δ, is positively correlated with the stressfulness of the environment in which it is measured. However, it remains unclear why stress, per se, should increase δ. To our knowledge, only "competitive stress" has a logical connection to δ. Through competition for resources, better quality (outbred) individuals make the environment worse for lower quality (inbred) individuals, accentuating the differences between them. For this reason, we expect inbreeding depression to be stronger in environments where the fitness of individuals is more sensitive to the presence of conspecifics (i.e., where fitness is more density dependent). Indeed, some studies suggest a role for competition within environments, but this idea has not been tested in the context of understanding variation in δ across environments. Using Drosophila melanogaster, we estimated δ for viability in 22 different environments. These environments were simultaneously characterized for (1) stressfulness and (2) density dependence. Although stress and density dependence are moderately correlated with each other, inbreeding depression is much more strongly correlated with density dependence. These results suggest that mean selection across the genome is stronger in environments where competition is intense, rather than in environments that are stressful for other reasons. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid general...

  12. BONE-DENSITY IN NON-INSULIN-DEPENDENT DIABETES-MELLITUS - THE ROTTERDAM STUDY

    NARCIS (Netherlands)

    VANDAELE, PLA; STOLK, RP; BURGER, H; ALGRA, D; GROBBEE, DE; HOFMAN, A; BIRKENHAGER, JC; POLS, HAP

    1995-01-01

    Objective: To investigate the relation between noninsulin-dependent diabetes mellitus and bone mineral density at the lumbar spine and hip. Design: Population-based study with a cross-sectional survey, Setting: A district of Rotterdam, the Netherlands. Participants: 5931 residents (2481 men, 3450

  13. The Keldysh formalism applied to time-dependent current-density-functional theory

    NARCIS (Netherlands)

    Gidopoulos, NI; Wilson, S

    2003-01-01

    In this work we demonstrate how to derive the Kohn-Sham equations of time-dependent current-density functional theory from a generating action functional defined on a Keldysh time contour. These Kohn-Sham equations contain an exchange-correlation contribution to the vector potential. For this

  14. Density dependence and stochastic variation in a newly established population of a small songbird

    NARCIS (Netherlands)

    Sæther, Bernt-Erik; Engen, Steinar; Lande, Russell; Both, Christiaan; Visser, Marcel E.

    2002-01-01

    Models describing fluctuations in population size should include both density dependence and stochastic effects. We examine the relative contribution of variation in parameters of the expected dynamics as well as demographic and environmental stochasticity to fluctuations in a population of a small

  15. Application of the density dependent hadron field theory to neutron star matter

    NARCIS (Netherlands)

    Hofmann, F.; Keil, C. M.; Lenske, H.

    2001-01-01

    Published in: Phys. Rev., C 64 (2001) 025804 citations recorded in [Science Citation Index] Abstract: The density dependent hadron field (DDRH) theory, previously applied to isospin nuclei and hypernuclei is used to describe $beta$-stable matter and neutron stars under consideration of the complete

  16. Mixed time-dependent density-functional theory/classical photodynamics study of oxirane photochemistry

    NARCIS (Netherlands)

    Tapavicza, Enrico; Tavernelli, Ivano; Rothlisberger, Ursula; Filippi, Claudia; Casida, Mark E.

    2008-01-01

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA)

  17. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from...

  18. Plant diversity increases with the strength of negative density dependence at the global scale

    Science.gov (United States)

    Joseph A. LaManna; Scott A. Mangan; Alfonso Alonso; Norman A. Bourg; Warren Y. Brockelman; Sarayudh Bunyavejchewin; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Keith Clay; Richard Condit; Susan Cordell; Stuart J. Davies; Tucker J. Furniss; Christian P. Giardina; I. A. U. Nimal Gunatilleke; C. V. Savitri Gunatilleke; Fangliang He; Robert W. Howe; Stephen P. Hubbell; Chang-Fu Hsieh; Faith M. Inman-Narahari; David Janík; Daniel J. Johnson; David Kenfack; Lisa Korte; Kamil Král; Andrew J. Larson; James A. Lutz; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Anuttara Nathalang; Vojtech Novotny; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; I-Fang Sun; J. Sebastián Tello; Duncan W. Thomas; Benjamin L. Turner; Dilys M. Vela Díaz; Tomáš Vrška; George D. Weiblen; Amy Wolf; Sandra Yap; Jonathan A. Myers

    2017-01-01

    Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only...

  19. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  20. Temperature dependence of band gaps in semiconductors: electron-phonon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Reinhard K.; Cardona, M.; Lauck, R. [MPI for Solid State Research, Stuttgart (Germany); Bhosale, J.; Ramdas, A.K. [Physics Dept., Purdue University, West Lafayette, IN (United States); Burger, A. [Fisk University, Dept. of Life and Physical Sciences, Nashville, TN (United States); Munoz, A. [MALTA Consolider Team, Dept. de Fisica Fundamental II, Universidad de La Laguna, Tenerife (Spain); Instituto de Materiales y Nanotecnologia, Universidad de La Laguna, Tenerife (Spain); Romero, A.H. [CINVESTAV, Dept. de Materiales, Unidad Queretaro, Mexico (Mexico); MPI fuer Mikrostrukturphysik, Halle an der Saale (Germany)

    2013-07-01

    We investigate the temperature dependence of the energy gap of several semiconductors with chalcopyrite structure and re-examine literature data and analyze own high-resolution reflectivity spectra in view of our new ab initio calculations of their phonon properties. This analysis leads us to distinguish between materials with d-electrons in the valence band (e.g. CuGaS{sub 2}, AgGaS{sub 2}) and those without d-electrons (e.g. ZnSnAs{sub 2}). The former exhibit a rather peculiar non-monotonic temperature dependence of the energy gap which, so far, has resisted cogent theoretical description. We demonstrate it can well be fitted by including two Bose-Einstein oscillators with weights of opposite sign leading to an increase at low-T and a decrease at higher T's. We find that the energy of the former correlates well with characteristic peaks in the phonon density of states associated with low-energy vibrations of the d-electron constituents.

  1. Density-dependent home-range size revealed by spatially explicit capture–recapture

    Science.gov (United States)

    Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.

    2016-01-01

    The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.

  2. Is contextual-potentiated eating dependent on caloric density of food?

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Aranda

    2009-01-01

    Full Text Available One experiment tested whether a specific context could elicit eating in rats as a result of Pavlovian conditioning and whether this effect depended on the caloric density of food. Thirty two deprived rats experienced two contexts. They had access to food in context A, but no food was available in context B. During conditioning, half of the animals received high density caloric food (HD groups whereas the other half, low density caloric food (LD groups. Then, half of the rats in each type of food group was tested in context A and the other half in context B. The results demonstrated an effect of context conditioning only in HD groups. These findings suggest the relevance of both contextual conditioning and caloric density of food in eating behaviour. Implications for the aetiology of binge eating will be discussed.

  3. Widespread density-dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest.

    Science.gov (United States)

    Metz, Margaret R; Sousa, Wayne P; Valencia, Renato

    2010-12-01

    Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest. At local scales, we found a strong negative impact on first-year survival of conspecific seedling densities and adult abundance in multiple neighborhood sizes and a beneficial effect of a local tree neighborhood that is distantly related to the focal seedling. Once seedlings have survived their first year, they also benefit from a more phylogenetically dispersed seedling neighborhood. Across species, we did not find evidence that rare species have an advantage relative to more common species, or a community compensatory trend. These results suggest that the local biotic neighborhood is a strong influence on early seedling survival for species that range widely in their abundance and life history. These patterns in seedling survival demonstrate the role of density-dependent seedling dynamics in promoting and maintaining diversity in understory seedling assemblages. The assemblage-wide impacts of species abundance distributions may multiply with repeated cycles of recruitment and density-dependent seedling mortality and impact forest diversity or the abundance of individual species over longer time scales.

  4. The effect of sample matrix on electron density, electron temperature and gas temperature in the argon inductively coupled plasma examined by Thomson and Rayleigh scattering

    Science.gov (United States)

    Hanselman, D. S.; Sesi, N. N.; Huang, M.; Hieftje, G. M.

    1994-05-01

    Spatially-resolved electron temperature ( Te), electron number density ( ne) and gas-kinetic temperature ( Tg) maps of the inductively coupled plasma (ICP) have been obtained for two central-gas flow rates, four heights above the load coil (ALC) and in the presence and absence of interferants with a wide range of first ionization potentials. The radial profiles demonstrate how the directly measured fundamental parameters neTe and Tg can be significantly enhanced and/or depressed with added interferent, depending upon plasma operating conditions and observation region. In general, the magnitude of ne, and Te change is found to be an inverse function of interferent ionization potential; furthermore, ne enhancements in the central channel might be the result of electron redistribution from high to low electron density regions rather than from ionization of the matrix. The large measured increases in ne cannot be attributed solely to matrix ionization, especially when measurement uncertainties and the probable over-estimation in calculated ne, enhancements are taken into account. Changes in ne and Te have been correlated with axial Ca atom and ion emission profiles. A brief review of the mechanisms most likely involved in interelement matrix interferences is given within the context of the present study. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by a disk for the Macintosh computer with data files stored in ASCII format. The main article discusses the scientific aspects of the subject and gives an interpretation of the results contained in the data files.

  5. Electron acceleration by a radially polarized laser pulse during ionization of low density gases

    Directory of Open Access Journals (Sweden)

    Kunwar Pal Singh

    2011-03-01

    Full Text Available The acceleration of electrons by a radially polarized intense laser pulse has been studied. The axial electric field of the laser is responsible for electron acceleration. The axial electric field increases with decreasing laser spot size; however, the laser pulse gets defocused sooner for smaller values and the electrons do not experience high electric field for long, reducing the energy they can reach. The electron remains confined in the electric field of the laser for longer and the electron energy peaks for the normalized laser spot size nearly equal to the normalized laser intensity parameter. Electron energy peaks for initial laser phase ϕ_{0}=π due to accelerating laser phase and decreases with transverse initial position of the electrons. The energy and angle of the emittance spectrum of the electrons generated during ionization of krypton and argon at low densities have been obtained and a right choice of laser parameters has been suggested to obtain high energy quasimonoenergetic collimated electron beams. It has been found that argon is more suitable than krypton to obtain high energy electron beams due to higher ionization potential of inner shells for the former.

  6. Quasi-monoenergetic electron beams production in a sharp density transition

    CERN Document Server

    Fourmaux, S; Lassonde, P; Corde, S; Lebrun, G; Malka, V; Rousse, A; Kieffer, J C; 10.1063/1.4752114

    2012-01-01

    Using a laser plasma accelerator, experiments with a 80 TW and 30 fs laser pulse demonstrated quasi-monoenergetic electron spectra with maximum energy over 0.4 GeV. This is achieved using a supersonic He gas jet and a sharp density ramp generated by a high intensity laser crossing pre-pulse focused 3 ns before the main laser pulse. By adjusting this crossing pre-pulse position inside the gas jet, among the laser shots with electron injection more than 40% can produce quasi-monoenergetic spectra. This could become a relatively straight forward technique to control laser wakefield electron beams parameters.

  7. Progression of Plasmodium berghei through Anopheles stephensi is density-dependent.

    Directory of Open Access Journals (Sweden)

    Robert E Sinden

    2007-12-01

    Full Text Available It is well documented that the density of Plasmodium in its vertebrate host modulates the physiological response induced; this in turn regulates parasite survival and transmission. It is less clear that parasite density in the mosquito regulates survival and transmission of this important pathogen. Numerous studies have described conversion rates of Plasmodium from one life stage to the next within the mosquito, yet few have considered that these rates might vary with parasite density. Here we establish infections with defined numbers of the rodent malaria parasite Plasmodium berghei to examine how parasite density at each stage of development (gametocytes; ookinetes; oocysts and sporozoites influences development to the ensuing stage in Anopheles stephensi, and thus the delivery of infectious sporozoites to the vertebrate host. We show that every developmental transition exhibits strong density dependence, with numbers of the ensuing stages saturating at high density. We further show that when fed ookinetes at very low densities, oocyst development is facilitated by increasing ookinete number (i.e., the efficiency of ookinete-oocyst transformation follows a sigmoid relationship. We discuss how observations on this model system generate important hypotheses for the understanding of malaria biology, and how these might guide the rational analysis of interventions against the transmission of the malaria parasites of humans by their diverse vector species.

  8. Dependence of intermittent density fluctuations on collisionality in TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Kyle; Garland, Stephen; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnikund Plasmatechnologie, Universitaet Stuttgart (Germany); Manz, Peter [Physik-Department E28, Technische Universitaet Muenchen, Garching (Germany)

    2016-07-01

    Particle and heat transport losses due to edge turbulence are well known phenomena commonly seen in toroidal magnetic confinement devices. Furthermore in the scrape-off layer (SOL), turbulent density fluctuations are often observed to be intermittent and dominate particle transport to the vessel walls. In the adiabatic limit (small collisionality), of the two-field Hasegawa-Wakatani model, simulated turbulent density fluctuations are observed to couple to potential fluctuations and exhibit Gaussian behavior. However, in the hydrodynamic limit (large collisionality) the density and potential decouple. As a result, the density becomes passively advected, evolves towards the vorticity, and exhibits intermittent behavior. The relationship between collisionality and intermittency is investigated experimentally at the stellarator TJ-K. To vary the plasma collisionality, which is related to electron density and temperature, parameters such as gas type, neutral gas pressure, magnetic field, and heating power are varied. Radial profiles of plasma density, temperature, floating potential, and vorticity are recorded via a scanning 7-tip Langmuir probe array. First results are presented.

  9. Enhanced electrochemistry of nanoparticle-embedded polyelectrolyte films: Interfacial electronic coupling and distance dependence

    Energy Technology Data Exchange (ETDEWEB)

    Dowdy, Callie E.; Leopold, Michael C., E-mail: mleopold@richmond.ed

    2010-11-01

    Factors affecting the electronic communication believed to be responsible for the enhanced solution electrochemistry observed at electrodes modified with hybrid polyelectrolyte-nanoparticle (PE-NP) film assemblies were systematically investigated. Specifically, the faradaic current and voltammetric peak splitting recorded for cyclic voltammetry of ferricyanide redox species (Fe(CN){sub 6}{sup 3-/4-}) at films constructed with various architectures of citrate-stabilized gold NPs embedded in polyelectrolyte films composed of poly-L-lysine and poly-S-styrene were used to establish the relative importance of both distance and electronic coupling. Layer-by-layer construction of PE-NP films allowed for the position and density of NPs to be varied within the film to assess electronic coupling between particles (interparticle coupling) as well as at the electrode-film interface. The cumulative results observed at these films suggest that, while distance dependence prevails in nearly every case and interparticle coupling can contribute to facilitating the Fe(CN){sub 6}{sup 3-/4-} electrochemistry, interfacial electronic coupling of the PE-NP films is of critical importance and decoupling is easily achieved by disengaging NP-electrode interactions.

  10. Size-dependent structural and electronic properties of Bi(111) ultrathin nanofilms from first principles

    Science.gov (United States)

    Cantele, Giovanni; Ninno, Domenico

    2017-06-01

    Few layer bismuth nanofilms with (111) orientation have shown striking electronic properties, especially as building blocks of novel two-dimensional heterostructures. In this paper we present state-of-the-art first principles calculations, based on both density functional theory and maximally localized Wannier functions, that encompass electronic and structural properties of free-standing Bi(111) nanofilms. We accurately evaluate both the in-plane lattice constant and, by including the van der Waals interaction between bismuth bilayers, the intra/interlayer distances. Interestingly and somehow unexpectedly, the in-plane lattice constant is predicted to shrink by about 5% going from the thickest investigated nanofilm (˜80 Å ) to single bilayer Bi(111), entailing a thickness dependent lattice mismatch in complex heterostructures involving ultrathin Bi(111). Moreover, quantum confinement effects, that would be expected to rule the electronic structure at this size range, compete with surface states that appear close to and across the Fermi level. The implication is that not only all but the thinnest films have a metallic band structure but also that such surface states might play a role in either the formation of interfaces with other materials or for sensing applications. Finally, the calculated electronic structure compares extremely well with ARPES measurements.

  11. Positive density-dependent growth supports costs sharing hypothesis and population density sensing in a manipulative parasite.

    Science.gov (United States)

    Gopko, Mikhail; Mikheev, Victor N; Taskinen, Jouni

    2017-09-01

    Parasites manipulate their hosts' phenotype to increase their own fitness. Like any evolutionary adaptation, parasitic manipulations should be costly. Though it is difficult to measure costs of the manipulation directly, they can be evaluated using an indirect approach. For instance, theory suggests that as the parasite infrapopulation grows, the investment of individual parasites in host manipulation decreases, because of cost sharing. Another assumption is that in environments where manipulation does not pay off for the parasite, it can decrease its investment in the manipulation to save resources. We experimentally infected rainbow trout Oncorhynchus mykiss with the immature larvae of the trematode Diplostomum pseudospathaceum, to test these assumptions. Immature D. pseudospathaceum metacercariae are known for their ability to manipulate the behaviour of their host enhancing its anti-predator defenses to avoid concomitant predation. We found that the growth rate of individual parasites in rainbow trout increased with the infrapopulation size (positive density-dependence) suggesting cost sharing. Moreover, parasites adjusted their growth to the intensity of infection within the eye lens where they were localized suggesting population density sensing. Results of this study support the hypothesis that macroparasites can adjust their growth rate and manipulation investment according to cost sharing level and infrapopulation size.

  12. Low-latitude Model Electron Density Profiles using the IRI and CCIR ...

    African Journals Online (AJOL)

    ... electron density profiles under different solar-geophysical conditions are highlighted. The need for additional ionosonde stations in the African sector in order to incorporate the results of studies on equatorial anomaly into the models is emphasized. Nigeria Journal of Pure and Applied Physics VOLUME 1, AUGUST 2000, ...

  13. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2015-01-01

    Full Text Available Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.

  14. Density functional study of AgScO 2: Electronic and optical properties

    Indian Academy of Sciences (India)

    2017-06-20

    Jun 20, 2017 ... Electronic properties deal with energy bands and density of states (DOSs), while optical properties describe refractive index and absorption coefficient.The energy bands are interpreted in terms of DOSs. The computed value of band gap is in agreement with that reported in the literature. Our results predict ...

  15. On the definition of the effectively unpaired electron density matrix: A similarity measure approach

    Science.gov (United States)

    Alcoba, Diego R.; Bochicchio, Roberto C.; Lain, Luis; Torre, Alicia

    2006-09-01

    The mathematical concepts of similarity and distance in metric spaces are used to relate Takatsuka et al. and Head-Gordon definitions of the effectively unpaired electron density matrix. This approach opens the possibility of new suitable definitions of this quantity to given purposes.

  16. High-order ionospheric effects on electron density estimation from Fengyun-3C GPS radio occultation

    Science.gov (United States)

    Li, Junhai; Jin, Shuanggen

    2017-03-01

    GPS radio occultation can estimate ionospheric electron density and total electron content (TEC) with high spatial resolution, e.g., China's recent Fengyun-3C GPS radio occultation. However, high-order ionospheric delays are normally ignored. In this paper, the high-order ionospheric effects on electron density estimation from the Fengyun-3C GPS radio occultation data are estimated and investigated using the NeQuick2 ionosphere model and the IGRF12 (International Geomagnetic Reference Field, 12th generation) geomagnetic model. Results show that the high-order ionospheric delays have large effects on electron density estimation with up to 800 el cm-3, which should be corrected in high-precision ionospheric density estimation and applications. The second-order ionospheric effects are more significant, particularly at 250-300 km, while third-order ionospheric effects are much smaller. Furthermore, the high-order ionospheric effects are related to the location, the local time, the radio occultation azimuth and the solar activity. The large high-order ionospheric effects are found in the low-latitude area and in the daytime as well as during strong solar activities. The second-order ionospheric effects have a maximum positive value when the radio occultation azimuth is around 0-20°, and a maximum negative value when the radio occultation azimuth is around -180 to -160°. Moreover, the geomagnetic storm also affects the high-order ionospheric delay, which should be carefully corrected.

  17. Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    The effective atomic number, Z(eff), the effective electron density, N-el, and kerma have been calculated for some fatty acids and carbohydrates for photon interaction in the extended energy range from 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCo...

  18. YUP.SCX: coaxing atomic models into medium resolution electron density maps.

    Science.gov (United States)

    Tan, Robert K-Z; Devkota, Batsal; Harvey, Stephen C

    2008-08-01

    The structures of large macromolecular complexes in different functional states can be determined by cryo-electron microscopy, which yields electron density maps of low to intermediate resolutions. The maps can be combined with high-resolution atomic structures of components of the complex, to produce a model for the complex that is more accurate than the formal resolution of the map. To this end, methods have been developed to dock atomic models into density maps rigidly or flexibly, and to refine a docked model so as to optimize the fit of the atomic model into the map. We have developed a new refinement method called YUP.SCX. The electron density map is converted into a component of the potential energy function to which terms for stereochemical restraints and volume exclusion are added. The potential energy function is then minimized (using simulated annealing) to yield a stereochemically-restrained atomic structure that fits into the electron density map optimally. We used this procedure to construct an atomic model of the 70S ribosome in the pre-accommodation state. Although some atoms are displaced by as much as 33A, they divide themselves into nearly rigid fragments along natural boundaries with smooth transitions between the fragments.

  19. Corrections to the density-functional theory electronic spectrum: Copper phthalocyanine

    DEFF Research Database (Denmark)

    Vazquez, Hector; Jelinek, P.; Brandbyge, Mads

    2009-01-01

    A method for improving the electronic spectrum of standard Density-Functional Theory (DFT) calculations (i.e., LDA or GGA approximations) is presented, and its application is discussed for the case of the copper phthalocyanine (CuPc) molecule. The method is based on a treatment of exchange...

  20. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Z., E-mail: zhongbo.lee@uni-ulm.de; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-10-15

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions.

  1. A new interferometry-based electron density fluctuation diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Kasten, C. P.; Irby, J. H.; Murray, R.; White, A. E.; Pace, D. C.

    2012-10-01

    The two-color interferometry diagnostic on the Alcator C-Mod tokamak has been upgraded to measure fluctuations in the electron density and density gradient for turbulence and transport studies. Diagnostic features and capabilities are described. In differential mode, fast phase demodulation electronics detect the relative phase change between ten adjacent, radially-separated (ΔR = 1.2 cm, adjustable), vertical-viewing chords, which allows for measurement of the line-integrated electron density gradient. The system can be configured to detect the absolute phase shift of each chord by comparison to a local oscillator, measuring the line-integrated density. Each chord is sensitive to density fluctuations with kR < 20.3 cm-1 and is digitized at up to 10 MS/s, resolving aspects of ion temperature gradient-driven modes and other long-wavelength turbulence. Data from C-Mod discharges is presented, including observations of the quasi-coherent mode in enhanced D-alpha H-mode plasmas and the weakly coherent mode in I-mode.

  2. Wave-vector dependence of spin and density multipole excitations in quantum dots

    Science.gov (United States)

    Barranco, Manuel; Colletti, Leonardo; Lipparini, Enrico; Emperador, Agustí; Pi, Martí; Serra, Llorenç

    2000-03-01

    We have employed time-dependent local-spin density-functional theory to analyze the multipole spin and charge density excitations in GaAs-AlxGa1-xAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Schüller et al., Phys. Rev. Lett. 80, 2673 (1998)] is made. This allows us to identify the angular momentum of several of the observed modes as well as to reproduce their energies.

  3. Shape of the liquid-vapor coexistence curve for temperature and density dependent effective interactions.

    Science.gov (United States)

    Amokrane, S; Bouaskarne, M

    2002-05-01

    The asymmetry of the coexistence curve that is observed in several micellar systems is discussed in relation with the dependence of the effective interaction on temperature and density. Standard results for the diameter of the coexistence curve in the van der Waals theory are generalized so as to deal with this combined dependence. The qualitative trends so deduced are assessed by comparison with coexistence curves of Yukawa fluids computed with integral equation theories. The role of the variables used to plot the coexistence curve and the nonlinear behavior of its diameter beyond the critical region are discussed in relation with the decrease of the interaction strength with density. The possibility of using the asymmetry of the coexistence curve as an indicator of the state dependence of the effective interaction is finally discussed.

  4. A study of effective atomic numbers and electron densities of some vitamins for electron, H, He and C ion interactions

    Science.gov (United States)

    Büyükyıldız, M.

    2017-09-01

    The radiological properties of some vitamins such as Retinol, Beta-carotene, Riboflavin, Niacin, Niacinamide, Pantothenic acid, Pyridoxine, Pyridoxamine, Pyridoxal, Biotin, Folic acid, Ascorbic acid, Cholecalciferol, Alpha-tocopherol, Gamma-tocopherol, Phylloquinone have been investigated with respect to total electron interaction and some heavy charged particle interaction as means of effective atomic numbers (Z_{eff}) and electron densities (N_{eff}) for the first time. Calculations were performed for total electron interaction and heavy ions such as H, He and C ion interactions in the energy region 10keV-10MeV by using a logarithmic interpolation method. Variations in Z_{eff}'s and N_{eff}'s of given vitamins have been studied according to the energy of electron or heavy charged particles, and significant variations have been observed for all types of interaction in the given energy region. The maximum values of Z_{eff} have been found in the different energy regions for different interactions remarkably and variations in N_{eff} seem approximately to be the same with variation in Z_{eff} for the given vitamins as expected. Z_{eff} values of some vitamins were plotted together and compared with each other for electron, H, He and C interactions and the ratios of Z_{eff}/ have been changed in the range of 0.25-0.36, 0.20-0.36, 0.22-0.35 and 0.20-0.35 for electron, H, He and C interactions, respectively.

  5. Pairing and unpairing electron densities in organic systems: Two-electron three center through space and through bonds interactions

    Science.gov (United States)

    Lobayan, Rosana M.; Bochicchio, Roberto C.

    2014-05-01

    Two-electron three-center bonding interactions in organic ions like methonium (CH5+), ethonium (C2H7+), and protonated alkanes n-C4H_{11}+ isomers (butonium cations) are described and characterized within the theoretical framework of the topological analysis of the electron density decomposition into its effectively paired and unpaired contributions. These interactions manifest in some of this type of systems as a concentration of unpaired electron cloud around the bond paths, in contrast to the well known paradigmatic boron hydrids in which it is not only concentrated close to the atomic nucleus and the bond paths but out of them and over the region defined by the involved atoms as a whole. This result permits to propose an attempt of classification for these interactions based in such manifestations. In the first type, it is called as interactions through bonds and in the second type as interactions through space type.

  6. Theoretical estimation of the electron affinity for quinone derivatives by means of density functional theory

    Science.gov (United States)

    Kalimullina, L. R.; Nafikova, E. P.; Asfandiarov, N. L.; Chizhov, Yu. V.; Baibulova, G. Sh.; Zhdanov, E. R.; Gadiev, R. M.

    2015-03-01

    A number of compounds related to quinone derivatives is investigated by means of density functional theory in the B3LYP/6-31G(d) mode. Vertical electron affinity E va and/or electron affinity E a for the investigated compounds are known from experiments. The correlation between the calculated energies of π* molecular orbitals with the E va values measured via electron transmission spectroscopy is determined with a coefficient of 0.96. It is established that theoretical values of the adiabatic electron affinity, calculated as the difference between the total energies of a neutral molecule and a radical anion, correlate with E a values determined from electron transfer experiments with a correlation coefficient of 0.996.

  7. Density functional study of AgScO_2: Electronic and optical properties

    Science.gov (United States)

    Bhamu, K. C.; Sahariya, Jagrati; Vyas, Rishi; Priolkar, K. R.

    2017-07-01

    This paper focusses on the electronic and optical properties of scandium-based silver delafossite (AgScO_2) semiconductor. The density functional theory (DFT) in the framework of full potential linearized augmented plane wave (FP-LAPW) scheme has been used for the present calculations with local density approximation (LDA) and generalized gradient approximation (GGA). Electronic properties deal with energy bands and density of states (DOSs), while optical properties describe refractive index and absorption coefficient. The energy bands are interpreted in terms of DOSs. The computed value of band gap is in agreement with that reported in the literature. Our results predict AgScO_2 as indirect band-gap semiconductor. Our calculated value of the refractive index in zero frequency limits is 2.42. The absorption coefficient predicts the applicability of AgScO_2 in solar cells and flat panel liquid crystal display as a transparent top window layer.

  8. International Workshop on Electronic Density Functional Theory : Recent Progress and New Directions

    CERN Document Server

    Vignale, Giovanni; Das, Mukunda

    1998-01-01

    This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on r...

  9. Electron cloud at the KEKB Low-Energy Ring Simulations of central cloud density, bunch filling, patterns, magnetic fields, and lost electrons

    CERN Document Server

    Zimmermann, Frank

    2000-01-01

    We report various electron-cloud simulations for the Low Energy Ring (LER) of KEKB. These address the evolution of the electron-cloud density at the center of the vacuum chamber,the effect of z-dependent quadrupole, dipole and solenoid fields,the response of the electron cloud to several bunch trains and filling patterns,the spatial electron distribution, and the characteristics of electrons lost to the wall. Comparing simulations and measurements, the present vertical blow up appears to be more consistent with simulations for field-free regions than with those for a quadrupole field.Thus, we recommend that further C yoke magnets be installed to cover as much of the ring circumference as possible,including the straight sections.In addition, we show that a C yoke magnet configuration with adjacent magnets of alternating polarity is about two times more effective than one of equal polarity.More efficient still would be a solenoid field,which promises a suppression by an additional factor of 3-6. Our simulations...

  10. Characteristics of temporal evolution of particle density and electron temperature in helicon discharge

    Science.gov (United States)

    Yang, Xiong; Cheng, Mousen; Guo, Dawei; Wang, Moge; Li, Xiaokang

    2017-10-01

    On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL MultiphysicsTM with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones.

  11. Detection of density-dependent effects on caribou numbers from a series of census data

    Directory of Open Access Journals (Sweden)

    Francois Messier

    1991-10-01

    Full Text Available The main objective of this paper is to review and discuss the applicability of statistical procedures for the detection of density dependence based on a series of annual or multi-annual censuses. Regression models for which the statistic value under the null hypothesis of density independence is set a priori (slope = 0 or 1, generate spurious indications of density dependence. These tests are inappropriate because low sample sizes, high variance, and sampling error consistently bias the slope when applied to a finite number of population estimates. Two distribution-free tests are reviewed for which the rejection region for the hypothesis of density independence is derived intrinsically from the data through a computer-assisted permutation process. The "randomization test" gives the best results as the presence of a pronounced trend in the sequence of population estimates does not affect test results. The other non-parametric test, the "permutation test", gives reliable results only if the population fluctuates around a long-term equilibrium density. Both procedures are applied to three sets of data (Pukaskwa herd, Avalon herd, and a hypothetical example that represent quite divergent population trajectories over time.

  12. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission.

    Science.gov (United States)

    Dawes, Emma J; Churcher, Thomas S; Zhuang, Shijie; Sinden, Robert E; Basáñez, María-Gloria

    2009-10-12

    Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies.

  13. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission

    Directory of Open Access Journals (Sweden)

    Sinden Robert E

    2009-10-01

    Full Text Available Abstract Background Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. Methods A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Results Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. Conclusion These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies.

  14. Quorum sensing and density-dependent dispersal in an aquatic model system.

    Directory of Open Access Journals (Sweden)

    Simon Fellous

    Full Text Available Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i the number of cells per microcosm and (ii the origin of their culture medium (supernatant from high- or low-density populations. We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density - and as a result, the decision to disperse - in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.

  15. Reduction of electron density in a plasma by injection of liquids

    Science.gov (United States)

    Sodha, M. S.; Evans, J. S.

    1974-01-01

    In this paper, the authors have investigated the physics of various processes relevant to the reduction of electron density in a plasma by addition of water droplets; two processes have in particular been analyzed in some detail, viz, the electron attachment to charged dielectric droplets and the emission of negative ions by vaporization from these droplets. The results of these analyses have been applied to a study of the kinetics of reduction of electron density and charging of droplets in an initially overionized plasma, after addition of water droplets. A number of simplifying assumptions including uniform size and charge on droplets and negligible change in the radius of the droplet due to evaporation have been made.

  16. A consumer-resource approach to the density-dependent population dynamics of mutualism.

    Science.gov (United States)

    Holland, J Nathaniel; DeAngelis, Donald L

    2010-05-01

    Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  17. A Holling Type II Pest and Natural Enemy Model with Density Dependent IPM Strategy

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2017-01-01

    Full Text Available Resource limitations and density dependent releasing of natural enemies during the pest control and integrated pest management will undoubtedly result in nonlinear impulsive control. In order to investigate the effects of those nonlinear control strategies on the successful pest control, we have proposed a pest-natural enemy system concerning integrated pest management with density dependent instant killing rate and releasing rate. In particular, the releasing rate depicts how the number of natural enemy populations released was guided by their current density at the fixed moment. The threshold condition which ensures the existence and global stability of pest-free periodic solution has been discussed first, and the effects of key parameters on the threshold condition reveal that reducing the pulse period does not always benefit pest control; that is, frequent releasing of natural enemies may not be beneficial to the eradication of pests when the density dependent releasing method has been implemented. Moreover, the forward and backward bifurcations could occur once the pest-free periodic solution becomes unstable, and the system could exist with very complex dynamics. All those results confirm that the control actions should be carefully designed once the nonlinear impulsive control measures have been taken for pest management.

  18. A consumer-resource approach to the density-dependent population dynamics of mutualism

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2010-01-01

    Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  19. Intraspecific and interspecific competition induces density-dependent habitat niche shifts in an endangered steppe bird.

    Science.gov (United States)

    Tarjuelo, Rocío; Morales, Manuel B; Arroyo, Beatriz; Mañosa, Santiago; Bota, Gerard; Casas, Fabián; Traba, Juan

    2017-11-01

    Interspecific competition is a dominant force in animal communities that induces niche shifts in ecological and evolutionary time. If competition occurs, niche expansion can be expected when the competitor disappears because resources previously inaccessible due to competitive constraints can then be exploited (i.e., ecological release). Here, we aimed to determine the potential effects of interspecific competition between the little bustard (Tetrax tetrax) and the great bustard (Otis tarda) using a multidimensional niche approach with habitat distribution data. We explored whether the degree of niche overlap between the species was a density-dependent function of interspecific competition. We then looked for evidences of ecological release by comparing measures of niche breadth and position of the little bustard between allopatric and sympatric situations. Furthermore, we evaluated whether niche shifts could depend not only on the presence of great bustard but also on the density of little and great bustards. The habitat niches of these bustard species partially overlapped when co-occurring, but we found no relationship between degree of overlap and great bustard density. In the presence of the competitor, little bustard's niche was displaced toward increased use of the species' primary habitat. Little bustard's niche breadth decreased proportionally with great bustard density in sympatric sites, in consistence with theory. Overall, our results suggest that density-dependent variation in little bustard's niche is the outcome of interspecific competition with the great bustard. The use of computational tools like kernel density estimators to obtain multidimensional niches should bring novel insights on how species' ecological niches behave under the effects of interspecific competition in ecological communities.

  20. The dependence of ZnO photoluminescence efficiency on excitation conditions and defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Jay G.; Liu, Jie [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Foreman, John V. [U.S. Army Aviation and Missile Research, Development, and Engineering Center, Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O., E-mail: everitt@phy.duke.edu [U.S. Army Aviation and Missile Research, Development, and Engineering Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2013-11-11

    The quantum efficiencies of both the band edge and deep-level defect emission from annealed ZnO powders were measured as a function of excitation fluence and wavelength from a tunable sub-picosecond source. A simple model of excitonic decay reproduces the observed excitation dependence of rate constants and associated trap densities for all radiative and nonradiative processes. The analysis explores how phosphor performance deteriorates as excitation fluence and energy increase, provides an all-optical approach for estimating the number density of defects responsible for deep-level emission, and yields new insights for designing efficient ZnO-based phosphors.

  1. Modeling carrier density dependent charge transport in semiconducting carbon nanotube networks

    Science.gov (United States)

    Schießl, Stefan P.; de Vries, Xander; Rother, Marcel; Massé, Andrea; Brohmann, Maximilian; Bobbert, Peter A.; Zaumseil, Jana

    2017-09-01

    Charge transport in a network of only semiconducting single-walled carbon nanotubes is modeled as a random-resistor network of tube-tube junctions. Solving Kirchhoff's current law with a numerical solver and taking into account the one-dimensional density of states of the nanotubes enables the evaluation of carrier density dependent charge transport properties such as network mobility, local power dissipation, and current distribution. The model allows us to simulate and investigate mixed networks that contain semiconducting nanotubes with different diameters, and thus different band gaps and conduction band edge energies. The obtained results are in good agreement with available experimental data.

  2. Density dependence governs when population responses to multiple stressors are magnified or mitigated.

    Science.gov (United States)

    Hodgson, Emma E; Essington, Timothy E; Halpern, Benjamin S

    2017-10-01

    Population endangerment typically arises from multiple, potentially interacting anthropogenic stressors. Extensive research has investigated the consequences of multiple stressors on organisms, frequently focusing on individual life stages. Less is known about population-level consequences of exposure to multiple stressors, especially when exposure varies through life. We provide the first theoretical basis for identifying species at risk of magnified effects from multiple stressors across life history. By applying a population modeling framework, we reveal conditions under which population responses from stressors applied to distinct life stages are either magnified (synergistic) or mitigated. We find that magnification or mitigation critically depends on the shape of density dependence, but not the life stage in which it occurs. Stressors are always magnified when density dependence is linear or concave, and magnified or mitigated when it is convex. Using Bayesian numerical methods, we estimated the shape of density dependence for eight species across diverse taxa, finding support for all three shapes. © 2017 by the Ecological Society of America.

  3. Lengthscale-Dependent Solvation and Density Fluctuations in n-Octane.

    Science.gov (United States)

    Wu, Eugene; Garde, Shekhar

    2015-07-23

    Much attention has been focused on the solvation and density fluctuations in water over the past decade. These studies have brought to light interesting physical features of solvation in condensed media, especially the dependence of solvation on the solute lengthscale, which may be general to many fluids. Here, we focus on the lengthscale-dependent solvation and density fluctuations in n-octane, a simple organic liquid. Using extensive molecular simulations, we show a crossover in the solvation of solvophobic solutes with increasing size in n-octane, with the specifics of the crossover depending on the shape of the solute. Large lengthscale solvation, which is dominated by interface formation, emerges over subnanoscopic lengthscales. The crossover in n-octane occurs at smaller lengthscales than that in water. We connect the lengthscale of crossover to the range of attractive interactions in the fluid. The onset of the crossover is accompanied by the emergence of non-Gaussian tails in density fluctuations in solute shaped observation volumes. Simulations over a range of temperatures highlight a corresponding thermodynamic crossover in solvation. Qualitative similarities between lengthscale-dependent solvation in water, n-octane, and Lennard-Jones fluids highlight the generality of the underlying physics of solvation.

  4. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus).

    Science.gov (United States)

    Vas, Judit; Andersen, Inger Lise

    2015-01-01

    Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g., resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  5. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus.

    Directory of Open Access Journals (Sweden)

    Judit Vas

    Full Text Available Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance and activity budgets (e.g., resting, feeding, social activities were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period. The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  6. Vertical and longitudinal electron density structures of equatorial E- and F-regions

    Directory of Open Access Journals (Sweden)

    P. S. Brahmanandam

    2011-01-01

    Full Text Available From global soundings of ionospheric electron density made with FORMOSAT 3/COSMIC satellites for September 2006–August 2009, day-night variations in vertical and longitudinal structures of the electron densities in equatorial E- and F-regions for different seasons are investigated for the first time. The results reveal that the wavenumber-3 and wavenumber-4 patterns dominated the nighttime (22:00–04:00 LT F-region longitudinal structures in solstice and in equinox seasons, respectively. In daytime (08:00–18:00 LT F-region, the wavenumber-4 patterns governed the longitudinal structures in the September equinox and December solstice, and wavenumber-3 in March equinox and June solstice respectively. A comparison of the daytime and nighttime longitudinal electron density structures indicates that they are approximately 180° out of phase with each other. It is believed that this out of phase relation is very likely the result of the opposite phase relation between daytime and nighttime nonmigrating diurnal tidal winds that modulate background E-region dynamo electric field at different places, leading to the day-night change in the locations of the equatorial plasma fountains that are responsible for the formation of the F-region longitudinal structures. Further, a good consistency between the locations of the density structures in the same seasons of the different years for both daytime and nighttime epochs has been noticed indicating that the source mechanism for these structures could be the same.

  7. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    Science.gov (United States)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  8. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    Science.gov (United States)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  9. Temporal variation of the electron density in afterglow of high-density CF_4, C_4F_8, and CF_4--H2 plasmas

    Science.gov (United States)

    Sasaki, K.; Kadota, K.

    1998-10-01

    The kinetics of electrons in electronegative plasmas is greatly affected by dissociative attachment to neutral molecules, which is a major process for the formation of negative ions. In fluorocarbon plasmas, negative fluorine ions (F^-) are produced by electron attachment to various reaction products as well as the parent gas. In the present work, we have measured the temporal variation of the electron density in the afterglow of high-density CF_4, C_4F_8, and CF_4--H2 plasmas. A conventional microwave interferometer at 35 GHz was adopted for the measurement. The electron loss frequency was evaluated from the temporal variation of the electron density which was calculated from the interferometry signal digitized with a high sampling rate of 100 MHz. In CF4 plasmas, the variation of the electron loss frequency roughly corresponded to that of the neutral radical densities. In C_4F8 plasmas, the electron loss frequency was higher for the discharge condition with lower dissociation degree. These results indicates that reaction products play important roles for the production of F^- in CF4 plasmas, while in C_4F8 plasmas, the production of F^- is governed by the parent gas. No correlations were found between the electron loss frequency and the F atom density in CF_4--H2 plasmas, which suggests that the production of F^- from F2 is nearly negligible.

  10. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    Energy Technology Data Exchange (ETDEWEB)

    Weatherford, Brandon R., E-mail: brweathe@gmail.com, E-mail: zax@esi-group.com, E-mail: evbarna@sandia.gov, E-mail: mjkush@umich.edu; Barnat, E. V., E-mail: brweathe@gmail.com, E-mail: zax@esi-group.com, E-mail: evbarna@sandia.gov, E-mail: mjkush@umich.edu [Sandia National Laboratories, Albuquerque, New Mexico 87185-1423 (United States); Xiong, Zhongmin, E-mail: brweathe@gmail.com, E-mail: zax@esi-group.com, E-mail: evbarna@sandia.gov, E-mail: mjkush@umich.edu; Kushner, Mark J., E-mail: brweathe@gmail.com, E-mail: zax@esi-group.com, E-mail: evbarna@sandia.gov, E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122, USA. (United States)

    2014-09-14

    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3×10⁹cm s⁻¹, depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  11. Variations of the ionospheric electron density during the Bhuj seismic event

    Directory of Open Access Journals (Sweden)

    A. Trigunait

    2004-12-01

    Full Text Available Ionospheric perturbations by natural geophysical activity, such as volcanic eruptions and earthquakes, have been studied since the great Alaskan earthquake in 1964. Measurements made from the ground show a variation of the critical frequency of the ionosphere layers before and after the shock. In this paper, we present an experimental investigation of the electron density variations around the time of the Bhuj earthquake in Gujarat, India. Several experiments have been used to survey the ionosphere. Measurements of fluctuations in the integrated electron density or TEC (Total Electron Content between three satellites (TOPEX-POSEIDON, SPOT2, SPOT4 and the ground have been done using the DORIS beacons. TEC has been also evaluated from a ground-based station using GPS satellites, and finally, ionospheric data from a classical ionospheric sounder located close to the earthquake epicenter are utilized. Anomalous electron density variations are detected both in day and night times before the quake. The generation mechanism of these perturbations is explained by a modification of the electric field in the global electric circuit induced during the earthquake preparation. Key words. Ionosphere (ionospheric disturbances – Radio Science (ionospheric physics – History of geophysics (seismology

  12. Coupled electron-hole bilayer graphene sheets: Superfluidity, Charge Density Waves, and Coupled Wigner Crystals

    Science.gov (United States)

    Zarenia, Mohammad; Peeters, Francois; Neilson, David

    The juxtaposition of superconducting and charge density wave (CDW) phases that is often observed in connection with High-Temperature Superconductors, is attracting considerable attention. In these systems, the crystal lattice provides a polarizable background, needed to drive the CDW phase. We report on a different system that exhibits the association of superfluid and CDW phases, but in which the polarizable background is uniform. Our system consists of two coupled two-dimensional bilayers of graphene, one bilayer containing electrons and the other holes interacting through the long range Coulomb interaction. To account for the inter-layer correlation energy accurately, we introduce a new approach which is based on the random phase approximation at high densities and interpolation between the weakly- and strongly-interacting regimes. We determine the zero temperature phase diagram in which the two control parameters are the equal electron and hole densities and the thickness of the insulating barrier separating the two bilayers. We find in addition to an electron-hole superfluid and a one-dimensional CDW phases that there exist also a coupled electron-hole Wigner crystal. The structure of the crystal background plays no role in determining the phase diagram. This work was supported by the Flemish Science Foundation (FWO).

  13. Time-dependent local spin density approximation study of Luttinger liquids

    Science.gov (United States)

    Lipparini, E.; Zobele, G.

    2011-08-01

    We perform a time-dependent local spin density approximation (TDLSDA) study of one-dimensional Fermions with a contact interaction. We show that the simple TDLSDA approximation provides an exact description for density and spin density modes and conductance G in one-dimensional quantum wires, by establishing a general equivalence between TDSLDA and Tomonaga-Luttinger model for the elementary excitation spectra in one-dimensional Fermi systems. The role of interaction effects is carefully analyzed especially in relation to the problem of the universality of the result G=2e2/h for the conductance of one-dimensional systems. Finally our results are in good agreement with the available experimental data on the one-dimensional plasmon dispersion, and conductance in GaAs quantum wires.

  14. Asymmetric nuclear matter studied by time-dependent local isospin density approximation

    Science.gov (United States)

    Lipparini, Enrico; Pederiva, Francesco

    2013-08-01

    The dynamic response of asymmetric nuclear matter is studied by means of a time-dependent local isospin density approximation (TDLIDA) approach. Calculations are based on a local density energy functional derived by an auxiliary field diffusion Monte Carlo (AFDMC) calculation of bulk nuclear matter. Three types of excited states emerge: collective states, a continuum of quasiparticle-quasihole excitations and unstable solutions. These states are analyzed and discussed for different values of the nuclear density ρ and isospin asymmetry ξ=(N-Z)/A. An analytical expression of the compressibility as a function of ρ and ξ is derived which shows explicitly an instability of the neutron matter around ρ≃0.09 fm-3 when a small fraction of protons are added to the system.

  15. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  16. The effect of longitudinal density gradient on electron plasma wake field acceleration

    CERN Document Server

    Tsiklauri, David

    2016-01-01

    3-, 2- and 1-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow out regime are presented. Earlier results are extended by (i) studying the effect of longitudinal density gradient; (ii) avoiding use of co-moving simulation box; (iii) inclusion of ion motion; and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of ten-fold increasing density over 10 cm long Lithium vapor plasma, results in spatially more compact and three times larger, compared to the uniform density case, electric fields (-6.4 x 10^{10} V/m), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from initial 20.4 GeV), with an energy transfer efficiencies from leading to trailing bunch of 75 percent. In the uniform density case -2.5 x 10^{10} V/m wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with an energy transfer eff...

  17. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    Science.gov (United States)

    Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach

    2017-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.

  18. Variations of topside ionospheric electron density near the dawn terminator in relation to geomagnetic activity

    Science.gov (United States)

    Tam, Sunny W. Y.; Chen, Chien-Han; Wang, Kaiti

    2017-11-01

    A statistical study to determine the influence of geomagnetic disturbances on the ionosphere across the dawn terminator at subauroral and middle latitudes is performed, based on the vertical electron density profiles measured by the GPS Occultation Experiment aboard the FORMOSAT-3/COSMIC satellites from August 2006 to July 2009. Three ranges of solar zenith angles are adopted to characterize transitions between the pre- and post-dawn ionosphere. Results indicate opposing plasma density effects at the darkened and sunlit locations between 50° and 65° magnetic latitude (λm). The darkened topside ionosphere features density increases associated with geomagnetic activity, while density reductions mark its sunlit counterpart. The average electron peak density in the F2 region can increase by up to 44% in the darkened ionosphere and decrease by up to 20% in the sunlit ionosphere as Kp changes from 0-1 to 4-5. In the λm = 55°-65° range, the dominant contributors to the density perturbation are auroral electron precipitation for the darkened region and enhanced penetration electric fields for the sunlit region, with the transition occurring across the terminator local times. Dominance shifts first to electric fields at 50°-55°, then to aurora-induced neutral wind at 45°-50°, suggesting that during disturbed times electric fields seldom penetrate below λm = 50°. Findings presented in this statistical study should contribute to the study of space weather and the understanding of non-local influences of geomagnetic disturbances on topside dynamics.

  19. Warm asymmetric quark matter and protoquark stars within the confined isospin-density-dependent mass model

    Science.gov (United States)

    Chu, Peng-Cheng; Chen, Lie-Wen

    2017-11-01

    We extend the confined isospin-density-dependent mass (CIDDM) model to include temperature dependence of the equivalent mass for quarks. Within the CIDDM model, we study the equation of state for β -equilibrium quark matter, quark symmetry energy, quark symmetry free energy, and the properties of quark stars at finite temperatures. We find that including the temperature dependence of the equivalent mass can significantly influence the properties of the strange quark matter as well as the quark symmetry energy, the quark symmetry free energy, and the maximum mass of quark stars at finite temperatures. The mass-radius relations for different stages of the protoquark stars (PQSs) along the star evolution are analyzed. Our results indicate that the heating (cooling) process for PQSs will increase (decrease) the maximum mass within the CIDDM model by including temperature dependence of the equivalent mass for quarks.

  20. Early onset alcohol dependence with high density of family history is not "male limited".

    Science.gov (United States)

    Magnusson, Asa; Göransson, Mona; Heilig, Markus

    2010-03-01

    Based on classical adoption studies, early onset type II alcoholism was originally described as "male limited." We examined the possible expression of this subtype in present day alcohol-dependent women. Detailed systematic assessment was obtained from 200 treatment-seeking alcohol-dependent women and 189 healthy population controls. Women fulfilling type II alcoholism criteria had higher alcoholism severity as measured by The Alcohol Use Disorders Identification Test and markedly higher use of illicit drugs. Both alcoholism subtypes scored higher than normal on anxiety and impulsivity traits, but type II women scored markedly higher on aggression subscales than either of the other groups. Importantly, density of family history was markedly higher in type II women, suggesting a higher heritability. Despite its original description as male limited, early onset alcoholism with high density of family history is likely to be a valid construct in women. Its recognition has important implications for diagnosis, treatment, and research. Published by Elsevier Inc.

  1. Magnetic circular dichroism in real-time time-dependent density functional theory

    CERN Document Server

    Lee, K -M; Bertsch, G F

    2010-01-01

    We apply the adiabatic time-dependent density functional theory to magnetic ci the real-space, real-time computational method. The standard formulas for the MCD response and its A and B terms are derived from the observables in the time-dependent wave function. We find the real time method is well suited for calculating the overall spectrum, particularly at higher excitation energies where individual excited states are numerous and overlapping. The MCD sum rules are derived and interpreted in the real-time formalism; we find that they are very useful for normalization purposes and assessing the accuracy of the theory. The method is applied to MCD spectrum of C-60 using the adiabatic energy functional from the local density approximation. The theory correctly predicts the signs of the A and B terms for the lowest allowed excitations. However, the magnitudes of the terms only show qualitative agreement with experiment.

  2. Postcatastrophe population dynamics and density dependence of an endemic island duck

    Science.gov (United States)

    Seavy, N.E.; Reynolds, M.H.; Link, W.A.; Hatfield, J.S.

    2009-01-01

    Laysan ducks (Anas laysanensis) are restricted to approximately 9 km2 in the Northwestern Hawaiian Islands, USA. To evaluate the importance of density dependence for Laysan ducks, we conducted a Bayesian analysis to estimate the parameters of a Gompertz model and the magnitude of process variation and observation error based on the fluctuations in Laysan duck abundance on Laysan Island from 1994 to 2007. This model described a stationary distribution for the population at carrying capacity that fluctuates around a long-term mean of 456 ducks and is between 316 to 636 ducks 95% of the time. This range of expected variability can be used to identify changes in population size that warn of catastrophic events. Density-dependent population dynamics may explain the recovery of Laysan duck from catastrophic declines and allow managers to identify population monitoring thresholds.

  3. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics

    DEFF Research Database (Denmark)

    Koons, David; Colchero, Fernando; Hersey, Kent

    2015-01-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... than precipitation and other temperature-related variables (model weight > 3 times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...

  4. Density Functional Reactivity Theory Characterizes Charge Separation Propensity in Proton-Coupled Electron Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shubin [Univ. of North Carolina, Chapel Hill, NC (United States); Ess, Daniel H. [Brigham Young Univ., Provo, UT (United States); Univ. of North Carolina, Chapel Hill, NC (United States); Schauer, Cynthia [Univ. of North Carolina, Chapel Hill, NC (United States)

    2011-04-20

    Proton-coupled electron transfer (PCET) reactions occur in many biological and artificial solar energy conversion processes. In these reactions the electron is often transferred to a site distant to the proton acceptor site. In this work, we employ the dual descriptor and the electrophilic Fukui function from density functional reactivity theory (DFRT) to characterize the propensity for an electron to be transferred to a site other than the proton acceptor site. The electrophilic regions of hydrogen bond or van der Waal reactant complexes were examined using these DFRT descriptors to determine the region of space to which the electron is most likely to be transferred. This analysis shows that in PCET reactions the electrophilic region of the reactant complex does not include the proton acceptor site.

  5. Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor O. [Antwerpen Univ. (Belgium). Dept. Fysica; Veken, Frederik F. van der [CERN, Geneva (Switzerland)

    2017-05-01

    The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.

  6. Multi-configuration time-dependent density-functional theory based on range separation

    CERN Document Server

    Fromager, Emmanuel; Jensen, Hans Jørgen Aa

    2012-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration-Self-Consistent Field (MCSCF) treatment with an adiabatic short-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H2, Be and ferrocene, considering both short-range local density (srLDA) and generalized gradient (srGGA) approximations. In contrast to regular TD-DFT, TD-MC-srDFT can describe double excitations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [K. Pernal, J. Chem. Phys. 136, 184105 (2012)], the description of both the 1^1D doubly-excited state in Be and the 1^1\\Sigma^+_u state in the stretch...

  7. Line Shape Modeling for the Diagnostic of the Electron Density in a Corona Discharge

    Directory of Open Access Journals (Sweden)

    Joël Rosato

    2017-09-01

    Full Text Available We present an analysis of spectra observed in a corona discharge designed for the study of dielectrics in electrical engineering. The medium is a gas of helium and the discharge was performed at the vicinity of a tip electrode under high voltage. The shape of helium lines is dominated by the Stark broadening due to the plasma microfield. Using a computer simulation method, we examine the sensitivity of the He 492 nm line shape to the electron density. Our results indicate the possibility of a density diagnostic based on passive spectroscopy. The influence of collisional broadening due to interactions between the emitters and neutrals is discussed.

  8. Determination of the electronic density of states near buried interfaces: Application to Co/Cu multilayers

    DEFF Research Database (Denmark)

    Nilsson, A.; Sthör, J.; Wiell, T.

    1996-01-01

    High-resolution L(3) x-ray absorption and emission spectra of Co and Cu in Co/Cu multilayers are shown to provide unique information on the occupied and unoccupied density of d states near buried interfaces. The d bands of both Co and Cu interfacial layers are shown to be considerably narrowed re...... relative to the bulk metals, and for Cu interface layers the d density of states is found to be enhanced near the Fermi level. The experimental results are confirmed by self-consistent electronic structure calculations....

  9. RENNSH: a novel α-helix identification approach for intermediate resolution electron density maps.

    Science.gov (United States)

    Ma, Lingyu; Reisert, Marco; Burkhardt, Hans

    2012-01-01

    Accurate identification of protein secondary structures is beneficial to understand three-dimensional structures of biological macromolecules. In this paper, a novel refined classification framework is proposed, which treats alpha-helix identification as a machine learning problem by representing each voxel in the density map with its Spherical Harmonic Descriptors (SHD). An energy function is defined to provide statistical analysis of its identification performance, which can be applied to all the α-helix identification approaches. Comparing with other existing α-helix identification methods for intermediate resolution electron density maps, the experimental results demonstrate that our approach gives the best identification accuracy and is more robust to the noise.

  10. The Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks

    CERN Document Server

    Yao, Kun

    2015-01-01

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from electron density. The output of the network is used as a non-local correction to the conventional local and semi-local kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. Numerical noise inherited from the non-linearity of the neural network is identified as the major challenge for the model. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  11. Modelling coronal electron density and temperature profiles based on solar magnetic field observations

    Science.gov (United States)

    Rodríguez Gómez, J. M.; Antunes Vieira, L. E.; Dal Lago, A.; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    The density and temperature profiles in the solar corona are complex to describe, the observational diagnostics is not easy. Here we present a physics-based model to reconstruct the evolution of the electron density and temperature in the solar corona based on the configuration of the magnetic field imprinted on the solar surface. The structure of the coronal magnetic field is estimated from Potential Field Source Surface (PFSS) based on magnetic field from both observational synoptic charts and a magnetic flux transport model. We use an emission model based on the ionization equilibrium and coronal abundances from CHIANTI atomic database 8.0. The preliminary results are discussed in details.

  12. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...... surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear emission spectra using the time-propagation method....

  13. Optical properties of Al nanostructures from time dependent density functional theory

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-04-05

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.

  14. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations.

    Science.gov (United States)

    Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik

    2017-10-31

    We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.

  15. The importance of spatial models for estimating the strength of density dependence

    DEFF Research Database (Denmark)

    Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper

    2014-01-01

    the California Coast. In this case, the nonspatial model estimates implausible oscillatory dynamics on an annual time scale, while the spatial model estimates strong autocorrelation and is supported by model selection tools. We conclude by discussing the importance of improved data archiving techniques, so...... that spatial models can be used to re-examine classic questions regarding the presence and strength of density dependence in wild populations Read More: http://www.esajournals.org/doi/abs/10.1890/14-0739.1...

  16. Analysis of density-dependent binding of glycans by lectins using carbohydrate microarrays.

    Science.gov (United States)

    Tian, Xizhe; Pai, Jaeyoung; Shin, Injae

    2012-09-01

    To investigate the density-dependent binding of glycans by lectins using carbohydrate microarrays, a number of C-terminal hydrazide-conjugated neoglycopeptides with various valences and different spatial arrangements of the sugar ligands were prepared on a solid support. The synthetic strategy includes (1) assembly of alkyne-linked peptides possessing C-terminal hydrazide on a solid support, (2) coupling of azide-linked, unprotected sugars to the alkyne-linked peptides on the solid support utilizing click chemistry, and (3) release of the neoglycopeptides from the solid support. By using this synthetic methodology, sixty five neoglycopeptides with a valency ranging from 1 to 4 and different spatial arrangements of the carbohydrate ligands were generated. Carbohydrate microarrays were constructed by immobilizing the prepared neoglycopeptides on epoxide-derivatized glass slides and were used to analyze the density-dependent binding of glycans by lectins. The results of binding property determinations show that lectin binding is highly dependent on the surface glycan density. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional Mo S 2

    KAUST Repository

    Hong, Jinhua

    2016-02-29

    The anisotropy of the electronic transition is a well-known characteristic of low-dimensional transition-metal dichalcogenides, but their layer-thickness dependence has not been properly investigated experimentally until now. Yet, it not only determines the optical properties of these low-dimensional materials, but also holds the key in revealing the underlying character of the electronic states involved. Here we used both angle-resolved electron energy-loss spectroscopy and spectral analysis of angle-integrated spectra to study the evolution of the anisotropic electronic transition involving the low-energy valence electrons in the freestanding MoS2 layers with different thicknesses. We are able to demonstrate that the well-known direct gap at 1.8 eV is only excited by the in-plane polarized field while the out-of-plane polarized optical gap is 2.4 ± 0.2 eV in monolayer MoS2. This contrasts with the much smaller anisotropic response found for the indirect gap in the few-layer MoS2 systems. In addition, we determined that the joint density of states associated with the indirect gap transition in the multilayer systems and the corresponding indirect transition in the monolayer case has a characteristic three-dimensional-like character. We attribute this to the soft-edge behavior of the confining potential and it is an important factor when considering the dynamical screening of the electric field at the relevant excitation energies. Our result provides a logical explanation for the large sensitivity of the indirect transition to thickness variation compared with that for the direct transition, in terms of quantum confinement effect.

  18. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Betzinger, Markus

    2011-12-14

    In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW

  19. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface.

    Science.gov (United States)

    Cha, Kyoung Je; Kong, Sun-Young; Lee, Ji Soo; Kim, Hyung Woo; Shin, Jae-Yeon; La, Moonwoo; Han, Byung Woo; Kim, Dong Sung; Kim, Hyun-Jung

    2017-10-12

    Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.

  20. Experimental Examination of Intraspecific Density-Dependent Competition during the Breeding Period in Monarch Butterflies (Danaus plexippus)

    Science.gov (United States)

    Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan

    2012-01-01

    A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614

  1. Experimental examination of intraspecific density-dependent competition during the breeding period in monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    D T Tyler Flockhart

    Full Text Available A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism.

  2. Distance Dependence of the Electronic Contact of a Molecular Wire

    Science.gov (United States)

    Grill, L.; Moresco, F.; Jiang, P.; Stojkovic, S.; Gourdon, A.; Joachim, C.; Rieder, K.-H.

    2005-09-01

    The central molecular wire of a so-called Reactive Lander molecule is brought in electronic contact with an atomic scale metallic nanostructure by manipulation with the STM tip. Several stable conformations are obtained in a controlled way, in accordance with calculations. An additional contribution to the tunneling current is observed at the end of the molecular board, reflecting the electronic interaction between the molecular wire and the nanostructure. The characteristic intensity of this electronic contact for different conformations is discussed by means of the vertical interatomic distance between the molecular wire and the metal atoms.

  3. Ground-state properties and density response of quasi-one-dimensional electron systems

    Science.gov (United States)

    Agosti, Daniele; Pederiva, Francesco; Lipparini, Enrico; Takayanagi, Kazuo

    1998-06-01

    Ground-state properties of the quasi-one-dimensional electron gas in a quantum wire are calculated in the random-phase approximation (RPA), the ladder approximation, and the Singwi-Tosi-Land-Sjölander approximation. Numerical results are given for the exchange-correlation energy and the compressibility as a function of the electron density and the width of the wire. The dielectric response of the system has been calculated in the local field approximation and compared with the RPA result.

  4. The charger transfer electronic coupling in diabatic perspective: A multi-state density functional theory study

    Science.gov (United States)

    Guo, Xinwei; Qu, Zexing; Gao, Jiali

    2018-01-01

    The multi-state density functional theory (MSDFT) provides a convenient way to estimate electronic coupling of charge transfer processes based on a diabatic representation. Its performance has been benchmarked against the HAB11 database with a mean unsigned error (MUE) of 17 meV between MSDFT and ab initio methods. The small difference may be attributed to different representations, diabatic from MSDFT and adiabatic from ab initio calculations. In this discussion, we conclude that MSDFT provides a general and efficient way to estimate the electronic coupling for charge-transfer rate calculations based on the Marcus-Hush model.

  5. Generation of a neutral, high-density electron-positron plasma in the laboratory

    CERN Document Server

    Sarri, G; Cole, J; Schumaker, W; Di Piazza, A; Reville, B; Doria, D; Dromey, B; Gizzi, L; Green, A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kushel, S; Mangles, S; Najmudin, Z; Thomas, A G R; Vargas, M; Zepf, M

    2013-01-01

    We report on the laser-driven generation of purely neutral, relativistic electron-positron pair plasmas. The overall charge neutrality, high average Lorentz factor ($\\gamma_{e/p} \\approx 15$), small divergence ($\\theta_{e/p} \\approx 10 - 20$ mrad), and high density ($n_{e/p}\\simeq 10^{15}$cm$^{-3}$) of these plasmas open the pathway for the experimental study of the dynamics of this exotic state of matter, in regimes that are of relevance to electron-positron astrophysical plasmas.

  6. Communication: Reduced density matrices in molecular systems: Grand-canonical electron states

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, Roberto C., E-mail: rboc@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Miranda-Quintana, Ramón A. [Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Zapata e G y Mazón, 10400 Havana (Cuba); Rial, Diego [Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2013-11-21

    Grand-canonical like descriptions of many electron atomic and molecular open systems which are characterized by a non-integer number of electrons are presented. Their associated reduced density matrices (RDMs) are obtained by introducing the contracting mapping for this type of distributions. It is shown that there is loss of information when connecting RDMs of different order by partial contractions. The energy convexity property of these systems simplifies the description. Consequently, this formulation opens the possibility to a new look for chemical descriptors such as chemical potential and reactivity among others. Examples are presented to discuss the theoretical aspects of this work.

  7. Communication: Reduced density matrices in molecular systems: Grand-canonical electron states

    Science.gov (United States)

    Bochicchio, Roberto C.; Miranda-Quintana, Ramón A.; Rial, Diego

    2013-11-01

    Grand-canonical like descriptions of many electron atomic and molecular open systems which are characterized by a non-integer number of electrons are presented. Their associated reduced density matrices (RDMs) are obtained by introducing the contracting mapping for this type of distributions. It is shown that there is loss of information when connecting RDMs of different order by partial contractions. The energy convexity property of these systems simplifies the description. Consequently, this formulation opens the possibility to a new look for chemical descriptors such as chemical potential and reactivity among others. Examples are presented to discuss the theoretical aspects of this work.

  8. Influence of excitation power density on temperature dependencies of NaYF4: Yb, Er nanoparticles luminescence spectra

    Science.gov (United States)

    Ustalkov, Sergey O.; Kozlova, Ekaterina A.; Savenko, Olga A.; Mohammed, Ammar H. M.; Kochubey, Vyacheslav I.; Skaptsov, Alexander A.

    2017-03-01

    Upconversion nanoparticles are good candidates for nanothermometry. The wavelength of the excitation and luminescence lie in optical window. The influence of the excitation power density on the luminescence temperature dependences is studded. Ratio of luminescence intensities linearly depends on temperature.

  9. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle.

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-28

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  10. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials used in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Almeida J, A. T. [FUNDACENTRO, Centro Regional de Minas Gerais, Brazilian Institute for Safety and Health at Work, Belo Horizonte, 30180-100 Minas Gerais (Brazil); Nogueira, M. S. [Center of Development of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Santos, M. A. P., E-mail: mnogue@cdtn.br [Regional Center for Nuclear Science / CNEN, 50.740-540 Recife, Pernambuco (Brazil)

    2015-10-15

    Full text: In this paper, the interaction of X-rays with some shielding materials has been studied for materials containing different amounts of barite and aggregates. The total mass attenuation coefficient (μ{sub t}) for three shielding materials has been calculated by using WinXCOM program in the energy range from RQR qualities (RQR-4, RQR-6, RQR-9, and RQR-10). They were: cream barite (density 2.99 g/cm{sup 3} collected in the State of Sao Paulo), purple barite (density 2.95 g/cm{sup 3} collected in the State of Bahia) and white barite (density 3.10 g/cm{sup 3} collected in the State of Paraiba). The chemical analysis was carried out by an X-ray fluorescence spectrometer model EDX-720, through dispersive energy. The six elements of the higher concentration found in the sample and analyzed by Spectrophotometry of Energy Dispersive X-ray for the samples were Ba(60.9% - white barite), Ca(17,92% - cream barite), Ce(3,60% - white barite), Fe(17,16% - purple barite), S(12,11% - white barite) and Si(29,61% - purple barite). Also, the effective atomic number (Z{sub eff}) and the effective electron density (N{sub eff}) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined. (Author)

  11. Extended density-dependent mortality in mature conifer forests: causes and implications for ecosystem management.

    Science.gov (United States)

    Gendreau-Berthiaume, Benoit; Macdonald, S Ellen; Stadt, J John

    2016-07-01

    Understanding processes driving mortality in forests is important for comprehension of natural stand dynamics and for informing natural disturbance-based ecosystem management. There has been considerable study of mortality in forests during the self-thinning phase but we know much less about processes driving mortality in stands at later successional stages. We addressed this through study of five 1-ha spatially explicit permanent plots in mature (111-186 yr old in 2012) Pinus contorta stands in the Canadian Rocky Mountains using data from repeated measurements over a 45-yr period, dendrochronological information, and point pattern analysis. We tested the hypothesis that these stands had completed the self-thinning/density-dependent mortality stage of succession. Contrary to our expectations, the self-thinning phase can persist for more than 140 yr following stand establishment. Our findings suggest this was attributable to prolonged post-fire establishment periods due to surface fires in three of the plots while in the other two plots moist conditions and slow growth most likely delayed the onset of competition. Several pieces of evidence indicated the importance of density-dependent mortality in these stands over the study period: (1) The diameter distribution of individuals changed from initially right-skewed toward normality as a result of mortality of smaller-diameter stems. (2) Individuals of lower canopy positions were proportionally more affected by mortality. (3) When compared to the pre-mortality pattern, surviving stems in all stands had an increasingly uniform spatial distribution. In two of the plots, recent windthrow and/or ingrowth initially hindered our ability to detect density-dependent mortality but our dendrochronological sampling and permanent plot data allowed us to untangle the different processes at play; in doing so we demonstrate for the first time how density-independent processes can mask underlying density-dependent mortality

  12. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    Energy Technology Data Exchange (ETDEWEB)

    Weikum, M.K., E-mail: maria.weikum@desy.de [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Li, F.Y. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Assmann, R.W. [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Sheng, Z.M. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Jaroszynski, D. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom)

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented. - Highlights: • LWFA with an upramp density profile can trap and accelerate sub-fs electron beams. • A reduction of the necessary threshold laser intensity by a factor 4 is presented. • Electron properties are tuned by varying initial laser and plasma parameters. • Simulations predict electron bunch lengths below 200 attoseconds with pC charge. • Strong bunch evolution effects and a large energy spread still need to be improved.

  13. Communication: Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors.

    Science.gov (United States)

    Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W; Waroquier, Michel

    2010-12-21

    A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.

  14. Fragment transition density method to calculate electronic coupling for excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Voityuk, Alexander A., E-mail: alexander.voityuk@icrea.cat [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona 17071 Girona (Spain)

    2014-06-28

    A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA π-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

  15. Comparison of F-region electron density observations by satellite radio tomography and incoherent scatter methods

    Directory of Open Access Journals (Sweden)

    T. Nygrén

    1996-12-01

    Full Text Available In November 1995 a campaign of satellite radiotomography supported by the EISCAT incoherent scatter radar and several other instruments was arranged in Scandinavia. A chain of four satellite receivers extending from the north of Norway to the south of Finland was installed approximately along a geomagnetic meridian. The receivers carried out difference Doppler measurements using signals from satellites flying along the chain. The EISCAT UHF radar was simultaneously operational with its beam swinging either in geomagnetic or in geographic meridional plane. With this experimental set-up latitudinal scans of F-region electron density are obtained both from the radar observations and by tomographic inversion of the phase observations given by the difference Doppler experiment. This paper shows the first results of the campaign and compares the electron densities given by the two methods.

  16. Deducing fast electron density changes in randomly orientated uncrystallized biomolecules in a pump-probe experiment.

    Science.gov (United States)

    Pande, K; Schwander, P; Schmidt, M; Saldin, D K

    2014-07-17

    We propose a method for deducing time-resolved structural changes in uncrystallized biomolecules in solution. The method relies on measuring the angular correlations of the intensities, when averaged over a large number of diffraction patterns from randomly oriented biomolecules in solution in a liquid solvent. The experiment is somewhat like a pump-probe version of an experiment on small angle X-ray scattering, except that the data expected by the algorithm are not just the radial variation of the averaged intensities. The differences of these correlation functions as measured from a photoexcited and dark structure enable the direct calculation of the difference electron density with a knowledge of only the dark structure. We exploit a linear relation we derive between the difference in these correlation functions and the difference electron density, applicable for small structural changes.

  17. From Metal Cluster to Metal Nanowire: A Topological Analysis of Electron Density and Band Structure Calculation

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2002-01-01

    Full Text Available Abstract:We investigate a theoretical model of molecular metalwire constructed from linear polynuclear metal complexes. In particular we study the linear Crn metal complex and Cr molecular metalwire. The electron density distributions of the model nanowire and the linear Crn metal complexes, with n = 3, 5, and 7, are calculated by employing CRYSTAL98 package with topological analysis. The preliminary results indicate that the bonding types between any two neighboring Cr are all the same, namely the polarized open-shell interaction. The pattern of electron density distribution in metal complexes resembles that of the model Cr nanowire as the number of metal ions increases. The conductivity of the model Cr nanowire is also tested by performing the band structure calculation.

  18. Temporal Behavior of the Ionospheric Electron Density at Low Latitudes: First Glimpse

    Science.gov (United States)

    Gjerloev, J. W.; Humberset, B. K.; Gonzalez, S. A.; Garnett Marques Brum, C.

    2013-12-01

    In this paper we address the spatiotemporal characteristics of the electron density at 150 km altitude in the low latitude ionosphere above the Arecibo Observatory. We utilize a new pointing mode that allows us to probe the same volume in the ionosphere for a continuous period of approximately 25 min. or more. The ISR profiles have 150 m range resolution and samples have a 10-second time resolution; we probed 60 individual regions uniformly spaced in local times and covering the full 24 hours. For each time series we determine the total derivative of the electron density using a narrow Hanning bandpass filter that allow us to determine the variability at different frequencies. This is done for each of the 60 local time regions. We further compare to widely used static statistical models and test their underlying assumption: Dynamics can be ignored.

  19. Measurements of electron density irregularities in the ionosphere of Jupiter by Pioneer 10

    Science.gov (United States)

    Woo, R.; Yang, F.-C.

    1976-01-01

    It is demonstrated that when the frequency spectrum of log amplitude fluctuations is used, the radio-occultation experiment is a powerful tool for detecting, identifying, and studying ionospheric irregularities. Analysis of Pioneer 10 radio-occultation measurements reveals that the Jovian ionosphere possesses electron-density irregularities which are very similar to those found in the earth's ionosphere. This is the first time such irregularities have been found in a planetary ionosphere other than that of the earth. The Pioneer 10 results indicate that the spatial wave-number spectrum of the electron-density irregularities is close to the Kolmogorov spectrum and that the outer scale size is greater than the Fresnel size (6.15 km). This type of spectrum suggests that the irregularities are probably produced by the turbulent dissipation of irregularities larger than the outer scale size.

  20. Applications of electron density studies in molecular and solid state science

    DEFF Research Database (Denmark)

    Overgaard, Jacob

    2015-01-01

    The present dissertation contains the distillate of my scientific output in the field of experimental and theoretical electron density studies roughly over the last decade and a little more, since earning my PhD-degree in 2001. There are several reasons that I have chosen to write my dissertation...... of electron density studies in connection with the UN declared International Year of Crystallography in 2014. In addition, a number of reviews on the method have very recently appeared showing that the time is ripe to look back on the achievements of the last 10 years and also to look ahead to see where...... at this point in time. Given the development in the underlying technology of X-ray diffraction in the last two decades it is relevant to describe the impact that this has had on the possible output, and this is well exemplified by the studies that I have been involved in. It is also timely to present a status...